ARM: use read_cpuid_id() instead of read_cpuid(CPUID_ID)
[linux-2.6.git] / kernel / pid_namespace.c
blobc1c3dc1c60233f337a01ff13587f1a5a7f57f1cd
1 /*
2 * Pid namespaces
4 * Authors:
5 * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
6 * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
7 * Many thanks to Oleg Nesterov for comments and help
9 */
11 #include <linux/pid.h>
12 #include <linux/pid_namespace.h>
13 #include <linux/user_namespace.h>
14 #include <linux/syscalls.h>
15 #include <linux/err.h>
16 #include <linux/acct.h>
17 #include <linux/slab.h>
18 #include <linux/proc_fs.h>
19 #include <linux/reboot.h>
20 #include <linux/export.h>
22 #define BITS_PER_PAGE (PAGE_SIZE*8)
24 struct pid_cache {
25 int nr_ids;
26 char name[16];
27 struct kmem_cache *cachep;
28 struct list_head list;
31 static LIST_HEAD(pid_caches_lh);
32 static DEFINE_MUTEX(pid_caches_mutex);
33 static struct kmem_cache *pid_ns_cachep;
36 * creates the kmem cache to allocate pids from.
37 * @nr_ids: the number of numerical ids this pid will have to carry
40 static struct kmem_cache *create_pid_cachep(int nr_ids)
42 struct pid_cache *pcache;
43 struct kmem_cache *cachep;
45 mutex_lock(&pid_caches_mutex);
46 list_for_each_entry(pcache, &pid_caches_lh, list)
47 if (pcache->nr_ids == nr_ids)
48 goto out;
50 pcache = kmalloc(sizeof(struct pid_cache), GFP_KERNEL);
51 if (pcache == NULL)
52 goto err_alloc;
54 snprintf(pcache->name, sizeof(pcache->name), "pid_%d", nr_ids);
55 cachep = kmem_cache_create(pcache->name,
56 sizeof(struct pid) + (nr_ids - 1) * sizeof(struct upid),
57 0, SLAB_HWCACHE_ALIGN, NULL);
58 if (cachep == NULL)
59 goto err_cachep;
61 pcache->nr_ids = nr_ids;
62 pcache->cachep = cachep;
63 list_add(&pcache->list, &pid_caches_lh);
64 out:
65 mutex_unlock(&pid_caches_mutex);
66 return pcache->cachep;
68 err_cachep:
69 kfree(pcache);
70 err_alloc:
71 mutex_unlock(&pid_caches_mutex);
72 return NULL;
75 static void proc_cleanup_work(struct work_struct *work)
77 struct pid_namespace *ns = container_of(work, struct pid_namespace, proc_work);
78 pid_ns_release_proc(ns);
81 /* MAX_PID_NS_LEVEL is needed for limiting size of 'struct pid' */
82 #define MAX_PID_NS_LEVEL 32
84 static struct pid_namespace *create_pid_namespace(struct user_namespace *user_ns,
85 struct pid_namespace *parent_pid_ns)
87 struct pid_namespace *ns;
88 unsigned int level = parent_pid_ns->level + 1;
89 int i;
90 int err;
92 if (level > MAX_PID_NS_LEVEL) {
93 err = -EINVAL;
94 goto out;
97 err = -ENOMEM;
98 ns = kmem_cache_zalloc(pid_ns_cachep, GFP_KERNEL);
99 if (ns == NULL)
100 goto out;
102 ns->pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL);
103 if (!ns->pidmap[0].page)
104 goto out_free;
106 ns->pid_cachep = create_pid_cachep(level + 1);
107 if (ns->pid_cachep == NULL)
108 goto out_free_map;
110 err = proc_alloc_inum(&ns->proc_inum);
111 if (err)
112 goto out_free_map;
114 kref_init(&ns->kref);
115 ns->level = level;
116 ns->parent = get_pid_ns(parent_pid_ns);
117 ns->user_ns = get_user_ns(user_ns);
118 ns->nr_hashed = PIDNS_HASH_ADDING;
119 INIT_WORK(&ns->proc_work, proc_cleanup_work);
121 set_bit(0, ns->pidmap[0].page);
122 atomic_set(&ns->pidmap[0].nr_free, BITS_PER_PAGE - 1);
124 for (i = 1; i < PIDMAP_ENTRIES; i++)
125 atomic_set(&ns->pidmap[i].nr_free, BITS_PER_PAGE);
127 return ns;
129 out_free_map:
130 kfree(ns->pidmap[0].page);
131 out_free:
132 kmem_cache_free(pid_ns_cachep, ns);
133 out:
134 return ERR_PTR(err);
137 static void destroy_pid_namespace(struct pid_namespace *ns)
139 int i;
141 proc_free_inum(ns->proc_inum);
142 for (i = 0; i < PIDMAP_ENTRIES; i++)
143 kfree(ns->pidmap[i].page);
144 put_user_ns(ns->user_ns);
145 kmem_cache_free(pid_ns_cachep, ns);
148 struct pid_namespace *copy_pid_ns(unsigned long flags,
149 struct user_namespace *user_ns, struct pid_namespace *old_ns)
151 if (!(flags & CLONE_NEWPID))
152 return get_pid_ns(old_ns);
153 if (task_active_pid_ns(current) != old_ns)
154 return ERR_PTR(-EINVAL);
155 return create_pid_namespace(user_ns, old_ns);
158 static void free_pid_ns(struct kref *kref)
160 struct pid_namespace *ns;
162 ns = container_of(kref, struct pid_namespace, kref);
163 destroy_pid_namespace(ns);
166 void put_pid_ns(struct pid_namespace *ns)
168 struct pid_namespace *parent;
170 while (ns != &init_pid_ns) {
171 parent = ns->parent;
172 if (!kref_put(&ns->kref, free_pid_ns))
173 break;
174 ns = parent;
177 EXPORT_SYMBOL_GPL(put_pid_ns);
179 void zap_pid_ns_processes(struct pid_namespace *pid_ns)
181 int nr;
182 int rc;
183 struct task_struct *task, *me = current;
185 /* Don't allow any more processes into the pid namespace */
186 disable_pid_allocation(pid_ns);
188 /* Ignore SIGCHLD causing any terminated children to autoreap */
189 spin_lock_irq(&me->sighand->siglock);
190 me->sighand->action[SIGCHLD - 1].sa.sa_handler = SIG_IGN;
191 spin_unlock_irq(&me->sighand->siglock);
194 * The last thread in the cgroup-init thread group is terminating.
195 * Find remaining pid_ts in the namespace, signal and wait for them
196 * to exit.
198 * Note: This signals each threads in the namespace - even those that
199 * belong to the same thread group, To avoid this, we would have
200 * to walk the entire tasklist looking a processes in this
201 * namespace, but that could be unnecessarily expensive if the
202 * pid namespace has just a few processes. Or we need to
203 * maintain a tasklist for each pid namespace.
206 read_lock(&tasklist_lock);
207 nr = next_pidmap(pid_ns, 1);
208 while (nr > 0) {
209 rcu_read_lock();
211 task = pid_task(find_vpid(nr), PIDTYPE_PID);
212 if (task && !__fatal_signal_pending(task))
213 send_sig_info(SIGKILL, SEND_SIG_FORCED, task);
215 rcu_read_unlock();
217 nr = next_pidmap(pid_ns, nr);
219 read_unlock(&tasklist_lock);
221 /* Firstly reap the EXIT_ZOMBIE children we may have. */
222 do {
223 clear_thread_flag(TIF_SIGPENDING);
224 rc = sys_wait4(-1, NULL, __WALL, NULL);
225 } while (rc != -ECHILD);
228 * sys_wait4() above can't reap the TASK_DEAD children.
229 * Make sure they all go away, see free_pid().
231 for (;;) {
232 set_current_state(TASK_UNINTERRUPTIBLE);
233 if (pid_ns->nr_hashed == 1)
234 break;
235 schedule();
237 __set_current_state(TASK_RUNNING);
239 if (pid_ns->reboot)
240 current->signal->group_exit_code = pid_ns->reboot;
242 acct_exit_ns(pid_ns);
243 return;
246 #ifdef CONFIG_CHECKPOINT_RESTORE
247 static int pid_ns_ctl_handler(struct ctl_table *table, int write,
248 void __user *buffer, size_t *lenp, loff_t *ppos)
250 struct pid_namespace *pid_ns = task_active_pid_ns(current);
251 struct ctl_table tmp = *table;
253 if (write && !ns_capable(pid_ns->user_ns, CAP_SYS_ADMIN))
254 return -EPERM;
257 * Writing directly to ns' last_pid field is OK, since this field
258 * is volatile in a living namespace anyway and a code writing to
259 * it should synchronize its usage with external means.
262 tmp.data = &pid_ns->last_pid;
263 return proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
266 extern int pid_max;
267 static int zero = 0;
268 static struct ctl_table pid_ns_ctl_table[] = {
270 .procname = "ns_last_pid",
271 .maxlen = sizeof(int),
272 .mode = 0666, /* permissions are checked in the handler */
273 .proc_handler = pid_ns_ctl_handler,
274 .extra1 = &zero,
275 .extra2 = &pid_max,
279 static struct ctl_path kern_path[] = { { .procname = "kernel", }, { } };
280 #endif /* CONFIG_CHECKPOINT_RESTORE */
282 int reboot_pid_ns(struct pid_namespace *pid_ns, int cmd)
284 if (pid_ns == &init_pid_ns)
285 return 0;
287 switch (cmd) {
288 case LINUX_REBOOT_CMD_RESTART2:
289 case LINUX_REBOOT_CMD_RESTART:
290 pid_ns->reboot = SIGHUP;
291 break;
293 case LINUX_REBOOT_CMD_POWER_OFF:
294 case LINUX_REBOOT_CMD_HALT:
295 pid_ns->reboot = SIGINT;
296 break;
297 default:
298 return -EINVAL;
301 read_lock(&tasklist_lock);
302 force_sig(SIGKILL, pid_ns->child_reaper);
303 read_unlock(&tasklist_lock);
305 do_exit(0);
307 /* Not reached */
308 return 0;
311 static void *pidns_get(struct task_struct *task)
313 struct pid_namespace *ns;
315 rcu_read_lock();
316 ns = get_pid_ns(task_active_pid_ns(task));
317 rcu_read_unlock();
319 return ns;
322 static void pidns_put(void *ns)
324 put_pid_ns(ns);
327 static int pidns_install(struct nsproxy *nsproxy, void *ns)
329 struct pid_namespace *active = task_active_pid_ns(current);
330 struct pid_namespace *ancestor, *new = ns;
332 if (!ns_capable(new->user_ns, CAP_SYS_ADMIN) ||
333 !nsown_capable(CAP_SYS_ADMIN))
334 return -EPERM;
337 * Only allow entering the current active pid namespace
338 * or a child of the current active pid namespace.
340 * This is required for fork to return a usable pid value and
341 * this maintains the property that processes and their
342 * children can not escape their current pid namespace.
344 if (new->level < active->level)
345 return -EINVAL;
347 ancestor = new;
348 while (ancestor->level > active->level)
349 ancestor = ancestor->parent;
350 if (ancestor != active)
351 return -EINVAL;
353 put_pid_ns(nsproxy->pid_ns);
354 nsproxy->pid_ns = get_pid_ns(new);
355 return 0;
358 static unsigned int pidns_inum(void *ns)
360 struct pid_namespace *pid_ns = ns;
361 return pid_ns->proc_inum;
364 const struct proc_ns_operations pidns_operations = {
365 .name = "pid",
366 .type = CLONE_NEWPID,
367 .get = pidns_get,
368 .put = pidns_put,
369 .install = pidns_install,
370 .inum = pidns_inum,
373 static __init int pid_namespaces_init(void)
375 pid_ns_cachep = KMEM_CACHE(pid_namespace, SLAB_PANIC);
377 #ifdef CONFIG_CHECKPOINT_RESTORE
378 register_sysctl_paths(kern_path, pid_ns_ctl_table);
379 #endif
380 return 0;
383 __initcall(pid_namespaces_init);