rt2x00: Make use of MAC80211_LED_TRIGGERS
[linux-2.6.git] / drivers / net / wireless / rt2x00 / rt2x00dev.c
blob23dc566b26fd02ce8c71bf816a412a4b92e54d2e
1 /*
2 Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
3 <http://rt2x00.serialmonkey.com>
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
22 Module: rt2x00lib
23 Abstract: rt2x00 generic device routines.
26 #include <linux/kernel.h>
27 #include <linux/module.h>
29 #include "rt2x00.h"
30 #include "rt2x00lib.h"
31 #include "rt2x00dump.h"
34 * Link tuning handlers
36 void rt2x00lib_reset_link_tuner(struct rt2x00_dev *rt2x00dev)
38 if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
39 return;
42 * Reset link information.
43 * Both the currently active vgc level as well as
44 * the link tuner counter should be reset. Resetting
45 * the counter is important for devices where the
46 * device should only perform link tuning during the
47 * first minute after being enabled.
49 rt2x00dev->link.count = 0;
50 rt2x00dev->link.vgc_level = 0;
53 * Reset the link tuner.
55 rt2x00dev->ops->lib->reset_tuner(rt2x00dev);
58 static void rt2x00lib_start_link_tuner(struct rt2x00_dev *rt2x00dev)
61 * Clear all (possibly) pre-existing quality statistics.
63 memset(&rt2x00dev->link.qual, 0, sizeof(rt2x00dev->link.qual));
66 * The RX and TX percentage should start at 50%
67 * this will assure we will get at least get some
68 * decent value when the link tuner starts.
69 * The value will be dropped and overwritten with
70 * the correct (measured )value anyway during the
71 * first run of the link tuner.
73 rt2x00dev->link.qual.rx_percentage = 50;
74 rt2x00dev->link.qual.tx_percentage = 50;
76 rt2x00lib_reset_link_tuner(rt2x00dev);
78 queue_delayed_work(rt2x00dev->hw->workqueue,
79 &rt2x00dev->link.work, LINK_TUNE_INTERVAL);
82 static void rt2x00lib_stop_link_tuner(struct rt2x00_dev *rt2x00dev)
84 cancel_delayed_work_sync(&rt2x00dev->link.work);
88 * Radio control handlers.
90 int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
92 int status;
95 * Don't enable the radio twice.
96 * And check if the hardware button has been disabled.
98 if (test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags) ||
99 test_bit(DEVICE_DISABLED_RADIO_HW, &rt2x00dev->flags))
100 return 0;
103 * Initialize all data queues.
105 rt2x00queue_init_rx(rt2x00dev);
106 rt2x00queue_init_tx(rt2x00dev);
109 * Enable radio.
111 status = rt2x00dev->ops->lib->set_device_state(rt2x00dev,
112 STATE_RADIO_ON);
113 if (status)
114 return status;
116 __set_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags);
119 * Enable RX.
121 rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON);
124 * Start the TX queues.
126 ieee80211_start_queues(rt2x00dev->hw);
128 return 0;
131 void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
133 if (!__test_and_clear_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
134 return;
137 * Stop all scheduled work.
139 if (work_pending(&rt2x00dev->intf_work))
140 cancel_work_sync(&rt2x00dev->intf_work);
141 if (work_pending(&rt2x00dev->filter_work))
142 cancel_work_sync(&rt2x00dev->filter_work);
145 * Stop the TX queues.
147 ieee80211_stop_queues(rt2x00dev->hw);
150 * Disable RX.
152 rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF);
155 * Disable radio.
157 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
160 void rt2x00lib_toggle_rx(struct rt2x00_dev *rt2x00dev, enum dev_state state)
163 * When we are disabling the RX, we should also stop the link tuner.
165 if (state == STATE_RADIO_RX_OFF)
166 rt2x00lib_stop_link_tuner(rt2x00dev);
168 rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
171 * When we are enabling the RX, we should also start the link tuner.
173 if (state == STATE_RADIO_RX_ON &&
174 (rt2x00dev->intf_ap_count || rt2x00dev->intf_sta_count))
175 rt2x00lib_start_link_tuner(rt2x00dev);
178 static void rt2x00lib_evaluate_antenna_sample(struct rt2x00_dev *rt2x00dev)
180 enum antenna rx = rt2x00dev->link.ant.active.rx;
181 enum antenna tx = rt2x00dev->link.ant.active.tx;
182 int sample_a =
183 rt2x00_get_link_ant_rssi_history(&rt2x00dev->link, ANTENNA_A);
184 int sample_b =
185 rt2x00_get_link_ant_rssi_history(&rt2x00dev->link, ANTENNA_B);
188 * We are done sampling. Now we should evaluate the results.
190 rt2x00dev->link.ant.flags &= ~ANTENNA_MODE_SAMPLE;
193 * During the last period we have sampled the RSSI
194 * from both antenna's. It now is time to determine
195 * which antenna demonstrated the best performance.
196 * When we are already on the antenna with the best
197 * performance, then there really is nothing for us
198 * left to do.
200 if (sample_a == sample_b)
201 return;
203 if (rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY)
204 rx = (sample_a > sample_b) ? ANTENNA_A : ANTENNA_B;
206 if (rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)
207 tx = (sample_a > sample_b) ? ANTENNA_A : ANTENNA_B;
209 rt2x00lib_config_antenna(rt2x00dev, rx, tx);
212 static void rt2x00lib_evaluate_antenna_eval(struct rt2x00_dev *rt2x00dev)
214 enum antenna rx = rt2x00dev->link.ant.active.rx;
215 enum antenna tx = rt2x00dev->link.ant.active.tx;
216 int rssi_curr = rt2x00_get_link_ant_rssi(&rt2x00dev->link);
217 int rssi_old = rt2x00_update_ant_rssi(&rt2x00dev->link, rssi_curr);
220 * Legacy driver indicates that we should swap antenna's
221 * when the difference in RSSI is greater that 5. This
222 * also should be done when the RSSI was actually better
223 * then the previous sample.
224 * When the difference exceeds the threshold we should
225 * sample the rssi from the other antenna to make a valid
226 * comparison between the 2 antennas.
228 if (abs(rssi_curr - rssi_old) < 5)
229 return;
231 rt2x00dev->link.ant.flags |= ANTENNA_MODE_SAMPLE;
233 if (rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY)
234 rx = (rx == ANTENNA_A) ? ANTENNA_B : ANTENNA_A;
236 if (rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)
237 tx = (tx == ANTENNA_A) ? ANTENNA_B : ANTENNA_A;
239 rt2x00lib_config_antenna(rt2x00dev, rx, tx);
242 static void rt2x00lib_evaluate_antenna(struct rt2x00_dev *rt2x00dev)
245 * Determine if software diversity is enabled for
246 * either the TX or RX antenna (or both).
247 * Always perform this check since within the link
248 * tuner interval the configuration might have changed.
250 rt2x00dev->link.ant.flags &= ~ANTENNA_RX_DIVERSITY;
251 rt2x00dev->link.ant.flags &= ~ANTENNA_TX_DIVERSITY;
253 if (rt2x00dev->hw->conf.antenna_sel_rx == 0 &&
254 rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
255 rt2x00dev->link.ant.flags |= ANTENNA_RX_DIVERSITY;
256 if (rt2x00dev->hw->conf.antenna_sel_tx == 0 &&
257 rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
258 rt2x00dev->link.ant.flags |= ANTENNA_TX_DIVERSITY;
260 if (!(rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY) &&
261 !(rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)) {
262 rt2x00dev->link.ant.flags = 0;
263 return;
267 * If we have only sampled the data over the last period
268 * we should now harvest the data. Otherwise just evaluate
269 * the data. The latter should only be performed once
270 * every 2 seconds.
272 if (rt2x00dev->link.ant.flags & ANTENNA_MODE_SAMPLE)
273 rt2x00lib_evaluate_antenna_sample(rt2x00dev);
274 else if (rt2x00dev->link.count & 1)
275 rt2x00lib_evaluate_antenna_eval(rt2x00dev);
278 static void rt2x00lib_update_link_stats(struct link *link, int rssi)
280 int avg_rssi = rssi;
283 * Update global RSSI
285 if (link->qual.avg_rssi)
286 avg_rssi = MOVING_AVERAGE(link->qual.avg_rssi, rssi, 8);
287 link->qual.avg_rssi = avg_rssi;
290 * Update antenna RSSI
292 if (link->ant.rssi_ant)
293 rssi = MOVING_AVERAGE(link->ant.rssi_ant, rssi, 8);
294 link->ant.rssi_ant = rssi;
297 static void rt2x00lib_precalculate_link_signal(struct link_qual *qual)
299 if (qual->rx_failed || qual->rx_success)
300 qual->rx_percentage =
301 (qual->rx_success * 100) /
302 (qual->rx_failed + qual->rx_success);
303 else
304 qual->rx_percentage = 50;
306 if (qual->tx_failed || qual->tx_success)
307 qual->tx_percentage =
308 (qual->tx_success * 100) /
309 (qual->tx_failed + qual->tx_success);
310 else
311 qual->tx_percentage = 50;
313 qual->rx_success = 0;
314 qual->rx_failed = 0;
315 qual->tx_success = 0;
316 qual->tx_failed = 0;
319 static int rt2x00lib_calculate_link_signal(struct rt2x00_dev *rt2x00dev,
320 int rssi)
322 int rssi_percentage = 0;
323 int signal;
326 * We need a positive value for the RSSI.
328 if (rssi < 0)
329 rssi += rt2x00dev->rssi_offset;
332 * Calculate the different percentages,
333 * which will be used for the signal.
335 if (rt2x00dev->rssi_offset)
336 rssi_percentage = (rssi * 100) / rt2x00dev->rssi_offset;
339 * Add the individual percentages and use the WEIGHT
340 * defines to calculate the current link signal.
342 signal = ((WEIGHT_RSSI * rssi_percentage) +
343 (WEIGHT_TX * rt2x00dev->link.qual.tx_percentage) +
344 (WEIGHT_RX * rt2x00dev->link.qual.rx_percentage)) / 100;
346 return (signal > 100) ? 100 : signal;
349 static void rt2x00lib_link_tuner(struct work_struct *work)
351 struct rt2x00_dev *rt2x00dev =
352 container_of(work, struct rt2x00_dev, link.work.work);
355 * When the radio is shutting down we should
356 * immediately cease all link tuning.
358 if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
359 return;
362 * Update statistics.
364 rt2x00dev->ops->lib->link_stats(rt2x00dev, &rt2x00dev->link.qual);
365 rt2x00dev->low_level_stats.dot11FCSErrorCount +=
366 rt2x00dev->link.qual.rx_failed;
369 * Only perform the link tuning when Link tuning
370 * has been enabled (This could have been disabled from the EEPROM).
372 if (!test_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags))
373 rt2x00dev->ops->lib->link_tuner(rt2x00dev);
376 * Precalculate a portion of the link signal which is
377 * in based on the tx/rx success/failure counters.
379 rt2x00lib_precalculate_link_signal(&rt2x00dev->link.qual);
382 * Send a signal to the led to update the led signal strength.
384 rt2x00leds_led_quality(rt2x00dev, rt2x00dev->link.qual.avg_rssi);
387 * Evaluate antenna setup, make this the last step since this could
388 * possibly reset some statistics.
390 rt2x00lib_evaluate_antenna(rt2x00dev);
393 * Increase tuner counter, and reschedule the next link tuner run.
395 rt2x00dev->link.count++;
396 queue_delayed_work(rt2x00dev->hw->workqueue, &rt2x00dev->link.work,
397 LINK_TUNE_INTERVAL);
400 static void rt2x00lib_packetfilter_scheduled(struct work_struct *work)
402 struct rt2x00_dev *rt2x00dev =
403 container_of(work, struct rt2x00_dev, filter_work);
404 unsigned int filter = rt2x00dev->packet_filter;
407 * Since we had stored the filter inside rt2x00dev->packet_filter,
408 * we should now clear that field. Otherwise the driver will
409 * assume nothing has changed (*total_flags will be compared
410 * to rt2x00dev->packet_filter to determine if any action is required).
412 rt2x00dev->packet_filter = 0;
414 rt2x00dev->ops->hw->configure_filter(rt2x00dev->hw,
415 filter, &filter, 0, NULL);
418 static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac,
419 struct ieee80211_vif *vif)
421 struct rt2x00_dev *rt2x00dev = data;
422 struct rt2x00_intf *intf = vif_to_intf(vif);
423 struct sk_buff *skb;
424 struct ieee80211_tx_control control;
425 struct ieee80211_bss_conf conf;
426 int delayed_flags;
429 * Copy all data we need during this action under the protection
430 * of a spinlock. Otherwise race conditions might occur which results
431 * into an invalid configuration.
433 spin_lock(&intf->lock);
435 memcpy(&conf, &intf->conf, sizeof(conf));
436 delayed_flags = intf->delayed_flags;
437 intf->delayed_flags = 0;
439 spin_unlock(&intf->lock);
441 if (delayed_flags & DELAYED_UPDATE_BEACON) {
442 skb = ieee80211_beacon_get(rt2x00dev->hw, vif, &control);
443 if (skb) {
444 rt2x00dev->ops->hw->beacon_update(rt2x00dev->hw, skb,
445 &control);
446 dev_kfree_skb(skb);
450 if (delayed_flags & DELAYED_CONFIG_PREAMBLE)
451 rt2x00lib_config_preamble(rt2x00dev, intf,
452 intf->conf.use_short_preamble);
455 static void rt2x00lib_intf_scheduled(struct work_struct *work)
457 struct rt2x00_dev *rt2x00dev =
458 container_of(work, struct rt2x00_dev, intf_work);
461 * Iterate over each interface and perform the
462 * requested configurations.
464 ieee80211_iterate_active_interfaces(rt2x00dev->hw,
465 rt2x00lib_intf_scheduled_iter,
466 rt2x00dev);
470 * Interrupt context handlers.
472 static void rt2x00lib_beacondone_iter(void *data, u8 *mac,
473 struct ieee80211_vif *vif)
475 struct rt2x00_intf *intf = vif_to_intf(vif);
477 if (vif->type != IEEE80211_IF_TYPE_AP &&
478 vif->type != IEEE80211_IF_TYPE_IBSS)
479 return;
481 spin_lock(&intf->lock);
482 intf->delayed_flags |= DELAYED_UPDATE_BEACON;
483 spin_unlock(&intf->lock);
486 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
488 if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
489 return;
491 ieee80211_iterate_active_interfaces(rt2x00dev->hw,
492 rt2x00lib_beacondone_iter,
493 rt2x00dev);
495 queue_work(rt2x00dev->hw->workqueue, &rt2x00dev->intf_work);
497 EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
499 void rt2x00lib_txdone(struct queue_entry *entry,
500 struct txdone_entry_desc *txdesc)
502 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
503 struct ieee80211_tx_status tx_status;
504 int success = !!(txdesc->status == TX_SUCCESS ||
505 txdesc->status == TX_SUCCESS_RETRY);
506 int fail = !!(txdesc->status == TX_FAIL_RETRY ||
507 txdesc->status == TX_FAIL_INVALID ||
508 txdesc->status == TX_FAIL_OTHER);
511 * Update TX statistics.
513 rt2x00dev->link.qual.tx_success += success;
514 rt2x00dev->link.qual.tx_failed += txdesc->retry + fail;
517 * Initialize TX status
519 tx_status.flags = 0;
520 tx_status.ack_signal = 0;
521 tx_status.excessive_retries = (txdesc->status == TX_FAIL_RETRY);
522 tx_status.retry_count = txdesc->retry;
523 memcpy(&tx_status.control, txdesc->control, sizeof(txdesc->control));
525 if (!(tx_status.control.flags & IEEE80211_TXCTL_NO_ACK)) {
526 if (success)
527 tx_status.flags |= IEEE80211_TX_STATUS_ACK;
528 else
529 rt2x00dev->low_level_stats.dot11ACKFailureCount++;
532 tx_status.queue_length = entry->queue->limit;
533 tx_status.queue_number = tx_status.control.queue;
535 if (tx_status.control.flags & IEEE80211_TXCTL_USE_RTS_CTS) {
536 if (success)
537 rt2x00dev->low_level_stats.dot11RTSSuccessCount++;
538 else
539 rt2x00dev->low_level_stats.dot11RTSFailureCount++;
543 * Send the tx_status to mac80211 & debugfs.
544 * mac80211 will clean up the skb structure.
546 get_skb_frame_desc(entry->skb)->frame_type = DUMP_FRAME_TXDONE;
547 rt2x00debug_dump_frame(rt2x00dev, entry->skb);
548 ieee80211_tx_status_irqsafe(rt2x00dev->hw, entry->skb, &tx_status);
549 entry->skb = NULL;
551 EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
553 void rt2x00lib_rxdone(struct queue_entry *entry,
554 struct rxdone_entry_desc *rxdesc)
556 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
557 struct ieee80211_rx_status *rx_status = &rt2x00dev->rx_status;
558 struct ieee80211_supported_band *sband;
559 struct ieee80211_hdr *hdr;
560 const struct rt2x00_rate *rate;
561 unsigned int i;
562 int idx = -1;
563 u16 fc;
566 * Update RX statistics.
568 sband = &rt2x00dev->bands[rt2x00dev->curr_band];
569 for (i = 0; i < sband->n_bitrates; i++) {
570 rate = rt2x00_get_rate(sband->bitrates[i].hw_value);
573 * When frame was received with an OFDM bitrate,
574 * the signal is the PLCP value. If it was received with
575 * a CCK bitrate the signal is the rate in 100kbit/s.
577 if ((rxdesc->ofdm && rate->plcp == rxdesc->signal) ||
578 (!rxdesc->ofdm && rate->bitrate == rxdesc->signal)) {
579 idx = i;
580 break;
585 * Only update link status if this is a beacon frame carrying our bssid.
587 hdr = (struct ieee80211_hdr *)entry->skb->data;
588 fc = le16_to_cpu(hdr->frame_control);
589 if (is_beacon(fc) && rxdesc->my_bss)
590 rt2x00lib_update_link_stats(&rt2x00dev->link, rxdesc->rssi);
592 rt2x00dev->link.qual.rx_success++;
594 rx_status->rate_idx = idx;
595 rx_status->signal =
596 rt2x00lib_calculate_link_signal(rt2x00dev, rxdesc->rssi);
597 rx_status->ssi = rxdesc->rssi;
598 rx_status->flag = rxdesc->flags;
599 rx_status->antenna = rt2x00dev->link.ant.active.rx;
602 * Send frame to mac80211 & debugfs.
603 * mac80211 will clean up the skb structure.
605 get_skb_frame_desc(entry->skb)->frame_type = DUMP_FRAME_RXDONE;
606 rt2x00debug_dump_frame(rt2x00dev, entry->skb);
607 ieee80211_rx_irqsafe(rt2x00dev->hw, entry->skb, rx_status);
608 entry->skb = NULL;
610 EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
613 * TX descriptor initializer
615 void rt2x00lib_write_tx_desc(struct rt2x00_dev *rt2x00dev,
616 struct sk_buff *skb,
617 struct ieee80211_tx_control *control)
619 struct txentry_desc txdesc;
620 struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
621 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
622 const struct rt2x00_rate *rate;
623 int tx_rate;
624 int length;
625 int duration;
626 int residual;
627 u16 frame_control;
628 u16 seq_ctrl;
630 memset(&txdesc, 0, sizeof(txdesc));
632 txdesc.queue = skbdesc->entry->queue->qid;
633 txdesc.cw_min = skbdesc->entry->queue->cw_min;
634 txdesc.cw_max = skbdesc->entry->queue->cw_max;
635 txdesc.aifs = skbdesc->entry->queue->aifs;
638 * Read required fields from ieee80211 header.
640 frame_control = le16_to_cpu(hdr->frame_control);
641 seq_ctrl = le16_to_cpu(hdr->seq_ctrl);
643 tx_rate = control->tx_rate->hw_value;
646 * Check whether this frame is to be acked
648 if (!(control->flags & IEEE80211_TXCTL_NO_ACK))
649 __set_bit(ENTRY_TXD_ACK, &txdesc.flags);
652 * Check if this is a RTS/CTS frame
654 if (is_rts_frame(frame_control) || is_cts_frame(frame_control)) {
655 __set_bit(ENTRY_TXD_BURST, &txdesc.flags);
656 if (is_rts_frame(frame_control)) {
657 __set_bit(ENTRY_TXD_RTS_FRAME, &txdesc.flags);
658 __set_bit(ENTRY_TXD_ACK, &txdesc.flags);
659 } else
660 __clear_bit(ENTRY_TXD_ACK, &txdesc.flags);
661 if (control->rts_cts_rate)
662 tx_rate = control->rts_cts_rate->hw_value;
665 rate = rt2x00_get_rate(tx_rate);
668 * Check if more fragments are pending
670 if (ieee80211_get_morefrag(hdr)) {
671 __set_bit(ENTRY_TXD_BURST, &txdesc.flags);
672 __set_bit(ENTRY_TXD_MORE_FRAG, &txdesc.flags);
676 * Beacons and probe responses require the tsf timestamp
677 * to be inserted into the frame.
679 if (control->queue == RT2X00_BCN_QUEUE_BEACON ||
680 is_probe_resp(frame_control))
681 __set_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc.flags);
684 * Determine with what IFS priority this frame should be send.
685 * Set ifs to IFS_SIFS when the this is not the first fragment,
686 * or this fragment came after RTS/CTS.
688 if ((seq_ctrl & IEEE80211_SCTL_FRAG) > 0 ||
689 test_bit(ENTRY_TXD_RTS_FRAME, &txdesc.flags))
690 txdesc.ifs = IFS_SIFS;
691 else
692 txdesc.ifs = IFS_BACKOFF;
695 * PLCP setup
696 * Length calculation depends on OFDM/CCK rate.
698 txdesc.signal = rate->plcp;
699 txdesc.service = 0x04;
701 length = skb->len + FCS_LEN;
702 if (rate->flags & DEV_RATE_OFDM) {
703 __set_bit(ENTRY_TXD_OFDM_RATE, &txdesc.flags);
705 txdesc.length_high = (length >> 6) & 0x3f;
706 txdesc.length_low = length & 0x3f;
707 } else {
709 * Convert length to microseconds.
711 residual = get_duration_res(length, rate->bitrate);
712 duration = get_duration(length, rate->bitrate);
714 if (residual != 0) {
715 duration++;
718 * Check if we need to set the Length Extension
720 if (rate->bitrate == 110 && residual <= 30)
721 txdesc.service |= 0x80;
724 txdesc.length_high = (duration >> 8) & 0xff;
725 txdesc.length_low = duration & 0xff;
728 * When preamble is enabled we should set the
729 * preamble bit for the signal.
731 if (rt2x00_get_rate_preamble(tx_rate))
732 txdesc.signal |= 0x08;
735 rt2x00dev->ops->lib->write_tx_desc(rt2x00dev, skb, &txdesc, control);
738 * Update queue entry.
740 skbdesc->entry->skb = skb;
743 * The frame has been completely initialized and ready
744 * for sending to the device. The caller will push the
745 * frame to the device, but we are going to push the
746 * frame to debugfs here.
748 skbdesc->frame_type = DUMP_FRAME_TX;
749 rt2x00debug_dump_frame(rt2x00dev, skb);
751 EXPORT_SYMBOL_GPL(rt2x00lib_write_tx_desc);
754 * Driver initialization handlers.
756 const struct rt2x00_rate rt2x00_supported_rates[12] = {
758 .flags = 0,
759 .bitrate = 10,
760 .ratemask = DEV_RATEMASK_1MB,
761 .plcp = 0x00,
764 .flags = DEV_RATE_SHORT_PREAMBLE,
765 .bitrate = 20,
766 .ratemask = DEV_RATEMASK_2MB,
767 .plcp = 0x01,
770 .flags = DEV_RATE_SHORT_PREAMBLE,
771 .bitrate = 55,
772 .ratemask = DEV_RATEMASK_5_5MB,
773 .plcp = 0x02,
776 .flags = DEV_RATE_SHORT_PREAMBLE,
777 .bitrate = 110,
778 .ratemask = DEV_RATEMASK_11MB,
779 .plcp = 0x03,
782 .flags = DEV_RATE_OFDM,
783 .bitrate = 60,
784 .ratemask = DEV_RATEMASK_6MB,
785 .plcp = 0x0b,
788 .flags = DEV_RATE_OFDM,
789 .bitrate = 90,
790 .ratemask = DEV_RATEMASK_9MB,
791 .plcp = 0x0f,
794 .flags = DEV_RATE_OFDM,
795 .bitrate = 120,
796 .ratemask = DEV_RATEMASK_12MB,
797 .plcp = 0x0a,
800 .flags = DEV_RATE_OFDM,
801 .bitrate = 180,
802 .ratemask = DEV_RATEMASK_18MB,
803 .plcp = 0x0e,
806 .flags = DEV_RATE_OFDM,
807 .bitrate = 240,
808 .ratemask = DEV_RATEMASK_24MB,
809 .plcp = 0x09,
812 .flags = DEV_RATE_OFDM,
813 .bitrate = 360,
814 .ratemask = DEV_RATEMASK_36MB,
815 .plcp = 0x0d,
818 .flags = DEV_RATE_OFDM,
819 .bitrate = 480,
820 .ratemask = DEV_RATEMASK_48MB,
821 .plcp = 0x08,
824 .flags = DEV_RATE_OFDM,
825 .bitrate = 540,
826 .ratemask = DEV_RATEMASK_54MB,
827 .plcp = 0x0c,
831 static void rt2x00lib_channel(struct ieee80211_channel *entry,
832 const int channel, const int tx_power,
833 const int value)
835 entry->center_freq = ieee80211_channel_to_frequency(channel);
836 entry->hw_value = value;
837 entry->max_power = tx_power;
838 entry->max_antenna_gain = 0xff;
841 static void rt2x00lib_rate(struct ieee80211_rate *entry,
842 const u16 index, const struct rt2x00_rate *rate)
844 entry->flags = 0;
845 entry->bitrate = rate->bitrate;
846 entry->hw_value = rt2x00_create_rate_hw_value(index, 0);
847 entry->hw_value_short = entry->hw_value;
849 if (rate->flags & DEV_RATE_SHORT_PREAMBLE) {
850 entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE;
851 entry->hw_value_short |= rt2x00_create_rate_hw_value(index, 1);
855 static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
856 struct hw_mode_spec *spec)
858 struct ieee80211_hw *hw = rt2x00dev->hw;
859 struct ieee80211_supported_band *sbands;
860 struct ieee80211_channel *channels;
861 struct ieee80211_rate *rates;
862 unsigned int i;
863 unsigned char tx_power;
865 sbands = &rt2x00dev->bands[0];
867 channels = kzalloc(sizeof(*channels) * spec->num_channels, GFP_KERNEL);
868 if (!channels)
869 return -ENOMEM;
871 rates = kzalloc(sizeof(*rates) * spec->num_rates, GFP_KERNEL);
872 if (!rates)
873 goto exit_free_channels;
876 * Initialize Rate list.
878 for (i = 0; i < spec->num_rates; i++)
879 rt2x00lib_rate(&rates[0], i, rt2x00_get_rate(i));
882 * Initialize Channel list.
884 for (i = 0; i < spec->num_channels; i++) {
885 if (spec->channels[i].channel <= 14)
886 tx_power = spec->tx_power_bg[i];
887 else if (spec->tx_power_a)
888 tx_power = spec->tx_power_a[i];
889 else
890 tx_power = spec->tx_power_default;
892 rt2x00lib_channel(&channels[i],
893 spec->channels[i].channel, tx_power, i);
897 * Intitialize 802.11b
898 * Rates: CCK.
899 * Channels: 2.4 GHz
901 if (spec->num_modes > 0) {
902 sbands[IEEE80211_BAND_2GHZ].n_channels = 14;
903 sbands[IEEE80211_BAND_2GHZ].n_bitrates = 4;
904 sbands[IEEE80211_BAND_2GHZ].channels = channels;
905 sbands[IEEE80211_BAND_2GHZ].bitrates = rates;
906 hw->wiphy->bands[IEEE80211_BAND_2GHZ] = &rt2x00dev->bands[IEEE80211_BAND_2GHZ];
910 * Intitialize 802.11g
911 * Rates: CCK, OFDM.
912 * Channels: 2.4 GHz
914 if (spec->num_modes > 1) {
915 sbands[IEEE80211_BAND_2GHZ].n_channels = 14;
916 sbands[IEEE80211_BAND_2GHZ].n_bitrates = spec->num_rates;
917 sbands[IEEE80211_BAND_2GHZ].channels = channels;
918 sbands[IEEE80211_BAND_2GHZ].bitrates = rates;
919 hw->wiphy->bands[IEEE80211_BAND_2GHZ] = &rt2x00dev->bands[IEEE80211_BAND_2GHZ];
923 * Intitialize 802.11a
924 * Rates: OFDM.
925 * Channels: OFDM, UNII, HiperLAN2.
927 if (spec->num_modes > 2) {
928 sbands[IEEE80211_BAND_5GHZ].n_channels = spec->num_channels - 14;
929 sbands[IEEE80211_BAND_5GHZ].n_bitrates = spec->num_rates - 4;
930 sbands[IEEE80211_BAND_5GHZ].channels = &channels[14];
931 sbands[IEEE80211_BAND_5GHZ].bitrates = &rates[4];
932 hw->wiphy->bands[IEEE80211_BAND_5GHZ] = &rt2x00dev->bands[IEEE80211_BAND_5GHZ];
935 return 0;
937 exit_free_channels:
938 kfree(channels);
939 ERROR(rt2x00dev, "Allocation ieee80211 modes failed.\n");
940 return -ENOMEM;
943 static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
945 if (test_bit(DEVICE_REGISTERED_HW, &rt2x00dev->flags))
946 ieee80211_unregister_hw(rt2x00dev->hw);
948 if (likely(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ])) {
949 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->channels);
950 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->bitrates);
951 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ] = NULL;
952 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_5GHZ] = NULL;
956 static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
958 struct hw_mode_spec *spec = &rt2x00dev->spec;
959 int status;
962 * Initialize HW modes.
964 status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
965 if (status)
966 return status;
969 * Register HW.
971 status = ieee80211_register_hw(rt2x00dev->hw);
972 if (status) {
973 rt2x00lib_remove_hw(rt2x00dev);
974 return status;
977 __set_bit(DEVICE_REGISTERED_HW, &rt2x00dev->flags);
979 return 0;
983 * Initialization/uninitialization handlers.
985 static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
987 if (!__test_and_clear_bit(DEVICE_INITIALIZED, &rt2x00dev->flags))
988 return;
991 * Unregister rfkill.
993 rt2x00rfkill_unregister(rt2x00dev);
996 * Allow the HW to uninitialize.
998 rt2x00dev->ops->lib->uninitialize(rt2x00dev);
1001 * Free allocated queue entries.
1003 rt2x00queue_uninitialize(rt2x00dev);
1006 static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
1008 int status;
1010 if (test_bit(DEVICE_INITIALIZED, &rt2x00dev->flags))
1011 return 0;
1014 * Allocate all queue entries.
1016 status = rt2x00queue_initialize(rt2x00dev);
1017 if (status)
1018 return status;
1021 * Initialize the device.
1023 status = rt2x00dev->ops->lib->initialize(rt2x00dev);
1024 if (status)
1025 goto exit;
1027 __set_bit(DEVICE_INITIALIZED, &rt2x00dev->flags);
1030 * Register the rfkill handler.
1032 status = rt2x00rfkill_register(rt2x00dev);
1033 if (status)
1034 goto exit;
1036 return 0;
1038 exit:
1039 rt2x00lib_uninitialize(rt2x00dev);
1041 return status;
1044 int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
1046 int retval;
1048 if (test_bit(DEVICE_STARTED, &rt2x00dev->flags))
1049 return 0;
1052 * If this is the first interface which is added,
1053 * we should load the firmware now.
1055 retval = rt2x00lib_load_firmware(rt2x00dev);
1056 if (retval)
1057 return retval;
1060 * Initialize the device.
1062 retval = rt2x00lib_initialize(rt2x00dev);
1063 if (retval)
1064 return retval;
1067 * Enable radio.
1069 retval = rt2x00lib_enable_radio(rt2x00dev);
1070 if (retval) {
1071 rt2x00lib_uninitialize(rt2x00dev);
1072 return retval;
1075 rt2x00dev->intf_ap_count = 0;
1076 rt2x00dev->intf_sta_count = 0;
1077 rt2x00dev->intf_associated = 0;
1079 __set_bit(DEVICE_STARTED, &rt2x00dev->flags);
1081 return 0;
1084 void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
1086 if (!test_bit(DEVICE_STARTED, &rt2x00dev->flags))
1087 return;
1090 * Perhaps we can add something smarter here,
1091 * but for now just disabling the radio should do.
1093 rt2x00lib_disable_radio(rt2x00dev);
1095 rt2x00dev->intf_ap_count = 0;
1096 rt2x00dev->intf_sta_count = 0;
1097 rt2x00dev->intf_associated = 0;
1099 __clear_bit(DEVICE_STARTED, &rt2x00dev->flags);
1103 * driver allocation handlers.
1105 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
1107 int retval = -ENOMEM;
1110 * Make room for rt2x00_intf inside the per-interface
1111 * structure ieee80211_vif.
1113 rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf);
1116 * Let the driver probe the device to detect the capabilities.
1118 retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
1119 if (retval) {
1120 ERROR(rt2x00dev, "Failed to allocate device.\n");
1121 goto exit;
1125 * Initialize configuration work.
1127 INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled);
1128 INIT_WORK(&rt2x00dev->filter_work, rt2x00lib_packetfilter_scheduled);
1129 INIT_DELAYED_WORK(&rt2x00dev->link.work, rt2x00lib_link_tuner);
1132 * Allocate queue array.
1134 retval = rt2x00queue_allocate(rt2x00dev);
1135 if (retval)
1136 goto exit;
1139 * Initialize ieee80211 structure.
1141 retval = rt2x00lib_probe_hw(rt2x00dev);
1142 if (retval) {
1143 ERROR(rt2x00dev, "Failed to initialize hw.\n");
1144 goto exit;
1148 * Register LED.
1150 rt2x00leds_register(rt2x00dev);
1153 * Allocatie rfkill.
1155 retval = rt2x00rfkill_allocate(rt2x00dev);
1156 if (retval)
1157 goto exit;
1160 * Open the debugfs entry.
1162 rt2x00debug_register(rt2x00dev);
1164 __set_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1166 return 0;
1168 exit:
1169 rt2x00lib_remove_dev(rt2x00dev);
1171 return retval;
1173 EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
1175 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
1177 __clear_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1180 * Disable radio.
1182 rt2x00lib_disable_radio(rt2x00dev);
1185 * Uninitialize device.
1187 rt2x00lib_uninitialize(rt2x00dev);
1190 * Close debugfs entry.
1192 rt2x00debug_deregister(rt2x00dev);
1195 * Free rfkill
1197 rt2x00rfkill_free(rt2x00dev);
1200 * Free LED.
1202 rt2x00leds_unregister(rt2x00dev);
1205 * Free ieee80211_hw memory.
1207 rt2x00lib_remove_hw(rt2x00dev);
1210 * Free firmware image.
1212 rt2x00lib_free_firmware(rt2x00dev);
1215 * Free queue structures.
1217 rt2x00queue_free(rt2x00dev);
1219 EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
1222 * Device state handlers
1224 #ifdef CONFIG_PM
1225 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
1227 int retval;
1229 NOTICE(rt2x00dev, "Going to sleep.\n");
1230 __clear_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1233 * Only continue if mac80211 has open interfaces.
1235 if (!test_bit(DEVICE_STARTED, &rt2x00dev->flags))
1236 goto exit;
1237 __set_bit(DEVICE_STARTED_SUSPEND, &rt2x00dev->flags);
1240 * Disable radio and unitialize all items
1241 * that must be recreated on resume.
1243 rt2x00lib_stop(rt2x00dev);
1244 rt2x00lib_uninitialize(rt2x00dev);
1245 rt2x00leds_suspend(rt2x00dev);
1246 rt2x00debug_deregister(rt2x00dev);
1248 exit:
1250 * Set device mode to sleep for power management.
1252 retval = rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP);
1253 if (retval)
1254 return retval;
1256 return 0;
1258 EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
1260 static void rt2x00lib_resume_intf(void *data, u8 *mac,
1261 struct ieee80211_vif *vif)
1263 struct rt2x00_dev *rt2x00dev = data;
1264 struct rt2x00_intf *intf = vif_to_intf(vif);
1266 spin_lock(&intf->lock);
1268 rt2x00lib_config_intf(rt2x00dev, intf,
1269 vif->type, intf->mac, intf->bssid);
1273 * Master or Ad-hoc mode require a new beacon update.
1275 if (vif->type == IEEE80211_IF_TYPE_AP ||
1276 vif->type == IEEE80211_IF_TYPE_IBSS)
1277 intf->delayed_flags |= DELAYED_UPDATE_BEACON;
1279 spin_unlock(&intf->lock);
1282 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
1284 int retval;
1286 NOTICE(rt2x00dev, "Waking up.\n");
1289 * Open the debugfs entry and restore led handling.
1291 rt2x00debug_register(rt2x00dev);
1292 rt2x00leds_resume(rt2x00dev);
1295 * Only continue if mac80211 had open interfaces.
1297 if (!__test_and_clear_bit(DEVICE_STARTED_SUSPEND, &rt2x00dev->flags))
1298 return 0;
1301 * Reinitialize device and all active interfaces.
1303 retval = rt2x00lib_start(rt2x00dev);
1304 if (retval)
1305 goto exit;
1308 * Reconfigure device.
1310 rt2x00lib_config(rt2x00dev, &rt2x00dev->hw->conf, 1);
1311 if (!rt2x00dev->hw->conf.radio_enabled)
1312 rt2x00lib_disable_radio(rt2x00dev);
1315 * Iterator over each active interface to
1316 * reconfigure the hardware.
1318 ieee80211_iterate_active_interfaces(rt2x00dev->hw,
1319 rt2x00lib_resume_intf, rt2x00dev);
1322 * We are ready again to receive requests from mac80211.
1324 __set_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1327 * It is possible that during that mac80211 has attempted
1328 * to send frames while we were suspending or resuming.
1329 * In that case we have disabled the TX queue and should
1330 * now enable it again
1332 ieee80211_start_queues(rt2x00dev->hw);
1335 * During interface iteration we might have changed the
1336 * delayed_flags, time to handles the event by calling
1337 * the work handler directly.
1339 rt2x00lib_intf_scheduled(&rt2x00dev->intf_work);
1341 return 0;
1343 exit:
1344 rt2x00lib_disable_radio(rt2x00dev);
1345 rt2x00lib_uninitialize(rt2x00dev);
1346 rt2x00debug_deregister(rt2x00dev);
1348 return retval;
1350 EXPORT_SYMBOL_GPL(rt2x00lib_resume);
1351 #endif /* CONFIG_PM */
1354 * rt2x00lib module information.
1356 MODULE_AUTHOR(DRV_PROJECT);
1357 MODULE_VERSION(DRV_VERSION);
1358 MODULE_DESCRIPTION("rt2x00 library");
1359 MODULE_LICENSE("GPL");