gpio: Move the exynos4 GPIO to drivers/gpio
[linux-2.6.git] / mm / rmap.c
blob3a39b518a653135f7c383e3fcbfca7e20d5f6793
1 /*
2 * mm/rmap.c - physical to virtual reverse mappings
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
21 * Lock ordering in mm:
23 * inode->i_mutex (while writing or truncating, not reading or faulting)
24 * inode->i_alloc_sem (vmtruncate_range)
25 * mm->mmap_sem
26 * page->flags PG_locked (lock_page)
27 * mapping->i_mmap_mutex
28 * anon_vma->mutex
29 * mm->page_table_lock or pte_lock
30 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
31 * swap_lock (in swap_duplicate, swap_info_get)
32 * mmlist_lock (in mmput, drain_mmlist and others)
33 * mapping->private_lock (in __set_page_dirty_buffers)
34 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
35 * inode_wb_list_lock (in set_page_dirty's __mark_inode_dirty)
36 * sb_lock (within inode_lock in fs/fs-writeback.c)
37 * mapping->tree_lock (widely used, in set_page_dirty,
38 * in arch-dependent flush_dcache_mmap_lock,
39 * within inode_wb_list_lock in __sync_single_inode)
41 * (code doesn't rely on that order so it could be switched around)
42 * ->tasklist_lock
43 * anon_vma->mutex (memory_failure, collect_procs_anon)
44 * pte map lock
47 #include <linux/mm.h>
48 #include <linux/pagemap.h>
49 #include <linux/swap.h>
50 #include <linux/swapops.h>
51 #include <linux/slab.h>
52 #include <linux/init.h>
53 #include <linux/ksm.h>
54 #include <linux/rmap.h>
55 #include <linux/rcupdate.h>
56 #include <linux/module.h>
57 #include <linux/memcontrol.h>
58 #include <linux/mmu_notifier.h>
59 #include <linux/migrate.h>
60 #include <linux/hugetlb.h>
62 #include <asm/tlbflush.h>
64 #include "internal.h"
66 static struct kmem_cache *anon_vma_cachep;
67 static struct kmem_cache *anon_vma_chain_cachep;
69 static inline struct anon_vma *anon_vma_alloc(void)
71 struct anon_vma *anon_vma;
73 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
74 if (anon_vma) {
75 atomic_set(&anon_vma->refcount, 1);
77 * Initialise the anon_vma root to point to itself. If called
78 * from fork, the root will be reset to the parents anon_vma.
80 anon_vma->root = anon_vma;
83 return anon_vma;
86 static inline void anon_vma_free(struct anon_vma *anon_vma)
88 VM_BUG_ON(atomic_read(&anon_vma->refcount));
91 * Synchronize against page_lock_anon_vma() such that
92 * we can safely hold the lock without the anon_vma getting
93 * freed.
95 * Relies on the full mb implied by the atomic_dec_and_test() from
96 * put_anon_vma() against the acquire barrier implied by
97 * mutex_trylock() from page_lock_anon_vma(). This orders:
99 * page_lock_anon_vma() VS put_anon_vma()
100 * mutex_trylock() atomic_dec_and_test()
101 * LOCK MB
102 * atomic_read() mutex_is_locked()
104 * LOCK should suffice since the actual taking of the lock must
105 * happen _before_ what follows.
107 if (mutex_is_locked(&anon_vma->root->mutex)) {
108 anon_vma_lock(anon_vma);
109 anon_vma_unlock(anon_vma);
112 kmem_cache_free(anon_vma_cachep, anon_vma);
115 static inline struct anon_vma_chain *anon_vma_chain_alloc(void)
117 return kmem_cache_alloc(anon_vma_chain_cachep, GFP_KERNEL);
120 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
122 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
126 * anon_vma_prepare - attach an anon_vma to a memory region
127 * @vma: the memory region in question
129 * This makes sure the memory mapping described by 'vma' has
130 * an 'anon_vma' attached to it, so that we can associate the
131 * anonymous pages mapped into it with that anon_vma.
133 * The common case will be that we already have one, but if
134 * not we either need to find an adjacent mapping that we
135 * can re-use the anon_vma from (very common when the only
136 * reason for splitting a vma has been mprotect()), or we
137 * allocate a new one.
139 * Anon-vma allocations are very subtle, because we may have
140 * optimistically looked up an anon_vma in page_lock_anon_vma()
141 * and that may actually touch the spinlock even in the newly
142 * allocated vma (it depends on RCU to make sure that the
143 * anon_vma isn't actually destroyed).
145 * As a result, we need to do proper anon_vma locking even
146 * for the new allocation. At the same time, we do not want
147 * to do any locking for the common case of already having
148 * an anon_vma.
150 * This must be called with the mmap_sem held for reading.
152 int anon_vma_prepare(struct vm_area_struct *vma)
154 struct anon_vma *anon_vma = vma->anon_vma;
155 struct anon_vma_chain *avc;
157 might_sleep();
158 if (unlikely(!anon_vma)) {
159 struct mm_struct *mm = vma->vm_mm;
160 struct anon_vma *allocated;
162 avc = anon_vma_chain_alloc();
163 if (!avc)
164 goto out_enomem;
166 anon_vma = find_mergeable_anon_vma(vma);
167 allocated = NULL;
168 if (!anon_vma) {
169 anon_vma = anon_vma_alloc();
170 if (unlikely(!anon_vma))
171 goto out_enomem_free_avc;
172 allocated = anon_vma;
175 anon_vma_lock(anon_vma);
176 /* page_table_lock to protect against threads */
177 spin_lock(&mm->page_table_lock);
178 if (likely(!vma->anon_vma)) {
179 vma->anon_vma = anon_vma;
180 avc->anon_vma = anon_vma;
181 avc->vma = vma;
182 list_add(&avc->same_vma, &vma->anon_vma_chain);
183 list_add_tail(&avc->same_anon_vma, &anon_vma->head);
184 allocated = NULL;
185 avc = NULL;
187 spin_unlock(&mm->page_table_lock);
188 anon_vma_unlock(anon_vma);
190 if (unlikely(allocated))
191 put_anon_vma(allocated);
192 if (unlikely(avc))
193 anon_vma_chain_free(avc);
195 return 0;
197 out_enomem_free_avc:
198 anon_vma_chain_free(avc);
199 out_enomem:
200 return -ENOMEM;
203 static void anon_vma_chain_link(struct vm_area_struct *vma,
204 struct anon_vma_chain *avc,
205 struct anon_vma *anon_vma)
207 avc->vma = vma;
208 avc->anon_vma = anon_vma;
209 list_add(&avc->same_vma, &vma->anon_vma_chain);
211 anon_vma_lock(anon_vma);
213 * It's critical to add new vmas to the tail of the anon_vma,
214 * see comment in huge_memory.c:__split_huge_page().
216 list_add_tail(&avc->same_anon_vma, &anon_vma->head);
217 anon_vma_unlock(anon_vma);
221 * Attach the anon_vmas from src to dst.
222 * Returns 0 on success, -ENOMEM on failure.
224 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
226 struct anon_vma_chain *avc, *pavc;
228 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
229 avc = anon_vma_chain_alloc();
230 if (!avc)
231 goto enomem_failure;
232 anon_vma_chain_link(dst, avc, pavc->anon_vma);
234 return 0;
236 enomem_failure:
237 unlink_anon_vmas(dst);
238 return -ENOMEM;
242 * Attach vma to its own anon_vma, as well as to the anon_vmas that
243 * the corresponding VMA in the parent process is attached to.
244 * Returns 0 on success, non-zero on failure.
246 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
248 struct anon_vma_chain *avc;
249 struct anon_vma *anon_vma;
251 /* Don't bother if the parent process has no anon_vma here. */
252 if (!pvma->anon_vma)
253 return 0;
256 * First, attach the new VMA to the parent VMA's anon_vmas,
257 * so rmap can find non-COWed pages in child processes.
259 if (anon_vma_clone(vma, pvma))
260 return -ENOMEM;
262 /* Then add our own anon_vma. */
263 anon_vma = anon_vma_alloc();
264 if (!anon_vma)
265 goto out_error;
266 avc = anon_vma_chain_alloc();
267 if (!avc)
268 goto out_error_free_anon_vma;
271 * The root anon_vma's spinlock is the lock actually used when we
272 * lock any of the anon_vmas in this anon_vma tree.
274 anon_vma->root = pvma->anon_vma->root;
276 * With refcounts, an anon_vma can stay around longer than the
277 * process it belongs to. The root anon_vma needs to be pinned until
278 * this anon_vma is freed, because the lock lives in the root.
280 get_anon_vma(anon_vma->root);
281 /* Mark this anon_vma as the one where our new (COWed) pages go. */
282 vma->anon_vma = anon_vma;
283 anon_vma_chain_link(vma, avc, anon_vma);
285 return 0;
287 out_error_free_anon_vma:
288 put_anon_vma(anon_vma);
289 out_error:
290 unlink_anon_vmas(vma);
291 return -ENOMEM;
294 static void anon_vma_unlink(struct anon_vma_chain *anon_vma_chain)
296 struct anon_vma *anon_vma = anon_vma_chain->anon_vma;
297 int empty;
299 /* If anon_vma_fork fails, we can get an empty anon_vma_chain. */
300 if (!anon_vma)
301 return;
303 anon_vma_lock(anon_vma);
304 list_del(&anon_vma_chain->same_anon_vma);
306 /* We must garbage collect the anon_vma if it's empty */
307 empty = list_empty(&anon_vma->head);
308 anon_vma_unlock(anon_vma);
310 if (empty)
311 put_anon_vma(anon_vma);
314 void unlink_anon_vmas(struct vm_area_struct *vma)
316 struct anon_vma_chain *avc, *next;
319 * Unlink each anon_vma chained to the VMA. This list is ordered
320 * from newest to oldest, ensuring the root anon_vma gets freed last.
322 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
323 anon_vma_unlink(avc);
324 list_del(&avc->same_vma);
325 anon_vma_chain_free(avc);
329 static void anon_vma_ctor(void *data)
331 struct anon_vma *anon_vma = data;
333 mutex_init(&anon_vma->mutex);
334 atomic_set(&anon_vma->refcount, 0);
335 INIT_LIST_HEAD(&anon_vma->head);
338 void __init anon_vma_init(void)
340 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
341 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
342 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
346 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
348 * Since there is no serialization what so ever against page_remove_rmap()
349 * the best this function can do is return a locked anon_vma that might
350 * have been relevant to this page.
352 * The page might have been remapped to a different anon_vma or the anon_vma
353 * returned may already be freed (and even reused).
355 * All users of this function must be very careful when walking the anon_vma
356 * chain and verify that the page in question is indeed mapped in it
357 * [ something equivalent to page_mapped_in_vma() ].
359 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
360 * that the anon_vma pointer from page->mapping is valid if there is a
361 * mapcount, we can dereference the anon_vma after observing those.
363 struct anon_vma *page_get_anon_vma(struct page *page)
365 struct anon_vma *anon_vma = NULL;
366 unsigned long anon_mapping;
368 rcu_read_lock();
369 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
370 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
371 goto out;
372 if (!page_mapped(page))
373 goto out;
375 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
376 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
377 anon_vma = NULL;
378 goto out;
382 * If this page is still mapped, then its anon_vma cannot have been
383 * freed. But if it has been unmapped, we have no security against the
384 * anon_vma structure being freed and reused (for another anon_vma:
385 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
386 * above cannot corrupt).
388 if (!page_mapped(page)) {
389 put_anon_vma(anon_vma);
390 anon_vma = NULL;
392 out:
393 rcu_read_unlock();
395 return anon_vma;
399 * Similar to page_get_anon_vma() except it locks the anon_vma.
401 * Its a little more complex as it tries to keep the fast path to a single
402 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
403 * reference like with page_get_anon_vma() and then block on the mutex.
405 struct anon_vma *page_lock_anon_vma(struct page *page)
407 struct anon_vma *anon_vma = NULL;
408 unsigned long anon_mapping;
410 rcu_read_lock();
411 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
412 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
413 goto out;
414 if (!page_mapped(page))
415 goto out;
417 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
418 if (mutex_trylock(&anon_vma->root->mutex)) {
420 * If we observe a !0 refcount, then holding the lock ensures
421 * the anon_vma will not go away, see __put_anon_vma().
423 if (!atomic_read(&anon_vma->refcount)) {
424 anon_vma_unlock(anon_vma);
425 anon_vma = NULL;
427 goto out;
430 /* trylock failed, we got to sleep */
431 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
432 anon_vma = NULL;
433 goto out;
436 if (!page_mapped(page)) {
437 put_anon_vma(anon_vma);
438 anon_vma = NULL;
439 goto out;
442 /* we pinned the anon_vma, its safe to sleep */
443 rcu_read_unlock();
444 anon_vma_lock(anon_vma);
446 if (atomic_dec_and_test(&anon_vma->refcount)) {
448 * Oops, we held the last refcount, release the lock
449 * and bail -- can't simply use put_anon_vma() because
450 * we'll deadlock on the anon_vma_lock() recursion.
452 anon_vma_unlock(anon_vma);
453 __put_anon_vma(anon_vma);
454 anon_vma = NULL;
457 return anon_vma;
459 out:
460 rcu_read_unlock();
461 return anon_vma;
464 void page_unlock_anon_vma(struct anon_vma *anon_vma)
466 anon_vma_unlock(anon_vma);
470 * At what user virtual address is page expected in @vma?
471 * Returns virtual address or -EFAULT if page's index/offset is not
472 * within the range mapped the @vma.
474 inline unsigned long
475 vma_address(struct page *page, struct vm_area_struct *vma)
477 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
478 unsigned long address;
480 if (unlikely(is_vm_hugetlb_page(vma)))
481 pgoff = page->index << huge_page_order(page_hstate(page));
482 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
483 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
484 /* page should be within @vma mapping range */
485 return -EFAULT;
487 return address;
491 * At what user virtual address is page expected in vma?
492 * Caller should check the page is actually part of the vma.
494 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
496 if (PageAnon(page)) {
497 struct anon_vma *page__anon_vma = page_anon_vma(page);
499 * Note: swapoff's unuse_vma() is more efficient with this
500 * check, and needs it to match anon_vma when KSM is active.
502 if (!vma->anon_vma || !page__anon_vma ||
503 vma->anon_vma->root != page__anon_vma->root)
504 return -EFAULT;
505 } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
506 if (!vma->vm_file ||
507 vma->vm_file->f_mapping != page->mapping)
508 return -EFAULT;
509 } else
510 return -EFAULT;
511 return vma_address(page, vma);
515 * Check that @page is mapped at @address into @mm.
517 * If @sync is false, page_check_address may perform a racy check to avoid
518 * the page table lock when the pte is not present (helpful when reclaiming
519 * highly shared pages).
521 * On success returns with pte mapped and locked.
523 pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
524 unsigned long address, spinlock_t **ptlp, int sync)
526 pgd_t *pgd;
527 pud_t *pud;
528 pmd_t *pmd;
529 pte_t *pte;
530 spinlock_t *ptl;
532 if (unlikely(PageHuge(page))) {
533 pte = huge_pte_offset(mm, address);
534 ptl = &mm->page_table_lock;
535 goto check;
538 pgd = pgd_offset(mm, address);
539 if (!pgd_present(*pgd))
540 return NULL;
542 pud = pud_offset(pgd, address);
543 if (!pud_present(*pud))
544 return NULL;
546 pmd = pmd_offset(pud, address);
547 if (!pmd_present(*pmd))
548 return NULL;
549 if (pmd_trans_huge(*pmd))
550 return NULL;
552 pte = pte_offset_map(pmd, address);
553 /* Make a quick check before getting the lock */
554 if (!sync && !pte_present(*pte)) {
555 pte_unmap(pte);
556 return NULL;
559 ptl = pte_lockptr(mm, pmd);
560 check:
561 spin_lock(ptl);
562 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
563 *ptlp = ptl;
564 return pte;
566 pte_unmap_unlock(pte, ptl);
567 return NULL;
571 * page_mapped_in_vma - check whether a page is really mapped in a VMA
572 * @page: the page to test
573 * @vma: the VMA to test
575 * Returns 1 if the page is mapped into the page tables of the VMA, 0
576 * if the page is not mapped into the page tables of this VMA. Only
577 * valid for normal file or anonymous VMAs.
579 int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
581 unsigned long address;
582 pte_t *pte;
583 spinlock_t *ptl;
585 address = vma_address(page, vma);
586 if (address == -EFAULT) /* out of vma range */
587 return 0;
588 pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
589 if (!pte) /* the page is not in this mm */
590 return 0;
591 pte_unmap_unlock(pte, ptl);
593 return 1;
597 * Subfunctions of page_referenced: page_referenced_one called
598 * repeatedly from either page_referenced_anon or page_referenced_file.
600 int page_referenced_one(struct page *page, struct vm_area_struct *vma,
601 unsigned long address, unsigned int *mapcount,
602 unsigned long *vm_flags)
604 struct mm_struct *mm = vma->vm_mm;
605 int referenced = 0;
607 if (unlikely(PageTransHuge(page))) {
608 pmd_t *pmd;
610 spin_lock(&mm->page_table_lock);
612 * rmap might return false positives; we must filter
613 * these out using page_check_address_pmd().
615 pmd = page_check_address_pmd(page, mm, address,
616 PAGE_CHECK_ADDRESS_PMD_FLAG);
617 if (!pmd) {
618 spin_unlock(&mm->page_table_lock);
619 goto out;
622 if (vma->vm_flags & VM_LOCKED) {
623 spin_unlock(&mm->page_table_lock);
624 *mapcount = 0; /* break early from loop */
625 *vm_flags |= VM_LOCKED;
626 goto out;
629 /* go ahead even if the pmd is pmd_trans_splitting() */
630 if (pmdp_clear_flush_young_notify(vma, address, pmd))
631 referenced++;
632 spin_unlock(&mm->page_table_lock);
633 } else {
634 pte_t *pte;
635 spinlock_t *ptl;
638 * rmap might return false positives; we must filter
639 * these out using page_check_address().
641 pte = page_check_address(page, mm, address, &ptl, 0);
642 if (!pte)
643 goto out;
645 if (vma->vm_flags & VM_LOCKED) {
646 pte_unmap_unlock(pte, ptl);
647 *mapcount = 0; /* break early from loop */
648 *vm_flags |= VM_LOCKED;
649 goto out;
652 if (ptep_clear_flush_young_notify(vma, address, pte)) {
654 * Don't treat a reference through a sequentially read
655 * mapping as such. If the page has been used in
656 * another mapping, we will catch it; if this other
657 * mapping is already gone, the unmap path will have
658 * set PG_referenced or activated the page.
660 if (likely(!VM_SequentialReadHint(vma)))
661 referenced++;
663 pte_unmap_unlock(pte, ptl);
666 /* Pretend the page is referenced if the task has the
667 swap token and is in the middle of a page fault. */
668 if (mm != current->mm && has_swap_token(mm) &&
669 rwsem_is_locked(&mm->mmap_sem))
670 referenced++;
672 (*mapcount)--;
674 if (referenced)
675 *vm_flags |= vma->vm_flags;
676 out:
677 return referenced;
680 static int page_referenced_anon(struct page *page,
681 struct mem_cgroup *mem_cont,
682 unsigned long *vm_flags)
684 unsigned int mapcount;
685 struct anon_vma *anon_vma;
686 struct anon_vma_chain *avc;
687 int referenced = 0;
689 anon_vma = page_lock_anon_vma(page);
690 if (!anon_vma)
691 return referenced;
693 mapcount = page_mapcount(page);
694 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
695 struct vm_area_struct *vma = avc->vma;
696 unsigned long address = vma_address(page, vma);
697 if (address == -EFAULT)
698 continue;
700 * If we are reclaiming on behalf of a cgroup, skip
701 * counting on behalf of references from different
702 * cgroups
704 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
705 continue;
706 referenced += page_referenced_one(page, vma, address,
707 &mapcount, vm_flags);
708 if (!mapcount)
709 break;
712 page_unlock_anon_vma(anon_vma);
713 return referenced;
717 * page_referenced_file - referenced check for object-based rmap
718 * @page: the page we're checking references on.
719 * @mem_cont: target memory controller
720 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
722 * For an object-based mapped page, find all the places it is mapped and
723 * check/clear the referenced flag. This is done by following the page->mapping
724 * pointer, then walking the chain of vmas it holds. It returns the number
725 * of references it found.
727 * This function is only called from page_referenced for object-based pages.
729 static int page_referenced_file(struct page *page,
730 struct mem_cgroup *mem_cont,
731 unsigned long *vm_flags)
733 unsigned int mapcount;
734 struct address_space *mapping = page->mapping;
735 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
736 struct vm_area_struct *vma;
737 struct prio_tree_iter iter;
738 int referenced = 0;
741 * The caller's checks on page->mapping and !PageAnon have made
742 * sure that this is a file page: the check for page->mapping
743 * excludes the case just before it gets set on an anon page.
745 BUG_ON(PageAnon(page));
748 * The page lock not only makes sure that page->mapping cannot
749 * suddenly be NULLified by truncation, it makes sure that the
750 * structure at mapping cannot be freed and reused yet,
751 * so we can safely take mapping->i_mmap_mutex.
753 BUG_ON(!PageLocked(page));
755 mutex_lock(&mapping->i_mmap_mutex);
758 * i_mmap_mutex does not stabilize mapcount at all, but mapcount
759 * is more likely to be accurate if we note it after spinning.
761 mapcount = page_mapcount(page);
763 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
764 unsigned long address = vma_address(page, vma);
765 if (address == -EFAULT)
766 continue;
768 * If we are reclaiming on behalf of a cgroup, skip
769 * counting on behalf of references from different
770 * cgroups
772 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
773 continue;
774 referenced += page_referenced_one(page, vma, address,
775 &mapcount, vm_flags);
776 if (!mapcount)
777 break;
780 mutex_unlock(&mapping->i_mmap_mutex);
781 return referenced;
785 * page_referenced - test if the page was referenced
786 * @page: the page to test
787 * @is_locked: caller holds lock on the page
788 * @mem_cont: target memory controller
789 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
791 * Quick test_and_clear_referenced for all mappings to a page,
792 * returns the number of ptes which referenced the page.
794 int page_referenced(struct page *page,
795 int is_locked,
796 struct mem_cgroup *mem_cont,
797 unsigned long *vm_flags)
799 int referenced = 0;
800 int we_locked = 0;
802 *vm_flags = 0;
803 if (page_mapped(page) && page_rmapping(page)) {
804 if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
805 we_locked = trylock_page(page);
806 if (!we_locked) {
807 referenced++;
808 goto out;
811 if (unlikely(PageKsm(page)))
812 referenced += page_referenced_ksm(page, mem_cont,
813 vm_flags);
814 else if (PageAnon(page))
815 referenced += page_referenced_anon(page, mem_cont,
816 vm_flags);
817 else if (page->mapping)
818 referenced += page_referenced_file(page, mem_cont,
819 vm_flags);
820 if (we_locked)
821 unlock_page(page);
823 out:
824 if (page_test_and_clear_young(page_to_pfn(page)))
825 referenced++;
827 return referenced;
830 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
831 unsigned long address)
833 struct mm_struct *mm = vma->vm_mm;
834 pte_t *pte;
835 spinlock_t *ptl;
836 int ret = 0;
838 pte = page_check_address(page, mm, address, &ptl, 1);
839 if (!pte)
840 goto out;
842 if (pte_dirty(*pte) || pte_write(*pte)) {
843 pte_t entry;
845 flush_cache_page(vma, address, pte_pfn(*pte));
846 entry = ptep_clear_flush_notify(vma, address, pte);
847 entry = pte_wrprotect(entry);
848 entry = pte_mkclean(entry);
849 set_pte_at(mm, address, pte, entry);
850 ret = 1;
853 pte_unmap_unlock(pte, ptl);
854 out:
855 return ret;
858 static int page_mkclean_file(struct address_space *mapping, struct page *page)
860 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
861 struct vm_area_struct *vma;
862 struct prio_tree_iter iter;
863 int ret = 0;
865 BUG_ON(PageAnon(page));
867 mutex_lock(&mapping->i_mmap_mutex);
868 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
869 if (vma->vm_flags & VM_SHARED) {
870 unsigned long address = vma_address(page, vma);
871 if (address == -EFAULT)
872 continue;
873 ret += page_mkclean_one(page, vma, address);
876 mutex_unlock(&mapping->i_mmap_mutex);
877 return ret;
880 int page_mkclean(struct page *page)
882 int ret = 0;
884 BUG_ON(!PageLocked(page));
886 if (page_mapped(page)) {
887 struct address_space *mapping = page_mapping(page);
888 if (mapping) {
889 ret = page_mkclean_file(mapping, page);
890 if (page_test_and_clear_dirty(page_to_pfn(page), 1))
891 ret = 1;
895 return ret;
897 EXPORT_SYMBOL_GPL(page_mkclean);
900 * page_move_anon_rmap - move a page to our anon_vma
901 * @page: the page to move to our anon_vma
902 * @vma: the vma the page belongs to
903 * @address: the user virtual address mapped
905 * When a page belongs exclusively to one process after a COW event,
906 * that page can be moved into the anon_vma that belongs to just that
907 * process, so the rmap code will not search the parent or sibling
908 * processes.
910 void page_move_anon_rmap(struct page *page,
911 struct vm_area_struct *vma, unsigned long address)
913 struct anon_vma *anon_vma = vma->anon_vma;
915 VM_BUG_ON(!PageLocked(page));
916 VM_BUG_ON(!anon_vma);
917 VM_BUG_ON(page->index != linear_page_index(vma, address));
919 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
920 page->mapping = (struct address_space *) anon_vma;
924 * __page_set_anon_rmap - set up new anonymous rmap
925 * @page: Page to add to rmap
926 * @vma: VM area to add page to.
927 * @address: User virtual address of the mapping
928 * @exclusive: the page is exclusively owned by the current process
930 static void __page_set_anon_rmap(struct page *page,
931 struct vm_area_struct *vma, unsigned long address, int exclusive)
933 struct anon_vma *anon_vma = vma->anon_vma;
935 BUG_ON(!anon_vma);
937 if (PageAnon(page))
938 return;
941 * If the page isn't exclusively mapped into this vma,
942 * we must use the _oldest_ possible anon_vma for the
943 * page mapping!
945 if (!exclusive)
946 anon_vma = anon_vma->root;
948 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
949 page->mapping = (struct address_space *) anon_vma;
950 page->index = linear_page_index(vma, address);
954 * __page_check_anon_rmap - sanity check anonymous rmap addition
955 * @page: the page to add the mapping to
956 * @vma: the vm area in which the mapping is added
957 * @address: the user virtual address mapped
959 static void __page_check_anon_rmap(struct page *page,
960 struct vm_area_struct *vma, unsigned long address)
962 #ifdef CONFIG_DEBUG_VM
964 * The page's anon-rmap details (mapping and index) are guaranteed to
965 * be set up correctly at this point.
967 * We have exclusion against page_add_anon_rmap because the caller
968 * always holds the page locked, except if called from page_dup_rmap,
969 * in which case the page is already known to be setup.
971 * We have exclusion against page_add_new_anon_rmap because those pages
972 * are initially only visible via the pagetables, and the pte is locked
973 * over the call to page_add_new_anon_rmap.
975 BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
976 BUG_ON(page->index != linear_page_index(vma, address));
977 #endif
981 * page_add_anon_rmap - add pte mapping to an anonymous page
982 * @page: the page to add the mapping to
983 * @vma: the vm area in which the mapping is added
984 * @address: the user virtual address mapped
986 * The caller needs to hold the pte lock, and the page must be locked in
987 * the anon_vma case: to serialize mapping,index checking after setting,
988 * and to ensure that PageAnon is not being upgraded racily to PageKsm
989 * (but PageKsm is never downgraded to PageAnon).
991 void page_add_anon_rmap(struct page *page,
992 struct vm_area_struct *vma, unsigned long address)
994 do_page_add_anon_rmap(page, vma, address, 0);
998 * Special version of the above for do_swap_page, which often runs
999 * into pages that are exclusively owned by the current process.
1000 * Everybody else should continue to use page_add_anon_rmap above.
1002 void do_page_add_anon_rmap(struct page *page,
1003 struct vm_area_struct *vma, unsigned long address, int exclusive)
1005 int first = atomic_inc_and_test(&page->_mapcount);
1006 if (first) {
1007 if (!PageTransHuge(page))
1008 __inc_zone_page_state(page, NR_ANON_PAGES);
1009 else
1010 __inc_zone_page_state(page,
1011 NR_ANON_TRANSPARENT_HUGEPAGES);
1013 if (unlikely(PageKsm(page)))
1014 return;
1016 VM_BUG_ON(!PageLocked(page));
1017 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1018 if (first)
1019 __page_set_anon_rmap(page, vma, address, exclusive);
1020 else
1021 __page_check_anon_rmap(page, vma, address);
1025 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1026 * @page: the page to add the mapping to
1027 * @vma: the vm area in which the mapping is added
1028 * @address: the user virtual address mapped
1030 * Same as page_add_anon_rmap but must only be called on *new* pages.
1031 * This means the inc-and-test can be bypassed.
1032 * Page does not have to be locked.
1034 void page_add_new_anon_rmap(struct page *page,
1035 struct vm_area_struct *vma, unsigned long address)
1037 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1038 SetPageSwapBacked(page);
1039 atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
1040 if (!PageTransHuge(page))
1041 __inc_zone_page_state(page, NR_ANON_PAGES);
1042 else
1043 __inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1044 __page_set_anon_rmap(page, vma, address, 1);
1045 if (page_evictable(page, vma))
1046 lru_cache_add_lru(page, LRU_ACTIVE_ANON);
1047 else
1048 add_page_to_unevictable_list(page);
1052 * page_add_file_rmap - add pte mapping to a file page
1053 * @page: the page to add the mapping to
1055 * The caller needs to hold the pte lock.
1057 void page_add_file_rmap(struct page *page)
1059 if (atomic_inc_and_test(&page->_mapcount)) {
1060 __inc_zone_page_state(page, NR_FILE_MAPPED);
1061 mem_cgroup_inc_page_stat(page, MEMCG_NR_FILE_MAPPED);
1066 * page_remove_rmap - take down pte mapping from a page
1067 * @page: page to remove mapping from
1069 * The caller needs to hold the pte lock.
1071 void page_remove_rmap(struct page *page)
1073 /* page still mapped by someone else? */
1074 if (!atomic_add_negative(-1, &page->_mapcount))
1075 return;
1078 * Now that the last pte has gone, s390 must transfer dirty
1079 * flag from storage key to struct page. We can usually skip
1080 * this if the page is anon, so about to be freed; but perhaps
1081 * not if it's in swapcache - there might be another pte slot
1082 * containing the swap entry, but page not yet written to swap.
1084 if ((!PageAnon(page) || PageSwapCache(page)) &&
1085 page_test_and_clear_dirty(page_to_pfn(page), 1))
1086 set_page_dirty(page);
1088 * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED
1089 * and not charged by memcg for now.
1091 if (unlikely(PageHuge(page)))
1092 return;
1093 if (PageAnon(page)) {
1094 mem_cgroup_uncharge_page(page);
1095 if (!PageTransHuge(page))
1096 __dec_zone_page_state(page, NR_ANON_PAGES);
1097 else
1098 __dec_zone_page_state(page,
1099 NR_ANON_TRANSPARENT_HUGEPAGES);
1100 } else {
1101 __dec_zone_page_state(page, NR_FILE_MAPPED);
1102 mem_cgroup_dec_page_stat(page, MEMCG_NR_FILE_MAPPED);
1105 * It would be tidy to reset the PageAnon mapping here,
1106 * but that might overwrite a racing page_add_anon_rmap
1107 * which increments mapcount after us but sets mapping
1108 * before us: so leave the reset to free_hot_cold_page,
1109 * and remember that it's only reliable while mapped.
1110 * Leaving it set also helps swapoff to reinstate ptes
1111 * faster for those pages still in swapcache.
1116 * Subfunctions of try_to_unmap: try_to_unmap_one called
1117 * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
1119 int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1120 unsigned long address, enum ttu_flags flags)
1122 struct mm_struct *mm = vma->vm_mm;
1123 pte_t *pte;
1124 pte_t pteval;
1125 spinlock_t *ptl;
1126 int ret = SWAP_AGAIN;
1128 pte = page_check_address(page, mm, address, &ptl, 0);
1129 if (!pte)
1130 goto out;
1133 * If the page is mlock()d, we cannot swap it out.
1134 * If it's recently referenced (perhaps page_referenced
1135 * skipped over this mm) then we should reactivate it.
1137 if (!(flags & TTU_IGNORE_MLOCK)) {
1138 if (vma->vm_flags & VM_LOCKED)
1139 goto out_mlock;
1141 if (TTU_ACTION(flags) == TTU_MUNLOCK)
1142 goto out_unmap;
1144 if (!(flags & TTU_IGNORE_ACCESS)) {
1145 if (ptep_clear_flush_young_notify(vma, address, pte)) {
1146 ret = SWAP_FAIL;
1147 goto out_unmap;
1151 /* Nuke the page table entry. */
1152 flush_cache_page(vma, address, page_to_pfn(page));
1153 pteval = ptep_clear_flush_notify(vma, address, pte);
1155 /* Move the dirty bit to the physical page now the pte is gone. */
1156 if (pte_dirty(pteval))
1157 set_page_dirty(page);
1159 /* Update high watermark before we lower rss */
1160 update_hiwater_rss(mm);
1162 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1163 if (PageAnon(page))
1164 dec_mm_counter(mm, MM_ANONPAGES);
1165 else
1166 dec_mm_counter(mm, MM_FILEPAGES);
1167 set_pte_at(mm, address, pte,
1168 swp_entry_to_pte(make_hwpoison_entry(page)));
1169 } else if (PageAnon(page)) {
1170 swp_entry_t entry = { .val = page_private(page) };
1172 if (PageSwapCache(page)) {
1174 * Store the swap location in the pte.
1175 * See handle_pte_fault() ...
1177 if (swap_duplicate(entry) < 0) {
1178 set_pte_at(mm, address, pte, pteval);
1179 ret = SWAP_FAIL;
1180 goto out_unmap;
1182 if (list_empty(&mm->mmlist)) {
1183 spin_lock(&mmlist_lock);
1184 if (list_empty(&mm->mmlist))
1185 list_add(&mm->mmlist, &init_mm.mmlist);
1186 spin_unlock(&mmlist_lock);
1188 dec_mm_counter(mm, MM_ANONPAGES);
1189 inc_mm_counter(mm, MM_SWAPENTS);
1190 } else if (PAGE_MIGRATION) {
1192 * Store the pfn of the page in a special migration
1193 * pte. do_swap_page() will wait until the migration
1194 * pte is removed and then restart fault handling.
1196 BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
1197 entry = make_migration_entry(page, pte_write(pteval));
1199 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1200 BUG_ON(pte_file(*pte));
1201 } else if (PAGE_MIGRATION && (TTU_ACTION(flags) == TTU_MIGRATION)) {
1202 /* Establish migration entry for a file page */
1203 swp_entry_t entry;
1204 entry = make_migration_entry(page, pte_write(pteval));
1205 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1206 } else
1207 dec_mm_counter(mm, MM_FILEPAGES);
1209 page_remove_rmap(page);
1210 page_cache_release(page);
1212 out_unmap:
1213 pte_unmap_unlock(pte, ptl);
1214 out:
1215 return ret;
1217 out_mlock:
1218 pte_unmap_unlock(pte, ptl);
1222 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1223 * unstable result and race. Plus, We can't wait here because
1224 * we now hold anon_vma->mutex or mapping->i_mmap_mutex.
1225 * if trylock failed, the page remain in evictable lru and later
1226 * vmscan could retry to move the page to unevictable lru if the
1227 * page is actually mlocked.
1229 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1230 if (vma->vm_flags & VM_LOCKED) {
1231 mlock_vma_page(page);
1232 ret = SWAP_MLOCK;
1234 up_read(&vma->vm_mm->mmap_sem);
1236 return ret;
1240 * objrmap doesn't work for nonlinear VMAs because the assumption that
1241 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
1242 * Consequently, given a particular page and its ->index, we cannot locate the
1243 * ptes which are mapping that page without an exhaustive linear search.
1245 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
1246 * maps the file to which the target page belongs. The ->vm_private_data field
1247 * holds the current cursor into that scan. Successive searches will circulate
1248 * around the vma's virtual address space.
1250 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
1251 * more scanning pressure is placed against them as well. Eventually pages
1252 * will become fully unmapped and are eligible for eviction.
1254 * For very sparsely populated VMAs this is a little inefficient - chances are
1255 * there there won't be many ptes located within the scan cluster. In this case
1256 * maybe we could scan further - to the end of the pte page, perhaps.
1258 * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
1259 * acquire it without blocking. If vma locked, mlock the pages in the cluster,
1260 * rather than unmapping them. If we encounter the "check_page" that vmscan is
1261 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
1263 #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
1264 #define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
1266 static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
1267 struct vm_area_struct *vma, struct page *check_page)
1269 struct mm_struct *mm = vma->vm_mm;
1270 pgd_t *pgd;
1271 pud_t *pud;
1272 pmd_t *pmd;
1273 pte_t *pte;
1274 pte_t pteval;
1275 spinlock_t *ptl;
1276 struct page *page;
1277 unsigned long address;
1278 unsigned long end;
1279 int ret = SWAP_AGAIN;
1280 int locked_vma = 0;
1282 address = (vma->vm_start + cursor) & CLUSTER_MASK;
1283 end = address + CLUSTER_SIZE;
1284 if (address < vma->vm_start)
1285 address = vma->vm_start;
1286 if (end > vma->vm_end)
1287 end = vma->vm_end;
1289 pgd = pgd_offset(mm, address);
1290 if (!pgd_present(*pgd))
1291 return ret;
1293 pud = pud_offset(pgd, address);
1294 if (!pud_present(*pud))
1295 return ret;
1297 pmd = pmd_offset(pud, address);
1298 if (!pmd_present(*pmd))
1299 return ret;
1302 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
1303 * keep the sem while scanning the cluster for mlocking pages.
1305 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1306 locked_vma = (vma->vm_flags & VM_LOCKED);
1307 if (!locked_vma)
1308 up_read(&vma->vm_mm->mmap_sem); /* don't need it */
1311 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1313 /* Update high watermark before we lower rss */
1314 update_hiwater_rss(mm);
1316 for (; address < end; pte++, address += PAGE_SIZE) {
1317 if (!pte_present(*pte))
1318 continue;
1319 page = vm_normal_page(vma, address, *pte);
1320 BUG_ON(!page || PageAnon(page));
1322 if (locked_vma) {
1323 mlock_vma_page(page); /* no-op if already mlocked */
1324 if (page == check_page)
1325 ret = SWAP_MLOCK;
1326 continue; /* don't unmap */
1329 if (ptep_clear_flush_young_notify(vma, address, pte))
1330 continue;
1332 /* Nuke the page table entry. */
1333 flush_cache_page(vma, address, pte_pfn(*pte));
1334 pteval = ptep_clear_flush_notify(vma, address, pte);
1336 /* If nonlinear, store the file page offset in the pte. */
1337 if (page->index != linear_page_index(vma, address))
1338 set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
1340 /* Move the dirty bit to the physical page now the pte is gone. */
1341 if (pte_dirty(pteval))
1342 set_page_dirty(page);
1344 page_remove_rmap(page);
1345 page_cache_release(page);
1346 dec_mm_counter(mm, MM_FILEPAGES);
1347 (*mapcount)--;
1349 pte_unmap_unlock(pte - 1, ptl);
1350 if (locked_vma)
1351 up_read(&vma->vm_mm->mmap_sem);
1352 return ret;
1355 bool is_vma_temporary_stack(struct vm_area_struct *vma)
1357 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1359 if (!maybe_stack)
1360 return false;
1362 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1363 VM_STACK_INCOMPLETE_SETUP)
1364 return true;
1366 return false;
1370 * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
1371 * rmap method
1372 * @page: the page to unmap/unlock
1373 * @flags: action and flags
1375 * Find all the mappings of a page using the mapping pointer and the vma chains
1376 * contained in the anon_vma struct it points to.
1378 * This function is only called from try_to_unmap/try_to_munlock for
1379 * anonymous pages.
1380 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1381 * where the page was found will be held for write. So, we won't recheck
1382 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1383 * 'LOCKED.
1385 static int try_to_unmap_anon(struct page *page, enum ttu_flags flags)
1387 struct anon_vma *anon_vma;
1388 struct anon_vma_chain *avc;
1389 int ret = SWAP_AGAIN;
1391 anon_vma = page_lock_anon_vma(page);
1392 if (!anon_vma)
1393 return ret;
1395 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1396 struct vm_area_struct *vma = avc->vma;
1397 unsigned long address;
1400 * During exec, a temporary VMA is setup and later moved.
1401 * The VMA is moved under the anon_vma lock but not the
1402 * page tables leading to a race where migration cannot
1403 * find the migration ptes. Rather than increasing the
1404 * locking requirements of exec(), migration skips
1405 * temporary VMAs until after exec() completes.
1407 if (PAGE_MIGRATION && (flags & TTU_MIGRATION) &&
1408 is_vma_temporary_stack(vma))
1409 continue;
1411 address = vma_address(page, vma);
1412 if (address == -EFAULT)
1413 continue;
1414 ret = try_to_unmap_one(page, vma, address, flags);
1415 if (ret != SWAP_AGAIN || !page_mapped(page))
1416 break;
1419 page_unlock_anon_vma(anon_vma);
1420 return ret;
1424 * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
1425 * @page: the page to unmap/unlock
1426 * @flags: action and flags
1428 * Find all the mappings of a page using the mapping pointer and the vma chains
1429 * contained in the address_space struct it points to.
1431 * This function is only called from try_to_unmap/try_to_munlock for
1432 * object-based pages.
1433 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1434 * where the page was found will be held for write. So, we won't recheck
1435 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1436 * 'LOCKED.
1438 static int try_to_unmap_file(struct page *page, enum ttu_flags flags)
1440 struct address_space *mapping = page->mapping;
1441 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1442 struct vm_area_struct *vma;
1443 struct prio_tree_iter iter;
1444 int ret = SWAP_AGAIN;
1445 unsigned long cursor;
1446 unsigned long max_nl_cursor = 0;
1447 unsigned long max_nl_size = 0;
1448 unsigned int mapcount;
1450 mutex_lock(&mapping->i_mmap_mutex);
1451 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1452 unsigned long address = vma_address(page, vma);
1453 if (address == -EFAULT)
1454 continue;
1455 ret = try_to_unmap_one(page, vma, address, flags);
1456 if (ret != SWAP_AGAIN || !page_mapped(page))
1457 goto out;
1460 if (list_empty(&mapping->i_mmap_nonlinear))
1461 goto out;
1464 * We don't bother to try to find the munlocked page in nonlinears.
1465 * It's costly. Instead, later, page reclaim logic may call
1466 * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
1468 if (TTU_ACTION(flags) == TTU_MUNLOCK)
1469 goto out;
1471 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1472 shared.vm_set.list) {
1473 cursor = (unsigned long) vma->vm_private_data;
1474 if (cursor > max_nl_cursor)
1475 max_nl_cursor = cursor;
1476 cursor = vma->vm_end - vma->vm_start;
1477 if (cursor > max_nl_size)
1478 max_nl_size = cursor;
1481 if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */
1482 ret = SWAP_FAIL;
1483 goto out;
1487 * We don't try to search for this page in the nonlinear vmas,
1488 * and page_referenced wouldn't have found it anyway. Instead
1489 * just walk the nonlinear vmas trying to age and unmap some.
1490 * The mapcount of the page we came in with is irrelevant,
1491 * but even so use it as a guide to how hard we should try?
1493 mapcount = page_mapcount(page);
1494 if (!mapcount)
1495 goto out;
1496 cond_resched();
1498 max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
1499 if (max_nl_cursor == 0)
1500 max_nl_cursor = CLUSTER_SIZE;
1502 do {
1503 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1504 shared.vm_set.list) {
1505 cursor = (unsigned long) vma->vm_private_data;
1506 while ( cursor < max_nl_cursor &&
1507 cursor < vma->vm_end - vma->vm_start) {
1508 if (try_to_unmap_cluster(cursor, &mapcount,
1509 vma, page) == SWAP_MLOCK)
1510 ret = SWAP_MLOCK;
1511 cursor += CLUSTER_SIZE;
1512 vma->vm_private_data = (void *) cursor;
1513 if ((int)mapcount <= 0)
1514 goto out;
1516 vma->vm_private_data = (void *) max_nl_cursor;
1518 cond_resched();
1519 max_nl_cursor += CLUSTER_SIZE;
1520 } while (max_nl_cursor <= max_nl_size);
1523 * Don't loop forever (perhaps all the remaining pages are
1524 * in locked vmas). Reset cursor on all unreserved nonlinear
1525 * vmas, now forgetting on which ones it had fallen behind.
1527 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1528 vma->vm_private_data = NULL;
1529 out:
1530 mutex_unlock(&mapping->i_mmap_mutex);
1531 return ret;
1535 * try_to_unmap - try to remove all page table mappings to a page
1536 * @page: the page to get unmapped
1537 * @flags: action and flags
1539 * Tries to remove all the page table entries which are mapping this
1540 * page, used in the pageout path. Caller must hold the page lock.
1541 * Return values are:
1543 * SWAP_SUCCESS - we succeeded in removing all mappings
1544 * SWAP_AGAIN - we missed a mapping, try again later
1545 * SWAP_FAIL - the page is unswappable
1546 * SWAP_MLOCK - page is mlocked.
1548 int try_to_unmap(struct page *page, enum ttu_flags flags)
1550 int ret;
1552 BUG_ON(!PageLocked(page));
1553 VM_BUG_ON(!PageHuge(page) && PageTransHuge(page));
1555 if (unlikely(PageKsm(page)))
1556 ret = try_to_unmap_ksm(page, flags);
1557 else if (PageAnon(page))
1558 ret = try_to_unmap_anon(page, flags);
1559 else
1560 ret = try_to_unmap_file(page, flags);
1561 if (ret != SWAP_MLOCK && !page_mapped(page))
1562 ret = SWAP_SUCCESS;
1563 return ret;
1567 * try_to_munlock - try to munlock a page
1568 * @page: the page to be munlocked
1570 * Called from munlock code. Checks all of the VMAs mapping the page
1571 * to make sure nobody else has this page mlocked. The page will be
1572 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1574 * Return values are:
1576 * SWAP_AGAIN - no vma is holding page mlocked, or,
1577 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
1578 * SWAP_FAIL - page cannot be located at present
1579 * SWAP_MLOCK - page is now mlocked.
1581 int try_to_munlock(struct page *page)
1583 VM_BUG_ON(!PageLocked(page) || PageLRU(page));
1585 if (unlikely(PageKsm(page)))
1586 return try_to_unmap_ksm(page, TTU_MUNLOCK);
1587 else if (PageAnon(page))
1588 return try_to_unmap_anon(page, TTU_MUNLOCK);
1589 else
1590 return try_to_unmap_file(page, TTU_MUNLOCK);
1593 void __put_anon_vma(struct anon_vma *anon_vma)
1595 struct anon_vma *root = anon_vma->root;
1597 if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1598 anon_vma_free(root);
1600 anon_vma_free(anon_vma);
1603 #ifdef CONFIG_MIGRATION
1605 * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file():
1606 * Called by migrate.c to remove migration ptes, but might be used more later.
1608 static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *,
1609 struct vm_area_struct *, unsigned long, void *), void *arg)
1611 struct anon_vma *anon_vma;
1612 struct anon_vma_chain *avc;
1613 int ret = SWAP_AGAIN;
1616 * Note: remove_migration_ptes() cannot use page_lock_anon_vma()
1617 * because that depends on page_mapped(); but not all its usages
1618 * are holding mmap_sem. Users without mmap_sem are required to
1619 * take a reference count to prevent the anon_vma disappearing
1621 anon_vma = page_anon_vma(page);
1622 if (!anon_vma)
1623 return ret;
1624 anon_vma_lock(anon_vma);
1625 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1626 struct vm_area_struct *vma = avc->vma;
1627 unsigned long address = vma_address(page, vma);
1628 if (address == -EFAULT)
1629 continue;
1630 ret = rmap_one(page, vma, address, arg);
1631 if (ret != SWAP_AGAIN)
1632 break;
1634 anon_vma_unlock(anon_vma);
1635 return ret;
1638 static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *,
1639 struct vm_area_struct *, unsigned long, void *), void *arg)
1641 struct address_space *mapping = page->mapping;
1642 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1643 struct vm_area_struct *vma;
1644 struct prio_tree_iter iter;
1645 int ret = SWAP_AGAIN;
1647 if (!mapping)
1648 return ret;
1649 mutex_lock(&mapping->i_mmap_mutex);
1650 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1651 unsigned long address = vma_address(page, vma);
1652 if (address == -EFAULT)
1653 continue;
1654 ret = rmap_one(page, vma, address, arg);
1655 if (ret != SWAP_AGAIN)
1656 break;
1659 * No nonlinear handling: being always shared, nonlinear vmas
1660 * never contain migration ptes. Decide what to do about this
1661 * limitation to linear when we need rmap_walk() on nonlinear.
1663 mutex_unlock(&mapping->i_mmap_mutex);
1664 return ret;
1667 int rmap_walk(struct page *page, int (*rmap_one)(struct page *,
1668 struct vm_area_struct *, unsigned long, void *), void *arg)
1670 VM_BUG_ON(!PageLocked(page));
1672 if (unlikely(PageKsm(page)))
1673 return rmap_walk_ksm(page, rmap_one, arg);
1674 else if (PageAnon(page))
1675 return rmap_walk_anon(page, rmap_one, arg);
1676 else
1677 return rmap_walk_file(page, rmap_one, arg);
1679 #endif /* CONFIG_MIGRATION */
1681 #ifdef CONFIG_HUGETLB_PAGE
1683 * The following three functions are for anonymous (private mapped) hugepages.
1684 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1685 * and no lru code, because we handle hugepages differently from common pages.
1687 static void __hugepage_set_anon_rmap(struct page *page,
1688 struct vm_area_struct *vma, unsigned long address, int exclusive)
1690 struct anon_vma *anon_vma = vma->anon_vma;
1692 BUG_ON(!anon_vma);
1694 if (PageAnon(page))
1695 return;
1696 if (!exclusive)
1697 anon_vma = anon_vma->root;
1699 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1700 page->mapping = (struct address_space *) anon_vma;
1701 page->index = linear_page_index(vma, address);
1704 void hugepage_add_anon_rmap(struct page *page,
1705 struct vm_area_struct *vma, unsigned long address)
1707 struct anon_vma *anon_vma = vma->anon_vma;
1708 int first;
1710 BUG_ON(!PageLocked(page));
1711 BUG_ON(!anon_vma);
1712 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1713 first = atomic_inc_and_test(&page->_mapcount);
1714 if (first)
1715 __hugepage_set_anon_rmap(page, vma, address, 0);
1718 void hugepage_add_new_anon_rmap(struct page *page,
1719 struct vm_area_struct *vma, unsigned long address)
1721 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1722 atomic_set(&page->_mapcount, 0);
1723 __hugepage_set_anon_rmap(page, vma, address, 1);
1725 #endif /* CONFIG_HUGETLB_PAGE */