2 * kernel/workqueue.c - generic async execution with shared worker pool
4 * Copyright (C) 2002 Ingo Molnar
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
12 * Made to use alloc_percpu by Christoph Lameter.
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There are two worker pools for each CPU (one for
20 * normal work items and the other for high priority ones) and some extra
21 * pools for workqueues which are not bound to any specific CPU - the
22 * number of these backing pools is dynamic.
24 * Please read Documentation/workqueue.txt for details.
27 #include <linux/export.h>
28 #include <linux/kernel.h>
29 #include <linux/sched.h>
30 #include <linux/init.h>
31 #include <linux/signal.h>
32 #include <linux/completion.h>
33 #include <linux/workqueue.h>
34 #include <linux/slab.h>
35 #include <linux/cpu.h>
36 #include <linux/notifier.h>
37 #include <linux/kthread.h>
38 #include <linux/hardirq.h>
39 #include <linux/mempolicy.h>
40 #include <linux/freezer.h>
41 #include <linux/kallsyms.h>
42 #include <linux/debug_locks.h>
43 #include <linux/lockdep.h>
44 #include <linux/idr.h>
45 #include <linux/jhash.h>
46 #include <linux/hashtable.h>
47 #include <linux/rculist.h>
48 #include <linux/nodemask.h>
49 #include <linux/moduleparam.h>
50 #include <linux/uaccess.h>
52 #include "workqueue_internal.h"
58 * A bound pool is either associated or disassociated with its CPU.
59 * While associated (!DISASSOCIATED), all workers are bound to the
60 * CPU and none has %WORKER_UNBOUND set and concurrency management
63 * While DISASSOCIATED, the cpu may be offline and all workers have
64 * %WORKER_UNBOUND set and concurrency management disabled, and may
65 * be executing on any CPU. The pool behaves as an unbound one.
67 * Note that DISASSOCIATED should be flipped only while holding
68 * manager_mutex to avoid changing binding state while
69 * create_worker() is in progress.
71 POOL_MANAGE_WORKERS
= 1 << 0, /* need to manage workers */
72 POOL_DISASSOCIATED
= 1 << 2, /* cpu can't serve workers */
73 POOL_FREEZING
= 1 << 3, /* freeze in progress */
76 WORKER_STARTED
= 1 << 0, /* started */
77 WORKER_DIE
= 1 << 1, /* die die die */
78 WORKER_IDLE
= 1 << 2, /* is idle */
79 WORKER_PREP
= 1 << 3, /* preparing to run works */
80 WORKER_CPU_INTENSIVE
= 1 << 6, /* cpu intensive */
81 WORKER_UNBOUND
= 1 << 7, /* worker is unbound */
82 WORKER_REBOUND
= 1 << 8, /* worker was rebound */
84 WORKER_NOT_RUNNING
= WORKER_PREP
| WORKER_CPU_INTENSIVE
|
85 WORKER_UNBOUND
| WORKER_REBOUND
,
87 NR_STD_WORKER_POOLS
= 2, /* # standard pools per cpu */
89 UNBOUND_POOL_HASH_ORDER
= 6, /* hashed by pool->attrs */
90 BUSY_WORKER_HASH_ORDER
= 6, /* 64 pointers */
92 MAX_IDLE_WORKERS_RATIO
= 4, /* 1/4 of busy can be idle */
93 IDLE_WORKER_TIMEOUT
= 300 * HZ
, /* keep idle ones for 5 mins */
95 MAYDAY_INITIAL_TIMEOUT
= HZ
/ 100 >= 2 ? HZ
/ 100 : 2,
96 /* call for help after 10ms
98 MAYDAY_INTERVAL
= HZ
/ 10, /* and then every 100ms */
99 CREATE_COOLDOWN
= HZ
, /* time to breath after fail */
102 * Rescue workers are used only on emergencies and shared by
103 * all cpus. Give -20.
105 RESCUER_NICE_LEVEL
= -20,
106 HIGHPRI_NICE_LEVEL
= -20,
112 * Structure fields follow one of the following exclusion rules.
114 * I: Modifiable by initialization/destruction paths and read-only for
117 * P: Preemption protected. Disabling preemption is enough and should
118 * only be modified and accessed from the local cpu.
120 * L: pool->lock protected. Access with pool->lock held.
122 * X: During normal operation, modification requires pool->lock and should
123 * be done only from local cpu. Either disabling preemption on local
124 * cpu or grabbing pool->lock is enough for read access. If
125 * POOL_DISASSOCIATED is set, it's identical to L.
127 * MG: pool->manager_mutex and pool->lock protected. Writes require both
128 * locks. Reads can happen under either lock.
130 * PL: wq_pool_mutex protected.
132 * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads.
134 * WQ: wq->mutex protected.
136 * WR: wq->mutex protected for writes. Sched-RCU protected for reads.
138 * MD: wq_mayday_lock protected.
141 /* struct worker is defined in workqueue_internal.h */
144 spinlock_t lock
; /* the pool lock */
145 int cpu
; /* I: the associated cpu */
146 int node
; /* I: the associated node ID */
147 int id
; /* I: pool ID */
148 unsigned int flags
; /* X: flags */
150 struct list_head worklist
; /* L: list of pending works */
151 int nr_workers
; /* L: total number of workers */
153 /* nr_idle includes the ones off idle_list for rebinding */
154 int nr_idle
; /* L: currently idle ones */
156 struct list_head idle_list
; /* X: list of idle workers */
157 struct timer_list idle_timer
; /* L: worker idle timeout */
158 struct timer_list mayday_timer
; /* L: SOS timer for workers */
160 /* a workers is either on busy_hash or idle_list, or the manager */
161 DECLARE_HASHTABLE(busy_hash
, BUSY_WORKER_HASH_ORDER
);
162 /* L: hash of busy workers */
164 /* see manage_workers() for details on the two manager mutexes */
165 struct mutex manager_arb
; /* manager arbitration */
166 struct mutex manager_mutex
; /* manager exclusion */
167 struct idr worker_idr
; /* MG: worker IDs and iteration */
169 struct workqueue_attrs
*attrs
; /* I: worker attributes */
170 struct hlist_node hash_node
; /* PL: unbound_pool_hash node */
171 int refcnt
; /* PL: refcnt for unbound pools */
174 * The current concurrency level. As it's likely to be accessed
175 * from other CPUs during try_to_wake_up(), put it in a separate
178 atomic_t nr_running ____cacheline_aligned_in_smp
;
181 * Destruction of pool is sched-RCU protected to allow dereferences
182 * from get_work_pool().
185 } ____cacheline_aligned_in_smp
;
188 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
189 * of work_struct->data are used for flags and the remaining high bits
190 * point to the pwq; thus, pwqs need to be aligned at two's power of the
191 * number of flag bits.
193 struct pool_workqueue
{
194 struct worker_pool
*pool
; /* I: the associated pool */
195 struct workqueue_struct
*wq
; /* I: the owning workqueue */
196 int work_color
; /* L: current color */
197 int flush_color
; /* L: flushing color */
198 int refcnt
; /* L: reference count */
199 int nr_in_flight
[WORK_NR_COLORS
];
200 /* L: nr of in_flight works */
201 int nr_active
; /* L: nr of active works */
202 int max_active
; /* L: max active works */
203 struct list_head delayed_works
; /* L: delayed works */
204 struct list_head pwqs_node
; /* WR: node on wq->pwqs */
205 struct list_head mayday_node
; /* MD: node on wq->maydays */
208 * Release of unbound pwq is punted to system_wq. See put_pwq()
209 * and pwq_unbound_release_workfn() for details. pool_workqueue
210 * itself is also sched-RCU protected so that the first pwq can be
211 * determined without grabbing wq->mutex.
213 struct work_struct unbound_release_work
;
215 } __aligned(1 << WORK_STRUCT_FLAG_BITS
);
218 * Structure used to wait for workqueue flush.
221 struct list_head list
; /* WQ: list of flushers */
222 int flush_color
; /* WQ: flush color waiting for */
223 struct completion done
; /* flush completion */
229 * The externally visible workqueue. It relays the issued work items to
230 * the appropriate worker_pool through its pool_workqueues.
232 struct workqueue_struct
{
233 struct list_head pwqs
; /* WR: all pwqs of this wq */
234 struct list_head list
; /* PL: list of all workqueues */
236 struct mutex mutex
; /* protects this wq */
237 int work_color
; /* WQ: current work color */
238 int flush_color
; /* WQ: current flush color */
239 atomic_t nr_pwqs_to_flush
; /* flush in progress */
240 struct wq_flusher
*first_flusher
; /* WQ: first flusher */
241 struct list_head flusher_queue
; /* WQ: flush waiters */
242 struct list_head flusher_overflow
; /* WQ: flush overflow list */
244 struct list_head maydays
; /* MD: pwqs requesting rescue */
245 struct worker
*rescuer
; /* I: rescue worker */
247 int nr_drainers
; /* WQ: drain in progress */
248 int saved_max_active
; /* WQ: saved pwq max_active */
250 struct workqueue_attrs
*unbound_attrs
; /* WQ: only for unbound wqs */
251 struct pool_workqueue
*dfl_pwq
; /* WQ: only for unbound wqs */
254 struct wq_device
*wq_dev
; /* I: for sysfs interface */
256 #ifdef CONFIG_LOCKDEP
257 struct lockdep_map lockdep_map
;
259 char name
[WQ_NAME_LEN
]; /* I: workqueue name */
261 /* hot fields used during command issue, aligned to cacheline */
262 unsigned int flags ____cacheline_aligned
; /* WQ: WQ_* flags */
263 struct pool_workqueue __percpu
*cpu_pwqs
; /* I: per-cpu pwqs */
264 struct pool_workqueue __rcu
*numa_pwq_tbl
[]; /* FR: unbound pwqs indexed by node */
267 static struct kmem_cache
*pwq_cache
;
269 static int wq_numa_tbl_len
; /* highest possible NUMA node id + 1 */
270 static cpumask_var_t
*wq_numa_possible_cpumask
;
271 /* possible CPUs of each node */
273 static bool wq_disable_numa
;
274 module_param_named(disable_numa
, wq_disable_numa
, bool, 0444);
276 /* see the comment above the definition of WQ_POWER_EFFICIENT */
277 #ifdef CONFIG_WQ_POWER_EFFICIENT_DEFAULT
278 static bool wq_power_efficient
= true;
280 static bool wq_power_efficient
;
283 module_param_named(power_efficient
, wq_power_efficient
, bool, 0444);
285 static bool wq_numa_enabled
; /* unbound NUMA affinity enabled */
287 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
288 static struct workqueue_attrs
*wq_update_unbound_numa_attrs_buf
;
290 static DEFINE_MUTEX(wq_pool_mutex
); /* protects pools and workqueues list */
291 static DEFINE_SPINLOCK(wq_mayday_lock
); /* protects wq->maydays list */
293 static LIST_HEAD(workqueues
); /* PL: list of all workqueues */
294 static bool workqueue_freezing
; /* PL: have wqs started freezing? */
296 /* the per-cpu worker pools */
297 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool
[NR_STD_WORKER_POOLS
],
300 static DEFINE_IDR(worker_pool_idr
); /* PR: idr of all pools */
302 /* PL: hash of all unbound pools keyed by pool->attrs */
303 static DEFINE_HASHTABLE(unbound_pool_hash
, UNBOUND_POOL_HASH_ORDER
);
305 /* I: attributes used when instantiating standard unbound pools on demand */
306 static struct workqueue_attrs
*unbound_std_wq_attrs
[NR_STD_WORKER_POOLS
];
308 struct workqueue_struct
*system_wq __read_mostly
;
309 EXPORT_SYMBOL(system_wq
);
310 struct workqueue_struct
*system_highpri_wq __read_mostly
;
311 EXPORT_SYMBOL_GPL(system_highpri_wq
);
312 struct workqueue_struct
*system_long_wq __read_mostly
;
313 EXPORT_SYMBOL_GPL(system_long_wq
);
314 struct workqueue_struct
*system_unbound_wq __read_mostly
;
315 EXPORT_SYMBOL_GPL(system_unbound_wq
);
316 struct workqueue_struct
*system_freezable_wq __read_mostly
;
317 EXPORT_SYMBOL_GPL(system_freezable_wq
);
318 struct workqueue_struct
*system_power_efficient_wq __read_mostly
;
319 EXPORT_SYMBOL_GPL(system_power_efficient_wq
);
320 struct workqueue_struct
*system_freezable_power_efficient_wq __read_mostly
;
321 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq
);
323 static int worker_thread(void *__worker
);
324 static void copy_workqueue_attrs(struct workqueue_attrs
*to
,
325 const struct workqueue_attrs
*from
);
327 #define CREATE_TRACE_POINTS
328 #include <trace/events/workqueue.h>
330 #define assert_rcu_or_pool_mutex() \
331 rcu_lockdep_assert(rcu_read_lock_sched_held() || \
332 lockdep_is_held(&wq_pool_mutex), \
333 "sched RCU or wq_pool_mutex should be held")
335 #define assert_rcu_or_wq_mutex(wq) \
336 rcu_lockdep_assert(rcu_read_lock_sched_held() || \
337 lockdep_is_held(&wq->mutex), \
338 "sched RCU or wq->mutex should be held")
340 #ifdef CONFIG_LOCKDEP
341 #define assert_manager_or_pool_lock(pool) \
342 WARN_ONCE(debug_locks && \
343 !lockdep_is_held(&(pool)->manager_mutex) && \
344 !lockdep_is_held(&(pool)->lock), \
345 "pool->manager_mutex or ->lock should be held")
347 #define assert_manager_or_pool_lock(pool) do { } while (0)
350 #define for_each_cpu_worker_pool(pool, cpu) \
351 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
352 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
356 * for_each_pool - iterate through all worker_pools in the system
357 * @pool: iteration cursor
358 * @pi: integer used for iteration
360 * This must be called either with wq_pool_mutex held or sched RCU read
361 * locked. If the pool needs to be used beyond the locking in effect, the
362 * caller is responsible for guaranteeing that the pool stays online.
364 * The if/else clause exists only for the lockdep assertion and can be
367 #define for_each_pool(pool, pi) \
368 idr_for_each_entry(&worker_pool_idr, pool, pi) \
369 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
373 * for_each_pool_worker - iterate through all workers of a worker_pool
374 * @worker: iteration cursor
375 * @wi: integer used for iteration
376 * @pool: worker_pool to iterate workers of
378 * This must be called with either @pool->manager_mutex or ->lock held.
380 * The if/else clause exists only for the lockdep assertion and can be
383 #define for_each_pool_worker(worker, wi, pool) \
384 idr_for_each_entry(&(pool)->worker_idr, (worker), (wi)) \
385 if (({ assert_manager_or_pool_lock((pool)); false; })) { } \
389 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
390 * @pwq: iteration cursor
391 * @wq: the target workqueue
393 * This must be called either with wq->mutex held or sched RCU read locked.
394 * If the pwq needs to be used beyond the locking in effect, the caller is
395 * responsible for guaranteeing that the pwq stays online.
397 * The if/else clause exists only for the lockdep assertion and can be
400 #define for_each_pwq(pwq, wq) \
401 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \
402 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \
405 #ifdef CONFIG_DEBUG_OBJECTS_WORK
407 static struct debug_obj_descr work_debug_descr
;
409 static void *work_debug_hint(void *addr
)
411 return ((struct work_struct
*) addr
)->func
;
415 * fixup_init is called when:
416 * - an active object is initialized
418 static int work_fixup_init(void *addr
, enum debug_obj_state state
)
420 struct work_struct
*work
= addr
;
423 case ODEBUG_STATE_ACTIVE
:
424 cancel_work_sync(work
);
425 debug_object_init(work
, &work_debug_descr
);
433 * fixup_activate is called when:
434 * - an active object is activated
435 * - an unknown object is activated (might be a statically initialized object)
437 static int work_fixup_activate(void *addr
, enum debug_obj_state state
)
439 struct work_struct
*work
= addr
;
443 case ODEBUG_STATE_NOTAVAILABLE
:
445 * This is not really a fixup. The work struct was
446 * statically initialized. We just make sure that it
447 * is tracked in the object tracker.
449 if (test_bit(WORK_STRUCT_STATIC_BIT
, work_data_bits(work
))) {
450 debug_object_init(work
, &work_debug_descr
);
451 debug_object_activate(work
, &work_debug_descr
);
457 case ODEBUG_STATE_ACTIVE
:
466 * fixup_free is called when:
467 * - an active object is freed
469 static int work_fixup_free(void *addr
, enum debug_obj_state state
)
471 struct work_struct
*work
= addr
;
474 case ODEBUG_STATE_ACTIVE
:
475 cancel_work_sync(work
);
476 debug_object_free(work
, &work_debug_descr
);
483 static struct debug_obj_descr work_debug_descr
= {
484 .name
= "work_struct",
485 .debug_hint
= work_debug_hint
,
486 .fixup_init
= work_fixup_init
,
487 .fixup_activate
= work_fixup_activate
,
488 .fixup_free
= work_fixup_free
,
491 static inline void debug_work_activate(struct work_struct
*work
)
493 debug_object_activate(work
, &work_debug_descr
);
496 static inline void debug_work_deactivate(struct work_struct
*work
)
498 debug_object_deactivate(work
, &work_debug_descr
);
501 void __init_work(struct work_struct
*work
, int onstack
)
504 debug_object_init_on_stack(work
, &work_debug_descr
);
506 debug_object_init(work
, &work_debug_descr
);
508 EXPORT_SYMBOL_GPL(__init_work
);
510 void destroy_work_on_stack(struct work_struct
*work
)
512 debug_object_free(work
, &work_debug_descr
);
514 EXPORT_SYMBOL_GPL(destroy_work_on_stack
);
517 static inline void debug_work_activate(struct work_struct
*work
) { }
518 static inline void debug_work_deactivate(struct work_struct
*work
) { }
521 /* allocate ID and assign it to @pool */
522 static int worker_pool_assign_id(struct worker_pool
*pool
)
526 lockdep_assert_held(&wq_pool_mutex
);
528 ret
= idr_alloc(&worker_pool_idr
, pool
, 0, 0, GFP_KERNEL
);
537 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
538 * @wq: the target workqueue
541 * This must be called either with pwq_lock held or sched RCU read locked.
542 * If the pwq needs to be used beyond the locking in effect, the caller is
543 * responsible for guaranteeing that the pwq stays online.
545 * Return: The unbound pool_workqueue for @node.
547 static struct pool_workqueue
*unbound_pwq_by_node(struct workqueue_struct
*wq
,
550 assert_rcu_or_wq_mutex(wq
);
551 return rcu_dereference_raw(wq
->numa_pwq_tbl
[node
]);
554 static unsigned int work_color_to_flags(int color
)
556 return color
<< WORK_STRUCT_COLOR_SHIFT
;
559 static int get_work_color(struct work_struct
*work
)
561 return (*work_data_bits(work
) >> WORK_STRUCT_COLOR_SHIFT
) &
562 ((1 << WORK_STRUCT_COLOR_BITS
) - 1);
565 static int work_next_color(int color
)
567 return (color
+ 1) % WORK_NR_COLORS
;
571 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
572 * contain the pointer to the queued pwq. Once execution starts, the flag
573 * is cleared and the high bits contain OFFQ flags and pool ID.
575 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
576 * and clear_work_data() can be used to set the pwq, pool or clear
577 * work->data. These functions should only be called while the work is
578 * owned - ie. while the PENDING bit is set.
580 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
581 * corresponding to a work. Pool is available once the work has been
582 * queued anywhere after initialization until it is sync canceled. pwq is
583 * available only while the work item is queued.
585 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
586 * canceled. While being canceled, a work item may have its PENDING set
587 * but stay off timer and worklist for arbitrarily long and nobody should
588 * try to steal the PENDING bit.
590 static inline void set_work_data(struct work_struct
*work
, unsigned long data
,
593 WARN_ON_ONCE(!work_pending(work
));
594 atomic_long_set(&work
->data
, data
| flags
| work_static(work
));
597 static void set_work_pwq(struct work_struct
*work
, struct pool_workqueue
*pwq
,
598 unsigned long extra_flags
)
600 set_work_data(work
, (unsigned long)pwq
,
601 WORK_STRUCT_PENDING
| WORK_STRUCT_PWQ
| extra_flags
);
604 static void set_work_pool_and_keep_pending(struct work_struct
*work
,
607 set_work_data(work
, (unsigned long)pool_id
<< WORK_OFFQ_POOL_SHIFT
,
608 WORK_STRUCT_PENDING
);
611 static void set_work_pool_and_clear_pending(struct work_struct
*work
,
615 * The following wmb is paired with the implied mb in
616 * test_and_set_bit(PENDING) and ensures all updates to @work made
617 * here are visible to and precede any updates by the next PENDING
621 set_work_data(work
, (unsigned long)pool_id
<< WORK_OFFQ_POOL_SHIFT
, 0);
624 static void clear_work_data(struct work_struct
*work
)
626 smp_wmb(); /* see set_work_pool_and_clear_pending() */
627 set_work_data(work
, WORK_STRUCT_NO_POOL
, 0);
630 static struct pool_workqueue
*get_work_pwq(struct work_struct
*work
)
632 unsigned long data
= atomic_long_read(&work
->data
);
634 if (data
& WORK_STRUCT_PWQ
)
635 return (void *)(data
& WORK_STRUCT_WQ_DATA_MASK
);
641 * get_work_pool - return the worker_pool a given work was associated with
642 * @work: the work item of interest
644 * Pools are created and destroyed under wq_pool_mutex, and allows read
645 * access under sched-RCU read lock. As such, this function should be
646 * called under wq_pool_mutex or with preemption disabled.
648 * All fields of the returned pool are accessible as long as the above
649 * mentioned locking is in effect. If the returned pool needs to be used
650 * beyond the critical section, the caller is responsible for ensuring the
651 * returned pool is and stays online.
653 * Return: The worker_pool @work was last associated with. %NULL if none.
655 static struct worker_pool
*get_work_pool(struct work_struct
*work
)
657 unsigned long data
= atomic_long_read(&work
->data
);
660 assert_rcu_or_pool_mutex();
662 if (data
& WORK_STRUCT_PWQ
)
663 return ((struct pool_workqueue
*)
664 (data
& WORK_STRUCT_WQ_DATA_MASK
))->pool
;
666 pool_id
= data
>> WORK_OFFQ_POOL_SHIFT
;
667 if (pool_id
== WORK_OFFQ_POOL_NONE
)
670 return idr_find(&worker_pool_idr
, pool_id
);
674 * get_work_pool_id - return the worker pool ID a given work is associated with
675 * @work: the work item of interest
677 * Return: The worker_pool ID @work was last associated with.
678 * %WORK_OFFQ_POOL_NONE if none.
680 static int get_work_pool_id(struct work_struct
*work
)
682 unsigned long data
= atomic_long_read(&work
->data
);
684 if (data
& WORK_STRUCT_PWQ
)
685 return ((struct pool_workqueue
*)
686 (data
& WORK_STRUCT_WQ_DATA_MASK
))->pool
->id
;
688 return data
>> WORK_OFFQ_POOL_SHIFT
;
691 static void mark_work_canceling(struct work_struct
*work
)
693 unsigned long pool_id
= get_work_pool_id(work
);
695 pool_id
<<= WORK_OFFQ_POOL_SHIFT
;
696 set_work_data(work
, pool_id
| WORK_OFFQ_CANCELING
, WORK_STRUCT_PENDING
);
699 static bool work_is_canceling(struct work_struct
*work
)
701 unsigned long data
= atomic_long_read(&work
->data
);
703 return !(data
& WORK_STRUCT_PWQ
) && (data
& WORK_OFFQ_CANCELING
);
707 * Policy functions. These define the policies on how the global worker
708 * pools are managed. Unless noted otherwise, these functions assume that
709 * they're being called with pool->lock held.
712 static bool __need_more_worker(struct worker_pool
*pool
)
714 return !atomic_read(&pool
->nr_running
);
718 * Need to wake up a worker? Called from anything but currently
721 * Note that, because unbound workers never contribute to nr_running, this
722 * function will always return %true for unbound pools as long as the
723 * worklist isn't empty.
725 static bool need_more_worker(struct worker_pool
*pool
)
727 return !list_empty(&pool
->worklist
) && __need_more_worker(pool
);
730 /* Can I start working? Called from busy but !running workers. */
731 static bool may_start_working(struct worker_pool
*pool
)
733 return pool
->nr_idle
;
736 /* Do I need to keep working? Called from currently running workers. */
737 static bool keep_working(struct worker_pool
*pool
)
739 return !list_empty(&pool
->worklist
) &&
740 atomic_read(&pool
->nr_running
) <= 1;
743 /* Do we need a new worker? Called from manager. */
744 static bool need_to_create_worker(struct worker_pool
*pool
)
746 return need_more_worker(pool
) && !may_start_working(pool
);
749 /* Do I need to be the manager? */
750 static bool need_to_manage_workers(struct worker_pool
*pool
)
752 return need_to_create_worker(pool
) ||
753 (pool
->flags
& POOL_MANAGE_WORKERS
);
756 /* Do we have too many workers and should some go away? */
757 static bool too_many_workers(struct worker_pool
*pool
)
759 bool managing
= mutex_is_locked(&pool
->manager_arb
);
760 int nr_idle
= pool
->nr_idle
+ managing
; /* manager is considered idle */
761 int nr_busy
= pool
->nr_workers
- nr_idle
;
764 * nr_idle and idle_list may disagree if idle rebinding is in
765 * progress. Never return %true if idle_list is empty.
767 if (list_empty(&pool
->idle_list
))
770 return nr_idle
> 2 && (nr_idle
- 2) * MAX_IDLE_WORKERS_RATIO
>= nr_busy
;
777 /* Return the first worker. Safe with preemption disabled */
778 static struct worker
*first_worker(struct worker_pool
*pool
)
780 if (unlikely(list_empty(&pool
->idle_list
)))
783 return list_first_entry(&pool
->idle_list
, struct worker
, entry
);
787 * wake_up_worker - wake up an idle worker
788 * @pool: worker pool to wake worker from
790 * Wake up the first idle worker of @pool.
793 * spin_lock_irq(pool->lock).
795 static void wake_up_worker(struct worker_pool
*pool
)
797 struct worker
*worker
= first_worker(pool
);
800 wake_up_process(worker
->task
);
804 * wq_worker_waking_up - a worker is waking up
805 * @task: task waking up
806 * @cpu: CPU @task is waking up to
808 * This function is called during try_to_wake_up() when a worker is
812 * spin_lock_irq(rq->lock)
814 void wq_worker_waking_up(struct task_struct
*task
, int cpu
)
816 struct worker
*worker
= kthread_data(task
);
818 if (!(worker
->flags
& WORKER_NOT_RUNNING
)) {
819 WARN_ON_ONCE(worker
->pool
->cpu
!= cpu
);
820 atomic_inc(&worker
->pool
->nr_running
);
825 * wq_worker_sleeping - a worker is going to sleep
826 * @task: task going to sleep
827 * @cpu: CPU in question, must be the current CPU number
829 * This function is called during schedule() when a busy worker is
830 * going to sleep. Worker on the same cpu can be woken up by
831 * returning pointer to its task.
834 * spin_lock_irq(rq->lock)
837 * Worker task on @cpu to wake up, %NULL if none.
839 struct task_struct
*wq_worker_sleeping(struct task_struct
*task
, int cpu
)
841 struct worker
*worker
= kthread_data(task
), *to_wakeup
= NULL
;
842 struct worker_pool
*pool
;
845 * Rescuers, which may not have all the fields set up like normal
846 * workers, also reach here, let's not access anything before
847 * checking NOT_RUNNING.
849 if (worker
->flags
& WORKER_NOT_RUNNING
)
854 /* this can only happen on the local cpu */
855 if (WARN_ON_ONCE(cpu
!= raw_smp_processor_id()))
859 * The counterpart of the following dec_and_test, implied mb,
860 * worklist not empty test sequence is in insert_work().
861 * Please read comment there.
863 * NOT_RUNNING is clear. This means that we're bound to and
864 * running on the local cpu w/ rq lock held and preemption
865 * disabled, which in turn means that none else could be
866 * manipulating idle_list, so dereferencing idle_list without pool
869 if (atomic_dec_and_test(&pool
->nr_running
) &&
870 !list_empty(&pool
->worklist
))
871 to_wakeup
= first_worker(pool
);
872 return to_wakeup
? to_wakeup
->task
: NULL
;
876 * worker_set_flags - set worker flags and adjust nr_running accordingly
878 * @flags: flags to set
879 * @wakeup: wakeup an idle worker if necessary
881 * Set @flags in @worker->flags and adjust nr_running accordingly. If
882 * nr_running becomes zero and @wakeup is %true, an idle worker is
886 * spin_lock_irq(pool->lock)
888 static inline void worker_set_flags(struct worker
*worker
, unsigned int flags
,
891 struct worker_pool
*pool
= worker
->pool
;
893 WARN_ON_ONCE(worker
->task
!= current
);
896 * If transitioning into NOT_RUNNING, adjust nr_running and
897 * wake up an idle worker as necessary if requested by
900 if ((flags
& WORKER_NOT_RUNNING
) &&
901 !(worker
->flags
& WORKER_NOT_RUNNING
)) {
903 if (atomic_dec_and_test(&pool
->nr_running
) &&
904 !list_empty(&pool
->worklist
))
905 wake_up_worker(pool
);
907 atomic_dec(&pool
->nr_running
);
910 worker
->flags
|= flags
;
914 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
916 * @flags: flags to clear
918 * Clear @flags in @worker->flags and adjust nr_running accordingly.
921 * spin_lock_irq(pool->lock)
923 static inline void worker_clr_flags(struct worker
*worker
, unsigned int flags
)
925 struct worker_pool
*pool
= worker
->pool
;
926 unsigned int oflags
= worker
->flags
;
928 WARN_ON_ONCE(worker
->task
!= current
);
930 worker
->flags
&= ~flags
;
933 * If transitioning out of NOT_RUNNING, increment nr_running. Note
934 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
935 * of multiple flags, not a single flag.
937 if ((flags
& WORKER_NOT_RUNNING
) && (oflags
& WORKER_NOT_RUNNING
))
938 if (!(worker
->flags
& WORKER_NOT_RUNNING
))
939 atomic_inc(&pool
->nr_running
);
943 * find_worker_executing_work - find worker which is executing a work
944 * @pool: pool of interest
945 * @work: work to find worker for
947 * Find a worker which is executing @work on @pool by searching
948 * @pool->busy_hash which is keyed by the address of @work. For a worker
949 * to match, its current execution should match the address of @work and
950 * its work function. This is to avoid unwanted dependency between
951 * unrelated work executions through a work item being recycled while still
954 * This is a bit tricky. A work item may be freed once its execution
955 * starts and nothing prevents the freed area from being recycled for
956 * another work item. If the same work item address ends up being reused
957 * before the original execution finishes, workqueue will identify the
958 * recycled work item as currently executing and make it wait until the
959 * current execution finishes, introducing an unwanted dependency.
961 * This function checks the work item address and work function to avoid
962 * false positives. Note that this isn't complete as one may construct a
963 * work function which can introduce dependency onto itself through a
964 * recycled work item. Well, if somebody wants to shoot oneself in the
965 * foot that badly, there's only so much we can do, and if such deadlock
966 * actually occurs, it should be easy to locate the culprit work function.
969 * spin_lock_irq(pool->lock).
972 * Pointer to worker which is executing @work if found, %NULL
975 static struct worker
*find_worker_executing_work(struct worker_pool
*pool
,
976 struct work_struct
*work
)
978 struct worker
*worker
;
980 hash_for_each_possible(pool
->busy_hash
, worker
, hentry
,
982 if (worker
->current_work
== work
&&
983 worker
->current_func
== work
->func
)
990 * move_linked_works - move linked works to a list
991 * @work: start of series of works to be scheduled
992 * @head: target list to append @work to
993 * @nextp: out paramter for nested worklist walking
995 * Schedule linked works starting from @work to @head. Work series to
996 * be scheduled starts at @work and includes any consecutive work with
997 * WORK_STRUCT_LINKED set in its predecessor.
999 * If @nextp is not NULL, it's updated to point to the next work of
1000 * the last scheduled work. This allows move_linked_works() to be
1001 * nested inside outer list_for_each_entry_safe().
1004 * spin_lock_irq(pool->lock).
1006 static void move_linked_works(struct work_struct
*work
, struct list_head
*head
,
1007 struct work_struct
**nextp
)
1009 struct work_struct
*n
;
1012 * Linked worklist will always end before the end of the list,
1013 * use NULL for list head.
1015 list_for_each_entry_safe_from(work
, n
, NULL
, entry
) {
1016 list_move_tail(&work
->entry
, head
);
1017 if (!(*work_data_bits(work
) & WORK_STRUCT_LINKED
))
1022 * If we're already inside safe list traversal and have moved
1023 * multiple works to the scheduled queue, the next position
1024 * needs to be updated.
1031 * get_pwq - get an extra reference on the specified pool_workqueue
1032 * @pwq: pool_workqueue to get
1034 * Obtain an extra reference on @pwq. The caller should guarantee that
1035 * @pwq has positive refcnt and be holding the matching pool->lock.
1037 static void get_pwq(struct pool_workqueue
*pwq
)
1039 lockdep_assert_held(&pwq
->pool
->lock
);
1040 WARN_ON_ONCE(pwq
->refcnt
<= 0);
1045 * put_pwq - put a pool_workqueue reference
1046 * @pwq: pool_workqueue to put
1048 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1049 * destruction. The caller should be holding the matching pool->lock.
1051 static void put_pwq(struct pool_workqueue
*pwq
)
1053 lockdep_assert_held(&pwq
->pool
->lock
);
1054 if (likely(--pwq
->refcnt
))
1056 if (WARN_ON_ONCE(!(pwq
->wq
->flags
& WQ_UNBOUND
)))
1059 * @pwq can't be released under pool->lock, bounce to
1060 * pwq_unbound_release_workfn(). This never recurses on the same
1061 * pool->lock as this path is taken only for unbound workqueues and
1062 * the release work item is scheduled on a per-cpu workqueue. To
1063 * avoid lockdep warning, unbound pool->locks are given lockdep
1064 * subclass of 1 in get_unbound_pool().
1066 schedule_work(&pwq
->unbound_release_work
);
1070 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1071 * @pwq: pool_workqueue to put (can be %NULL)
1073 * put_pwq() with locking. This function also allows %NULL @pwq.
1075 static void put_pwq_unlocked(struct pool_workqueue
*pwq
)
1079 * As both pwqs and pools are sched-RCU protected, the
1080 * following lock operations are safe.
1082 spin_lock_irq(&pwq
->pool
->lock
);
1084 spin_unlock_irq(&pwq
->pool
->lock
);
1088 static void pwq_activate_delayed_work(struct work_struct
*work
)
1090 struct pool_workqueue
*pwq
= get_work_pwq(work
);
1092 trace_workqueue_activate_work(work
);
1093 move_linked_works(work
, &pwq
->pool
->worklist
, NULL
);
1094 __clear_bit(WORK_STRUCT_DELAYED_BIT
, work_data_bits(work
));
1098 static void pwq_activate_first_delayed(struct pool_workqueue
*pwq
)
1100 struct work_struct
*work
= list_first_entry(&pwq
->delayed_works
,
1101 struct work_struct
, entry
);
1103 pwq_activate_delayed_work(work
);
1107 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1108 * @pwq: pwq of interest
1109 * @color: color of work which left the queue
1111 * A work either has completed or is removed from pending queue,
1112 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1115 * spin_lock_irq(pool->lock).
1117 static void pwq_dec_nr_in_flight(struct pool_workqueue
*pwq
, int color
)
1119 /* uncolored work items don't participate in flushing or nr_active */
1120 if (color
== WORK_NO_COLOR
)
1123 pwq
->nr_in_flight
[color
]--;
1126 if (!list_empty(&pwq
->delayed_works
)) {
1127 /* one down, submit a delayed one */
1128 if (pwq
->nr_active
< pwq
->max_active
)
1129 pwq_activate_first_delayed(pwq
);
1132 /* is flush in progress and are we at the flushing tip? */
1133 if (likely(pwq
->flush_color
!= color
))
1136 /* are there still in-flight works? */
1137 if (pwq
->nr_in_flight
[color
])
1140 /* this pwq is done, clear flush_color */
1141 pwq
->flush_color
= -1;
1144 * If this was the last pwq, wake up the first flusher. It
1145 * will handle the rest.
1147 if (atomic_dec_and_test(&pwq
->wq
->nr_pwqs_to_flush
))
1148 complete(&pwq
->wq
->first_flusher
->done
);
1154 * try_to_grab_pending - steal work item from worklist and disable irq
1155 * @work: work item to steal
1156 * @is_dwork: @work is a delayed_work
1157 * @flags: place to store irq state
1159 * Try to grab PENDING bit of @work. This function can handle @work in any
1160 * stable state - idle, on timer or on worklist.
1163 * 1 if @work was pending and we successfully stole PENDING
1164 * 0 if @work was idle and we claimed PENDING
1165 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
1166 * -ENOENT if someone else is canceling @work, this state may persist
1167 * for arbitrarily long
1170 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
1171 * interrupted while holding PENDING and @work off queue, irq must be
1172 * disabled on entry. This, combined with delayed_work->timer being
1173 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1175 * On successful return, >= 0, irq is disabled and the caller is
1176 * responsible for releasing it using local_irq_restore(*@flags).
1178 * This function is safe to call from any context including IRQ handler.
1180 static int try_to_grab_pending(struct work_struct
*work
, bool is_dwork
,
1181 unsigned long *flags
)
1183 struct worker_pool
*pool
;
1184 struct pool_workqueue
*pwq
;
1186 local_irq_save(*flags
);
1188 /* try to steal the timer if it exists */
1190 struct delayed_work
*dwork
= to_delayed_work(work
);
1193 * dwork->timer is irqsafe. If del_timer() fails, it's
1194 * guaranteed that the timer is not queued anywhere and not
1195 * running on the local CPU.
1197 if (likely(del_timer(&dwork
->timer
)))
1201 /* try to claim PENDING the normal way */
1202 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT
, work_data_bits(work
)))
1206 * The queueing is in progress, or it is already queued. Try to
1207 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1209 pool
= get_work_pool(work
);
1213 spin_lock(&pool
->lock
);
1215 * work->data is guaranteed to point to pwq only while the work
1216 * item is queued on pwq->wq, and both updating work->data to point
1217 * to pwq on queueing and to pool on dequeueing are done under
1218 * pwq->pool->lock. This in turn guarantees that, if work->data
1219 * points to pwq which is associated with a locked pool, the work
1220 * item is currently queued on that pool.
1222 pwq
= get_work_pwq(work
);
1223 if (pwq
&& pwq
->pool
== pool
) {
1224 debug_work_deactivate(work
);
1227 * A delayed work item cannot be grabbed directly because
1228 * it might have linked NO_COLOR work items which, if left
1229 * on the delayed_list, will confuse pwq->nr_active
1230 * management later on and cause stall. Make sure the work
1231 * item is activated before grabbing.
1233 if (*work_data_bits(work
) & WORK_STRUCT_DELAYED
)
1234 pwq_activate_delayed_work(work
);
1236 list_del_init(&work
->entry
);
1237 pwq_dec_nr_in_flight(get_work_pwq(work
), get_work_color(work
));
1239 /* work->data points to pwq iff queued, point to pool */
1240 set_work_pool_and_keep_pending(work
, pool
->id
);
1242 spin_unlock(&pool
->lock
);
1245 spin_unlock(&pool
->lock
);
1247 local_irq_restore(*flags
);
1248 if (work_is_canceling(work
))
1255 * insert_work - insert a work into a pool
1256 * @pwq: pwq @work belongs to
1257 * @work: work to insert
1258 * @head: insertion point
1259 * @extra_flags: extra WORK_STRUCT_* flags to set
1261 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
1262 * work_struct flags.
1265 * spin_lock_irq(pool->lock).
1267 static void insert_work(struct pool_workqueue
*pwq
, struct work_struct
*work
,
1268 struct list_head
*head
, unsigned int extra_flags
)
1270 struct worker_pool
*pool
= pwq
->pool
;
1272 /* we own @work, set data and link */
1273 set_work_pwq(work
, pwq
, extra_flags
);
1274 list_add_tail(&work
->entry
, head
);
1278 * Ensure either wq_worker_sleeping() sees the above
1279 * list_add_tail() or we see zero nr_running to avoid workers lying
1280 * around lazily while there are works to be processed.
1284 if (__need_more_worker(pool
))
1285 wake_up_worker(pool
);
1289 * Test whether @work is being queued from another work executing on the
1292 static bool is_chained_work(struct workqueue_struct
*wq
)
1294 struct worker
*worker
;
1296 worker
= current_wq_worker();
1298 * Return %true iff I'm a worker execuing a work item on @wq. If
1299 * I'm @worker, it's safe to dereference it without locking.
1301 return worker
&& worker
->current_pwq
->wq
== wq
;
1304 static void __queue_work(int cpu
, struct workqueue_struct
*wq
,
1305 struct work_struct
*work
)
1307 struct pool_workqueue
*pwq
;
1308 struct worker_pool
*last_pool
;
1309 struct list_head
*worklist
;
1310 unsigned int work_flags
;
1311 unsigned int req_cpu
= cpu
;
1314 * While a work item is PENDING && off queue, a task trying to
1315 * steal the PENDING will busy-loop waiting for it to either get
1316 * queued or lose PENDING. Grabbing PENDING and queueing should
1317 * happen with IRQ disabled.
1319 WARN_ON_ONCE(!irqs_disabled());
1321 debug_work_activate(work
);
1323 /* if dying, only works from the same workqueue are allowed */
1324 if (unlikely(wq
->flags
& __WQ_DRAINING
) &&
1325 WARN_ON_ONCE(!is_chained_work(wq
)))
1328 if (req_cpu
== WORK_CPU_UNBOUND
)
1329 cpu
= raw_smp_processor_id();
1331 /* pwq which will be used unless @work is executing elsewhere */
1332 if (!(wq
->flags
& WQ_UNBOUND
))
1333 pwq
= per_cpu_ptr(wq
->cpu_pwqs
, cpu
);
1335 pwq
= unbound_pwq_by_node(wq
, cpu_to_node(cpu
));
1338 * If @work was previously on a different pool, it might still be
1339 * running there, in which case the work needs to be queued on that
1340 * pool to guarantee non-reentrancy.
1342 last_pool
= get_work_pool(work
);
1343 if (last_pool
&& last_pool
!= pwq
->pool
) {
1344 struct worker
*worker
;
1346 spin_lock(&last_pool
->lock
);
1348 worker
= find_worker_executing_work(last_pool
, work
);
1350 if (worker
&& worker
->current_pwq
->wq
== wq
) {
1351 pwq
= worker
->current_pwq
;
1353 /* meh... not running there, queue here */
1354 spin_unlock(&last_pool
->lock
);
1355 spin_lock(&pwq
->pool
->lock
);
1358 spin_lock(&pwq
->pool
->lock
);
1362 * pwq is determined and locked. For unbound pools, we could have
1363 * raced with pwq release and it could already be dead. If its
1364 * refcnt is zero, repeat pwq selection. Note that pwqs never die
1365 * without another pwq replacing it in the numa_pwq_tbl or while
1366 * work items are executing on it, so the retrying is guaranteed to
1367 * make forward-progress.
1369 if (unlikely(!pwq
->refcnt
)) {
1370 if (wq
->flags
& WQ_UNBOUND
) {
1371 spin_unlock(&pwq
->pool
->lock
);
1376 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1380 /* pwq determined, queue */
1381 trace_workqueue_queue_work(req_cpu
, pwq
, work
);
1383 if (WARN_ON(!list_empty(&work
->entry
))) {
1384 spin_unlock(&pwq
->pool
->lock
);
1388 pwq
->nr_in_flight
[pwq
->work_color
]++;
1389 work_flags
= work_color_to_flags(pwq
->work_color
);
1391 if (likely(pwq
->nr_active
< pwq
->max_active
)) {
1392 trace_workqueue_activate_work(work
);
1394 worklist
= &pwq
->pool
->worklist
;
1396 work_flags
|= WORK_STRUCT_DELAYED
;
1397 worklist
= &pwq
->delayed_works
;
1400 insert_work(pwq
, work
, worklist
, work_flags
);
1402 spin_unlock(&pwq
->pool
->lock
);
1406 * queue_work_on - queue work on specific cpu
1407 * @cpu: CPU number to execute work on
1408 * @wq: workqueue to use
1409 * @work: work to queue
1411 * We queue the work to a specific CPU, the caller must ensure it
1414 * Return: %false if @work was already on a queue, %true otherwise.
1416 bool queue_work_on(int cpu
, struct workqueue_struct
*wq
,
1417 struct work_struct
*work
)
1420 unsigned long flags
;
1422 local_irq_save(flags
);
1424 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT
, work_data_bits(work
))) {
1425 __queue_work(cpu
, wq
, work
);
1429 local_irq_restore(flags
);
1432 EXPORT_SYMBOL(queue_work_on
);
1434 void delayed_work_timer_fn(unsigned long __data
)
1436 struct delayed_work
*dwork
= (struct delayed_work
*)__data
;
1438 /* should have been called from irqsafe timer with irq already off */
1439 __queue_work(dwork
->cpu
, dwork
->wq
, &dwork
->work
);
1441 EXPORT_SYMBOL(delayed_work_timer_fn
);
1443 static void __queue_delayed_work(int cpu
, struct workqueue_struct
*wq
,
1444 struct delayed_work
*dwork
, unsigned long delay
)
1446 struct timer_list
*timer
= &dwork
->timer
;
1447 struct work_struct
*work
= &dwork
->work
;
1449 WARN_ON_ONCE(timer
->function
!= delayed_work_timer_fn
||
1450 timer
->data
!= (unsigned long)dwork
);
1451 WARN_ON_ONCE(timer_pending(timer
));
1452 WARN_ON_ONCE(!list_empty(&work
->entry
));
1455 * If @delay is 0, queue @dwork->work immediately. This is for
1456 * both optimization and correctness. The earliest @timer can
1457 * expire is on the closest next tick and delayed_work users depend
1458 * on that there's no such delay when @delay is 0.
1461 __queue_work(cpu
, wq
, &dwork
->work
);
1465 timer_stats_timer_set_start_info(&dwork
->timer
);
1469 timer
->expires
= jiffies
+ delay
;
1471 if (unlikely(cpu
!= WORK_CPU_UNBOUND
))
1472 add_timer_on(timer
, cpu
);
1478 * queue_delayed_work_on - queue work on specific CPU after delay
1479 * @cpu: CPU number to execute work on
1480 * @wq: workqueue to use
1481 * @dwork: work to queue
1482 * @delay: number of jiffies to wait before queueing
1484 * Return: %false if @work was already on a queue, %true otherwise. If
1485 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1488 bool queue_delayed_work_on(int cpu
, struct workqueue_struct
*wq
,
1489 struct delayed_work
*dwork
, unsigned long delay
)
1491 struct work_struct
*work
= &dwork
->work
;
1493 unsigned long flags
;
1495 /* read the comment in __queue_work() */
1496 local_irq_save(flags
);
1498 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT
, work_data_bits(work
))) {
1499 __queue_delayed_work(cpu
, wq
, dwork
, delay
);
1503 local_irq_restore(flags
);
1506 EXPORT_SYMBOL(queue_delayed_work_on
);
1509 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1510 * @cpu: CPU number to execute work on
1511 * @wq: workqueue to use
1512 * @dwork: work to queue
1513 * @delay: number of jiffies to wait before queueing
1515 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1516 * modify @dwork's timer so that it expires after @delay. If @delay is
1517 * zero, @work is guaranteed to be scheduled immediately regardless of its
1520 * Return: %false if @dwork was idle and queued, %true if @dwork was
1521 * pending and its timer was modified.
1523 * This function is safe to call from any context including IRQ handler.
1524 * See try_to_grab_pending() for details.
1526 bool mod_delayed_work_on(int cpu
, struct workqueue_struct
*wq
,
1527 struct delayed_work
*dwork
, unsigned long delay
)
1529 unsigned long flags
;
1533 ret
= try_to_grab_pending(&dwork
->work
, true, &flags
);
1534 } while (unlikely(ret
== -EAGAIN
));
1536 if (likely(ret
>= 0)) {
1537 __queue_delayed_work(cpu
, wq
, dwork
, delay
);
1538 local_irq_restore(flags
);
1541 /* -ENOENT from try_to_grab_pending() becomes %true */
1544 EXPORT_SYMBOL_GPL(mod_delayed_work_on
);
1547 * worker_enter_idle - enter idle state
1548 * @worker: worker which is entering idle state
1550 * @worker is entering idle state. Update stats and idle timer if
1554 * spin_lock_irq(pool->lock).
1556 static void worker_enter_idle(struct worker
*worker
)
1558 struct worker_pool
*pool
= worker
->pool
;
1560 if (WARN_ON_ONCE(worker
->flags
& WORKER_IDLE
) ||
1561 WARN_ON_ONCE(!list_empty(&worker
->entry
) &&
1562 (worker
->hentry
.next
|| worker
->hentry
.pprev
)))
1565 /* can't use worker_set_flags(), also called from start_worker() */
1566 worker
->flags
|= WORKER_IDLE
;
1568 worker
->last_active
= jiffies
;
1570 /* idle_list is LIFO */
1571 list_add(&worker
->entry
, &pool
->idle_list
);
1573 if (too_many_workers(pool
) && !timer_pending(&pool
->idle_timer
))
1574 mod_timer(&pool
->idle_timer
, jiffies
+ IDLE_WORKER_TIMEOUT
);
1577 * Sanity check nr_running. Because wq_unbind_fn() releases
1578 * pool->lock between setting %WORKER_UNBOUND and zapping
1579 * nr_running, the warning may trigger spuriously. Check iff
1580 * unbind is not in progress.
1582 WARN_ON_ONCE(!(pool
->flags
& POOL_DISASSOCIATED
) &&
1583 pool
->nr_workers
== pool
->nr_idle
&&
1584 atomic_read(&pool
->nr_running
));
1588 * worker_leave_idle - leave idle state
1589 * @worker: worker which is leaving idle state
1591 * @worker is leaving idle state. Update stats.
1594 * spin_lock_irq(pool->lock).
1596 static void worker_leave_idle(struct worker
*worker
)
1598 struct worker_pool
*pool
= worker
->pool
;
1600 if (WARN_ON_ONCE(!(worker
->flags
& WORKER_IDLE
)))
1602 worker_clr_flags(worker
, WORKER_IDLE
);
1604 list_del_init(&worker
->entry
);
1608 * worker_maybe_bind_and_lock - try to bind %current to worker_pool and lock it
1609 * @pool: target worker_pool
1611 * Bind %current to the cpu of @pool if it is associated and lock @pool.
1613 * Works which are scheduled while the cpu is online must at least be
1614 * scheduled to a worker which is bound to the cpu so that if they are
1615 * flushed from cpu callbacks while cpu is going down, they are
1616 * guaranteed to execute on the cpu.
1618 * This function is to be used by unbound workers and rescuers to bind
1619 * themselves to the target cpu and may race with cpu going down or
1620 * coming online. kthread_bind() can't be used because it may put the
1621 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1622 * verbatim as it's best effort and blocking and pool may be
1623 * [dis]associated in the meantime.
1625 * This function tries set_cpus_allowed() and locks pool and verifies the
1626 * binding against %POOL_DISASSOCIATED which is set during
1627 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
1628 * enters idle state or fetches works without dropping lock, it can
1629 * guarantee the scheduling requirement described in the first paragraph.
1632 * Might sleep. Called without any lock but returns with pool->lock
1636 * %true if the associated pool is online (@worker is successfully
1637 * bound), %false if offline.
1639 static bool worker_maybe_bind_and_lock(struct worker_pool
*pool
)
1640 __acquires(&pool
->lock
)
1644 * The following call may fail, succeed or succeed
1645 * without actually migrating the task to the cpu if
1646 * it races with cpu hotunplug operation. Verify
1647 * against POOL_DISASSOCIATED.
1649 if (!(pool
->flags
& POOL_DISASSOCIATED
))
1650 set_cpus_allowed_ptr(current
, pool
->attrs
->cpumask
);
1652 spin_lock_irq(&pool
->lock
);
1653 if (pool
->flags
& POOL_DISASSOCIATED
)
1655 if (task_cpu(current
) == pool
->cpu
&&
1656 cpumask_equal(¤t
->cpus_allowed
, pool
->attrs
->cpumask
))
1658 spin_unlock_irq(&pool
->lock
);
1661 * We've raced with CPU hot[un]plug. Give it a breather
1662 * and retry migration. cond_resched() is required here;
1663 * otherwise, we might deadlock against cpu_stop trying to
1664 * bring down the CPU on non-preemptive kernel.
1671 static struct worker
*alloc_worker(void)
1673 struct worker
*worker
;
1675 worker
= kzalloc(sizeof(*worker
), GFP_KERNEL
);
1677 INIT_LIST_HEAD(&worker
->entry
);
1678 INIT_LIST_HEAD(&worker
->scheduled
);
1679 /* on creation a worker is in !idle && prep state */
1680 worker
->flags
= WORKER_PREP
;
1686 * create_worker - create a new workqueue worker
1687 * @pool: pool the new worker will belong to
1689 * Create a new worker which is bound to @pool. The returned worker
1690 * can be started by calling start_worker() or destroyed using
1694 * Might sleep. Does GFP_KERNEL allocations.
1697 * Pointer to the newly created worker.
1699 static struct worker
*create_worker(struct worker_pool
*pool
)
1701 struct worker
*worker
= NULL
;
1705 lockdep_assert_held(&pool
->manager_mutex
);
1708 * ID is needed to determine kthread name. Allocate ID first
1709 * without installing the pointer.
1711 idr_preload(GFP_KERNEL
);
1712 spin_lock_irq(&pool
->lock
);
1714 id
= idr_alloc(&pool
->worker_idr
, NULL
, 0, 0, GFP_NOWAIT
);
1716 spin_unlock_irq(&pool
->lock
);
1721 worker
= alloc_worker();
1725 worker
->pool
= pool
;
1729 snprintf(id_buf
, sizeof(id_buf
), "%d:%d%s", pool
->cpu
, id
,
1730 pool
->attrs
->nice
< 0 ? "H" : "");
1732 snprintf(id_buf
, sizeof(id_buf
), "u%d:%d", pool
->id
, id
);
1734 worker
->task
= kthread_create_on_node(worker_thread
, worker
, pool
->node
,
1735 "kworker/%s", id_buf
);
1736 if (IS_ERR(worker
->task
))
1740 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1741 * online CPUs. It'll be re-applied when any of the CPUs come up.
1743 set_user_nice(worker
->task
, pool
->attrs
->nice
);
1744 set_cpus_allowed_ptr(worker
->task
, pool
->attrs
->cpumask
);
1746 /* prevent userland from meddling with cpumask of workqueue workers */
1747 worker
->task
->flags
|= PF_NO_SETAFFINITY
;
1750 * The caller is responsible for ensuring %POOL_DISASSOCIATED
1751 * remains stable across this function. See the comments above the
1752 * flag definition for details.
1754 if (pool
->flags
& POOL_DISASSOCIATED
)
1755 worker
->flags
|= WORKER_UNBOUND
;
1757 /* successful, commit the pointer to idr */
1758 spin_lock_irq(&pool
->lock
);
1759 idr_replace(&pool
->worker_idr
, worker
, worker
->id
);
1760 spin_unlock_irq(&pool
->lock
);
1766 spin_lock_irq(&pool
->lock
);
1767 idr_remove(&pool
->worker_idr
, id
);
1768 spin_unlock_irq(&pool
->lock
);
1775 * start_worker - start a newly created worker
1776 * @worker: worker to start
1778 * Make the pool aware of @worker and start it.
1781 * spin_lock_irq(pool->lock).
1783 static void start_worker(struct worker
*worker
)
1785 worker
->flags
|= WORKER_STARTED
;
1786 worker
->pool
->nr_workers
++;
1787 worker_enter_idle(worker
);
1788 wake_up_process(worker
->task
);
1792 * create_and_start_worker - create and start a worker for a pool
1793 * @pool: the target pool
1795 * Grab the managership of @pool and create and start a new worker for it.
1797 * Return: 0 on success. A negative error code otherwise.
1799 static int create_and_start_worker(struct worker_pool
*pool
)
1801 struct worker
*worker
;
1803 mutex_lock(&pool
->manager_mutex
);
1805 worker
= create_worker(pool
);
1807 spin_lock_irq(&pool
->lock
);
1808 start_worker(worker
);
1809 spin_unlock_irq(&pool
->lock
);
1812 mutex_unlock(&pool
->manager_mutex
);
1814 return worker
? 0 : -ENOMEM
;
1818 * destroy_worker - destroy a workqueue worker
1819 * @worker: worker to be destroyed
1821 * Destroy @worker and adjust @pool stats accordingly.
1824 * spin_lock_irq(pool->lock) which is released and regrabbed.
1826 static void destroy_worker(struct worker
*worker
)
1828 struct worker_pool
*pool
= worker
->pool
;
1830 lockdep_assert_held(&pool
->manager_mutex
);
1831 lockdep_assert_held(&pool
->lock
);
1833 /* sanity check frenzy */
1834 if (WARN_ON(worker
->current_work
) ||
1835 WARN_ON(!list_empty(&worker
->scheduled
)))
1838 if (worker
->flags
& WORKER_STARTED
)
1840 if (worker
->flags
& WORKER_IDLE
)
1843 list_del_init(&worker
->entry
);
1844 worker
->flags
|= WORKER_DIE
;
1846 idr_remove(&pool
->worker_idr
, worker
->id
);
1848 spin_unlock_irq(&pool
->lock
);
1850 kthread_stop(worker
->task
);
1853 spin_lock_irq(&pool
->lock
);
1856 static void idle_worker_timeout(unsigned long __pool
)
1858 struct worker_pool
*pool
= (void *)__pool
;
1860 spin_lock_irq(&pool
->lock
);
1862 if (too_many_workers(pool
)) {
1863 struct worker
*worker
;
1864 unsigned long expires
;
1866 /* idle_list is kept in LIFO order, check the last one */
1867 worker
= list_entry(pool
->idle_list
.prev
, struct worker
, entry
);
1868 expires
= worker
->last_active
+ IDLE_WORKER_TIMEOUT
;
1870 if (time_before(jiffies
, expires
))
1871 mod_timer(&pool
->idle_timer
, expires
);
1873 /* it's been idle for too long, wake up manager */
1874 pool
->flags
|= POOL_MANAGE_WORKERS
;
1875 wake_up_worker(pool
);
1879 spin_unlock_irq(&pool
->lock
);
1882 static void send_mayday(struct work_struct
*work
)
1884 struct pool_workqueue
*pwq
= get_work_pwq(work
);
1885 struct workqueue_struct
*wq
= pwq
->wq
;
1887 lockdep_assert_held(&wq_mayday_lock
);
1892 /* mayday mayday mayday */
1893 if (list_empty(&pwq
->mayday_node
)) {
1894 list_add_tail(&pwq
->mayday_node
, &wq
->maydays
);
1895 wake_up_process(wq
->rescuer
->task
);
1899 static void pool_mayday_timeout(unsigned long __pool
)
1901 struct worker_pool
*pool
= (void *)__pool
;
1902 struct work_struct
*work
;
1904 spin_lock_irq(&wq_mayday_lock
); /* for wq->maydays */
1905 spin_lock(&pool
->lock
);
1907 if (need_to_create_worker(pool
)) {
1909 * We've been trying to create a new worker but
1910 * haven't been successful. We might be hitting an
1911 * allocation deadlock. Send distress signals to
1914 list_for_each_entry(work
, &pool
->worklist
, entry
)
1918 spin_unlock(&pool
->lock
);
1919 spin_unlock_irq(&wq_mayday_lock
);
1921 mod_timer(&pool
->mayday_timer
, jiffies
+ MAYDAY_INTERVAL
);
1925 * maybe_create_worker - create a new worker if necessary
1926 * @pool: pool to create a new worker for
1928 * Create a new worker for @pool if necessary. @pool is guaranteed to
1929 * have at least one idle worker on return from this function. If
1930 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1931 * sent to all rescuers with works scheduled on @pool to resolve
1932 * possible allocation deadlock.
1934 * On return, need_to_create_worker() is guaranteed to be %false and
1935 * may_start_working() %true.
1938 * spin_lock_irq(pool->lock) which may be released and regrabbed
1939 * multiple times. Does GFP_KERNEL allocations. Called only from
1943 * %false if no action was taken and pool->lock stayed locked, %true
1946 static bool maybe_create_worker(struct worker_pool
*pool
)
1947 __releases(&pool
->lock
)
1948 __acquires(&pool
->lock
)
1950 if (!need_to_create_worker(pool
))
1953 spin_unlock_irq(&pool
->lock
);
1955 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1956 mod_timer(&pool
->mayday_timer
, jiffies
+ MAYDAY_INITIAL_TIMEOUT
);
1959 struct worker
*worker
;
1961 worker
= create_worker(pool
);
1963 del_timer_sync(&pool
->mayday_timer
);
1964 spin_lock_irq(&pool
->lock
);
1965 start_worker(worker
);
1966 if (WARN_ON_ONCE(need_to_create_worker(pool
)))
1971 if (!need_to_create_worker(pool
))
1974 __set_current_state(TASK_INTERRUPTIBLE
);
1975 schedule_timeout(CREATE_COOLDOWN
);
1977 if (!need_to_create_worker(pool
))
1981 del_timer_sync(&pool
->mayday_timer
);
1982 spin_lock_irq(&pool
->lock
);
1983 if (need_to_create_worker(pool
))
1989 * maybe_destroy_worker - destroy workers which have been idle for a while
1990 * @pool: pool to destroy workers for
1992 * Destroy @pool workers which have been idle for longer than
1993 * IDLE_WORKER_TIMEOUT.
1996 * spin_lock_irq(pool->lock) which may be released and regrabbed
1997 * multiple times. Called only from manager.
2000 * %false if no action was taken and pool->lock stayed locked, %true
2003 static bool maybe_destroy_workers(struct worker_pool
*pool
)
2007 while (too_many_workers(pool
)) {
2008 struct worker
*worker
;
2009 unsigned long expires
;
2011 worker
= list_entry(pool
->idle_list
.prev
, struct worker
, entry
);
2012 expires
= worker
->last_active
+ IDLE_WORKER_TIMEOUT
;
2014 if (time_before(jiffies
, expires
)) {
2015 mod_timer(&pool
->idle_timer
, expires
);
2019 destroy_worker(worker
);
2027 * manage_workers - manage worker pool
2030 * Assume the manager role and manage the worker pool @worker belongs
2031 * to. At any given time, there can be only zero or one manager per
2032 * pool. The exclusion is handled automatically by this function.
2034 * The caller can safely start processing works on false return. On
2035 * true return, it's guaranteed that need_to_create_worker() is false
2036 * and may_start_working() is true.
2039 * spin_lock_irq(pool->lock) which may be released and regrabbed
2040 * multiple times. Does GFP_KERNEL allocations.
2043 * %false if the pool don't need management and the caller can safely start
2044 * processing works, %true indicates that the function released pool->lock
2045 * and reacquired it to perform some management function and that the
2046 * conditions that the caller verified while holding the lock before
2047 * calling the function might no longer be true.
2049 static bool manage_workers(struct worker
*worker
)
2051 struct worker_pool
*pool
= worker
->pool
;
2055 * Managership is governed by two mutexes - manager_arb and
2056 * manager_mutex. manager_arb handles arbitration of manager role.
2057 * Anyone who successfully grabs manager_arb wins the arbitration
2058 * and becomes the manager. mutex_trylock() on pool->manager_arb
2059 * failure while holding pool->lock reliably indicates that someone
2060 * else is managing the pool and the worker which failed trylock
2061 * can proceed to executing work items. This means that anyone
2062 * grabbing manager_arb is responsible for actually performing
2063 * manager duties. If manager_arb is grabbed and released without
2064 * actual management, the pool may stall indefinitely.
2066 * manager_mutex is used for exclusion of actual management
2067 * operations. The holder of manager_mutex can be sure that none
2068 * of management operations, including creation and destruction of
2069 * workers, won't take place until the mutex is released. Because
2070 * manager_mutex doesn't interfere with manager role arbitration,
2071 * it is guaranteed that the pool's management, while may be
2072 * delayed, won't be disturbed by someone else grabbing
2075 if (!mutex_trylock(&pool
->manager_arb
))
2079 * With manager arbitration won, manager_mutex would be free in
2080 * most cases. trylock first without dropping @pool->lock.
2082 if (unlikely(!mutex_trylock(&pool
->manager_mutex
))) {
2083 spin_unlock_irq(&pool
->lock
);
2084 mutex_lock(&pool
->manager_mutex
);
2085 spin_lock_irq(&pool
->lock
);
2089 pool
->flags
&= ~POOL_MANAGE_WORKERS
;
2092 * Destroy and then create so that may_start_working() is true
2095 ret
|= maybe_destroy_workers(pool
);
2096 ret
|= maybe_create_worker(pool
);
2098 mutex_unlock(&pool
->manager_mutex
);
2099 mutex_unlock(&pool
->manager_arb
);
2104 * process_one_work - process single work
2106 * @work: work to process
2108 * Process @work. This function contains all the logics necessary to
2109 * process a single work including synchronization against and
2110 * interaction with other workers on the same cpu, queueing and
2111 * flushing. As long as context requirement is met, any worker can
2112 * call this function to process a work.
2115 * spin_lock_irq(pool->lock) which is released and regrabbed.
2117 static void process_one_work(struct worker
*worker
, struct work_struct
*work
)
2118 __releases(&pool
->lock
)
2119 __acquires(&pool
->lock
)
2121 struct pool_workqueue
*pwq
= get_work_pwq(work
);
2122 struct worker_pool
*pool
= worker
->pool
;
2123 bool cpu_intensive
= pwq
->wq
->flags
& WQ_CPU_INTENSIVE
;
2125 struct worker
*collision
;
2126 #ifdef CONFIG_LOCKDEP
2128 * It is permissible to free the struct work_struct from
2129 * inside the function that is called from it, this we need to
2130 * take into account for lockdep too. To avoid bogus "held
2131 * lock freed" warnings as well as problems when looking into
2132 * work->lockdep_map, make a copy and use that here.
2134 struct lockdep_map lockdep_map
;
2136 lockdep_copy_map(&lockdep_map
, &work
->lockdep_map
);
2139 * Ensure we're on the correct CPU. DISASSOCIATED test is
2140 * necessary to avoid spurious warnings from rescuers servicing the
2141 * unbound or a disassociated pool.
2143 WARN_ON_ONCE(!(worker
->flags
& WORKER_UNBOUND
) &&
2144 !(pool
->flags
& POOL_DISASSOCIATED
) &&
2145 raw_smp_processor_id() != pool
->cpu
);
2148 * A single work shouldn't be executed concurrently by
2149 * multiple workers on a single cpu. Check whether anyone is
2150 * already processing the work. If so, defer the work to the
2151 * currently executing one.
2153 collision
= find_worker_executing_work(pool
, work
);
2154 if (unlikely(collision
)) {
2155 move_linked_works(work
, &collision
->scheduled
, NULL
);
2159 /* claim and dequeue */
2160 debug_work_deactivate(work
);
2161 hash_add(pool
->busy_hash
, &worker
->hentry
, (unsigned long)work
);
2162 worker
->current_work
= work
;
2163 worker
->current_func
= work
->func
;
2164 worker
->current_pwq
= pwq
;
2165 work_color
= get_work_color(work
);
2167 list_del_init(&work
->entry
);
2170 * CPU intensive works don't participate in concurrency
2171 * management. They're the scheduler's responsibility.
2173 if (unlikely(cpu_intensive
))
2174 worker_set_flags(worker
, WORKER_CPU_INTENSIVE
, true);
2177 * Unbound pool isn't concurrency managed and work items should be
2178 * executed ASAP. Wake up another worker if necessary.
2180 if ((worker
->flags
& WORKER_UNBOUND
) && need_more_worker(pool
))
2181 wake_up_worker(pool
);
2184 * Record the last pool and clear PENDING which should be the last
2185 * update to @work. Also, do this inside @pool->lock so that
2186 * PENDING and queued state changes happen together while IRQ is
2189 set_work_pool_and_clear_pending(work
, pool
->id
);
2191 spin_unlock_irq(&pool
->lock
);
2193 lock_map_acquire_read(&pwq
->wq
->lockdep_map
);
2194 lock_map_acquire(&lockdep_map
);
2195 trace_workqueue_execute_start(work
);
2196 worker
->current_func(work
);
2198 * While we must be careful to not use "work" after this, the trace
2199 * point will only record its address.
2201 trace_workqueue_execute_end(work
);
2202 lock_map_release(&lockdep_map
);
2203 lock_map_release(&pwq
->wq
->lockdep_map
);
2205 if (unlikely(in_atomic() || lockdep_depth(current
) > 0)) {
2206 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2207 " last function: %pf\n",
2208 current
->comm
, preempt_count(), task_pid_nr(current
),
2209 worker
->current_func
);
2210 debug_show_held_locks(current
);
2215 * The following prevents a kworker from hogging CPU on !PREEMPT
2216 * kernels, where a requeueing work item waiting for something to
2217 * happen could deadlock with stop_machine as such work item could
2218 * indefinitely requeue itself while all other CPUs are trapped in
2223 spin_lock_irq(&pool
->lock
);
2225 /* clear cpu intensive status */
2226 if (unlikely(cpu_intensive
))
2227 worker_clr_flags(worker
, WORKER_CPU_INTENSIVE
);
2229 /* we're done with it, release */
2230 hash_del(&worker
->hentry
);
2231 worker
->current_work
= NULL
;
2232 worker
->current_func
= NULL
;
2233 worker
->current_pwq
= NULL
;
2234 worker
->desc_valid
= false;
2235 pwq_dec_nr_in_flight(pwq
, work_color
);
2239 * process_scheduled_works - process scheduled works
2242 * Process all scheduled works. Please note that the scheduled list
2243 * may change while processing a work, so this function repeatedly
2244 * fetches a work from the top and executes it.
2247 * spin_lock_irq(pool->lock) which may be released and regrabbed
2250 static void process_scheduled_works(struct worker
*worker
)
2252 while (!list_empty(&worker
->scheduled
)) {
2253 struct work_struct
*work
= list_first_entry(&worker
->scheduled
,
2254 struct work_struct
, entry
);
2255 process_one_work(worker
, work
);
2260 * worker_thread - the worker thread function
2263 * The worker thread function. All workers belong to a worker_pool -
2264 * either a per-cpu one or dynamic unbound one. These workers process all
2265 * work items regardless of their specific target workqueue. The only
2266 * exception is work items which belong to workqueues with a rescuer which
2267 * will be explained in rescuer_thread().
2271 static int worker_thread(void *__worker
)
2273 struct worker
*worker
= __worker
;
2274 struct worker_pool
*pool
= worker
->pool
;
2276 /* tell the scheduler that this is a workqueue worker */
2277 worker
->task
->flags
|= PF_WQ_WORKER
;
2279 spin_lock_irq(&pool
->lock
);
2281 /* am I supposed to die? */
2282 if (unlikely(worker
->flags
& WORKER_DIE
)) {
2283 spin_unlock_irq(&pool
->lock
);
2284 WARN_ON_ONCE(!list_empty(&worker
->entry
));
2285 worker
->task
->flags
&= ~PF_WQ_WORKER
;
2289 worker_leave_idle(worker
);
2291 /* no more worker necessary? */
2292 if (!need_more_worker(pool
))
2295 /* do we need to manage? */
2296 if (unlikely(!may_start_working(pool
)) && manage_workers(worker
))
2300 * ->scheduled list can only be filled while a worker is
2301 * preparing to process a work or actually processing it.
2302 * Make sure nobody diddled with it while I was sleeping.
2304 WARN_ON_ONCE(!list_empty(&worker
->scheduled
));
2307 * Finish PREP stage. We're guaranteed to have at least one idle
2308 * worker or that someone else has already assumed the manager
2309 * role. This is where @worker starts participating in concurrency
2310 * management if applicable and concurrency management is restored
2311 * after being rebound. See rebind_workers() for details.
2313 worker_clr_flags(worker
, WORKER_PREP
| WORKER_REBOUND
);
2316 struct work_struct
*work
=
2317 list_first_entry(&pool
->worklist
,
2318 struct work_struct
, entry
);
2320 if (likely(!(*work_data_bits(work
) & WORK_STRUCT_LINKED
))) {
2321 /* optimization path, not strictly necessary */
2322 process_one_work(worker
, work
);
2323 if (unlikely(!list_empty(&worker
->scheduled
)))
2324 process_scheduled_works(worker
);
2326 move_linked_works(work
, &worker
->scheduled
, NULL
);
2327 process_scheduled_works(worker
);
2329 } while (keep_working(pool
));
2331 worker_set_flags(worker
, WORKER_PREP
, false);
2333 if (unlikely(need_to_manage_workers(pool
)) && manage_workers(worker
))
2337 * pool->lock is held and there's no work to process and no need to
2338 * manage, sleep. Workers are woken up only while holding
2339 * pool->lock or from local cpu, so setting the current state
2340 * before releasing pool->lock is enough to prevent losing any
2343 worker_enter_idle(worker
);
2344 __set_current_state(TASK_INTERRUPTIBLE
);
2345 spin_unlock_irq(&pool
->lock
);
2351 * rescuer_thread - the rescuer thread function
2354 * Workqueue rescuer thread function. There's one rescuer for each
2355 * workqueue which has WQ_MEM_RECLAIM set.
2357 * Regular work processing on a pool may block trying to create a new
2358 * worker which uses GFP_KERNEL allocation which has slight chance of
2359 * developing into deadlock if some works currently on the same queue
2360 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2361 * the problem rescuer solves.
2363 * When such condition is possible, the pool summons rescuers of all
2364 * workqueues which have works queued on the pool and let them process
2365 * those works so that forward progress can be guaranteed.
2367 * This should happen rarely.
2371 static int rescuer_thread(void *__rescuer
)
2373 struct worker
*rescuer
= __rescuer
;
2374 struct workqueue_struct
*wq
= rescuer
->rescue_wq
;
2375 struct list_head
*scheduled
= &rescuer
->scheduled
;
2377 set_user_nice(current
, RESCUER_NICE_LEVEL
);
2380 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2381 * doesn't participate in concurrency management.
2383 rescuer
->task
->flags
|= PF_WQ_WORKER
;
2385 set_current_state(TASK_INTERRUPTIBLE
);
2387 if (kthread_should_stop()) {
2388 __set_current_state(TASK_RUNNING
);
2389 rescuer
->task
->flags
&= ~PF_WQ_WORKER
;
2393 /* see whether any pwq is asking for help */
2394 spin_lock_irq(&wq_mayday_lock
);
2396 while (!list_empty(&wq
->maydays
)) {
2397 struct pool_workqueue
*pwq
= list_first_entry(&wq
->maydays
,
2398 struct pool_workqueue
, mayday_node
);
2399 struct worker_pool
*pool
= pwq
->pool
;
2400 struct work_struct
*work
, *n
;
2402 __set_current_state(TASK_RUNNING
);
2403 list_del_init(&pwq
->mayday_node
);
2405 spin_unlock_irq(&wq_mayday_lock
);
2407 /* migrate to the target cpu if possible */
2408 worker_maybe_bind_and_lock(pool
);
2409 rescuer
->pool
= pool
;
2412 * Slurp in all works issued via this workqueue and
2415 WARN_ON_ONCE(!list_empty(&rescuer
->scheduled
));
2416 list_for_each_entry_safe(work
, n
, &pool
->worklist
, entry
)
2417 if (get_work_pwq(work
) == pwq
)
2418 move_linked_works(work
, scheduled
, &n
);
2420 process_scheduled_works(rescuer
);
2423 * Leave this pool. If keep_working() is %true, notify a
2424 * regular worker; otherwise, we end up with 0 concurrency
2425 * and stalling the execution.
2427 if (keep_working(pool
))
2428 wake_up_worker(pool
);
2430 rescuer
->pool
= NULL
;
2431 spin_unlock(&pool
->lock
);
2432 spin_lock(&wq_mayday_lock
);
2435 spin_unlock_irq(&wq_mayday_lock
);
2437 /* rescuers should never participate in concurrency management */
2438 WARN_ON_ONCE(!(rescuer
->flags
& WORKER_NOT_RUNNING
));
2444 struct work_struct work
;
2445 struct completion done
;
2448 static void wq_barrier_func(struct work_struct
*work
)
2450 struct wq_barrier
*barr
= container_of(work
, struct wq_barrier
, work
);
2451 complete(&barr
->done
);
2455 * insert_wq_barrier - insert a barrier work
2456 * @pwq: pwq to insert barrier into
2457 * @barr: wq_barrier to insert
2458 * @target: target work to attach @barr to
2459 * @worker: worker currently executing @target, NULL if @target is not executing
2461 * @barr is linked to @target such that @barr is completed only after
2462 * @target finishes execution. Please note that the ordering
2463 * guarantee is observed only with respect to @target and on the local
2466 * Currently, a queued barrier can't be canceled. This is because
2467 * try_to_grab_pending() can't determine whether the work to be
2468 * grabbed is at the head of the queue and thus can't clear LINKED
2469 * flag of the previous work while there must be a valid next work
2470 * after a work with LINKED flag set.
2472 * Note that when @worker is non-NULL, @target may be modified
2473 * underneath us, so we can't reliably determine pwq from @target.
2476 * spin_lock_irq(pool->lock).
2478 static void insert_wq_barrier(struct pool_workqueue
*pwq
,
2479 struct wq_barrier
*barr
,
2480 struct work_struct
*target
, struct worker
*worker
)
2482 struct list_head
*head
;
2483 unsigned int linked
= 0;
2486 * debugobject calls are safe here even with pool->lock locked
2487 * as we know for sure that this will not trigger any of the
2488 * checks and call back into the fixup functions where we
2491 INIT_WORK_ONSTACK(&barr
->work
, wq_barrier_func
);
2492 __set_bit(WORK_STRUCT_PENDING_BIT
, work_data_bits(&barr
->work
));
2493 init_completion(&barr
->done
);
2496 * If @target is currently being executed, schedule the
2497 * barrier to the worker; otherwise, put it after @target.
2500 head
= worker
->scheduled
.next
;
2502 unsigned long *bits
= work_data_bits(target
);
2504 head
= target
->entry
.next
;
2505 /* there can already be other linked works, inherit and set */
2506 linked
= *bits
& WORK_STRUCT_LINKED
;
2507 __set_bit(WORK_STRUCT_LINKED_BIT
, bits
);
2510 debug_work_activate(&barr
->work
);
2511 insert_work(pwq
, &barr
->work
, head
,
2512 work_color_to_flags(WORK_NO_COLOR
) | linked
);
2516 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2517 * @wq: workqueue being flushed
2518 * @flush_color: new flush color, < 0 for no-op
2519 * @work_color: new work color, < 0 for no-op
2521 * Prepare pwqs for workqueue flushing.
2523 * If @flush_color is non-negative, flush_color on all pwqs should be
2524 * -1. If no pwq has in-flight commands at the specified color, all
2525 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2526 * has in flight commands, its pwq->flush_color is set to
2527 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2528 * wakeup logic is armed and %true is returned.
2530 * The caller should have initialized @wq->first_flusher prior to
2531 * calling this function with non-negative @flush_color. If
2532 * @flush_color is negative, no flush color update is done and %false
2535 * If @work_color is non-negative, all pwqs should have the same
2536 * work_color which is previous to @work_color and all will be
2537 * advanced to @work_color.
2540 * mutex_lock(wq->mutex).
2543 * %true if @flush_color >= 0 and there's something to flush. %false
2546 static bool flush_workqueue_prep_pwqs(struct workqueue_struct
*wq
,
2547 int flush_color
, int work_color
)
2550 struct pool_workqueue
*pwq
;
2552 if (flush_color
>= 0) {
2553 WARN_ON_ONCE(atomic_read(&wq
->nr_pwqs_to_flush
));
2554 atomic_set(&wq
->nr_pwqs_to_flush
, 1);
2557 for_each_pwq(pwq
, wq
) {
2558 struct worker_pool
*pool
= pwq
->pool
;
2560 spin_lock_irq(&pool
->lock
);
2562 if (flush_color
>= 0) {
2563 WARN_ON_ONCE(pwq
->flush_color
!= -1);
2565 if (pwq
->nr_in_flight
[flush_color
]) {
2566 pwq
->flush_color
= flush_color
;
2567 atomic_inc(&wq
->nr_pwqs_to_flush
);
2572 if (work_color
>= 0) {
2573 WARN_ON_ONCE(work_color
!= work_next_color(pwq
->work_color
));
2574 pwq
->work_color
= work_color
;
2577 spin_unlock_irq(&pool
->lock
);
2580 if (flush_color
>= 0 && atomic_dec_and_test(&wq
->nr_pwqs_to_flush
))
2581 complete(&wq
->first_flusher
->done
);
2587 * flush_workqueue - ensure that any scheduled work has run to completion.
2588 * @wq: workqueue to flush
2590 * This function sleeps until all work items which were queued on entry
2591 * have finished execution, but it is not livelocked by new incoming ones.
2593 void flush_workqueue(struct workqueue_struct
*wq
)
2595 struct wq_flusher this_flusher
= {
2596 .list
= LIST_HEAD_INIT(this_flusher
.list
),
2598 .done
= COMPLETION_INITIALIZER_ONSTACK(this_flusher
.done
),
2602 lock_map_acquire(&wq
->lockdep_map
);
2603 lock_map_release(&wq
->lockdep_map
);
2605 mutex_lock(&wq
->mutex
);
2608 * Start-to-wait phase
2610 next_color
= work_next_color(wq
->work_color
);
2612 if (next_color
!= wq
->flush_color
) {
2614 * Color space is not full. The current work_color
2615 * becomes our flush_color and work_color is advanced
2618 WARN_ON_ONCE(!list_empty(&wq
->flusher_overflow
));
2619 this_flusher
.flush_color
= wq
->work_color
;
2620 wq
->work_color
= next_color
;
2622 if (!wq
->first_flusher
) {
2623 /* no flush in progress, become the first flusher */
2624 WARN_ON_ONCE(wq
->flush_color
!= this_flusher
.flush_color
);
2626 wq
->first_flusher
= &this_flusher
;
2628 if (!flush_workqueue_prep_pwqs(wq
, wq
->flush_color
,
2630 /* nothing to flush, done */
2631 wq
->flush_color
= next_color
;
2632 wq
->first_flusher
= NULL
;
2637 WARN_ON_ONCE(wq
->flush_color
== this_flusher
.flush_color
);
2638 list_add_tail(&this_flusher
.list
, &wq
->flusher_queue
);
2639 flush_workqueue_prep_pwqs(wq
, -1, wq
->work_color
);
2643 * Oops, color space is full, wait on overflow queue.
2644 * The next flush completion will assign us
2645 * flush_color and transfer to flusher_queue.
2647 list_add_tail(&this_flusher
.list
, &wq
->flusher_overflow
);
2650 mutex_unlock(&wq
->mutex
);
2652 wait_for_completion(&this_flusher
.done
);
2655 * Wake-up-and-cascade phase
2657 * First flushers are responsible for cascading flushes and
2658 * handling overflow. Non-first flushers can simply return.
2660 if (wq
->first_flusher
!= &this_flusher
)
2663 mutex_lock(&wq
->mutex
);
2665 /* we might have raced, check again with mutex held */
2666 if (wq
->first_flusher
!= &this_flusher
)
2669 wq
->first_flusher
= NULL
;
2671 WARN_ON_ONCE(!list_empty(&this_flusher
.list
));
2672 WARN_ON_ONCE(wq
->flush_color
!= this_flusher
.flush_color
);
2675 struct wq_flusher
*next
, *tmp
;
2677 /* complete all the flushers sharing the current flush color */
2678 list_for_each_entry_safe(next
, tmp
, &wq
->flusher_queue
, list
) {
2679 if (next
->flush_color
!= wq
->flush_color
)
2681 list_del_init(&next
->list
);
2682 complete(&next
->done
);
2685 WARN_ON_ONCE(!list_empty(&wq
->flusher_overflow
) &&
2686 wq
->flush_color
!= work_next_color(wq
->work_color
));
2688 /* this flush_color is finished, advance by one */
2689 wq
->flush_color
= work_next_color(wq
->flush_color
);
2691 /* one color has been freed, handle overflow queue */
2692 if (!list_empty(&wq
->flusher_overflow
)) {
2694 * Assign the same color to all overflowed
2695 * flushers, advance work_color and append to
2696 * flusher_queue. This is the start-to-wait
2697 * phase for these overflowed flushers.
2699 list_for_each_entry(tmp
, &wq
->flusher_overflow
, list
)
2700 tmp
->flush_color
= wq
->work_color
;
2702 wq
->work_color
= work_next_color(wq
->work_color
);
2704 list_splice_tail_init(&wq
->flusher_overflow
,
2705 &wq
->flusher_queue
);
2706 flush_workqueue_prep_pwqs(wq
, -1, wq
->work_color
);
2709 if (list_empty(&wq
->flusher_queue
)) {
2710 WARN_ON_ONCE(wq
->flush_color
!= wq
->work_color
);
2715 * Need to flush more colors. Make the next flusher
2716 * the new first flusher and arm pwqs.
2718 WARN_ON_ONCE(wq
->flush_color
== wq
->work_color
);
2719 WARN_ON_ONCE(wq
->flush_color
!= next
->flush_color
);
2721 list_del_init(&next
->list
);
2722 wq
->first_flusher
= next
;
2724 if (flush_workqueue_prep_pwqs(wq
, wq
->flush_color
, -1))
2728 * Meh... this color is already done, clear first
2729 * flusher and repeat cascading.
2731 wq
->first_flusher
= NULL
;
2735 mutex_unlock(&wq
->mutex
);
2737 EXPORT_SYMBOL_GPL(flush_workqueue
);
2740 * drain_workqueue - drain a workqueue
2741 * @wq: workqueue to drain
2743 * Wait until the workqueue becomes empty. While draining is in progress,
2744 * only chain queueing is allowed. IOW, only currently pending or running
2745 * work items on @wq can queue further work items on it. @wq is flushed
2746 * repeatedly until it becomes empty. The number of flushing is detemined
2747 * by the depth of chaining and should be relatively short. Whine if it
2750 void drain_workqueue(struct workqueue_struct
*wq
)
2752 unsigned int flush_cnt
= 0;
2753 struct pool_workqueue
*pwq
;
2756 * __queue_work() needs to test whether there are drainers, is much
2757 * hotter than drain_workqueue() and already looks at @wq->flags.
2758 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2760 mutex_lock(&wq
->mutex
);
2761 if (!wq
->nr_drainers
++)
2762 wq
->flags
|= __WQ_DRAINING
;
2763 mutex_unlock(&wq
->mutex
);
2765 flush_workqueue(wq
);
2767 mutex_lock(&wq
->mutex
);
2769 for_each_pwq(pwq
, wq
) {
2772 spin_lock_irq(&pwq
->pool
->lock
);
2773 drained
= !pwq
->nr_active
&& list_empty(&pwq
->delayed_works
);
2774 spin_unlock_irq(&pwq
->pool
->lock
);
2779 if (++flush_cnt
== 10 ||
2780 (flush_cnt
% 100 == 0 && flush_cnt
<= 1000))
2781 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
2782 wq
->name
, flush_cnt
);
2784 mutex_unlock(&wq
->mutex
);
2788 if (!--wq
->nr_drainers
)
2789 wq
->flags
&= ~__WQ_DRAINING
;
2790 mutex_unlock(&wq
->mutex
);
2792 EXPORT_SYMBOL_GPL(drain_workqueue
);
2794 static bool start_flush_work(struct work_struct
*work
, struct wq_barrier
*barr
)
2796 struct worker
*worker
= NULL
;
2797 struct worker_pool
*pool
;
2798 struct pool_workqueue
*pwq
;
2802 local_irq_disable();
2803 pool
= get_work_pool(work
);
2809 spin_lock(&pool
->lock
);
2810 /* see the comment in try_to_grab_pending() with the same code */
2811 pwq
= get_work_pwq(work
);
2813 if (unlikely(pwq
->pool
!= pool
))
2816 worker
= find_worker_executing_work(pool
, work
);
2819 pwq
= worker
->current_pwq
;
2822 insert_wq_barrier(pwq
, barr
, work
, worker
);
2823 spin_unlock_irq(&pool
->lock
);
2826 * If @max_active is 1 or rescuer is in use, flushing another work
2827 * item on the same workqueue may lead to deadlock. Make sure the
2828 * flusher is not running on the same workqueue by verifying write
2831 if (pwq
->wq
->saved_max_active
== 1 || pwq
->wq
->rescuer
)
2832 lock_map_acquire(&pwq
->wq
->lockdep_map
);
2834 lock_map_acquire_read(&pwq
->wq
->lockdep_map
);
2835 lock_map_release(&pwq
->wq
->lockdep_map
);
2839 spin_unlock_irq(&pool
->lock
);
2843 static bool __flush_work(struct work_struct
*work
)
2845 struct wq_barrier barr
;
2847 if (start_flush_work(work
, &barr
)) {
2848 wait_for_completion(&barr
.done
);
2849 destroy_work_on_stack(&barr
.work
);
2857 * flush_work - wait for a work to finish executing the last queueing instance
2858 * @work: the work to flush
2860 * Wait until @work has finished execution. @work is guaranteed to be idle
2861 * on return if it hasn't been requeued since flush started.
2864 * %true if flush_work() waited for the work to finish execution,
2865 * %false if it was already idle.
2867 bool flush_work(struct work_struct
*work
)
2869 lock_map_acquire(&work
->lockdep_map
);
2870 lock_map_release(&work
->lockdep_map
);
2872 return __flush_work(work
);
2874 EXPORT_SYMBOL_GPL(flush_work
);
2876 static bool __cancel_work_timer(struct work_struct
*work
, bool is_dwork
)
2878 unsigned long flags
;
2882 ret
= try_to_grab_pending(work
, is_dwork
, &flags
);
2884 * If someone else is canceling, wait for the same event it
2885 * would be waiting for before retrying.
2887 if (unlikely(ret
== -ENOENT
))
2889 } while (unlikely(ret
< 0));
2891 /* tell other tasks trying to grab @work to back off */
2892 mark_work_canceling(work
);
2893 local_irq_restore(flags
);
2896 clear_work_data(work
);
2901 * cancel_work_sync - cancel a work and wait for it to finish
2902 * @work: the work to cancel
2904 * Cancel @work and wait for its execution to finish. This function
2905 * can be used even if the work re-queues itself or migrates to
2906 * another workqueue. On return from this function, @work is
2907 * guaranteed to be not pending or executing on any CPU.
2909 * cancel_work_sync(&delayed_work->work) must not be used for
2910 * delayed_work's. Use cancel_delayed_work_sync() instead.
2912 * The caller must ensure that the workqueue on which @work was last
2913 * queued can't be destroyed before this function returns.
2916 * %true if @work was pending, %false otherwise.
2918 bool cancel_work_sync(struct work_struct
*work
)
2920 return __cancel_work_timer(work
, false);
2922 EXPORT_SYMBOL_GPL(cancel_work_sync
);
2925 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2926 * @dwork: the delayed work to flush
2928 * Delayed timer is cancelled and the pending work is queued for
2929 * immediate execution. Like flush_work(), this function only
2930 * considers the last queueing instance of @dwork.
2933 * %true if flush_work() waited for the work to finish execution,
2934 * %false if it was already idle.
2936 bool flush_delayed_work(struct delayed_work
*dwork
)
2938 local_irq_disable();
2939 if (del_timer_sync(&dwork
->timer
))
2940 __queue_work(dwork
->cpu
, dwork
->wq
, &dwork
->work
);
2942 return flush_work(&dwork
->work
);
2944 EXPORT_SYMBOL(flush_delayed_work
);
2947 * cancel_delayed_work - cancel a delayed work
2948 * @dwork: delayed_work to cancel
2950 * Kill off a pending delayed_work.
2952 * Return: %true if @dwork was pending and canceled; %false if it wasn't
2956 * The work callback function may still be running on return, unless
2957 * it returns %true and the work doesn't re-arm itself. Explicitly flush or
2958 * use cancel_delayed_work_sync() to wait on it.
2960 * This function is safe to call from any context including IRQ handler.
2962 bool cancel_delayed_work(struct delayed_work
*dwork
)
2964 unsigned long flags
;
2968 ret
= try_to_grab_pending(&dwork
->work
, true, &flags
);
2969 } while (unlikely(ret
== -EAGAIN
));
2971 if (unlikely(ret
< 0))
2974 set_work_pool_and_clear_pending(&dwork
->work
,
2975 get_work_pool_id(&dwork
->work
));
2976 local_irq_restore(flags
);
2979 EXPORT_SYMBOL(cancel_delayed_work
);
2982 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2983 * @dwork: the delayed work cancel
2985 * This is cancel_work_sync() for delayed works.
2988 * %true if @dwork was pending, %false otherwise.
2990 bool cancel_delayed_work_sync(struct delayed_work
*dwork
)
2992 return __cancel_work_timer(&dwork
->work
, true);
2994 EXPORT_SYMBOL(cancel_delayed_work_sync
);
2997 * schedule_on_each_cpu - execute a function synchronously on each online CPU
2998 * @func: the function to call
3000 * schedule_on_each_cpu() executes @func on each online CPU using the
3001 * system workqueue and blocks until all CPUs have completed.
3002 * schedule_on_each_cpu() is very slow.
3005 * 0 on success, -errno on failure.
3007 int schedule_on_each_cpu(work_func_t func
)
3010 struct work_struct __percpu
*works
;
3012 works
= alloc_percpu(struct work_struct
);
3018 for_each_online_cpu(cpu
) {
3019 struct work_struct
*work
= per_cpu_ptr(works
, cpu
);
3021 INIT_WORK(work
, func
);
3022 schedule_work_on(cpu
, work
);
3025 for_each_online_cpu(cpu
)
3026 flush_work(per_cpu_ptr(works
, cpu
));
3034 * flush_scheduled_work - ensure that any scheduled work has run to completion.
3036 * Forces execution of the kernel-global workqueue and blocks until its
3039 * Think twice before calling this function! It's very easy to get into
3040 * trouble if you don't take great care. Either of the following situations
3041 * will lead to deadlock:
3043 * One of the work items currently on the workqueue needs to acquire
3044 * a lock held by your code or its caller.
3046 * Your code is running in the context of a work routine.
3048 * They will be detected by lockdep when they occur, but the first might not
3049 * occur very often. It depends on what work items are on the workqueue and
3050 * what locks they need, which you have no control over.
3052 * In most situations flushing the entire workqueue is overkill; you merely
3053 * need to know that a particular work item isn't queued and isn't running.
3054 * In such cases you should use cancel_delayed_work_sync() or
3055 * cancel_work_sync() instead.
3057 void flush_scheduled_work(void)
3059 flush_workqueue(system_wq
);
3061 EXPORT_SYMBOL(flush_scheduled_work
);
3064 * execute_in_process_context - reliably execute the routine with user context
3065 * @fn: the function to execute
3066 * @ew: guaranteed storage for the execute work structure (must
3067 * be available when the work executes)
3069 * Executes the function immediately if process context is available,
3070 * otherwise schedules the function for delayed execution.
3072 * Return: 0 - function was executed
3073 * 1 - function was scheduled for execution
3075 int execute_in_process_context(work_func_t fn
, struct execute_work
*ew
)
3077 if (!in_interrupt()) {
3082 INIT_WORK(&ew
->work
, fn
);
3083 schedule_work(&ew
->work
);
3087 EXPORT_SYMBOL_GPL(execute_in_process_context
);
3091 * Workqueues with WQ_SYSFS flag set is visible to userland via
3092 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
3093 * following attributes.
3095 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
3096 * max_active RW int : maximum number of in-flight work items
3098 * Unbound workqueues have the following extra attributes.
3100 * id RO int : the associated pool ID
3101 * nice RW int : nice value of the workers
3102 * cpumask RW mask : bitmask of allowed CPUs for the workers
3105 struct workqueue_struct
*wq
;
3109 static struct workqueue_struct
*dev_to_wq(struct device
*dev
)
3111 struct wq_device
*wq_dev
= container_of(dev
, struct wq_device
, dev
);
3116 static ssize_t
per_cpu_show(struct device
*dev
, struct device_attribute
*attr
,
3119 struct workqueue_struct
*wq
= dev_to_wq(dev
);
3121 return scnprintf(buf
, PAGE_SIZE
, "%d\n", (bool)!(wq
->flags
& WQ_UNBOUND
));
3123 static DEVICE_ATTR_RO(per_cpu
);
3125 static ssize_t
max_active_show(struct device
*dev
,
3126 struct device_attribute
*attr
, char *buf
)
3128 struct workqueue_struct
*wq
= dev_to_wq(dev
);
3130 return scnprintf(buf
, PAGE_SIZE
, "%d\n", wq
->saved_max_active
);
3133 static ssize_t
max_active_store(struct device
*dev
,
3134 struct device_attribute
*attr
, const char *buf
,
3137 struct workqueue_struct
*wq
= dev_to_wq(dev
);
3140 if (sscanf(buf
, "%d", &val
) != 1 || val
<= 0)
3143 workqueue_set_max_active(wq
, val
);
3146 static DEVICE_ATTR_RW(max_active
);
3148 static struct attribute
*wq_sysfs_attrs
[] = {
3149 &dev_attr_per_cpu
.attr
,
3150 &dev_attr_max_active
.attr
,
3153 ATTRIBUTE_GROUPS(wq_sysfs
);
3155 static ssize_t
wq_pool_ids_show(struct device
*dev
,
3156 struct device_attribute
*attr
, char *buf
)
3158 struct workqueue_struct
*wq
= dev_to_wq(dev
);
3159 const char *delim
= "";
3160 int node
, written
= 0;
3162 rcu_read_lock_sched();
3163 for_each_node(node
) {
3164 written
+= scnprintf(buf
+ written
, PAGE_SIZE
- written
,
3165 "%s%d:%d", delim
, node
,
3166 unbound_pwq_by_node(wq
, node
)->pool
->id
);
3169 written
+= scnprintf(buf
+ written
, PAGE_SIZE
- written
, "\n");
3170 rcu_read_unlock_sched();
3175 static ssize_t
wq_nice_show(struct device
*dev
, struct device_attribute
*attr
,
3178 struct workqueue_struct
*wq
= dev_to_wq(dev
);
3181 mutex_lock(&wq
->mutex
);
3182 written
= scnprintf(buf
, PAGE_SIZE
, "%d\n", wq
->unbound_attrs
->nice
);
3183 mutex_unlock(&wq
->mutex
);
3188 /* prepare workqueue_attrs for sysfs store operations */
3189 static struct workqueue_attrs
*wq_sysfs_prep_attrs(struct workqueue_struct
*wq
)
3191 struct workqueue_attrs
*attrs
;
3193 attrs
= alloc_workqueue_attrs(GFP_KERNEL
);
3197 mutex_lock(&wq
->mutex
);
3198 copy_workqueue_attrs(attrs
, wq
->unbound_attrs
);
3199 mutex_unlock(&wq
->mutex
);
3203 static ssize_t
wq_nice_store(struct device
*dev
, struct device_attribute
*attr
,
3204 const char *buf
, size_t count
)
3206 struct workqueue_struct
*wq
= dev_to_wq(dev
);
3207 struct workqueue_attrs
*attrs
;
3210 attrs
= wq_sysfs_prep_attrs(wq
);
3214 if (sscanf(buf
, "%d", &attrs
->nice
) == 1 &&
3215 attrs
->nice
>= -20 && attrs
->nice
<= 19)
3216 ret
= apply_workqueue_attrs(wq
, attrs
);
3220 free_workqueue_attrs(attrs
);
3221 return ret
?: count
;
3224 static ssize_t
wq_cpumask_show(struct device
*dev
,
3225 struct device_attribute
*attr
, char *buf
)
3227 struct workqueue_struct
*wq
= dev_to_wq(dev
);
3230 mutex_lock(&wq
->mutex
);
3231 written
= cpumask_scnprintf(buf
, PAGE_SIZE
, wq
->unbound_attrs
->cpumask
);
3232 mutex_unlock(&wq
->mutex
);
3234 written
+= scnprintf(buf
+ written
, PAGE_SIZE
- written
, "\n");
3238 static ssize_t
wq_cpumask_store(struct device
*dev
,
3239 struct device_attribute
*attr
,
3240 const char *buf
, size_t count
)
3242 struct workqueue_struct
*wq
= dev_to_wq(dev
);
3243 struct workqueue_attrs
*attrs
;
3246 attrs
= wq_sysfs_prep_attrs(wq
);
3250 ret
= cpumask_parse(buf
, attrs
->cpumask
);
3252 ret
= apply_workqueue_attrs(wq
, attrs
);
3254 free_workqueue_attrs(attrs
);
3255 return ret
?: count
;
3258 static ssize_t
wq_numa_show(struct device
*dev
, struct device_attribute
*attr
,
3261 struct workqueue_struct
*wq
= dev_to_wq(dev
);
3264 mutex_lock(&wq
->mutex
);
3265 written
= scnprintf(buf
, PAGE_SIZE
, "%d\n",
3266 !wq
->unbound_attrs
->no_numa
);
3267 mutex_unlock(&wq
->mutex
);
3272 static ssize_t
wq_numa_store(struct device
*dev
, struct device_attribute
*attr
,
3273 const char *buf
, size_t count
)
3275 struct workqueue_struct
*wq
= dev_to_wq(dev
);
3276 struct workqueue_attrs
*attrs
;
3279 attrs
= wq_sysfs_prep_attrs(wq
);
3284 if (sscanf(buf
, "%d", &v
) == 1) {
3285 attrs
->no_numa
= !v
;
3286 ret
= apply_workqueue_attrs(wq
, attrs
);
3289 free_workqueue_attrs(attrs
);
3290 return ret
?: count
;
3293 static struct device_attribute wq_sysfs_unbound_attrs
[] = {
3294 __ATTR(pool_ids
, 0444, wq_pool_ids_show
, NULL
),
3295 __ATTR(nice
, 0644, wq_nice_show
, wq_nice_store
),
3296 __ATTR(cpumask
, 0644, wq_cpumask_show
, wq_cpumask_store
),
3297 __ATTR(numa
, 0644, wq_numa_show
, wq_numa_store
),
3301 static struct bus_type wq_subsys
= {
3302 .name
= "workqueue",
3303 .dev_groups
= wq_sysfs_groups
,
3306 static int __init
wq_sysfs_init(void)
3308 return subsys_virtual_register(&wq_subsys
, NULL
);
3310 core_initcall(wq_sysfs_init
);
3312 static void wq_device_release(struct device
*dev
)
3314 struct wq_device
*wq_dev
= container_of(dev
, struct wq_device
, dev
);
3320 * workqueue_sysfs_register - make a workqueue visible in sysfs
3321 * @wq: the workqueue to register
3323 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
3324 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
3325 * which is the preferred method.
3327 * Workqueue user should use this function directly iff it wants to apply
3328 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
3329 * apply_workqueue_attrs() may race against userland updating the
3332 * Return: 0 on success, -errno on failure.
3334 int workqueue_sysfs_register(struct workqueue_struct
*wq
)
3336 struct wq_device
*wq_dev
;
3340 * Adjusting max_active or creating new pwqs by applyting
3341 * attributes breaks ordering guarantee. Disallow exposing ordered
3344 if (WARN_ON(wq
->flags
& __WQ_ORDERED
))
3347 wq
->wq_dev
= wq_dev
= kzalloc(sizeof(*wq_dev
), GFP_KERNEL
);
3352 wq_dev
->dev
.bus
= &wq_subsys
;
3353 wq_dev
->dev
.init_name
= wq
->name
;
3354 wq_dev
->dev
.release
= wq_device_release
;
3357 * unbound_attrs are created separately. Suppress uevent until
3358 * everything is ready.
3360 dev_set_uevent_suppress(&wq_dev
->dev
, true);
3362 ret
= device_register(&wq_dev
->dev
);
3369 if (wq
->flags
& WQ_UNBOUND
) {
3370 struct device_attribute
*attr
;
3372 for (attr
= wq_sysfs_unbound_attrs
; attr
->attr
.name
; attr
++) {
3373 ret
= device_create_file(&wq_dev
->dev
, attr
);
3375 device_unregister(&wq_dev
->dev
);
3382 kobject_uevent(&wq_dev
->dev
.kobj
, KOBJ_ADD
);
3387 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
3388 * @wq: the workqueue to unregister
3390 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
3392 static void workqueue_sysfs_unregister(struct workqueue_struct
*wq
)
3394 struct wq_device
*wq_dev
= wq
->wq_dev
;
3400 device_unregister(&wq_dev
->dev
);
3402 #else /* CONFIG_SYSFS */
3403 static void workqueue_sysfs_unregister(struct workqueue_struct
*wq
) { }
3404 #endif /* CONFIG_SYSFS */
3407 * free_workqueue_attrs - free a workqueue_attrs
3408 * @attrs: workqueue_attrs to free
3410 * Undo alloc_workqueue_attrs().
3412 void free_workqueue_attrs(struct workqueue_attrs
*attrs
)
3415 free_cpumask_var(attrs
->cpumask
);
3421 * alloc_workqueue_attrs - allocate a workqueue_attrs
3422 * @gfp_mask: allocation mask to use
3424 * Allocate a new workqueue_attrs, initialize with default settings and
3427 * Return: The allocated new workqueue_attr on success. %NULL on failure.
3429 struct workqueue_attrs
*alloc_workqueue_attrs(gfp_t gfp_mask
)
3431 struct workqueue_attrs
*attrs
;
3433 attrs
= kzalloc(sizeof(*attrs
), gfp_mask
);
3436 if (!alloc_cpumask_var(&attrs
->cpumask
, gfp_mask
))
3439 cpumask_copy(attrs
->cpumask
, cpu_possible_mask
);
3442 free_workqueue_attrs(attrs
);
3446 static void copy_workqueue_attrs(struct workqueue_attrs
*to
,
3447 const struct workqueue_attrs
*from
)
3449 to
->nice
= from
->nice
;
3450 cpumask_copy(to
->cpumask
, from
->cpumask
);
3452 * Unlike hash and equality test, this function doesn't ignore
3453 * ->no_numa as it is used for both pool and wq attrs. Instead,
3454 * get_unbound_pool() explicitly clears ->no_numa after copying.
3456 to
->no_numa
= from
->no_numa
;
3459 /* hash value of the content of @attr */
3460 static u32
wqattrs_hash(const struct workqueue_attrs
*attrs
)
3464 hash
= jhash_1word(attrs
->nice
, hash
);
3465 hash
= jhash(cpumask_bits(attrs
->cpumask
),
3466 BITS_TO_LONGS(nr_cpumask_bits
) * sizeof(long), hash
);
3470 /* content equality test */
3471 static bool wqattrs_equal(const struct workqueue_attrs
*a
,
3472 const struct workqueue_attrs
*b
)
3474 if (a
->nice
!= b
->nice
)
3476 if (!cpumask_equal(a
->cpumask
, b
->cpumask
))
3482 * init_worker_pool - initialize a newly zalloc'd worker_pool
3483 * @pool: worker_pool to initialize
3485 * Initiailize a newly zalloc'd @pool. It also allocates @pool->attrs.
3487 * Return: 0 on success, -errno on failure. Even on failure, all fields
3488 * inside @pool proper are initialized and put_unbound_pool() can be called
3489 * on @pool safely to release it.
3491 static int init_worker_pool(struct worker_pool
*pool
)
3493 spin_lock_init(&pool
->lock
);
3496 pool
->node
= NUMA_NO_NODE
;
3497 pool
->flags
|= POOL_DISASSOCIATED
;
3498 INIT_LIST_HEAD(&pool
->worklist
);
3499 INIT_LIST_HEAD(&pool
->idle_list
);
3500 hash_init(pool
->busy_hash
);
3502 init_timer_deferrable(&pool
->idle_timer
);
3503 pool
->idle_timer
.function
= idle_worker_timeout
;
3504 pool
->idle_timer
.data
= (unsigned long)pool
;
3506 setup_timer(&pool
->mayday_timer
, pool_mayday_timeout
,
3507 (unsigned long)pool
);
3509 mutex_init(&pool
->manager_arb
);
3510 mutex_init(&pool
->manager_mutex
);
3511 idr_init(&pool
->worker_idr
);
3513 INIT_HLIST_NODE(&pool
->hash_node
);
3516 /* shouldn't fail above this point */
3517 pool
->attrs
= alloc_workqueue_attrs(GFP_KERNEL
);
3523 static void rcu_free_pool(struct rcu_head
*rcu
)
3525 struct worker_pool
*pool
= container_of(rcu
, struct worker_pool
, rcu
);
3527 idr_destroy(&pool
->worker_idr
);
3528 free_workqueue_attrs(pool
->attrs
);
3533 * put_unbound_pool - put a worker_pool
3534 * @pool: worker_pool to put
3536 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU
3537 * safe manner. get_unbound_pool() calls this function on its failure path
3538 * and this function should be able to release pools which went through,
3539 * successfully or not, init_worker_pool().
3541 * Should be called with wq_pool_mutex held.
3543 static void put_unbound_pool(struct worker_pool
*pool
)
3545 struct worker
*worker
;
3547 lockdep_assert_held(&wq_pool_mutex
);
3553 if (WARN_ON(!(pool
->flags
& POOL_DISASSOCIATED
)) ||
3554 WARN_ON(!list_empty(&pool
->worklist
)))
3557 /* release id and unhash */
3559 idr_remove(&worker_pool_idr
, pool
->id
);
3560 hash_del(&pool
->hash_node
);
3563 * Become the manager and destroy all workers. Grabbing
3564 * manager_arb prevents @pool's workers from blocking on
3567 mutex_lock(&pool
->manager_arb
);
3568 mutex_lock(&pool
->manager_mutex
);
3569 spin_lock_irq(&pool
->lock
);
3571 while ((worker
= first_worker(pool
)))
3572 destroy_worker(worker
);
3573 WARN_ON(pool
->nr_workers
|| pool
->nr_idle
);
3575 spin_unlock_irq(&pool
->lock
);
3576 mutex_unlock(&pool
->manager_mutex
);
3577 mutex_unlock(&pool
->manager_arb
);
3579 /* shut down the timers */
3580 del_timer_sync(&pool
->idle_timer
);
3581 del_timer_sync(&pool
->mayday_timer
);
3583 /* sched-RCU protected to allow dereferences from get_work_pool() */
3584 call_rcu_sched(&pool
->rcu
, rcu_free_pool
);
3588 * get_unbound_pool - get a worker_pool with the specified attributes
3589 * @attrs: the attributes of the worker_pool to get
3591 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3592 * reference count and return it. If there already is a matching
3593 * worker_pool, it will be used; otherwise, this function attempts to
3596 * Should be called with wq_pool_mutex held.
3598 * Return: On success, a worker_pool with the same attributes as @attrs.
3599 * On failure, %NULL.
3601 static struct worker_pool
*get_unbound_pool(const struct workqueue_attrs
*attrs
)
3603 u32 hash
= wqattrs_hash(attrs
);
3604 struct worker_pool
*pool
;
3607 lockdep_assert_held(&wq_pool_mutex
);
3609 /* do we already have a matching pool? */
3610 hash_for_each_possible(unbound_pool_hash
, pool
, hash_node
, hash
) {
3611 if (wqattrs_equal(pool
->attrs
, attrs
)) {
3617 /* nope, create a new one */
3618 pool
= kzalloc(sizeof(*pool
), GFP_KERNEL
);
3619 if (!pool
|| init_worker_pool(pool
) < 0)
3622 if (workqueue_freezing
)
3623 pool
->flags
|= POOL_FREEZING
;
3625 lockdep_set_subclass(&pool
->lock
, 1); /* see put_pwq() */
3626 copy_workqueue_attrs(pool
->attrs
, attrs
);
3629 * no_numa isn't a worker_pool attribute, always clear it. See
3630 * 'struct workqueue_attrs' comments for detail.
3632 pool
->attrs
->no_numa
= false;
3634 /* if cpumask is contained inside a NUMA node, we belong to that node */
3635 if (wq_numa_enabled
) {
3636 for_each_node(node
) {
3637 if (cpumask_subset(pool
->attrs
->cpumask
,
3638 wq_numa_possible_cpumask
[node
])) {
3645 if (worker_pool_assign_id(pool
) < 0)
3648 /* create and start the initial worker */
3649 if (create_and_start_worker(pool
) < 0)
3653 hash_add(unbound_pool_hash
, &pool
->hash_node
, hash
);
3658 put_unbound_pool(pool
);
3662 static void rcu_free_pwq(struct rcu_head
*rcu
)
3664 kmem_cache_free(pwq_cache
,
3665 container_of(rcu
, struct pool_workqueue
, rcu
));
3669 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3670 * and needs to be destroyed.
3672 static void pwq_unbound_release_workfn(struct work_struct
*work
)
3674 struct pool_workqueue
*pwq
= container_of(work
, struct pool_workqueue
,
3675 unbound_release_work
);
3676 struct workqueue_struct
*wq
= pwq
->wq
;
3677 struct worker_pool
*pool
= pwq
->pool
;
3680 if (WARN_ON_ONCE(!(wq
->flags
& WQ_UNBOUND
)))
3684 * Unlink @pwq. Synchronization against wq->mutex isn't strictly
3685 * necessary on release but do it anyway. It's easier to verify
3686 * and consistent with the linking path.
3688 mutex_lock(&wq
->mutex
);
3689 list_del_rcu(&pwq
->pwqs_node
);
3690 is_last
= list_empty(&wq
->pwqs
);
3691 mutex_unlock(&wq
->mutex
);
3693 mutex_lock(&wq_pool_mutex
);
3694 put_unbound_pool(pool
);
3695 mutex_unlock(&wq_pool_mutex
);
3697 call_rcu_sched(&pwq
->rcu
, rcu_free_pwq
);
3700 * If we're the last pwq going away, @wq is already dead and no one
3701 * is gonna access it anymore. Free it.
3704 free_workqueue_attrs(wq
->unbound_attrs
);
3710 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3711 * @pwq: target pool_workqueue
3713 * If @pwq isn't freezing, set @pwq->max_active to the associated
3714 * workqueue's saved_max_active and activate delayed work items
3715 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
3717 static void pwq_adjust_max_active(struct pool_workqueue
*pwq
)
3719 struct workqueue_struct
*wq
= pwq
->wq
;
3720 bool freezable
= wq
->flags
& WQ_FREEZABLE
;
3722 /* for @wq->saved_max_active */
3723 lockdep_assert_held(&wq
->mutex
);
3725 /* fast exit for non-freezable wqs */
3726 if (!freezable
&& pwq
->max_active
== wq
->saved_max_active
)
3729 spin_lock_irq(&pwq
->pool
->lock
);
3731 if (!freezable
|| !(pwq
->pool
->flags
& POOL_FREEZING
)) {
3732 pwq
->max_active
= wq
->saved_max_active
;
3734 while (!list_empty(&pwq
->delayed_works
) &&
3735 pwq
->nr_active
< pwq
->max_active
)
3736 pwq_activate_first_delayed(pwq
);
3739 * Need to kick a worker after thawed or an unbound wq's
3740 * max_active is bumped. It's a slow path. Do it always.
3742 wake_up_worker(pwq
->pool
);
3744 pwq
->max_active
= 0;
3747 spin_unlock_irq(&pwq
->pool
->lock
);
3750 /* initialize newly alloced @pwq which is associated with @wq and @pool */
3751 static void init_pwq(struct pool_workqueue
*pwq
, struct workqueue_struct
*wq
,
3752 struct worker_pool
*pool
)
3754 BUG_ON((unsigned long)pwq
& WORK_STRUCT_FLAG_MASK
);
3756 memset(pwq
, 0, sizeof(*pwq
));
3760 pwq
->flush_color
= -1;
3762 INIT_LIST_HEAD(&pwq
->delayed_works
);
3763 INIT_LIST_HEAD(&pwq
->pwqs_node
);
3764 INIT_LIST_HEAD(&pwq
->mayday_node
);
3765 INIT_WORK(&pwq
->unbound_release_work
, pwq_unbound_release_workfn
);
3768 /* sync @pwq with the current state of its associated wq and link it */
3769 static void link_pwq(struct pool_workqueue
*pwq
)
3771 struct workqueue_struct
*wq
= pwq
->wq
;
3773 lockdep_assert_held(&wq
->mutex
);
3775 /* may be called multiple times, ignore if already linked */
3776 if (!list_empty(&pwq
->pwqs_node
))
3780 * Set the matching work_color. This is synchronized with
3781 * wq->mutex to avoid confusing flush_workqueue().
3783 pwq
->work_color
= wq
->work_color
;
3785 /* sync max_active to the current setting */
3786 pwq_adjust_max_active(pwq
);
3789 list_add_rcu(&pwq
->pwqs_node
, &wq
->pwqs
);
3792 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3793 static struct pool_workqueue
*alloc_unbound_pwq(struct workqueue_struct
*wq
,
3794 const struct workqueue_attrs
*attrs
)
3796 struct worker_pool
*pool
;
3797 struct pool_workqueue
*pwq
;
3799 lockdep_assert_held(&wq_pool_mutex
);
3801 pool
= get_unbound_pool(attrs
);
3805 pwq
= kmem_cache_alloc_node(pwq_cache
, GFP_KERNEL
, pool
->node
);
3807 put_unbound_pool(pool
);
3811 init_pwq(pwq
, wq
, pool
);
3815 /* undo alloc_unbound_pwq(), used only in the error path */
3816 static void free_unbound_pwq(struct pool_workqueue
*pwq
)
3818 lockdep_assert_held(&wq_pool_mutex
);
3821 put_unbound_pool(pwq
->pool
);
3822 kmem_cache_free(pwq_cache
, pwq
);
3827 * wq_calc_node_mask - calculate a wq_attrs' cpumask for the specified node
3828 * @attrs: the wq_attrs of interest
3829 * @node: the target NUMA node
3830 * @cpu_going_down: if >= 0, the CPU to consider as offline
3831 * @cpumask: outarg, the resulting cpumask
3833 * Calculate the cpumask a workqueue with @attrs should use on @node. If
3834 * @cpu_going_down is >= 0, that cpu is considered offline during
3835 * calculation. The result is stored in @cpumask.
3837 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If
3838 * enabled and @node has online CPUs requested by @attrs, the returned
3839 * cpumask is the intersection of the possible CPUs of @node and
3842 * The caller is responsible for ensuring that the cpumask of @node stays
3845 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3848 static bool wq_calc_node_cpumask(const struct workqueue_attrs
*attrs
, int node
,
3849 int cpu_going_down
, cpumask_t
*cpumask
)
3851 if (!wq_numa_enabled
|| attrs
->no_numa
)
3854 /* does @node have any online CPUs @attrs wants? */
3855 cpumask_and(cpumask
, cpumask_of_node(node
), attrs
->cpumask
);
3856 if (cpu_going_down
>= 0)
3857 cpumask_clear_cpu(cpu_going_down
, cpumask
);
3859 if (cpumask_empty(cpumask
))
3862 /* yeap, return possible CPUs in @node that @attrs wants */
3863 cpumask_and(cpumask
, attrs
->cpumask
, wq_numa_possible_cpumask
[node
]);
3864 return !cpumask_equal(cpumask
, attrs
->cpumask
);
3867 cpumask_copy(cpumask
, attrs
->cpumask
);
3871 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3872 static struct pool_workqueue
*numa_pwq_tbl_install(struct workqueue_struct
*wq
,
3874 struct pool_workqueue
*pwq
)
3876 struct pool_workqueue
*old_pwq
;
3878 lockdep_assert_held(&wq
->mutex
);
3880 /* link_pwq() can handle duplicate calls */
3883 old_pwq
= rcu_access_pointer(wq
->numa_pwq_tbl
[node
]);
3884 rcu_assign_pointer(wq
->numa_pwq_tbl
[node
], pwq
);
3889 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3890 * @wq: the target workqueue
3891 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3893 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA
3894 * machines, this function maps a separate pwq to each NUMA node with
3895 * possibles CPUs in @attrs->cpumask so that work items are affine to the
3896 * NUMA node it was issued on. Older pwqs are released as in-flight work
3897 * items finish. Note that a work item which repeatedly requeues itself
3898 * back-to-back will stay on its current pwq.
3900 * Performs GFP_KERNEL allocations.
3902 * Return: 0 on success and -errno on failure.
3904 int apply_workqueue_attrs(struct workqueue_struct
*wq
,
3905 const struct workqueue_attrs
*attrs
)
3907 struct workqueue_attrs
*new_attrs
, *tmp_attrs
;
3908 struct pool_workqueue
**pwq_tbl
, *dfl_pwq
;
3911 /* only unbound workqueues can change attributes */
3912 if (WARN_ON(!(wq
->flags
& WQ_UNBOUND
)))
3915 /* creating multiple pwqs breaks ordering guarantee */
3916 if (WARN_ON((wq
->flags
& __WQ_ORDERED
) && !list_empty(&wq
->pwqs
)))
3919 pwq_tbl
= kzalloc(wq_numa_tbl_len
* sizeof(pwq_tbl
[0]), GFP_KERNEL
);
3920 new_attrs
= alloc_workqueue_attrs(GFP_KERNEL
);
3921 tmp_attrs
= alloc_workqueue_attrs(GFP_KERNEL
);
3922 if (!pwq_tbl
|| !new_attrs
|| !tmp_attrs
)
3925 /* make a copy of @attrs and sanitize it */
3926 copy_workqueue_attrs(new_attrs
, attrs
);
3927 cpumask_and(new_attrs
->cpumask
, new_attrs
->cpumask
, cpu_possible_mask
);
3930 * We may create multiple pwqs with differing cpumasks. Make a
3931 * copy of @new_attrs which will be modified and used to obtain
3934 copy_workqueue_attrs(tmp_attrs
, new_attrs
);
3937 * CPUs should stay stable across pwq creations and installations.
3938 * Pin CPUs, determine the target cpumask for each node and create
3943 mutex_lock(&wq_pool_mutex
);
3946 * If something goes wrong during CPU up/down, we'll fall back to
3947 * the default pwq covering whole @attrs->cpumask. Always create
3948 * it even if we don't use it immediately.
3950 dfl_pwq
= alloc_unbound_pwq(wq
, new_attrs
);
3954 for_each_node(node
) {
3955 if (wq_calc_node_cpumask(attrs
, node
, -1, tmp_attrs
->cpumask
)) {
3956 pwq_tbl
[node
] = alloc_unbound_pwq(wq
, tmp_attrs
);
3961 pwq_tbl
[node
] = dfl_pwq
;
3965 mutex_unlock(&wq_pool_mutex
);
3967 /* all pwqs have been created successfully, let's install'em */
3968 mutex_lock(&wq
->mutex
);
3970 copy_workqueue_attrs(wq
->unbound_attrs
, new_attrs
);
3972 /* save the previous pwq and install the new one */
3974 pwq_tbl
[node
] = numa_pwq_tbl_install(wq
, node
, pwq_tbl
[node
]);
3976 /* @dfl_pwq might not have been used, ensure it's linked */
3978 swap(wq
->dfl_pwq
, dfl_pwq
);
3980 mutex_unlock(&wq
->mutex
);
3982 /* put the old pwqs */
3984 put_pwq_unlocked(pwq_tbl
[node
]);
3985 put_pwq_unlocked(dfl_pwq
);
3991 free_workqueue_attrs(tmp_attrs
);
3992 free_workqueue_attrs(new_attrs
);
3997 free_unbound_pwq(dfl_pwq
);
3999 if (pwq_tbl
&& pwq_tbl
[node
] != dfl_pwq
)
4000 free_unbound_pwq(pwq_tbl
[node
]);
4001 mutex_unlock(&wq_pool_mutex
);
4009 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
4010 * @wq: the target workqueue
4011 * @cpu: the CPU coming up or going down
4012 * @online: whether @cpu is coming up or going down
4014 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
4015 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of
4018 * If NUMA affinity can't be adjusted due to memory allocation failure, it
4019 * falls back to @wq->dfl_pwq which may not be optimal but is always
4022 * Note that when the last allowed CPU of a NUMA node goes offline for a
4023 * workqueue with a cpumask spanning multiple nodes, the workers which were
4024 * already executing the work items for the workqueue will lose their CPU
4025 * affinity and may execute on any CPU. This is similar to how per-cpu
4026 * workqueues behave on CPU_DOWN. If a workqueue user wants strict
4027 * affinity, it's the user's responsibility to flush the work item from
4030 static void wq_update_unbound_numa(struct workqueue_struct
*wq
, int cpu
,
4033 int node
= cpu_to_node(cpu
);
4034 int cpu_off
= online
? -1 : cpu
;
4035 struct pool_workqueue
*old_pwq
= NULL
, *pwq
;
4036 struct workqueue_attrs
*target_attrs
;
4039 lockdep_assert_held(&wq_pool_mutex
);
4041 if (!wq_numa_enabled
|| !(wq
->flags
& WQ_UNBOUND
))
4045 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
4046 * Let's use a preallocated one. The following buf is protected by
4047 * CPU hotplug exclusion.
4049 target_attrs
= wq_update_unbound_numa_attrs_buf
;
4050 cpumask
= target_attrs
->cpumask
;
4052 mutex_lock(&wq
->mutex
);
4053 if (wq
->unbound_attrs
->no_numa
)
4056 copy_workqueue_attrs(target_attrs
, wq
->unbound_attrs
);
4057 pwq
= unbound_pwq_by_node(wq
, node
);
4060 * Let's determine what needs to be done. If the target cpumask is
4061 * different from wq's, we need to compare it to @pwq's and create
4062 * a new one if they don't match. If the target cpumask equals
4063 * wq's, the default pwq should be used. If @pwq is already the
4064 * default one, nothing to do; otherwise, install the default one.
4066 if (wq_calc_node_cpumask(wq
->unbound_attrs
, node
, cpu_off
, cpumask
)) {
4067 if (cpumask_equal(cpumask
, pwq
->pool
->attrs
->cpumask
))
4070 if (pwq
== wq
->dfl_pwq
)
4076 mutex_unlock(&wq
->mutex
);
4078 /* create a new pwq */
4079 pwq
= alloc_unbound_pwq(wq
, target_attrs
);
4081 pr_warning("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
4087 * Install the new pwq. As this function is called only from CPU
4088 * hotplug callbacks and applying a new attrs is wrapped with
4089 * get/put_online_cpus(), @wq->unbound_attrs couldn't have changed
4092 mutex_lock(&wq
->mutex
);
4093 old_pwq
= numa_pwq_tbl_install(wq
, node
, pwq
);
4097 spin_lock_irq(&wq
->dfl_pwq
->pool
->lock
);
4098 get_pwq(wq
->dfl_pwq
);
4099 spin_unlock_irq(&wq
->dfl_pwq
->pool
->lock
);
4100 old_pwq
= numa_pwq_tbl_install(wq
, node
, wq
->dfl_pwq
);
4102 mutex_unlock(&wq
->mutex
);
4103 put_pwq_unlocked(old_pwq
);
4106 static int alloc_and_link_pwqs(struct workqueue_struct
*wq
)
4108 bool highpri
= wq
->flags
& WQ_HIGHPRI
;
4111 if (!(wq
->flags
& WQ_UNBOUND
)) {
4112 wq
->cpu_pwqs
= alloc_percpu(struct pool_workqueue
);
4116 for_each_possible_cpu(cpu
) {
4117 struct pool_workqueue
*pwq
=
4118 per_cpu_ptr(wq
->cpu_pwqs
, cpu
);
4119 struct worker_pool
*cpu_pools
=
4120 per_cpu(cpu_worker_pools
, cpu
);
4122 init_pwq(pwq
, wq
, &cpu_pools
[highpri
]);
4124 mutex_lock(&wq
->mutex
);
4126 mutex_unlock(&wq
->mutex
);
4130 return apply_workqueue_attrs(wq
, unbound_std_wq_attrs
[highpri
]);
4134 static int wq_clamp_max_active(int max_active
, unsigned int flags
,
4137 int lim
= flags
& WQ_UNBOUND
? WQ_UNBOUND_MAX_ACTIVE
: WQ_MAX_ACTIVE
;
4139 if (max_active
< 1 || max_active
> lim
)
4140 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4141 max_active
, name
, 1, lim
);
4143 return clamp_val(max_active
, 1, lim
);
4146 struct workqueue_struct
*__alloc_workqueue_key(const char *fmt
,
4149 struct lock_class_key
*key
,
4150 const char *lock_name
, ...)
4152 size_t tbl_size
= 0;
4154 struct workqueue_struct
*wq
;
4155 struct pool_workqueue
*pwq
;
4157 /* see the comment above the definition of WQ_POWER_EFFICIENT */
4158 if ((flags
& WQ_POWER_EFFICIENT
) && wq_power_efficient
)
4159 flags
|= WQ_UNBOUND
;
4161 /* allocate wq and format name */
4162 if (flags
& WQ_UNBOUND
)
4163 tbl_size
= wq_numa_tbl_len
* sizeof(wq
->numa_pwq_tbl
[0]);
4165 wq
= kzalloc(sizeof(*wq
) + tbl_size
, GFP_KERNEL
);
4169 if (flags
& WQ_UNBOUND
) {
4170 wq
->unbound_attrs
= alloc_workqueue_attrs(GFP_KERNEL
);
4171 if (!wq
->unbound_attrs
)
4175 va_start(args
, lock_name
);
4176 vsnprintf(wq
->name
, sizeof(wq
->name
), fmt
, args
);
4179 max_active
= max_active
?: WQ_DFL_ACTIVE
;
4180 max_active
= wq_clamp_max_active(max_active
, flags
, wq
->name
);
4184 wq
->saved_max_active
= max_active
;
4185 mutex_init(&wq
->mutex
);
4186 atomic_set(&wq
->nr_pwqs_to_flush
, 0);
4187 INIT_LIST_HEAD(&wq
->pwqs
);
4188 INIT_LIST_HEAD(&wq
->flusher_queue
);
4189 INIT_LIST_HEAD(&wq
->flusher_overflow
);
4190 INIT_LIST_HEAD(&wq
->maydays
);
4192 lockdep_init_map(&wq
->lockdep_map
, lock_name
, key
, 0);
4193 INIT_LIST_HEAD(&wq
->list
);
4195 if (alloc_and_link_pwqs(wq
) < 0)
4199 * Workqueues which may be used during memory reclaim should
4200 * have a rescuer to guarantee forward progress.
4202 if (flags
& WQ_MEM_RECLAIM
) {
4203 struct worker
*rescuer
;
4205 rescuer
= alloc_worker();
4209 rescuer
->rescue_wq
= wq
;
4210 rescuer
->task
= kthread_create(rescuer_thread
, rescuer
, "%s",
4212 if (IS_ERR(rescuer
->task
)) {
4217 wq
->rescuer
= rescuer
;
4218 rescuer
->task
->flags
|= PF_NO_SETAFFINITY
;
4219 wake_up_process(rescuer
->task
);
4222 if ((wq
->flags
& WQ_SYSFS
) && workqueue_sysfs_register(wq
))
4226 * wq_pool_mutex protects global freeze state and workqueues list.
4227 * Grab it, adjust max_active and add the new @wq to workqueues
4230 mutex_lock(&wq_pool_mutex
);
4232 mutex_lock(&wq
->mutex
);
4233 for_each_pwq(pwq
, wq
)
4234 pwq_adjust_max_active(pwq
);
4235 mutex_unlock(&wq
->mutex
);
4237 list_add(&wq
->list
, &workqueues
);
4239 mutex_unlock(&wq_pool_mutex
);
4244 free_workqueue_attrs(wq
->unbound_attrs
);
4248 destroy_workqueue(wq
);
4251 EXPORT_SYMBOL_GPL(__alloc_workqueue_key
);
4254 * destroy_workqueue - safely terminate a workqueue
4255 * @wq: target workqueue
4257 * Safely destroy a workqueue. All work currently pending will be done first.
4259 void destroy_workqueue(struct workqueue_struct
*wq
)
4261 struct pool_workqueue
*pwq
;
4264 /* drain it before proceeding with destruction */
4265 drain_workqueue(wq
);
4268 mutex_lock(&wq
->mutex
);
4269 for_each_pwq(pwq
, wq
) {
4272 for (i
= 0; i
< WORK_NR_COLORS
; i
++) {
4273 if (WARN_ON(pwq
->nr_in_flight
[i
])) {
4274 mutex_unlock(&wq
->mutex
);
4279 if (WARN_ON((pwq
!= wq
->dfl_pwq
) && (pwq
->refcnt
> 1)) ||
4280 WARN_ON(pwq
->nr_active
) ||
4281 WARN_ON(!list_empty(&pwq
->delayed_works
))) {
4282 mutex_unlock(&wq
->mutex
);
4286 mutex_unlock(&wq
->mutex
);
4289 * wq list is used to freeze wq, remove from list after
4290 * flushing is complete in case freeze races us.
4292 mutex_lock(&wq_pool_mutex
);
4293 list_del_init(&wq
->list
);
4294 mutex_unlock(&wq_pool_mutex
);
4296 workqueue_sysfs_unregister(wq
);
4299 kthread_stop(wq
->rescuer
->task
);
4304 if (!(wq
->flags
& WQ_UNBOUND
)) {
4306 * The base ref is never dropped on per-cpu pwqs. Directly
4307 * free the pwqs and wq.
4309 free_percpu(wq
->cpu_pwqs
);
4313 * We're the sole accessor of @wq at this point. Directly
4314 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4315 * @wq will be freed when the last pwq is released.
4317 for_each_node(node
) {
4318 pwq
= rcu_access_pointer(wq
->numa_pwq_tbl
[node
]);
4319 RCU_INIT_POINTER(wq
->numa_pwq_tbl
[node
], NULL
);
4320 put_pwq_unlocked(pwq
);
4324 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is
4325 * put. Don't access it afterwards.
4329 put_pwq_unlocked(pwq
);
4332 EXPORT_SYMBOL_GPL(destroy_workqueue
);
4335 * workqueue_set_max_active - adjust max_active of a workqueue
4336 * @wq: target workqueue
4337 * @max_active: new max_active value.
4339 * Set max_active of @wq to @max_active.
4342 * Don't call from IRQ context.
4344 void workqueue_set_max_active(struct workqueue_struct
*wq
, int max_active
)
4346 struct pool_workqueue
*pwq
;
4348 /* disallow meddling with max_active for ordered workqueues */
4349 if (WARN_ON(wq
->flags
& __WQ_ORDERED
))
4352 max_active
= wq_clamp_max_active(max_active
, wq
->flags
, wq
->name
);
4354 mutex_lock(&wq
->mutex
);
4356 wq
->saved_max_active
= max_active
;
4358 for_each_pwq(pwq
, wq
)
4359 pwq_adjust_max_active(pwq
);
4361 mutex_unlock(&wq
->mutex
);
4363 EXPORT_SYMBOL_GPL(workqueue_set_max_active
);
4366 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4368 * Determine whether %current is a workqueue rescuer. Can be used from
4369 * work functions to determine whether it's being run off the rescuer task.
4371 * Return: %true if %current is a workqueue rescuer. %false otherwise.
4373 bool current_is_workqueue_rescuer(void)
4375 struct worker
*worker
= current_wq_worker();
4377 return worker
&& worker
->rescue_wq
;
4381 * workqueue_congested - test whether a workqueue is congested
4382 * @cpu: CPU in question
4383 * @wq: target workqueue
4385 * Test whether @wq's cpu workqueue for @cpu is congested. There is
4386 * no synchronization around this function and the test result is
4387 * unreliable and only useful as advisory hints or for debugging.
4389 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4390 * Note that both per-cpu and unbound workqueues may be associated with
4391 * multiple pool_workqueues which have separate congested states. A
4392 * workqueue being congested on one CPU doesn't mean the workqueue is also
4393 * contested on other CPUs / NUMA nodes.
4396 * %true if congested, %false otherwise.
4398 bool workqueue_congested(int cpu
, struct workqueue_struct
*wq
)
4400 struct pool_workqueue
*pwq
;
4403 rcu_read_lock_sched();
4405 if (cpu
== WORK_CPU_UNBOUND
)
4406 cpu
= smp_processor_id();
4408 if (!(wq
->flags
& WQ_UNBOUND
))
4409 pwq
= per_cpu_ptr(wq
->cpu_pwqs
, cpu
);
4411 pwq
= unbound_pwq_by_node(wq
, cpu_to_node(cpu
));
4413 ret
= !list_empty(&pwq
->delayed_works
);
4414 rcu_read_unlock_sched();
4418 EXPORT_SYMBOL_GPL(workqueue_congested
);
4421 * work_busy - test whether a work is currently pending or running
4422 * @work: the work to be tested
4424 * Test whether @work is currently pending or running. There is no
4425 * synchronization around this function and the test result is
4426 * unreliable and only useful as advisory hints or for debugging.
4429 * OR'd bitmask of WORK_BUSY_* bits.
4431 unsigned int work_busy(struct work_struct
*work
)
4433 struct worker_pool
*pool
;
4434 unsigned long flags
;
4435 unsigned int ret
= 0;
4437 if (work_pending(work
))
4438 ret
|= WORK_BUSY_PENDING
;
4440 local_irq_save(flags
);
4441 pool
= get_work_pool(work
);
4443 spin_lock(&pool
->lock
);
4444 if (find_worker_executing_work(pool
, work
))
4445 ret
|= WORK_BUSY_RUNNING
;
4446 spin_unlock(&pool
->lock
);
4448 local_irq_restore(flags
);
4452 EXPORT_SYMBOL_GPL(work_busy
);
4455 * set_worker_desc - set description for the current work item
4456 * @fmt: printf-style format string
4457 * @...: arguments for the format string
4459 * This function can be called by a running work function to describe what
4460 * the work item is about. If the worker task gets dumped, this
4461 * information will be printed out together to help debugging. The
4462 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4464 void set_worker_desc(const char *fmt
, ...)
4466 struct worker
*worker
= current_wq_worker();
4470 va_start(args
, fmt
);
4471 vsnprintf(worker
->desc
, sizeof(worker
->desc
), fmt
, args
);
4473 worker
->desc_valid
= true;
4478 * print_worker_info - print out worker information and description
4479 * @log_lvl: the log level to use when printing
4480 * @task: target task
4482 * If @task is a worker and currently executing a work item, print out the
4483 * name of the workqueue being serviced and worker description set with
4484 * set_worker_desc() by the currently executing work item.
4486 * This function can be safely called on any task as long as the
4487 * task_struct itself is accessible. While safe, this function isn't
4488 * synchronized and may print out mixups or garbages of limited length.
4490 void print_worker_info(const char *log_lvl
, struct task_struct
*task
)
4492 work_func_t
*fn
= NULL
;
4493 char name
[WQ_NAME_LEN
] = { };
4494 char desc
[WORKER_DESC_LEN
] = { };
4495 struct pool_workqueue
*pwq
= NULL
;
4496 struct workqueue_struct
*wq
= NULL
;
4497 bool desc_valid
= false;
4498 struct worker
*worker
;
4500 if (!(task
->flags
& PF_WQ_WORKER
))
4504 * This function is called without any synchronization and @task
4505 * could be in any state. Be careful with dereferences.
4507 worker
= probe_kthread_data(task
);
4510 * Carefully copy the associated workqueue's workfn and name. Keep
4511 * the original last '\0' in case the original contains garbage.
4513 probe_kernel_read(&fn
, &worker
->current_func
, sizeof(fn
));
4514 probe_kernel_read(&pwq
, &worker
->current_pwq
, sizeof(pwq
));
4515 probe_kernel_read(&wq
, &pwq
->wq
, sizeof(wq
));
4516 probe_kernel_read(name
, wq
->name
, sizeof(name
) - 1);
4518 /* copy worker description */
4519 probe_kernel_read(&desc_valid
, &worker
->desc_valid
, sizeof(desc_valid
));
4521 probe_kernel_read(desc
, worker
->desc
, sizeof(desc
) - 1);
4523 if (fn
|| name
[0] || desc
[0]) {
4524 printk("%sWorkqueue: %s %pf", log_lvl
, name
, fn
);
4526 pr_cont(" (%s)", desc
);
4534 * There are two challenges in supporting CPU hotplug. Firstly, there
4535 * are a lot of assumptions on strong associations among work, pwq and
4536 * pool which make migrating pending and scheduled works very
4537 * difficult to implement without impacting hot paths. Secondly,
4538 * worker pools serve mix of short, long and very long running works making
4539 * blocked draining impractical.
4541 * This is solved by allowing the pools to be disassociated from the CPU
4542 * running as an unbound one and allowing it to be reattached later if the
4543 * cpu comes back online.
4546 static void wq_unbind_fn(struct work_struct
*work
)
4548 int cpu
= smp_processor_id();
4549 struct worker_pool
*pool
;
4550 struct worker
*worker
;
4553 for_each_cpu_worker_pool(pool
, cpu
) {
4554 WARN_ON_ONCE(cpu
!= smp_processor_id());
4556 mutex_lock(&pool
->manager_mutex
);
4557 spin_lock_irq(&pool
->lock
);
4560 * We've blocked all manager operations. Make all workers
4561 * unbound and set DISASSOCIATED. Before this, all workers
4562 * except for the ones which are still executing works from
4563 * before the last CPU down must be on the cpu. After
4564 * this, they may become diasporas.
4566 for_each_pool_worker(worker
, wi
, pool
)
4567 worker
->flags
|= WORKER_UNBOUND
;
4569 pool
->flags
|= POOL_DISASSOCIATED
;
4571 spin_unlock_irq(&pool
->lock
);
4572 mutex_unlock(&pool
->manager_mutex
);
4575 * Call schedule() so that we cross rq->lock and thus can
4576 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4577 * This is necessary as scheduler callbacks may be invoked
4583 * Sched callbacks are disabled now. Zap nr_running.
4584 * After this, nr_running stays zero and need_more_worker()
4585 * and keep_working() are always true as long as the
4586 * worklist is not empty. This pool now behaves as an
4587 * unbound (in terms of concurrency management) pool which
4588 * are served by workers tied to the pool.
4590 atomic_set(&pool
->nr_running
, 0);
4593 * With concurrency management just turned off, a busy
4594 * worker blocking could lead to lengthy stalls. Kick off
4595 * unbound chain execution of currently pending work items.
4597 spin_lock_irq(&pool
->lock
);
4598 wake_up_worker(pool
);
4599 spin_unlock_irq(&pool
->lock
);
4604 * rebind_workers - rebind all workers of a pool to the associated CPU
4605 * @pool: pool of interest
4607 * @pool->cpu is coming online. Rebind all workers to the CPU.
4609 static void rebind_workers(struct worker_pool
*pool
)
4611 struct worker
*worker
;
4614 lockdep_assert_held(&pool
->manager_mutex
);
4617 * Restore CPU affinity of all workers. As all idle workers should
4618 * be on the run-queue of the associated CPU before any local
4619 * wake-ups for concurrency management happen, restore CPU affinty
4620 * of all workers first and then clear UNBOUND. As we're called
4621 * from CPU_ONLINE, the following shouldn't fail.
4623 for_each_pool_worker(worker
, wi
, pool
)
4624 WARN_ON_ONCE(set_cpus_allowed_ptr(worker
->task
,
4625 pool
->attrs
->cpumask
) < 0);
4627 spin_lock_irq(&pool
->lock
);
4629 for_each_pool_worker(worker
, wi
, pool
) {
4630 unsigned int worker_flags
= worker
->flags
;
4633 * A bound idle worker should actually be on the runqueue
4634 * of the associated CPU for local wake-ups targeting it to
4635 * work. Kick all idle workers so that they migrate to the
4636 * associated CPU. Doing this in the same loop as
4637 * replacing UNBOUND with REBOUND is safe as no worker will
4638 * be bound before @pool->lock is released.
4640 if (worker_flags
& WORKER_IDLE
)
4641 wake_up_process(worker
->task
);
4644 * We want to clear UNBOUND but can't directly call
4645 * worker_clr_flags() or adjust nr_running. Atomically
4646 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4647 * @worker will clear REBOUND using worker_clr_flags() when
4648 * it initiates the next execution cycle thus restoring
4649 * concurrency management. Note that when or whether
4650 * @worker clears REBOUND doesn't affect correctness.
4652 * ACCESS_ONCE() is necessary because @worker->flags may be
4653 * tested without holding any lock in
4654 * wq_worker_waking_up(). Without it, NOT_RUNNING test may
4655 * fail incorrectly leading to premature concurrency
4656 * management operations.
4658 WARN_ON_ONCE(!(worker_flags
& WORKER_UNBOUND
));
4659 worker_flags
|= WORKER_REBOUND
;
4660 worker_flags
&= ~WORKER_UNBOUND
;
4661 ACCESS_ONCE(worker
->flags
) = worker_flags
;
4664 spin_unlock_irq(&pool
->lock
);
4668 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4669 * @pool: unbound pool of interest
4670 * @cpu: the CPU which is coming up
4672 * An unbound pool may end up with a cpumask which doesn't have any online
4673 * CPUs. When a worker of such pool get scheduled, the scheduler resets
4674 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
4675 * online CPU before, cpus_allowed of all its workers should be restored.
4677 static void restore_unbound_workers_cpumask(struct worker_pool
*pool
, int cpu
)
4679 static cpumask_t cpumask
;
4680 struct worker
*worker
;
4683 lockdep_assert_held(&pool
->manager_mutex
);
4685 /* is @cpu allowed for @pool? */
4686 if (!cpumask_test_cpu(cpu
, pool
->attrs
->cpumask
))
4689 /* is @cpu the only online CPU? */
4690 cpumask_and(&cpumask
, pool
->attrs
->cpumask
, cpu_online_mask
);
4691 if (cpumask_weight(&cpumask
) != 1)
4694 /* as we're called from CPU_ONLINE, the following shouldn't fail */
4695 for_each_pool_worker(worker
, wi
, pool
)
4696 WARN_ON_ONCE(set_cpus_allowed_ptr(worker
->task
,
4697 pool
->attrs
->cpumask
) < 0);
4701 * Workqueues should be brought up before normal priority CPU notifiers.
4702 * This will be registered high priority CPU notifier.
4704 static int workqueue_cpu_up_callback(struct notifier_block
*nfb
,
4705 unsigned long action
,
4708 int cpu
= (unsigned long)hcpu
;
4709 struct worker_pool
*pool
;
4710 struct workqueue_struct
*wq
;
4713 switch (action
& ~CPU_TASKS_FROZEN
) {
4714 case CPU_UP_PREPARE
:
4715 for_each_cpu_worker_pool(pool
, cpu
) {
4716 if (pool
->nr_workers
)
4718 if (create_and_start_worker(pool
) < 0)
4723 case CPU_DOWN_FAILED
:
4725 mutex_lock(&wq_pool_mutex
);
4727 for_each_pool(pool
, pi
) {
4728 mutex_lock(&pool
->manager_mutex
);
4730 if (pool
->cpu
== cpu
) {
4731 spin_lock_irq(&pool
->lock
);
4732 pool
->flags
&= ~POOL_DISASSOCIATED
;
4733 spin_unlock_irq(&pool
->lock
);
4735 rebind_workers(pool
);
4736 } else if (pool
->cpu
< 0) {
4737 restore_unbound_workers_cpumask(pool
, cpu
);
4740 mutex_unlock(&pool
->manager_mutex
);
4743 /* update NUMA affinity of unbound workqueues */
4744 list_for_each_entry(wq
, &workqueues
, list
)
4745 wq_update_unbound_numa(wq
, cpu
, true);
4747 mutex_unlock(&wq_pool_mutex
);
4754 * Workqueues should be brought down after normal priority CPU notifiers.
4755 * This will be registered as low priority CPU notifier.
4757 static int workqueue_cpu_down_callback(struct notifier_block
*nfb
,
4758 unsigned long action
,
4761 int cpu
= (unsigned long)hcpu
;
4762 struct work_struct unbind_work
;
4763 struct workqueue_struct
*wq
;
4765 switch (action
& ~CPU_TASKS_FROZEN
) {
4766 case CPU_DOWN_PREPARE
:
4767 /* unbinding per-cpu workers should happen on the local CPU */
4768 INIT_WORK_ONSTACK(&unbind_work
, wq_unbind_fn
);
4769 queue_work_on(cpu
, system_highpri_wq
, &unbind_work
);
4771 /* update NUMA affinity of unbound workqueues */
4772 mutex_lock(&wq_pool_mutex
);
4773 list_for_each_entry(wq
, &workqueues
, list
)
4774 wq_update_unbound_numa(wq
, cpu
, false);
4775 mutex_unlock(&wq_pool_mutex
);
4777 /* wait for per-cpu unbinding to finish */
4778 flush_work(&unbind_work
);
4786 struct work_for_cpu
{
4787 struct work_struct work
;
4793 static void work_for_cpu_fn(struct work_struct
*work
)
4795 struct work_for_cpu
*wfc
= container_of(work
, struct work_for_cpu
, work
);
4797 wfc
->ret
= wfc
->fn(wfc
->arg
);
4801 * work_on_cpu - run a function in user context on a particular cpu
4802 * @cpu: the cpu to run on
4803 * @fn: the function to run
4804 * @arg: the function arg
4806 * It is up to the caller to ensure that the cpu doesn't go offline.
4807 * The caller must not hold any locks which would prevent @fn from completing.
4809 * Return: The value @fn returns.
4811 long work_on_cpu(int cpu
, long (*fn
)(void *), void *arg
)
4813 struct work_for_cpu wfc
= { .fn
= fn
, .arg
= arg
};
4815 INIT_WORK_ONSTACK(&wfc
.work
, work_for_cpu_fn
);
4816 schedule_work_on(cpu
, &wfc
.work
);
4819 * The work item is on-stack and can't lead to deadlock through
4820 * flushing. Use __flush_work() to avoid spurious lockdep warnings
4821 * when work_on_cpu()s are nested.
4823 __flush_work(&wfc
.work
);
4827 EXPORT_SYMBOL_GPL(work_on_cpu
);
4828 #endif /* CONFIG_SMP */
4830 #ifdef CONFIG_FREEZER
4833 * freeze_workqueues_begin - begin freezing workqueues
4835 * Start freezing workqueues. After this function returns, all freezable
4836 * workqueues will queue new works to their delayed_works list instead of
4840 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4842 void freeze_workqueues_begin(void)
4844 struct worker_pool
*pool
;
4845 struct workqueue_struct
*wq
;
4846 struct pool_workqueue
*pwq
;
4849 mutex_lock(&wq_pool_mutex
);
4851 WARN_ON_ONCE(workqueue_freezing
);
4852 workqueue_freezing
= true;
4855 for_each_pool(pool
, pi
) {
4856 spin_lock_irq(&pool
->lock
);
4857 WARN_ON_ONCE(pool
->flags
& POOL_FREEZING
);
4858 pool
->flags
|= POOL_FREEZING
;
4859 spin_unlock_irq(&pool
->lock
);
4862 list_for_each_entry(wq
, &workqueues
, list
) {
4863 mutex_lock(&wq
->mutex
);
4864 for_each_pwq(pwq
, wq
)
4865 pwq_adjust_max_active(pwq
);
4866 mutex_unlock(&wq
->mutex
);
4869 mutex_unlock(&wq_pool_mutex
);
4873 * freeze_workqueues_busy - are freezable workqueues still busy?
4875 * Check whether freezing is complete. This function must be called
4876 * between freeze_workqueues_begin() and thaw_workqueues().
4879 * Grabs and releases wq_pool_mutex.
4882 * %true if some freezable workqueues are still busy. %false if freezing
4885 bool freeze_workqueues_busy(void)
4888 struct workqueue_struct
*wq
;
4889 struct pool_workqueue
*pwq
;
4891 mutex_lock(&wq_pool_mutex
);
4893 WARN_ON_ONCE(!workqueue_freezing
);
4895 list_for_each_entry(wq
, &workqueues
, list
) {
4896 if (!(wq
->flags
& WQ_FREEZABLE
))
4899 * nr_active is monotonically decreasing. It's safe
4900 * to peek without lock.
4902 rcu_read_lock_sched();
4903 for_each_pwq(pwq
, wq
) {
4904 WARN_ON_ONCE(pwq
->nr_active
< 0);
4905 if (pwq
->nr_active
) {
4907 rcu_read_unlock_sched();
4911 rcu_read_unlock_sched();
4914 mutex_unlock(&wq_pool_mutex
);
4919 * thaw_workqueues - thaw workqueues
4921 * Thaw workqueues. Normal queueing is restored and all collected
4922 * frozen works are transferred to their respective pool worklists.
4925 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4927 void thaw_workqueues(void)
4929 struct workqueue_struct
*wq
;
4930 struct pool_workqueue
*pwq
;
4931 struct worker_pool
*pool
;
4934 mutex_lock(&wq_pool_mutex
);
4936 if (!workqueue_freezing
)
4939 /* clear FREEZING */
4940 for_each_pool(pool
, pi
) {
4941 spin_lock_irq(&pool
->lock
);
4942 WARN_ON_ONCE(!(pool
->flags
& POOL_FREEZING
));
4943 pool
->flags
&= ~POOL_FREEZING
;
4944 spin_unlock_irq(&pool
->lock
);
4947 /* restore max_active and repopulate worklist */
4948 list_for_each_entry(wq
, &workqueues
, list
) {
4949 mutex_lock(&wq
->mutex
);
4950 for_each_pwq(pwq
, wq
)
4951 pwq_adjust_max_active(pwq
);
4952 mutex_unlock(&wq
->mutex
);
4955 workqueue_freezing
= false;
4957 mutex_unlock(&wq_pool_mutex
);
4959 #endif /* CONFIG_FREEZER */
4961 static void __init
wq_numa_init(void)
4966 /* determine NUMA pwq table len - highest node id + 1 */
4968 wq_numa_tbl_len
= max(wq_numa_tbl_len
, node
+ 1);
4970 if (num_possible_nodes() <= 1)
4973 if (wq_disable_numa
) {
4974 pr_info("workqueue: NUMA affinity support disabled\n");
4978 wq_update_unbound_numa_attrs_buf
= alloc_workqueue_attrs(GFP_KERNEL
);
4979 BUG_ON(!wq_update_unbound_numa_attrs_buf
);
4982 * We want masks of possible CPUs of each node which isn't readily
4983 * available. Build one from cpu_to_node() which should have been
4984 * fully initialized by now.
4986 tbl
= kzalloc(wq_numa_tbl_len
* sizeof(tbl
[0]), GFP_KERNEL
);
4990 BUG_ON(!alloc_cpumask_var_node(&tbl
[node
], GFP_KERNEL
,
4991 node_online(node
) ? node
: NUMA_NO_NODE
));
4993 for_each_possible_cpu(cpu
) {
4994 node
= cpu_to_node(cpu
);
4995 if (WARN_ON(node
== NUMA_NO_NODE
)) {
4996 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu
);
4997 /* happens iff arch is bonkers, let's just proceed */
5000 cpumask_set_cpu(cpu
, tbl
[node
]);
5003 wq_numa_possible_cpumask
= tbl
;
5004 wq_numa_enabled
= true;
5007 static int __init
init_workqueues(void)
5009 int std_nice
[NR_STD_WORKER_POOLS
] = { 0, HIGHPRI_NICE_LEVEL
};
5012 /* make sure we have enough bits for OFFQ pool ID */
5013 BUILD_BUG_ON((1LU << (BITS_PER_LONG
- WORK_OFFQ_POOL_SHIFT
)) <
5014 WORK_CPU_END
* NR_STD_WORKER_POOLS
);
5016 WARN_ON(__alignof__(struct pool_workqueue
) < __alignof__(long long));
5018 pwq_cache
= KMEM_CACHE(pool_workqueue
, SLAB_PANIC
);
5020 cpu_notifier(workqueue_cpu_up_callback
, CPU_PRI_WORKQUEUE_UP
);
5021 hotcpu_notifier(workqueue_cpu_down_callback
, CPU_PRI_WORKQUEUE_DOWN
);
5025 /* initialize CPU pools */
5026 for_each_possible_cpu(cpu
) {
5027 struct worker_pool
*pool
;
5030 for_each_cpu_worker_pool(pool
, cpu
) {
5031 BUG_ON(init_worker_pool(pool
));
5033 cpumask_copy(pool
->attrs
->cpumask
, cpumask_of(cpu
));
5034 pool
->attrs
->nice
= std_nice
[i
++];
5035 pool
->node
= cpu_to_node(cpu
);
5038 mutex_lock(&wq_pool_mutex
);
5039 BUG_ON(worker_pool_assign_id(pool
));
5040 mutex_unlock(&wq_pool_mutex
);
5044 /* create the initial worker */
5045 for_each_online_cpu(cpu
) {
5046 struct worker_pool
*pool
;
5048 for_each_cpu_worker_pool(pool
, cpu
) {
5049 pool
->flags
&= ~POOL_DISASSOCIATED
;
5050 BUG_ON(create_and_start_worker(pool
) < 0);
5054 /* create default unbound wq attrs */
5055 for (i
= 0; i
< NR_STD_WORKER_POOLS
; i
++) {
5056 struct workqueue_attrs
*attrs
;
5058 BUG_ON(!(attrs
= alloc_workqueue_attrs(GFP_KERNEL
)));
5059 attrs
->nice
= std_nice
[i
];
5060 unbound_std_wq_attrs
[i
] = attrs
;
5063 system_wq
= alloc_workqueue("events", 0, 0);
5064 system_highpri_wq
= alloc_workqueue("events_highpri", WQ_HIGHPRI
, 0);
5065 system_long_wq
= alloc_workqueue("events_long", 0, 0);
5066 system_unbound_wq
= alloc_workqueue("events_unbound", WQ_UNBOUND
,
5067 WQ_UNBOUND_MAX_ACTIVE
);
5068 system_freezable_wq
= alloc_workqueue("events_freezable",
5070 system_power_efficient_wq
= alloc_workqueue("events_power_efficient",
5071 WQ_POWER_EFFICIENT
, 0);
5072 system_freezable_power_efficient_wq
= alloc_workqueue("events_freezable_power_efficient",
5073 WQ_FREEZABLE
| WQ_POWER_EFFICIENT
,
5075 BUG_ON(!system_wq
|| !system_highpri_wq
|| !system_long_wq
||
5076 !system_unbound_wq
|| !system_freezable_wq
||
5077 !system_power_efficient_wq
||
5078 !system_freezable_power_efficient_wq
);
5081 early_initcall(init_workqueues
);