2 * linux/arch/arm/mm/mmu.c
4 * Copyright (C) 1995-2005 Russell King
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/init.h>
14 #include <linux/mman.h>
15 #include <linux/nodemask.h>
16 #include <linux/memblock.h>
18 #include <linux/vmalloc.h>
19 #include <linux/sizes.h>
22 #include <asm/cputype.h>
23 #include <asm/sections.h>
24 #include <asm/cachetype.h>
25 #include <asm/setup.h>
26 #include <asm/smp_plat.h>
28 #include <asm/highmem.h>
29 #include <asm/system_info.h>
30 #include <asm/traps.h>
32 #include <asm/mach/arch.h>
33 #include <asm/mach/map.h>
34 #include <asm/mach/pci.h>
39 * empty_zero_page is a special page that is used for
40 * zero-initialized data and COW.
42 struct page
*empty_zero_page
;
43 EXPORT_SYMBOL(empty_zero_page
);
46 * The pmd table for the upper-most set of pages.
50 #define CPOLICY_UNCACHED 0
51 #define CPOLICY_BUFFERED 1
52 #define CPOLICY_WRITETHROUGH 2
53 #define CPOLICY_WRITEBACK 3
54 #define CPOLICY_WRITEALLOC 4
56 static unsigned int cachepolicy __initdata
= CPOLICY_WRITEBACK
;
57 static unsigned int ecc_mask __initdata
= 0;
59 pgprot_t pgprot_kernel
;
61 EXPORT_SYMBOL(pgprot_user
);
62 EXPORT_SYMBOL(pgprot_kernel
);
65 const char policy
[16];
71 static struct cachepolicy cache_policies
[] __initdata
= {
75 .pmd
= PMD_SECT_UNCACHED
,
76 .pte
= L_PTE_MT_UNCACHED
,
80 .pmd
= PMD_SECT_BUFFERED
,
81 .pte
= L_PTE_MT_BUFFERABLE
,
83 .policy
= "writethrough",
86 .pte
= L_PTE_MT_WRITETHROUGH
,
88 .policy
= "writeback",
91 .pte
= L_PTE_MT_WRITEBACK
,
93 .policy
= "writealloc",
96 .pte
= L_PTE_MT_WRITEALLOC
,
101 * These are useful for identifying cache coherency
102 * problems by allowing the cache or the cache and
103 * writebuffer to be turned off. (Note: the write
104 * buffer should not be on and the cache off).
106 static int __init
early_cachepolicy(char *p
)
110 for (i
= 0; i
< ARRAY_SIZE(cache_policies
); i
++) {
111 int len
= strlen(cache_policies
[i
].policy
);
113 if (memcmp(p
, cache_policies
[i
].policy
, len
) == 0) {
115 cr_alignment
&= ~cache_policies
[i
].cr_mask
;
116 cr_no_alignment
&= ~cache_policies
[i
].cr_mask
;
120 if (i
== ARRAY_SIZE(cache_policies
))
121 printk(KERN_ERR
"ERROR: unknown or unsupported cache policy\n");
123 * This restriction is partly to do with the way we boot; it is
124 * unpredictable to have memory mapped using two different sets of
125 * memory attributes (shared, type, and cache attribs). We can not
126 * change these attributes once the initial assembly has setup the
129 if (cpu_architecture() >= CPU_ARCH_ARMv6
) {
130 printk(KERN_WARNING
"Only cachepolicy=writeback supported on ARMv6 and later\n");
131 cachepolicy
= CPOLICY_WRITEBACK
;
134 set_cr(cr_alignment
);
137 early_param("cachepolicy", early_cachepolicy
);
139 static int __init
early_nocache(char *__unused
)
141 char *p
= "buffered";
142 printk(KERN_WARNING
"nocache is deprecated; use cachepolicy=%s\n", p
);
143 early_cachepolicy(p
);
146 early_param("nocache", early_nocache
);
148 static int __init
early_nowrite(char *__unused
)
150 char *p
= "uncached";
151 printk(KERN_WARNING
"nowb is deprecated; use cachepolicy=%s\n", p
);
152 early_cachepolicy(p
);
155 early_param("nowb", early_nowrite
);
157 #ifndef CONFIG_ARM_LPAE
158 static int __init
early_ecc(char *p
)
160 if (memcmp(p
, "on", 2) == 0)
161 ecc_mask
= PMD_PROTECTION
;
162 else if (memcmp(p
, "off", 3) == 0)
166 early_param("ecc", early_ecc
);
169 static int __init
noalign_setup(char *__unused
)
171 cr_alignment
&= ~CR_A
;
172 cr_no_alignment
&= ~CR_A
;
173 set_cr(cr_alignment
);
176 __setup("noalign", noalign_setup
);
179 void adjust_cr(unsigned long mask
, unsigned long set
)
187 local_irq_save(flags
);
189 cr_no_alignment
= (cr_no_alignment
& ~mask
) | set
;
190 cr_alignment
= (cr_alignment
& ~mask
) | set
;
192 set_cr((get_cr() & ~mask
) | set
);
194 local_irq_restore(flags
);
198 #define PROT_PTE_DEVICE L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
199 #define PROT_SECT_DEVICE PMD_TYPE_SECT|PMD_SECT_AP_WRITE
201 static struct mem_type mem_types
[] = {
202 [MT_DEVICE
] = { /* Strongly ordered / ARMv6 shared device */
203 .prot_pte
= PROT_PTE_DEVICE
| L_PTE_MT_DEV_SHARED
|
205 .prot_l1
= PMD_TYPE_TABLE
,
206 .prot_sect
= PROT_SECT_DEVICE
| PMD_SECT_S
,
209 [MT_DEVICE_NONSHARED
] = { /* ARMv6 non-shared device */
210 .prot_pte
= PROT_PTE_DEVICE
| L_PTE_MT_DEV_NONSHARED
,
211 .prot_l1
= PMD_TYPE_TABLE
,
212 .prot_sect
= PROT_SECT_DEVICE
,
215 [MT_DEVICE_CACHED
] = { /* ioremap_cached */
216 .prot_pte
= PROT_PTE_DEVICE
| L_PTE_MT_DEV_CACHED
,
217 .prot_l1
= PMD_TYPE_TABLE
,
218 .prot_sect
= PROT_SECT_DEVICE
| PMD_SECT_WB
,
221 [MT_DEVICE_WC
] = { /* ioremap_wc */
222 .prot_pte
= PROT_PTE_DEVICE
| L_PTE_MT_DEV_WC
,
223 .prot_l1
= PMD_TYPE_TABLE
,
224 .prot_sect
= PROT_SECT_DEVICE
,
228 .prot_pte
= PROT_PTE_DEVICE
,
229 .prot_l1
= PMD_TYPE_TABLE
,
230 .prot_sect
= PMD_TYPE_SECT
| PMD_SECT_XN
,
234 .prot_sect
= PMD_TYPE_SECT
| PMD_SECT_XN
,
235 .domain
= DOMAIN_KERNEL
,
237 #ifndef CONFIG_ARM_LPAE
239 .prot_sect
= PMD_TYPE_SECT
| PMD_SECT_XN
| PMD_SECT_MINICACHE
,
240 .domain
= DOMAIN_KERNEL
,
244 .prot_pte
= L_PTE_PRESENT
| L_PTE_YOUNG
| L_PTE_DIRTY
|
246 .prot_l1
= PMD_TYPE_TABLE
,
247 .domain
= DOMAIN_USER
,
249 [MT_HIGH_VECTORS
] = {
250 .prot_pte
= L_PTE_PRESENT
| L_PTE_YOUNG
| L_PTE_DIRTY
|
251 L_PTE_USER
| L_PTE_RDONLY
,
252 .prot_l1
= PMD_TYPE_TABLE
,
253 .domain
= DOMAIN_USER
,
256 .prot_pte
= L_PTE_PRESENT
| L_PTE_YOUNG
| L_PTE_DIRTY
,
257 .prot_l1
= PMD_TYPE_TABLE
,
258 .prot_sect
= PMD_TYPE_SECT
| PMD_SECT_AP_WRITE
,
259 .domain
= DOMAIN_KERNEL
,
262 .prot_sect
= PMD_TYPE_SECT
,
263 .domain
= DOMAIN_KERNEL
,
265 [MT_MEMORY_NONCACHED
] = {
266 .prot_pte
= L_PTE_PRESENT
| L_PTE_YOUNG
| L_PTE_DIRTY
|
268 .prot_l1
= PMD_TYPE_TABLE
,
269 .prot_sect
= PMD_TYPE_SECT
| PMD_SECT_AP_WRITE
,
270 .domain
= DOMAIN_KERNEL
,
273 .prot_pte
= L_PTE_PRESENT
| L_PTE_YOUNG
| L_PTE_DIRTY
|
275 .prot_l1
= PMD_TYPE_TABLE
,
276 .prot_sect
= PMD_TYPE_SECT
| PMD_SECT_XN
,
277 .domain
= DOMAIN_KERNEL
,
280 .prot_pte
= L_PTE_PRESENT
| L_PTE_YOUNG
| L_PTE_DIRTY
,
281 .prot_l1
= PMD_TYPE_TABLE
,
282 .domain
= DOMAIN_KERNEL
,
285 .prot_pte
= L_PTE_PRESENT
| L_PTE_YOUNG
| L_PTE_DIRTY
|
287 .prot_l1
= PMD_TYPE_TABLE
,
288 .prot_sect
= PMD_TYPE_SECT
| PMD_SECT_AP_WRITE
| PMD_SECT_S
|
289 PMD_SECT_UNCACHED
| PMD_SECT_XN
,
290 .domain
= DOMAIN_KERNEL
,
292 [MT_MEMORY_DMA_READY
] = {
293 .prot_pte
= L_PTE_PRESENT
| L_PTE_YOUNG
| L_PTE_DIRTY
,
294 .prot_l1
= PMD_TYPE_TABLE
,
295 .domain
= DOMAIN_KERNEL
,
299 const struct mem_type
*get_mem_type(unsigned int type
)
301 return type
< ARRAY_SIZE(mem_types
) ? &mem_types
[type
] : NULL
;
303 EXPORT_SYMBOL(get_mem_type
);
306 * Adjust the PMD section entries according to the CPU in use.
308 static void __init
build_mem_type_table(void)
310 struct cachepolicy
*cp
;
311 unsigned int cr
= get_cr();
312 pteval_t user_pgprot
, kern_pgprot
, vecs_pgprot
;
313 int cpu_arch
= cpu_architecture();
316 if (cpu_arch
< CPU_ARCH_ARMv6
) {
317 #if defined(CONFIG_CPU_DCACHE_DISABLE)
318 if (cachepolicy
> CPOLICY_BUFFERED
)
319 cachepolicy
= CPOLICY_BUFFERED
;
320 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
321 if (cachepolicy
> CPOLICY_WRITETHROUGH
)
322 cachepolicy
= CPOLICY_WRITETHROUGH
;
325 if (cpu_arch
< CPU_ARCH_ARMv5
) {
326 if (cachepolicy
>= CPOLICY_WRITEALLOC
)
327 cachepolicy
= CPOLICY_WRITEBACK
;
331 cachepolicy
= CPOLICY_WRITEALLOC
;
334 * Strip out features not present on earlier architectures.
335 * Pre-ARMv5 CPUs don't have TEX bits. Pre-ARMv6 CPUs or those
336 * without extended page tables don't have the 'Shared' bit.
338 if (cpu_arch
< CPU_ARCH_ARMv5
)
339 for (i
= 0; i
< ARRAY_SIZE(mem_types
); i
++)
340 mem_types
[i
].prot_sect
&= ~PMD_SECT_TEX(7);
341 if ((cpu_arch
< CPU_ARCH_ARMv6
|| !(cr
& CR_XP
)) && !cpu_is_xsc3())
342 for (i
= 0; i
< ARRAY_SIZE(mem_types
); i
++)
343 mem_types
[i
].prot_sect
&= ~PMD_SECT_S
;
346 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
347 * "update-able on write" bit on ARM610). However, Xscale and
348 * Xscale3 require this bit to be cleared.
350 if (cpu_is_xscale() || cpu_is_xsc3()) {
351 for (i
= 0; i
< ARRAY_SIZE(mem_types
); i
++) {
352 mem_types
[i
].prot_sect
&= ~PMD_BIT4
;
353 mem_types
[i
].prot_l1
&= ~PMD_BIT4
;
355 } else if (cpu_arch
< CPU_ARCH_ARMv6
) {
356 for (i
= 0; i
< ARRAY_SIZE(mem_types
); i
++) {
357 if (mem_types
[i
].prot_l1
)
358 mem_types
[i
].prot_l1
|= PMD_BIT4
;
359 if (mem_types
[i
].prot_sect
)
360 mem_types
[i
].prot_sect
|= PMD_BIT4
;
365 * Mark the device areas according to the CPU/architecture.
367 if (cpu_is_xsc3() || (cpu_arch
>= CPU_ARCH_ARMv6
&& (cr
& CR_XP
))) {
368 if (!cpu_is_xsc3()) {
370 * Mark device regions on ARMv6+ as execute-never
371 * to prevent speculative instruction fetches.
373 mem_types
[MT_DEVICE
].prot_sect
|= PMD_SECT_XN
;
374 mem_types
[MT_DEVICE_NONSHARED
].prot_sect
|= PMD_SECT_XN
;
375 mem_types
[MT_DEVICE_CACHED
].prot_sect
|= PMD_SECT_XN
;
376 mem_types
[MT_DEVICE_WC
].prot_sect
|= PMD_SECT_XN
;
378 if (cpu_arch
>= CPU_ARCH_ARMv7
&& (cr
& CR_TRE
)) {
380 * For ARMv7 with TEX remapping,
381 * - shared device is SXCB=1100
382 * - nonshared device is SXCB=0100
383 * - write combine device mem is SXCB=0001
384 * (Uncached Normal memory)
386 mem_types
[MT_DEVICE
].prot_sect
|= PMD_SECT_TEX(1);
387 mem_types
[MT_DEVICE_NONSHARED
].prot_sect
|= PMD_SECT_TEX(1);
388 mem_types
[MT_DEVICE_WC
].prot_sect
|= PMD_SECT_BUFFERABLE
;
389 } else if (cpu_is_xsc3()) {
392 * - shared device is TEXCB=00101
393 * - nonshared device is TEXCB=01000
394 * - write combine device mem is TEXCB=00100
395 * (Inner/Outer Uncacheable in xsc3 parlance)
397 mem_types
[MT_DEVICE
].prot_sect
|= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED
;
398 mem_types
[MT_DEVICE_NONSHARED
].prot_sect
|= PMD_SECT_TEX(2);
399 mem_types
[MT_DEVICE_WC
].prot_sect
|= PMD_SECT_TEX(1);
402 * For ARMv6 and ARMv7 without TEX remapping,
403 * - shared device is TEXCB=00001
404 * - nonshared device is TEXCB=01000
405 * - write combine device mem is TEXCB=00100
406 * (Uncached Normal in ARMv6 parlance).
408 mem_types
[MT_DEVICE
].prot_sect
|= PMD_SECT_BUFFERED
;
409 mem_types
[MT_DEVICE_NONSHARED
].prot_sect
|= PMD_SECT_TEX(2);
410 mem_types
[MT_DEVICE_WC
].prot_sect
|= PMD_SECT_TEX(1);
414 * On others, write combining is "Uncached/Buffered"
416 mem_types
[MT_DEVICE_WC
].prot_sect
|= PMD_SECT_BUFFERABLE
;
420 * Now deal with the memory-type mappings
422 cp
= &cache_policies
[cachepolicy
];
423 vecs_pgprot
= kern_pgprot
= user_pgprot
= cp
->pte
;
426 * Enable CPU-specific coherency if supported.
427 * (Only available on XSC3 at the moment.)
429 if (arch_is_coherent() && cpu_is_xsc3()) {
430 mem_types
[MT_MEMORY
].prot_sect
|= PMD_SECT_S
;
431 mem_types
[MT_MEMORY
].prot_pte
|= L_PTE_SHARED
;
432 mem_types
[MT_MEMORY_DMA_READY
].prot_pte
|= L_PTE_SHARED
;
433 mem_types
[MT_MEMORY_NONCACHED
].prot_sect
|= PMD_SECT_S
;
434 mem_types
[MT_MEMORY_NONCACHED
].prot_pte
|= L_PTE_SHARED
;
437 * ARMv6 and above have extended page tables.
439 if (cpu_arch
>= CPU_ARCH_ARMv6
&& (cr
& CR_XP
)) {
440 #ifndef CONFIG_ARM_LPAE
442 * Mark cache clean areas and XIP ROM read only
443 * from SVC mode and no access from userspace.
445 mem_types
[MT_ROM
].prot_sect
|= PMD_SECT_APX
|PMD_SECT_AP_WRITE
;
446 mem_types
[MT_MINICLEAN
].prot_sect
|= PMD_SECT_APX
|PMD_SECT_AP_WRITE
;
447 mem_types
[MT_CACHECLEAN
].prot_sect
|= PMD_SECT_APX
|PMD_SECT_AP_WRITE
;
452 * Mark memory with the "shared" attribute
455 user_pgprot
|= L_PTE_SHARED
;
456 kern_pgprot
|= L_PTE_SHARED
;
457 vecs_pgprot
|= L_PTE_SHARED
;
458 mem_types
[MT_DEVICE_WC
].prot_sect
|= PMD_SECT_S
;
459 mem_types
[MT_DEVICE_WC
].prot_pte
|= L_PTE_SHARED
;
460 mem_types
[MT_DEVICE_CACHED
].prot_sect
|= PMD_SECT_S
;
461 mem_types
[MT_DEVICE_CACHED
].prot_pte
|= L_PTE_SHARED
;
462 mem_types
[MT_MEMORY
].prot_sect
|= PMD_SECT_S
;
463 mem_types
[MT_MEMORY
].prot_pte
|= L_PTE_SHARED
;
464 mem_types
[MT_MEMORY_DMA_READY
].prot_pte
|= L_PTE_SHARED
;
465 mem_types
[MT_MEMORY_NONCACHED
].prot_sect
|= PMD_SECT_S
;
466 mem_types
[MT_MEMORY_NONCACHED
].prot_pte
|= L_PTE_SHARED
;
471 * Non-cacheable Normal - intended for memory areas that must
472 * not cause dirty cache line writebacks when used
474 if (cpu_arch
>= CPU_ARCH_ARMv6
) {
475 if (cpu_arch
>= CPU_ARCH_ARMv7
&& (cr
& CR_TRE
)) {
476 /* Non-cacheable Normal is XCB = 001 */
477 mem_types
[MT_MEMORY_NONCACHED
].prot_sect
|=
480 /* For both ARMv6 and non-TEX-remapping ARMv7 */
481 mem_types
[MT_MEMORY_NONCACHED
].prot_sect
|=
485 mem_types
[MT_MEMORY_NONCACHED
].prot_sect
|= PMD_SECT_BUFFERABLE
;
488 #ifdef CONFIG_ARM_LPAE
490 * Do not generate access flag faults for the kernel mappings.
492 for (i
= 0; i
< ARRAY_SIZE(mem_types
); i
++) {
493 mem_types
[i
].prot_pte
|= PTE_EXT_AF
;
494 if (mem_types
[i
].prot_sect
)
495 mem_types
[i
].prot_sect
|= PMD_SECT_AF
;
497 kern_pgprot
|= PTE_EXT_AF
;
498 vecs_pgprot
|= PTE_EXT_AF
;
501 for (i
= 0; i
< 16; i
++) {
502 unsigned long v
= pgprot_val(protection_map
[i
]);
503 protection_map
[i
] = __pgprot(v
| user_pgprot
);
506 mem_types
[MT_LOW_VECTORS
].prot_pte
|= vecs_pgprot
;
507 mem_types
[MT_HIGH_VECTORS
].prot_pte
|= vecs_pgprot
;
509 pgprot_user
= __pgprot(L_PTE_PRESENT
| L_PTE_YOUNG
| user_pgprot
);
510 pgprot_kernel
= __pgprot(L_PTE_PRESENT
| L_PTE_YOUNG
|
511 L_PTE_DIRTY
| kern_pgprot
);
513 mem_types
[MT_LOW_VECTORS
].prot_l1
|= ecc_mask
;
514 mem_types
[MT_HIGH_VECTORS
].prot_l1
|= ecc_mask
;
515 mem_types
[MT_MEMORY
].prot_sect
|= ecc_mask
| cp
->pmd
;
516 mem_types
[MT_MEMORY
].prot_pte
|= kern_pgprot
;
517 mem_types
[MT_MEMORY_DMA_READY
].prot_pte
|= kern_pgprot
;
518 mem_types
[MT_MEMORY_NONCACHED
].prot_sect
|= ecc_mask
;
519 mem_types
[MT_ROM
].prot_sect
|= cp
->pmd
;
523 mem_types
[MT_CACHECLEAN
].prot_sect
|= PMD_SECT_WT
;
527 mem_types
[MT_CACHECLEAN
].prot_sect
|= PMD_SECT_WB
;
530 printk("Memory policy: ECC %sabled, Data cache %s\n",
531 ecc_mask
? "en" : "dis", cp
->policy
);
533 for (i
= 0; i
< ARRAY_SIZE(mem_types
); i
++) {
534 struct mem_type
*t
= &mem_types
[i
];
536 t
->prot_l1
|= PMD_DOMAIN(t
->domain
);
538 t
->prot_sect
|= PMD_DOMAIN(t
->domain
);
542 #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
543 pgprot_t
phys_mem_access_prot(struct file
*file
, unsigned long pfn
,
544 unsigned long size
, pgprot_t vma_prot
)
547 return pgprot_noncached(vma_prot
);
548 else if (file
->f_flags
& O_SYNC
)
549 return pgprot_writecombine(vma_prot
);
552 EXPORT_SYMBOL(phys_mem_access_prot
);
555 #define vectors_base() (vectors_high() ? 0xffff0000 : 0)
557 static void __init
*early_alloc_aligned(unsigned long sz
, unsigned long align
)
559 void *ptr
= __va(memblock_alloc(sz
, align
));
564 static void __init
*early_alloc(unsigned long sz
)
566 return early_alloc_aligned(sz
, sz
);
569 static pte_t
* __init
early_pte_alloc(pmd_t
*pmd
, unsigned long addr
, unsigned long prot
)
571 if (pmd_none(*pmd
)) {
572 pte_t
*pte
= early_alloc(PTE_HWTABLE_OFF
+ PTE_HWTABLE_SIZE
);
573 __pmd_populate(pmd
, __pa(pte
), prot
);
575 BUG_ON(pmd_bad(*pmd
));
576 return pte_offset_kernel(pmd
, addr
);
579 static void __init
alloc_init_pte(pmd_t
*pmd
, unsigned long addr
,
580 unsigned long end
, unsigned long pfn
,
581 const struct mem_type
*type
)
583 pte_t
*pte
= early_pte_alloc(pmd
, addr
, type
->prot_l1
);
585 set_pte_ext(pte
, pfn_pte(pfn
, __pgprot(type
->prot_pte
)), 0);
587 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
590 static void __init
alloc_init_section(pud_t
*pud
, unsigned long addr
,
591 unsigned long end
, phys_addr_t phys
,
592 const struct mem_type
*type
)
594 pmd_t
*pmd
= pmd_offset(pud
, addr
);
597 * Try a section mapping - end, addr and phys must all be aligned
598 * to a section boundary. Note that PMDs refer to the individual
599 * L1 entries, whereas PGDs refer to a group of L1 entries making
600 * up one logical pointer to an L2 table.
602 if (type
->prot_sect
&& ((addr
| end
| phys
) & ~SECTION_MASK
) == 0) {
605 #ifndef CONFIG_ARM_LPAE
606 if (addr
& SECTION_SIZE
)
611 *pmd
= __pmd(phys
| type
->prot_sect
);
612 phys
+= SECTION_SIZE
;
613 } while (pmd
++, addr
+= SECTION_SIZE
, addr
!= end
);
618 * No need to loop; pte's aren't interested in the
619 * individual L1 entries.
621 alloc_init_pte(pmd
, addr
, end
, __phys_to_pfn(phys
), type
);
625 static void __init
alloc_init_pud(pgd_t
*pgd
, unsigned long addr
,
626 unsigned long end
, unsigned long phys
, const struct mem_type
*type
)
628 pud_t
*pud
= pud_offset(pgd
, addr
);
632 next
= pud_addr_end(addr
, end
);
633 alloc_init_section(pud
, addr
, next
, phys
, type
);
635 } while (pud
++, addr
= next
, addr
!= end
);
638 #ifndef CONFIG_ARM_LPAE
639 static void __init
create_36bit_mapping(struct map_desc
*md
,
640 const struct mem_type
*type
)
642 unsigned long addr
, length
, end
;
647 phys
= __pfn_to_phys(md
->pfn
);
648 length
= PAGE_ALIGN(md
->length
);
650 if (!(cpu_architecture() >= CPU_ARCH_ARMv6
|| cpu_is_xsc3())) {
651 printk(KERN_ERR
"MM: CPU does not support supersection "
652 "mapping for 0x%08llx at 0x%08lx\n",
653 (long long)__pfn_to_phys((u64
)md
->pfn
), addr
);
657 /* N.B. ARMv6 supersections are only defined to work with domain 0.
658 * Since domain assignments can in fact be arbitrary, the
659 * 'domain == 0' check below is required to insure that ARMv6
660 * supersections are only allocated for domain 0 regardless
661 * of the actual domain assignments in use.
664 printk(KERN_ERR
"MM: invalid domain in supersection "
665 "mapping for 0x%08llx at 0x%08lx\n",
666 (long long)__pfn_to_phys((u64
)md
->pfn
), addr
);
670 if ((addr
| length
| __pfn_to_phys(md
->pfn
)) & ~SUPERSECTION_MASK
) {
671 printk(KERN_ERR
"MM: cannot create mapping for 0x%08llx"
672 " at 0x%08lx invalid alignment\n",
673 (long long)__pfn_to_phys((u64
)md
->pfn
), addr
);
678 * Shift bits [35:32] of address into bits [23:20] of PMD
681 phys
|= (((md
->pfn
>> (32 - PAGE_SHIFT
)) & 0xF) << 20);
683 pgd
= pgd_offset_k(addr
);
686 pud_t
*pud
= pud_offset(pgd
, addr
);
687 pmd_t
*pmd
= pmd_offset(pud
, addr
);
690 for (i
= 0; i
< 16; i
++)
691 *pmd
++ = __pmd(phys
| type
->prot_sect
| PMD_SECT_SUPER
);
693 addr
+= SUPERSECTION_SIZE
;
694 phys
+= SUPERSECTION_SIZE
;
695 pgd
+= SUPERSECTION_SIZE
>> PGDIR_SHIFT
;
696 } while (addr
!= end
);
698 #endif /* !CONFIG_ARM_LPAE */
701 * Create the page directory entries and any necessary
702 * page tables for the mapping specified by `md'. We
703 * are able to cope here with varying sizes and address
704 * offsets, and we take full advantage of sections and
707 static void __init
create_mapping(struct map_desc
*md
)
709 unsigned long addr
, length
, end
;
711 const struct mem_type
*type
;
714 if (md
->virtual != vectors_base() && md
->virtual < TASK_SIZE
) {
715 printk(KERN_WARNING
"BUG: not creating mapping for 0x%08llx"
716 " at 0x%08lx in user region\n",
717 (long long)__pfn_to_phys((u64
)md
->pfn
), md
->virtual);
721 if ((md
->type
== MT_DEVICE
|| md
->type
== MT_ROM
) &&
722 md
->virtual >= PAGE_OFFSET
&&
723 (md
->virtual < VMALLOC_START
|| md
->virtual >= VMALLOC_END
)) {
724 printk(KERN_WARNING
"BUG: mapping for 0x%08llx"
725 " at 0x%08lx out of vmalloc space\n",
726 (long long)__pfn_to_phys((u64
)md
->pfn
), md
->virtual);
729 type
= &mem_types
[md
->type
];
731 #ifndef CONFIG_ARM_LPAE
733 * Catch 36-bit addresses
735 if (md
->pfn
>= 0x100000) {
736 create_36bit_mapping(md
, type
);
741 addr
= md
->virtual & PAGE_MASK
;
742 phys
= __pfn_to_phys(md
->pfn
);
743 length
= PAGE_ALIGN(md
->length
+ (md
->virtual & ~PAGE_MASK
));
745 if (type
->prot_l1
== 0 && ((addr
| phys
| length
) & ~SECTION_MASK
)) {
746 printk(KERN_WARNING
"BUG: map for 0x%08llx at 0x%08lx can not "
747 "be mapped using pages, ignoring.\n",
748 (long long)__pfn_to_phys(md
->pfn
), addr
);
752 pgd
= pgd_offset_k(addr
);
755 unsigned long next
= pgd_addr_end(addr
, end
);
757 alloc_init_pud(pgd
, addr
, next
, phys
, type
);
761 } while (pgd
++, addr
!= end
);
765 * Create the architecture specific mappings
767 void __init
iotable_init(struct map_desc
*io_desc
, int nr
)
770 struct vm_struct
*vm
;
775 vm
= early_alloc_aligned(sizeof(*vm
) * nr
, __alignof__(*vm
));
777 for (md
= io_desc
; nr
; md
++, nr
--) {
779 vm
->addr
= (void *)(md
->virtual & PAGE_MASK
);
780 vm
->size
= PAGE_ALIGN(md
->length
+ (md
->virtual & ~PAGE_MASK
));
781 vm
->phys_addr
= __pfn_to_phys(md
->pfn
);
782 vm
->flags
= VM_IOREMAP
| VM_ARM_STATIC_MAPPING
;
783 vm
->flags
|= VM_ARM_MTYPE(md
->type
);
784 vm
->caller
= iotable_init
;
785 vm_area_add_early(vm
++);
789 void __init
vm_reserve_area_early(unsigned long addr
, unsigned long size
,
792 struct vm_struct
*vm
;
794 vm
= early_alloc_aligned(sizeof(*vm
), __alignof__(*vm
));
795 vm
->addr
= (void *)addr
;
797 vm
->flags
= VM_IOREMAP
| VM_ARM_EMPTY_MAPPING
;
799 vm_area_add_early(vm
);
802 #ifndef CONFIG_ARM_LPAE
805 * The Linux PMD is made of two consecutive section entries covering 2MB
806 * (see definition in include/asm/pgtable-2level.h). However a call to
807 * create_mapping() may optimize static mappings by using individual
808 * 1MB section mappings. This leaves the actual PMD potentially half
809 * initialized if the top or bottom section entry isn't used, leaving it
810 * open to problems if a subsequent ioremap() or vmalloc() tries to use
811 * the virtual space left free by that unused section entry.
813 * Let's avoid the issue by inserting dummy vm entries covering the unused
814 * PMD halves once the static mappings are in place.
817 static void __init
pmd_empty_section_gap(unsigned long addr
)
819 vm_reserve_area_early(addr
, SECTION_SIZE
, pmd_empty_section_gap
);
822 static void __init
fill_pmd_gaps(void)
824 struct vm_struct
*vm
;
825 unsigned long addr
, next
= 0;
828 /* we're still single threaded hence no lock needed here */
829 for (vm
= vmlist
; vm
; vm
= vm
->next
) {
830 if (!(vm
->flags
& (VM_ARM_STATIC_MAPPING
| VM_ARM_EMPTY_MAPPING
)))
832 addr
= (unsigned long)vm
->addr
;
837 * Check if this vm starts on an odd section boundary.
838 * If so and the first section entry for this PMD is free
839 * then we block the corresponding virtual address.
841 if ((addr
& ~PMD_MASK
) == SECTION_SIZE
) {
842 pmd
= pmd_off_k(addr
);
844 pmd_empty_section_gap(addr
& PMD_MASK
);
848 * Then check if this vm ends on an odd section boundary.
849 * If so and the second section entry for this PMD is empty
850 * then we block the corresponding virtual address.
853 if ((addr
& ~PMD_MASK
) == SECTION_SIZE
) {
854 pmd
= pmd_off_k(addr
) + 1;
856 pmd_empty_section_gap(addr
);
859 /* no need to look at any vm entry until we hit the next PMD */
860 next
= (addr
+ PMD_SIZE
- 1) & PMD_MASK
;
865 #define fill_pmd_gaps() do { } while (0)
868 #if defined(CONFIG_PCI) && !defined(CONFIG_NEED_MACH_IO_H)
869 static void __init
pci_reserve_io(void)
871 struct vm_struct
*vm
;
874 /* we're still single threaded hence no lock needed here */
875 for (vm
= vmlist
; vm
; vm
= vm
->next
) {
876 if (!(vm
->flags
& VM_ARM_STATIC_MAPPING
))
878 addr
= (unsigned long)vm
->addr
;
879 addr
&= ~(SZ_2M
- 1);
880 if (addr
== PCI_IO_VIRT_BASE
)
884 vm_reserve_area_early(PCI_IO_VIRT_BASE
, SZ_2M
, pci_reserve_io
);
887 #define pci_reserve_io() do { } while (0)
890 static void * __initdata vmalloc_min
=
891 (void *)(VMALLOC_END
- (240 << 20) - VMALLOC_OFFSET
);
894 * vmalloc=size forces the vmalloc area to be exactly 'size'
895 * bytes. This can be used to increase (or decrease) the vmalloc
896 * area - the default is 240m.
898 static int __init
early_vmalloc(char *arg
)
900 unsigned long vmalloc_reserve
= memparse(arg
, NULL
);
902 if (vmalloc_reserve
< SZ_16M
) {
903 vmalloc_reserve
= SZ_16M
;
905 "vmalloc area too small, limiting to %luMB\n",
906 vmalloc_reserve
>> 20);
909 if (vmalloc_reserve
> VMALLOC_END
- (PAGE_OFFSET
+ SZ_32M
)) {
910 vmalloc_reserve
= VMALLOC_END
- (PAGE_OFFSET
+ SZ_32M
);
912 "vmalloc area is too big, limiting to %luMB\n",
913 vmalloc_reserve
>> 20);
916 vmalloc_min
= (void *)(VMALLOC_END
- vmalloc_reserve
);
919 early_param("vmalloc", early_vmalloc
);
921 phys_addr_t arm_lowmem_limit __initdata
= 0;
923 void __init
sanity_check_meminfo(void)
925 int i
, j
, highmem
= 0;
927 for (i
= 0, j
= 0; i
< meminfo
.nr_banks
; i
++) {
928 struct membank
*bank
= &meminfo
.bank
[j
];
929 *bank
= meminfo
.bank
[i
];
931 if (bank
->start
> ULONG_MAX
)
934 #ifdef CONFIG_HIGHMEM
935 if (__va(bank
->start
) >= vmalloc_min
||
936 __va(bank
->start
) < (void *)PAGE_OFFSET
)
939 bank
->highmem
= highmem
;
942 * Split those memory banks which are partially overlapping
943 * the vmalloc area greatly simplifying things later.
945 if (!highmem
&& __va(bank
->start
) < vmalloc_min
&&
946 bank
->size
> vmalloc_min
- __va(bank
->start
)) {
947 if (meminfo
.nr_banks
>= NR_BANKS
) {
948 printk(KERN_CRIT
"NR_BANKS too low, "
949 "ignoring high memory\n");
951 memmove(bank
+ 1, bank
,
952 (meminfo
.nr_banks
- i
) * sizeof(*bank
));
955 bank
[1].size
-= vmalloc_min
- __va(bank
->start
);
956 bank
[1].start
= __pa(vmalloc_min
- 1) + 1;
957 bank
[1].highmem
= highmem
= 1;
960 bank
->size
= vmalloc_min
- __va(bank
->start
);
963 bank
->highmem
= highmem
;
966 * Highmem banks not allowed with !CONFIG_HIGHMEM.
969 printk(KERN_NOTICE
"Ignoring RAM at %.8llx-%.8llx "
970 "(!CONFIG_HIGHMEM).\n",
971 (unsigned long long)bank
->start
,
972 (unsigned long long)bank
->start
+ bank
->size
- 1);
977 * Check whether this memory bank would entirely overlap
980 if (__va(bank
->start
) >= vmalloc_min
||
981 __va(bank
->start
) < (void *)PAGE_OFFSET
) {
982 printk(KERN_NOTICE
"Ignoring RAM at %.8llx-%.8llx "
983 "(vmalloc region overlap).\n",
984 (unsigned long long)bank
->start
,
985 (unsigned long long)bank
->start
+ bank
->size
- 1);
990 * Check whether this memory bank would partially overlap
993 if (__va(bank
->start
+ bank
->size
) > vmalloc_min
||
994 __va(bank
->start
+ bank
->size
) < __va(bank
->start
)) {
995 unsigned long newsize
= vmalloc_min
- __va(bank
->start
);
996 printk(KERN_NOTICE
"Truncating RAM at %.8llx-%.8llx "
997 "to -%.8llx (vmalloc region overlap).\n",
998 (unsigned long long)bank
->start
,
999 (unsigned long long)bank
->start
+ bank
->size
- 1,
1000 (unsigned long long)bank
->start
+ newsize
- 1);
1001 bank
->size
= newsize
;
1004 if (!bank
->highmem
&& bank
->start
+ bank
->size
> arm_lowmem_limit
)
1005 arm_lowmem_limit
= bank
->start
+ bank
->size
;
1009 #ifdef CONFIG_HIGHMEM
1011 const char *reason
= NULL
;
1013 if (cache_is_vipt_aliasing()) {
1015 * Interactions between kmap and other mappings
1016 * make highmem support with aliasing VIPT caches
1019 reason
= "with VIPT aliasing cache";
1022 printk(KERN_CRIT
"HIGHMEM is not supported %s, ignoring high memory\n",
1024 while (j
> 0 && meminfo
.bank
[j
- 1].highmem
)
1029 meminfo
.nr_banks
= j
;
1030 high_memory
= __va(arm_lowmem_limit
- 1) + 1;
1031 memblock_set_current_limit(arm_lowmem_limit
);
1034 static inline void prepare_page_table(void)
1040 * Clear out all the mappings below the kernel image.
1042 for (addr
= 0; addr
< MODULES_VADDR
; addr
+= PMD_SIZE
)
1043 pmd_clear(pmd_off_k(addr
));
1045 #ifdef CONFIG_XIP_KERNEL
1046 /* The XIP kernel is mapped in the module area -- skip over it */
1047 addr
= ((unsigned long)_etext
+ PMD_SIZE
- 1) & PMD_MASK
;
1049 for ( ; addr
< PAGE_OFFSET
; addr
+= PMD_SIZE
)
1050 pmd_clear(pmd_off_k(addr
));
1053 * Find the end of the first block of lowmem.
1055 end
= memblock
.memory
.regions
[0].base
+ memblock
.memory
.regions
[0].size
;
1056 if (end
>= arm_lowmem_limit
)
1057 end
= arm_lowmem_limit
;
1060 * Clear out all the kernel space mappings, except for the first
1061 * memory bank, up to the vmalloc region.
1063 for (addr
= __phys_to_virt(end
);
1064 addr
< VMALLOC_START
; addr
+= PMD_SIZE
)
1065 pmd_clear(pmd_off_k(addr
));
1068 #ifdef CONFIG_ARM_LPAE
1069 /* the first page is reserved for pgd */
1070 #define SWAPPER_PG_DIR_SIZE (PAGE_SIZE + \
1071 PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
1073 #define SWAPPER_PG_DIR_SIZE (PTRS_PER_PGD * sizeof(pgd_t))
1077 * Reserve the special regions of memory
1079 void __init
arm_mm_memblock_reserve(void)
1082 * Reserve the page tables. These are already in use,
1083 * and can only be in node 0.
1085 memblock_reserve(__pa(swapper_pg_dir
), SWAPPER_PG_DIR_SIZE
);
1087 #ifdef CONFIG_SA1111
1089 * Because of the SA1111 DMA bug, we want to preserve our
1090 * precious DMA-able memory...
1092 memblock_reserve(PHYS_OFFSET
, __pa(swapper_pg_dir
) - PHYS_OFFSET
);
1097 * Set up the device mappings. Since we clear out the page tables for all
1098 * mappings above VMALLOC_START, we will remove any debug device mappings.
1099 * This means you have to be careful how you debug this function, or any
1100 * called function. This means you can't use any function or debugging
1101 * method which may touch any device, otherwise the kernel _will_ crash.
1103 static void __init
devicemaps_init(struct machine_desc
*mdesc
)
1105 struct map_desc map
;
1110 * Allocate the vector page early.
1112 vectors
= early_alloc(PAGE_SIZE
);
1114 early_trap_init(vectors
);
1116 for (addr
= VMALLOC_START
; addr
; addr
+= PMD_SIZE
)
1117 pmd_clear(pmd_off_k(addr
));
1120 * Map the kernel if it is XIP.
1121 * It is always first in the modulearea.
1123 #ifdef CONFIG_XIP_KERNEL
1124 map
.pfn
= __phys_to_pfn(CONFIG_XIP_PHYS_ADDR
& SECTION_MASK
);
1125 map
.virtual = MODULES_VADDR
;
1126 map
.length
= ((unsigned long)_etext
- map
.virtual + ~SECTION_MASK
) & SECTION_MASK
;
1128 create_mapping(&map
);
1132 * Map the cache flushing regions.
1135 map
.pfn
= __phys_to_pfn(FLUSH_BASE_PHYS
);
1136 map
.virtual = FLUSH_BASE
;
1138 map
.type
= MT_CACHECLEAN
;
1139 create_mapping(&map
);
1141 #ifdef FLUSH_BASE_MINICACHE
1142 map
.pfn
= __phys_to_pfn(FLUSH_BASE_PHYS
+ SZ_1M
);
1143 map
.virtual = FLUSH_BASE_MINICACHE
;
1145 map
.type
= MT_MINICLEAN
;
1146 create_mapping(&map
);
1150 * Create a mapping for the machine vectors at the high-vectors
1151 * location (0xffff0000). If we aren't using high-vectors, also
1152 * create a mapping at the low-vectors virtual address.
1154 map
.pfn
= __phys_to_pfn(virt_to_phys(vectors
));
1155 map
.virtual = 0xffff0000;
1156 map
.length
= PAGE_SIZE
;
1157 map
.type
= MT_HIGH_VECTORS
;
1158 create_mapping(&map
);
1160 if (!vectors_high()) {
1162 map
.type
= MT_LOW_VECTORS
;
1163 create_mapping(&map
);
1167 * Ask the machine support to map in the statically mapped devices.
1173 /* Reserve fixed i/o space in VMALLOC region */
1177 * Finally flush the caches and tlb to ensure that we're in a
1178 * consistent state wrt the writebuffer. This also ensures that
1179 * any write-allocated cache lines in the vector page are written
1180 * back. After this point, we can start to touch devices again.
1182 local_flush_tlb_all();
1186 static void __init
kmap_init(void)
1188 #ifdef CONFIG_HIGHMEM
1189 pkmap_page_table
= early_pte_alloc(pmd_off_k(PKMAP_BASE
),
1190 PKMAP_BASE
, _PAGE_KERNEL_TABLE
);
1194 static void __init
map_lowmem(void)
1196 struct memblock_region
*reg
;
1198 /* Map all the lowmem memory banks. */
1199 for_each_memblock(memory
, reg
) {
1200 phys_addr_t start
= reg
->base
;
1201 phys_addr_t end
= start
+ reg
->size
;
1202 struct map_desc map
;
1204 if (end
> arm_lowmem_limit
)
1205 end
= arm_lowmem_limit
;
1209 map
.pfn
= __phys_to_pfn(start
);
1210 map
.virtual = __phys_to_virt(start
);
1211 map
.length
= end
- start
;
1212 map
.type
= MT_MEMORY
;
1214 create_mapping(&map
);
1219 * paging_init() sets up the page tables, initialises the zone memory
1220 * maps, and sets up the zero page, bad page and bad page tables.
1222 void __init
paging_init(struct machine_desc
*mdesc
)
1226 memblock_set_current_limit(arm_lowmem_limit
);
1228 build_mem_type_table();
1229 prepare_page_table();
1231 dma_contiguous_remap();
1232 devicemaps_init(mdesc
);
1235 top_pmd
= pmd_off_k(0xffff0000);
1237 /* allocate the zero page. */
1238 zero_page
= early_alloc(PAGE_SIZE
);
1242 empty_zero_page
= virt_to_page(zero_page
);
1243 __flush_dcache_page(NULL
, empty_zero_page
);