4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
10 * Notes on the allocation strategy:
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/export.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include <linux/prefetch.h>
39 #include <linux/ratelimit.h>
45 * dcache->d_inode->i_lock protects:
46 * - i_dentry, d_alias, d_inode of aliases
47 * dcache_hash_bucket lock protects:
48 * - the dcache hash table
49 * s_anon bl list spinlock protects:
50 * - the s_anon list (see __d_drop)
51 * dcache_lru_lock protects:
52 * - the dcache lru lists and counters
59 * - d_parent and d_subdirs
60 * - childrens' d_child and d_parent
64 * dentry->d_inode->i_lock
67 * dcache_hash_bucket lock
70 * If there is an ancestor relationship:
71 * dentry->d_parent->...->d_parent->d_lock
73 * dentry->d_parent->d_lock
76 * If no ancestor relationship:
77 * if (dentry1 < dentry2)
81 int sysctl_vfs_cache_pressure __read_mostly
= 100;
82 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure
);
84 static __cacheline_aligned_in_smp
DEFINE_SPINLOCK(dcache_lru_lock
);
85 __cacheline_aligned_in_smp
DEFINE_SEQLOCK(rename_lock
);
87 EXPORT_SYMBOL(rename_lock
);
89 static struct kmem_cache
*dentry_cache __read_mostly
;
92 * This is the single most critical data structure when it comes
93 * to the dcache: the hashtable for lookups. Somebody should try
94 * to make this good - I've just made it work.
96 * This hash-function tries to avoid losing too many bits of hash
97 * information, yet avoid using a prime hash-size or similar.
99 #define D_HASHBITS d_hash_shift
100 #define D_HASHMASK d_hash_mask
102 static unsigned int d_hash_mask __read_mostly
;
103 static unsigned int d_hash_shift __read_mostly
;
105 static struct hlist_bl_head
*dentry_hashtable __read_mostly
;
107 static inline struct hlist_bl_head
*d_hash(const struct dentry
*parent
,
110 hash
+= (unsigned long) parent
/ L1_CACHE_BYTES
;
111 hash
= hash
+ (hash
>> D_HASHBITS
);
112 return dentry_hashtable
+ (hash
& D_HASHMASK
);
115 /* Statistics gathering. */
116 struct dentry_stat_t dentry_stat
= {
120 static DEFINE_PER_CPU(unsigned int, nr_dentry
);
122 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
123 static int get_nr_dentry(void)
127 for_each_possible_cpu(i
)
128 sum
+= per_cpu(nr_dentry
, i
);
129 return sum
< 0 ? 0 : sum
;
132 int proc_nr_dentry(ctl_table
*table
, int write
, void __user
*buffer
,
133 size_t *lenp
, loff_t
*ppos
)
135 dentry_stat
.nr_dentry
= get_nr_dentry();
136 return proc_dointvec(table
, write
, buffer
, lenp
, ppos
);
141 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
142 * The strings are both count bytes long, and count is non-zero.
144 #ifdef CONFIG_DCACHE_WORD_ACCESS
146 #include <asm/word-at-a-time.h>
148 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
149 * aligned allocation for this particular component. We don't
150 * strictly need the load_unaligned_zeropad() safety, but it
151 * doesn't hurt either.
153 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
154 * need the careful unaligned handling.
156 static inline int dentry_string_cmp(const unsigned char *cs
, const unsigned char *ct
, unsigned tcount
)
158 unsigned long a
,b
,mask
;
161 a
= *(unsigned long *)cs
;
162 b
= load_unaligned_zeropad(ct
);
163 if (tcount
< sizeof(unsigned long))
165 if (unlikely(a
!= b
))
167 cs
+= sizeof(unsigned long);
168 ct
+= sizeof(unsigned long);
169 tcount
-= sizeof(unsigned long);
173 mask
= ~(~0ul << tcount
*8);
174 return unlikely(!!((a
^ b
) & mask
));
179 static inline int dentry_string_cmp(const unsigned char *cs
, const unsigned char *ct
, unsigned tcount
)
193 static inline int dentry_cmp(const struct dentry
*dentry
, const unsigned char *ct
, unsigned tcount
)
195 const unsigned char *cs
;
197 * Be careful about RCU walk racing with rename:
198 * use ACCESS_ONCE to fetch the name pointer.
200 * NOTE! Even if a rename will mean that the length
201 * was not loaded atomically, we don't care. The
202 * RCU walk will check the sequence count eventually,
203 * and catch it. And we won't overrun the buffer,
204 * because we're reading the name pointer atomically,
205 * and a dentry name is guaranteed to be properly
206 * terminated with a NUL byte.
208 * End result: even if 'len' is wrong, we'll exit
209 * early because the data cannot match (there can
210 * be no NUL in the ct/tcount data)
212 cs
= ACCESS_ONCE(dentry
->d_name
.name
);
213 smp_read_barrier_depends();
214 return dentry_string_cmp(cs
, ct
, tcount
);
217 static void __d_free(struct rcu_head
*head
)
219 struct dentry
*dentry
= container_of(head
, struct dentry
, d_u
.d_rcu
);
221 WARN_ON(!hlist_unhashed(&dentry
->d_alias
));
222 if (dname_external(dentry
))
223 kfree(dentry
->d_name
.name
);
224 kmem_cache_free(dentry_cache
, dentry
);
230 static void d_free(struct dentry
*dentry
)
232 BUG_ON(dentry
->d_count
);
233 this_cpu_dec(nr_dentry
);
234 if (dentry
->d_op
&& dentry
->d_op
->d_release
)
235 dentry
->d_op
->d_release(dentry
);
237 /* if dentry was never visible to RCU, immediate free is OK */
238 if (!(dentry
->d_flags
& DCACHE_RCUACCESS
))
239 __d_free(&dentry
->d_u
.d_rcu
);
241 call_rcu(&dentry
->d_u
.d_rcu
, __d_free
);
245 * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
246 * @dentry: the target dentry
247 * After this call, in-progress rcu-walk path lookup will fail. This
248 * should be called after unhashing, and after changing d_inode (if
249 * the dentry has not already been unhashed).
251 static inline void dentry_rcuwalk_barrier(struct dentry
*dentry
)
253 assert_spin_locked(&dentry
->d_lock
);
254 /* Go through a barrier */
255 write_seqcount_barrier(&dentry
->d_seq
);
259 * Release the dentry's inode, using the filesystem
260 * d_iput() operation if defined. Dentry has no refcount
263 static void dentry_iput(struct dentry
* dentry
)
264 __releases(dentry
->d_lock
)
265 __releases(dentry
->d_inode
->i_lock
)
267 struct inode
*inode
= dentry
->d_inode
;
269 dentry
->d_inode
= NULL
;
270 hlist_del_init(&dentry
->d_alias
);
271 spin_unlock(&dentry
->d_lock
);
272 spin_unlock(&inode
->i_lock
);
274 fsnotify_inoderemove(inode
);
275 if (dentry
->d_op
&& dentry
->d_op
->d_iput
)
276 dentry
->d_op
->d_iput(dentry
, inode
);
280 spin_unlock(&dentry
->d_lock
);
285 * Release the dentry's inode, using the filesystem
286 * d_iput() operation if defined. dentry remains in-use.
288 static void dentry_unlink_inode(struct dentry
* dentry
)
289 __releases(dentry
->d_lock
)
290 __releases(dentry
->d_inode
->i_lock
)
292 struct inode
*inode
= dentry
->d_inode
;
293 dentry
->d_inode
= NULL
;
294 hlist_del_init(&dentry
->d_alias
);
295 dentry_rcuwalk_barrier(dentry
);
296 spin_unlock(&dentry
->d_lock
);
297 spin_unlock(&inode
->i_lock
);
299 fsnotify_inoderemove(inode
);
300 if (dentry
->d_op
&& dentry
->d_op
->d_iput
)
301 dentry
->d_op
->d_iput(dentry
, inode
);
307 * dentry_lru_(add|del|prune|move_tail) must be called with d_lock held.
309 static void dentry_lru_add(struct dentry
*dentry
)
311 if (list_empty(&dentry
->d_lru
)) {
312 spin_lock(&dcache_lru_lock
);
313 list_add(&dentry
->d_lru
, &dentry
->d_sb
->s_dentry_lru
);
314 dentry
->d_sb
->s_nr_dentry_unused
++;
315 dentry_stat
.nr_unused
++;
316 spin_unlock(&dcache_lru_lock
);
320 static void __dentry_lru_del(struct dentry
*dentry
)
322 list_del_init(&dentry
->d_lru
);
323 dentry
->d_flags
&= ~DCACHE_SHRINK_LIST
;
324 dentry
->d_sb
->s_nr_dentry_unused
--;
325 dentry_stat
.nr_unused
--;
329 * Remove a dentry with references from the LRU.
331 static void dentry_lru_del(struct dentry
*dentry
)
333 if (!list_empty(&dentry
->d_lru
)) {
334 spin_lock(&dcache_lru_lock
);
335 __dentry_lru_del(dentry
);
336 spin_unlock(&dcache_lru_lock
);
340 static void dentry_lru_move_list(struct dentry
*dentry
, struct list_head
*list
)
342 spin_lock(&dcache_lru_lock
);
343 if (list_empty(&dentry
->d_lru
)) {
344 list_add_tail(&dentry
->d_lru
, list
);
345 dentry
->d_sb
->s_nr_dentry_unused
++;
346 dentry_stat
.nr_unused
++;
348 list_move_tail(&dentry
->d_lru
, list
);
350 spin_unlock(&dcache_lru_lock
);
354 * d_kill - kill dentry and return parent
355 * @dentry: dentry to kill
356 * @parent: parent dentry
358 * The dentry must already be unhashed and removed from the LRU.
360 * If this is the root of the dentry tree, return NULL.
362 * dentry->d_lock and parent->d_lock must be held by caller, and are dropped by
365 static struct dentry
*d_kill(struct dentry
*dentry
, struct dentry
*parent
)
366 __releases(dentry
->d_lock
)
367 __releases(parent
->d_lock
)
368 __releases(dentry
->d_inode
->i_lock
)
370 list_del(&dentry
->d_u
.d_child
);
372 * Inform try_to_ascend() that we are no longer attached to the
375 dentry
->d_flags
|= DCACHE_DENTRY_KILLED
;
377 spin_unlock(&parent
->d_lock
);
380 * dentry_iput drops the locks, at which point nobody (except
381 * transient RCU lookups) can reach this dentry.
388 * Unhash a dentry without inserting an RCU walk barrier or checking that
389 * dentry->d_lock is locked. The caller must take care of that, if
392 static void __d_shrink(struct dentry
*dentry
)
394 if (!d_unhashed(dentry
)) {
395 struct hlist_bl_head
*b
;
396 if (unlikely(dentry
->d_flags
& DCACHE_DISCONNECTED
))
397 b
= &dentry
->d_sb
->s_anon
;
399 b
= d_hash(dentry
->d_parent
, dentry
->d_name
.hash
);
402 __hlist_bl_del(&dentry
->d_hash
);
403 dentry
->d_hash
.pprev
= NULL
;
409 * d_drop - drop a dentry
410 * @dentry: dentry to drop
412 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
413 * be found through a VFS lookup any more. Note that this is different from
414 * deleting the dentry - d_delete will try to mark the dentry negative if
415 * possible, giving a successful _negative_ lookup, while d_drop will
416 * just make the cache lookup fail.
418 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
419 * reason (NFS timeouts or autofs deletes).
421 * __d_drop requires dentry->d_lock.
423 void __d_drop(struct dentry
*dentry
)
425 if (!d_unhashed(dentry
)) {
427 dentry_rcuwalk_barrier(dentry
);
430 EXPORT_SYMBOL(__d_drop
);
432 void d_drop(struct dentry
*dentry
)
434 spin_lock(&dentry
->d_lock
);
436 spin_unlock(&dentry
->d_lock
);
438 EXPORT_SYMBOL(d_drop
);
441 * Finish off a dentry we've decided to kill.
442 * dentry->d_lock must be held, returns with it unlocked.
443 * If ref is non-zero, then decrement the refcount too.
444 * Returns dentry requiring refcount drop, or NULL if we're done.
446 static inline struct dentry
*dentry_kill(struct dentry
*dentry
, int ref
)
447 __releases(dentry
->d_lock
)
450 struct dentry
*parent
;
452 inode
= dentry
->d_inode
;
453 if (inode
&& !spin_trylock(&inode
->i_lock
)) {
455 spin_unlock(&dentry
->d_lock
);
457 return dentry
; /* try again with same dentry */
462 parent
= dentry
->d_parent
;
463 if (parent
&& !spin_trylock(&parent
->d_lock
)) {
465 spin_unlock(&inode
->i_lock
);
472 * inform the fs via d_prune that this dentry is about to be
473 * unhashed and destroyed.
475 if (dentry
->d_flags
& DCACHE_OP_PRUNE
)
476 dentry
->d_op
->d_prune(dentry
);
478 dentry_lru_del(dentry
);
479 /* if it was on the hash then remove it */
481 return d_kill(dentry
, parent
);
487 * This is complicated by the fact that we do not want to put
488 * dentries that are no longer on any hash chain on the unused
489 * list: we'd much rather just get rid of them immediately.
491 * However, that implies that we have to traverse the dentry
492 * tree upwards to the parents which might _also_ now be
493 * scheduled for deletion (it may have been only waiting for
494 * its last child to go away).
496 * This tail recursion is done by hand as we don't want to depend
497 * on the compiler to always get this right (gcc generally doesn't).
498 * Real recursion would eat up our stack space.
502 * dput - release a dentry
503 * @dentry: dentry to release
505 * Release a dentry. This will drop the usage count and if appropriate
506 * call the dentry unlink method as well as removing it from the queues and
507 * releasing its resources. If the parent dentries were scheduled for release
508 * they too may now get deleted.
510 void dput(struct dentry
*dentry
)
516 if (dentry
->d_count
== 1)
518 spin_lock(&dentry
->d_lock
);
519 BUG_ON(!dentry
->d_count
);
520 if (dentry
->d_count
> 1) {
522 spin_unlock(&dentry
->d_lock
);
526 if (dentry
->d_flags
& DCACHE_OP_DELETE
) {
527 if (dentry
->d_op
->d_delete(dentry
))
531 /* Unreachable? Get rid of it */
532 if (d_unhashed(dentry
))
535 dentry
->d_flags
|= DCACHE_REFERENCED
;
536 dentry_lru_add(dentry
);
539 spin_unlock(&dentry
->d_lock
);
543 dentry
= dentry_kill(dentry
, 1);
550 * d_invalidate - invalidate a dentry
551 * @dentry: dentry to invalidate
553 * Try to invalidate the dentry if it turns out to be
554 * possible. If there are other dentries that can be
555 * reached through this one we can't delete it and we
556 * return -EBUSY. On success we return 0.
561 int d_invalidate(struct dentry
* dentry
)
564 * If it's already been dropped, return OK.
566 spin_lock(&dentry
->d_lock
);
567 if (d_unhashed(dentry
)) {
568 spin_unlock(&dentry
->d_lock
);
572 * Check whether to do a partial shrink_dcache
573 * to get rid of unused child entries.
575 if (!list_empty(&dentry
->d_subdirs
)) {
576 spin_unlock(&dentry
->d_lock
);
577 shrink_dcache_parent(dentry
);
578 spin_lock(&dentry
->d_lock
);
582 * Somebody else still using it?
584 * If it's a directory, we can't drop it
585 * for fear of somebody re-populating it
586 * with children (even though dropping it
587 * would make it unreachable from the root,
588 * we might still populate it if it was a
589 * working directory or similar).
590 * We also need to leave mountpoints alone,
593 if (dentry
->d_count
> 1 && dentry
->d_inode
) {
594 if (S_ISDIR(dentry
->d_inode
->i_mode
) || d_mountpoint(dentry
)) {
595 spin_unlock(&dentry
->d_lock
);
601 spin_unlock(&dentry
->d_lock
);
604 EXPORT_SYMBOL(d_invalidate
);
606 /* This must be called with d_lock held */
607 static inline void __dget_dlock(struct dentry
*dentry
)
612 static inline void __dget(struct dentry
*dentry
)
614 spin_lock(&dentry
->d_lock
);
615 __dget_dlock(dentry
);
616 spin_unlock(&dentry
->d_lock
);
619 struct dentry
*dget_parent(struct dentry
*dentry
)
625 * Don't need rcu_dereference because we re-check it was correct under
629 ret
= dentry
->d_parent
;
630 spin_lock(&ret
->d_lock
);
631 if (unlikely(ret
!= dentry
->d_parent
)) {
632 spin_unlock(&ret
->d_lock
);
637 BUG_ON(!ret
->d_count
);
639 spin_unlock(&ret
->d_lock
);
642 EXPORT_SYMBOL(dget_parent
);
645 * d_find_alias - grab a hashed alias of inode
646 * @inode: inode in question
647 * @want_discon: flag, used by d_splice_alias, to request
648 * that only a DISCONNECTED alias be returned.
650 * If inode has a hashed alias, or is a directory and has any alias,
651 * acquire the reference to alias and return it. Otherwise return NULL.
652 * Notice that if inode is a directory there can be only one alias and
653 * it can be unhashed only if it has no children, or if it is the root
656 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
657 * any other hashed alias over that one unless @want_discon is set,
658 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
660 static struct dentry
*__d_find_alias(struct inode
*inode
, int want_discon
)
662 struct dentry
*alias
, *discon_alias
;
666 hlist_for_each_entry(alias
, &inode
->i_dentry
, d_alias
) {
667 spin_lock(&alias
->d_lock
);
668 if (S_ISDIR(inode
->i_mode
) || !d_unhashed(alias
)) {
669 if (IS_ROOT(alias
) &&
670 (alias
->d_flags
& DCACHE_DISCONNECTED
)) {
671 discon_alias
= alias
;
672 } else if (!want_discon
) {
674 spin_unlock(&alias
->d_lock
);
678 spin_unlock(&alias
->d_lock
);
681 alias
= discon_alias
;
682 spin_lock(&alias
->d_lock
);
683 if (S_ISDIR(inode
->i_mode
) || !d_unhashed(alias
)) {
684 if (IS_ROOT(alias
) &&
685 (alias
->d_flags
& DCACHE_DISCONNECTED
)) {
687 spin_unlock(&alias
->d_lock
);
691 spin_unlock(&alias
->d_lock
);
697 struct dentry
*d_find_alias(struct inode
*inode
)
699 struct dentry
*de
= NULL
;
701 if (!hlist_empty(&inode
->i_dentry
)) {
702 spin_lock(&inode
->i_lock
);
703 de
= __d_find_alias(inode
, 0);
704 spin_unlock(&inode
->i_lock
);
708 EXPORT_SYMBOL(d_find_alias
);
711 * Try to kill dentries associated with this inode.
712 * WARNING: you must own a reference to inode.
714 void d_prune_aliases(struct inode
*inode
)
716 struct dentry
*dentry
;
718 spin_lock(&inode
->i_lock
);
719 hlist_for_each_entry(dentry
, &inode
->i_dentry
, d_alias
) {
720 spin_lock(&dentry
->d_lock
);
721 if (!dentry
->d_count
) {
722 __dget_dlock(dentry
);
724 spin_unlock(&dentry
->d_lock
);
725 spin_unlock(&inode
->i_lock
);
729 spin_unlock(&dentry
->d_lock
);
731 spin_unlock(&inode
->i_lock
);
733 EXPORT_SYMBOL(d_prune_aliases
);
736 * Try to throw away a dentry - free the inode, dput the parent.
737 * Requires dentry->d_lock is held, and dentry->d_count == 0.
738 * Releases dentry->d_lock.
740 * This may fail if locks cannot be acquired no problem, just try again.
742 static void try_prune_one_dentry(struct dentry
*dentry
)
743 __releases(dentry
->d_lock
)
745 struct dentry
*parent
;
747 parent
= dentry_kill(dentry
, 0);
749 * If dentry_kill returns NULL, we have nothing more to do.
750 * if it returns the same dentry, trylocks failed. In either
751 * case, just loop again.
753 * Otherwise, we need to prune ancestors too. This is necessary
754 * to prevent quadratic behavior of shrink_dcache_parent(), but
755 * is also expected to be beneficial in reducing dentry cache
760 if (parent
== dentry
)
763 /* Prune ancestors. */
766 spin_lock(&dentry
->d_lock
);
767 if (dentry
->d_count
> 1) {
769 spin_unlock(&dentry
->d_lock
);
772 dentry
= dentry_kill(dentry
, 1);
776 static void shrink_dentry_list(struct list_head
*list
)
778 struct dentry
*dentry
;
782 dentry
= list_entry_rcu(list
->prev
, struct dentry
, d_lru
);
783 if (&dentry
->d_lru
== list
)
785 spin_lock(&dentry
->d_lock
);
786 if (dentry
!= list_entry(list
->prev
, struct dentry
, d_lru
)) {
787 spin_unlock(&dentry
->d_lock
);
792 * We found an inuse dentry which was not removed from
793 * the LRU because of laziness during lookup. Do not free
794 * it - just keep it off the LRU list.
796 if (dentry
->d_count
) {
797 dentry_lru_del(dentry
);
798 spin_unlock(&dentry
->d_lock
);
804 try_prune_one_dentry(dentry
);
812 * prune_dcache_sb - shrink the dcache
814 * @count: number of entries to try to free
816 * Attempt to shrink the superblock dcache LRU by @count entries. This is
817 * done when we need more memory an called from the superblock shrinker
820 * This function may fail to free any resources if all the dentries are in
823 void prune_dcache_sb(struct super_block
*sb
, int count
)
825 struct dentry
*dentry
;
826 LIST_HEAD(referenced
);
830 spin_lock(&dcache_lru_lock
);
831 while (!list_empty(&sb
->s_dentry_lru
)) {
832 dentry
= list_entry(sb
->s_dentry_lru
.prev
,
833 struct dentry
, d_lru
);
834 BUG_ON(dentry
->d_sb
!= sb
);
836 if (!spin_trylock(&dentry
->d_lock
)) {
837 spin_unlock(&dcache_lru_lock
);
842 if (dentry
->d_flags
& DCACHE_REFERENCED
) {
843 dentry
->d_flags
&= ~DCACHE_REFERENCED
;
844 list_move(&dentry
->d_lru
, &referenced
);
845 spin_unlock(&dentry
->d_lock
);
847 list_move_tail(&dentry
->d_lru
, &tmp
);
848 dentry
->d_flags
|= DCACHE_SHRINK_LIST
;
849 spin_unlock(&dentry
->d_lock
);
853 cond_resched_lock(&dcache_lru_lock
);
855 if (!list_empty(&referenced
))
856 list_splice(&referenced
, &sb
->s_dentry_lru
);
857 spin_unlock(&dcache_lru_lock
);
859 shrink_dentry_list(&tmp
);
863 * shrink_dcache_sb - shrink dcache for a superblock
866 * Shrink the dcache for the specified super block. This is used to free
867 * the dcache before unmounting a file system.
869 void shrink_dcache_sb(struct super_block
*sb
)
873 spin_lock(&dcache_lru_lock
);
874 while (!list_empty(&sb
->s_dentry_lru
)) {
875 list_splice_init(&sb
->s_dentry_lru
, &tmp
);
876 spin_unlock(&dcache_lru_lock
);
877 shrink_dentry_list(&tmp
);
878 spin_lock(&dcache_lru_lock
);
880 spin_unlock(&dcache_lru_lock
);
882 EXPORT_SYMBOL(shrink_dcache_sb
);
885 * destroy a single subtree of dentries for unmount
886 * - see the comments on shrink_dcache_for_umount() for a description of the
889 static void shrink_dcache_for_umount_subtree(struct dentry
*dentry
)
891 struct dentry
*parent
;
893 BUG_ON(!IS_ROOT(dentry
));
896 /* descend to the first leaf in the current subtree */
897 while (!list_empty(&dentry
->d_subdirs
))
898 dentry
= list_entry(dentry
->d_subdirs
.next
,
899 struct dentry
, d_u
.d_child
);
901 /* consume the dentries from this leaf up through its parents
902 * until we find one with children or run out altogether */
907 * inform the fs that this dentry is about to be
908 * unhashed and destroyed.
910 if (dentry
->d_flags
& DCACHE_OP_PRUNE
)
911 dentry
->d_op
->d_prune(dentry
);
913 dentry_lru_del(dentry
);
916 if (dentry
->d_count
!= 0) {
918 "BUG: Dentry %p{i=%lx,n=%s}"
920 " [unmount of %s %s]\n",
923 dentry
->d_inode
->i_ino
: 0UL,
926 dentry
->d_sb
->s_type
->name
,
931 if (IS_ROOT(dentry
)) {
933 list_del(&dentry
->d_u
.d_child
);
935 parent
= dentry
->d_parent
;
937 list_del(&dentry
->d_u
.d_child
);
940 inode
= dentry
->d_inode
;
942 dentry
->d_inode
= NULL
;
943 hlist_del_init(&dentry
->d_alias
);
944 if (dentry
->d_op
&& dentry
->d_op
->d_iput
)
945 dentry
->d_op
->d_iput(dentry
, inode
);
952 /* finished when we fall off the top of the tree,
953 * otherwise we ascend to the parent and move to the
954 * next sibling if there is one */
958 } while (list_empty(&dentry
->d_subdirs
));
960 dentry
= list_entry(dentry
->d_subdirs
.next
,
961 struct dentry
, d_u
.d_child
);
966 * destroy the dentries attached to a superblock on unmounting
967 * - we don't need to use dentry->d_lock because:
968 * - the superblock is detached from all mountings and open files, so the
969 * dentry trees will not be rearranged by the VFS
970 * - s_umount is write-locked, so the memory pressure shrinker will ignore
971 * any dentries belonging to this superblock that it comes across
972 * - the filesystem itself is no longer permitted to rearrange the dentries
975 void shrink_dcache_for_umount(struct super_block
*sb
)
977 struct dentry
*dentry
;
979 if (down_read_trylock(&sb
->s_umount
))
985 shrink_dcache_for_umount_subtree(dentry
);
987 while (!hlist_bl_empty(&sb
->s_anon
)) {
988 dentry
= hlist_bl_entry(hlist_bl_first(&sb
->s_anon
), struct dentry
, d_hash
);
989 shrink_dcache_for_umount_subtree(dentry
);
994 * This tries to ascend one level of parenthood, but
995 * we can race with renaming, so we need to re-check
996 * the parenthood after dropping the lock and check
997 * that the sequence number still matches.
999 static struct dentry
*try_to_ascend(struct dentry
*old
, int locked
, unsigned seq
)
1001 struct dentry
*new = old
->d_parent
;
1004 spin_unlock(&old
->d_lock
);
1005 spin_lock(&new->d_lock
);
1008 * might go back up the wrong parent if we have had a rename
1011 if (new != old
->d_parent
||
1012 (old
->d_flags
& DCACHE_DENTRY_KILLED
) ||
1013 (!locked
&& read_seqretry(&rename_lock
, seq
))) {
1014 spin_unlock(&new->d_lock
);
1023 * Search for at least 1 mount point in the dentry's subdirs.
1024 * We descend to the next level whenever the d_subdirs
1025 * list is non-empty and continue searching.
1029 * have_submounts - check for mounts over a dentry
1030 * @parent: dentry to check.
1032 * Return true if the parent or its subdirectories contain
1035 int have_submounts(struct dentry
*parent
)
1037 struct dentry
*this_parent
;
1038 struct list_head
*next
;
1042 seq
= read_seqbegin(&rename_lock
);
1044 this_parent
= parent
;
1046 if (d_mountpoint(parent
))
1048 spin_lock(&this_parent
->d_lock
);
1050 next
= this_parent
->d_subdirs
.next
;
1052 while (next
!= &this_parent
->d_subdirs
) {
1053 struct list_head
*tmp
= next
;
1054 struct dentry
*dentry
= list_entry(tmp
, struct dentry
, d_u
.d_child
);
1057 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
1058 /* Have we found a mount point ? */
1059 if (d_mountpoint(dentry
)) {
1060 spin_unlock(&dentry
->d_lock
);
1061 spin_unlock(&this_parent
->d_lock
);
1064 if (!list_empty(&dentry
->d_subdirs
)) {
1065 spin_unlock(&this_parent
->d_lock
);
1066 spin_release(&dentry
->d_lock
.dep_map
, 1, _RET_IP_
);
1067 this_parent
= dentry
;
1068 spin_acquire(&this_parent
->d_lock
.dep_map
, 0, 1, _RET_IP_
);
1071 spin_unlock(&dentry
->d_lock
);
1074 * All done at this level ... ascend and resume the search.
1076 if (this_parent
!= parent
) {
1077 struct dentry
*child
= this_parent
;
1078 this_parent
= try_to_ascend(this_parent
, locked
, seq
);
1081 next
= child
->d_u
.d_child
.next
;
1084 spin_unlock(&this_parent
->d_lock
);
1085 if (!locked
&& read_seqretry(&rename_lock
, seq
))
1088 write_sequnlock(&rename_lock
);
1089 return 0; /* No mount points found in tree */
1091 if (!locked
&& read_seqretry(&rename_lock
, seq
))
1094 write_sequnlock(&rename_lock
);
1101 write_seqlock(&rename_lock
);
1104 EXPORT_SYMBOL(have_submounts
);
1107 * Search the dentry child list of the specified parent,
1108 * and move any unused dentries to the end of the unused
1109 * list for prune_dcache(). We descend to the next level
1110 * whenever the d_subdirs list is non-empty and continue
1113 * It returns zero iff there are no unused children,
1114 * otherwise it returns the number of children moved to
1115 * the end of the unused list. This may not be the total
1116 * number of unused children, because select_parent can
1117 * drop the lock and return early due to latency
1120 static int select_parent(struct dentry
*parent
, struct list_head
*dispose
)
1122 struct dentry
*this_parent
;
1123 struct list_head
*next
;
1128 seq
= read_seqbegin(&rename_lock
);
1130 this_parent
= parent
;
1131 spin_lock(&this_parent
->d_lock
);
1133 next
= this_parent
->d_subdirs
.next
;
1135 while (next
!= &this_parent
->d_subdirs
) {
1136 struct list_head
*tmp
= next
;
1137 struct dentry
*dentry
= list_entry(tmp
, struct dentry
, d_u
.d_child
);
1140 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
1143 * move only zero ref count dentries to the dispose list.
1145 * Those which are presently on the shrink list, being processed
1146 * by shrink_dentry_list(), shouldn't be moved. Otherwise the
1147 * loop in shrink_dcache_parent() might not make any progress
1150 if (dentry
->d_count
) {
1151 dentry_lru_del(dentry
);
1152 } else if (!(dentry
->d_flags
& DCACHE_SHRINK_LIST
)) {
1153 dentry_lru_move_list(dentry
, dispose
);
1154 dentry
->d_flags
|= DCACHE_SHRINK_LIST
;
1158 * We can return to the caller if we have found some (this
1159 * ensures forward progress). We'll be coming back to find
1162 if (found
&& need_resched()) {
1163 spin_unlock(&dentry
->d_lock
);
1168 * Descend a level if the d_subdirs list is non-empty.
1170 if (!list_empty(&dentry
->d_subdirs
)) {
1171 spin_unlock(&this_parent
->d_lock
);
1172 spin_release(&dentry
->d_lock
.dep_map
, 1, _RET_IP_
);
1173 this_parent
= dentry
;
1174 spin_acquire(&this_parent
->d_lock
.dep_map
, 0, 1, _RET_IP_
);
1178 spin_unlock(&dentry
->d_lock
);
1181 * All done at this level ... ascend and resume the search.
1183 if (this_parent
!= parent
) {
1184 struct dentry
*child
= this_parent
;
1185 this_parent
= try_to_ascend(this_parent
, locked
, seq
);
1188 next
= child
->d_u
.d_child
.next
;
1192 spin_unlock(&this_parent
->d_lock
);
1193 if (!locked
&& read_seqretry(&rename_lock
, seq
))
1196 write_sequnlock(&rename_lock
);
1205 write_seqlock(&rename_lock
);
1210 * shrink_dcache_parent - prune dcache
1211 * @parent: parent of entries to prune
1213 * Prune the dcache to remove unused children of the parent dentry.
1215 void shrink_dcache_parent(struct dentry
* parent
)
1220 while ((found
= select_parent(parent
, &dispose
)) != 0) {
1221 shrink_dentry_list(&dispose
);
1225 EXPORT_SYMBOL(shrink_dcache_parent
);
1228 * __d_alloc - allocate a dcache entry
1229 * @sb: filesystem it will belong to
1230 * @name: qstr of the name
1232 * Allocates a dentry. It returns %NULL if there is insufficient memory
1233 * available. On a success the dentry is returned. The name passed in is
1234 * copied and the copy passed in may be reused after this call.
1237 struct dentry
*__d_alloc(struct super_block
*sb
, const struct qstr
*name
)
1239 struct dentry
*dentry
;
1242 dentry
= kmem_cache_alloc(dentry_cache
, GFP_KERNEL
);
1247 * We guarantee that the inline name is always NUL-terminated.
1248 * This way the memcpy() done by the name switching in rename
1249 * will still always have a NUL at the end, even if we might
1250 * be overwriting an internal NUL character
1252 dentry
->d_iname
[DNAME_INLINE_LEN
-1] = 0;
1253 if (name
->len
> DNAME_INLINE_LEN
-1) {
1254 dname
= kmalloc(name
->len
+ 1, GFP_KERNEL
);
1256 kmem_cache_free(dentry_cache
, dentry
);
1260 dname
= dentry
->d_iname
;
1263 dentry
->d_name
.len
= name
->len
;
1264 dentry
->d_name
.hash
= name
->hash
;
1265 memcpy(dname
, name
->name
, name
->len
);
1266 dname
[name
->len
] = 0;
1268 /* Make sure we always see the terminating NUL character */
1270 dentry
->d_name
.name
= dname
;
1272 dentry
->d_count
= 1;
1273 dentry
->d_flags
= 0;
1274 spin_lock_init(&dentry
->d_lock
);
1275 seqcount_init(&dentry
->d_seq
);
1276 dentry
->d_inode
= NULL
;
1277 dentry
->d_parent
= dentry
;
1279 dentry
->d_op
= NULL
;
1280 dentry
->d_fsdata
= NULL
;
1281 INIT_HLIST_BL_NODE(&dentry
->d_hash
);
1282 INIT_LIST_HEAD(&dentry
->d_lru
);
1283 INIT_LIST_HEAD(&dentry
->d_subdirs
);
1284 INIT_HLIST_NODE(&dentry
->d_alias
);
1285 INIT_LIST_HEAD(&dentry
->d_u
.d_child
);
1286 d_set_d_op(dentry
, dentry
->d_sb
->s_d_op
);
1288 this_cpu_inc(nr_dentry
);
1294 * d_alloc - allocate a dcache entry
1295 * @parent: parent of entry to allocate
1296 * @name: qstr of the name
1298 * Allocates a dentry. It returns %NULL if there is insufficient memory
1299 * available. On a success the dentry is returned. The name passed in is
1300 * copied and the copy passed in may be reused after this call.
1302 struct dentry
*d_alloc(struct dentry
* parent
, const struct qstr
*name
)
1304 struct dentry
*dentry
= __d_alloc(parent
->d_sb
, name
);
1308 spin_lock(&parent
->d_lock
);
1310 * don't need child lock because it is not subject
1311 * to concurrency here
1313 __dget_dlock(parent
);
1314 dentry
->d_parent
= parent
;
1315 list_add(&dentry
->d_u
.d_child
, &parent
->d_subdirs
);
1316 spin_unlock(&parent
->d_lock
);
1320 EXPORT_SYMBOL(d_alloc
);
1322 struct dentry
*d_alloc_pseudo(struct super_block
*sb
, const struct qstr
*name
)
1324 struct dentry
*dentry
= __d_alloc(sb
, name
);
1326 dentry
->d_flags
|= DCACHE_DISCONNECTED
;
1329 EXPORT_SYMBOL(d_alloc_pseudo
);
1331 struct dentry
*d_alloc_name(struct dentry
*parent
, const char *name
)
1336 q
.len
= strlen(name
);
1337 q
.hash
= full_name_hash(q
.name
, q
.len
);
1338 return d_alloc(parent
, &q
);
1340 EXPORT_SYMBOL(d_alloc_name
);
1342 void d_set_d_op(struct dentry
*dentry
, const struct dentry_operations
*op
)
1344 WARN_ON_ONCE(dentry
->d_op
);
1345 WARN_ON_ONCE(dentry
->d_flags
& (DCACHE_OP_HASH
|
1347 DCACHE_OP_REVALIDATE
|
1348 DCACHE_OP_WEAK_REVALIDATE
|
1349 DCACHE_OP_DELETE
));
1354 dentry
->d_flags
|= DCACHE_OP_HASH
;
1356 dentry
->d_flags
|= DCACHE_OP_COMPARE
;
1357 if (op
->d_revalidate
)
1358 dentry
->d_flags
|= DCACHE_OP_REVALIDATE
;
1359 if (op
->d_weak_revalidate
)
1360 dentry
->d_flags
|= DCACHE_OP_WEAK_REVALIDATE
;
1362 dentry
->d_flags
|= DCACHE_OP_DELETE
;
1364 dentry
->d_flags
|= DCACHE_OP_PRUNE
;
1367 EXPORT_SYMBOL(d_set_d_op
);
1369 static void __d_instantiate(struct dentry
*dentry
, struct inode
*inode
)
1371 spin_lock(&dentry
->d_lock
);
1373 if (unlikely(IS_AUTOMOUNT(inode
)))
1374 dentry
->d_flags
|= DCACHE_NEED_AUTOMOUNT
;
1375 hlist_add_head(&dentry
->d_alias
, &inode
->i_dentry
);
1377 dentry
->d_inode
= inode
;
1378 dentry_rcuwalk_barrier(dentry
);
1379 spin_unlock(&dentry
->d_lock
);
1380 fsnotify_d_instantiate(dentry
, inode
);
1384 * d_instantiate - fill in inode information for a dentry
1385 * @entry: dentry to complete
1386 * @inode: inode to attach to this dentry
1388 * Fill in inode information in the entry.
1390 * This turns negative dentries into productive full members
1393 * NOTE! This assumes that the inode count has been incremented
1394 * (or otherwise set) by the caller to indicate that it is now
1395 * in use by the dcache.
1398 void d_instantiate(struct dentry
*entry
, struct inode
* inode
)
1400 BUG_ON(!hlist_unhashed(&entry
->d_alias
));
1402 spin_lock(&inode
->i_lock
);
1403 __d_instantiate(entry
, inode
);
1405 spin_unlock(&inode
->i_lock
);
1406 security_d_instantiate(entry
, inode
);
1408 EXPORT_SYMBOL(d_instantiate
);
1411 * d_instantiate_unique - instantiate a non-aliased dentry
1412 * @entry: dentry to instantiate
1413 * @inode: inode to attach to this dentry
1415 * Fill in inode information in the entry. On success, it returns NULL.
1416 * If an unhashed alias of "entry" already exists, then we return the
1417 * aliased dentry instead and drop one reference to inode.
1419 * Note that in order to avoid conflicts with rename() etc, the caller
1420 * had better be holding the parent directory semaphore.
1422 * This also assumes that the inode count has been incremented
1423 * (or otherwise set) by the caller to indicate that it is now
1424 * in use by the dcache.
1426 static struct dentry
*__d_instantiate_unique(struct dentry
*entry
,
1427 struct inode
*inode
)
1429 struct dentry
*alias
;
1430 int len
= entry
->d_name
.len
;
1431 const char *name
= entry
->d_name
.name
;
1432 unsigned int hash
= entry
->d_name
.hash
;
1435 __d_instantiate(entry
, NULL
);
1439 hlist_for_each_entry(alias
, &inode
->i_dentry
, d_alias
) {
1441 * Don't need alias->d_lock here, because aliases with
1442 * d_parent == entry->d_parent are not subject to name or
1443 * parent changes, because the parent inode i_mutex is held.
1445 if (alias
->d_name
.hash
!= hash
)
1447 if (alias
->d_parent
!= entry
->d_parent
)
1449 if (alias
->d_name
.len
!= len
)
1451 if (dentry_cmp(alias
, name
, len
))
1457 __d_instantiate(entry
, inode
);
1461 struct dentry
*d_instantiate_unique(struct dentry
*entry
, struct inode
*inode
)
1463 struct dentry
*result
;
1465 BUG_ON(!hlist_unhashed(&entry
->d_alias
));
1468 spin_lock(&inode
->i_lock
);
1469 result
= __d_instantiate_unique(entry
, inode
);
1471 spin_unlock(&inode
->i_lock
);
1474 security_d_instantiate(entry
, inode
);
1478 BUG_ON(!d_unhashed(result
));
1483 EXPORT_SYMBOL(d_instantiate_unique
);
1485 struct dentry
*d_make_root(struct inode
*root_inode
)
1487 struct dentry
*res
= NULL
;
1490 static const struct qstr name
= QSTR_INIT("/", 1);
1492 res
= __d_alloc(root_inode
->i_sb
, &name
);
1494 d_instantiate(res
, root_inode
);
1500 EXPORT_SYMBOL(d_make_root
);
1502 static struct dentry
* __d_find_any_alias(struct inode
*inode
)
1504 struct dentry
*alias
;
1506 if (hlist_empty(&inode
->i_dentry
))
1508 alias
= hlist_entry(inode
->i_dentry
.first
, struct dentry
, d_alias
);
1514 * d_find_any_alias - find any alias for a given inode
1515 * @inode: inode to find an alias for
1517 * If any aliases exist for the given inode, take and return a
1518 * reference for one of them. If no aliases exist, return %NULL.
1520 struct dentry
*d_find_any_alias(struct inode
*inode
)
1524 spin_lock(&inode
->i_lock
);
1525 de
= __d_find_any_alias(inode
);
1526 spin_unlock(&inode
->i_lock
);
1529 EXPORT_SYMBOL(d_find_any_alias
);
1532 * d_obtain_alias - find or allocate a dentry for a given inode
1533 * @inode: inode to allocate the dentry for
1535 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1536 * similar open by handle operations. The returned dentry may be anonymous,
1537 * or may have a full name (if the inode was already in the cache).
1539 * When called on a directory inode, we must ensure that the inode only ever
1540 * has one dentry. If a dentry is found, that is returned instead of
1541 * allocating a new one.
1543 * On successful return, the reference to the inode has been transferred
1544 * to the dentry. In case of an error the reference on the inode is released.
1545 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1546 * be passed in and will be the error will be propagate to the return value,
1547 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1549 struct dentry
*d_obtain_alias(struct inode
*inode
)
1551 static const struct qstr anonstring
= QSTR_INIT("/", 1);
1556 return ERR_PTR(-ESTALE
);
1558 return ERR_CAST(inode
);
1560 res
= d_find_any_alias(inode
);
1564 tmp
= __d_alloc(inode
->i_sb
, &anonstring
);
1566 res
= ERR_PTR(-ENOMEM
);
1570 spin_lock(&inode
->i_lock
);
1571 res
= __d_find_any_alias(inode
);
1573 spin_unlock(&inode
->i_lock
);
1578 /* attach a disconnected dentry */
1579 spin_lock(&tmp
->d_lock
);
1580 tmp
->d_inode
= inode
;
1581 tmp
->d_flags
|= DCACHE_DISCONNECTED
;
1582 hlist_add_head(&tmp
->d_alias
, &inode
->i_dentry
);
1583 hlist_bl_lock(&tmp
->d_sb
->s_anon
);
1584 hlist_bl_add_head(&tmp
->d_hash
, &tmp
->d_sb
->s_anon
);
1585 hlist_bl_unlock(&tmp
->d_sb
->s_anon
);
1586 spin_unlock(&tmp
->d_lock
);
1587 spin_unlock(&inode
->i_lock
);
1588 security_d_instantiate(tmp
, inode
);
1593 if (res
&& !IS_ERR(res
))
1594 security_d_instantiate(res
, inode
);
1598 EXPORT_SYMBOL(d_obtain_alias
);
1601 * d_splice_alias - splice a disconnected dentry into the tree if one exists
1602 * @inode: the inode which may have a disconnected dentry
1603 * @dentry: a negative dentry which we want to point to the inode.
1605 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1606 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1607 * and return it, else simply d_add the inode to the dentry and return NULL.
1609 * This is needed in the lookup routine of any filesystem that is exportable
1610 * (via knfsd) so that we can build dcache paths to directories effectively.
1612 * If a dentry was found and moved, then it is returned. Otherwise NULL
1613 * is returned. This matches the expected return value of ->lookup.
1616 struct dentry
*d_splice_alias(struct inode
*inode
, struct dentry
*dentry
)
1618 struct dentry
*new = NULL
;
1621 return ERR_CAST(inode
);
1623 if (inode
&& S_ISDIR(inode
->i_mode
)) {
1624 spin_lock(&inode
->i_lock
);
1625 new = __d_find_alias(inode
, 1);
1627 BUG_ON(!(new->d_flags
& DCACHE_DISCONNECTED
));
1628 spin_unlock(&inode
->i_lock
);
1629 security_d_instantiate(new, inode
);
1630 d_move(new, dentry
);
1633 /* already taking inode->i_lock, so d_add() by hand */
1634 __d_instantiate(dentry
, inode
);
1635 spin_unlock(&inode
->i_lock
);
1636 security_d_instantiate(dentry
, inode
);
1640 d_add(dentry
, inode
);
1643 EXPORT_SYMBOL(d_splice_alias
);
1646 * d_add_ci - lookup or allocate new dentry with case-exact name
1647 * @inode: the inode case-insensitive lookup has found
1648 * @dentry: the negative dentry that was passed to the parent's lookup func
1649 * @name: the case-exact name to be associated with the returned dentry
1651 * This is to avoid filling the dcache with case-insensitive names to the
1652 * same inode, only the actual correct case is stored in the dcache for
1653 * case-insensitive filesystems.
1655 * For a case-insensitive lookup match and if the the case-exact dentry
1656 * already exists in in the dcache, use it and return it.
1658 * If no entry exists with the exact case name, allocate new dentry with
1659 * the exact case, and return the spliced entry.
1661 struct dentry
*d_add_ci(struct dentry
*dentry
, struct inode
*inode
,
1664 struct dentry
*found
;
1668 * First check if a dentry matching the name already exists,
1669 * if not go ahead and create it now.
1671 found
= d_hash_and_lookup(dentry
->d_parent
, name
);
1672 if (unlikely(IS_ERR(found
)))
1675 new = d_alloc(dentry
->d_parent
, name
);
1677 found
= ERR_PTR(-ENOMEM
);
1681 found
= d_splice_alias(inode
, new);
1690 * If a matching dentry exists, and it's not negative use it.
1692 * Decrement the reference count to balance the iget() done
1695 if (found
->d_inode
) {
1696 if (unlikely(found
->d_inode
!= inode
)) {
1697 /* This can't happen because bad inodes are unhashed. */
1698 BUG_ON(!is_bad_inode(inode
));
1699 BUG_ON(!is_bad_inode(found
->d_inode
));
1706 * Negative dentry: instantiate it unless the inode is a directory and
1707 * already has a dentry.
1709 new = d_splice_alias(inode
, found
);
1720 EXPORT_SYMBOL(d_add_ci
);
1723 * Do the slow-case of the dentry name compare.
1725 * Unlike the dentry_cmp() function, we need to atomically
1726 * load the name, length and inode information, so that the
1727 * filesystem can rely on them, and can use the 'name' and
1728 * 'len' information without worrying about walking off the
1729 * end of memory etc.
1731 * Thus the read_seqcount_retry() and the "duplicate" info
1732 * in arguments (the low-level filesystem should not look
1733 * at the dentry inode or name contents directly, since
1734 * rename can change them while we're in RCU mode).
1736 enum slow_d_compare
{
1742 static noinline
enum slow_d_compare
slow_dentry_cmp(
1743 const struct dentry
*parent
,
1744 struct inode
*inode
,
1745 struct dentry
*dentry
,
1747 const struct qstr
*name
)
1749 int tlen
= dentry
->d_name
.len
;
1750 const char *tname
= dentry
->d_name
.name
;
1751 struct inode
*i
= dentry
->d_inode
;
1753 if (read_seqcount_retry(&dentry
->d_seq
, seq
)) {
1755 return D_COMP_SEQRETRY
;
1757 if (parent
->d_op
->d_compare(parent
, inode
,
1760 return D_COMP_NOMATCH
;
1765 * __d_lookup_rcu - search for a dentry (racy, store-free)
1766 * @parent: parent dentry
1767 * @name: qstr of name we wish to find
1768 * @seqp: returns d_seq value at the point where the dentry was found
1769 * @inode: returns dentry->d_inode when the inode was found valid.
1770 * Returns: dentry, or NULL
1772 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
1773 * resolution (store-free path walking) design described in
1774 * Documentation/filesystems/path-lookup.txt.
1776 * This is not to be used outside core vfs.
1778 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
1779 * held, and rcu_read_lock held. The returned dentry must not be stored into
1780 * without taking d_lock and checking d_seq sequence count against @seq
1783 * A refcount may be taken on the found dentry with the __d_rcu_to_refcount
1786 * Alternatively, __d_lookup_rcu may be called again to look up the child of
1787 * the returned dentry, so long as its parent's seqlock is checked after the
1788 * child is looked up. Thus, an interlocking stepping of sequence lock checks
1789 * is formed, giving integrity down the path walk.
1791 * NOTE! The caller *has* to check the resulting dentry against the sequence
1792 * number we've returned before using any of the resulting dentry state!
1794 struct dentry
*__d_lookup_rcu(const struct dentry
*parent
,
1795 const struct qstr
*name
,
1796 unsigned *seqp
, struct inode
*inode
)
1798 u64 hashlen
= name
->hash_len
;
1799 const unsigned char *str
= name
->name
;
1800 struct hlist_bl_head
*b
= d_hash(parent
, hashlen_hash(hashlen
));
1801 struct hlist_bl_node
*node
;
1802 struct dentry
*dentry
;
1805 * Note: There is significant duplication with __d_lookup_rcu which is
1806 * required to prevent single threaded performance regressions
1807 * especially on architectures where smp_rmb (in seqcounts) are costly.
1808 * Keep the two functions in sync.
1812 * The hash list is protected using RCU.
1814 * Carefully use d_seq when comparing a candidate dentry, to avoid
1815 * races with d_move().
1817 * It is possible that concurrent renames can mess up our list
1818 * walk here and result in missing our dentry, resulting in the
1819 * false-negative result. d_lookup() protects against concurrent
1820 * renames using rename_lock seqlock.
1822 * See Documentation/filesystems/path-lookup.txt for more details.
1824 hlist_bl_for_each_entry_rcu(dentry
, node
, b
, d_hash
) {
1829 * The dentry sequence count protects us from concurrent
1830 * renames, and thus protects inode, parent and name fields.
1832 * The caller must perform a seqcount check in order
1833 * to do anything useful with the returned dentry,
1834 * including using the 'd_inode' pointer.
1836 * NOTE! We do a "raw" seqcount_begin here. That means that
1837 * we don't wait for the sequence count to stabilize if it
1838 * is in the middle of a sequence change. If we do the slow
1839 * dentry compare, we will do seqretries until it is stable,
1840 * and if we end up with a successful lookup, we actually
1841 * want to exit RCU lookup anyway.
1843 seq
= raw_seqcount_begin(&dentry
->d_seq
);
1844 if (dentry
->d_parent
!= parent
)
1846 if (d_unhashed(dentry
))
1850 if (unlikely(parent
->d_flags
& DCACHE_OP_COMPARE
)) {
1851 if (dentry
->d_name
.hash
!= hashlen_hash(hashlen
))
1853 switch (slow_dentry_cmp(parent
, inode
, dentry
, seq
, name
)) {
1856 case D_COMP_NOMATCH
:
1863 if (dentry
->d_name
.hash_len
!= hashlen
)
1865 if (!dentry_cmp(dentry
, str
, hashlen_len(hashlen
)))
1872 * d_lookup - search for a dentry
1873 * @parent: parent dentry
1874 * @name: qstr of name we wish to find
1875 * Returns: dentry, or NULL
1877 * d_lookup searches the children of the parent dentry for the name in
1878 * question. If the dentry is found its reference count is incremented and the
1879 * dentry is returned. The caller must use dput to free the entry when it has
1880 * finished using it. %NULL is returned if the dentry does not exist.
1882 struct dentry
*d_lookup(const struct dentry
*parent
, const struct qstr
*name
)
1884 struct dentry
*dentry
;
1888 seq
= read_seqbegin(&rename_lock
);
1889 dentry
= __d_lookup(parent
, name
);
1892 } while (read_seqretry(&rename_lock
, seq
));
1895 EXPORT_SYMBOL(d_lookup
);
1898 * __d_lookup - search for a dentry (racy)
1899 * @parent: parent dentry
1900 * @name: qstr of name we wish to find
1901 * Returns: dentry, or NULL
1903 * __d_lookup is like d_lookup, however it may (rarely) return a
1904 * false-negative result due to unrelated rename activity.
1906 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
1907 * however it must be used carefully, eg. with a following d_lookup in
1908 * the case of failure.
1910 * __d_lookup callers must be commented.
1912 struct dentry
*__d_lookup(const struct dentry
*parent
, const struct qstr
*name
)
1914 unsigned int len
= name
->len
;
1915 unsigned int hash
= name
->hash
;
1916 const unsigned char *str
= name
->name
;
1917 struct hlist_bl_head
*b
= d_hash(parent
, hash
);
1918 struct hlist_bl_node
*node
;
1919 struct dentry
*found
= NULL
;
1920 struct dentry
*dentry
;
1923 * Note: There is significant duplication with __d_lookup_rcu which is
1924 * required to prevent single threaded performance regressions
1925 * especially on architectures where smp_rmb (in seqcounts) are costly.
1926 * Keep the two functions in sync.
1930 * The hash list is protected using RCU.
1932 * Take d_lock when comparing a candidate dentry, to avoid races
1935 * It is possible that concurrent renames can mess up our list
1936 * walk here and result in missing our dentry, resulting in the
1937 * false-negative result. d_lookup() protects against concurrent
1938 * renames using rename_lock seqlock.
1940 * See Documentation/filesystems/path-lookup.txt for more details.
1944 hlist_bl_for_each_entry_rcu(dentry
, node
, b
, d_hash
) {
1946 if (dentry
->d_name
.hash
!= hash
)
1949 spin_lock(&dentry
->d_lock
);
1950 if (dentry
->d_parent
!= parent
)
1952 if (d_unhashed(dentry
))
1956 * It is safe to compare names since d_move() cannot
1957 * change the qstr (protected by d_lock).
1959 if (parent
->d_flags
& DCACHE_OP_COMPARE
) {
1960 int tlen
= dentry
->d_name
.len
;
1961 const char *tname
= dentry
->d_name
.name
;
1962 if (parent
->d_op
->d_compare(parent
, parent
->d_inode
,
1963 dentry
, dentry
->d_inode
,
1967 if (dentry
->d_name
.len
!= len
)
1969 if (dentry_cmp(dentry
, str
, len
))
1975 spin_unlock(&dentry
->d_lock
);
1978 spin_unlock(&dentry
->d_lock
);
1986 * d_hash_and_lookup - hash the qstr then search for a dentry
1987 * @dir: Directory to search in
1988 * @name: qstr of name we wish to find
1990 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
1992 struct dentry
*d_hash_and_lookup(struct dentry
*dir
, struct qstr
*name
)
1995 * Check for a fs-specific hash function. Note that we must
1996 * calculate the standard hash first, as the d_op->d_hash()
1997 * routine may choose to leave the hash value unchanged.
1999 name
->hash
= full_name_hash(name
->name
, name
->len
);
2000 if (dir
->d_flags
& DCACHE_OP_HASH
) {
2001 int err
= dir
->d_op
->d_hash(dir
, dir
->d_inode
, name
);
2002 if (unlikely(err
< 0))
2003 return ERR_PTR(err
);
2005 return d_lookup(dir
, name
);
2007 EXPORT_SYMBOL(d_hash_and_lookup
);
2010 * d_validate - verify dentry provided from insecure source (deprecated)
2011 * @dentry: The dentry alleged to be valid child of @dparent
2012 * @dparent: The parent dentry (known to be valid)
2014 * An insecure source has sent us a dentry, here we verify it and dget() it.
2015 * This is used by ncpfs in its readdir implementation.
2016 * Zero is returned in the dentry is invalid.
2018 * This function is slow for big directories, and deprecated, do not use it.
2020 int d_validate(struct dentry
*dentry
, struct dentry
*dparent
)
2022 struct dentry
*child
;
2024 spin_lock(&dparent
->d_lock
);
2025 list_for_each_entry(child
, &dparent
->d_subdirs
, d_u
.d_child
) {
2026 if (dentry
== child
) {
2027 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
2028 __dget_dlock(dentry
);
2029 spin_unlock(&dentry
->d_lock
);
2030 spin_unlock(&dparent
->d_lock
);
2034 spin_unlock(&dparent
->d_lock
);
2038 EXPORT_SYMBOL(d_validate
);
2041 * When a file is deleted, we have two options:
2042 * - turn this dentry into a negative dentry
2043 * - unhash this dentry and free it.
2045 * Usually, we want to just turn this into
2046 * a negative dentry, but if anybody else is
2047 * currently using the dentry or the inode
2048 * we can't do that and we fall back on removing
2049 * it from the hash queues and waiting for
2050 * it to be deleted later when it has no users
2054 * d_delete - delete a dentry
2055 * @dentry: The dentry to delete
2057 * Turn the dentry into a negative dentry if possible, otherwise
2058 * remove it from the hash queues so it can be deleted later
2061 void d_delete(struct dentry
* dentry
)
2063 struct inode
*inode
;
2066 * Are we the only user?
2069 spin_lock(&dentry
->d_lock
);
2070 inode
= dentry
->d_inode
;
2071 isdir
= S_ISDIR(inode
->i_mode
);
2072 if (dentry
->d_count
== 1) {
2073 if (!spin_trylock(&inode
->i_lock
)) {
2074 spin_unlock(&dentry
->d_lock
);
2078 dentry
->d_flags
&= ~DCACHE_CANT_MOUNT
;
2079 dentry_unlink_inode(dentry
);
2080 fsnotify_nameremove(dentry
, isdir
);
2084 if (!d_unhashed(dentry
))
2087 spin_unlock(&dentry
->d_lock
);
2089 fsnotify_nameremove(dentry
, isdir
);
2091 EXPORT_SYMBOL(d_delete
);
2093 static void __d_rehash(struct dentry
* entry
, struct hlist_bl_head
*b
)
2095 BUG_ON(!d_unhashed(entry
));
2097 entry
->d_flags
|= DCACHE_RCUACCESS
;
2098 hlist_bl_add_head_rcu(&entry
->d_hash
, b
);
2102 static void _d_rehash(struct dentry
* entry
)
2104 __d_rehash(entry
, d_hash(entry
->d_parent
, entry
->d_name
.hash
));
2108 * d_rehash - add an entry back to the hash
2109 * @entry: dentry to add to the hash
2111 * Adds a dentry to the hash according to its name.
2114 void d_rehash(struct dentry
* entry
)
2116 spin_lock(&entry
->d_lock
);
2118 spin_unlock(&entry
->d_lock
);
2120 EXPORT_SYMBOL(d_rehash
);
2123 * dentry_update_name_case - update case insensitive dentry with a new name
2124 * @dentry: dentry to be updated
2127 * Update a case insensitive dentry with new case of name.
2129 * dentry must have been returned by d_lookup with name @name. Old and new
2130 * name lengths must match (ie. no d_compare which allows mismatched name
2133 * Parent inode i_mutex must be held over d_lookup and into this call (to
2134 * keep renames and concurrent inserts, and readdir(2) away).
2136 void dentry_update_name_case(struct dentry
*dentry
, struct qstr
*name
)
2138 BUG_ON(!mutex_is_locked(&dentry
->d_parent
->d_inode
->i_mutex
));
2139 BUG_ON(dentry
->d_name
.len
!= name
->len
); /* d_lookup gives this */
2141 spin_lock(&dentry
->d_lock
);
2142 write_seqcount_begin(&dentry
->d_seq
);
2143 memcpy((unsigned char *)dentry
->d_name
.name
, name
->name
, name
->len
);
2144 write_seqcount_end(&dentry
->d_seq
);
2145 spin_unlock(&dentry
->d_lock
);
2147 EXPORT_SYMBOL(dentry_update_name_case
);
2149 static void switch_names(struct dentry
*dentry
, struct dentry
*target
)
2151 if (dname_external(target
)) {
2152 if (dname_external(dentry
)) {
2154 * Both external: swap the pointers
2156 swap(target
->d_name
.name
, dentry
->d_name
.name
);
2159 * dentry:internal, target:external. Steal target's
2160 * storage and make target internal.
2162 memcpy(target
->d_iname
, dentry
->d_name
.name
,
2163 dentry
->d_name
.len
+ 1);
2164 dentry
->d_name
.name
= target
->d_name
.name
;
2165 target
->d_name
.name
= target
->d_iname
;
2168 if (dname_external(dentry
)) {
2170 * dentry:external, target:internal. Give dentry's
2171 * storage to target and make dentry internal
2173 memcpy(dentry
->d_iname
, target
->d_name
.name
,
2174 target
->d_name
.len
+ 1);
2175 target
->d_name
.name
= dentry
->d_name
.name
;
2176 dentry
->d_name
.name
= dentry
->d_iname
;
2179 * Both are internal. Just copy target to dentry
2181 memcpy(dentry
->d_iname
, target
->d_name
.name
,
2182 target
->d_name
.len
+ 1);
2183 dentry
->d_name
.len
= target
->d_name
.len
;
2187 swap(dentry
->d_name
.len
, target
->d_name
.len
);
2190 static void dentry_lock_for_move(struct dentry
*dentry
, struct dentry
*target
)
2193 * XXXX: do we really need to take target->d_lock?
2195 if (IS_ROOT(dentry
) || dentry
->d_parent
== target
->d_parent
)
2196 spin_lock(&target
->d_parent
->d_lock
);
2198 if (d_ancestor(dentry
->d_parent
, target
->d_parent
)) {
2199 spin_lock(&dentry
->d_parent
->d_lock
);
2200 spin_lock_nested(&target
->d_parent
->d_lock
,
2201 DENTRY_D_LOCK_NESTED
);
2203 spin_lock(&target
->d_parent
->d_lock
);
2204 spin_lock_nested(&dentry
->d_parent
->d_lock
,
2205 DENTRY_D_LOCK_NESTED
);
2208 if (target
< dentry
) {
2209 spin_lock_nested(&target
->d_lock
, 2);
2210 spin_lock_nested(&dentry
->d_lock
, 3);
2212 spin_lock_nested(&dentry
->d_lock
, 2);
2213 spin_lock_nested(&target
->d_lock
, 3);
2217 static void dentry_unlock_parents_for_move(struct dentry
*dentry
,
2218 struct dentry
*target
)
2220 if (target
->d_parent
!= dentry
->d_parent
)
2221 spin_unlock(&dentry
->d_parent
->d_lock
);
2222 if (target
->d_parent
!= target
)
2223 spin_unlock(&target
->d_parent
->d_lock
);
2227 * When switching names, the actual string doesn't strictly have to
2228 * be preserved in the target - because we're dropping the target
2229 * anyway. As such, we can just do a simple memcpy() to copy over
2230 * the new name before we switch.
2232 * Note that we have to be a lot more careful about getting the hash
2233 * switched - we have to switch the hash value properly even if it
2234 * then no longer matches the actual (corrupted) string of the target.
2235 * The hash value has to match the hash queue that the dentry is on..
2238 * __d_move - move a dentry
2239 * @dentry: entry to move
2240 * @target: new dentry
2242 * Update the dcache to reflect the move of a file name. Negative
2243 * dcache entries should not be moved in this way. Caller must hold
2244 * rename_lock, the i_mutex of the source and target directories,
2245 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2247 static void __d_move(struct dentry
* dentry
, struct dentry
* target
)
2249 if (!dentry
->d_inode
)
2250 printk(KERN_WARNING
"VFS: moving negative dcache entry\n");
2252 BUG_ON(d_ancestor(dentry
, target
));
2253 BUG_ON(d_ancestor(target
, dentry
));
2255 dentry_lock_for_move(dentry
, target
);
2257 write_seqcount_begin(&dentry
->d_seq
);
2258 write_seqcount_begin(&target
->d_seq
);
2260 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2263 * Move the dentry to the target hash queue. Don't bother checking
2264 * for the same hash queue because of how unlikely it is.
2267 __d_rehash(dentry
, d_hash(target
->d_parent
, target
->d_name
.hash
));
2269 /* Unhash the target: dput() will then get rid of it */
2272 list_del(&dentry
->d_u
.d_child
);
2273 list_del(&target
->d_u
.d_child
);
2275 /* Switch the names.. */
2276 switch_names(dentry
, target
);
2277 swap(dentry
->d_name
.hash
, target
->d_name
.hash
);
2279 /* ... and switch the parents */
2280 if (IS_ROOT(dentry
)) {
2281 dentry
->d_parent
= target
->d_parent
;
2282 target
->d_parent
= target
;
2283 INIT_LIST_HEAD(&target
->d_u
.d_child
);
2285 swap(dentry
->d_parent
, target
->d_parent
);
2287 /* And add them back to the (new) parent lists */
2288 list_add(&target
->d_u
.d_child
, &target
->d_parent
->d_subdirs
);
2291 list_add(&dentry
->d_u
.d_child
, &dentry
->d_parent
->d_subdirs
);
2293 write_seqcount_end(&target
->d_seq
);
2294 write_seqcount_end(&dentry
->d_seq
);
2296 dentry_unlock_parents_for_move(dentry
, target
);
2297 spin_unlock(&target
->d_lock
);
2298 fsnotify_d_move(dentry
);
2299 spin_unlock(&dentry
->d_lock
);
2303 * d_move - move a dentry
2304 * @dentry: entry to move
2305 * @target: new dentry
2307 * Update the dcache to reflect the move of a file name. Negative
2308 * dcache entries should not be moved in this way. See the locking
2309 * requirements for __d_move.
2311 void d_move(struct dentry
*dentry
, struct dentry
*target
)
2313 write_seqlock(&rename_lock
);
2314 __d_move(dentry
, target
);
2315 write_sequnlock(&rename_lock
);
2317 EXPORT_SYMBOL(d_move
);
2320 * d_ancestor - search for an ancestor
2321 * @p1: ancestor dentry
2324 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2325 * an ancestor of p2, else NULL.
2327 struct dentry
*d_ancestor(struct dentry
*p1
, struct dentry
*p2
)
2331 for (p
= p2
; !IS_ROOT(p
); p
= p
->d_parent
) {
2332 if (p
->d_parent
== p1
)
2339 * This helper attempts to cope with remotely renamed directories
2341 * It assumes that the caller is already holding
2342 * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
2344 * Note: If ever the locking in lock_rename() changes, then please
2345 * remember to update this too...
2347 static struct dentry
*__d_unalias(struct inode
*inode
,
2348 struct dentry
*dentry
, struct dentry
*alias
)
2350 struct mutex
*m1
= NULL
, *m2
= NULL
;
2351 struct dentry
*ret
= ERR_PTR(-EBUSY
);
2353 /* If alias and dentry share a parent, then no extra locks required */
2354 if (alias
->d_parent
== dentry
->d_parent
)
2357 /* See lock_rename() */
2358 if (!mutex_trylock(&dentry
->d_sb
->s_vfs_rename_mutex
))
2360 m1
= &dentry
->d_sb
->s_vfs_rename_mutex
;
2361 if (!mutex_trylock(&alias
->d_parent
->d_inode
->i_mutex
))
2363 m2
= &alias
->d_parent
->d_inode
->i_mutex
;
2365 if (likely(!d_mountpoint(alias
))) {
2366 __d_move(alias
, dentry
);
2370 spin_unlock(&inode
->i_lock
);
2379 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
2380 * named dentry in place of the dentry to be replaced.
2381 * returns with anon->d_lock held!
2383 static void __d_materialise_dentry(struct dentry
*dentry
, struct dentry
*anon
)
2385 struct dentry
*dparent
;
2387 dentry_lock_for_move(anon
, dentry
);
2389 write_seqcount_begin(&dentry
->d_seq
);
2390 write_seqcount_begin(&anon
->d_seq
);
2392 dparent
= dentry
->d_parent
;
2394 switch_names(dentry
, anon
);
2395 swap(dentry
->d_name
.hash
, anon
->d_name
.hash
);
2397 dentry
->d_parent
= dentry
;
2398 list_del_init(&dentry
->d_u
.d_child
);
2399 anon
->d_parent
= dparent
;
2400 list_move(&anon
->d_u
.d_child
, &dparent
->d_subdirs
);
2402 write_seqcount_end(&dentry
->d_seq
);
2403 write_seqcount_end(&anon
->d_seq
);
2405 dentry_unlock_parents_for_move(anon
, dentry
);
2406 spin_unlock(&dentry
->d_lock
);
2408 /* anon->d_lock still locked, returns locked */
2409 anon
->d_flags
&= ~DCACHE_DISCONNECTED
;
2413 * d_materialise_unique - introduce an inode into the tree
2414 * @dentry: candidate dentry
2415 * @inode: inode to bind to the dentry, to which aliases may be attached
2417 * Introduces an dentry into the tree, substituting an extant disconnected
2418 * root directory alias in its place if there is one. Caller must hold the
2419 * i_mutex of the parent directory.
2421 struct dentry
*d_materialise_unique(struct dentry
*dentry
, struct inode
*inode
)
2423 struct dentry
*actual
;
2425 BUG_ON(!d_unhashed(dentry
));
2429 __d_instantiate(dentry
, NULL
);
2434 spin_lock(&inode
->i_lock
);
2436 if (S_ISDIR(inode
->i_mode
)) {
2437 struct dentry
*alias
;
2439 /* Does an aliased dentry already exist? */
2440 alias
= __d_find_alias(inode
, 0);
2443 write_seqlock(&rename_lock
);
2445 if (d_ancestor(alias
, dentry
)) {
2446 /* Check for loops */
2447 actual
= ERR_PTR(-ELOOP
);
2448 spin_unlock(&inode
->i_lock
);
2449 } else if (IS_ROOT(alias
)) {
2450 /* Is this an anonymous mountpoint that we
2451 * could splice into our tree? */
2452 __d_materialise_dentry(dentry
, alias
);
2453 write_sequnlock(&rename_lock
);
2457 /* Nope, but we must(!) avoid directory
2458 * aliasing. This drops inode->i_lock */
2459 actual
= __d_unalias(inode
, dentry
, alias
);
2461 write_sequnlock(&rename_lock
);
2462 if (IS_ERR(actual
)) {
2463 if (PTR_ERR(actual
) == -ELOOP
)
2464 pr_warn_ratelimited(
2465 "VFS: Lookup of '%s' in %s %s"
2466 " would have caused loop\n",
2467 dentry
->d_name
.name
,
2468 inode
->i_sb
->s_type
->name
,
2476 /* Add a unique reference */
2477 actual
= __d_instantiate_unique(dentry
, inode
);
2481 BUG_ON(!d_unhashed(actual
));
2483 spin_lock(&actual
->d_lock
);
2486 spin_unlock(&actual
->d_lock
);
2487 spin_unlock(&inode
->i_lock
);
2489 if (actual
== dentry
) {
2490 security_d_instantiate(dentry
, inode
);
2497 EXPORT_SYMBOL_GPL(d_materialise_unique
);
2499 static int prepend(char **buffer
, int *buflen
, const char *str
, int namelen
)
2503 return -ENAMETOOLONG
;
2505 memcpy(*buffer
, str
, namelen
);
2509 static int prepend_name(char **buffer
, int *buflen
, struct qstr
*name
)
2511 return prepend(buffer
, buflen
, name
->name
, name
->len
);
2515 * prepend_path - Prepend path string to a buffer
2516 * @path: the dentry/vfsmount to report
2517 * @root: root vfsmnt/dentry
2518 * @buffer: pointer to the end of the buffer
2519 * @buflen: pointer to buffer length
2521 * Caller holds the rename_lock.
2523 static int prepend_path(const struct path
*path
,
2524 const struct path
*root
,
2525 char **buffer
, int *buflen
)
2527 struct dentry
*dentry
= path
->dentry
;
2528 struct vfsmount
*vfsmnt
= path
->mnt
;
2529 struct mount
*mnt
= real_mount(vfsmnt
);
2533 while (dentry
!= root
->dentry
|| vfsmnt
!= root
->mnt
) {
2534 struct dentry
* parent
;
2536 if (dentry
== vfsmnt
->mnt_root
|| IS_ROOT(dentry
)) {
2538 if (!mnt_has_parent(mnt
))
2540 dentry
= mnt
->mnt_mountpoint
;
2541 mnt
= mnt
->mnt_parent
;
2545 parent
= dentry
->d_parent
;
2547 spin_lock(&dentry
->d_lock
);
2548 error
= prepend_name(buffer
, buflen
, &dentry
->d_name
);
2549 spin_unlock(&dentry
->d_lock
);
2551 error
= prepend(buffer
, buflen
, "/", 1);
2559 if (!error
&& !slash
)
2560 error
= prepend(buffer
, buflen
, "/", 1);
2566 * Filesystems needing to implement special "root names"
2567 * should do so with ->d_dname()
2569 if (IS_ROOT(dentry
) &&
2570 (dentry
->d_name
.len
!= 1 || dentry
->d_name
.name
[0] != '/')) {
2571 WARN(1, "Root dentry has weird name <%.*s>\n",
2572 (int) dentry
->d_name
.len
, dentry
->d_name
.name
);
2575 error
= prepend(buffer
, buflen
, "/", 1);
2577 error
= is_mounted(vfsmnt
) ? 1 : 2;
2582 * __d_path - return the path of a dentry
2583 * @path: the dentry/vfsmount to report
2584 * @root: root vfsmnt/dentry
2585 * @buf: buffer to return value in
2586 * @buflen: buffer length
2588 * Convert a dentry into an ASCII path name.
2590 * Returns a pointer into the buffer or an error code if the
2591 * path was too long.
2593 * "buflen" should be positive.
2595 * If the path is not reachable from the supplied root, return %NULL.
2597 char *__d_path(const struct path
*path
,
2598 const struct path
*root
,
2599 char *buf
, int buflen
)
2601 char *res
= buf
+ buflen
;
2604 prepend(&res
, &buflen
, "\0", 1);
2605 br_read_lock(&vfsmount_lock
);
2606 write_seqlock(&rename_lock
);
2607 error
= prepend_path(path
, root
, &res
, &buflen
);
2608 write_sequnlock(&rename_lock
);
2609 br_read_unlock(&vfsmount_lock
);
2612 return ERR_PTR(error
);
2618 char *d_absolute_path(const struct path
*path
,
2619 char *buf
, int buflen
)
2621 struct path root
= {};
2622 char *res
= buf
+ buflen
;
2625 prepend(&res
, &buflen
, "\0", 1);
2626 br_read_lock(&vfsmount_lock
);
2627 write_seqlock(&rename_lock
);
2628 error
= prepend_path(path
, &root
, &res
, &buflen
);
2629 write_sequnlock(&rename_lock
);
2630 br_read_unlock(&vfsmount_lock
);
2635 return ERR_PTR(error
);
2640 * same as __d_path but appends "(deleted)" for unlinked files.
2642 static int path_with_deleted(const struct path
*path
,
2643 const struct path
*root
,
2644 char **buf
, int *buflen
)
2646 prepend(buf
, buflen
, "\0", 1);
2647 if (d_unlinked(path
->dentry
)) {
2648 int error
= prepend(buf
, buflen
, " (deleted)", 10);
2653 return prepend_path(path
, root
, buf
, buflen
);
2656 static int prepend_unreachable(char **buffer
, int *buflen
)
2658 return prepend(buffer
, buflen
, "(unreachable)", 13);
2662 * d_path - return the path of a dentry
2663 * @path: path to report
2664 * @buf: buffer to return value in
2665 * @buflen: buffer length
2667 * Convert a dentry into an ASCII path name. If the entry has been deleted
2668 * the string " (deleted)" is appended. Note that this is ambiguous.
2670 * Returns a pointer into the buffer or an error code if the path was
2671 * too long. Note: Callers should use the returned pointer, not the passed
2672 * in buffer, to use the name! The implementation often starts at an offset
2673 * into the buffer, and may leave 0 bytes at the start.
2675 * "buflen" should be positive.
2677 char *d_path(const struct path
*path
, char *buf
, int buflen
)
2679 char *res
= buf
+ buflen
;
2684 * We have various synthetic filesystems that never get mounted. On
2685 * these filesystems dentries are never used for lookup purposes, and
2686 * thus don't need to be hashed. They also don't need a name until a
2687 * user wants to identify the object in /proc/pid/fd/. The little hack
2688 * below allows us to generate a name for these objects on demand:
2690 if (path
->dentry
->d_op
&& path
->dentry
->d_op
->d_dname
)
2691 return path
->dentry
->d_op
->d_dname(path
->dentry
, buf
, buflen
);
2693 get_fs_root(current
->fs
, &root
);
2694 br_read_lock(&vfsmount_lock
);
2695 write_seqlock(&rename_lock
);
2696 error
= path_with_deleted(path
, &root
, &res
, &buflen
);
2697 write_sequnlock(&rename_lock
);
2698 br_read_unlock(&vfsmount_lock
);
2700 res
= ERR_PTR(error
);
2704 EXPORT_SYMBOL(d_path
);
2707 * Helper function for dentry_operations.d_dname() members
2709 char *dynamic_dname(struct dentry
*dentry
, char *buffer
, int buflen
,
2710 const char *fmt
, ...)
2716 va_start(args
, fmt
);
2717 sz
= vsnprintf(temp
, sizeof(temp
), fmt
, args
) + 1;
2720 if (sz
> sizeof(temp
) || sz
> buflen
)
2721 return ERR_PTR(-ENAMETOOLONG
);
2723 buffer
+= buflen
- sz
;
2724 return memcpy(buffer
, temp
, sz
);
2728 * Write full pathname from the root of the filesystem into the buffer.
2730 static char *__dentry_path(struct dentry
*dentry
, char *buf
, int buflen
)
2732 char *end
= buf
+ buflen
;
2735 prepend(&end
, &buflen
, "\0", 1);
2742 while (!IS_ROOT(dentry
)) {
2743 struct dentry
*parent
= dentry
->d_parent
;
2747 spin_lock(&dentry
->d_lock
);
2748 error
= prepend_name(&end
, &buflen
, &dentry
->d_name
);
2749 spin_unlock(&dentry
->d_lock
);
2750 if (error
!= 0 || prepend(&end
, &buflen
, "/", 1) != 0)
2758 return ERR_PTR(-ENAMETOOLONG
);
2761 char *dentry_path_raw(struct dentry
*dentry
, char *buf
, int buflen
)
2765 write_seqlock(&rename_lock
);
2766 retval
= __dentry_path(dentry
, buf
, buflen
);
2767 write_sequnlock(&rename_lock
);
2771 EXPORT_SYMBOL(dentry_path_raw
);
2773 char *dentry_path(struct dentry
*dentry
, char *buf
, int buflen
)
2778 write_seqlock(&rename_lock
);
2779 if (d_unlinked(dentry
)) {
2781 if (prepend(&p
, &buflen
, "//deleted", 10) != 0)
2785 retval
= __dentry_path(dentry
, buf
, buflen
);
2786 write_sequnlock(&rename_lock
);
2787 if (!IS_ERR(retval
) && p
)
2788 *p
= '/'; /* restore '/' overriden with '\0' */
2791 return ERR_PTR(-ENAMETOOLONG
);
2795 * NOTE! The user-level library version returns a
2796 * character pointer. The kernel system call just
2797 * returns the length of the buffer filled (which
2798 * includes the ending '\0' character), or a negative
2799 * error value. So libc would do something like
2801 * char *getcwd(char * buf, size_t size)
2805 * retval = sys_getcwd(buf, size);
2812 SYSCALL_DEFINE2(getcwd
, char __user
*, buf
, unsigned long, size
)
2815 struct path pwd
, root
;
2816 char *page
= (char *) __get_free_page(GFP_USER
);
2821 get_fs_root_and_pwd(current
->fs
, &root
, &pwd
);
2824 br_read_lock(&vfsmount_lock
);
2825 write_seqlock(&rename_lock
);
2826 if (!d_unlinked(pwd
.dentry
)) {
2828 char *cwd
= page
+ PAGE_SIZE
;
2829 int buflen
= PAGE_SIZE
;
2831 prepend(&cwd
, &buflen
, "\0", 1);
2832 error
= prepend_path(&pwd
, &root
, &cwd
, &buflen
);
2833 write_sequnlock(&rename_lock
);
2834 br_read_unlock(&vfsmount_lock
);
2839 /* Unreachable from current root */
2841 error
= prepend_unreachable(&cwd
, &buflen
);
2847 len
= PAGE_SIZE
+ page
- cwd
;
2850 if (copy_to_user(buf
, cwd
, len
))
2854 write_sequnlock(&rename_lock
);
2855 br_read_unlock(&vfsmount_lock
);
2861 free_page((unsigned long) page
);
2866 * Test whether new_dentry is a subdirectory of old_dentry.
2868 * Trivially implemented using the dcache structure
2872 * is_subdir - is new dentry a subdirectory of old_dentry
2873 * @new_dentry: new dentry
2874 * @old_dentry: old dentry
2876 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
2877 * Returns 0 otherwise.
2878 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2881 int is_subdir(struct dentry
*new_dentry
, struct dentry
*old_dentry
)
2886 if (new_dentry
== old_dentry
)
2890 /* for restarting inner loop in case of seq retry */
2891 seq
= read_seqbegin(&rename_lock
);
2893 * Need rcu_readlock to protect against the d_parent trashing
2897 if (d_ancestor(old_dentry
, new_dentry
))
2902 } while (read_seqretry(&rename_lock
, seq
));
2907 void d_genocide(struct dentry
*root
)
2909 struct dentry
*this_parent
;
2910 struct list_head
*next
;
2914 seq
= read_seqbegin(&rename_lock
);
2917 spin_lock(&this_parent
->d_lock
);
2919 next
= this_parent
->d_subdirs
.next
;
2921 while (next
!= &this_parent
->d_subdirs
) {
2922 struct list_head
*tmp
= next
;
2923 struct dentry
*dentry
= list_entry(tmp
, struct dentry
, d_u
.d_child
);
2926 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
2927 if (d_unhashed(dentry
) || !dentry
->d_inode
) {
2928 spin_unlock(&dentry
->d_lock
);
2931 if (!list_empty(&dentry
->d_subdirs
)) {
2932 spin_unlock(&this_parent
->d_lock
);
2933 spin_release(&dentry
->d_lock
.dep_map
, 1, _RET_IP_
);
2934 this_parent
= dentry
;
2935 spin_acquire(&this_parent
->d_lock
.dep_map
, 0, 1, _RET_IP_
);
2938 if (!(dentry
->d_flags
& DCACHE_GENOCIDE
)) {
2939 dentry
->d_flags
|= DCACHE_GENOCIDE
;
2942 spin_unlock(&dentry
->d_lock
);
2944 if (this_parent
!= root
) {
2945 struct dentry
*child
= this_parent
;
2946 if (!(this_parent
->d_flags
& DCACHE_GENOCIDE
)) {
2947 this_parent
->d_flags
|= DCACHE_GENOCIDE
;
2948 this_parent
->d_count
--;
2950 this_parent
= try_to_ascend(this_parent
, locked
, seq
);
2953 next
= child
->d_u
.d_child
.next
;
2956 spin_unlock(&this_parent
->d_lock
);
2957 if (!locked
&& read_seqretry(&rename_lock
, seq
))
2960 write_sequnlock(&rename_lock
);
2967 write_seqlock(&rename_lock
);
2972 * find_inode_number - check for dentry with name
2973 * @dir: directory to check
2974 * @name: Name to find.
2976 * Check whether a dentry already exists for the given name,
2977 * and return the inode number if it has an inode. Otherwise
2980 * This routine is used to post-process directory listings for
2981 * filesystems using synthetic inode numbers, and is necessary
2982 * to keep getcwd() working.
2985 ino_t
find_inode_number(struct dentry
*dir
, struct qstr
*name
)
2987 struct dentry
* dentry
;
2990 dentry
= d_hash_and_lookup(dir
, name
);
2991 if (!IS_ERR_OR_NULL(dentry
)) {
2992 if (dentry
->d_inode
)
2993 ino
= dentry
->d_inode
->i_ino
;
2998 EXPORT_SYMBOL(find_inode_number
);
3000 static __initdata
unsigned long dhash_entries
;
3001 static int __init
set_dhash_entries(char *str
)
3005 dhash_entries
= simple_strtoul(str
, &str
, 0);
3008 __setup("dhash_entries=", set_dhash_entries
);
3010 static void __init
dcache_init_early(void)
3014 /* If hashes are distributed across NUMA nodes, defer
3015 * hash allocation until vmalloc space is available.
3021 alloc_large_system_hash("Dentry cache",
3022 sizeof(struct hlist_bl_head
),
3031 for (loop
= 0; loop
< (1U << d_hash_shift
); loop
++)
3032 INIT_HLIST_BL_HEAD(dentry_hashtable
+ loop
);
3035 static void __init
dcache_init(void)
3040 * A constructor could be added for stable state like the lists,
3041 * but it is probably not worth it because of the cache nature
3044 dentry_cache
= KMEM_CACHE(dentry
,
3045 SLAB_RECLAIM_ACCOUNT
|SLAB_PANIC
|SLAB_MEM_SPREAD
);
3047 /* Hash may have been set up in dcache_init_early */
3052 alloc_large_system_hash("Dentry cache",
3053 sizeof(struct hlist_bl_head
),
3062 for (loop
= 0; loop
< (1U << d_hash_shift
); loop
++)
3063 INIT_HLIST_BL_HEAD(dentry_hashtable
+ loop
);
3066 /* SLAB cache for __getname() consumers */
3067 struct kmem_cache
*names_cachep __read_mostly
;
3068 EXPORT_SYMBOL(names_cachep
);
3070 EXPORT_SYMBOL(d_genocide
);
3072 void __init
vfs_caches_init_early(void)
3074 dcache_init_early();
3078 void __init
vfs_caches_init(unsigned long mempages
)
3080 unsigned long reserve
;
3082 /* Base hash sizes on available memory, with a reserve equal to
3083 150% of current kernel size */
3085 reserve
= min((mempages
- nr_free_pages()) * 3/2, mempages
- 1);
3086 mempages
-= reserve
;
3088 names_cachep
= kmem_cache_create("names_cache", PATH_MAX
, 0,
3089 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
);
3093 files_init(mempages
);