ceph: make mds requests killable, not interruptible
[linux-2.6.git] / mm / rmap.c
blob0feeef860a8f5b5d61081234f40e8e149e2696f5
1 /*
2 * mm/rmap.c - physical to virtual reverse mappings
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
21 * Lock ordering in mm:
23 * inode->i_mutex (while writing or truncating, not reading or faulting)
24 * inode->i_alloc_sem (vmtruncate_range)
25 * mm->mmap_sem
26 * page->flags PG_locked (lock_page)
27 * mapping->i_mmap_lock
28 * anon_vma->lock
29 * mm->page_table_lock or pte_lock
30 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
31 * swap_lock (in swap_duplicate, swap_info_get)
32 * mmlist_lock (in mmput, drain_mmlist and others)
33 * mapping->private_lock (in __set_page_dirty_buffers)
34 * inode_lock (in set_page_dirty's __mark_inode_dirty)
35 * sb_lock (within inode_lock in fs/fs-writeback.c)
36 * mapping->tree_lock (widely used, in set_page_dirty,
37 * in arch-dependent flush_dcache_mmap_lock,
38 * within inode_lock in __sync_single_inode)
40 * (code doesn't rely on that order so it could be switched around)
41 * ->tasklist_lock
42 * anon_vma->lock (memory_failure, collect_procs_anon)
43 * pte map lock
46 #include <linux/mm.h>
47 #include <linux/pagemap.h>
48 #include <linux/swap.h>
49 #include <linux/swapops.h>
50 #include <linux/slab.h>
51 #include <linux/init.h>
52 #include <linux/ksm.h>
53 #include <linux/rmap.h>
54 #include <linux/rcupdate.h>
55 #include <linux/module.h>
56 #include <linux/memcontrol.h>
57 #include <linux/mmu_notifier.h>
58 #include <linux/migrate.h>
60 #include <asm/tlbflush.h>
62 #include "internal.h"
64 static struct kmem_cache *anon_vma_cachep;
65 static struct kmem_cache *anon_vma_chain_cachep;
67 static inline struct anon_vma *anon_vma_alloc(void)
69 return kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
72 void anon_vma_free(struct anon_vma *anon_vma)
74 kmem_cache_free(anon_vma_cachep, anon_vma);
77 static inline struct anon_vma_chain *anon_vma_chain_alloc(void)
79 return kmem_cache_alloc(anon_vma_chain_cachep, GFP_KERNEL);
82 void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
84 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
87 /**
88 * anon_vma_prepare - attach an anon_vma to a memory region
89 * @vma: the memory region in question
91 * This makes sure the memory mapping described by 'vma' has
92 * an 'anon_vma' attached to it, so that we can associate the
93 * anonymous pages mapped into it with that anon_vma.
95 * The common case will be that we already have one, but if
96 * if not we either need to find an adjacent mapping that we
97 * can re-use the anon_vma from (very common when the only
98 * reason for splitting a vma has been mprotect()), or we
99 * allocate a new one.
101 * Anon-vma allocations are very subtle, because we may have
102 * optimistically looked up an anon_vma in page_lock_anon_vma()
103 * and that may actually touch the spinlock even in the newly
104 * allocated vma (it depends on RCU to make sure that the
105 * anon_vma isn't actually destroyed).
107 * As a result, we need to do proper anon_vma locking even
108 * for the new allocation. At the same time, we do not want
109 * to do any locking for the common case of already having
110 * an anon_vma.
112 * This must be called with the mmap_sem held for reading.
114 int anon_vma_prepare(struct vm_area_struct *vma)
116 struct anon_vma *anon_vma = vma->anon_vma;
117 struct anon_vma_chain *avc;
119 might_sleep();
120 if (unlikely(!anon_vma)) {
121 struct mm_struct *mm = vma->vm_mm;
122 struct anon_vma *allocated;
124 avc = anon_vma_chain_alloc();
125 if (!avc)
126 goto out_enomem;
128 anon_vma = find_mergeable_anon_vma(vma);
129 allocated = NULL;
130 if (!anon_vma) {
131 anon_vma = anon_vma_alloc();
132 if (unlikely(!anon_vma))
133 goto out_enomem_free_avc;
134 allocated = anon_vma;
137 spin_lock(&anon_vma->lock);
138 /* page_table_lock to protect against threads */
139 spin_lock(&mm->page_table_lock);
140 if (likely(!vma->anon_vma)) {
141 vma->anon_vma = anon_vma;
142 avc->anon_vma = anon_vma;
143 avc->vma = vma;
144 list_add(&avc->same_vma, &vma->anon_vma_chain);
145 list_add(&avc->same_anon_vma, &anon_vma->head);
146 allocated = NULL;
147 avc = NULL;
149 spin_unlock(&mm->page_table_lock);
150 spin_unlock(&anon_vma->lock);
152 if (unlikely(allocated))
153 anon_vma_free(allocated);
154 if (unlikely(avc))
155 anon_vma_chain_free(avc);
157 return 0;
159 out_enomem_free_avc:
160 anon_vma_chain_free(avc);
161 out_enomem:
162 return -ENOMEM;
165 static void anon_vma_chain_link(struct vm_area_struct *vma,
166 struct anon_vma_chain *avc,
167 struct anon_vma *anon_vma)
169 avc->vma = vma;
170 avc->anon_vma = anon_vma;
171 list_add(&avc->same_vma, &vma->anon_vma_chain);
173 spin_lock(&anon_vma->lock);
174 list_add_tail(&avc->same_anon_vma, &anon_vma->head);
175 spin_unlock(&anon_vma->lock);
179 * Attach the anon_vmas from src to dst.
180 * Returns 0 on success, -ENOMEM on failure.
182 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
184 struct anon_vma_chain *avc, *pavc;
186 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
187 avc = anon_vma_chain_alloc();
188 if (!avc)
189 goto enomem_failure;
190 anon_vma_chain_link(dst, avc, pavc->anon_vma);
192 return 0;
194 enomem_failure:
195 unlink_anon_vmas(dst);
196 return -ENOMEM;
200 * Attach vma to its own anon_vma, as well as to the anon_vmas that
201 * the corresponding VMA in the parent process is attached to.
202 * Returns 0 on success, non-zero on failure.
204 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
206 struct anon_vma_chain *avc;
207 struct anon_vma *anon_vma;
209 /* Don't bother if the parent process has no anon_vma here. */
210 if (!pvma->anon_vma)
211 return 0;
214 * First, attach the new VMA to the parent VMA's anon_vmas,
215 * so rmap can find non-COWed pages in child processes.
217 if (anon_vma_clone(vma, pvma))
218 return -ENOMEM;
220 /* Then add our own anon_vma. */
221 anon_vma = anon_vma_alloc();
222 if (!anon_vma)
223 goto out_error;
224 avc = anon_vma_chain_alloc();
225 if (!avc)
226 goto out_error_free_anon_vma;
227 anon_vma_chain_link(vma, avc, anon_vma);
228 /* Mark this anon_vma as the one where our new (COWed) pages go. */
229 vma->anon_vma = anon_vma;
231 return 0;
233 out_error_free_anon_vma:
234 anon_vma_free(anon_vma);
235 out_error:
236 unlink_anon_vmas(vma);
237 return -ENOMEM;
240 static void anon_vma_unlink(struct anon_vma_chain *anon_vma_chain)
242 struct anon_vma *anon_vma = anon_vma_chain->anon_vma;
243 int empty;
245 /* If anon_vma_fork fails, we can get an empty anon_vma_chain. */
246 if (!anon_vma)
247 return;
249 spin_lock(&anon_vma->lock);
250 list_del(&anon_vma_chain->same_anon_vma);
252 /* We must garbage collect the anon_vma if it's empty */
253 empty = list_empty(&anon_vma->head) && !ksm_refcount(anon_vma);
254 spin_unlock(&anon_vma->lock);
256 if (empty)
257 anon_vma_free(anon_vma);
260 void unlink_anon_vmas(struct vm_area_struct *vma)
262 struct anon_vma_chain *avc, *next;
264 /* Unlink each anon_vma chained to the VMA. */
265 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
266 anon_vma_unlink(avc);
267 list_del(&avc->same_vma);
268 anon_vma_chain_free(avc);
272 static void anon_vma_ctor(void *data)
274 struct anon_vma *anon_vma = data;
276 spin_lock_init(&anon_vma->lock);
277 ksm_refcount_init(anon_vma);
278 INIT_LIST_HEAD(&anon_vma->head);
281 void __init anon_vma_init(void)
283 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
284 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
285 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
289 * Getting a lock on a stable anon_vma from a page off the LRU is
290 * tricky: page_lock_anon_vma rely on RCU to guard against the races.
292 struct anon_vma *page_lock_anon_vma(struct page *page)
294 struct anon_vma *anon_vma;
295 unsigned long anon_mapping;
297 rcu_read_lock();
298 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
299 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
300 goto out;
301 if (!page_mapped(page))
302 goto out;
304 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
305 spin_lock(&anon_vma->lock);
306 return anon_vma;
307 out:
308 rcu_read_unlock();
309 return NULL;
312 void page_unlock_anon_vma(struct anon_vma *anon_vma)
314 spin_unlock(&anon_vma->lock);
315 rcu_read_unlock();
319 * At what user virtual address is page expected in @vma?
320 * Returns virtual address or -EFAULT if page's index/offset is not
321 * within the range mapped the @vma.
323 static inline unsigned long
324 vma_address(struct page *page, struct vm_area_struct *vma)
326 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
327 unsigned long address;
329 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
330 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
331 /* page should be within @vma mapping range */
332 return -EFAULT;
334 return address;
338 * At what user virtual address is page expected in vma?
339 * Caller should check the page is actually part of the vma.
341 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
343 if (PageAnon(page))
345 else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
346 if (!vma->vm_file ||
347 vma->vm_file->f_mapping != page->mapping)
348 return -EFAULT;
349 } else
350 return -EFAULT;
351 return vma_address(page, vma);
355 * Check that @page is mapped at @address into @mm.
357 * If @sync is false, page_check_address may perform a racy check to avoid
358 * the page table lock when the pte is not present (helpful when reclaiming
359 * highly shared pages).
361 * On success returns with pte mapped and locked.
363 pte_t *page_check_address(struct page *page, struct mm_struct *mm,
364 unsigned long address, spinlock_t **ptlp, int sync)
366 pgd_t *pgd;
367 pud_t *pud;
368 pmd_t *pmd;
369 pte_t *pte;
370 spinlock_t *ptl;
372 pgd = pgd_offset(mm, address);
373 if (!pgd_present(*pgd))
374 return NULL;
376 pud = pud_offset(pgd, address);
377 if (!pud_present(*pud))
378 return NULL;
380 pmd = pmd_offset(pud, address);
381 if (!pmd_present(*pmd))
382 return NULL;
384 pte = pte_offset_map(pmd, address);
385 /* Make a quick check before getting the lock */
386 if (!sync && !pte_present(*pte)) {
387 pte_unmap(pte);
388 return NULL;
391 ptl = pte_lockptr(mm, pmd);
392 spin_lock(ptl);
393 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
394 *ptlp = ptl;
395 return pte;
397 pte_unmap_unlock(pte, ptl);
398 return NULL;
402 * page_mapped_in_vma - check whether a page is really mapped in a VMA
403 * @page: the page to test
404 * @vma: the VMA to test
406 * Returns 1 if the page is mapped into the page tables of the VMA, 0
407 * if the page is not mapped into the page tables of this VMA. Only
408 * valid for normal file or anonymous VMAs.
410 int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
412 unsigned long address;
413 pte_t *pte;
414 spinlock_t *ptl;
416 address = vma_address(page, vma);
417 if (address == -EFAULT) /* out of vma range */
418 return 0;
419 pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
420 if (!pte) /* the page is not in this mm */
421 return 0;
422 pte_unmap_unlock(pte, ptl);
424 return 1;
428 * Subfunctions of page_referenced: page_referenced_one called
429 * repeatedly from either page_referenced_anon or page_referenced_file.
431 int page_referenced_one(struct page *page, struct vm_area_struct *vma,
432 unsigned long address, unsigned int *mapcount,
433 unsigned long *vm_flags)
435 struct mm_struct *mm = vma->vm_mm;
436 pte_t *pte;
437 spinlock_t *ptl;
438 int referenced = 0;
440 pte = page_check_address(page, mm, address, &ptl, 0);
441 if (!pte)
442 goto out;
445 * Don't want to elevate referenced for mlocked page that gets this far,
446 * in order that it progresses to try_to_unmap and is moved to the
447 * unevictable list.
449 if (vma->vm_flags & VM_LOCKED) {
450 *mapcount = 1; /* break early from loop */
451 *vm_flags |= VM_LOCKED;
452 goto out_unmap;
455 if (ptep_clear_flush_young_notify(vma, address, pte)) {
457 * Don't treat a reference through a sequentially read
458 * mapping as such. If the page has been used in
459 * another mapping, we will catch it; if this other
460 * mapping is already gone, the unmap path will have
461 * set PG_referenced or activated the page.
463 if (likely(!VM_SequentialReadHint(vma)))
464 referenced++;
467 /* Pretend the page is referenced if the task has the
468 swap token and is in the middle of a page fault. */
469 if (mm != current->mm && has_swap_token(mm) &&
470 rwsem_is_locked(&mm->mmap_sem))
471 referenced++;
473 out_unmap:
474 (*mapcount)--;
475 pte_unmap_unlock(pte, ptl);
477 if (referenced)
478 *vm_flags |= vma->vm_flags;
479 out:
480 return referenced;
483 static int page_referenced_anon(struct page *page,
484 struct mem_cgroup *mem_cont,
485 unsigned long *vm_flags)
487 unsigned int mapcount;
488 struct anon_vma *anon_vma;
489 struct anon_vma_chain *avc;
490 int referenced = 0;
492 anon_vma = page_lock_anon_vma(page);
493 if (!anon_vma)
494 return referenced;
496 mapcount = page_mapcount(page);
497 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
498 struct vm_area_struct *vma = avc->vma;
499 unsigned long address = vma_address(page, vma);
500 if (address == -EFAULT)
501 continue;
503 * If we are reclaiming on behalf of a cgroup, skip
504 * counting on behalf of references from different
505 * cgroups
507 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
508 continue;
509 referenced += page_referenced_one(page, vma, address,
510 &mapcount, vm_flags);
511 if (!mapcount)
512 break;
515 page_unlock_anon_vma(anon_vma);
516 return referenced;
520 * page_referenced_file - referenced check for object-based rmap
521 * @page: the page we're checking references on.
522 * @mem_cont: target memory controller
523 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
525 * For an object-based mapped page, find all the places it is mapped and
526 * check/clear the referenced flag. This is done by following the page->mapping
527 * pointer, then walking the chain of vmas it holds. It returns the number
528 * of references it found.
530 * This function is only called from page_referenced for object-based pages.
532 static int page_referenced_file(struct page *page,
533 struct mem_cgroup *mem_cont,
534 unsigned long *vm_flags)
536 unsigned int mapcount;
537 struct address_space *mapping = page->mapping;
538 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
539 struct vm_area_struct *vma;
540 struct prio_tree_iter iter;
541 int referenced = 0;
544 * The caller's checks on page->mapping and !PageAnon have made
545 * sure that this is a file page: the check for page->mapping
546 * excludes the case just before it gets set on an anon page.
548 BUG_ON(PageAnon(page));
551 * The page lock not only makes sure that page->mapping cannot
552 * suddenly be NULLified by truncation, it makes sure that the
553 * structure at mapping cannot be freed and reused yet,
554 * so we can safely take mapping->i_mmap_lock.
556 BUG_ON(!PageLocked(page));
558 spin_lock(&mapping->i_mmap_lock);
561 * i_mmap_lock does not stabilize mapcount at all, but mapcount
562 * is more likely to be accurate if we note it after spinning.
564 mapcount = page_mapcount(page);
566 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
567 unsigned long address = vma_address(page, vma);
568 if (address == -EFAULT)
569 continue;
571 * If we are reclaiming on behalf of a cgroup, skip
572 * counting on behalf of references from different
573 * cgroups
575 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
576 continue;
577 referenced += page_referenced_one(page, vma, address,
578 &mapcount, vm_flags);
579 if (!mapcount)
580 break;
583 spin_unlock(&mapping->i_mmap_lock);
584 return referenced;
588 * page_referenced - test if the page was referenced
589 * @page: the page to test
590 * @is_locked: caller holds lock on the page
591 * @mem_cont: target memory controller
592 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
594 * Quick test_and_clear_referenced for all mappings to a page,
595 * returns the number of ptes which referenced the page.
597 int page_referenced(struct page *page,
598 int is_locked,
599 struct mem_cgroup *mem_cont,
600 unsigned long *vm_flags)
602 int referenced = 0;
603 int we_locked = 0;
605 *vm_flags = 0;
606 if (page_mapped(page) && page_rmapping(page)) {
607 if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
608 we_locked = trylock_page(page);
609 if (!we_locked) {
610 referenced++;
611 goto out;
614 if (unlikely(PageKsm(page)))
615 referenced += page_referenced_ksm(page, mem_cont,
616 vm_flags);
617 else if (PageAnon(page))
618 referenced += page_referenced_anon(page, mem_cont,
619 vm_flags);
620 else if (page->mapping)
621 referenced += page_referenced_file(page, mem_cont,
622 vm_flags);
623 if (we_locked)
624 unlock_page(page);
626 out:
627 if (page_test_and_clear_young(page))
628 referenced++;
630 return referenced;
633 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
634 unsigned long address)
636 struct mm_struct *mm = vma->vm_mm;
637 pte_t *pte;
638 spinlock_t *ptl;
639 int ret = 0;
641 pte = page_check_address(page, mm, address, &ptl, 1);
642 if (!pte)
643 goto out;
645 if (pte_dirty(*pte) || pte_write(*pte)) {
646 pte_t entry;
648 flush_cache_page(vma, address, pte_pfn(*pte));
649 entry = ptep_clear_flush_notify(vma, address, pte);
650 entry = pte_wrprotect(entry);
651 entry = pte_mkclean(entry);
652 set_pte_at(mm, address, pte, entry);
653 ret = 1;
656 pte_unmap_unlock(pte, ptl);
657 out:
658 return ret;
661 static int page_mkclean_file(struct address_space *mapping, struct page *page)
663 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
664 struct vm_area_struct *vma;
665 struct prio_tree_iter iter;
666 int ret = 0;
668 BUG_ON(PageAnon(page));
670 spin_lock(&mapping->i_mmap_lock);
671 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
672 if (vma->vm_flags & VM_SHARED) {
673 unsigned long address = vma_address(page, vma);
674 if (address == -EFAULT)
675 continue;
676 ret += page_mkclean_one(page, vma, address);
679 spin_unlock(&mapping->i_mmap_lock);
680 return ret;
683 int page_mkclean(struct page *page)
685 int ret = 0;
687 BUG_ON(!PageLocked(page));
689 if (page_mapped(page)) {
690 struct address_space *mapping = page_mapping(page);
691 if (mapping) {
692 ret = page_mkclean_file(mapping, page);
693 if (page_test_dirty(page)) {
694 page_clear_dirty(page);
695 ret = 1;
700 return ret;
702 EXPORT_SYMBOL_GPL(page_mkclean);
705 * page_move_anon_rmap - move a page to our anon_vma
706 * @page: the page to move to our anon_vma
707 * @vma: the vma the page belongs to
708 * @address: the user virtual address mapped
710 * When a page belongs exclusively to one process after a COW event,
711 * that page can be moved into the anon_vma that belongs to just that
712 * process, so the rmap code will not search the parent or sibling
713 * processes.
715 void page_move_anon_rmap(struct page *page,
716 struct vm_area_struct *vma, unsigned long address)
718 struct anon_vma *anon_vma = vma->anon_vma;
720 VM_BUG_ON(!PageLocked(page));
721 VM_BUG_ON(!anon_vma);
722 VM_BUG_ON(page->index != linear_page_index(vma, address));
724 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
725 page->mapping = (struct address_space *) anon_vma;
729 * __page_set_anon_rmap - setup new anonymous rmap
730 * @page: the page to add the mapping to
731 * @vma: the vm area in which the mapping is added
732 * @address: the user virtual address mapped
733 * @exclusive: the page is exclusively owned by the current process
735 static void __page_set_anon_rmap(struct page *page,
736 struct vm_area_struct *vma, unsigned long address, int exclusive)
738 struct anon_vma *anon_vma = vma->anon_vma;
740 BUG_ON(!anon_vma);
743 * If the page isn't exclusively mapped into this vma,
744 * we must use the _oldest_ possible anon_vma for the
745 * page mapping!
747 * So take the last AVC chain entry in the vma, which is
748 * the deepest ancestor, and use the anon_vma from that.
750 if (!exclusive) {
751 struct anon_vma_chain *avc;
752 avc = list_entry(vma->anon_vma_chain.prev, struct anon_vma_chain, same_vma);
753 anon_vma = avc->anon_vma;
756 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
757 page->mapping = (struct address_space *) anon_vma;
758 page->index = linear_page_index(vma, address);
762 * __page_check_anon_rmap - sanity check anonymous rmap addition
763 * @page: the page to add the mapping to
764 * @vma: the vm area in which the mapping is added
765 * @address: the user virtual address mapped
767 static void __page_check_anon_rmap(struct page *page,
768 struct vm_area_struct *vma, unsigned long address)
770 #ifdef CONFIG_DEBUG_VM
772 * The page's anon-rmap details (mapping and index) are guaranteed to
773 * be set up correctly at this point.
775 * We have exclusion against page_add_anon_rmap because the caller
776 * always holds the page locked, except if called from page_dup_rmap,
777 * in which case the page is already known to be setup.
779 * We have exclusion against page_add_new_anon_rmap because those pages
780 * are initially only visible via the pagetables, and the pte is locked
781 * over the call to page_add_new_anon_rmap.
783 BUG_ON(page->index != linear_page_index(vma, address));
784 #endif
788 * page_add_anon_rmap - add pte mapping to an anonymous page
789 * @page: the page to add the mapping to
790 * @vma: the vm area in which the mapping is added
791 * @address: the user virtual address mapped
793 * The caller needs to hold the pte lock, and the page must be locked in
794 * the anon_vma case: to serialize mapping,index checking after setting,
795 * and to ensure that PageAnon is not being upgraded racily to PageKsm
796 * (but PageKsm is never downgraded to PageAnon).
798 void page_add_anon_rmap(struct page *page,
799 struct vm_area_struct *vma, unsigned long address)
801 int first = atomic_inc_and_test(&page->_mapcount);
802 if (first)
803 __inc_zone_page_state(page, NR_ANON_PAGES);
804 if (unlikely(PageKsm(page)))
805 return;
807 VM_BUG_ON(!PageLocked(page));
808 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
809 if (first)
810 __page_set_anon_rmap(page, vma, address, 0);
811 else
812 __page_check_anon_rmap(page, vma, address);
816 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
817 * @page: the page to add the mapping to
818 * @vma: the vm area in which the mapping is added
819 * @address: the user virtual address mapped
821 * Same as page_add_anon_rmap but must only be called on *new* pages.
822 * This means the inc-and-test can be bypassed.
823 * Page does not have to be locked.
825 void page_add_new_anon_rmap(struct page *page,
826 struct vm_area_struct *vma, unsigned long address)
828 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
829 SetPageSwapBacked(page);
830 atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
831 __inc_zone_page_state(page, NR_ANON_PAGES);
832 __page_set_anon_rmap(page, vma, address, 1);
833 if (page_evictable(page, vma))
834 lru_cache_add_lru(page, LRU_ACTIVE_ANON);
835 else
836 add_page_to_unevictable_list(page);
840 * page_add_file_rmap - add pte mapping to a file page
841 * @page: the page to add the mapping to
843 * The caller needs to hold the pte lock.
845 void page_add_file_rmap(struct page *page)
847 if (atomic_inc_and_test(&page->_mapcount)) {
848 __inc_zone_page_state(page, NR_FILE_MAPPED);
849 mem_cgroup_update_file_mapped(page, 1);
854 * page_remove_rmap - take down pte mapping from a page
855 * @page: page to remove mapping from
857 * The caller needs to hold the pte lock.
859 void page_remove_rmap(struct page *page)
861 /* page still mapped by someone else? */
862 if (!atomic_add_negative(-1, &page->_mapcount))
863 return;
866 * Now that the last pte has gone, s390 must transfer dirty
867 * flag from storage key to struct page. We can usually skip
868 * this if the page is anon, so about to be freed; but perhaps
869 * not if it's in swapcache - there might be another pte slot
870 * containing the swap entry, but page not yet written to swap.
872 if ((!PageAnon(page) || PageSwapCache(page)) && page_test_dirty(page)) {
873 page_clear_dirty(page);
874 set_page_dirty(page);
876 if (PageAnon(page)) {
877 mem_cgroup_uncharge_page(page);
878 __dec_zone_page_state(page, NR_ANON_PAGES);
879 } else {
880 __dec_zone_page_state(page, NR_FILE_MAPPED);
881 mem_cgroup_update_file_mapped(page, -1);
884 * It would be tidy to reset the PageAnon mapping here,
885 * but that might overwrite a racing page_add_anon_rmap
886 * which increments mapcount after us but sets mapping
887 * before us: so leave the reset to free_hot_cold_page,
888 * and remember that it's only reliable while mapped.
889 * Leaving it set also helps swapoff to reinstate ptes
890 * faster for those pages still in swapcache.
895 * Subfunctions of try_to_unmap: try_to_unmap_one called
896 * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
898 int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
899 unsigned long address, enum ttu_flags flags)
901 struct mm_struct *mm = vma->vm_mm;
902 pte_t *pte;
903 pte_t pteval;
904 spinlock_t *ptl;
905 int ret = SWAP_AGAIN;
907 pte = page_check_address(page, mm, address, &ptl, 0);
908 if (!pte)
909 goto out;
912 * If the page is mlock()d, we cannot swap it out.
913 * If it's recently referenced (perhaps page_referenced
914 * skipped over this mm) then we should reactivate it.
916 if (!(flags & TTU_IGNORE_MLOCK)) {
917 if (vma->vm_flags & VM_LOCKED)
918 goto out_mlock;
920 if (TTU_ACTION(flags) == TTU_MUNLOCK)
921 goto out_unmap;
923 if (!(flags & TTU_IGNORE_ACCESS)) {
924 if (ptep_clear_flush_young_notify(vma, address, pte)) {
925 ret = SWAP_FAIL;
926 goto out_unmap;
930 /* Nuke the page table entry. */
931 flush_cache_page(vma, address, page_to_pfn(page));
932 pteval = ptep_clear_flush_notify(vma, address, pte);
934 /* Move the dirty bit to the physical page now the pte is gone. */
935 if (pte_dirty(pteval))
936 set_page_dirty(page);
938 /* Update high watermark before we lower rss */
939 update_hiwater_rss(mm);
941 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
942 if (PageAnon(page))
943 dec_mm_counter(mm, MM_ANONPAGES);
944 else
945 dec_mm_counter(mm, MM_FILEPAGES);
946 set_pte_at(mm, address, pte,
947 swp_entry_to_pte(make_hwpoison_entry(page)));
948 } else if (PageAnon(page)) {
949 swp_entry_t entry = { .val = page_private(page) };
951 if (PageSwapCache(page)) {
953 * Store the swap location in the pte.
954 * See handle_pte_fault() ...
956 if (swap_duplicate(entry) < 0) {
957 set_pte_at(mm, address, pte, pteval);
958 ret = SWAP_FAIL;
959 goto out_unmap;
961 if (list_empty(&mm->mmlist)) {
962 spin_lock(&mmlist_lock);
963 if (list_empty(&mm->mmlist))
964 list_add(&mm->mmlist, &init_mm.mmlist);
965 spin_unlock(&mmlist_lock);
967 dec_mm_counter(mm, MM_ANONPAGES);
968 inc_mm_counter(mm, MM_SWAPENTS);
969 } else if (PAGE_MIGRATION) {
971 * Store the pfn of the page in a special migration
972 * pte. do_swap_page() will wait until the migration
973 * pte is removed and then restart fault handling.
975 BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
976 entry = make_migration_entry(page, pte_write(pteval));
978 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
979 BUG_ON(pte_file(*pte));
980 } else if (PAGE_MIGRATION && (TTU_ACTION(flags) == TTU_MIGRATION)) {
981 /* Establish migration entry for a file page */
982 swp_entry_t entry;
983 entry = make_migration_entry(page, pte_write(pteval));
984 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
985 } else
986 dec_mm_counter(mm, MM_FILEPAGES);
988 page_remove_rmap(page);
989 page_cache_release(page);
991 out_unmap:
992 pte_unmap_unlock(pte, ptl);
993 out:
994 return ret;
996 out_mlock:
997 pte_unmap_unlock(pte, ptl);
1001 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1002 * unstable result and race. Plus, We can't wait here because
1003 * we now hold anon_vma->lock or mapping->i_mmap_lock.
1004 * if trylock failed, the page remain in evictable lru and later
1005 * vmscan could retry to move the page to unevictable lru if the
1006 * page is actually mlocked.
1008 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1009 if (vma->vm_flags & VM_LOCKED) {
1010 mlock_vma_page(page);
1011 ret = SWAP_MLOCK;
1013 up_read(&vma->vm_mm->mmap_sem);
1015 return ret;
1019 * objrmap doesn't work for nonlinear VMAs because the assumption that
1020 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
1021 * Consequently, given a particular page and its ->index, we cannot locate the
1022 * ptes which are mapping that page without an exhaustive linear search.
1024 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
1025 * maps the file to which the target page belongs. The ->vm_private_data field
1026 * holds the current cursor into that scan. Successive searches will circulate
1027 * around the vma's virtual address space.
1029 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
1030 * more scanning pressure is placed against them as well. Eventually pages
1031 * will become fully unmapped and are eligible for eviction.
1033 * For very sparsely populated VMAs this is a little inefficient - chances are
1034 * there there won't be many ptes located within the scan cluster. In this case
1035 * maybe we could scan further - to the end of the pte page, perhaps.
1037 * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
1038 * acquire it without blocking. If vma locked, mlock the pages in the cluster,
1039 * rather than unmapping them. If we encounter the "check_page" that vmscan is
1040 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
1042 #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
1043 #define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
1045 static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
1046 struct vm_area_struct *vma, struct page *check_page)
1048 struct mm_struct *mm = vma->vm_mm;
1049 pgd_t *pgd;
1050 pud_t *pud;
1051 pmd_t *pmd;
1052 pte_t *pte;
1053 pte_t pteval;
1054 spinlock_t *ptl;
1055 struct page *page;
1056 unsigned long address;
1057 unsigned long end;
1058 int ret = SWAP_AGAIN;
1059 int locked_vma = 0;
1061 address = (vma->vm_start + cursor) & CLUSTER_MASK;
1062 end = address + CLUSTER_SIZE;
1063 if (address < vma->vm_start)
1064 address = vma->vm_start;
1065 if (end > vma->vm_end)
1066 end = vma->vm_end;
1068 pgd = pgd_offset(mm, address);
1069 if (!pgd_present(*pgd))
1070 return ret;
1072 pud = pud_offset(pgd, address);
1073 if (!pud_present(*pud))
1074 return ret;
1076 pmd = pmd_offset(pud, address);
1077 if (!pmd_present(*pmd))
1078 return ret;
1081 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
1082 * keep the sem while scanning the cluster for mlocking pages.
1084 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1085 locked_vma = (vma->vm_flags & VM_LOCKED);
1086 if (!locked_vma)
1087 up_read(&vma->vm_mm->mmap_sem); /* don't need it */
1090 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1092 /* Update high watermark before we lower rss */
1093 update_hiwater_rss(mm);
1095 for (; address < end; pte++, address += PAGE_SIZE) {
1096 if (!pte_present(*pte))
1097 continue;
1098 page = vm_normal_page(vma, address, *pte);
1099 BUG_ON(!page || PageAnon(page));
1101 if (locked_vma) {
1102 mlock_vma_page(page); /* no-op if already mlocked */
1103 if (page == check_page)
1104 ret = SWAP_MLOCK;
1105 continue; /* don't unmap */
1108 if (ptep_clear_flush_young_notify(vma, address, pte))
1109 continue;
1111 /* Nuke the page table entry. */
1112 flush_cache_page(vma, address, pte_pfn(*pte));
1113 pteval = ptep_clear_flush_notify(vma, address, pte);
1115 /* If nonlinear, store the file page offset in the pte. */
1116 if (page->index != linear_page_index(vma, address))
1117 set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
1119 /* Move the dirty bit to the physical page now the pte is gone. */
1120 if (pte_dirty(pteval))
1121 set_page_dirty(page);
1123 page_remove_rmap(page);
1124 page_cache_release(page);
1125 dec_mm_counter(mm, MM_FILEPAGES);
1126 (*mapcount)--;
1128 pte_unmap_unlock(pte - 1, ptl);
1129 if (locked_vma)
1130 up_read(&vma->vm_mm->mmap_sem);
1131 return ret;
1135 * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
1136 * rmap method
1137 * @page: the page to unmap/unlock
1138 * @flags: action and flags
1140 * Find all the mappings of a page using the mapping pointer and the vma chains
1141 * contained in the anon_vma struct it points to.
1143 * This function is only called from try_to_unmap/try_to_munlock for
1144 * anonymous pages.
1145 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1146 * where the page was found will be held for write. So, we won't recheck
1147 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1148 * 'LOCKED.
1150 static int try_to_unmap_anon(struct page *page, enum ttu_flags flags)
1152 struct anon_vma *anon_vma;
1153 struct anon_vma_chain *avc;
1154 int ret = SWAP_AGAIN;
1156 anon_vma = page_lock_anon_vma(page);
1157 if (!anon_vma)
1158 return ret;
1160 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1161 struct vm_area_struct *vma = avc->vma;
1162 unsigned long address = vma_address(page, vma);
1163 if (address == -EFAULT)
1164 continue;
1165 ret = try_to_unmap_one(page, vma, address, flags);
1166 if (ret != SWAP_AGAIN || !page_mapped(page))
1167 break;
1170 page_unlock_anon_vma(anon_vma);
1171 return ret;
1175 * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
1176 * @page: the page to unmap/unlock
1177 * @flags: action and flags
1179 * Find all the mappings of a page using the mapping pointer and the vma chains
1180 * contained in the address_space struct it points to.
1182 * This function is only called from try_to_unmap/try_to_munlock for
1183 * object-based pages.
1184 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1185 * where the page was found will be held for write. So, we won't recheck
1186 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1187 * 'LOCKED.
1189 static int try_to_unmap_file(struct page *page, enum ttu_flags flags)
1191 struct address_space *mapping = page->mapping;
1192 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1193 struct vm_area_struct *vma;
1194 struct prio_tree_iter iter;
1195 int ret = SWAP_AGAIN;
1196 unsigned long cursor;
1197 unsigned long max_nl_cursor = 0;
1198 unsigned long max_nl_size = 0;
1199 unsigned int mapcount;
1201 spin_lock(&mapping->i_mmap_lock);
1202 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1203 unsigned long address = vma_address(page, vma);
1204 if (address == -EFAULT)
1205 continue;
1206 ret = try_to_unmap_one(page, vma, address, flags);
1207 if (ret != SWAP_AGAIN || !page_mapped(page))
1208 goto out;
1211 if (list_empty(&mapping->i_mmap_nonlinear))
1212 goto out;
1215 * We don't bother to try to find the munlocked page in nonlinears.
1216 * It's costly. Instead, later, page reclaim logic may call
1217 * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
1219 if (TTU_ACTION(flags) == TTU_MUNLOCK)
1220 goto out;
1222 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1223 shared.vm_set.list) {
1224 cursor = (unsigned long) vma->vm_private_data;
1225 if (cursor > max_nl_cursor)
1226 max_nl_cursor = cursor;
1227 cursor = vma->vm_end - vma->vm_start;
1228 if (cursor > max_nl_size)
1229 max_nl_size = cursor;
1232 if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */
1233 ret = SWAP_FAIL;
1234 goto out;
1238 * We don't try to search for this page in the nonlinear vmas,
1239 * and page_referenced wouldn't have found it anyway. Instead
1240 * just walk the nonlinear vmas trying to age and unmap some.
1241 * The mapcount of the page we came in with is irrelevant,
1242 * but even so use it as a guide to how hard we should try?
1244 mapcount = page_mapcount(page);
1245 if (!mapcount)
1246 goto out;
1247 cond_resched_lock(&mapping->i_mmap_lock);
1249 max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
1250 if (max_nl_cursor == 0)
1251 max_nl_cursor = CLUSTER_SIZE;
1253 do {
1254 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1255 shared.vm_set.list) {
1256 cursor = (unsigned long) vma->vm_private_data;
1257 while ( cursor < max_nl_cursor &&
1258 cursor < vma->vm_end - vma->vm_start) {
1259 if (try_to_unmap_cluster(cursor, &mapcount,
1260 vma, page) == SWAP_MLOCK)
1261 ret = SWAP_MLOCK;
1262 cursor += CLUSTER_SIZE;
1263 vma->vm_private_data = (void *) cursor;
1264 if ((int)mapcount <= 0)
1265 goto out;
1267 vma->vm_private_data = (void *) max_nl_cursor;
1269 cond_resched_lock(&mapping->i_mmap_lock);
1270 max_nl_cursor += CLUSTER_SIZE;
1271 } while (max_nl_cursor <= max_nl_size);
1274 * Don't loop forever (perhaps all the remaining pages are
1275 * in locked vmas). Reset cursor on all unreserved nonlinear
1276 * vmas, now forgetting on which ones it had fallen behind.
1278 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1279 vma->vm_private_data = NULL;
1280 out:
1281 spin_unlock(&mapping->i_mmap_lock);
1282 return ret;
1286 * try_to_unmap - try to remove all page table mappings to a page
1287 * @page: the page to get unmapped
1288 * @flags: action and flags
1290 * Tries to remove all the page table entries which are mapping this
1291 * page, used in the pageout path. Caller must hold the page lock.
1292 * Return values are:
1294 * SWAP_SUCCESS - we succeeded in removing all mappings
1295 * SWAP_AGAIN - we missed a mapping, try again later
1296 * SWAP_FAIL - the page is unswappable
1297 * SWAP_MLOCK - page is mlocked.
1299 int try_to_unmap(struct page *page, enum ttu_flags flags)
1301 int ret;
1303 BUG_ON(!PageLocked(page));
1305 if (unlikely(PageKsm(page)))
1306 ret = try_to_unmap_ksm(page, flags);
1307 else if (PageAnon(page))
1308 ret = try_to_unmap_anon(page, flags);
1309 else
1310 ret = try_to_unmap_file(page, flags);
1311 if (ret != SWAP_MLOCK && !page_mapped(page))
1312 ret = SWAP_SUCCESS;
1313 return ret;
1317 * try_to_munlock - try to munlock a page
1318 * @page: the page to be munlocked
1320 * Called from munlock code. Checks all of the VMAs mapping the page
1321 * to make sure nobody else has this page mlocked. The page will be
1322 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1324 * Return values are:
1326 * SWAP_AGAIN - no vma is holding page mlocked, or,
1327 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
1328 * SWAP_FAIL - page cannot be located at present
1329 * SWAP_MLOCK - page is now mlocked.
1331 int try_to_munlock(struct page *page)
1333 VM_BUG_ON(!PageLocked(page) || PageLRU(page));
1335 if (unlikely(PageKsm(page)))
1336 return try_to_unmap_ksm(page, TTU_MUNLOCK);
1337 else if (PageAnon(page))
1338 return try_to_unmap_anon(page, TTU_MUNLOCK);
1339 else
1340 return try_to_unmap_file(page, TTU_MUNLOCK);
1343 #ifdef CONFIG_MIGRATION
1345 * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file():
1346 * Called by migrate.c to remove migration ptes, but might be used more later.
1348 static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *,
1349 struct vm_area_struct *, unsigned long, void *), void *arg)
1351 struct anon_vma *anon_vma;
1352 struct anon_vma_chain *avc;
1353 int ret = SWAP_AGAIN;
1356 * Note: remove_migration_ptes() cannot use page_lock_anon_vma()
1357 * because that depends on page_mapped(); but not all its usages
1358 * are holding mmap_sem, which also gave the necessary guarantee
1359 * (that this anon_vma's slab has not already been destroyed).
1360 * This needs to be reviewed later: avoiding page_lock_anon_vma()
1361 * is risky, and currently limits the usefulness of rmap_walk().
1363 anon_vma = page_anon_vma(page);
1364 if (!anon_vma)
1365 return ret;
1366 spin_lock(&anon_vma->lock);
1367 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1368 struct vm_area_struct *vma = avc->vma;
1369 unsigned long address = vma_address(page, vma);
1370 if (address == -EFAULT)
1371 continue;
1372 ret = rmap_one(page, vma, address, arg);
1373 if (ret != SWAP_AGAIN)
1374 break;
1376 spin_unlock(&anon_vma->lock);
1377 return ret;
1380 static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *,
1381 struct vm_area_struct *, unsigned long, void *), void *arg)
1383 struct address_space *mapping = page->mapping;
1384 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1385 struct vm_area_struct *vma;
1386 struct prio_tree_iter iter;
1387 int ret = SWAP_AGAIN;
1389 if (!mapping)
1390 return ret;
1391 spin_lock(&mapping->i_mmap_lock);
1392 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1393 unsigned long address = vma_address(page, vma);
1394 if (address == -EFAULT)
1395 continue;
1396 ret = rmap_one(page, vma, address, arg);
1397 if (ret != SWAP_AGAIN)
1398 break;
1401 * No nonlinear handling: being always shared, nonlinear vmas
1402 * never contain migration ptes. Decide what to do about this
1403 * limitation to linear when we need rmap_walk() on nonlinear.
1405 spin_unlock(&mapping->i_mmap_lock);
1406 return ret;
1409 int rmap_walk(struct page *page, int (*rmap_one)(struct page *,
1410 struct vm_area_struct *, unsigned long, void *), void *arg)
1412 VM_BUG_ON(!PageLocked(page));
1414 if (unlikely(PageKsm(page)))
1415 return rmap_walk_ksm(page, rmap_one, arg);
1416 else if (PageAnon(page))
1417 return rmap_walk_anon(page, rmap_one, arg);
1418 else
1419 return rmap_walk_file(page, rmap_one, arg);
1421 #endif /* CONFIG_MIGRATION */