igb: when number of CPUs > 4 combine tx/rx queues to allow more queues
[linux-2.6.git] / drivers / net / igb / igb_main.c
blob0235220a1d296c8c48f585f313541bed1f265059
1 /*******************************************************************************
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007-2009 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 *******************************************************************************/
28 #include <linux/module.h>
29 #include <linux/types.h>
30 #include <linux/init.h>
31 #include <linux/vmalloc.h>
32 #include <linux/pagemap.h>
33 #include <linux/netdevice.h>
34 #include <linux/ipv6.h>
35 #include <net/checksum.h>
36 #include <net/ip6_checksum.h>
37 #include <linux/net_tstamp.h>
38 #include <linux/mii.h>
39 #include <linux/ethtool.h>
40 #include <linux/if_vlan.h>
41 #include <linux/pci.h>
42 #include <linux/pci-aspm.h>
43 #include <linux/delay.h>
44 #include <linux/interrupt.h>
45 #include <linux/if_ether.h>
46 #include <linux/aer.h>
47 #ifdef CONFIG_IGB_DCA
48 #include <linux/dca.h>
49 #endif
50 #include "igb.h"
52 #define DRV_VERSION "1.3.16-k2"
53 char igb_driver_name[] = "igb";
54 char igb_driver_version[] = DRV_VERSION;
55 static const char igb_driver_string[] =
56 "Intel(R) Gigabit Ethernet Network Driver";
57 static const char igb_copyright[] = "Copyright (c) 2007-2009 Intel Corporation.";
59 static const struct e1000_info *igb_info_tbl[] = {
60 [board_82575] = &e1000_82575_info,
63 static struct pci_device_id igb_pci_tbl[] = {
64 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
65 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
66 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
67 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
68 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
69 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
70 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
71 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
72 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
73 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
74 /* required last entry */
75 {0, }
78 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
80 void igb_reset(struct igb_adapter *);
81 static int igb_setup_all_tx_resources(struct igb_adapter *);
82 static int igb_setup_all_rx_resources(struct igb_adapter *);
83 static void igb_free_all_tx_resources(struct igb_adapter *);
84 static void igb_free_all_rx_resources(struct igb_adapter *);
85 static void igb_setup_mrqc(struct igb_adapter *);
86 void igb_update_stats(struct igb_adapter *);
87 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
88 static void __devexit igb_remove(struct pci_dev *pdev);
89 static int igb_sw_init(struct igb_adapter *);
90 static int igb_open(struct net_device *);
91 static int igb_close(struct net_device *);
92 static void igb_configure_tx(struct igb_adapter *);
93 static void igb_configure_rx(struct igb_adapter *);
94 static void igb_clean_all_tx_rings(struct igb_adapter *);
95 static void igb_clean_all_rx_rings(struct igb_adapter *);
96 static void igb_clean_tx_ring(struct igb_ring *);
97 static void igb_clean_rx_ring(struct igb_ring *);
98 static void igb_set_rx_mode(struct net_device *);
99 static void igb_update_phy_info(unsigned long);
100 static void igb_watchdog(unsigned long);
101 static void igb_watchdog_task(struct work_struct *);
102 static netdev_tx_t igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *);
103 static struct net_device_stats *igb_get_stats(struct net_device *);
104 static int igb_change_mtu(struct net_device *, int);
105 static int igb_set_mac(struct net_device *, void *);
106 static void igb_set_uta(struct igb_adapter *adapter);
107 static irqreturn_t igb_intr(int irq, void *);
108 static irqreturn_t igb_intr_msi(int irq, void *);
109 static irqreturn_t igb_msix_other(int irq, void *);
110 static irqreturn_t igb_msix_ring(int irq, void *);
111 #ifdef CONFIG_IGB_DCA
112 static void igb_update_dca(struct igb_q_vector *);
113 static void igb_setup_dca(struct igb_adapter *);
114 #endif /* CONFIG_IGB_DCA */
115 static bool igb_clean_tx_irq(struct igb_q_vector *);
116 static int igb_poll(struct napi_struct *, int);
117 static bool igb_clean_rx_irq_adv(struct igb_q_vector *, int *, int);
118 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
119 static void igb_tx_timeout(struct net_device *);
120 static void igb_reset_task(struct work_struct *);
121 static void igb_vlan_rx_register(struct net_device *, struct vlan_group *);
122 static void igb_vlan_rx_add_vid(struct net_device *, u16);
123 static void igb_vlan_rx_kill_vid(struct net_device *, u16);
124 static void igb_restore_vlan(struct igb_adapter *);
125 static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
126 static void igb_ping_all_vfs(struct igb_adapter *);
127 static void igb_msg_task(struct igb_adapter *);
128 static void igb_vmm_control(struct igb_adapter *);
129 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
130 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
132 #ifdef CONFIG_PM
133 static int igb_suspend(struct pci_dev *, pm_message_t);
134 static int igb_resume(struct pci_dev *);
135 #endif
136 static void igb_shutdown(struct pci_dev *);
137 #ifdef CONFIG_IGB_DCA
138 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
139 static struct notifier_block dca_notifier = {
140 .notifier_call = igb_notify_dca,
141 .next = NULL,
142 .priority = 0
144 #endif
145 #ifdef CONFIG_NET_POLL_CONTROLLER
146 /* for netdump / net console */
147 static void igb_netpoll(struct net_device *);
148 #endif
149 #ifdef CONFIG_PCI_IOV
150 static unsigned int max_vfs = 0;
151 module_param(max_vfs, uint, 0);
152 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
153 "per physical function");
154 #endif /* CONFIG_PCI_IOV */
156 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
157 pci_channel_state_t);
158 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
159 static void igb_io_resume(struct pci_dev *);
161 static struct pci_error_handlers igb_err_handler = {
162 .error_detected = igb_io_error_detected,
163 .slot_reset = igb_io_slot_reset,
164 .resume = igb_io_resume,
168 static struct pci_driver igb_driver = {
169 .name = igb_driver_name,
170 .id_table = igb_pci_tbl,
171 .probe = igb_probe,
172 .remove = __devexit_p(igb_remove),
173 #ifdef CONFIG_PM
174 /* Power Managment Hooks */
175 .suspend = igb_suspend,
176 .resume = igb_resume,
177 #endif
178 .shutdown = igb_shutdown,
179 .err_handler = &igb_err_handler
182 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
183 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
184 MODULE_LICENSE("GPL");
185 MODULE_VERSION(DRV_VERSION);
188 * igb_read_clock - read raw cycle counter (to be used by time counter)
190 static cycle_t igb_read_clock(const struct cyclecounter *tc)
192 struct igb_adapter *adapter =
193 container_of(tc, struct igb_adapter, cycles);
194 struct e1000_hw *hw = &adapter->hw;
195 u64 stamp = 0;
196 int shift = 0;
198 stamp |= (u64)rd32(E1000_SYSTIML) << shift;
199 stamp |= (u64)rd32(E1000_SYSTIMH) << (shift + 32);
200 return stamp;
203 #ifdef DEBUG
205 * igb_get_hw_dev_name - return device name string
206 * used by hardware layer to print debugging information
208 char *igb_get_hw_dev_name(struct e1000_hw *hw)
210 struct igb_adapter *adapter = hw->back;
211 return adapter->netdev->name;
215 * igb_get_time_str - format current NIC and system time as string
217 static char *igb_get_time_str(struct igb_adapter *adapter,
218 char buffer[160])
220 cycle_t hw = adapter->cycles.read(&adapter->cycles);
221 struct timespec nic = ns_to_timespec(timecounter_read(&adapter->clock));
222 struct timespec sys;
223 struct timespec delta;
224 getnstimeofday(&sys);
226 delta = timespec_sub(nic, sys);
228 sprintf(buffer,
229 "HW %llu, NIC %ld.%09lus, SYS %ld.%09lus, NIC-SYS %lds + %09luns",
231 (long)nic.tv_sec, nic.tv_nsec,
232 (long)sys.tv_sec, sys.tv_nsec,
233 (long)delta.tv_sec, delta.tv_nsec);
235 return buffer;
237 #endif
240 * igb_init_module - Driver Registration Routine
242 * igb_init_module is the first routine called when the driver is
243 * loaded. All it does is register with the PCI subsystem.
245 static int __init igb_init_module(void)
247 int ret;
248 printk(KERN_INFO "%s - version %s\n",
249 igb_driver_string, igb_driver_version);
251 printk(KERN_INFO "%s\n", igb_copyright);
253 #ifdef CONFIG_IGB_DCA
254 dca_register_notify(&dca_notifier);
255 #endif
256 ret = pci_register_driver(&igb_driver);
257 return ret;
260 module_init(igb_init_module);
263 * igb_exit_module - Driver Exit Cleanup Routine
265 * igb_exit_module is called just before the driver is removed
266 * from memory.
268 static void __exit igb_exit_module(void)
270 #ifdef CONFIG_IGB_DCA
271 dca_unregister_notify(&dca_notifier);
272 #endif
273 pci_unregister_driver(&igb_driver);
276 module_exit(igb_exit_module);
278 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
280 * igb_cache_ring_register - Descriptor ring to register mapping
281 * @adapter: board private structure to initialize
283 * Once we know the feature-set enabled for the device, we'll cache
284 * the register offset the descriptor ring is assigned to.
286 static void igb_cache_ring_register(struct igb_adapter *adapter)
288 int i = 0, j = 0;
289 u32 rbase_offset = adapter->vfs_allocated_count;
291 switch (adapter->hw.mac.type) {
292 case e1000_82576:
293 /* The queues are allocated for virtualization such that VF 0
294 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
295 * In order to avoid collision we start at the first free queue
296 * and continue consuming queues in the same sequence
298 if (adapter->vfs_allocated_count) {
299 for (; i < adapter->rss_queues; i++)
300 adapter->rx_ring[i].reg_idx = rbase_offset +
301 Q_IDX_82576(i);
302 for (; j < adapter->rss_queues; j++)
303 adapter->tx_ring[j].reg_idx = rbase_offset +
304 Q_IDX_82576(j);
306 case e1000_82575:
307 default:
308 for (; i < adapter->num_rx_queues; i++)
309 adapter->rx_ring[i].reg_idx = rbase_offset + i;
310 for (; j < adapter->num_tx_queues; j++)
311 adapter->tx_ring[j].reg_idx = rbase_offset + j;
312 break;
316 static void igb_free_queues(struct igb_adapter *adapter)
318 kfree(adapter->tx_ring);
319 kfree(adapter->rx_ring);
321 adapter->tx_ring = NULL;
322 adapter->rx_ring = NULL;
324 adapter->num_rx_queues = 0;
325 adapter->num_tx_queues = 0;
329 * igb_alloc_queues - Allocate memory for all rings
330 * @adapter: board private structure to initialize
332 * We allocate one ring per queue at run-time since we don't know the
333 * number of queues at compile-time.
335 static int igb_alloc_queues(struct igb_adapter *adapter)
337 int i;
339 adapter->tx_ring = kcalloc(adapter->num_tx_queues,
340 sizeof(struct igb_ring), GFP_KERNEL);
341 if (!adapter->tx_ring)
342 goto err;
344 adapter->rx_ring = kcalloc(adapter->num_rx_queues,
345 sizeof(struct igb_ring), GFP_KERNEL);
346 if (!adapter->rx_ring)
347 goto err;
349 for (i = 0; i < adapter->num_tx_queues; i++) {
350 struct igb_ring *ring = &(adapter->tx_ring[i]);
351 ring->count = adapter->tx_ring_count;
352 ring->queue_index = i;
353 ring->pdev = adapter->pdev;
354 ring->netdev = adapter->netdev;
355 /* For 82575, context index must be unique per ring. */
356 if (adapter->hw.mac.type == e1000_82575)
357 ring->flags = IGB_RING_FLAG_TX_CTX_IDX;
360 for (i = 0; i < adapter->num_rx_queues; i++) {
361 struct igb_ring *ring = &(adapter->rx_ring[i]);
362 ring->count = adapter->rx_ring_count;
363 ring->queue_index = i;
364 ring->pdev = adapter->pdev;
365 ring->netdev = adapter->netdev;
366 ring->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
367 ring->flags = IGB_RING_FLAG_RX_CSUM; /* enable rx checksum */
368 /* set flag indicating ring supports SCTP checksum offload */
369 if (adapter->hw.mac.type >= e1000_82576)
370 ring->flags |= IGB_RING_FLAG_RX_SCTP_CSUM;
373 igb_cache_ring_register(adapter);
375 return 0;
377 err:
378 igb_free_queues(adapter);
380 return -ENOMEM;
383 #define IGB_N0_QUEUE -1
384 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
386 u32 msixbm = 0;
387 struct igb_adapter *adapter = q_vector->adapter;
388 struct e1000_hw *hw = &adapter->hw;
389 u32 ivar, index;
390 int rx_queue = IGB_N0_QUEUE;
391 int tx_queue = IGB_N0_QUEUE;
393 if (q_vector->rx_ring)
394 rx_queue = q_vector->rx_ring->reg_idx;
395 if (q_vector->tx_ring)
396 tx_queue = q_vector->tx_ring->reg_idx;
398 switch (hw->mac.type) {
399 case e1000_82575:
400 /* The 82575 assigns vectors using a bitmask, which matches the
401 bitmask for the EICR/EIMS/EIMC registers. To assign one
402 or more queues to a vector, we write the appropriate bits
403 into the MSIXBM register for that vector. */
404 if (rx_queue > IGB_N0_QUEUE)
405 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
406 if (tx_queue > IGB_N0_QUEUE)
407 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
408 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
409 q_vector->eims_value = msixbm;
410 break;
411 case e1000_82576:
412 /* 82576 uses a table-based method for assigning vectors.
413 Each queue has a single entry in the table to which we write
414 a vector number along with a "valid" bit. Sadly, the layout
415 of the table is somewhat counterintuitive. */
416 if (rx_queue > IGB_N0_QUEUE) {
417 index = (rx_queue & 0x7);
418 ivar = array_rd32(E1000_IVAR0, index);
419 if (rx_queue < 8) {
420 /* vector goes into low byte of register */
421 ivar = ivar & 0xFFFFFF00;
422 ivar |= msix_vector | E1000_IVAR_VALID;
423 } else {
424 /* vector goes into third byte of register */
425 ivar = ivar & 0xFF00FFFF;
426 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
428 array_wr32(E1000_IVAR0, index, ivar);
430 if (tx_queue > IGB_N0_QUEUE) {
431 index = (tx_queue & 0x7);
432 ivar = array_rd32(E1000_IVAR0, index);
433 if (tx_queue < 8) {
434 /* vector goes into second byte of register */
435 ivar = ivar & 0xFFFF00FF;
436 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
437 } else {
438 /* vector goes into high byte of register */
439 ivar = ivar & 0x00FFFFFF;
440 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
442 array_wr32(E1000_IVAR0, index, ivar);
444 q_vector->eims_value = 1 << msix_vector;
445 break;
446 default:
447 BUG();
448 break;
453 * igb_configure_msix - Configure MSI-X hardware
455 * igb_configure_msix sets up the hardware to properly
456 * generate MSI-X interrupts.
458 static void igb_configure_msix(struct igb_adapter *adapter)
460 u32 tmp;
461 int i, vector = 0;
462 struct e1000_hw *hw = &adapter->hw;
464 adapter->eims_enable_mask = 0;
466 /* set vector for other causes, i.e. link changes */
467 switch (hw->mac.type) {
468 case e1000_82575:
469 tmp = rd32(E1000_CTRL_EXT);
470 /* enable MSI-X PBA support*/
471 tmp |= E1000_CTRL_EXT_PBA_CLR;
473 /* Auto-Mask interrupts upon ICR read. */
474 tmp |= E1000_CTRL_EXT_EIAME;
475 tmp |= E1000_CTRL_EXT_IRCA;
477 wr32(E1000_CTRL_EXT, tmp);
479 /* enable msix_other interrupt */
480 array_wr32(E1000_MSIXBM(0), vector++,
481 E1000_EIMS_OTHER);
482 adapter->eims_other = E1000_EIMS_OTHER;
484 break;
486 case e1000_82576:
487 /* Turn on MSI-X capability first, or our settings
488 * won't stick. And it will take days to debug. */
489 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
490 E1000_GPIE_PBA | E1000_GPIE_EIAME |
491 E1000_GPIE_NSICR);
493 /* enable msix_other interrupt */
494 adapter->eims_other = 1 << vector;
495 tmp = (vector++ | E1000_IVAR_VALID) << 8;
497 wr32(E1000_IVAR_MISC, tmp);
498 break;
499 default:
500 /* do nothing, since nothing else supports MSI-X */
501 break;
502 } /* switch (hw->mac.type) */
504 adapter->eims_enable_mask |= adapter->eims_other;
506 for (i = 0; i < adapter->num_q_vectors; i++) {
507 struct igb_q_vector *q_vector = adapter->q_vector[i];
508 igb_assign_vector(q_vector, vector++);
509 adapter->eims_enable_mask |= q_vector->eims_value;
512 wrfl();
516 * igb_request_msix - Initialize MSI-X interrupts
518 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
519 * kernel.
521 static int igb_request_msix(struct igb_adapter *adapter)
523 struct net_device *netdev = adapter->netdev;
524 struct e1000_hw *hw = &adapter->hw;
525 int i, err = 0, vector = 0;
527 err = request_irq(adapter->msix_entries[vector].vector,
528 &igb_msix_other, 0, netdev->name, adapter);
529 if (err)
530 goto out;
531 vector++;
533 for (i = 0; i < adapter->num_q_vectors; i++) {
534 struct igb_q_vector *q_vector = adapter->q_vector[i];
536 q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
538 if (q_vector->rx_ring && q_vector->tx_ring)
539 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
540 q_vector->rx_ring->queue_index);
541 else if (q_vector->tx_ring)
542 sprintf(q_vector->name, "%s-tx-%u", netdev->name,
543 q_vector->tx_ring->queue_index);
544 else if (q_vector->rx_ring)
545 sprintf(q_vector->name, "%s-rx-%u", netdev->name,
546 q_vector->rx_ring->queue_index);
547 else
548 sprintf(q_vector->name, "%s-unused", netdev->name);
550 err = request_irq(adapter->msix_entries[vector].vector,
551 &igb_msix_ring, 0, q_vector->name,
552 q_vector);
553 if (err)
554 goto out;
555 vector++;
558 igb_configure_msix(adapter);
559 return 0;
560 out:
561 return err;
564 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
566 if (adapter->msix_entries) {
567 pci_disable_msix(adapter->pdev);
568 kfree(adapter->msix_entries);
569 adapter->msix_entries = NULL;
570 } else if (adapter->flags & IGB_FLAG_HAS_MSI) {
571 pci_disable_msi(adapter->pdev);
576 * igb_free_q_vectors - Free memory allocated for interrupt vectors
577 * @adapter: board private structure to initialize
579 * This function frees the memory allocated to the q_vectors. In addition if
580 * NAPI is enabled it will delete any references to the NAPI struct prior
581 * to freeing the q_vector.
583 static void igb_free_q_vectors(struct igb_adapter *adapter)
585 int v_idx;
587 for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
588 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
589 adapter->q_vector[v_idx] = NULL;
590 netif_napi_del(&q_vector->napi);
591 kfree(q_vector);
593 adapter->num_q_vectors = 0;
597 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
599 * This function resets the device so that it has 0 rx queues, tx queues, and
600 * MSI-X interrupts allocated.
602 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
604 igb_free_queues(adapter);
605 igb_free_q_vectors(adapter);
606 igb_reset_interrupt_capability(adapter);
610 * igb_set_interrupt_capability - set MSI or MSI-X if supported
612 * Attempt to configure interrupts using the best available
613 * capabilities of the hardware and kernel.
615 static void igb_set_interrupt_capability(struct igb_adapter *adapter)
617 int err;
618 int numvecs, i;
620 /* Number of supported queues. */
621 adapter->num_rx_queues = adapter->rss_queues;
622 adapter->num_tx_queues = adapter->rss_queues;
624 /* start with one vector for every rx queue */
625 numvecs = adapter->num_rx_queues;
627 /* if tx handler is seperate add 1 for every tx queue */
628 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
629 numvecs += adapter->num_tx_queues;
631 /* store the number of vectors reserved for queues */
632 adapter->num_q_vectors = numvecs;
634 /* add 1 vector for link status interrupts */
635 numvecs++;
636 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
637 GFP_KERNEL);
638 if (!adapter->msix_entries)
639 goto msi_only;
641 for (i = 0; i < numvecs; i++)
642 adapter->msix_entries[i].entry = i;
644 err = pci_enable_msix(adapter->pdev,
645 adapter->msix_entries,
646 numvecs);
647 if (err == 0)
648 goto out;
650 igb_reset_interrupt_capability(adapter);
652 /* If we can't do MSI-X, try MSI */
653 msi_only:
654 #ifdef CONFIG_PCI_IOV
655 /* disable SR-IOV for non MSI-X configurations */
656 if (adapter->vf_data) {
657 struct e1000_hw *hw = &adapter->hw;
658 /* disable iov and allow time for transactions to clear */
659 pci_disable_sriov(adapter->pdev);
660 msleep(500);
662 kfree(adapter->vf_data);
663 adapter->vf_data = NULL;
664 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
665 msleep(100);
666 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
668 #endif
669 adapter->vfs_allocated_count = 0;
670 adapter->rss_queues = 1;
671 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
672 adapter->num_rx_queues = 1;
673 adapter->num_tx_queues = 1;
674 adapter->num_q_vectors = 1;
675 if (!pci_enable_msi(adapter->pdev))
676 adapter->flags |= IGB_FLAG_HAS_MSI;
677 out:
678 /* Notify the stack of the (possibly) reduced Tx Queue count. */
679 adapter->netdev->real_num_tx_queues = adapter->num_tx_queues;
680 return;
684 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
685 * @adapter: board private structure to initialize
687 * We allocate one q_vector per queue interrupt. If allocation fails we
688 * return -ENOMEM.
690 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
692 struct igb_q_vector *q_vector;
693 struct e1000_hw *hw = &adapter->hw;
694 int v_idx;
696 for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
697 q_vector = kzalloc(sizeof(struct igb_q_vector), GFP_KERNEL);
698 if (!q_vector)
699 goto err_out;
700 q_vector->adapter = adapter;
701 q_vector->itr_shift = (hw->mac.type == e1000_82575) ? 16 : 0;
702 q_vector->itr_register = hw->hw_addr + E1000_EITR(0);
703 q_vector->itr_val = IGB_START_ITR;
704 q_vector->set_itr = 1;
705 netif_napi_add(adapter->netdev, &q_vector->napi, igb_poll, 64);
706 adapter->q_vector[v_idx] = q_vector;
708 return 0;
710 err_out:
711 while (v_idx) {
712 v_idx--;
713 q_vector = adapter->q_vector[v_idx];
714 netif_napi_del(&q_vector->napi);
715 kfree(q_vector);
716 adapter->q_vector[v_idx] = NULL;
718 return -ENOMEM;
721 static void igb_map_rx_ring_to_vector(struct igb_adapter *adapter,
722 int ring_idx, int v_idx)
724 struct igb_q_vector *q_vector;
726 q_vector = adapter->q_vector[v_idx];
727 q_vector->rx_ring = &adapter->rx_ring[ring_idx];
728 q_vector->rx_ring->q_vector = q_vector;
729 q_vector->itr_val = adapter->rx_itr_setting;
730 if (q_vector->itr_val && q_vector->itr_val <= 3)
731 q_vector->itr_val = IGB_START_ITR;
734 static void igb_map_tx_ring_to_vector(struct igb_adapter *adapter,
735 int ring_idx, int v_idx)
737 struct igb_q_vector *q_vector;
739 q_vector = adapter->q_vector[v_idx];
740 q_vector->tx_ring = &adapter->tx_ring[ring_idx];
741 q_vector->tx_ring->q_vector = q_vector;
742 q_vector->itr_val = adapter->tx_itr_setting;
743 if (q_vector->itr_val && q_vector->itr_val <= 3)
744 q_vector->itr_val = IGB_START_ITR;
748 * igb_map_ring_to_vector - maps allocated queues to vectors
750 * This function maps the recently allocated queues to vectors.
752 static int igb_map_ring_to_vector(struct igb_adapter *adapter)
754 int i;
755 int v_idx = 0;
757 if ((adapter->num_q_vectors < adapter->num_rx_queues) ||
758 (adapter->num_q_vectors < adapter->num_tx_queues))
759 return -ENOMEM;
761 if (adapter->num_q_vectors >=
762 (adapter->num_rx_queues + adapter->num_tx_queues)) {
763 for (i = 0; i < adapter->num_rx_queues; i++)
764 igb_map_rx_ring_to_vector(adapter, i, v_idx++);
765 for (i = 0; i < adapter->num_tx_queues; i++)
766 igb_map_tx_ring_to_vector(adapter, i, v_idx++);
767 } else {
768 for (i = 0; i < adapter->num_rx_queues; i++) {
769 if (i < adapter->num_tx_queues)
770 igb_map_tx_ring_to_vector(adapter, i, v_idx);
771 igb_map_rx_ring_to_vector(adapter, i, v_idx++);
773 for (; i < adapter->num_tx_queues; i++)
774 igb_map_tx_ring_to_vector(adapter, i, v_idx++);
776 return 0;
780 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
782 * This function initializes the interrupts and allocates all of the queues.
784 static int igb_init_interrupt_scheme(struct igb_adapter *adapter)
786 struct pci_dev *pdev = adapter->pdev;
787 int err;
789 igb_set_interrupt_capability(adapter);
791 err = igb_alloc_q_vectors(adapter);
792 if (err) {
793 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
794 goto err_alloc_q_vectors;
797 err = igb_alloc_queues(adapter);
798 if (err) {
799 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
800 goto err_alloc_queues;
803 err = igb_map_ring_to_vector(adapter);
804 if (err) {
805 dev_err(&pdev->dev, "Invalid q_vector to ring mapping\n");
806 goto err_map_queues;
810 return 0;
811 err_map_queues:
812 igb_free_queues(adapter);
813 err_alloc_queues:
814 igb_free_q_vectors(adapter);
815 err_alloc_q_vectors:
816 igb_reset_interrupt_capability(adapter);
817 return err;
821 * igb_request_irq - initialize interrupts
823 * Attempts to configure interrupts using the best available
824 * capabilities of the hardware and kernel.
826 static int igb_request_irq(struct igb_adapter *adapter)
828 struct net_device *netdev = adapter->netdev;
829 struct pci_dev *pdev = adapter->pdev;
830 struct e1000_hw *hw = &adapter->hw;
831 int err = 0;
833 if (adapter->msix_entries) {
834 err = igb_request_msix(adapter);
835 if (!err)
836 goto request_done;
837 /* fall back to MSI */
838 igb_clear_interrupt_scheme(adapter);
839 if (!pci_enable_msi(adapter->pdev))
840 adapter->flags |= IGB_FLAG_HAS_MSI;
841 igb_free_all_tx_resources(adapter);
842 igb_free_all_rx_resources(adapter);
843 adapter->num_tx_queues = 1;
844 adapter->num_rx_queues = 1;
845 adapter->num_q_vectors = 1;
846 err = igb_alloc_q_vectors(adapter);
847 if (err) {
848 dev_err(&pdev->dev,
849 "Unable to allocate memory for vectors\n");
850 goto request_done;
852 err = igb_alloc_queues(adapter);
853 if (err) {
854 dev_err(&pdev->dev,
855 "Unable to allocate memory for queues\n");
856 igb_free_q_vectors(adapter);
857 goto request_done;
859 igb_setup_all_tx_resources(adapter);
860 igb_setup_all_rx_resources(adapter);
861 } else {
862 switch (hw->mac.type) {
863 case e1000_82575:
864 wr32(E1000_MSIXBM(0),
865 (E1000_EICR_RX_QUEUE0 |
866 E1000_EICR_TX_QUEUE0 |
867 E1000_EIMS_OTHER));
868 break;
869 case e1000_82576:
870 wr32(E1000_IVAR0, E1000_IVAR_VALID);
871 break;
872 default:
873 break;
877 if (adapter->flags & IGB_FLAG_HAS_MSI) {
878 err = request_irq(adapter->pdev->irq, &igb_intr_msi, 0,
879 netdev->name, adapter);
880 if (!err)
881 goto request_done;
883 /* fall back to legacy interrupts */
884 igb_reset_interrupt_capability(adapter);
885 adapter->flags &= ~IGB_FLAG_HAS_MSI;
888 err = request_irq(adapter->pdev->irq, &igb_intr, IRQF_SHARED,
889 netdev->name, adapter);
891 if (err)
892 dev_err(&adapter->pdev->dev, "Error %d getting interrupt\n",
893 err);
895 request_done:
896 return err;
899 static void igb_free_irq(struct igb_adapter *adapter)
901 if (adapter->msix_entries) {
902 int vector = 0, i;
904 free_irq(adapter->msix_entries[vector++].vector, adapter);
906 for (i = 0; i < adapter->num_q_vectors; i++) {
907 struct igb_q_vector *q_vector = adapter->q_vector[i];
908 free_irq(adapter->msix_entries[vector++].vector,
909 q_vector);
911 } else {
912 free_irq(adapter->pdev->irq, adapter);
917 * igb_irq_disable - Mask off interrupt generation on the NIC
918 * @adapter: board private structure
920 static void igb_irq_disable(struct igb_adapter *adapter)
922 struct e1000_hw *hw = &adapter->hw;
925 * we need to be careful when disabling interrupts. The VFs are also
926 * mapped into these registers and so clearing the bits can cause
927 * issues on the VF drivers so we only need to clear what we set
929 if (adapter->msix_entries) {
930 u32 regval = rd32(E1000_EIAM);
931 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
932 wr32(E1000_EIMC, adapter->eims_enable_mask);
933 regval = rd32(E1000_EIAC);
934 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
937 wr32(E1000_IAM, 0);
938 wr32(E1000_IMC, ~0);
939 wrfl();
940 synchronize_irq(adapter->pdev->irq);
944 * igb_irq_enable - Enable default interrupt generation settings
945 * @adapter: board private structure
947 static void igb_irq_enable(struct igb_adapter *adapter)
949 struct e1000_hw *hw = &adapter->hw;
951 if (adapter->msix_entries) {
952 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC;
953 u32 regval = rd32(E1000_EIAC);
954 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
955 regval = rd32(E1000_EIAM);
956 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
957 wr32(E1000_EIMS, adapter->eims_enable_mask);
958 if (adapter->vfs_allocated_count) {
959 wr32(E1000_MBVFIMR, 0xFF);
960 ims |= E1000_IMS_VMMB;
962 wr32(E1000_IMS, ims);
963 } else {
964 wr32(E1000_IMS, IMS_ENABLE_MASK);
965 wr32(E1000_IAM, IMS_ENABLE_MASK);
969 static void igb_update_mng_vlan(struct igb_adapter *adapter)
971 struct e1000_hw *hw = &adapter->hw;
972 u16 vid = adapter->hw.mng_cookie.vlan_id;
973 u16 old_vid = adapter->mng_vlan_id;
975 if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
976 /* add VID to filter table */
977 igb_vfta_set(hw, vid, true);
978 adapter->mng_vlan_id = vid;
979 } else {
980 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
983 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
984 (vid != old_vid) &&
985 !vlan_group_get_device(adapter->vlgrp, old_vid)) {
986 /* remove VID from filter table */
987 igb_vfta_set(hw, old_vid, false);
992 * igb_release_hw_control - release control of the h/w to f/w
993 * @adapter: address of board private structure
995 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
996 * For ASF and Pass Through versions of f/w this means that the
997 * driver is no longer loaded.
1000 static void igb_release_hw_control(struct igb_adapter *adapter)
1002 struct e1000_hw *hw = &adapter->hw;
1003 u32 ctrl_ext;
1005 /* Let firmware take over control of h/w */
1006 ctrl_ext = rd32(E1000_CTRL_EXT);
1007 wr32(E1000_CTRL_EXT,
1008 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1012 * igb_get_hw_control - get control of the h/w from f/w
1013 * @adapter: address of board private structure
1015 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1016 * For ASF and Pass Through versions of f/w this means that
1017 * the driver is loaded.
1020 static void igb_get_hw_control(struct igb_adapter *adapter)
1022 struct e1000_hw *hw = &adapter->hw;
1023 u32 ctrl_ext;
1025 /* Let firmware know the driver has taken over */
1026 ctrl_ext = rd32(E1000_CTRL_EXT);
1027 wr32(E1000_CTRL_EXT,
1028 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1032 * igb_configure - configure the hardware for RX and TX
1033 * @adapter: private board structure
1035 static void igb_configure(struct igb_adapter *adapter)
1037 struct net_device *netdev = adapter->netdev;
1038 int i;
1040 igb_get_hw_control(adapter);
1041 igb_set_rx_mode(netdev);
1043 igb_restore_vlan(adapter);
1045 igb_setup_tctl(adapter);
1046 igb_setup_mrqc(adapter);
1047 igb_setup_rctl(adapter);
1049 igb_configure_tx(adapter);
1050 igb_configure_rx(adapter);
1052 igb_rx_fifo_flush_82575(&adapter->hw);
1054 /* call igb_desc_unused which always leaves
1055 * at least 1 descriptor unused to make sure
1056 * next_to_use != next_to_clean */
1057 for (i = 0; i < adapter->num_rx_queues; i++) {
1058 struct igb_ring *ring = &adapter->rx_ring[i];
1059 igb_alloc_rx_buffers_adv(ring, igb_desc_unused(ring));
1063 adapter->tx_queue_len = netdev->tx_queue_len;
1068 * igb_up - Open the interface and prepare it to handle traffic
1069 * @adapter: board private structure
1071 int igb_up(struct igb_adapter *adapter)
1073 struct e1000_hw *hw = &adapter->hw;
1074 int i;
1076 /* hardware has been reset, we need to reload some things */
1077 igb_configure(adapter);
1079 clear_bit(__IGB_DOWN, &adapter->state);
1081 for (i = 0; i < adapter->num_q_vectors; i++) {
1082 struct igb_q_vector *q_vector = adapter->q_vector[i];
1083 napi_enable(&q_vector->napi);
1085 if (adapter->msix_entries)
1086 igb_configure_msix(adapter);
1088 /* Clear any pending interrupts. */
1089 rd32(E1000_ICR);
1090 igb_irq_enable(adapter);
1092 /* notify VFs that reset has been completed */
1093 if (adapter->vfs_allocated_count) {
1094 u32 reg_data = rd32(E1000_CTRL_EXT);
1095 reg_data |= E1000_CTRL_EXT_PFRSTD;
1096 wr32(E1000_CTRL_EXT, reg_data);
1099 netif_tx_start_all_queues(adapter->netdev);
1101 /* start the watchdog. */
1102 hw->mac.get_link_status = 1;
1103 schedule_work(&adapter->watchdog_task);
1105 return 0;
1108 void igb_down(struct igb_adapter *adapter)
1110 struct net_device *netdev = adapter->netdev;
1111 struct e1000_hw *hw = &adapter->hw;
1112 u32 tctl, rctl;
1113 int i;
1115 /* signal that we're down so the interrupt handler does not
1116 * reschedule our watchdog timer */
1117 set_bit(__IGB_DOWN, &adapter->state);
1119 /* disable receives in the hardware */
1120 rctl = rd32(E1000_RCTL);
1121 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1122 /* flush and sleep below */
1124 netif_tx_stop_all_queues(netdev);
1126 /* disable transmits in the hardware */
1127 tctl = rd32(E1000_TCTL);
1128 tctl &= ~E1000_TCTL_EN;
1129 wr32(E1000_TCTL, tctl);
1130 /* flush both disables and wait for them to finish */
1131 wrfl();
1132 msleep(10);
1134 for (i = 0; i < adapter->num_q_vectors; i++) {
1135 struct igb_q_vector *q_vector = adapter->q_vector[i];
1136 napi_disable(&q_vector->napi);
1139 igb_irq_disable(adapter);
1141 del_timer_sync(&adapter->watchdog_timer);
1142 del_timer_sync(&adapter->phy_info_timer);
1144 netdev->tx_queue_len = adapter->tx_queue_len;
1145 netif_carrier_off(netdev);
1147 /* record the stats before reset*/
1148 igb_update_stats(adapter);
1150 adapter->link_speed = 0;
1151 adapter->link_duplex = 0;
1153 if (!pci_channel_offline(adapter->pdev))
1154 igb_reset(adapter);
1155 igb_clean_all_tx_rings(adapter);
1156 igb_clean_all_rx_rings(adapter);
1157 #ifdef CONFIG_IGB_DCA
1159 /* since we reset the hardware DCA settings were cleared */
1160 igb_setup_dca(adapter);
1161 #endif
1164 void igb_reinit_locked(struct igb_adapter *adapter)
1166 WARN_ON(in_interrupt());
1167 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1168 msleep(1);
1169 igb_down(adapter);
1170 igb_up(adapter);
1171 clear_bit(__IGB_RESETTING, &adapter->state);
1174 void igb_reset(struct igb_adapter *adapter)
1176 struct pci_dev *pdev = adapter->pdev;
1177 struct e1000_hw *hw = &adapter->hw;
1178 struct e1000_mac_info *mac = &hw->mac;
1179 struct e1000_fc_info *fc = &hw->fc;
1180 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
1181 u16 hwm;
1183 /* Repartition Pba for greater than 9k mtu
1184 * To take effect CTRL.RST is required.
1186 switch (mac->type) {
1187 case e1000_82576:
1188 pba = rd32(E1000_RXPBS);
1189 pba &= E1000_RXPBS_SIZE_MASK_82576;
1190 break;
1191 case e1000_82575:
1192 default:
1193 pba = E1000_PBA_34K;
1194 break;
1197 if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1198 (mac->type < e1000_82576)) {
1199 /* adjust PBA for jumbo frames */
1200 wr32(E1000_PBA, pba);
1202 /* To maintain wire speed transmits, the Tx FIFO should be
1203 * large enough to accommodate two full transmit packets,
1204 * rounded up to the next 1KB and expressed in KB. Likewise,
1205 * the Rx FIFO should be large enough to accommodate at least
1206 * one full receive packet and is similarly rounded up and
1207 * expressed in KB. */
1208 pba = rd32(E1000_PBA);
1209 /* upper 16 bits has Tx packet buffer allocation size in KB */
1210 tx_space = pba >> 16;
1211 /* lower 16 bits has Rx packet buffer allocation size in KB */
1212 pba &= 0xffff;
1213 /* the tx fifo also stores 16 bytes of information about the tx
1214 * but don't include ethernet FCS because hardware appends it */
1215 min_tx_space = (adapter->max_frame_size +
1216 sizeof(union e1000_adv_tx_desc) -
1217 ETH_FCS_LEN) * 2;
1218 min_tx_space = ALIGN(min_tx_space, 1024);
1219 min_tx_space >>= 10;
1220 /* software strips receive CRC, so leave room for it */
1221 min_rx_space = adapter->max_frame_size;
1222 min_rx_space = ALIGN(min_rx_space, 1024);
1223 min_rx_space >>= 10;
1225 /* If current Tx allocation is less than the min Tx FIFO size,
1226 * and the min Tx FIFO size is less than the current Rx FIFO
1227 * allocation, take space away from current Rx allocation */
1228 if (tx_space < min_tx_space &&
1229 ((min_tx_space - tx_space) < pba)) {
1230 pba = pba - (min_tx_space - tx_space);
1232 /* if short on rx space, rx wins and must trump tx
1233 * adjustment */
1234 if (pba < min_rx_space)
1235 pba = min_rx_space;
1237 wr32(E1000_PBA, pba);
1240 /* flow control settings */
1241 /* The high water mark must be low enough to fit one full frame
1242 * (or the size used for early receive) above it in the Rx FIFO.
1243 * Set it to the lower of:
1244 * - 90% of the Rx FIFO size, or
1245 * - the full Rx FIFO size minus one full frame */
1246 hwm = min(((pba << 10) * 9 / 10),
1247 ((pba << 10) - 2 * adapter->max_frame_size));
1249 if (mac->type < e1000_82576) {
1250 fc->high_water = hwm & 0xFFF8; /* 8-byte granularity */
1251 fc->low_water = fc->high_water - 8;
1252 } else {
1253 fc->high_water = hwm & 0xFFF0; /* 16-byte granularity */
1254 fc->low_water = fc->high_water - 16;
1256 fc->pause_time = 0xFFFF;
1257 fc->send_xon = 1;
1258 fc->current_mode = fc->requested_mode;
1260 /* disable receive for all VFs and wait one second */
1261 if (adapter->vfs_allocated_count) {
1262 int i;
1263 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1264 adapter->vf_data[i].flags = 0;
1266 /* ping all the active vfs to let them know we are going down */
1267 igb_ping_all_vfs(adapter);
1269 /* disable transmits and receives */
1270 wr32(E1000_VFRE, 0);
1271 wr32(E1000_VFTE, 0);
1274 /* Allow time for pending master requests to run */
1275 hw->mac.ops.reset_hw(hw);
1276 wr32(E1000_WUC, 0);
1278 if (hw->mac.ops.init_hw(hw))
1279 dev_err(&pdev->dev, "Hardware Error\n");
1281 igb_update_mng_vlan(adapter);
1283 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
1284 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
1286 igb_reset_adaptive(hw);
1287 igb_get_phy_info(hw);
1290 static const struct net_device_ops igb_netdev_ops = {
1291 .ndo_open = igb_open,
1292 .ndo_stop = igb_close,
1293 .ndo_start_xmit = igb_xmit_frame_adv,
1294 .ndo_get_stats = igb_get_stats,
1295 .ndo_set_rx_mode = igb_set_rx_mode,
1296 .ndo_set_multicast_list = igb_set_rx_mode,
1297 .ndo_set_mac_address = igb_set_mac,
1298 .ndo_change_mtu = igb_change_mtu,
1299 .ndo_do_ioctl = igb_ioctl,
1300 .ndo_tx_timeout = igb_tx_timeout,
1301 .ndo_validate_addr = eth_validate_addr,
1302 .ndo_vlan_rx_register = igb_vlan_rx_register,
1303 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
1304 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
1305 #ifdef CONFIG_NET_POLL_CONTROLLER
1306 .ndo_poll_controller = igb_netpoll,
1307 #endif
1311 * igb_probe - Device Initialization Routine
1312 * @pdev: PCI device information struct
1313 * @ent: entry in igb_pci_tbl
1315 * Returns 0 on success, negative on failure
1317 * igb_probe initializes an adapter identified by a pci_dev structure.
1318 * The OS initialization, configuring of the adapter private structure,
1319 * and a hardware reset occur.
1321 static int __devinit igb_probe(struct pci_dev *pdev,
1322 const struct pci_device_id *ent)
1324 struct net_device *netdev;
1325 struct igb_adapter *adapter;
1326 struct e1000_hw *hw;
1327 u16 eeprom_data = 0;
1328 static int global_quad_port_a; /* global quad port a indication */
1329 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
1330 unsigned long mmio_start, mmio_len;
1331 int err, pci_using_dac;
1332 u16 eeprom_apme_mask = IGB_EEPROM_APME;
1333 u32 part_num;
1335 err = pci_enable_device_mem(pdev);
1336 if (err)
1337 return err;
1339 pci_using_dac = 0;
1340 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
1341 if (!err) {
1342 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
1343 if (!err)
1344 pci_using_dac = 1;
1345 } else {
1346 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
1347 if (err) {
1348 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
1349 if (err) {
1350 dev_err(&pdev->dev, "No usable DMA "
1351 "configuration, aborting\n");
1352 goto err_dma;
1357 err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
1358 IORESOURCE_MEM),
1359 igb_driver_name);
1360 if (err)
1361 goto err_pci_reg;
1363 pci_enable_pcie_error_reporting(pdev);
1365 pci_set_master(pdev);
1366 pci_save_state(pdev);
1368 err = -ENOMEM;
1369 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
1370 IGB_ABS_MAX_TX_QUEUES);
1371 if (!netdev)
1372 goto err_alloc_etherdev;
1374 SET_NETDEV_DEV(netdev, &pdev->dev);
1376 pci_set_drvdata(pdev, netdev);
1377 adapter = netdev_priv(netdev);
1378 adapter->netdev = netdev;
1379 adapter->pdev = pdev;
1380 hw = &adapter->hw;
1381 hw->back = adapter;
1382 adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE;
1384 mmio_start = pci_resource_start(pdev, 0);
1385 mmio_len = pci_resource_len(pdev, 0);
1387 err = -EIO;
1388 hw->hw_addr = ioremap(mmio_start, mmio_len);
1389 if (!hw->hw_addr)
1390 goto err_ioremap;
1392 netdev->netdev_ops = &igb_netdev_ops;
1393 igb_set_ethtool_ops(netdev);
1394 netdev->watchdog_timeo = 5 * HZ;
1396 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1398 netdev->mem_start = mmio_start;
1399 netdev->mem_end = mmio_start + mmio_len;
1401 /* PCI config space info */
1402 hw->vendor_id = pdev->vendor;
1403 hw->device_id = pdev->device;
1404 hw->revision_id = pdev->revision;
1405 hw->subsystem_vendor_id = pdev->subsystem_vendor;
1406 hw->subsystem_device_id = pdev->subsystem_device;
1408 /* Copy the default MAC, PHY and NVM function pointers */
1409 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
1410 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
1411 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
1412 /* Initialize skew-specific constants */
1413 err = ei->get_invariants(hw);
1414 if (err)
1415 goto err_sw_init;
1417 /* setup the private structure */
1418 err = igb_sw_init(adapter);
1419 if (err)
1420 goto err_sw_init;
1422 igb_get_bus_info_pcie(hw);
1424 hw->phy.autoneg_wait_to_complete = false;
1425 hw->mac.adaptive_ifs = true;
1427 /* Copper options */
1428 if (hw->phy.media_type == e1000_media_type_copper) {
1429 hw->phy.mdix = AUTO_ALL_MODES;
1430 hw->phy.disable_polarity_correction = false;
1431 hw->phy.ms_type = e1000_ms_hw_default;
1434 if (igb_check_reset_block(hw))
1435 dev_info(&pdev->dev,
1436 "PHY reset is blocked due to SOL/IDER session.\n");
1438 netdev->features = NETIF_F_SG |
1439 NETIF_F_IP_CSUM |
1440 NETIF_F_HW_VLAN_TX |
1441 NETIF_F_HW_VLAN_RX |
1442 NETIF_F_HW_VLAN_FILTER;
1444 netdev->features |= NETIF_F_IPV6_CSUM;
1445 netdev->features |= NETIF_F_TSO;
1446 netdev->features |= NETIF_F_TSO6;
1447 netdev->features |= NETIF_F_GRO;
1449 netdev->vlan_features |= NETIF_F_TSO;
1450 netdev->vlan_features |= NETIF_F_TSO6;
1451 netdev->vlan_features |= NETIF_F_IP_CSUM;
1452 netdev->vlan_features |= NETIF_F_IPV6_CSUM;
1453 netdev->vlan_features |= NETIF_F_SG;
1455 if (pci_using_dac)
1456 netdev->features |= NETIF_F_HIGHDMA;
1458 if (hw->mac.type >= e1000_82576)
1459 netdev->features |= NETIF_F_SCTP_CSUM;
1461 adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
1463 /* before reading the NVM, reset the controller to put the device in a
1464 * known good starting state */
1465 hw->mac.ops.reset_hw(hw);
1467 /* make sure the NVM is good */
1468 if (igb_validate_nvm_checksum(hw) < 0) {
1469 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
1470 err = -EIO;
1471 goto err_eeprom;
1474 /* copy the MAC address out of the NVM */
1475 if (hw->mac.ops.read_mac_addr(hw))
1476 dev_err(&pdev->dev, "NVM Read Error\n");
1478 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
1479 memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);
1481 if (!is_valid_ether_addr(netdev->perm_addr)) {
1482 dev_err(&pdev->dev, "Invalid MAC Address\n");
1483 err = -EIO;
1484 goto err_eeprom;
1487 setup_timer(&adapter->watchdog_timer, &igb_watchdog,
1488 (unsigned long) adapter);
1489 setup_timer(&adapter->phy_info_timer, &igb_update_phy_info,
1490 (unsigned long) adapter);
1492 INIT_WORK(&adapter->reset_task, igb_reset_task);
1493 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
1495 /* Initialize link properties that are user-changeable */
1496 adapter->fc_autoneg = true;
1497 hw->mac.autoneg = true;
1498 hw->phy.autoneg_advertised = 0x2f;
1500 hw->fc.requested_mode = e1000_fc_default;
1501 hw->fc.current_mode = e1000_fc_default;
1503 igb_validate_mdi_setting(hw);
1505 /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
1506 * enable the ACPI Magic Packet filter
1509 if (hw->bus.func == 0)
1510 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1511 else if (hw->bus.func == 1)
1512 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1514 if (eeprom_data & eeprom_apme_mask)
1515 adapter->eeprom_wol |= E1000_WUFC_MAG;
1517 /* now that we have the eeprom settings, apply the special cases where
1518 * the eeprom may be wrong or the board simply won't support wake on
1519 * lan on a particular port */
1520 switch (pdev->device) {
1521 case E1000_DEV_ID_82575GB_QUAD_COPPER:
1522 adapter->eeprom_wol = 0;
1523 break;
1524 case E1000_DEV_ID_82575EB_FIBER_SERDES:
1525 case E1000_DEV_ID_82576_FIBER:
1526 case E1000_DEV_ID_82576_SERDES:
1527 /* Wake events only supported on port A for dual fiber
1528 * regardless of eeprom setting */
1529 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
1530 adapter->eeprom_wol = 0;
1531 break;
1532 case E1000_DEV_ID_82576_QUAD_COPPER:
1533 /* if quad port adapter, disable WoL on all but port A */
1534 if (global_quad_port_a != 0)
1535 adapter->eeprom_wol = 0;
1536 else
1537 adapter->flags |= IGB_FLAG_QUAD_PORT_A;
1538 /* Reset for multiple quad port adapters */
1539 if (++global_quad_port_a == 4)
1540 global_quad_port_a = 0;
1541 break;
1544 /* initialize the wol settings based on the eeprom settings */
1545 adapter->wol = adapter->eeprom_wol;
1546 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1548 /* reset the hardware with the new settings */
1549 igb_reset(adapter);
1551 /* let the f/w know that the h/w is now under the control of the
1552 * driver. */
1553 igb_get_hw_control(adapter);
1555 strcpy(netdev->name, "eth%d");
1556 err = register_netdev(netdev);
1557 if (err)
1558 goto err_register;
1560 /* carrier off reporting is important to ethtool even BEFORE open */
1561 netif_carrier_off(netdev);
1563 #ifdef CONFIG_IGB_DCA
1564 if (dca_add_requester(&pdev->dev) == 0) {
1565 adapter->flags |= IGB_FLAG_DCA_ENABLED;
1566 dev_info(&pdev->dev, "DCA enabled\n");
1567 igb_setup_dca(adapter);
1570 #endif
1571 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
1572 /* print bus type/speed/width info */
1573 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
1574 netdev->name,
1575 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
1576 "unknown"),
1577 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
1578 (hw->bus.width == e1000_bus_width_pcie_x2) ? "Width x2" :
1579 (hw->bus.width == e1000_bus_width_pcie_x1) ? "Width x1" :
1580 "unknown"),
1581 netdev->dev_addr);
1583 igb_read_part_num(hw, &part_num);
1584 dev_info(&pdev->dev, "%s: PBA No: %06x-%03x\n", netdev->name,
1585 (part_num >> 8), (part_num & 0xff));
1587 dev_info(&pdev->dev,
1588 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
1589 adapter->msix_entries ? "MSI-X" :
1590 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
1591 adapter->num_rx_queues, adapter->num_tx_queues);
1593 return 0;
1595 err_register:
1596 igb_release_hw_control(adapter);
1597 err_eeprom:
1598 if (!igb_check_reset_block(hw))
1599 igb_reset_phy(hw);
1601 if (hw->flash_address)
1602 iounmap(hw->flash_address);
1603 err_sw_init:
1604 igb_clear_interrupt_scheme(adapter);
1605 iounmap(hw->hw_addr);
1606 err_ioremap:
1607 free_netdev(netdev);
1608 err_alloc_etherdev:
1609 pci_release_selected_regions(pdev,
1610 pci_select_bars(pdev, IORESOURCE_MEM));
1611 err_pci_reg:
1612 err_dma:
1613 pci_disable_device(pdev);
1614 return err;
1618 * igb_remove - Device Removal Routine
1619 * @pdev: PCI device information struct
1621 * igb_remove is called by the PCI subsystem to alert the driver
1622 * that it should release a PCI device. The could be caused by a
1623 * Hot-Plug event, or because the driver is going to be removed from
1624 * memory.
1626 static void __devexit igb_remove(struct pci_dev *pdev)
1628 struct net_device *netdev = pci_get_drvdata(pdev);
1629 struct igb_adapter *adapter = netdev_priv(netdev);
1630 struct e1000_hw *hw = &adapter->hw;
1632 /* flush_scheduled work may reschedule our watchdog task, so
1633 * explicitly disable watchdog tasks from being rescheduled */
1634 set_bit(__IGB_DOWN, &adapter->state);
1635 del_timer_sync(&adapter->watchdog_timer);
1636 del_timer_sync(&adapter->phy_info_timer);
1638 flush_scheduled_work();
1640 #ifdef CONFIG_IGB_DCA
1641 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
1642 dev_info(&pdev->dev, "DCA disabled\n");
1643 dca_remove_requester(&pdev->dev);
1644 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
1645 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
1647 #endif
1649 /* Release control of h/w to f/w. If f/w is AMT enabled, this
1650 * would have already happened in close and is redundant. */
1651 igb_release_hw_control(adapter);
1653 unregister_netdev(netdev);
1655 if (!igb_check_reset_block(hw))
1656 igb_reset_phy(hw);
1658 igb_clear_interrupt_scheme(adapter);
1660 #ifdef CONFIG_PCI_IOV
1661 /* reclaim resources allocated to VFs */
1662 if (adapter->vf_data) {
1663 /* disable iov and allow time for transactions to clear */
1664 pci_disable_sriov(pdev);
1665 msleep(500);
1667 kfree(adapter->vf_data);
1668 adapter->vf_data = NULL;
1669 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1670 msleep(100);
1671 dev_info(&pdev->dev, "IOV Disabled\n");
1673 #endif
1675 iounmap(hw->hw_addr);
1676 if (hw->flash_address)
1677 iounmap(hw->flash_address);
1678 pci_release_selected_regions(pdev,
1679 pci_select_bars(pdev, IORESOURCE_MEM));
1681 free_netdev(netdev);
1683 pci_disable_pcie_error_reporting(pdev);
1685 pci_disable_device(pdev);
1689 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
1690 * @adapter: board private structure to initialize
1692 * This function initializes the vf specific data storage and then attempts to
1693 * allocate the VFs. The reason for ordering it this way is because it is much
1694 * mor expensive time wise to disable SR-IOV than it is to allocate and free
1695 * the memory for the VFs.
1697 static void __devinit igb_probe_vfs(struct igb_adapter * adapter)
1699 #ifdef CONFIG_PCI_IOV
1700 struct pci_dev *pdev = adapter->pdev;
1702 if (adapter->vfs_allocated_count > 7)
1703 adapter->vfs_allocated_count = 7;
1705 if (adapter->vfs_allocated_count) {
1706 adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
1707 sizeof(struct vf_data_storage),
1708 GFP_KERNEL);
1709 /* if allocation failed then we do not support SR-IOV */
1710 if (!adapter->vf_data) {
1711 adapter->vfs_allocated_count = 0;
1712 dev_err(&pdev->dev, "Unable to allocate memory for VF "
1713 "Data Storage\n");
1717 if (pci_enable_sriov(pdev, adapter->vfs_allocated_count)) {
1718 kfree(adapter->vf_data);
1719 adapter->vf_data = NULL;
1720 #endif /* CONFIG_PCI_IOV */
1721 adapter->vfs_allocated_count = 0;
1722 #ifdef CONFIG_PCI_IOV
1723 } else {
1724 unsigned char mac_addr[ETH_ALEN];
1725 int i;
1726 dev_info(&pdev->dev, "%d vfs allocated\n",
1727 adapter->vfs_allocated_count);
1728 for (i = 0; i < adapter->vfs_allocated_count; i++) {
1729 random_ether_addr(mac_addr);
1730 igb_set_vf_mac(adapter, i, mac_addr);
1733 #endif /* CONFIG_PCI_IOV */
1738 * igb_init_hw_timer - Initialize hardware timer used with IEEE 1588 timestamp
1739 * @adapter: board private structure to initialize
1741 * igb_init_hw_timer initializes the function pointer and values for the hw
1742 * timer found in hardware.
1744 static void igb_init_hw_timer(struct igb_adapter *adapter)
1746 struct e1000_hw *hw = &adapter->hw;
1748 switch (hw->mac.type) {
1749 case e1000_82576:
1751 * Initialize hardware timer: we keep it running just in case
1752 * that some program needs it later on.
1754 memset(&adapter->cycles, 0, sizeof(adapter->cycles));
1755 adapter->cycles.read = igb_read_clock;
1756 adapter->cycles.mask = CLOCKSOURCE_MASK(64);
1757 adapter->cycles.mult = 1;
1759 * Scale the NIC clock cycle by a large factor so that
1760 * relatively small clock corrections can be added or
1761 * substracted at each clock tick. The drawbacks of a large
1762 * factor are a) that the clock register overflows more quickly
1763 * (not such a big deal) and b) that the increment per tick has
1764 * to fit into 24 bits. As a result we need to use a shift of
1765 * 19 so we can fit a value of 16 into the TIMINCA register.
1767 adapter->cycles.shift = IGB_82576_TSYNC_SHIFT;
1768 wr32(E1000_TIMINCA,
1769 (1 << E1000_TIMINCA_16NS_SHIFT) |
1770 (16 << IGB_82576_TSYNC_SHIFT));
1772 /* Set registers so that rollover occurs soon to test this. */
1773 wr32(E1000_SYSTIML, 0x00000000);
1774 wr32(E1000_SYSTIMH, 0xFF800000);
1775 wrfl();
1777 timecounter_init(&adapter->clock,
1778 &adapter->cycles,
1779 ktime_to_ns(ktime_get_real()));
1781 * Synchronize our NIC clock against system wall clock. NIC
1782 * time stamp reading requires ~3us per sample, each sample
1783 * was pretty stable even under load => only require 10
1784 * samples for each offset comparison.
1786 memset(&adapter->compare, 0, sizeof(adapter->compare));
1787 adapter->compare.source = &adapter->clock;
1788 adapter->compare.target = ktime_get_real;
1789 adapter->compare.num_samples = 10;
1790 timecompare_update(&adapter->compare, 0);
1791 break;
1792 case e1000_82575:
1793 /* 82575 does not support timesync */
1794 default:
1795 break;
1801 * igb_sw_init - Initialize general software structures (struct igb_adapter)
1802 * @adapter: board private structure to initialize
1804 * igb_sw_init initializes the Adapter private data structure.
1805 * Fields are initialized based on PCI device information and
1806 * OS network device settings (MTU size).
1808 static int __devinit igb_sw_init(struct igb_adapter *adapter)
1810 struct e1000_hw *hw = &adapter->hw;
1811 struct net_device *netdev = adapter->netdev;
1812 struct pci_dev *pdev = adapter->pdev;
1814 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
1816 adapter->tx_ring_count = IGB_DEFAULT_TXD;
1817 adapter->rx_ring_count = IGB_DEFAULT_RXD;
1818 adapter->rx_itr_setting = IGB_DEFAULT_ITR;
1819 adapter->tx_itr_setting = IGB_DEFAULT_ITR;
1821 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1822 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1824 #ifdef CONFIG_PCI_IOV
1825 if (hw->mac.type == e1000_82576)
1826 adapter->vfs_allocated_count = max_vfs;
1828 #endif /* CONFIG_PCI_IOV */
1829 adapter->rss_queues = min_t(u32, IGB_MAX_RX_QUEUES, num_online_cpus());
1832 * if rss_queues > 4 or vfs are going to be allocated with rss_queues
1833 * then we should combine the queues into a queue pair in order to
1834 * conserve interrupts due to limited supply
1836 if ((adapter->rss_queues > 4) ||
1837 ((adapter->rss_queues > 1) && (adapter->vfs_allocated_count > 6)))
1838 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1840 /* This call may decrease the number of queues */
1841 if (igb_init_interrupt_scheme(adapter)) {
1842 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
1843 return -ENOMEM;
1846 igb_init_hw_timer(adapter);
1847 igb_probe_vfs(adapter);
1849 /* Explicitly disable IRQ since the NIC can be in any state. */
1850 igb_irq_disable(adapter);
1852 set_bit(__IGB_DOWN, &adapter->state);
1853 return 0;
1857 * igb_open - Called when a network interface is made active
1858 * @netdev: network interface device structure
1860 * Returns 0 on success, negative value on failure
1862 * The open entry point is called when a network interface is made
1863 * active by the system (IFF_UP). At this point all resources needed
1864 * for transmit and receive operations are allocated, the interrupt
1865 * handler is registered with the OS, the watchdog timer is started,
1866 * and the stack is notified that the interface is ready.
1868 static int igb_open(struct net_device *netdev)
1870 struct igb_adapter *adapter = netdev_priv(netdev);
1871 struct e1000_hw *hw = &adapter->hw;
1872 int err;
1873 int i;
1875 /* disallow open during test */
1876 if (test_bit(__IGB_TESTING, &adapter->state))
1877 return -EBUSY;
1879 netif_carrier_off(netdev);
1881 /* allocate transmit descriptors */
1882 err = igb_setup_all_tx_resources(adapter);
1883 if (err)
1884 goto err_setup_tx;
1886 /* allocate receive descriptors */
1887 err = igb_setup_all_rx_resources(adapter);
1888 if (err)
1889 goto err_setup_rx;
1891 /* e1000_power_up_phy(adapter); */
1893 /* before we allocate an interrupt, we must be ready to handle it.
1894 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1895 * as soon as we call pci_request_irq, so we have to setup our
1896 * clean_rx handler before we do so. */
1897 igb_configure(adapter);
1899 err = igb_request_irq(adapter);
1900 if (err)
1901 goto err_req_irq;
1903 /* From here on the code is the same as igb_up() */
1904 clear_bit(__IGB_DOWN, &adapter->state);
1906 for (i = 0; i < adapter->num_q_vectors; i++) {
1907 struct igb_q_vector *q_vector = adapter->q_vector[i];
1908 napi_enable(&q_vector->napi);
1911 /* Clear any pending interrupts. */
1912 rd32(E1000_ICR);
1914 igb_irq_enable(adapter);
1916 /* notify VFs that reset has been completed */
1917 if (adapter->vfs_allocated_count) {
1918 u32 reg_data = rd32(E1000_CTRL_EXT);
1919 reg_data |= E1000_CTRL_EXT_PFRSTD;
1920 wr32(E1000_CTRL_EXT, reg_data);
1923 netif_tx_start_all_queues(netdev);
1925 /* start the watchdog. */
1926 hw->mac.get_link_status = 1;
1927 schedule_work(&adapter->watchdog_task);
1929 return 0;
1931 err_req_irq:
1932 igb_release_hw_control(adapter);
1933 /* e1000_power_down_phy(adapter); */
1934 igb_free_all_rx_resources(adapter);
1935 err_setup_rx:
1936 igb_free_all_tx_resources(adapter);
1937 err_setup_tx:
1938 igb_reset(adapter);
1940 return err;
1944 * igb_close - Disables a network interface
1945 * @netdev: network interface device structure
1947 * Returns 0, this is not allowed to fail
1949 * The close entry point is called when an interface is de-activated
1950 * by the OS. The hardware is still under the driver's control, but
1951 * needs to be disabled. A global MAC reset is issued to stop the
1952 * hardware, and all transmit and receive resources are freed.
1954 static int igb_close(struct net_device *netdev)
1956 struct igb_adapter *adapter = netdev_priv(netdev);
1958 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
1959 igb_down(adapter);
1961 igb_free_irq(adapter);
1963 igb_free_all_tx_resources(adapter);
1964 igb_free_all_rx_resources(adapter);
1966 return 0;
1970 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
1971 * @tx_ring: tx descriptor ring (for a specific queue) to setup
1973 * Return 0 on success, negative on failure
1975 int igb_setup_tx_resources(struct igb_ring *tx_ring)
1977 struct pci_dev *pdev = tx_ring->pdev;
1978 int size;
1980 size = sizeof(struct igb_buffer) * tx_ring->count;
1981 tx_ring->buffer_info = vmalloc(size);
1982 if (!tx_ring->buffer_info)
1983 goto err;
1984 memset(tx_ring->buffer_info, 0, size);
1986 /* round up to nearest 4K */
1987 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
1988 tx_ring->size = ALIGN(tx_ring->size, 4096);
1990 tx_ring->desc = pci_alloc_consistent(pdev,
1991 tx_ring->size,
1992 &tx_ring->dma);
1994 if (!tx_ring->desc)
1995 goto err;
1997 tx_ring->next_to_use = 0;
1998 tx_ring->next_to_clean = 0;
1999 return 0;
2001 err:
2002 vfree(tx_ring->buffer_info);
2003 dev_err(&pdev->dev,
2004 "Unable to allocate memory for the transmit descriptor ring\n");
2005 return -ENOMEM;
2009 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
2010 * (Descriptors) for all queues
2011 * @adapter: board private structure
2013 * Return 0 on success, negative on failure
2015 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
2017 struct pci_dev *pdev = adapter->pdev;
2018 int i, err = 0;
2020 for (i = 0; i < adapter->num_tx_queues; i++) {
2021 err = igb_setup_tx_resources(&adapter->tx_ring[i]);
2022 if (err) {
2023 dev_err(&pdev->dev,
2024 "Allocation for Tx Queue %u failed\n", i);
2025 for (i--; i >= 0; i--)
2026 igb_free_tx_resources(&adapter->tx_ring[i]);
2027 break;
2031 for (i = 0; i < IGB_ABS_MAX_TX_QUEUES; i++) {
2032 int r_idx = i % adapter->num_tx_queues;
2033 adapter->multi_tx_table[i] = &adapter->tx_ring[r_idx];
2035 return err;
2039 * igb_setup_tctl - configure the transmit control registers
2040 * @adapter: Board private structure
2042 void igb_setup_tctl(struct igb_adapter *adapter)
2044 struct e1000_hw *hw = &adapter->hw;
2045 u32 tctl;
2047 /* disable queue 0 which is enabled by default on 82575 and 82576 */
2048 wr32(E1000_TXDCTL(0), 0);
2050 /* Program the Transmit Control Register */
2051 tctl = rd32(E1000_TCTL);
2052 tctl &= ~E1000_TCTL_CT;
2053 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2054 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2056 igb_config_collision_dist(hw);
2058 /* Enable transmits */
2059 tctl |= E1000_TCTL_EN;
2061 wr32(E1000_TCTL, tctl);
2065 * igb_configure_tx_ring - Configure transmit ring after Reset
2066 * @adapter: board private structure
2067 * @ring: tx ring to configure
2069 * Configure a transmit ring after a reset.
2071 void igb_configure_tx_ring(struct igb_adapter *adapter,
2072 struct igb_ring *ring)
2074 struct e1000_hw *hw = &adapter->hw;
2075 u32 txdctl;
2076 u64 tdba = ring->dma;
2077 int reg_idx = ring->reg_idx;
2079 /* disable the queue */
2080 txdctl = rd32(E1000_TXDCTL(reg_idx));
2081 wr32(E1000_TXDCTL(reg_idx),
2082 txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
2083 wrfl();
2084 mdelay(10);
2086 wr32(E1000_TDLEN(reg_idx),
2087 ring->count * sizeof(union e1000_adv_tx_desc));
2088 wr32(E1000_TDBAL(reg_idx),
2089 tdba & 0x00000000ffffffffULL);
2090 wr32(E1000_TDBAH(reg_idx), tdba >> 32);
2092 ring->head = hw->hw_addr + E1000_TDH(reg_idx);
2093 ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
2094 writel(0, ring->head);
2095 writel(0, ring->tail);
2097 txdctl |= IGB_TX_PTHRESH;
2098 txdctl |= IGB_TX_HTHRESH << 8;
2099 txdctl |= IGB_TX_WTHRESH << 16;
2101 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
2102 wr32(E1000_TXDCTL(reg_idx), txdctl);
2106 * igb_configure_tx - Configure transmit Unit after Reset
2107 * @adapter: board private structure
2109 * Configure the Tx unit of the MAC after a reset.
2111 static void igb_configure_tx(struct igb_adapter *adapter)
2113 int i;
2115 for (i = 0; i < adapter->num_tx_queues; i++)
2116 igb_configure_tx_ring(adapter, &adapter->tx_ring[i]);
2120 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
2121 * @rx_ring: rx descriptor ring (for a specific queue) to setup
2123 * Returns 0 on success, negative on failure
2125 int igb_setup_rx_resources(struct igb_ring *rx_ring)
2127 struct pci_dev *pdev = rx_ring->pdev;
2128 int size, desc_len;
2130 size = sizeof(struct igb_buffer) * rx_ring->count;
2131 rx_ring->buffer_info = vmalloc(size);
2132 if (!rx_ring->buffer_info)
2133 goto err;
2134 memset(rx_ring->buffer_info, 0, size);
2136 desc_len = sizeof(union e1000_adv_rx_desc);
2138 /* Round up to nearest 4K */
2139 rx_ring->size = rx_ring->count * desc_len;
2140 rx_ring->size = ALIGN(rx_ring->size, 4096);
2142 rx_ring->desc = pci_alloc_consistent(pdev, rx_ring->size,
2143 &rx_ring->dma);
2145 if (!rx_ring->desc)
2146 goto err;
2148 rx_ring->next_to_clean = 0;
2149 rx_ring->next_to_use = 0;
2151 return 0;
2153 err:
2154 vfree(rx_ring->buffer_info);
2155 rx_ring->buffer_info = NULL;
2156 dev_err(&pdev->dev, "Unable to allocate memory for "
2157 "the receive descriptor ring\n");
2158 return -ENOMEM;
2162 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
2163 * (Descriptors) for all queues
2164 * @adapter: board private structure
2166 * Return 0 on success, negative on failure
2168 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
2170 struct pci_dev *pdev = adapter->pdev;
2171 int i, err = 0;
2173 for (i = 0; i < adapter->num_rx_queues; i++) {
2174 err = igb_setup_rx_resources(&adapter->rx_ring[i]);
2175 if (err) {
2176 dev_err(&pdev->dev,
2177 "Allocation for Rx Queue %u failed\n", i);
2178 for (i--; i >= 0; i--)
2179 igb_free_rx_resources(&adapter->rx_ring[i]);
2180 break;
2184 return err;
2188 * igb_setup_mrqc - configure the multiple receive queue control registers
2189 * @adapter: Board private structure
2191 static void igb_setup_mrqc(struct igb_adapter *adapter)
2193 struct e1000_hw *hw = &adapter->hw;
2194 u32 mrqc, rxcsum;
2195 u32 j, num_rx_queues, shift = 0, shift2 = 0;
2196 union e1000_reta {
2197 u32 dword;
2198 u8 bytes[4];
2199 } reta;
2200 static const u8 rsshash[40] = {
2201 0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2, 0x41, 0x67,
2202 0x25, 0x3d, 0x43, 0xa3, 0x8f, 0xb0, 0xd0, 0xca, 0x2b, 0xcb,
2203 0xae, 0x7b, 0x30, 0xb4, 0x77, 0xcb, 0x2d, 0xa3, 0x80, 0x30,
2204 0xf2, 0x0c, 0x6a, 0x42, 0xb7, 0x3b, 0xbe, 0xac, 0x01, 0xfa };
2206 /* Fill out hash function seeds */
2207 for (j = 0; j < 10; j++) {
2208 u32 rsskey = rsshash[(j * 4)];
2209 rsskey |= rsshash[(j * 4) + 1] << 8;
2210 rsskey |= rsshash[(j * 4) + 2] << 16;
2211 rsskey |= rsshash[(j * 4) + 3] << 24;
2212 array_wr32(E1000_RSSRK(0), j, rsskey);
2215 num_rx_queues = adapter->rss_queues;
2217 if (adapter->vfs_allocated_count) {
2218 /* 82575 and 82576 supports 2 RSS queues for VMDq */
2219 switch (hw->mac.type) {
2220 case e1000_82576:
2221 shift = 3;
2222 num_rx_queues = 2;
2223 break;
2224 case e1000_82575:
2225 shift = 2;
2226 shift2 = 6;
2227 default:
2228 break;
2230 } else {
2231 if (hw->mac.type == e1000_82575)
2232 shift = 6;
2235 for (j = 0; j < (32 * 4); j++) {
2236 reta.bytes[j & 3] = (j % num_rx_queues) << shift;
2237 if (shift2)
2238 reta.bytes[j & 3] |= num_rx_queues << shift2;
2239 if ((j & 3) == 3)
2240 wr32(E1000_RETA(j >> 2), reta.dword);
2244 * Disable raw packet checksumming so that RSS hash is placed in
2245 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
2246 * offloads as they are enabled by default
2248 rxcsum = rd32(E1000_RXCSUM);
2249 rxcsum |= E1000_RXCSUM_PCSD;
2251 if (adapter->hw.mac.type >= e1000_82576)
2252 /* Enable Receive Checksum Offload for SCTP */
2253 rxcsum |= E1000_RXCSUM_CRCOFL;
2255 /* Don't need to set TUOFL or IPOFL, they default to 1 */
2256 wr32(E1000_RXCSUM, rxcsum);
2258 /* If VMDq is enabled then we set the appropriate mode for that, else
2259 * we default to RSS so that an RSS hash is calculated per packet even
2260 * if we are only using one queue */
2261 if (adapter->vfs_allocated_count) {
2262 if (hw->mac.type > e1000_82575) {
2263 /* Set the default pool for the PF's first queue */
2264 u32 vtctl = rd32(E1000_VT_CTL);
2265 vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
2266 E1000_VT_CTL_DISABLE_DEF_POOL);
2267 vtctl |= adapter->vfs_allocated_count <<
2268 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
2269 wr32(E1000_VT_CTL, vtctl);
2271 if (adapter->rss_queues > 1)
2272 mrqc = E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
2273 else
2274 mrqc = E1000_MRQC_ENABLE_VMDQ;
2275 } else {
2276 mrqc = E1000_MRQC_ENABLE_RSS_4Q;
2278 igb_vmm_control(adapter);
2280 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
2281 E1000_MRQC_RSS_FIELD_IPV4_TCP);
2282 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 |
2283 E1000_MRQC_RSS_FIELD_IPV6_TCP);
2284 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4_UDP |
2285 E1000_MRQC_RSS_FIELD_IPV6_UDP);
2286 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
2287 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
2289 wr32(E1000_MRQC, mrqc);
2293 * igb_setup_rctl - configure the receive control registers
2294 * @adapter: Board private structure
2296 void igb_setup_rctl(struct igb_adapter *adapter)
2298 struct e1000_hw *hw = &adapter->hw;
2299 u32 rctl;
2301 rctl = rd32(E1000_RCTL);
2303 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2304 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
2306 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
2307 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2310 * enable stripping of CRC. It's unlikely this will break BMC
2311 * redirection as it did with e1000. Newer features require
2312 * that the HW strips the CRC.
2314 rctl |= E1000_RCTL_SECRC;
2316 /* disable store bad packets and clear size bits. */
2317 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
2319 /* enable LPE to prevent packets larger than max_frame_size */
2320 rctl |= E1000_RCTL_LPE;
2322 /* disable queue 0 to prevent tail write w/o re-config */
2323 wr32(E1000_RXDCTL(0), 0);
2325 /* Attention!!! For SR-IOV PF driver operations you must enable
2326 * queue drop for all VF and PF queues to prevent head of line blocking
2327 * if an un-trusted VF does not provide descriptors to hardware.
2329 if (adapter->vfs_allocated_count) {
2330 /* set all queue drop enable bits */
2331 wr32(E1000_QDE, ALL_QUEUES);
2334 wr32(E1000_RCTL, rctl);
2337 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
2338 int vfn)
2340 struct e1000_hw *hw = &adapter->hw;
2341 u32 vmolr;
2343 /* if it isn't the PF check to see if VFs are enabled and
2344 * increase the size to support vlan tags */
2345 if (vfn < adapter->vfs_allocated_count &&
2346 adapter->vf_data[vfn].vlans_enabled)
2347 size += VLAN_TAG_SIZE;
2349 vmolr = rd32(E1000_VMOLR(vfn));
2350 vmolr &= ~E1000_VMOLR_RLPML_MASK;
2351 vmolr |= size | E1000_VMOLR_LPE;
2352 wr32(E1000_VMOLR(vfn), vmolr);
2354 return 0;
2358 * igb_rlpml_set - set maximum receive packet size
2359 * @adapter: board private structure
2361 * Configure maximum receivable packet size.
2363 static void igb_rlpml_set(struct igb_adapter *adapter)
2365 u32 max_frame_size = adapter->max_frame_size;
2366 struct e1000_hw *hw = &adapter->hw;
2367 u16 pf_id = adapter->vfs_allocated_count;
2369 if (adapter->vlgrp)
2370 max_frame_size += VLAN_TAG_SIZE;
2372 /* if vfs are enabled we set RLPML to the largest possible request
2373 * size and set the VMOLR RLPML to the size we need */
2374 if (pf_id) {
2375 igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
2376 max_frame_size = MAX_JUMBO_FRAME_SIZE;
2379 wr32(E1000_RLPML, max_frame_size);
2382 static inline void igb_set_vmolr(struct igb_adapter *adapter, int vfn)
2384 struct e1000_hw *hw = &adapter->hw;
2385 u32 vmolr;
2388 * This register exists only on 82576 and newer so if we are older then
2389 * we should exit and do nothing
2391 if (hw->mac.type < e1000_82576)
2392 return;
2394 vmolr = rd32(E1000_VMOLR(vfn));
2395 vmolr |= E1000_VMOLR_AUPE | /* Accept untagged packets */
2396 E1000_VMOLR_STRVLAN; /* Strip vlan tags */
2398 /* clear all bits that might not be set */
2399 vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
2401 if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
2402 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
2404 * for VMDq only allow the VFs and pool 0 to accept broadcast and
2405 * multicast packets
2407 if (vfn <= adapter->vfs_allocated_count)
2408 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
2410 wr32(E1000_VMOLR(vfn), vmolr);
2414 * igb_configure_rx_ring - Configure a receive ring after Reset
2415 * @adapter: board private structure
2416 * @ring: receive ring to be configured
2418 * Configure the Rx unit of the MAC after a reset.
2420 void igb_configure_rx_ring(struct igb_adapter *adapter,
2421 struct igb_ring *ring)
2423 struct e1000_hw *hw = &adapter->hw;
2424 u64 rdba = ring->dma;
2425 int reg_idx = ring->reg_idx;
2426 u32 srrctl, rxdctl;
2428 /* disable the queue */
2429 rxdctl = rd32(E1000_RXDCTL(reg_idx));
2430 wr32(E1000_RXDCTL(reg_idx),
2431 rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
2433 /* Set DMA base address registers */
2434 wr32(E1000_RDBAL(reg_idx),
2435 rdba & 0x00000000ffffffffULL);
2436 wr32(E1000_RDBAH(reg_idx), rdba >> 32);
2437 wr32(E1000_RDLEN(reg_idx),
2438 ring->count * sizeof(union e1000_adv_rx_desc));
2440 /* initialize head and tail */
2441 ring->head = hw->hw_addr + E1000_RDH(reg_idx);
2442 ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
2443 writel(0, ring->head);
2444 writel(0, ring->tail);
2446 /* set descriptor configuration */
2447 if (ring->rx_buffer_len < IGB_RXBUFFER_1024) {
2448 srrctl = ALIGN(ring->rx_buffer_len, 64) <<
2449 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
2450 #if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384
2451 srrctl |= IGB_RXBUFFER_16384 >>
2452 E1000_SRRCTL_BSIZEPKT_SHIFT;
2453 #else
2454 srrctl |= (PAGE_SIZE / 2) >>
2455 E1000_SRRCTL_BSIZEPKT_SHIFT;
2456 #endif
2457 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
2458 } else {
2459 srrctl = ALIGN(ring->rx_buffer_len, 1024) >>
2460 E1000_SRRCTL_BSIZEPKT_SHIFT;
2461 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
2464 wr32(E1000_SRRCTL(reg_idx), srrctl);
2466 /* set filtering for VMDQ pools */
2467 igb_set_vmolr(adapter, reg_idx & 0x7);
2469 /* enable receive descriptor fetching */
2470 rxdctl = rd32(E1000_RXDCTL(reg_idx));
2471 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
2472 rxdctl &= 0xFFF00000;
2473 rxdctl |= IGB_RX_PTHRESH;
2474 rxdctl |= IGB_RX_HTHRESH << 8;
2475 rxdctl |= IGB_RX_WTHRESH << 16;
2476 wr32(E1000_RXDCTL(reg_idx), rxdctl);
2480 * igb_configure_rx - Configure receive Unit after Reset
2481 * @adapter: board private structure
2483 * Configure the Rx unit of the MAC after a reset.
2485 static void igb_configure_rx(struct igb_adapter *adapter)
2487 int i;
2489 /* set UTA to appropriate mode */
2490 igb_set_uta(adapter);
2492 /* set the correct pool for the PF default MAC address in entry 0 */
2493 igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
2494 adapter->vfs_allocated_count);
2496 /* Setup the HW Rx Head and Tail Descriptor Pointers and
2497 * the Base and Length of the Rx Descriptor Ring */
2498 for (i = 0; i < adapter->num_rx_queues; i++)
2499 igb_configure_rx_ring(adapter, &adapter->rx_ring[i]);
2503 * igb_free_tx_resources - Free Tx Resources per Queue
2504 * @tx_ring: Tx descriptor ring for a specific queue
2506 * Free all transmit software resources
2508 void igb_free_tx_resources(struct igb_ring *tx_ring)
2510 igb_clean_tx_ring(tx_ring);
2512 vfree(tx_ring->buffer_info);
2513 tx_ring->buffer_info = NULL;
2515 /* if not set, then don't free */
2516 if (!tx_ring->desc)
2517 return;
2519 pci_free_consistent(tx_ring->pdev, tx_ring->size,
2520 tx_ring->desc, tx_ring->dma);
2522 tx_ring->desc = NULL;
2526 * igb_free_all_tx_resources - Free Tx Resources for All Queues
2527 * @adapter: board private structure
2529 * Free all transmit software resources
2531 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
2533 int i;
2535 for (i = 0; i < adapter->num_tx_queues; i++)
2536 igb_free_tx_resources(&adapter->tx_ring[i]);
2539 void igb_unmap_and_free_tx_resource(struct igb_ring *tx_ring,
2540 struct igb_buffer *buffer_info)
2542 buffer_info->dma = 0;
2543 if (buffer_info->skb) {
2544 skb_dma_unmap(&tx_ring->pdev->dev,
2545 buffer_info->skb,
2546 DMA_TO_DEVICE);
2547 dev_kfree_skb_any(buffer_info->skb);
2548 buffer_info->skb = NULL;
2550 buffer_info->time_stamp = 0;
2551 /* buffer_info must be completely set up in the transmit path */
2555 * igb_clean_tx_ring - Free Tx Buffers
2556 * @tx_ring: ring to be cleaned
2558 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
2560 struct igb_buffer *buffer_info;
2561 unsigned long size;
2562 unsigned int i;
2564 if (!tx_ring->buffer_info)
2565 return;
2566 /* Free all the Tx ring sk_buffs */
2568 for (i = 0; i < tx_ring->count; i++) {
2569 buffer_info = &tx_ring->buffer_info[i];
2570 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
2573 size = sizeof(struct igb_buffer) * tx_ring->count;
2574 memset(tx_ring->buffer_info, 0, size);
2576 /* Zero out the descriptor ring */
2577 memset(tx_ring->desc, 0, tx_ring->size);
2579 tx_ring->next_to_use = 0;
2580 tx_ring->next_to_clean = 0;
2584 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
2585 * @adapter: board private structure
2587 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
2589 int i;
2591 for (i = 0; i < adapter->num_tx_queues; i++)
2592 igb_clean_tx_ring(&adapter->tx_ring[i]);
2596 * igb_free_rx_resources - Free Rx Resources
2597 * @rx_ring: ring to clean the resources from
2599 * Free all receive software resources
2601 void igb_free_rx_resources(struct igb_ring *rx_ring)
2603 igb_clean_rx_ring(rx_ring);
2605 vfree(rx_ring->buffer_info);
2606 rx_ring->buffer_info = NULL;
2608 /* if not set, then don't free */
2609 if (!rx_ring->desc)
2610 return;
2612 pci_free_consistent(rx_ring->pdev, rx_ring->size,
2613 rx_ring->desc, rx_ring->dma);
2615 rx_ring->desc = NULL;
2619 * igb_free_all_rx_resources - Free Rx Resources for All Queues
2620 * @adapter: board private structure
2622 * Free all receive software resources
2624 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
2626 int i;
2628 for (i = 0; i < adapter->num_rx_queues; i++)
2629 igb_free_rx_resources(&adapter->rx_ring[i]);
2633 * igb_clean_rx_ring - Free Rx Buffers per Queue
2634 * @rx_ring: ring to free buffers from
2636 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
2638 struct igb_buffer *buffer_info;
2639 unsigned long size;
2640 unsigned int i;
2642 if (!rx_ring->buffer_info)
2643 return;
2645 /* Free all the Rx ring sk_buffs */
2646 for (i = 0; i < rx_ring->count; i++) {
2647 buffer_info = &rx_ring->buffer_info[i];
2648 if (buffer_info->dma) {
2649 pci_unmap_single(rx_ring->pdev,
2650 buffer_info->dma,
2651 rx_ring->rx_buffer_len,
2652 PCI_DMA_FROMDEVICE);
2653 buffer_info->dma = 0;
2656 if (buffer_info->skb) {
2657 dev_kfree_skb(buffer_info->skb);
2658 buffer_info->skb = NULL;
2660 if (buffer_info->page_dma) {
2661 pci_unmap_page(rx_ring->pdev,
2662 buffer_info->page_dma,
2663 PAGE_SIZE / 2,
2664 PCI_DMA_FROMDEVICE);
2665 buffer_info->page_dma = 0;
2667 if (buffer_info->page) {
2668 put_page(buffer_info->page);
2669 buffer_info->page = NULL;
2670 buffer_info->page_offset = 0;
2674 size = sizeof(struct igb_buffer) * rx_ring->count;
2675 memset(rx_ring->buffer_info, 0, size);
2677 /* Zero out the descriptor ring */
2678 memset(rx_ring->desc, 0, rx_ring->size);
2680 rx_ring->next_to_clean = 0;
2681 rx_ring->next_to_use = 0;
2685 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
2686 * @adapter: board private structure
2688 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
2690 int i;
2692 for (i = 0; i < adapter->num_rx_queues; i++)
2693 igb_clean_rx_ring(&adapter->rx_ring[i]);
2697 * igb_set_mac - Change the Ethernet Address of the NIC
2698 * @netdev: network interface device structure
2699 * @p: pointer to an address structure
2701 * Returns 0 on success, negative on failure
2703 static int igb_set_mac(struct net_device *netdev, void *p)
2705 struct igb_adapter *adapter = netdev_priv(netdev);
2706 struct e1000_hw *hw = &adapter->hw;
2707 struct sockaddr *addr = p;
2709 if (!is_valid_ether_addr(addr->sa_data))
2710 return -EADDRNOTAVAIL;
2712 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2713 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
2715 /* set the correct pool for the new PF MAC address in entry 0 */
2716 igb_rar_set_qsel(adapter, hw->mac.addr, 0,
2717 adapter->vfs_allocated_count);
2719 return 0;
2723 * igb_write_mc_addr_list - write multicast addresses to MTA
2724 * @netdev: network interface device structure
2726 * Writes multicast address list to the MTA hash table.
2727 * Returns: -ENOMEM on failure
2728 * 0 on no addresses written
2729 * X on writing X addresses to MTA
2731 static int igb_write_mc_addr_list(struct net_device *netdev)
2733 struct igb_adapter *adapter = netdev_priv(netdev);
2734 struct e1000_hw *hw = &adapter->hw;
2735 struct dev_mc_list *mc_ptr = netdev->mc_list;
2736 u8 *mta_list;
2737 u32 vmolr = 0;
2738 int i;
2740 if (!netdev->mc_count) {
2741 /* nothing to program, so clear mc list */
2742 igb_update_mc_addr_list(hw, NULL, 0);
2743 igb_restore_vf_multicasts(adapter);
2744 return 0;
2747 mta_list = kzalloc(netdev->mc_count * 6, GFP_ATOMIC);
2748 if (!mta_list)
2749 return -ENOMEM;
2751 /* set vmolr receive overflow multicast bit */
2752 vmolr |= E1000_VMOLR_ROMPE;
2754 /* The shared function expects a packed array of only addresses. */
2755 mc_ptr = netdev->mc_list;
2757 for (i = 0; i < netdev->mc_count; i++) {
2758 if (!mc_ptr)
2759 break;
2760 memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr, ETH_ALEN);
2761 mc_ptr = mc_ptr->next;
2763 igb_update_mc_addr_list(hw, mta_list, i);
2764 kfree(mta_list);
2766 return netdev->mc_count;
2770 * igb_write_uc_addr_list - write unicast addresses to RAR table
2771 * @netdev: network interface device structure
2773 * Writes unicast address list to the RAR table.
2774 * Returns: -ENOMEM on failure/insufficient address space
2775 * 0 on no addresses written
2776 * X on writing X addresses to the RAR table
2778 static int igb_write_uc_addr_list(struct net_device *netdev)
2780 struct igb_adapter *adapter = netdev_priv(netdev);
2781 struct e1000_hw *hw = &adapter->hw;
2782 unsigned int vfn = adapter->vfs_allocated_count;
2783 unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
2784 int count = 0;
2786 /* return ENOMEM indicating insufficient memory for addresses */
2787 if (netdev->uc.count > rar_entries)
2788 return -ENOMEM;
2790 if (netdev->uc.count && rar_entries) {
2791 struct netdev_hw_addr *ha;
2792 list_for_each_entry(ha, &netdev->uc.list, list) {
2793 if (!rar_entries)
2794 break;
2795 igb_rar_set_qsel(adapter, ha->addr,
2796 rar_entries--,
2797 vfn);
2798 count++;
2801 /* write the addresses in reverse order to avoid write combining */
2802 for (; rar_entries > 0 ; rar_entries--) {
2803 wr32(E1000_RAH(rar_entries), 0);
2804 wr32(E1000_RAL(rar_entries), 0);
2806 wrfl();
2808 return count;
2812 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2813 * @netdev: network interface device structure
2815 * The set_rx_mode entry point is called whenever the unicast or multicast
2816 * address lists or the network interface flags are updated. This routine is
2817 * responsible for configuring the hardware for proper unicast, multicast,
2818 * promiscuous mode, and all-multi behavior.
2820 static void igb_set_rx_mode(struct net_device *netdev)
2822 struct igb_adapter *adapter = netdev_priv(netdev);
2823 struct e1000_hw *hw = &adapter->hw;
2824 unsigned int vfn = adapter->vfs_allocated_count;
2825 u32 rctl, vmolr = 0;
2826 int count;
2828 /* Check for Promiscuous and All Multicast modes */
2829 rctl = rd32(E1000_RCTL);
2831 /* clear the effected bits */
2832 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
2834 if (netdev->flags & IFF_PROMISC) {
2835 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2836 vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
2837 } else {
2838 if (netdev->flags & IFF_ALLMULTI) {
2839 rctl |= E1000_RCTL_MPE;
2840 vmolr |= E1000_VMOLR_MPME;
2841 } else {
2843 * Write addresses to the MTA, if the attempt fails
2844 * then we should just turn on promiscous mode so
2845 * that we can at least receive multicast traffic
2847 count = igb_write_mc_addr_list(netdev);
2848 if (count < 0) {
2849 rctl |= E1000_RCTL_MPE;
2850 vmolr |= E1000_VMOLR_MPME;
2851 } else if (count) {
2852 vmolr |= E1000_VMOLR_ROMPE;
2856 * Write addresses to available RAR registers, if there is not
2857 * sufficient space to store all the addresses then enable
2858 * unicast promiscous mode
2860 count = igb_write_uc_addr_list(netdev);
2861 if (count < 0) {
2862 rctl |= E1000_RCTL_UPE;
2863 vmolr |= E1000_VMOLR_ROPE;
2865 rctl |= E1000_RCTL_VFE;
2867 wr32(E1000_RCTL, rctl);
2870 * In order to support SR-IOV and eventually VMDq it is necessary to set
2871 * the VMOLR to enable the appropriate modes. Without this workaround
2872 * we will have issues with VLAN tag stripping not being done for frames
2873 * that are only arriving because we are the default pool
2875 if (hw->mac.type < e1000_82576)
2876 return;
2878 vmolr |= rd32(E1000_VMOLR(vfn)) &
2879 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
2880 wr32(E1000_VMOLR(vfn), vmolr);
2881 igb_restore_vf_multicasts(adapter);
2884 /* Need to wait a few seconds after link up to get diagnostic information from
2885 * the phy */
2886 static void igb_update_phy_info(unsigned long data)
2888 struct igb_adapter *adapter = (struct igb_adapter *) data;
2889 igb_get_phy_info(&adapter->hw);
2893 * igb_has_link - check shared code for link and determine up/down
2894 * @adapter: pointer to driver private info
2896 static bool igb_has_link(struct igb_adapter *adapter)
2898 struct e1000_hw *hw = &adapter->hw;
2899 bool link_active = false;
2900 s32 ret_val = 0;
2902 /* get_link_status is set on LSC (link status) interrupt or
2903 * rx sequence error interrupt. get_link_status will stay
2904 * false until the e1000_check_for_link establishes link
2905 * for copper adapters ONLY
2907 switch (hw->phy.media_type) {
2908 case e1000_media_type_copper:
2909 if (hw->mac.get_link_status) {
2910 ret_val = hw->mac.ops.check_for_link(hw);
2911 link_active = !hw->mac.get_link_status;
2912 } else {
2913 link_active = true;
2915 break;
2916 case e1000_media_type_internal_serdes:
2917 ret_val = hw->mac.ops.check_for_link(hw);
2918 link_active = hw->mac.serdes_has_link;
2919 break;
2920 default:
2921 case e1000_media_type_unknown:
2922 break;
2925 return link_active;
2929 * igb_watchdog - Timer Call-back
2930 * @data: pointer to adapter cast into an unsigned long
2932 static void igb_watchdog(unsigned long data)
2934 struct igb_adapter *adapter = (struct igb_adapter *)data;
2935 /* Do the rest outside of interrupt context */
2936 schedule_work(&adapter->watchdog_task);
2939 static void igb_watchdog_task(struct work_struct *work)
2941 struct igb_adapter *adapter = container_of(work,
2942 struct igb_adapter,
2943 watchdog_task);
2944 struct e1000_hw *hw = &adapter->hw;
2945 struct net_device *netdev = adapter->netdev;
2946 struct igb_ring *tx_ring = adapter->tx_ring;
2947 u32 link;
2948 int i;
2950 link = igb_has_link(adapter);
2951 if (link) {
2952 if (!netif_carrier_ok(netdev)) {
2953 u32 ctrl;
2954 hw->mac.ops.get_speed_and_duplex(hw,
2955 &adapter->link_speed,
2956 &adapter->link_duplex);
2958 ctrl = rd32(E1000_CTRL);
2959 /* Links status message must follow this format */
2960 printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s, "
2961 "Flow Control: %s\n",
2962 netdev->name,
2963 adapter->link_speed,
2964 adapter->link_duplex == FULL_DUPLEX ?
2965 "Full Duplex" : "Half Duplex",
2966 ((ctrl & E1000_CTRL_TFCE) &&
2967 (ctrl & E1000_CTRL_RFCE)) ? "RX/TX" :
2968 ((ctrl & E1000_CTRL_RFCE) ? "RX" :
2969 ((ctrl & E1000_CTRL_TFCE) ? "TX" : "None")));
2971 /* tweak tx_queue_len according to speed/duplex and
2972 * adjust the timeout factor */
2973 netdev->tx_queue_len = adapter->tx_queue_len;
2974 adapter->tx_timeout_factor = 1;
2975 switch (adapter->link_speed) {
2976 case SPEED_10:
2977 netdev->tx_queue_len = 10;
2978 adapter->tx_timeout_factor = 14;
2979 break;
2980 case SPEED_100:
2981 netdev->tx_queue_len = 100;
2982 /* maybe add some timeout factor ? */
2983 break;
2986 netif_carrier_on(netdev);
2988 igb_ping_all_vfs(adapter);
2990 /* link state has changed, schedule phy info update */
2991 if (!test_bit(__IGB_DOWN, &adapter->state))
2992 mod_timer(&adapter->phy_info_timer,
2993 round_jiffies(jiffies + 2 * HZ));
2995 } else {
2996 if (netif_carrier_ok(netdev)) {
2997 adapter->link_speed = 0;
2998 adapter->link_duplex = 0;
2999 /* Links status message must follow this format */
3000 printk(KERN_INFO "igb: %s NIC Link is Down\n",
3001 netdev->name);
3002 netif_carrier_off(netdev);
3004 igb_ping_all_vfs(adapter);
3006 /* link state has changed, schedule phy info update */
3007 if (!test_bit(__IGB_DOWN, &adapter->state))
3008 mod_timer(&adapter->phy_info_timer,
3009 round_jiffies(jiffies + 2 * HZ));
3013 igb_update_stats(adapter);
3014 igb_update_adaptive(hw);
3016 if (!netif_carrier_ok(netdev)) {
3017 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
3018 /* We've lost link, so the controller stops DMA,
3019 * but we've got queued Tx work that's never going
3020 * to get done, so reset controller to flush Tx.
3021 * (Do the reset outside of interrupt context). */
3022 adapter->tx_timeout_count++;
3023 schedule_work(&adapter->reset_task);
3024 /* return immediately since reset is imminent */
3025 return;
3029 /* Force detection of hung controller every watchdog period */
3030 for (i = 0; i < adapter->num_tx_queues; i++)
3031 adapter->tx_ring[i].detect_tx_hung = true;
3033 /* Cause software interrupt to ensure rx ring is cleaned */
3034 if (adapter->msix_entries) {
3035 u32 eics = 0;
3036 for (i = 0; i < adapter->num_q_vectors; i++) {
3037 struct igb_q_vector *q_vector = adapter->q_vector[i];
3038 eics |= q_vector->eims_value;
3040 wr32(E1000_EICS, eics);
3041 } else {
3042 wr32(E1000_ICS, E1000_ICS_RXDMT0);
3045 /* Reset the timer */
3046 if (!test_bit(__IGB_DOWN, &adapter->state))
3047 mod_timer(&adapter->watchdog_timer,
3048 round_jiffies(jiffies + 2 * HZ));
3051 enum latency_range {
3052 lowest_latency = 0,
3053 low_latency = 1,
3054 bulk_latency = 2,
3055 latency_invalid = 255
3059 * igb_update_ring_itr - update the dynamic ITR value based on packet size
3061 * Stores a new ITR value based on strictly on packet size. This
3062 * algorithm is less sophisticated than that used in igb_update_itr,
3063 * due to the difficulty of synchronizing statistics across multiple
3064 * receive rings. The divisors and thresholds used by this fuction
3065 * were determined based on theoretical maximum wire speed and testing
3066 * data, in order to minimize response time while increasing bulk
3067 * throughput.
3068 * This functionality is controlled by the InterruptThrottleRate module
3069 * parameter (see igb_param.c)
3070 * NOTE: This function is called only when operating in a multiqueue
3071 * receive environment.
3072 * @q_vector: pointer to q_vector
3074 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
3076 int new_val = q_vector->itr_val;
3077 int avg_wire_size = 0;
3078 struct igb_adapter *adapter = q_vector->adapter;
3080 /* For non-gigabit speeds, just fix the interrupt rate at 4000
3081 * ints/sec - ITR timer value of 120 ticks.
3083 if (adapter->link_speed != SPEED_1000) {
3084 new_val = 976;
3085 goto set_itr_val;
3088 if (q_vector->rx_ring && q_vector->rx_ring->total_packets) {
3089 struct igb_ring *ring = q_vector->rx_ring;
3090 avg_wire_size = ring->total_bytes / ring->total_packets;
3093 if (q_vector->tx_ring && q_vector->tx_ring->total_packets) {
3094 struct igb_ring *ring = q_vector->tx_ring;
3095 avg_wire_size = max_t(u32, avg_wire_size,
3096 (ring->total_bytes /
3097 ring->total_packets));
3100 /* if avg_wire_size isn't set no work was done */
3101 if (!avg_wire_size)
3102 goto clear_counts;
3104 /* Add 24 bytes to size to account for CRC, preamble, and gap */
3105 avg_wire_size += 24;
3107 /* Don't starve jumbo frames */
3108 avg_wire_size = min(avg_wire_size, 3000);
3110 /* Give a little boost to mid-size frames */
3111 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
3112 new_val = avg_wire_size / 3;
3113 else
3114 new_val = avg_wire_size / 2;
3116 set_itr_val:
3117 if (new_val != q_vector->itr_val) {
3118 q_vector->itr_val = new_val;
3119 q_vector->set_itr = 1;
3121 clear_counts:
3122 if (q_vector->rx_ring) {
3123 q_vector->rx_ring->total_bytes = 0;
3124 q_vector->rx_ring->total_packets = 0;
3126 if (q_vector->tx_ring) {
3127 q_vector->tx_ring->total_bytes = 0;
3128 q_vector->tx_ring->total_packets = 0;
3133 * igb_update_itr - update the dynamic ITR value based on statistics
3134 * Stores a new ITR value based on packets and byte
3135 * counts during the last interrupt. The advantage of per interrupt
3136 * computation is faster updates and more accurate ITR for the current
3137 * traffic pattern. Constants in this function were computed
3138 * based on theoretical maximum wire speed and thresholds were set based
3139 * on testing data as well as attempting to minimize response time
3140 * while increasing bulk throughput.
3141 * this functionality is controlled by the InterruptThrottleRate module
3142 * parameter (see igb_param.c)
3143 * NOTE: These calculations are only valid when operating in a single-
3144 * queue environment.
3145 * @adapter: pointer to adapter
3146 * @itr_setting: current q_vector->itr_val
3147 * @packets: the number of packets during this measurement interval
3148 * @bytes: the number of bytes during this measurement interval
3150 static unsigned int igb_update_itr(struct igb_adapter *adapter, u16 itr_setting,
3151 int packets, int bytes)
3153 unsigned int retval = itr_setting;
3155 if (packets == 0)
3156 goto update_itr_done;
3158 switch (itr_setting) {
3159 case lowest_latency:
3160 /* handle TSO and jumbo frames */
3161 if (bytes/packets > 8000)
3162 retval = bulk_latency;
3163 else if ((packets < 5) && (bytes > 512))
3164 retval = low_latency;
3165 break;
3166 case low_latency: /* 50 usec aka 20000 ints/s */
3167 if (bytes > 10000) {
3168 /* this if handles the TSO accounting */
3169 if (bytes/packets > 8000) {
3170 retval = bulk_latency;
3171 } else if ((packets < 10) || ((bytes/packets) > 1200)) {
3172 retval = bulk_latency;
3173 } else if ((packets > 35)) {
3174 retval = lowest_latency;
3176 } else if (bytes/packets > 2000) {
3177 retval = bulk_latency;
3178 } else if (packets <= 2 && bytes < 512) {
3179 retval = lowest_latency;
3181 break;
3182 case bulk_latency: /* 250 usec aka 4000 ints/s */
3183 if (bytes > 25000) {
3184 if (packets > 35)
3185 retval = low_latency;
3186 } else if (bytes < 1500) {
3187 retval = low_latency;
3189 break;
3192 update_itr_done:
3193 return retval;
3196 static void igb_set_itr(struct igb_adapter *adapter)
3198 struct igb_q_vector *q_vector = adapter->q_vector[0];
3199 u16 current_itr;
3200 u32 new_itr = q_vector->itr_val;
3202 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
3203 if (adapter->link_speed != SPEED_1000) {
3204 current_itr = 0;
3205 new_itr = 4000;
3206 goto set_itr_now;
3209 adapter->rx_itr = igb_update_itr(adapter,
3210 adapter->rx_itr,
3211 adapter->rx_ring->total_packets,
3212 adapter->rx_ring->total_bytes);
3214 adapter->tx_itr = igb_update_itr(adapter,
3215 adapter->tx_itr,
3216 adapter->tx_ring->total_packets,
3217 adapter->tx_ring->total_bytes);
3218 current_itr = max(adapter->rx_itr, adapter->tx_itr);
3220 /* conservative mode (itr 3) eliminates the lowest_latency setting */
3221 if (adapter->rx_itr_setting == 3 && current_itr == lowest_latency)
3222 current_itr = low_latency;
3224 switch (current_itr) {
3225 /* counts and packets in update_itr are dependent on these numbers */
3226 case lowest_latency:
3227 new_itr = 56; /* aka 70,000 ints/sec */
3228 break;
3229 case low_latency:
3230 new_itr = 196; /* aka 20,000 ints/sec */
3231 break;
3232 case bulk_latency:
3233 new_itr = 980; /* aka 4,000 ints/sec */
3234 break;
3235 default:
3236 break;
3239 set_itr_now:
3240 adapter->rx_ring->total_bytes = 0;
3241 adapter->rx_ring->total_packets = 0;
3242 adapter->tx_ring->total_bytes = 0;
3243 adapter->tx_ring->total_packets = 0;
3245 if (new_itr != q_vector->itr_val) {
3246 /* this attempts to bias the interrupt rate towards Bulk
3247 * by adding intermediate steps when interrupt rate is
3248 * increasing */
3249 new_itr = new_itr > q_vector->itr_val ?
3250 max((new_itr * q_vector->itr_val) /
3251 (new_itr + (q_vector->itr_val >> 2)),
3252 new_itr) :
3253 new_itr;
3254 /* Don't write the value here; it resets the adapter's
3255 * internal timer, and causes us to delay far longer than
3256 * we should between interrupts. Instead, we write the ITR
3257 * value at the beginning of the next interrupt so the timing
3258 * ends up being correct.
3260 q_vector->itr_val = new_itr;
3261 q_vector->set_itr = 1;
3264 return;
3267 #define IGB_TX_FLAGS_CSUM 0x00000001
3268 #define IGB_TX_FLAGS_VLAN 0x00000002
3269 #define IGB_TX_FLAGS_TSO 0x00000004
3270 #define IGB_TX_FLAGS_IPV4 0x00000008
3271 #define IGB_TX_FLAGS_TSTAMP 0x00000010
3272 #define IGB_TX_FLAGS_VLAN_MASK 0xffff0000
3273 #define IGB_TX_FLAGS_VLAN_SHIFT 16
3275 static inline int igb_tso_adv(struct igb_ring *tx_ring,
3276 struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
3278 struct e1000_adv_tx_context_desc *context_desc;
3279 unsigned int i;
3280 int err;
3281 struct igb_buffer *buffer_info;
3282 u32 info = 0, tu_cmd = 0;
3283 u32 mss_l4len_idx, l4len;
3284 *hdr_len = 0;
3286 if (skb_header_cloned(skb)) {
3287 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3288 if (err)
3289 return err;
3292 l4len = tcp_hdrlen(skb);
3293 *hdr_len += l4len;
3295 if (skb->protocol == htons(ETH_P_IP)) {
3296 struct iphdr *iph = ip_hdr(skb);
3297 iph->tot_len = 0;
3298 iph->check = 0;
3299 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
3300 iph->daddr, 0,
3301 IPPROTO_TCP,
3303 } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
3304 ipv6_hdr(skb)->payload_len = 0;
3305 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
3306 &ipv6_hdr(skb)->daddr,
3307 0, IPPROTO_TCP, 0);
3310 i = tx_ring->next_to_use;
3312 buffer_info = &tx_ring->buffer_info[i];
3313 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
3314 /* VLAN MACLEN IPLEN */
3315 if (tx_flags & IGB_TX_FLAGS_VLAN)
3316 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
3317 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
3318 *hdr_len += skb_network_offset(skb);
3319 info |= skb_network_header_len(skb);
3320 *hdr_len += skb_network_header_len(skb);
3321 context_desc->vlan_macip_lens = cpu_to_le32(info);
3323 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
3324 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
3326 if (skb->protocol == htons(ETH_P_IP))
3327 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
3328 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
3330 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
3332 /* MSS L4LEN IDX */
3333 mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
3334 mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
3336 /* For 82575, context index must be unique per ring. */
3337 if (tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX)
3338 mss_l4len_idx |= tx_ring->reg_idx << 4;
3340 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
3341 context_desc->seqnum_seed = 0;
3343 buffer_info->time_stamp = jiffies;
3344 buffer_info->next_to_watch = i;
3345 buffer_info->dma = 0;
3346 i++;
3347 if (i == tx_ring->count)
3348 i = 0;
3350 tx_ring->next_to_use = i;
3352 return true;
3355 static inline bool igb_tx_csum_adv(struct igb_ring *tx_ring,
3356 struct sk_buff *skb, u32 tx_flags)
3358 struct e1000_adv_tx_context_desc *context_desc;
3359 struct pci_dev *pdev = tx_ring->pdev;
3360 struct igb_buffer *buffer_info;
3361 u32 info = 0, tu_cmd = 0;
3362 unsigned int i;
3364 if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
3365 (tx_flags & IGB_TX_FLAGS_VLAN)) {
3366 i = tx_ring->next_to_use;
3367 buffer_info = &tx_ring->buffer_info[i];
3368 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
3370 if (tx_flags & IGB_TX_FLAGS_VLAN)
3371 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
3373 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
3374 if (skb->ip_summed == CHECKSUM_PARTIAL)
3375 info |= skb_network_header_len(skb);
3377 context_desc->vlan_macip_lens = cpu_to_le32(info);
3379 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
3381 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3382 __be16 protocol;
3384 if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
3385 const struct vlan_ethhdr *vhdr =
3386 (const struct vlan_ethhdr*)skb->data;
3388 protocol = vhdr->h_vlan_encapsulated_proto;
3389 } else {
3390 protocol = skb->protocol;
3393 switch (protocol) {
3394 case cpu_to_be16(ETH_P_IP):
3395 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
3396 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
3397 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
3398 else if (ip_hdr(skb)->protocol == IPPROTO_SCTP)
3399 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
3400 break;
3401 case cpu_to_be16(ETH_P_IPV6):
3402 /* XXX what about other V6 headers?? */
3403 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
3404 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
3405 else if (ipv6_hdr(skb)->nexthdr == IPPROTO_SCTP)
3406 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
3407 break;
3408 default:
3409 if (unlikely(net_ratelimit()))
3410 dev_warn(&pdev->dev,
3411 "partial checksum but proto=%x!\n",
3412 skb->protocol);
3413 break;
3417 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
3418 context_desc->seqnum_seed = 0;
3419 if (tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX)
3420 context_desc->mss_l4len_idx =
3421 cpu_to_le32(tx_ring->reg_idx << 4);
3423 buffer_info->time_stamp = jiffies;
3424 buffer_info->next_to_watch = i;
3425 buffer_info->dma = 0;
3427 i++;
3428 if (i == tx_ring->count)
3429 i = 0;
3430 tx_ring->next_to_use = i;
3432 return true;
3434 return false;
3437 #define IGB_MAX_TXD_PWR 16
3438 #define IGB_MAX_DATA_PER_TXD (1<<IGB_MAX_TXD_PWR)
3440 static inline int igb_tx_map_adv(struct igb_ring *tx_ring, struct sk_buff *skb,
3441 unsigned int first)
3443 struct igb_buffer *buffer_info;
3444 struct pci_dev *pdev = tx_ring->pdev;
3445 unsigned int len = skb_headlen(skb);
3446 unsigned int count = 0, i;
3447 unsigned int f;
3448 dma_addr_t *map;
3450 i = tx_ring->next_to_use;
3452 if (skb_dma_map(&pdev->dev, skb, DMA_TO_DEVICE)) {
3453 dev_err(&pdev->dev, "TX DMA map failed\n");
3454 return 0;
3457 map = skb_shinfo(skb)->dma_maps;
3459 buffer_info = &tx_ring->buffer_info[i];
3460 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
3461 buffer_info->length = len;
3462 /* set time_stamp *before* dma to help avoid a possible race */
3463 buffer_info->time_stamp = jiffies;
3464 buffer_info->next_to_watch = i;
3465 buffer_info->dma = skb_shinfo(skb)->dma_head;
3467 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
3468 struct skb_frag_struct *frag;
3470 i++;
3471 if (i == tx_ring->count)
3472 i = 0;
3474 frag = &skb_shinfo(skb)->frags[f];
3475 len = frag->size;
3477 buffer_info = &tx_ring->buffer_info[i];
3478 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
3479 buffer_info->length = len;
3480 buffer_info->time_stamp = jiffies;
3481 buffer_info->next_to_watch = i;
3482 buffer_info->dma = map[count];
3483 count++;
3486 tx_ring->buffer_info[i].skb = skb;
3487 tx_ring->buffer_info[first].next_to_watch = i;
3489 return ++count;
3492 static inline void igb_tx_queue_adv(struct igb_ring *tx_ring,
3493 int tx_flags, int count, u32 paylen,
3494 u8 hdr_len)
3496 union e1000_adv_tx_desc *tx_desc;
3497 struct igb_buffer *buffer_info;
3498 u32 olinfo_status = 0, cmd_type_len;
3499 unsigned int i = tx_ring->next_to_use;
3501 cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
3502 E1000_ADVTXD_DCMD_DEXT);
3504 if (tx_flags & IGB_TX_FLAGS_VLAN)
3505 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
3507 if (tx_flags & IGB_TX_FLAGS_TSTAMP)
3508 cmd_type_len |= E1000_ADVTXD_MAC_TSTAMP;
3510 if (tx_flags & IGB_TX_FLAGS_TSO) {
3511 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
3513 /* insert tcp checksum */
3514 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
3516 /* insert ip checksum */
3517 if (tx_flags & IGB_TX_FLAGS_IPV4)
3518 olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
3520 } else if (tx_flags & IGB_TX_FLAGS_CSUM) {
3521 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
3524 if ((tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX) &&
3525 (tx_flags & (IGB_TX_FLAGS_CSUM |
3526 IGB_TX_FLAGS_TSO |
3527 IGB_TX_FLAGS_VLAN)))
3528 olinfo_status |= tx_ring->reg_idx << 4;
3530 olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
3532 do {
3533 buffer_info = &tx_ring->buffer_info[i];
3534 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
3535 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
3536 tx_desc->read.cmd_type_len =
3537 cpu_to_le32(cmd_type_len | buffer_info->length);
3538 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
3539 count--;
3540 i++;
3541 if (i == tx_ring->count)
3542 i = 0;
3543 } while (count > 0);
3545 tx_desc->read.cmd_type_len |= cpu_to_le32(IGB_ADVTXD_DCMD);
3546 /* Force memory writes to complete before letting h/w
3547 * know there are new descriptors to fetch. (Only
3548 * applicable for weak-ordered memory model archs,
3549 * such as IA-64). */
3550 wmb();
3552 tx_ring->next_to_use = i;
3553 writel(i, tx_ring->tail);
3554 /* we need this if more than one processor can write to our tail
3555 * at a time, it syncronizes IO on IA64/Altix systems */
3556 mmiowb();
3559 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, int size)
3561 struct net_device *netdev = tx_ring->netdev;
3563 netif_stop_subqueue(netdev, tx_ring->queue_index);
3565 /* Herbert's original patch had:
3566 * smp_mb__after_netif_stop_queue();
3567 * but since that doesn't exist yet, just open code it. */
3568 smp_mb();
3570 /* We need to check again in a case another CPU has just
3571 * made room available. */
3572 if (igb_desc_unused(tx_ring) < size)
3573 return -EBUSY;
3575 /* A reprieve! */
3576 netif_wake_subqueue(netdev, tx_ring->queue_index);
3577 tx_ring->tx_stats.restart_queue++;
3578 return 0;
3581 static int igb_maybe_stop_tx(struct igb_ring *tx_ring, int size)
3583 if (igb_desc_unused(tx_ring) >= size)
3584 return 0;
3585 return __igb_maybe_stop_tx(tx_ring, size);
3588 netdev_tx_t igb_xmit_frame_ring_adv(struct sk_buff *skb,
3589 struct igb_ring *tx_ring)
3591 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
3592 unsigned int first;
3593 unsigned int tx_flags = 0;
3594 u8 hdr_len = 0;
3595 int tso = 0, count;
3596 union skb_shared_tx *shtx = skb_tx(skb);
3598 /* need: 1 descriptor per page,
3599 * + 2 desc gap to keep tail from touching head,
3600 * + 1 desc for skb->data,
3601 * + 1 desc for context descriptor,
3602 * otherwise try next time */
3603 if (igb_maybe_stop_tx(tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
3604 /* this is a hard error */
3605 return NETDEV_TX_BUSY;
3608 if (unlikely(shtx->hardware)) {
3609 shtx->in_progress = 1;
3610 tx_flags |= IGB_TX_FLAGS_TSTAMP;
3613 if (vlan_tx_tag_present(skb) && adapter->vlgrp) {
3614 tx_flags |= IGB_TX_FLAGS_VLAN;
3615 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
3618 if (skb->protocol == htons(ETH_P_IP))
3619 tx_flags |= IGB_TX_FLAGS_IPV4;
3621 first = tx_ring->next_to_use;
3622 if (skb_is_gso(skb)) {
3623 tso = igb_tso_adv(tx_ring, skb, tx_flags, &hdr_len);
3625 if (tso < 0) {
3626 dev_kfree_skb_any(skb);
3627 return NETDEV_TX_OK;
3631 if (tso)
3632 tx_flags |= IGB_TX_FLAGS_TSO;
3633 else if (igb_tx_csum_adv(tx_ring, skb, tx_flags) &&
3634 (skb->ip_summed == CHECKSUM_PARTIAL))
3635 tx_flags |= IGB_TX_FLAGS_CSUM;
3638 * count reflects descriptors mapped, if 0 or less then mapping error
3639 * has occured and we need to rewind the descriptor queue
3641 count = igb_tx_map_adv(tx_ring, skb, first);
3642 if (count <= 0) {
3643 dev_kfree_skb_any(skb);
3644 tx_ring->buffer_info[first].time_stamp = 0;
3645 tx_ring->next_to_use = first;
3646 return NETDEV_TX_OK;
3649 igb_tx_queue_adv(tx_ring, tx_flags, count, skb->len, hdr_len);
3651 /* Make sure there is space in the ring for the next send. */
3652 igb_maybe_stop_tx(tx_ring, MAX_SKB_FRAGS + 4);
3654 return NETDEV_TX_OK;
3657 static netdev_tx_t igb_xmit_frame_adv(struct sk_buff *skb,
3658 struct net_device *netdev)
3660 struct igb_adapter *adapter = netdev_priv(netdev);
3661 struct igb_ring *tx_ring;
3662 int r_idx = 0;
3664 if (test_bit(__IGB_DOWN, &adapter->state)) {
3665 dev_kfree_skb_any(skb);
3666 return NETDEV_TX_OK;
3669 if (skb->len <= 0) {
3670 dev_kfree_skb_any(skb);
3671 return NETDEV_TX_OK;
3674 r_idx = skb->queue_mapping & (IGB_ABS_MAX_TX_QUEUES - 1);
3675 tx_ring = adapter->multi_tx_table[r_idx];
3677 /* This goes back to the question of how to logically map a tx queue
3678 * to a flow. Right now, performance is impacted slightly negatively
3679 * if using multiple tx queues. If the stack breaks away from a
3680 * single qdisc implementation, we can look at this again. */
3681 return igb_xmit_frame_ring_adv(skb, tx_ring);
3685 * igb_tx_timeout - Respond to a Tx Hang
3686 * @netdev: network interface device structure
3688 static void igb_tx_timeout(struct net_device *netdev)
3690 struct igb_adapter *adapter = netdev_priv(netdev);
3691 struct e1000_hw *hw = &adapter->hw;
3693 /* Do the reset outside of interrupt context */
3694 adapter->tx_timeout_count++;
3696 schedule_work(&adapter->reset_task);
3697 wr32(E1000_EICS,
3698 (adapter->eims_enable_mask & ~adapter->eims_other));
3701 static void igb_reset_task(struct work_struct *work)
3703 struct igb_adapter *adapter;
3704 adapter = container_of(work, struct igb_adapter, reset_task);
3706 igb_reinit_locked(adapter);
3710 * igb_get_stats - Get System Network Statistics
3711 * @netdev: network interface device structure
3713 * Returns the address of the device statistics structure.
3714 * The statistics are actually updated from the timer callback.
3716 static struct net_device_stats *igb_get_stats(struct net_device *netdev)
3718 /* only return the current stats */
3719 return &netdev->stats;
3723 * igb_change_mtu - Change the Maximum Transfer Unit
3724 * @netdev: network interface device structure
3725 * @new_mtu: new value for maximum frame size
3727 * Returns 0 on success, negative on failure
3729 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
3731 struct igb_adapter *adapter = netdev_priv(netdev);
3732 struct pci_dev *pdev = adapter->pdev;
3733 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3734 u32 rx_buffer_len, i;
3736 if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3737 dev_err(&pdev->dev, "Invalid MTU setting\n");
3738 return -EINVAL;
3741 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3742 dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
3743 return -EINVAL;
3746 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
3747 msleep(1);
3749 /* igb_down has a dependency on max_frame_size */
3750 adapter->max_frame_size = max_frame;
3752 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3753 * means we reserve 2 more, this pushes us to allocate from the next
3754 * larger slab size.
3755 * i.e. RXBUFFER_2048 --> size-4096 slab
3758 if (max_frame <= IGB_RXBUFFER_1024)
3759 rx_buffer_len = IGB_RXBUFFER_1024;
3760 else if (max_frame <= MAXIMUM_ETHERNET_VLAN_SIZE)
3761 rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3762 else
3763 rx_buffer_len = IGB_RXBUFFER_128;
3765 if (netif_running(netdev))
3766 igb_down(adapter);
3768 dev_info(&pdev->dev, "changing MTU from %d to %d\n",
3769 netdev->mtu, new_mtu);
3770 netdev->mtu = new_mtu;
3772 for (i = 0; i < adapter->num_rx_queues; i++)
3773 adapter->rx_ring[i].rx_buffer_len = rx_buffer_len;
3775 if (netif_running(netdev))
3776 igb_up(adapter);
3777 else
3778 igb_reset(adapter);
3780 clear_bit(__IGB_RESETTING, &adapter->state);
3782 return 0;
3786 * igb_update_stats - Update the board statistics counters
3787 * @adapter: board private structure
3790 void igb_update_stats(struct igb_adapter *adapter)
3792 struct net_device *netdev = adapter->netdev;
3793 struct e1000_hw *hw = &adapter->hw;
3794 struct pci_dev *pdev = adapter->pdev;
3795 u32 rnbc;
3796 u16 phy_tmp;
3797 int i;
3798 u64 bytes, packets;
3800 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3803 * Prevent stats update while adapter is being reset, or if the pci
3804 * connection is down.
3806 if (adapter->link_speed == 0)
3807 return;
3808 if (pci_channel_offline(pdev))
3809 return;
3811 bytes = 0;
3812 packets = 0;
3813 for (i = 0; i < adapter->num_rx_queues; i++) {
3814 u32 rqdpc_tmp = rd32(E1000_RQDPC(i)) & 0x0FFF;
3815 adapter->rx_ring[i].rx_stats.drops += rqdpc_tmp;
3816 netdev->stats.rx_fifo_errors += rqdpc_tmp;
3817 bytes += adapter->rx_ring[i].rx_stats.bytes;
3818 packets += adapter->rx_ring[i].rx_stats.packets;
3821 netdev->stats.rx_bytes = bytes;
3822 netdev->stats.rx_packets = packets;
3824 bytes = 0;
3825 packets = 0;
3826 for (i = 0; i < adapter->num_tx_queues; i++) {
3827 bytes += adapter->tx_ring[i].tx_stats.bytes;
3828 packets += adapter->tx_ring[i].tx_stats.packets;
3830 netdev->stats.tx_bytes = bytes;
3831 netdev->stats.tx_packets = packets;
3833 /* read stats registers */
3834 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
3835 adapter->stats.gprc += rd32(E1000_GPRC);
3836 adapter->stats.gorc += rd32(E1000_GORCL);
3837 rd32(E1000_GORCH); /* clear GORCL */
3838 adapter->stats.bprc += rd32(E1000_BPRC);
3839 adapter->stats.mprc += rd32(E1000_MPRC);
3840 adapter->stats.roc += rd32(E1000_ROC);
3842 adapter->stats.prc64 += rd32(E1000_PRC64);
3843 adapter->stats.prc127 += rd32(E1000_PRC127);
3844 adapter->stats.prc255 += rd32(E1000_PRC255);
3845 adapter->stats.prc511 += rd32(E1000_PRC511);
3846 adapter->stats.prc1023 += rd32(E1000_PRC1023);
3847 adapter->stats.prc1522 += rd32(E1000_PRC1522);
3848 adapter->stats.symerrs += rd32(E1000_SYMERRS);
3849 adapter->stats.sec += rd32(E1000_SEC);
3851 adapter->stats.mpc += rd32(E1000_MPC);
3852 adapter->stats.scc += rd32(E1000_SCC);
3853 adapter->stats.ecol += rd32(E1000_ECOL);
3854 adapter->stats.mcc += rd32(E1000_MCC);
3855 adapter->stats.latecol += rd32(E1000_LATECOL);
3856 adapter->stats.dc += rd32(E1000_DC);
3857 adapter->stats.rlec += rd32(E1000_RLEC);
3858 adapter->stats.xonrxc += rd32(E1000_XONRXC);
3859 adapter->stats.xontxc += rd32(E1000_XONTXC);
3860 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
3861 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
3862 adapter->stats.fcruc += rd32(E1000_FCRUC);
3863 adapter->stats.gptc += rd32(E1000_GPTC);
3864 adapter->stats.gotc += rd32(E1000_GOTCL);
3865 rd32(E1000_GOTCH); /* clear GOTCL */
3866 rnbc = rd32(E1000_RNBC);
3867 adapter->stats.rnbc += rnbc;
3868 netdev->stats.rx_fifo_errors += rnbc;
3869 adapter->stats.ruc += rd32(E1000_RUC);
3870 adapter->stats.rfc += rd32(E1000_RFC);
3871 adapter->stats.rjc += rd32(E1000_RJC);
3872 adapter->stats.tor += rd32(E1000_TORH);
3873 adapter->stats.tot += rd32(E1000_TOTH);
3874 adapter->stats.tpr += rd32(E1000_TPR);
3876 adapter->stats.ptc64 += rd32(E1000_PTC64);
3877 adapter->stats.ptc127 += rd32(E1000_PTC127);
3878 adapter->stats.ptc255 += rd32(E1000_PTC255);
3879 adapter->stats.ptc511 += rd32(E1000_PTC511);
3880 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
3881 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
3883 adapter->stats.mptc += rd32(E1000_MPTC);
3884 adapter->stats.bptc += rd32(E1000_BPTC);
3886 /* used for adaptive IFS */
3887 hw->mac.tx_packet_delta = rd32(E1000_TPT);
3888 adapter->stats.tpt += hw->mac.tx_packet_delta;
3889 hw->mac.collision_delta = rd32(E1000_COLC);
3890 adapter->stats.colc += hw->mac.collision_delta;
3892 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
3893 adapter->stats.rxerrc += rd32(E1000_RXERRC);
3894 adapter->stats.tncrs += rd32(E1000_TNCRS);
3895 adapter->stats.tsctc += rd32(E1000_TSCTC);
3896 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
3898 adapter->stats.iac += rd32(E1000_IAC);
3899 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
3900 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
3901 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
3902 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
3903 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
3904 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
3905 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
3906 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
3908 /* Fill out the OS statistics structure */
3909 netdev->stats.multicast = adapter->stats.mprc;
3910 netdev->stats.collisions = adapter->stats.colc;
3912 /* Rx Errors */
3914 /* RLEC on some newer hardware can be incorrect so build
3915 * our own version based on RUC and ROC */
3916 netdev->stats.rx_errors = adapter->stats.rxerrc +
3917 adapter->stats.crcerrs + adapter->stats.algnerrc +
3918 adapter->stats.ruc + adapter->stats.roc +
3919 adapter->stats.cexterr;
3920 netdev->stats.rx_length_errors = adapter->stats.ruc +
3921 adapter->stats.roc;
3922 netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3923 netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3924 netdev->stats.rx_missed_errors = adapter->stats.mpc;
3926 /* Tx Errors */
3927 netdev->stats.tx_errors = adapter->stats.ecol +
3928 adapter->stats.latecol;
3929 netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3930 netdev->stats.tx_window_errors = adapter->stats.latecol;
3931 netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3933 /* Tx Dropped needs to be maintained elsewhere */
3935 /* Phy Stats */
3936 if (hw->phy.media_type == e1000_media_type_copper) {
3937 if ((adapter->link_speed == SPEED_1000) &&
3938 (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3939 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3940 adapter->phy_stats.idle_errors += phy_tmp;
3944 /* Management Stats */
3945 adapter->stats.mgptc += rd32(E1000_MGTPTC);
3946 adapter->stats.mgprc += rd32(E1000_MGTPRC);
3947 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
3950 static irqreturn_t igb_msix_other(int irq, void *data)
3952 struct igb_adapter *adapter = data;
3953 struct e1000_hw *hw = &adapter->hw;
3954 u32 icr = rd32(E1000_ICR);
3955 /* reading ICR causes bit 31 of EICR to be cleared */
3957 if (icr & E1000_ICR_DOUTSYNC) {
3958 /* HW is reporting DMA is out of sync */
3959 adapter->stats.doosync++;
3962 /* Check for a mailbox event */
3963 if (icr & E1000_ICR_VMMB)
3964 igb_msg_task(adapter);
3966 if (icr & E1000_ICR_LSC) {
3967 hw->mac.get_link_status = 1;
3968 /* guard against interrupt when we're going down */
3969 if (!test_bit(__IGB_DOWN, &adapter->state))
3970 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3973 if (adapter->vfs_allocated_count)
3974 wr32(E1000_IMS, E1000_IMS_LSC |
3975 E1000_IMS_VMMB |
3976 E1000_IMS_DOUTSYNC);
3977 else
3978 wr32(E1000_IMS, E1000_IMS_LSC | E1000_IMS_DOUTSYNC);
3979 wr32(E1000_EIMS, adapter->eims_other);
3981 return IRQ_HANDLED;
3984 static void igb_write_itr(struct igb_q_vector *q_vector)
3986 u32 itr_val = q_vector->itr_val & 0x7FFC;
3988 if (!q_vector->set_itr)
3989 return;
3991 if (!itr_val)
3992 itr_val = 0x4;
3994 if (q_vector->itr_shift)
3995 itr_val |= itr_val << q_vector->itr_shift;
3996 else
3997 itr_val |= 0x8000000;
3999 writel(itr_val, q_vector->itr_register);
4000 q_vector->set_itr = 0;
4003 static irqreturn_t igb_msix_ring(int irq, void *data)
4005 struct igb_q_vector *q_vector = data;
4007 /* Write the ITR value calculated from the previous interrupt. */
4008 igb_write_itr(q_vector);
4010 napi_schedule(&q_vector->napi);
4012 return IRQ_HANDLED;
4015 #ifdef CONFIG_IGB_DCA
4016 static void igb_update_dca(struct igb_q_vector *q_vector)
4018 struct igb_adapter *adapter = q_vector->adapter;
4019 struct e1000_hw *hw = &adapter->hw;
4020 int cpu = get_cpu();
4022 if (q_vector->cpu == cpu)
4023 goto out_no_update;
4025 if (q_vector->tx_ring) {
4026 int q = q_vector->tx_ring->reg_idx;
4027 u32 dca_txctrl = rd32(E1000_DCA_TXCTRL(q));
4028 if (hw->mac.type == e1000_82575) {
4029 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK;
4030 dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
4031 } else {
4032 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK_82576;
4033 dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
4034 E1000_DCA_TXCTRL_CPUID_SHIFT;
4036 dca_txctrl |= E1000_DCA_TXCTRL_DESC_DCA_EN;
4037 wr32(E1000_DCA_TXCTRL(q), dca_txctrl);
4039 if (q_vector->rx_ring) {
4040 int q = q_vector->rx_ring->reg_idx;
4041 u32 dca_rxctrl = rd32(E1000_DCA_RXCTRL(q));
4042 if (hw->mac.type == e1000_82575) {
4043 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK;
4044 dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
4045 } else {
4046 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK_82576;
4047 dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
4048 E1000_DCA_RXCTRL_CPUID_SHIFT;
4050 dca_rxctrl |= E1000_DCA_RXCTRL_DESC_DCA_EN;
4051 dca_rxctrl |= E1000_DCA_RXCTRL_HEAD_DCA_EN;
4052 dca_rxctrl |= E1000_DCA_RXCTRL_DATA_DCA_EN;
4053 wr32(E1000_DCA_RXCTRL(q), dca_rxctrl);
4055 q_vector->cpu = cpu;
4056 out_no_update:
4057 put_cpu();
4060 static void igb_setup_dca(struct igb_adapter *adapter)
4062 struct e1000_hw *hw = &adapter->hw;
4063 int i;
4065 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
4066 return;
4068 /* Always use CB2 mode, difference is masked in the CB driver. */
4069 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
4071 for (i = 0; i < adapter->num_q_vectors; i++) {
4072 struct igb_q_vector *q_vector = adapter->q_vector[i];
4073 q_vector->cpu = -1;
4074 igb_update_dca(q_vector);
4078 static int __igb_notify_dca(struct device *dev, void *data)
4080 struct net_device *netdev = dev_get_drvdata(dev);
4081 struct igb_adapter *adapter = netdev_priv(netdev);
4082 struct pci_dev *pdev = adapter->pdev;
4083 struct e1000_hw *hw = &adapter->hw;
4084 unsigned long event = *(unsigned long *)data;
4086 switch (event) {
4087 case DCA_PROVIDER_ADD:
4088 /* if already enabled, don't do it again */
4089 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
4090 break;
4091 if (dca_add_requester(dev) == 0) {
4092 adapter->flags |= IGB_FLAG_DCA_ENABLED;
4093 dev_info(&pdev->dev, "DCA enabled\n");
4094 igb_setup_dca(adapter);
4095 break;
4097 /* Fall Through since DCA is disabled. */
4098 case DCA_PROVIDER_REMOVE:
4099 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
4100 /* without this a class_device is left
4101 * hanging around in the sysfs model */
4102 dca_remove_requester(dev);
4103 dev_info(&pdev->dev, "DCA disabled\n");
4104 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
4105 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
4107 break;
4110 return 0;
4113 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
4114 void *p)
4116 int ret_val;
4118 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
4119 __igb_notify_dca);
4121 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
4123 #endif /* CONFIG_IGB_DCA */
4125 static void igb_ping_all_vfs(struct igb_adapter *adapter)
4127 struct e1000_hw *hw = &adapter->hw;
4128 u32 ping;
4129 int i;
4131 for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
4132 ping = E1000_PF_CONTROL_MSG;
4133 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
4134 ping |= E1000_VT_MSGTYPE_CTS;
4135 igb_write_mbx(hw, &ping, 1, i);
4139 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
4141 struct e1000_hw *hw = &adapter->hw;
4142 u32 vmolr = rd32(E1000_VMOLR(vf));
4143 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4145 vf_data->flags |= ~(IGB_VF_FLAG_UNI_PROMISC |
4146 IGB_VF_FLAG_MULTI_PROMISC);
4147 vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
4149 if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
4150 vmolr |= E1000_VMOLR_MPME;
4151 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
4152 } else {
4154 * if we have hashes and we are clearing a multicast promisc
4155 * flag we need to write the hashes to the MTA as this step
4156 * was previously skipped
4158 if (vf_data->num_vf_mc_hashes > 30) {
4159 vmolr |= E1000_VMOLR_MPME;
4160 } else if (vf_data->num_vf_mc_hashes) {
4161 int j;
4162 vmolr |= E1000_VMOLR_ROMPE;
4163 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
4164 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
4168 wr32(E1000_VMOLR(vf), vmolr);
4170 /* there are flags left unprocessed, likely not supported */
4171 if (*msgbuf & E1000_VT_MSGINFO_MASK)
4172 return -EINVAL;
4174 return 0;
4178 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
4179 u32 *msgbuf, u32 vf)
4181 int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
4182 u16 *hash_list = (u16 *)&msgbuf[1];
4183 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4184 int i;
4186 /* salt away the number of multicast addresses assigned
4187 * to this VF for later use to restore when the PF multi cast
4188 * list changes
4190 vf_data->num_vf_mc_hashes = n;
4192 /* only up to 30 hash values supported */
4193 if (n > 30)
4194 n = 30;
4196 /* store the hashes for later use */
4197 for (i = 0; i < n; i++)
4198 vf_data->vf_mc_hashes[i] = hash_list[i];
4200 /* Flush and reset the mta with the new values */
4201 igb_set_rx_mode(adapter->netdev);
4203 return 0;
4206 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
4208 struct e1000_hw *hw = &adapter->hw;
4209 struct vf_data_storage *vf_data;
4210 int i, j;
4212 for (i = 0; i < adapter->vfs_allocated_count; i++) {
4213 u32 vmolr = rd32(E1000_VMOLR(i));
4214 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
4216 vf_data = &adapter->vf_data[i];
4218 if ((vf_data->num_vf_mc_hashes > 30) ||
4219 (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
4220 vmolr |= E1000_VMOLR_MPME;
4221 } else if (vf_data->num_vf_mc_hashes) {
4222 vmolr |= E1000_VMOLR_ROMPE;
4223 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
4224 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
4226 wr32(E1000_VMOLR(i), vmolr);
4230 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
4232 struct e1000_hw *hw = &adapter->hw;
4233 u32 pool_mask, reg, vid;
4234 int i;
4236 pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
4238 /* Find the vlan filter for this id */
4239 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
4240 reg = rd32(E1000_VLVF(i));
4242 /* remove the vf from the pool */
4243 reg &= ~pool_mask;
4245 /* if pool is empty then remove entry from vfta */
4246 if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
4247 (reg & E1000_VLVF_VLANID_ENABLE)) {
4248 reg = 0;
4249 vid = reg & E1000_VLVF_VLANID_MASK;
4250 igb_vfta_set(hw, vid, false);
4253 wr32(E1000_VLVF(i), reg);
4256 adapter->vf_data[vf].vlans_enabled = 0;
4259 static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
4261 struct e1000_hw *hw = &adapter->hw;
4262 u32 reg, i;
4264 /* The vlvf table only exists on 82576 hardware and newer */
4265 if (hw->mac.type < e1000_82576)
4266 return -1;
4268 /* we only need to do this if VMDq is enabled */
4269 if (!adapter->vfs_allocated_count)
4270 return -1;
4272 /* Find the vlan filter for this id */
4273 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
4274 reg = rd32(E1000_VLVF(i));
4275 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
4276 vid == (reg & E1000_VLVF_VLANID_MASK))
4277 break;
4280 if (add) {
4281 if (i == E1000_VLVF_ARRAY_SIZE) {
4282 /* Did not find a matching VLAN ID entry that was
4283 * enabled. Search for a free filter entry, i.e.
4284 * one without the enable bit set
4286 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
4287 reg = rd32(E1000_VLVF(i));
4288 if (!(reg & E1000_VLVF_VLANID_ENABLE))
4289 break;
4292 if (i < E1000_VLVF_ARRAY_SIZE) {
4293 /* Found an enabled/available entry */
4294 reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
4296 /* if !enabled we need to set this up in vfta */
4297 if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
4298 /* add VID to filter table */
4299 igb_vfta_set(hw, vid, true);
4300 reg |= E1000_VLVF_VLANID_ENABLE;
4302 reg &= ~E1000_VLVF_VLANID_MASK;
4303 reg |= vid;
4304 wr32(E1000_VLVF(i), reg);
4306 /* do not modify RLPML for PF devices */
4307 if (vf >= adapter->vfs_allocated_count)
4308 return 0;
4310 if (!adapter->vf_data[vf].vlans_enabled) {
4311 u32 size;
4312 reg = rd32(E1000_VMOLR(vf));
4313 size = reg & E1000_VMOLR_RLPML_MASK;
4314 size += 4;
4315 reg &= ~E1000_VMOLR_RLPML_MASK;
4316 reg |= size;
4317 wr32(E1000_VMOLR(vf), reg);
4320 adapter->vf_data[vf].vlans_enabled++;
4321 return 0;
4323 } else {
4324 if (i < E1000_VLVF_ARRAY_SIZE) {
4325 /* remove vf from the pool */
4326 reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
4327 /* if pool is empty then remove entry from vfta */
4328 if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
4329 reg = 0;
4330 igb_vfta_set(hw, vid, false);
4332 wr32(E1000_VLVF(i), reg);
4334 /* do not modify RLPML for PF devices */
4335 if (vf >= adapter->vfs_allocated_count)
4336 return 0;
4338 adapter->vf_data[vf].vlans_enabled--;
4339 if (!adapter->vf_data[vf].vlans_enabled) {
4340 u32 size;
4341 reg = rd32(E1000_VMOLR(vf));
4342 size = reg & E1000_VMOLR_RLPML_MASK;
4343 size -= 4;
4344 reg &= ~E1000_VMOLR_RLPML_MASK;
4345 reg |= size;
4346 wr32(E1000_VMOLR(vf), reg);
4348 return 0;
4351 return -1;
4354 static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
4356 int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
4357 int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
4359 return igb_vlvf_set(adapter, vid, add, vf);
4362 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
4364 /* clear all flags */
4365 adapter->vf_data[vf].flags = 0;
4366 adapter->vf_data[vf].last_nack = jiffies;
4368 /* reset offloads to defaults */
4369 igb_set_vmolr(adapter, vf);
4371 /* reset vlans for device */
4372 igb_clear_vf_vfta(adapter, vf);
4374 /* reset multicast table array for vf */
4375 adapter->vf_data[vf].num_vf_mc_hashes = 0;
4377 /* Flush and reset the mta with the new values */
4378 igb_set_rx_mode(adapter->netdev);
4381 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
4383 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
4385 /* generate a new mac address as we were hotplug removed/added */
4386 random_ether_addr(vf_mac);
4388 /* process remaining reset events */
4389 igb_vf_reset(adapter, vf);
4392 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
4394 struct e1000_hw *hw = &adapter->hw;
4395 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
4396 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
4397 u32 reg, msgbuf[3];
4398 u8 *addr = (u8 *)(&msgbuf[1]);
4400 /* process all the same items cleared in a function level reset */
4401 igb_vf_reset(adapter, vf);
4403 /* set vf mac address */
4404 igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
4406 /* enable transmit and receive for vf */
4407 reg = rd32(E1000_VFTE);
4408 wr32(E1000_VFTE, reg | (1 << vf));
4409 reg = rd32(E1000_VFRE);
4410 wr32(E1000_VFRE, reg | (1 << vf));
4412 adapter->vf_data[vf].flags = IGB_VF_FLAG_CTS;
4414 /* reply to reset with ack and vf mac address */
4415 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
4416 memcpy(addr, vf_mac, 6);
4417 igb_write_mbx(hw, msgbuf, 3, vf);
4420 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
4422 unsigned char *addr = (char *)&msg[1];
4423 int err = -1;
4425 if (is_valid_ether_addr(addr))
4426 err = igb_set_vf_mac(adapter, vf, addr);
4428 return err;
4431 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
4433 struct e1000_hw *hw = &adapter->hw;
4434 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4435 u32 msg = E1000_VT_MSGTYPE_NACK;
4437 /* if device isn't clear to send it shouldn't be reading either */
4438 if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
4439 time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
4440 igb_write_mbx(hw, &msg, 1, vf);
4441 vf_data->last_nack = jiffies;
4445 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
4447 struct pci_dev *pdev = adapter->pdev;
4448 u32 msgbuf[E1000_VFMAILBOX_SIZE];
4449 struct e1000_hw *hw = &adapter->hw;
4450 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4451 s32 retval;
4453 retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
4455 if (retval)
4456 dev_err(&pdev->dev, "Error receiving message from VF\n");
4458 /* this is a message we already processed, do nothing */
4459 if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
4460 return;
4463 * until the vf completes a reset it should not be
4464 * allowed to start any configuration.
4467 if (msgbuf[0] == E1000_VF_RESET) {
4468 igb_vf_reset_msg(adapter, vf);
4469 return;
4472 if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
4473 msgbuf[0] = E1000_VT_MSGTYPE_NACK;
4474 if (time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
4475 igb_write_mbx(hw, msgbuf, 1, vf);
4476 vf_data->last_nack = jiffies;
4478 return;
4481 switch ((msgbuf[0] & 0xFFFF)) {
4482 case E1000_VF_SET_MAC_ADDR:
4483 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
4484 break;
4485 case E1000_VF_SET_PROMISC:
4486 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
4487 break;
4488 case E1000_VF_SET_MULTICAST:
4489 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
4490 break;
4491 case E1000_VF_SET_LPE:
4492 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
4493 break;
4494 case E1000_VF_SET_VLAN:
4495 retval = igb_set_vf_vlan(adapter, msgbuf, vf);
4496 break;
4497 default:
4498 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
4499 retval = -1;
4500 break;
4503 /* notify the VF of the results of what it sent us */
4504 if (retval)
4505 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
4506 else
4507 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
4509 msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
4511 igb_write_mbx(hw, msgbuf, 1, vf);
4514 static void igb_msg_task(struct igb_adapter *adapter)
4516 struct e1000_hw *hw = &adapter->hw;
4517 u32 vf;
4519 for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
4520 /* process any reset requests */
4521 if (!igb_check_for_rst(hw, vf))
4522 igb_vf_reset_event(adapter, vf);
4524 /* process any messages pending */
4525 if (!igb_check_for_msg(hw, vf))
4526 igb_rcv_msg_from_vf(adapter, vf);
4528 /* process any acks */
4529 if (!igb_check_for_ack(hw, vf))
4530 igb_rcv_ack_from_vf(adapter, vf);
4535 * igb_set_uta - Set unicast filter table address
4536 * @adapter: board private structure
4538 * The unicast table address is a register array of 32-bit registers.
4539 * The table is meant to be used in a way similar to how the MTA is used
4540 * however due to certain limitations in the hardware it is necessary to
4541 * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscous
4542 * enable bit to allow vlan tag stripping when promiscous mode is enabled
4544 static void igb_set_uta(struct igb_adapter *adapter)
4546 struct e1000_hw *hw = &adapter->hw;
4547 int i;
4549 /* The UTA table only exists on 82576 hardware and newer */
4550 if (hw->mac.type < e1000_82576)
4551 return;
4553 /* we only need to do this if VMDq is enabled */
4554 if (!adapter->vfs_allocated_count)
4555 return;
4557 for (i = 0; i < hw->mac.uta_reg_count; i++)
4558 array_wr32(E1000_UTA, i, ~0);
4562 * igb_intr_msi - Interrupt Handler
4563 * @irq: interrupt number
4564 * @data: pointer to a network interface device structure
4566 static irqreturn_t igb_intr_msi(int irq, void *data)
4568 struct igb_adapter *adapter = data;
4569 struct igb_q_vector *q_vector = adapter->q_vector[0];
4570 struct e1000_hw *hw = &adapter->hw;
4571 /* read ICR disables interrupts using IAM */
4572 u32 icr = rd32(E1000_ICR);
4574 igb_write_itr(q_vector);
4576 if (icr & E1000_ICR_DOUTSYNC) {
4577 /* HW is reporting DMA is out of sync */
4578 adapter->stats.doosync++;
4581 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
4582 hw->mac.get_link_status = 1;
4583 if (!test_bit(__IGB_DOWN, &adapter->state))
4584 mod_timer(&adapter->watchdog_timer, jiffies + 1);
4587 napi_schedule(&q_vector->napi);
4589 return IRQ_HANDLED;
4593 * igb_intr - Legacy Interrupt Handler
4594 * @irq: interrupt number
4595 * @data: pointer to a network interface device structure
4597 static irqreturn_t igb_intr(int irq, void *data)
4599 struct igb_adapter *adapter = data;
4600 struct igb_q_vector *q_vector = adapter->q_vector[0];
4601 struct e1000_hw *hw = &adapter->hw;
4602 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
4603 * need for the IMC write */
4604 u32 icr = rd32(E1000_ICR);
4605 if (!icr)
4606 return IRQ_NONE; /* Not our interrupt */
4608 igb_write_itr(q_vector);
4610 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
4611 * not set, then the adapter didn't send an interrupt */
4612 if (!(icr & E1000_ICR_INT_ASSERTED))
4613 return IRQ_NONE;
4615 if (icr & E1000_ICR_DOUTSYNC) {
4616 /* HW is reporting DMA is out of sync */
4617 adapter->stats.doosync++;
4620 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
4621 hw->mac.get_link_status = 1;
4622 /* guard against interrupt when we're going down */
4623 if (!test_bit(__IGB_DOWN, &adapter->state))
4624 mod_timer(&adapter->watchdog_timer, jiffies + 1);
4627 napi_schedule(&q_vector->napi);
4629 return IRQ_HANDLED;
4632 static inline void igb_ring_irq_enable(struct igb_q_vector *q_vector)
4634 struct igb_adapter *adapter = q_vector->adapter;
4635 struct e1000_hw *hw = &adapter->hw;
4637 if ((q_vector->rx_ring && (adapter->rx_itr_setting & 3)) ||
4638 (!q_vector->rx_ring && (adapter->tx_itr_setting & 3))) {
4639 if (!adapter->msix_entries)
4640 igb_set_itr(adapter);
4641 else
4642 igb_update_ring_itr(q_vector);
4645 if (!test_bit(__IGB_DOWN, &adapter->state)) {
4646 if (adapter->msix_entries)
4647 wr32(E1000_EIMS, q_vector->eims_value);
4648 else
4649 igb_irq_enable(adapter);
4654 * igb_poll - NAPI Rx polling callback
4655 * @napi: napi polling structure
4656 * @budget: count of how many packets we should handle
4658 static int igb_poll(struct napi_struct *napi, int budget)
4660 struct igb_q_vector *q_vector = container_of(napi,
4661 struct igb_q_vector,
4662 napi);
4663 int tx_clean_complete = 1, work_done = 0;
4665 #ifdef CONFIG_IGB_DCA
4666 if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
4667 igb_update_dca(q_vector);
4668 #endif
4669 if (q_vector->tx_ring)
4670 tx_clean_complete = igb_clean_tx_irq(q_vector);
4672 if (q_vector->rx_ring)
4673 igb_clean_rx_irq_adv(q_vector, &work_done, budget);
4675 if (!tx_clean_complete)
4676 work_done = budget;
4678 /* If not enough Rx work done, exit the polling mode */
4679 if (work_done < budget) {
4680 napi_complete(napi);
4681 igb_ring_irq_enable(q_vector);
4684 return work_done;
4688 * igb_systim_to_hwtstamp - convert system time value to hw timestamp
4689 * @adapter: board private structure
4690 * @shhwtstamps: timestamp structure to update
4691 * @regval: unsigned 64bit system time value.
4693 * We need to convert the system time value stored in the RX/TXSTMP registers
4694 * into a hwtstamp which can be used by the upper level timestamping functions
4696 static void igb_systim_to_hwtstamp(struct igb_adapter *adapter,
4697 struct skb_shared_hwtstamps *shhwtstamps,
4698 u64 regval)
4700 u64 ns;
4702 ns = timecounter_cyc2time(&adapter->clock, regval);
4703 timecompare_update(&adapter->compare, ns);
4704 memset(shhwtstamps, 0, sizeof(struct skb_shared_hwtstamps));
4705 shhwtstamps->hwtstamp = ns_to_ktime(ns);
4706 shhwtstamps->syststamp = timecompare_transform(&adapter->compare, ns);
4710 * igb_tx_hwtstamp - utility function which checks for TX time stamp
4711 * @q_vector: pointer to q_vector containing needed info
4712 * @skb: packet that was just sent
4714 * If we were asked to do hardware stamping and such a time stamp is
4715 * available, then it must have been for this skb here because we only
4716 * allow only one such packet into the queue.
4718 static void igb_tx_hwtstamp(struct igb_q_vector *q_vector, struct sk_buff *skb)
4720 struct igb_adapter *adapter = q_vector->adapter;
4721 union skb_shared_tx *shtx = skb_tx(skb);
4722 struct e1000_hw *hw = &adapter->hw;
4723 struct skb_shared_hwtstamps shhwtstamps;
4724 u64 regval;
4726 /* if skb does not support hw timestamp or TX stamp not valid exit */
4727 if (likely(!shtx->hardware) ||
4728 !(rd32(E1000_TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID))
4729 return;
4731 regval = rd32(E1000_TXSTMPL);
4732 regval |= (u64)rd32(E1000_TXSTMPH) << 32;
4734 igb_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
4735 skb_tstamp_tx(skb, &shhwtstamps);
4739 * igb_clean_tx_irq - Reclaim resources after transmit completes
4740 * @q_vector: pointer to q_vector containing needed info
4741 * returns true if ring is completely cleaned
4743 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
4745 struct igb_adapter *adapter = q_vector->adapter;
4746 struct igb_ring *tx_ring = q_vector->tx_ring;
4747 struct net_device *netdev = tx_ring->netdev;
4748 struct e1000_hw *hw = &adapter->hw;
4749 struct igb_buffer *buffer_info;
4750 struct sk_buff *skb;
4751 union e1000_adv_tx_desc *tx_desc, *eop_desc;
4752 unsigned int total_bytes = 0, total_packets = 0;
4753 unsigned int i, eop, count = 0;
4754 bool cleaned = false;
4756 i = tx_ring->next_to_clean;
4757 eop = tx_ring->buffer_info[i].next_to_watch;
4758 eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
4760 while ((eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)) &&
4761 (count < tx_ring->count)) {
4762 for (cleaned = false; !cleaned; count++) {
4763 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
4764 buffer_info = &tx_ring->buffer_info[i];
4765 cleaned = (i == eop);
4766 skb = buffer_info->skb;
4768 if (skb) {
4769 unsigned int segs, bytecount;
4770 /* gso_segs is currently only valid for tcp */
4771 segs = skb_shinfo(skb)->gso_segs ?: 1;
4772 /* multiply data chunks by size of headers */
4773 bytecount = ((segs - 1) * skb_headlen(skb)) +
4774 skb->len;
4775 total_packets += segs;
4776 total_bytes += bytecount;
4778 igb_tx_hwtstamp(q_vector, skb);
4781 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
4782 tx_desc->wb.status = 0;
4784 i++;
4785 if (i == tx_ring->count)
4786 i = 0;
4788 eop = tx_ring->buffer_info[i].next_to_watch;
4789 eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
4792 tx_ring->next_to_clean = i;
4794 if (unlikely(count &&
4795 netif_carrier_ok(netdev) &&
4796 igb_desc_unused(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
4797 /* Make sure that anybody stopping the queue after this
4798 * sees the new next_to_clean.
4800 smp_mb();
4801 if (__netif_subqueue_stopped(netdev, tx_ring->queue_index) &&
4802 !(test_bit(__IGB_DOWN, &adapter->state))) {
4803 netif_wake_subqueue(netdev, tx_ring->queue_index);
4804 tx_ring->tx_stats.restart_queue++;
4808 if (tx_ring->detect_tx_hung) {
4809 /* Detect a transmit hang in hardware, this serializes the
4810 * check with the clearing of time_stamp and movement of i */
4811 tx_ring->detect_tx_hung = false;
4812 if (tx_ring->buffer_info[i].time_stamp &&
4813 time_after(jiffies, tx_ring->buffer_info[i].time_stamp +
4814 (adapter->tx_timeout_factor * HZ))
4815 && !(rd32(E1000_STATUS) &
4816 E1000_STATUS_TXOFF)) {
4818 /* detected Tx unit hang */
4819 dev_err(&tx_ring->pdev->dev,
4820 "Detected Tx Unit Hang\n"
4821 " Tx Queue <%d>\n"
4822 " TDH <%x>\n"
4823 " TDT <%x>\n"
4824 " next_to_use <%x>\n"
4825 " next_to_clean <%x>\n"
4826 "buffer_info[next_to_clean]\n"
4827 " time_stamp <%lx>\n"
4828 " next_to_watch <%x>\n"
4829 " jiffies <%lx>\n"
4830 " desc.status <%x>\n",
4831 tx_ring->queue_index,
4832 readl(tx_ring->head),
4833 readl(tx_ring->tail),
4834 tx_ring->next_to_use,
4835 tx_ring->next_to_clean,
4836 tx_ring->buffer_info[eop].time_stamp,
4837 eop,
4838 jiffies,
4839 eop_desc->wb.status);
4840 netif_stop_subqueue(netdev, tx_ring->queue_index);
4843 tx_ring->total_bytes += total_bytes;
4844 tx_ring->total_packets += total_packets;
4845 tx_ring->tx_stats.bytes += total_bytes;
4846 tx_ring->tx_stats.packets += total_packets;
4847 return (count < tx_ring->count);
4851 * igb_receive_skb - helper function to handle rx indications
4852 * @q_vector: structure containing interrupt and ring information
4853 * @skb: packet to send up
4854 * @vlan_tag: vlan tag for packet
4856 static void igb_receive_skb(struct igb_q_vector *q_vector,
4857 struct sk_buff *skb,
4858 u16 vlan_tag)
4860 struct igb_adapter *adapter = q_vector->adapter;
4862 if (vlan_tag)
4863 vlan_gro_receive(&q_vector->napi, adapter->vlgrp,
4864 vlan_tag, skb);
4865 else
4866 napi_gro_receive(&q_vector->napi, skb);
4869 static inline void igb_rx_checksum_adv(struct igb_ring *ring,
4870 u32 status_err, struct sk_buff *skb)
4872 skb->ip_summed = CHECKSUM_NONE;
4874 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
4875 if (!(ring->flags & IGB_RING_FLAG_RX_CSUM) ||
4876 (status_err & E1000_RXD_STAT_IXSM))
4877 return;
4879 /* TCP/UDP checksum error bit is set */
4880 if (status_err &
4881 (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
4883 * work around errata with sctp packets where the TCPE aka
4884 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
4885 * packets, (aka let the stack check the crc32c)
4887 if ((skb->len == 60) &&
4888 (ring->flags & IGB_RING_FLAG_RX_SCTP_CSUM))
4889 ring->rx_stats.csum_err++;
4891 /* let the stack verify checksum errors */
4892 return;
4894 /* It must be a TCP or UDP packet with a valid checksum */
4895 if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
4896 skb->ip_summed = CHECKSUM_UNNECESSARY;
4898 dev_dbg(&ring->pdev->dev, "cksum success: bits %08X\n", status_err);
4901 static inline void igb_rx_hwtstamp(struct igb_q_vector *q_vector, u32 staterr,
4902 struct sk_buff *skb)
4904 struct igb_adapter *adapter = q_vector->adapter;
4905 struct e1000_hw *hw = &adapter->hw;
4906 u64 regval;
4909 * If this bit is set, then the RX registers contain the time stamp. No
4910 * other packet will be time stamped until we read these registers, so
4911 * read the registers to make them available again. Because only one
4912 * packet can be time stamped at a time, we know that the register
4913 * values must belong to this one here and therefore we don't need to
4914 * compare any of the additional attributes stored for it.
4916 * If nothing went wrong, then it should have a skb_shared_tx that we
4917 * can turn into a skb_shared_hwtstamps.
4919 if (likely(!(staterr & E1000_RXDADV_STAT_TS)))
4920 return;
4921 if (!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
4922 return;
4924 regval = rd32(E1000_RXSTMPL);
4925 regval |= (u64)rd32(E1000_RXSTMPH) << 32;
4927 igb_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
4929 static inline u16 igb_get_hlen(struct igb_ring *rx_ring,
4930 union e1000_adv_rx_desc *rx_desc)
4932 /* HW will not DMA in data larger than the given buffer, even if it
4933 * parses the (NFS, of course) header to be larger. In that case, it
4934 * fills the header buffer and spills the rest into the page.
4936 u16 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hdr_info) &
4937 E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
4938 if (hlen > rx_ring->rx_buffer_len)
4939 hlen = rx_ring->rx_buffer_len;
4940 return hlen;
4943 static bool igb_clean_rx_irq_adv(struct igb_q_vector *q_vector,
4944 int *work_done, int budget)
4946 struct igb_ring *rx_ring = q_vector->rx_ring;
4947 struct net_device *netdev = rx_ring->netdev;
4948 struct pci_dev *pdev = rx_ring->pdev;
4949 union e1000_adv_rx_desc *rx_desc , *next_rxd;
4950 struct igb_buffer *buffer_info , *next_buffer;
4951 struct sk_buff *skb;
4952 bool cleaned = false;
4953 int cleaned_count = 0;
4954 unsigned int total_bytes = 0, total_packets = 0;
4955 unsigned int i;
4956 u32 staterr;
4957 u16 length;
4958 u16 vlan_tag;
4960 i = rx_ring->next_to_clean;
4961 buffer_info = &rx_ring->buffer_info[i];
4962 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
4963 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
4965 while (staterr & E1000_RXD_STAT_DD) {
4966 if (*work_done >= budget)
4967 break;
4968 (*work_done)++;
4970 skb = buffer_info->skb;
4971 prefetch(skb->data - NET_IP_ALIGN);
4972 buffer_info->skb = NULL;
4974 i++;
4975 if (i == rx_ring->count)
4976 i = 0;
4978 next_rxd = E1000_RX_DESC_ADV(*rx_ring, i);
4979 prefetch(next_rxd);
4980 next_buffer = &rx_ring->buffer_info[i];
4982 length = le16_to_cpu(rx_desc->wb.upper.length);
4983 cleaned = true;
4984 cleaned_count++;
4986 if (buffer_info->dma) {
4987 pci_unmap_single(pdev, buffer_info->dma,
4988 rx_ring->rx_buffer_len,
4989 PCI_DMA_FROMDEVICE);
4990 buffer_info->dma = 0;
4991 if (rx_ring->rx_buffer_len >= IGB_RXBUFFER_1024) {
4992 skb_put(skb, length);
4993 goto send_up;
4995 skb_put(skb, igb_get_hlen(rx_ring, rx_desc));
4998 if (length) {
4999 pci_unmap_page(pdev, buffer_info->page_dma,
5000 PAGE_SIZE / 2, PCI_DMA_FROMDEVICE);
5001 buffer_info->page_dma = 0;
5003 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags++,
5004 buffer_info->page,
5005 buffer_info->page_offset,
5006 length);
5008 if (page_count(buffer_info->page) != 1)
5009 buffer_info->page = NULL;
5010 else
5011 get_page(buffer_info->page);
5013 skb->len += length;
5014 skb->data_len += length;
5015 skb->truesize += length;
5018 if (!(staterr & E1000_RXD_STAT_EOP)) {
5019 buffer_info->skb = next_buffer->skb;
5020 buffer_info->dma = next_buffer->dma;
5021 next_buffer->skb = skb;
5022 next_buffer->dma = 0;
5023 goto next_desc;
5025 send_up:
5026 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
5027 dev_kfree_skb_irq(skb);
5028 goto next_desc;
5031 igb_rx_hwtstamp(q_vector, staterr, skb);
5032 total_bytes += skb->len;
5033 total_packets++;
5035 igb_rx_checksum_adv(rx_ring, staterr, skb);
5037 skb->protocol = eth_type_trans(skb, netdev);
5038 skb_record_rx_queue(skb, rx_ring->queue_index);
5040 vlan_tag = ((staterr & E1000_RXD_STAT_VP) ?
5041 le16_to_cpu(rx_desc->wb.upper.vlan) : 0);
5043 igb_receive_skb(q_vector, skb, vlan_tag);
5045 next_desc:
5046 rx_desc->wb.upper.status_error = 0;
5048 /* return some buffers to hardware, one at a time is too slow */
5049 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
5050 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
5051 cleaned_count = 0;
5054 /* use prefetched values */
5055 rx_desc = next_rxd;
5056 buffer_info = next_buffer;
5057 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
5060 rx_ring->next_to_clean = i;
5061 cleaned_count = igb_desc_unused(rx_ring);
5063 if (cleaned_count)
5064 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
5066 rx_ring->total_packets += total_packets;
5067 rx_ring->total_bytes += total_bytes;
5068 rx_ring->rx_stats.packets += total_packets;
5069 rx_ring->rx_stats.bytes += total_bytes;
5070 return cleaned;
5074 * igb_alloc_rx_buffers_adv - Replace used receive buffers; packet split
5075 * @adapter: address of board private structure
5077 void igb_alloc_rx_buffers_adv(struct igb_ring *rx_ring, int cleaned_count)
5079 struct net_device *netdev = rx_ring->netdev;
5080 union e1000_adv_rx_desc *rx_desc;
5081 struct igb_buffer *buffer_info;
5082 struct sk_buff *skb;
5083 unsigned int i;
5084 int bufsz;
5086 i = rx_ring->next_to_use;
5087 buffer_info = &rx_ring->buffer_info[i];
5089 bufsz = rx_ring->rx_buffer_len;
5091 while (cleaned_count--) {
5092 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
5094 if ((bufsz < IGB_RXBUFFER_1024) && !buffer_info->page_dma) {
5095 if (!buffer_info->page) {
5096 buffer_info->page = netdev_alloc_page(netdev);
5097 if (!buffer_info->page) {
5098 rx_ring->rx_stats.alloc_failed++;
5099 goto no_buffers;
5101 buffer_info->page_offset = 0;
5102 } else {
5103 buffer_info->page_offset ^= PAGE_SIZE / 2;
5105 buffer_info->page_dma =
5106 pci_map_page(rx_ring->pdev, buffer_info->page,
5107 buffer_info->page_offset,
5108 PAGE_SIZE / 2,
5109 PCI_DMA_FROMDEVICE);
5110 if (pci_dma_mapping_error(rx_ring->pdev,
5111 buffer_info->page_dma)) {
5112 buffer_info->page_dma = 0;
5113 rx_ring->rx_stats.alloc_failed++;
5114 goto no_buffers;
5118 skb = buffer_info->skb;
5119 if (!skb) {
5120 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
5121 if (!skb) {
5122 rx_ring->rx_stats.alloc_failed++;
5123 goto no_buffers;
5126 buffer_info->skb = skb;
5128 if (!buffer_info->dma) {
5129 buffer_info->dma = pci_map_single(rx_ring->pdev,
5130 skb->data,
5131 bufsz,
5132 PCI_DMA_FROMDEVICE);
5133 if (pci_dma_mapping_error(rx_ring->pdev,
5134 buffer_info->dma)) {
5135 buffer_info->dma = 0;
5136 rx_ring->rx_stats.alloc_failed++;
5137 goto no_buffers;
5140 /* Refresh the desc even if buffer_addrs didn't change because
5141 * each write-back erases this info. */
5142 if (bufsz < IGB_RXBUFFER_1024) {
5143 rx_desc->read.pkt_addr =
5144 cpu_to_le64(buffer_info->page_dma);
5145 rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
5146 } else {
5147 rx_desc->read.pkt_addr = cpu_to_le64(buffer_info->dma);
5148 rx_desc->read.hdr_addr = 0;
5151 i++;
5152 if (i == rx_ring->count)
5153 i = 0;
5154 buffer_info = &rx_ring->buffer_info[i];
5157 no_buffers:
5158 if (rx_ring->next_to_use != i) {
5159 rx_ring->next_to_use = i;
5160 if (i == 0)
5161 i = (rx_ring->count - 1);
5162 else
5163 i--;
5165 /* Force memory writes to complete before letting h/w
5166 * know there are new descriptors to fetch. (Only
5167 * applicable for weak-ordered memory model archs,
5168 * such as IA-64). */
5169 wmb();
5170 writel(i, rx_ring->tail);
5175 * igb_mii_ioctl -
5176 * @netdev:
5177 * @ifreq:
5178 * @cmd:
5180 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
5182 struct igb_adapter *adapter = netdev_priv(netdev);
5183 struct mii_ioctl_data *data = if_mii(ifr);
5185 if (adapter->hw.phy.media_type != e1000_media_type_copper)
5186 return -EOPNOTSUPP;
5188 switch (cmd) {
5189 case SIOCGMIIPHY:
5190 data->phy_id = adapter->hw.phy.addr;
5191 break;
5192 case SIOCGMIIREG:
5193 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
5194 &data->val_out))
5195 return -EIO;
5196 break;
5197 case SIOCSMIIREG:
5198 default:
5199 return -EOPNOTSUPP;
5201 return 0;
5205 * igb_hwtstamp_ioctl - control hardware time stamping
5206 * @netdev:
5207 * @ifreq:
5208 * @cmd:
5210 * Outgoing time stamping can be enabled and disabled. Play nice and
5211 * disable it when requested, although it shouldn't case any overhead
5212 * when no packet needs it. At most one packet in the queue may be
5213 * marked for time stamping, otherwise it would be impossible to tell
5214 * for sure to which packet the hardware time stamp belongs.
5216 * Incoming time stamping has to be configured via the hardware
5217 * filters. Not all combinations are supported, in particular event
5218 * type has to be specified. Matching the kind of event packet is
5219 * not supported, with the exception of "all V2 events regardless of
5220 * level 2 or 4".
5223 static int igb_hwtstamp_ioctl(struct net_device *netdev,
5224 struct ifreq *ifr, int cmd)
5226 struct igb_adapter *adapter = netdev_priv(netdev);
5227 struct e1000_hw *hw = &adapter->hw;
5228 struct hwtstamp_config config;
5229 u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
5230 u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
5231 u32 tsync_rx_cfg = 0;
5232 bool is_l4 = false;
5233 bool is_l2 = false;
5234 u32 regval;
5236 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
5237 return -EFAULT;
5239 /* reserved for future extensions */
5240 if (config.flags)
5241 return -EINVAL;
5243 switch (config.tx_type) {
5244 case HWTSTAMP_TX_OFF:
5245 tsync_tx_ctl = 0;
5246 case HWTSTAMP_TX_ON:
5247 break;
5248 default:
5249 return -ERANGE;
5252 switch (config.rx_filter) {
5253 case HWTSTAMP_FILTER_NONE:
5254 tsync_rx_ctl = 0;
5255 break;
5256 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
5257 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
5258 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
5259 case HWTSTAMP_FILTER_ALL:
5261 * register TSYNCRXCFG must be set, therefore it is not
5262 * possible to time stamp both Sync and Delay_Req messages
5263 * => fall back to time stamping all packets
5265 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
5266 config.rx_filter = HWTSTAMP_FILTER_ALL;
5267 break;
5268 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
5269 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
5270 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
5271 is_l4 = true;
5272 break;
5273 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
5274 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
5275 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
5276 is_l4 = true;
5277 break;
5278 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
5279 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
5280 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
5281 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_SYNC_MESSAGE;
5282 is_l2 = true;
5283 is_l4 = true;
5284 config.rx_filter = HWTSTAMP_FILTER_SOME;
5285 break;
5286 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
5287 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
5288 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
5289 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_DELAY_REQ_MESSAGE;
5290 is_l2 = true;
5291 is_l4 = true;
5292 config.rx_filter = HWTSTAMP_FILTER_SOME;
5293 break;
5294 case HWTSTAMP_FILTER_PTP_V2_EVENT:
5295 case HWTSTAMP_FILTER_PTP_V2_SYNC:
5296 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
5297 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
5298 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
5299 is_l2 = true;
5300 break;
5301 default:
5302 return -ERANGE;
5305 if (hw->mac.type == e1000_82575) {
5306 if (tsync_rx_ctl | tsync_tx_ctl)
5307 return -EINVAL;
5308 return 0;
5311 /* enable/disable TX */
5312 regval = rd32(E1000_TSYNCTXCTL);
5313 regval &= ~E1000_TSYNCTXCTL_ENABLED;
5314 regval |= tsync_tx_ctl;
5315 wr32(E1000_TSYNCTXCTL, regval);
5317 /* enable/disable RX */
5318 regval = rd32(E1000_TSYNCRXCTL);
5319 regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
5320 regval |= tsync_rx_ctl;
5321 wr32(E1000_TSYNCRXCTL, regval);
5323 /* define which PTP packets are time stamped */
5324 wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
5326 /* define ethertype filter for timestamped packets */
5327 if (is_l2)
5328 wr32(E1000_ETQF(3),
5329 (E1000_ETQF_FILTER_ENABLE | /* enable filter */
5330 E1000_ETQF_1588 | /* enable timestamping */
5331 ETH_P_1588)); /* 1588 eth protocol type */
5332 else
5333 wr32(E1000_ETQF(3), 0);
5335 #define PTP_PORT 319
5336 /* L4 Queue Filter[3]: filter by destination port and protocol */
5337 if (is_l4) {
5338 u32 ftqf = (IPPROTO_UDP /* UDP */
5339 | E1000_FTQF_VF_BP /* VF not compared */
5340 | E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
5341 | E1000_FTQF_MASK); /* mask all inputs */
5342 ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */
5344 wr32(E1000_IMIR(3), htons(PTP_PORT));
5345 wr32(E1000_IMIREXT(3),
5346 (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
5347 if (hw->mac.type == e1000_82576) {
5348 /* enable source port check */
5349 wr32(E1000_SPQF(3), htons(PTP_PORT));
5350 ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
5352 wr32(E1000_FTQF(3), ftqf);
5353 } else {
5354 wr32(E1000_FTQF(3), E1000_FTQF_MASK);
5356 wrfl();
5358 adapter->hwtstamp_config = config;
5360 /* clear TX/RX time stamp registers, just to be sure */
5361 regval = rd32(E1000_TXSTMPH);
5362 regval = rd32(E1000_RXSTMPH);
5364 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
5365 -EFAULT : 0;
5369 * igb_ioctl -
5370 * @netdev:
5371 * @ifreq:
5372 * @cmd:
5374 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
5376 switch (cmd) {
5377 case SIOCGMIIPHY:
5378 case SIOCGMIIREG:
5379 case SIOCSMIIREG:
5380 return igb_mii_ioctl(netdev, ifr, cmd);
5381 case SIOCSHWTSTAMP:
5382 return igb_hwtstamp_ioctl(netdev, ifr, cmd);
5383 default:
5384 return -EOPNOTSUPP;
5388 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
5390 struct igb_adapter *adapter = hw->back;
5391 u16 cap_offset;
5393 cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
5394 if (!cap_offset)
5395 return -E1000_ERR_CONFIG;
5397 pci_read_config_word(adapter->pdev, cap_offset + reg, value);
5399 return 0;
5402 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
5404 struct igb_adapter *adapter = hw->back;
5405 u16 cap_offset;
5407 cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
5408 if (!cap_offset)
5409 return -E1000_ERR_CONFIG;
5411 pci_write_config_word(adapter->pdev, cap_offset + reg, *value);
5413 return 0;
5416 static void igb_vlan_rx_register(struct net_device *netdev,
5417 struct vlan_group *grp)
5419 struct igb_adapter *adapter = netdev_priv(netdev);
5420 struct e1000_hw *hw = &adapter->hw;
5421 u32 ctrl, rctl;
5423 igb_irq_disable(adapter);
5424 adapter->vlgrp = grp;
5426 if (grp) {
5427 /* enable VLAN tag insert/strip */
5428 ctrl = rd32(E1000_CTRL);
5429 ctrl |= E1000_CTRL_VME;
5430 wr32(E1000_CTRL, ctrl);
5432 /* Disable CFI check */
5433 rctl = rd32(E1000_RCTL);
5434 rctl &= ~E1000_RCTL_CFIEN;
5435 wr32(E1000_RCTL, rctl);
5436 } else {
5437 /* disable VLAN tag insert/strip */
5438 ctrl = rd32(E1000_CTRL);
5439 ctrl &= ~E1000_CTRL_VME;
5440 wr32(E1000_CTRL, ctrl);
5443 igb_rlpml_set(adapter);
5445 if (!test_bit(__IGB_DOWN, &adapter->state))
5446 igb_irq_enable(adapter);
5449 static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
5451 struct igb_adapter *adapter = netdev_priv(netdev);
5452 struct e1000_hw *hw = &adapter->hw;
5453 int pf_id = adapter->vfs_allocated_count;
5455 /* attempt to add filter to vlvf array */
5456 igb_vlvf_set(adapter, vid, true, pf_id);
5458 /* add the filter since PF can receive vlans w/o entry in vlvf */
5459 igb_vfta_set(hw, vid, true);
5462 static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
5464 struct igb_adapter *adapter = netdev_priv(netdev);
5465 struct e1000_hw *hw = &adapter->hw;
5466 int pf_id = adapter->vfs_allocated_count;
5467 s32 err;
5469 igb_irq_disable(adapter);
5470 vlan_group_set_device(adapter->vlgrp, vid, NULL);
5472 if (!test_bit(__IGB_DOWN, &adapter->state))
5473 igb_irq_enable(adapter);
5475 /* remove vlan from VLVF table array */
5476 err = igb_vlvf_set(adapter, vid, false, pf_id);
5478 /* if vid was not present in VLVF just remove it from table */
5479 if (err)
5480 igb_vfta_set(hw, vid, false);
5483 static void igb_restore_vlan(struct igb_adapter *adapter)
5485 igb_vlan_rx_register(adapter->netdev, adapter->vlgrp);
5487 if (adapter->vlgrp) {
5488 u16 vid;
5489 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
5490 if (!vlan_group_get_device(adapter->vlgrp, vid))
5491 continue;
5492 igb_vlan_rx_add_vid(adapter->netdev, vid);
5497 int igb_set_spd_dplx(struct igb_adapter *adapter, u16 spddplx)
5499 struct pci_dev *pdev = adapter->pdev;
5500 struct e1000_mac_info *mac = &adapter->hw.mac;
5502 mac->autoneg = 0;
5504 switch (spddplx) {
5505 case SPEED_10 + DUPLEX_HALF:
5506 mac->forced_speed_duplex = ADVERTISE_10_HALF;
5507 break;
5508 case SPEED_10 + DUPLEX_FULL:
5509 mac->forced_speed_duplex = ADVERTISE_10_FULL;
5510 break;
5511 case SPEED_100 + DUPLEX_HALF:
5512 mac->forced_speed_duplex = ADVERTISE_100_HALF;
5513 break;
5514 case SPEED_100 + DUPLEX_FULL:
5515 mac->forced_speed_duplex = ADVERTISE_100_FULL;
5516 break;
5517 case SPEED_1000 + DUPLEX_FULL:
5518 mac->autoneg = 1;
5519 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
5520 break;
5521 case SPEED_1000 + DUPLEX_HALF: /* not supported */
5522 default:
5523 dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
5524 return -EINVAL;
5526 return 0;
5529 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake)
5531 struct net_device *netdev = pci_get_drvdata(pdev);
5532 struct igb_adapter *adapter = netdev_priv(netdev);
5533 struct e1000_hw *hw = &adapter->hw;
5534 u32 ctrl, rctl, status;
5535 u32 wufc = adapter->wol;
5536 #ifdef CONFIG_PM
5537 int retval = 0;
5538 #endif
5540 netif_device_detach(netdev);
5542 if (netif_running(netdev))
5543 igb_close(netdev);
5545 igb_clear_interrupt_scheme(adapter);
5547 #ifdef CONFIG_PM
5548 retval = pci_save_state(pdev);
5549 if (retval)
5550 return retval;
5551 #endif
5553 status = rd32(E1000_STATUS);
5554 if (status & E1000_STATUS_LU)
5555 wufc &= ~E1000_WUFC_LNKC;
5557 if (wufc) {
5558 igb_setup_rctl(adapter);
5559 igb_set_rx_mode(netdev);
5561 /* turn on all-multi mode if wake on multicast is enabled */
5562 if (wufc & E1000_WUFC_MC) {
5563 rctl = rd32(E1000_RCTL);
5564 rctl |= E1000_RCTL_MPE;
5565 wr32(E1000_RCTL, rctl);
5568 ctrl = rd32(E1000_CTRL);
5569 /* advertise wake from D3Cold */
5570 #define E1000_CTRL_ADVD3WUC 0x00100000
5571 /* phy power management enable */
5572 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5573 ctrl |= E1000_CTRL_ADVD3WUC;
5574 wr32(E1000_CTRL, ctrl);
5576 /* Allow time for pending master requests to run */
5577 igb_disable_pcie_master(hw);
5579 wr32(E1000_WUC, E1000_WUC_PME_EN);
5580 wr32(E1000_WUFC, wufc);
5581 } else {
5582 wr32(E1000_WUC, 0);
5583 wr32(E1000_WUFC, 0);
5586 *enable_wake = wufc || adapter->en_mng_pt;
5587 if (!*enable_wake)
5588 igb_shutdown_serdes_link_82575(hw);
5590 /* Release control of h/w to f/w. If f/w is AMT enabled, this
5591 * would have already happened in close and is redundant. */
5592 igb_release_hw_control(adapter);
5594 pci_disable_device(pdev);
5596 return 0;
5599 #ifdef CONFIG_PM
5600 static int igb_suspend(struct pci_dev *pdev, pm_message_t state)
5602 int retval;
5603 bool wake;
5605 retval = __igb_shutdown(pdev, &wake);
5606 if (retval)
5607 return retval;
5609 if (wake) {
5610 pci_prepare_to_sleep(pdev);
5611 } else {
5612 pci_wake_from_d3(pdev, false);
5613 pci_set_power_state(pdev, PCI_D3hot);
5616 return 0;
5619 static int igb_resume(struct pci_dev *pdev)
5621 struct net_device *netdev = pci_get_drvdata(pdev);
5622 struct igb_adapter *adapter = netdev_priv(netdev);
5623 struct e1000_hw *hw = &adapter->hw;
5624 u32 err;
5626 pci_set_power_state(pdev, PCI_D0);
5627 pci_restore_state(pdev);
5629 err = pci_enable_device_mem(pdev);
5630 if (err) {
5631 dev_err(&pdev->dev,
5632 "igb: Cannot enable PCI device from suspend\n");
5633 return err;
5635 pci_set_master(pdev);
5637 pci_enable_wake(pdev, PCI_D3hot, 0);
5638 pci_enable_wake(pdev, PCI_D3cold, 0);
5640 if (igb_init_interrupt_scheme(adapter)) {
5641 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
5642 return -ENOMEM;
5645 /* e1000_power_up_phy(adapter); */
5647 igb_reset(adapter);
5649 /* let the f/w know that the h/w is now under the control of the
5650 * driver. */
5651 igb_get_hw_control(adapter);
5653 wr32(E1000_WUS, ~0);
5655 if (netif_running(netdev)) {
5656 err = igb_open(netdev);
5657 if (err)
5658 return err;
5661 netif_device_attach(netdev);
5663 return 0;
5665 #endif
5667 static void igb_shutdown(struct pci_dev *pdev)
5669 bool wake;
5671 __igb_shutdown(pdev, &wake);
5673 if (system_state == SYSTEM_POWER_OFF) {
5674 pci_wake_from_d3(pdev, wake);
5675 pci_set_power_state(pdev, PCI_D3hot);
5679 #ifdef CONFIG_NET_POLL_CONTROLLER
5681 * Polling 'interrupt' - used by things like netconsole to send skbs
5682 * without having to re-enable interrupts. It's not called while
5683 * the interrupt routine is executing.
5685 static void igb_netpoll(struct net_device *netdev)
5687 struct igb_adapter *adapter = netdev_priv(netdev);
5688 struct e1000_hw *hw = &adapter->hw;
5689 int i;
5691 if (!adapter->msix_entries) {
5692 struct igb_q_vector *q_vector = adapter->q_vector[0];
5693 igb_irq_disable(adapter);
5694 napi_schedule(&q_vector->napi);
5695 return;
5698 for (i = 0; i < adapter->num_q_vectors; i++) {
5699 struct igb_q_vector *q_vector = adapter->q_vector[i];
5700 wr32(E1000_EIMC, q_vector->eims_value);
5701 napi_schedule(&q_vector->napi);
5704 #endif /* CONFIG_NET_POLL_CONTROLLER */
5707 * igb_io_error_detected - called when PCI error is detected
5708 * @pdev: Pointer to PCI device
5709 * @state: The current pci connection state
5711 * This function is called after a PCI bus error affecting
5712 * this device has been detected.
5714 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
5715 pci_channel_state_t state)
5717 struct net_device *netdev = pci_get_drvdata(pdev);
5718 struct igb_adapter *adapter = netdev_priv(netdev);
5720 netif_device_detach(netdev);
5722 if (state == pci_channel_io_perm_failure)
5723 return PCI_ERS_RESULT_DISCONNECT;
5725 if (netif_running(netdev))
5726 igb_down(adapter);
5727 pci_disable_device(pdev);
5729 /* Request a slot slot reset. */
5730 return PCI_ERS_RESULT_NEED_RESET;
5734 * igb_io_slot_reset - called after the pci bus has been reset.
5735 * @pdev: Pointer to PCI device
5737 * Restart the card from scratch, as if from a cold-boot. Implementation
5738 * resembles the first-half of the igb_resume routine.
5740 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
5742 struct net_device *netdev = pci_get_drvdata(pdev);
5743 struct igb_adapter *adapter = netdev_priv(netdev);
5744 struct e1000_hw *hw = &adapter->hw;
5745 pci_ers_result_t result;
5746 int err;
5748 if (pci_enable_device_mem(pdev)) {
5749 dev_err(&pdev->dev,
5750 "Cannot re-enable PCI device after reset.\n");
5751 result = PCI_ERS_RESULT_DISCONNECT;
5752 } else {
5753 pci_set_master(pdev);
5754 pci_restore_state(pdev);
5756 pci_enable_wake(pdev, PCI_D3hot, 0);
5757 pci_enable_wake(pdev, PCI_D3cold, 0);
5759 igb_reset(adapter);
5760 wr32(E1000_WUS, ~0);
5761 result = PCI_ERS_RESULT_RECOVERED;
5764 err = pci_cleanup_aer_uncorrect_error_status(pdev);
5765 if (err) {
5766 dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status "
5767 "failed 0x%0x\n", err);
5768 /* non-fatal, continue */
5771 return result;
5775 * igb_io_resume - called when traffic can start flowing again.
5776 * @pdev: Pointer to PCI device
5778 * This callback is called when the error recovery driver tells us that
5779 * its OK to resume normal operation. Implementation resembles the
5780 * second-half of the igb_resume routine.
5782 static void igb_io_resume(struct pci_dev *pdev)
5784 struct net_device *netdev = pci_get_drvdata(pdev);
5785 struct igb_adapter *adapter = netdev_priv(netdev);
5787 if (netif_running(netdev)) {
5788 if (igb_up(adapter)) {
5789 dev_err(&pdev->dev, "igb_up failed after reset\n");
5790 return;
5794 netif_device_attach(netdev);
5796 /* let the f/w know that the h/w is now under the control of the
5797 * driver. */
5798 igb_get_hw_control(adapter);
5801 static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
5802 u8 qsel)
5804 u32 rar_low, rar_high;
5805 struct e1000_hw *hw = &adapter->hw;
5807 /* HW expects these in little endian so we reverse the byte order
5808 * from network order (big endian) to little endian
5810 rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
5811 ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
5812 rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
5814 /* Indicate to hardware the Address is Valid. */
5815 rar_high |= E1000_RAH_AV;
5817 if (hw->mac.type == e1000_82575)
5818 rar_high |= E1000_RAH_POOL_1 * qsel;
5819 else
5820 rar_high |= E1000_RAH_POOL_1 << qsel;
5822 wr32(E1000_RAL(index), rar_low);
5823 wrfl();
5824 wr32(E1000_RAH(index), rar_high);
5825 wrfl();
5828 static int igb_set_vf_mac(struct igb_adapter *adapter,
5829 int vf, unsigned char *mac_addr)
5831 struct e1000_hw *hw = &adapter->hw;
5832 /* VF MAC addresses start at end of receive addresses and moves
5833 * torwards the first, as a result a collision should not be possible */
5834 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
5836 memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
5838 igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
5840 return 0;
5843 static void igb_vmm_control(struct igb_adapter *adapter)
5845 struct e1000_hw *hw = &adapter->hw;
5846 u32 reg;
5848 /* replication is not supported for 82575 */
5849 if (hw->mac.type == e1000_82575)
5850 return;
5852 /* enable replication vlan tag stripping */
5853 reg = rd32(E1000_RPLOLR);
5854 reg |= E1000_RPLOLR_STRVLAN;
5855 wr32(E1000_RPLOLR, reg);
5857 /* notify HW that the MAC is adding vlan tags */
5858 reg = rd32(E1000_DTXCTL);
5859 reg |= E1000_DTXCTL_VLAN_ADDED;
5860 wr32(E1000_DTXCTL, reg);
5862 if (adapter->vfs_allocated_count) {
5863 igb_vmdq_set_loopback_pf(hw, true);
5864 igb_vmdq_set_replication_pf(hw, true);
5865 } else {
5866 igb_vmdq_set_loopback_pf(hw, false);
5867 igb_vmdq_set_replication_pf(hw, false);
5871 /* igb_main.c */