2 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
3 * Internal non-public definitions that provide either classic
4 * or preemptible semantics.
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
20 * Copyright Red Hat, 2009
21 * Copyright IBM Corporation, 2009
23 * Author: Ingo Molnar <mingo@elte.hu>
24 * Paul E. McKenney <paulmck@linux.vnet.ibm.com>
27 #include <linux/delay.h>
28 #include <linux/gfp.h>
29 #include <linux/oom.h>
30 #include <linux/smpboot.h>
32 #define RCU_KTHREAD_PRIO 1
34 #ifdef CONFIG_RCU_BOOST
35 #define RCU_BOOST_PRIO CONFIG_RCU_BOOST_PRIO
37 #define RCU_BOOST_PRIO RCU_KTHREAD_PRIO
40 #ifdef CONFIG_RCU_NOCB_CPU
41 static cpumask_var_t rcu_nocb_mask
; /* CPUs to have callbacks offloaded. */
42 static bool have_rcu_nocb_mask
; /* Was rcu_nocb_mask allocated? */
43 static bool rcu_nocb_poll
; /* Offload kthread are to poll. */
44 module_param(rcu_nocb_poll
, bool, 0444);
45 static char __initdata nocb_buf
[NR_CPUS
* 5];
46 #endif /* #ifdef CONFIG_RCU_NOCB_CPU */
49 * Check the RCU kernel configuration parameters and print informative
50 * messages about anything out of the ordinary. If you like #ifdef, you
51 * will love this function.
53 static void __init
rcu_bootup_announce_oddness(void)
55 #ifdef CONFIG_RCU_TRACE
56 printk(KERN_INFO
"\tRCU debugfs-based tracing is enabled.\n");
58 #if (defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 64) || (!defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 32)
59 printk(KERN_INFO
"\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
62 #ifdef CONFIG_RCU_FANOUT_EXACT
63 printk(KERN_INFO
"\tHierarchical RCU autobalancing is disabled.\n");
65 #ifdef CONFIG_RCU_FAST_NO_HZ
67 "\tRCU dyntick-idle grace-period acceleration is enabled.\n");
69 #ifdef CONFIG_PROVE_RCU
70 printk(KERN_INFO
"\tRCU lockdep checking is enabled.\n");
72 #ifdef CONFIG_RCU_TORTURE_TEST_RUNNABLE
73 printk(KERN_INFO
"\tRCU torture testing starts during boot.\n");
75 #if defined(CONFIG_TREE_PREEMPT_RCU) && !defined(CONFIG_RCU_CPU_STALL_VERBOSE)
76 printk(KERN_INFO
"\tDump stacks of tasks blocking RCU-preempt GP.\n");
78 #if defined(CONFIG_RCU_CPU_STALL_INFO)
79 printk(KERN_INFO
"\tAdditional per-CPU info printed with stalls.\n");
81 #if NUM_RCU_LVL_4 != 0
82 printk(KERN_INFO
"\tFour-level hierarchy is enabled.\n");
84 if (rcu_fanout_leaf
!= CONFIG_RCU_FANOUT_LEAF
)
85 printk(KERN_INFO
"\tExperimental boot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf
);
86 if (nr_cpu_ids
!= NR_CPUS
)
87 printk(KERN_INFO
"\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS
, nr_cpu_ids
);
88 #ifdef CONFIG_RCU_NOCB_CPU
89 if (have_rcu_nocb_mask
) {
90 if (cpumask_test_cpu(0, rcu_nocb_mask
)) {
91 cpumask_clear_cpu(0, rcu_nocb_mask
);
92 pr_info("\tCPU 0: illegal no-CBs CPU (cleared).\n");
94 cpulist_scnprintf(nocb_buf
, sizeof(nocb_buf
), rcu_nocb_mask
);
95 pr_info("\tExperimental no-CBs CPUs: %s.\n", nocb_buf
);
97 pr_info("\tExperimental polled no-CBs CPUs.\n");
99 #endif /* #ifdef CONFIG_RCU_NOCB_CPU */
102 #ifdef CONFIG_TREE_PREEMPT_RCU
104 struct rcu_state rcu_preempt_state
=
105 RCU_STATE_INITIALIZER(rcu_preempt
, call_rcu
);
106 DEFINE_PER_CPU(struct rcu_data
, rcu_preempt_data
);
107 static struct rcu_state
*rcu_state
= &rcu_preempt_state
;
109 static int rcu_preempted_readers_exp(struct rcu_node
*rnp
);
112 * Tell them what RCU they are running.
114 static void __init
rcu_bootup_announce(void)
116 printk(KERN_INFO
"Preemptible hierarchical RCU implementation.\n");
117 rcu_bootup_announce_oddness();
121 * Return the number of RCU-preempt batches processed thus far
122 * for debug and statistics.
124 long rcu_batches_completed_preempt(void)
126 return rcu_preempt_state
.completed
;
128 EXPORT_SYMBOL_GPL(rcu_batches_completed_preempt
);
131 * Return the number of RCU batches processed thus far for debug & stats.
133 long rcu_batches_completed(void)
135 return rcu_batches_completed_preempt();
137 EXPORT_SYMBOL_GPL(rcu_batches_completed
);
140 * Force a quiescent state for preemptible RCU.
142 void rcu_force_quiescent_state(void)
144 force_quiescent_state(&rcu_preempt_state
);
146 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state
);
149 * Record a preemptible-RCU quiescent state for the specified CPU. Note
150 * that this just means that the task currently running on the CPU is
151 * not in a quiescent state. There might be any number of tasks blocked
152 * while in an RCU read-side critical section.
154 * Unlike the other rcu_*_qs() functions, callers to this function
155 * must disable irqs in order to protect the assignment to
156 * ->rcu_read_unlock_special.
158 static void rcu_preempt_qs(int cpu
)
160 struct rcu_data
*rdp
= &per_cpu(rcu_preempt_data
, cpu
);
162 if (rdp
->passed_quiesce
== 0)
163 trace_rcu_grace_period("rcu_preempt", rdp
->gpnum
, "cpuqs");
164 rdp
->passed_quiesce
= 1;
165 current
->rcu_read_unlock_special
&= ~RCU_READ_UNLOCK_NEED_QS
;
169 * We have entered the scheduler, and the current task might soon be
170 * context-switched away from. If this task is in an RCU read-side
171 * critical section, we will no longer be able to rely on the CPU to
172 * record that fact, so we enqueue the task on the blkd_tasks list.
173 * The task will dequeue itself when it exits the outermost enclosing
174 * RCU read-side critical section. Therefore, the current grace period
175 * cannot be permitted to complete until the blkd_tasks list entries
176 * predating the current grace period drain, in other words, until
177 * rnp->gp_tasks becomes NULL.
179 * Caller must disable preemption.
181 static void rcu_preempt_note_context_switch(int cpu
)
183 struct task_struct
*t
= current
;
185 struct rcu_data
*rdp
;
186 struct rcu_node
*rnp
;
188 if (t
->rcu_read_lock_nesting
> 0 &&
189 (t
->rcu_read_unlock_special
& RCU_READ_UNLOCK_BLOCKED
) == 0) {
191 /* Possibly blocking in an RCU read-side critical section. */
192 rdp
= per_cpu_ptr(rcu_preempt_state
.rda
, cpu
);
194 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
195 t
->rcu_read_unlock_special
|= RCU_READ_UNLOCK_BLOCKED
;
196 t
->rcu_blocked_node
= rnp
;
199 * If this CPU has already checked in, then this task
200 * will hold up the next grace period rather than the
201 * current grace period. Queue the task accordingly.
202 * If the task is queued for the current grace period
203 * (i.e., this CPU has not yet passed through a quiescent
204 * state for the current grace period), then as long
205 * as that task remains queued, the current grace period
206 * cannot end. Note that there is some uncertainty as
207 * to exactly when the current grace period started.
208 * We take a conservative approach, which can result
209 * in unnecessarily waiting on tasks that started very
210 * slightly after the current grace period began. C'est
213 * But first, note that the current CPU must still be
216 WARN_ON_ONCE((rdp
->grpmask
& rnp
->qsmaskinit
) == 0);
217 WARN_ON_ONCE(!list_empty(&t
->rcu_node_entry
));
218 if ((rnp
->qsmask
& rdp
->grpmask
) && rnp
->gp_tasks
!= NULL
) {
219 list_add(&t
->rcu_node_entry
, rnp
->gp_tasks
->prev
);
220 rnp
->gp_tasks
= &t
->rcu_node_entry
;
221 #ifdef CONFIG_RCU_BOOST
222 if (rnp
->boost_tasks
!= NULL
)
223 rnp
->boost_tasks
= rnp
->gp_tasks
;
224 #endif /* #ifdef CONFIG_RCU_BOOST */
226 list_add(&t
->rcu_node_entry
, &rnp
->blkd_tasks
);
227 if (rnp
->qsmask
& rdp
->grpmask
)
228 rnp
->gp_tasks
= &t
->rcu_node_entry
;
230 trace_rcu_preempt_task(rdp
->rsp
->name
,
232 (rnp
->qsmask
& rdp
->grpmask
)
235 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
236 } else if (t
->rcu_read_lock_nesting
< 0 &&
237 t
->rcu_read_unlock_special
) {
240 * Complete exit from RCU read-side critical section on
241 * behalf of preempted instance of __rcu_read_unlock().
243 rcu_read_unlock_special(t
);
247 * Either we were not in an RCU read-side critical section to
248 * begin with, or we have now recorded that critical section
249 * globally. Either way, we can now note a quiescent state
250 * for this CPU. Again, if we were in an RCU read-side critical
251 * section, and if that critical section was blocking the current
252 * grace period, then the fact that the task has been enqueued
253 * means that we continue to block the current grace period.
255 local_irq_save(flags
);
257 local_irq_restore(flags
);
261 * Check for preempted RCU readers blocking the current grace period
262 * for the specified rcu_node structure. If the caller needs a reliable
263 * answer, it must hold the rcu_node's ->lock.
265 static int rcu_preempt_blocked_readers_cgp(struct rcu_node
*rnp
)
267 return rnp
->gp_tasks
!= NULL
;
271 * Record a quiescent state for all tasks that were previously queued
272 * on the specified rcu_node structure and that were blocking the current
273 * RCU grace period. The caller must hold the specified rnp->lock with
274 * irqs disabled, and this lock is released upon return, but irqs remain
277 static void rcu_report_unblock_qs_rnp(struct rcu_node
*rnp
, unsigned long flags
)
278 __releases(rnp
->lock
)
281 struct rcu_node
*rnp_p
;
283 if (rnp
->qsmask
!= 0 || rcu_preempt_blocked_readers_cgp(rnp
)) {
284 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
285 return; /* Still need more quiescent states! */
291 * Either there is only one rcu_node in the tree,
292 * or tasks were kicked up to root rcu_node due to
293 * CPUs going offline.
295 rcu_report_qs_rsp(&rcu_preempt_state
, flags
);
299 /* Report up the rest of the hierarchy. */
301 raw_spin_unlock(&rnp
->lock
); /* irqs remain disabled. */
302 raw_spin_lock(&rnp_p
->lock
); /* irqs already disabled. */
303 rcu_report_qs_rnp(mask
, &rcu_preempt_state
, rnp_p
, flags
);
307 * Advance a ->blkd_tasks-list pointer to the next entry, instead
308 * returning NULL if at the end of the list.
310 static struct list_head
*rcu_next_node_entry(struct task_struct
*t
,
311 struct rcu_node
*rnp
)
313 struct list_head
*np
;
315 np
= t
->rcu_node_entry
.next
;
316 if (np
== &rnp
->blkd_tasks
)
322 * Handle special cases during rcu_read_unlock(), such as needing to
323 * notify RCU core processing or task having blocked during the RCU
324 * read-side critical section.
326 void rcu_read_unlock_special(struct task_struct
*t
)
332 struct list_head
*np
;
333 #ifdef CONFIG_RCU_BOOST
334 struct rt_mutex
*rbmp
= NULL
;
335 #endif /* #ifdef CONFIG_RCU_BOOST */
336 struct rcu_node
*rnp
;
339 /* NMI handlers cannot block and cannot safely manipulate state. */
343 local_irq_save(flags
);
346 * If RCU core is waiting for this CPU to exit critical section,
347 * let it know that we have done so.
349 special
= t
->rcu_read_unlock_special
;
350 if (special
& RCU_READ_UNLOCK_NEED_QS
) {
351 rcu_preempt_qs(smp_processor_id());
354 /* Hardware IRQ handlers cannot block. */
355 if (in_irq() || in_serving_softirq()) {
356 local_irq_restore(flags
);
360 /* Clean up if blocked during RCU read-side critical section. */
361 if (special
& RCU_READ_UNLOCK_BLOCKED
) {
362 t
->rcu_read_unlock_special
&= ~RCU_READ_UNLOCK_BLOCKED
;
365 * Remove this task from the list it blocked on. The
366 * task can migrate while we acquire the lock, but at
367 * most one time. So at most two passes through loop.
370 rnp
= t
->rcu_blocked_node
;
371 raw_spin_lock(&rnp
->lock
); /* irqs already disabled. */
372 if (rnp
== t
->rcu_blocked_node
)
374 raw_spin_unlock(&rnp
->lock
); /* irqs remain disabled. */
376 empty
= !rcu_preempt_blocked_readers_cgp(rnp
);
377 empty_exp
= !rcu_preempted_readers_exp(rnp
);
378 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
379 np
= rcu_next_node_entry(t
, rnp
);
380 list_del_init(&t
->rcu_node_entry
);
381 t
->rcu_blocked_node
= NULL
;
382 trace_rcu_unlock_preempted_task("rcu_preempt",
384 if (&t
->rcu_node_entry
== rnp
->gp_tasks
)
386 if (&t
->rcu_node_entry
== rnp
->exp_tasks
)
388 #ifdef CONFIG_RCU_BOOST
389 if (&t
->rcu_node_entry
== rnp
->boost_tasks
)
390 rnp
->boost_tasks
= np
;
391 /* Snapshot/clear ->rcu_boost_mutex with rcu_node lock held. */
392 if (t
->rcu_boost_mutex
) {
393 rbmp
= t
->rcu_boost_mutex
;
394 t
->rcu_boost_mutex
= NULL
;
396 #endif /* #ifdef CONFIG_RCU_BOOST */
399 * If this was the last task on the current list, and if
400 * we aren't waiting on any CPUs, report the quiescent state.
401 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
402 * so we must take a snapshot of the expedited state.
404 empty_exp_now
= !rcu_preempted_readers_exp(rnp
);
405 if (!empty
&& !rcu_preempt_blocked_readers_cgp(rnp
)) {
406 trace_rcu_quiescent_state_report("preempt_rcu",
413 rcu_report_unblock_qs_rnp(rnp
, flags
);
415 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
418 #ifdef CONFIG_RCU_BOOST
419 /* Unboost if we were boosted. */
421 rt_mutex_unlock(rbmp
);
422 #endif /* #ifdef CONFIG_RCU_BOOST */
425 * If this was the last task on the expedited lists,
426 * then we need to report up the rcu_node hierarchy.
428 if (!empty_exp
&& empty_exp_now
)
429 rcu_report_exp_rnp(&rcu_preempt_state
, rnp
, true);
431 local_irq_restore(flags
);
435 #ifdef CONFIG_RCU_CPU_STALL_VERBOSE
438 * Dump detailed information for all tasks blocking the current RCU
439 * grace period on the specified rcu_node structure.
441 static void rcu_print_detail_task_stall_rnp(struct rcu_node
*rnp
)
444 struct task_struct
*t
;
446 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
447 if (!rcu_preempt_blocked_readers_cgp(rnp
)) {
448 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
451 t
= list_entry(rnp
->gp_tasks
,
452 struct task_struct
, rcu_node_entry
);
453 list_for_each_entry_continue(t
, &rnp
->blkd_tasks
, rcu_node_entry
)
455 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
459 * Dump detailed information for all tasks blocking the current RCU
462 static void rcu_print_detail_task_stall(struct rcu_state
*rsp
)
464 struct rcu_node
*rnp
= rcu_get_root(rsp
);
466 rcu_print_detail_task_stall_rnp(rnp
);
467 rcu_for_each_leaf_node(rsp
, rnp
)
468 rcu_print_detail_task_stall_rnp(rnp
);
471 #else /* #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */
473 static void rcu_print_detail_task_stall(struct rcu_state
*rsp
)
477 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */
479 #ifdef CONFIG_RCU_CPU_STALL_INFO
481 static void rcu_print_task_stall_begin(struct rcu_node
*rnp
)
483 printk(KERN_ERR
"\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
484 rnp
->level
, rnp
->grplo
, rnp
->grphi
);
487 static void rcu_print_task_stall_end(void)
489 printk(KERN_CONT
"\n");
492 #else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
494 static void rcu_print_task_stall_begin(struct rcu_node
*rnp
)
498 static void rcu_print_task_stall_end(void)
502 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
505 * Scan the current list of tasks blocked within RCU read-side critical
506 * sections, printing out the tid of each.
508 static int rcu_print_task_stall(struct rcu_node
*rnp
)
510 struct task_struct
*t
;
513 if (!rcu_preempt_blocked_readers_cgp(rnp
))
515 rcu_print_task_stall_begin(rnp
);
516 t
= list_entry(rnp
->gp_tasks
,
517 struct task_struct
, rcu_node_entry
);
518 list_for_each_entry_continue(t
, &rnp
->blkd_tasks
, rcu_node_entry
) {
519 printk(KERN_CONT
" P%d", t
->pid
);
522 rcu_print_task_stall_end();
527 * Check that the list of blocked tasks for the newly completed grace
528 * period is in fact empty. It is a serious bug to complete a grace
529 * period that still has RCU readers blocked! This function must be
530 * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
531 * must be held by the caller.
533 * Also, if there are blocked tasks on the list, they automatically
534 * block the newly created grace period, so set up ->gp_tasks accordingly.
536 static void rcu_preempt_check_blocked_tasks(struct rcu_node
*rnp
)
538 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp
));
539 if (!list_empty(&rnp
->blkd_tasks
))
540 rnp
->gp_tasks
= rnp
->blkd_tasks
.next
;
541 WARN_ON_ONCE(rnp
->qsmask
);
544 #ifdef CONFIG_HOTPLUG_CPU
547 * Handle tasklist migration for case in which all CPUs covered by the
548 * specified rcu_node have gone offline. Move them up to the root
549 * rcu_node. The reason for not just moving them to the immediate
550 * parent is to remove the need for rcu_read_unlock_special() to
551 * make more than two attempts to acquire the target rcu_node's lock.
552 * Returns true if there were tasks blocking the current RCU grace
555 * Returns 1 if there was previously a task blocking the current grace
556 * period on the specified rcu_node structure.
558 * The caller must hold rnp->lock with irqs disabled.
560 static int rcu_preempt_offline_tasks(struct rcu_state
*rsp
,
561 struct rcu_node
*rnp
,
562 struct rcu_data
*rdp
)
564 struct list_head
*lp
;
565 struct list_head
*lp_root
;
567 struct rcu_node
*rnp_root
= rcu_get_root(rsp
);
568 struct task_struct
*t
;
570 if (rnp
== rnp_root
) {
571 WARN_ONCE(1, "Last CPU thought to be offlined?");
572 return 0; /* Shouldn't happen: at least one CPU online. */
575 /* If we are on an internal node, complain bitterly. */
576 WARN_ON_ONCE(rnp
!= rdp
->mynode
);
579 * Move tasks up to root rcu_node. Don't try to get fancy for
580 * this corner-case operation -- just put this node's tasks
581 * at the head of the root node's list, and update the root node's
582 * ->gp_tasks and ->exp_tasks pointers to those of this node's,
583 * if non-NULL. This might result in waiting for more tasks than
584 * absolutely necessary, but this is a good performance/complexity
587 if (rcu_preempt_blocked_readers_cgp(rnp
) && rnp
->qsmask
== 0)
588 retval
|= RCU_OFL_TASKS_NORM_GP
;
589 if (rcu_preempted_readers_exp(rnp
))
590 retval
|= RCU_OFL_TASKS_EXP_GP
;
591 lp
= &rnp
->blkd_tasks
;
592 lp_root
= &rnp_root
->blkd_tasks
;
593 while (!list_empty(lp
)) {
594 t
= list_entry(lp
->next
, typeof(*t
), rcu_node_entry
);
595 raw_spin_lock(&rnp_root
->lock
); /* irqs already disabled */
596 list_del(&t
->rcu_node_entry
);
597 t
->rcu_blocked_node
= rnp_root
;
598 list_add(&t
->rcu_node_entry
, lp_root
);
599 if (&t
->rcu_node_entry
== rnp
->gp_tasks
)
600 rnp_root
->gp_tasks
= rnp
->gp_tasks
;
601 if (&t
->rcu_node_entry
== rnp
->exp_tasks
)
602 rnp_root
->exp_tasks
= rnp
->exp_tasks
;
603 #ifdef CONFIG_RCU_BOOST
604 if (&t
->rcu_node_entry
== rnp
->boost_tasks
)
605 rnp_root
->boost_tasks
= rnp
->boost_tasks
;
606 #endif /* #ifdef CONFIG_RCU_BOOST */
607 raw_spin_unlock(&rnp_root
->lock
); /* irqs still disabled */
610 rnp
->gp_tasks
= NULL
;
611 rnp
->exp_tasks
= NULL
;
612 #ifdef CONFIG_RCU_BOOST
613 rnp
->boost_tasks
= NULL
;
615 * In case root is being boosted and leaf was not. Make sure
616 * that we boost the tasks blocking the current grace period
619 raw_spin_lock(&rnp_root
->lock
); /* irqs already disabled */
620 if (rnp_root
->boost_tasks
!= NULL
&&
621 rnp_root
->boost_tasks
!= rnp_root
->gp_tasks
&&
622 rnp_root
->boost_tasks
!= rnp_root
->exp_tasks
)
623 rnp_root
->boost_tasks
= rnp_root
->gp_tasks
;
624 raw_spin_unlock(&rnp_root
->lock
); /* irqs still disabled */
625 #endif /* #ifdef CONFIG_RCU_BOOST */
630 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
633 * Check for a quiescent state from the current CPU. When a task blocks,
634 * the task is recorded in the corresponding CPU's rcu_node structure,
635 * which is checked elsewhere.
637 * Caller must disable hard irqs.
639 static void rcu_preempt_check_callbacks(int cpu
)
641 struct task_struct
*t
= current
;
643 if (t
->rcu_read_lock_nesting
== 0) {
647 if (t
->rcu_read_lock_nesting
> 0 &&
648 per_cpu(rcu_preempt_data
, cpu
).qs_pending
)
649 t
->rcu_read_unlock_special
|= RCU_READ_UNLOCK_NEED_QS
;
652 #ifdef CONFIG_RCU_BOOST
654 static void rcu_preempt_do_callbacks(void)
656 rcu_do_batch(&rcu_preempt_state
, &__get_cpu_var(rcu_preempt_data
));
659 #endif /* #ifdef CONFIG_RCU_BOOST */
662 * Queue a preemptible-RCU callback for invocation after a grace period.
664 void call_rcu(struct rcu_head
*head
, void (*func
)(struct rcu_head
*rcu
))
666 __call_rcu(head
, func
, &rcu_preempt_state
, -1, 0);
668 EXPORT_SYMBOL_GPL(call_rcu
);
671 * Queue an RCU callback for lazy invocation after a grace period.
672 * This will likely be later named something like "call_rcu_lazy()",
673 * but this change will require some way of tagging the lazy RCU
674 * callbacks in the list of pending callbacks. Until then, this
675 * function may only be called from __kfree_rcu().
677 void kfree_call_rcu(struct rcu_head
*head
,
678 void (*func
)(struct rcu_head
*rcu
))
680 __call_rcu(head
, func
, &rcu_preempt_state
, -1, 1);
682 EXPORT_SYMBOL_GPL(kfree_call_rcu
);
685 * synchronize_rcu - wait until a grace period has elapsed.
687 * Control will return to the caller some time after a full grace
688 * period has elapsed, in other words after all currently executing RCU
689 * read-side critical sections have completed. Note, however, that
690 * upon return from synchronize_rcu(), the caller might well be executing
691 * concurrently with new RCU read-side critical sections that began while
692 * synchronize_rcu() was waiting. RCU read-side critical sections are
693 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
695 * See the description of synchronize_sched() for more detailed information
696 * on memory ordering guarantees.
698 void synchronize_rcu(void)
700 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map
) &&
701 !lock_is_held(&rcu_lock_map
) &&
702 !lock_is_held(&rcu_sched_lock_map
),
703 "Illegal synchronize_rcu() in RCU read-side critical section");
704 if (!rcu_scheduler_active
)
707 synchronize_rcu_expedited();
709 wait_rcu_gp(call_rcu
);
711 EXPORT_SYMBOL_GPL(synchronize_rcu
);
713 static DECLARE_WAIT_QUEUE_HEAD(sync_rcu_preempt_exp_wq
);
714 static unsigned long sync_rcu_preempt_exp_count
;
715 static DEFINE_MUTEX(sync_rcu_preempt_exp_mutex
);
718 * Return non-zero if there are any tasks in RCU read-side critical
719 * sections blocking the current preemptible-RCU expedited grace period.
720 * If there is no preemptible-RCU expedited grace period currently in
721 * progress, returns zero unconditionally.
723 static int rcu_preempted_readers_exp(struct rcu_node
*rnp
)
725 return rnp
->exp_tasks
!= NULL
;
729 * return non-zero if there is no RCU expedited grace period in progress
730 * for the specified rcu_node structure, in other words, if all CPUs and
731 * tasks covered by the specified rcu_node structure have done their bit
732 * for the current expedited grace period. Works only for preemptible
733 * RCU -- other RCU implementation use other means.
735 * Caller must hold sync_rcu_preempt_exp_mutex.
737 static int sync_rcu_preempt_exp_done(struct rcu_node
*rnp
)
739 return !rcu_preempted_readers_exp(rnp
) &&
740 ACCESS_ONCE(rnp
->expmask
) == 0;
744 * Report the exit from RCU read-side critical section for the last task
745 * that queued itself during or before the current expedited preemptible-RCU
746 * grace period. This event is reported either to the rcu_node structure on
747 * which the task was queued or to one of that rcu_node structure's ancestors,
748 * recursively up the tree. (Calm down, calm down, we do the recursion
751 * Most callers will set the "wake" flag, but the task initiating the
752 * expedited grace period need not wake itself.
754 * Caller must hold sync_rcu_preempt_exp_mutex.
756 static void rcu_report_exp_rnp(struct rcu_state
*rsp
, struct rcu_node
*rnp
,
762 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
764 if (!sync_rcu_preempt_exp_done(rnp
)) {
765 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
768 if (rnp
->parent
== NULL
) {
769 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
771 wake_up(&sync_rcu_preempt_exp_wq
);
775 raw_spin_unlock(&rnp
->lock
); /* irqs remain disabled */
777 raw_spin_lock(&rnp
->lock
); /* irqs already disabled */
778 rnp
->expmask
&= ~mask
;
783 * Snapshot the tasks blocking the newly started preemptible-RCU expedited
784 * grace period for the specified rcu_node structure. If there are no such
785 * tasks, report it up the rcu_node hierarchy.
787 * Caller must hold sync_rcu_preempt_exp_mutex and must exclude
788 * CPU hotplug operations.
791 sync_rcu_preempt_exp_init(struct rcu_state
*rsp
, struct rcu_node
*rnp
)
796 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
797 if (list_empty(&rnp
->blkd_tasks
)) {
798 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
800 rnp
->exp_tasks
= rnp
->blkd_tasks
.next
;
801 rcu_initiate_boost(rnp
, flags
); /* releases rnp->lock */
805 rcu_report_exp_rnp(rsp
, rnp
, false); /* Don't wake self. */
809 * synchronize_rcu_expedited - Brute-force RCU grace period
811 * Wait for an RCU-preempt grace period, but expedite it. The basic
812 * idea is to invoke synchronize_sched_expedited() to push all the tasks to
813 * the ->blkd_tasks lists and wait for this list to drain. This consumes
814 * significant time on all CPUs and is unfriendly to real-time workloads,
815 * so is thus not recommended for any sort of common-case code.
816 * In fact, if you are using synchronize_rcu_expedited() in a loop,
817 * please restructure your code to batch your updates, and then Use a
818 * single synchronize_rcu() instead.
820 * Note that it is illegal to call this function while holding any lock
821 * that is acquired by a CPU-hotplug notifier. And yes, it is also illegal
822 * to call this function from a CPU-hotplug notifier. Failing to observe
823 * these restriction will result in deadlock.
825 void synchronize_rcu_expedited(void)
828 struct rcu_node
*rnp
;
829 struct rcu_state
*rsp
= &rcu_preempt_state
;
833 smp_mb(); /* Caller's modifications seen first by other CPUs. */
834 snap
= ACCESS_ONCE(sync_rcu_preempt_exp_count
) + 1;
835 smp_mb(); /* Above access cannot bleed into critical section. */
838 * Block CPU-hotplug operations. This means that any CPU-hotplug
839 * operation that finds an rcu_node structure with tasks in the
840 * process of being boosted will know that all tasks blocking
841 * this expedited grace period will already be in the process of
842 * being boosted. This simplifies the process of moving tasks
843 * from leaf to root rcu_node structures.
848 * Acquire lock, falling back to synchronize_rcu() if too many
849 * lock-acquisition failures. Of course, if someone does the
850 * expedited grace period for us, just leave.
852 while (!mutex_trylock(&sync_rcu_preempt_exp_mutex
)) {
853 if (ULONG_CMP_LT(snap
,
854 ACCESS_ONCE(sync_rcu_preempt_exp_count
))) {
856 goto mb_ret
; /* Others did our work for us. */
858 if (trycount
++ < 10) {
859 udelay(trycount
* num_online_cpus());
862 wait_rcu_gp(call_rcu
);
866 if (ULONG_CMP_LT(snap
, ACCESS_ONCE(sync_rcu_preempt_exp_count
))) {
868 goto unlock_mb_ret
; /* Others did our work for us. */
871 /* force all RCU readers onto ->blkd_tasks lists. */
872 synchronize_sched_expedited();
874 /* Initialize ->expmask for all non-leaf rcu_node structures. */
875 rcu_for_each_nonleaf_node_breadth_first(rsp
, rnp
) {
876 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
877 rnp
->expmask
= rnp
->qsmaskinit
;
878 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
881 /* Snapshot current state of ->blkd_tasks lists. */
882 rcu_for_each_leaf_node(rsp
, rnp
)
883 sync_rcu_preempt_exp_init(rsp
, rnp
);
884 if (NUM_RCU_NODES
> 1)
885 sync_rcu_preempt_exp_init(rsp
, rcu_get_root(rsp
));
889 /* Wait for snapshotted ->blkd_tasks lists to drain. */
890 rnp
= rcu_get_root(rsp
);
891 wait_event(sync_rcu_preempt_exp_wq
,
892 sync_rcu_preempt_exp_done(rnp
));
894 /* Clean up and exit. */
895 smp_mb(); /* ensure expedited GP seen before counter increment. */
896 ACCESS_ONCE(sync_rcu_preempt_exp_count
)++;
898 mutex_unlock(&sync_rcu_preempt_exp_mutex
);
900 smp_mb(); /* ensure subsequent action seen after grace period. */
902 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited
);
905 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
907 * Note that this primitive does not necessarily wait for an RCU grace period
908 * to complete. For example, if there are no RCU callbacks queued anywhere
909 * in the system, then rcu_barrier() is within its rights to return
910 * immediately, without waiting for anything, much less an RCU grace period.
912 void rcu_barrier(void)
914 _rcu_barrier(&rcu_preempt_state
);
916 EXPORT_SYMBOL_GPL(rcu_barrier
);
919 * Initialize preemptible RCU's state structures.
921 static void __init
__rcu_init_preempt(void)
923 rcu_init_one(&rcu_preempt_state
, &rcu_preempt_data
);
926 #else /* #ifdef CONFIG_TREE_PREEMPT_RCU */
928 static struct rcu_state
*rcu_state
= &rcu_sched_state
;
931 * Tell them what RCU they are running.
933 static void __init
rcu_bootup_announce(void)
935 printk(KERN_INFO
"Hierarchical RCU implementation.\n");
936 rcu_bootup_announce_oddness();
940 * Return the number of RCU batches processed thus far for debug & stats.
942 long rcu_batches_completed(void)
944 return rcu_batches_completed_sched();
946 EXPORT_SYMBOL_GPL(rcu_batches_completed
);
949 * Force a quiescent state for RCU, which, because there is no preemptible
950 * RCU, becomes the same as rcu-sched.
952 void rcu_force_quiescent_state(void)
954 rcu_sched_force_quiescent_state();
956 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state
);
959 * Because preemptible RCU does not exist, we never have to check for
960 * CPUs being in quiescent states.
962 static void rcu_preempt_note_context_switch(int cpu
)
967 * Because preemptible RCU does not exist, there are never any preempted
970 static int rcu_preempt_blocked_readers_cgp(struct rcu_node
*rnp
)
975 #ifdef CONFIG_HOTPLUG_CPU
977 /* Because preemptible RCU does not exist, no quieting of tasks. */
978 static void rcu_report_unblock_qs_rnp(struct rcu_node
*rnp
, unsigned long flags
)
980 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
983 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
986 * Because preemptible RCU does not exist, we never have to check for
987 * tasks blocked within RCU read-side critical sections.
989 static void rcu_print_detail_task_stall(struct rcu_state
*rsp
)
994 * Because preemptible RCU does not exist, we never have to check for
995 * tasks blocked within RCU read-side critical sections.
997 static int rcu_print_task_stall(struct rcu_node
*rnp
)
1003 * Because there is no preemptible RCU, there can be no readers blocked,
1004 * so there is no need to check for blocked tasks. So check only for
1005 * bogus qsmask values.
1007 static void rcu_preempt_check_blocked_tasks(struct rcu_node
*rnp
)
1009 WARN_ON_ONCE(rnp
->qsmask
);
1012 #ifdef CONFIG_HOTPLUG_CPU
1015 * Because preemptible RCU does not exist, it never needs to migrate
1016 * tasks that were blocked within RCU read-side critical sections, and
1017 * such non-existent tasks cannot possibly have been blocking the current
1020 static int rcu_preempt_offline_tasks(struct rcu_state
*rsp
,
1021 struct rcu_node
*rnp
,
1022 struct rcu_data
*rdp
)
1027 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
1030 * Because preemptible RCU does not exist, it never has any callbacks
1033 static void rcu_preempt_check_callbacks(int cpu
)
1038 * Queue an RCU callback for lazy invocation after a grace period.
1039 * This will likely be later named something like "call_rcu_lazy()",
1040 * but this change will require some way of tagging the lazy RCU
1041 * callbacks in the list of pending callbacks. Until then, this
1042 * function may only be called from __kfree_rcu().
1044 * Because there is no preemptible RCU, we use RCU-sched instead.
1046 void kfree_call_rcu(struct rcu_head
*head
,
1047 void (*func
)(struct rcu_head
*rcu
))
1049 __call_rcu(head
, func
, &rcu_sched_state
, -1, 1);
1051 EXPORT_SYMBOL_GPL(kfree_call_rcu
);
1054 * Wait for an rcu-preempt grace period, but make it happen quickly.
1055 * But because preemptible RCU does not exist, map to rcu-sched.
1057 void synchronize_rcu_expedited(void)
1059 synchronize_sched_expedited();
1061 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited
);
1063 #ifdef CONFIG_HOTPLUG_CPU
1066 * Because preemptible RCU does not exist, there is never any need to
1067 * report on tasks preempted in RCU read-side critical sections during
1068 * expedited RCU grace periods.
1070 static void rcu_report_exp_rnp(struct rcu_state
*rsp
, struct rcu_node
*rnp
,
1075 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
1078 * Because preemptible RCU does not exist, rcu_barrier() is just
1079 * another name for rcu_barrier_sched().
1081 void rcu_barrier(void)
1083 rcu_barrier_sched();
1085 EXPORT_SYMBOL_GPL(rcu_barrier
);
1088 * Because preemptible RCU does not exist, it need not be initialized.
1090 static void __init
__rcu_init_preempt(void)
1094 #endif /* #else #ifdef CONFIG_TREE_PREEMPT_RCU */
1096 #ifdef CONFIG_RCU_BOOST
1098 #include "rtmutex_common.h"
1100 #ifdef CONFIG_RCU_TRACE
1102 static void rcu_initiate_boost_trace(struct rcu_node
*rnp
)
1104 if (list_empty(&rnp
->blkd_tasks
))
1105 rnp
->n_balk_blkd_tasks
++;
1106 else if (rnp
->exp_tasks
== NULL
&& rnp
->gp_tasks
== NULL
)
1107 rnp
->n_balk_exp_gp_tasks
++;
1108 else if (rnp
->gp_tasks
!= NULL
&& rnp
->boost_tasks
!= NULL
)
1109 rnp
->n_balk_boost_tasks
++;
1110 else if (rnp
->gp_tasks
!= NULL
&& rnp
->qsmask
!= 0)
1111 rnp
->n_balk_notblocked
++;
1112 else if (rnp
->gp_tasks
!= NULL
&&
1113 ULONG_CMP_LT(jiffies
, rnp
->boost_time
))
1114 rnp
->n_balk_notyet
++;
1119 #else /* #ifdef CONFIG_RCU_TRACE */
1121 static void rcu_initiate_boost_trace(struct rcu_node
*rnp
)
1125 #endif /* #else #ifdef CONFIG_RCU_TRACE */
1127 static void rcu_wake_cond(struct task_struct
*t
, int status
)
1130 * If the thread is yielding, only wake it when this
1131 * is invoked from idle
1133 if (status
!= RCU_KTHREAD_YIELDING
|| is_idle_task(current
))
1138 * Carry out RCU priority boosting on the task indicated by ->exp_tasks
1139 * or ->boost_tasks, advancing the pointer to the next task in the
1140 * ->blkd_tasks list.
1142 * Note that irqs must be enabled: boosting the task can block.
1143 * Returns 1 if there are more tasks needing to be boosted.
1145 static int rcu_boost(struct rcu_node
*rnp
)
1147 unsigned long flags
;
1148 struct rt_mutex mtx
;
1149 struct task_struct
*t
;
1150 struct list_head
*tb
;
1152 if (rnp
->exp_tasks
== NULL
&& rnp
->boost_tasks
== NULL
)
1153 return 0; /* Nothing left to boost. */
1155 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
1158 * Recheck under the lock: all tasks in need of boosting
1159 * might exit their RCU read-side critical sections on their own.
1161 if (rnp
->exp_tasks
== NULL
&& rnp
->boost_tasks
== NULL
) {
1162 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
1167 * Preferentially boost tasks blocking expedited grace periods.
1168 * This cannot starve the normal grace periods because a second
1169 * expedited grace period must boost all blocked tasks, including
1170 * those blocking the pre-existing normal grace period.
1172 if (rnp
->exp_tasks
!= NULL
) {
1173 tb
= rnp
->exp_tasks
;
1174 rnp
->n_exp_boosts
++;
1176 tb
= rnp
->boost_tasks
;
1177 rnp
->n_normal_boosts
++;
1179 rnp
->n_tasks_boosted
++;
1182 * We boost task t by manufacturing an rt_mutex that appears to
1183 * be held by task t. We leave a pointer to that rt_mutex where
1184 * task t can find it, and task t will release the mutex when it
1185 * exits its outermost RCU read-side critical section. Then
1186 * simply acquiring this artificial rt_mutex will boost task
1187 * t's priority. (Thanks to tglx for suggesting this approach!)
1189 * Note that task t must acquire rnp->lock to remove itself from
1190 * the ->blkd_tasks list, which it will do from exit() if from
1191 * nowhere else. We therefore are guaranteed that task t will
1192 * stay around at least until we drop rnp->lock. Note that
1193 * rnp->lock also resolves races between our priority boosting
1194 * and task t's exiting its outermost RCU read-side critical
1197 t
= container_of(tb
, struct task_struct
, rcu_node_entry
);
1198 rt_mutex_init_proxy_locked(&mtx
, t
);
1199 t
->rcu_boost_mutex
= &mtx
;
1200 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
1201 rt_mutex_lock(&mtx
); /* Side effect: boosts task t's priority. */
1202 rt_mutex_unlock(&mtx
); /* Keep lockdep happy. */
1204 return ACCESS_ONCE(rnp
->exp_tasks
) != NULL
||
1205 ACCESS_ONCE(rnp
->boost_tasks
) != NULL
;
1209 * Priority-boosting kthread. One per leaf rcu_node and one for the
1212 static int rcu_boost_kthread(void *arg
)
1214 struct rcu_node
*rnp
= (struct rcu_node
*)arg
;
1218 trace_rcu_utilization("Start boost kthread@init");
1220 rnp
->boost_kthread_status
= RCU_KTHREAD_WAITING
;
1221 trace_rcu_utilization("End boost kthread@rcu_wait");
1222 rcu_wait(rnp
->boost_tasks
|| rnp
->exp_tasks
);
1223 trace_rcu_utilization("Start boost kthread@rcu_wait");
1224 rnp
->boost_kthread_status
= RCU_KTHREAD_RUNNING
;
1225 more2boost
= rcu_boost(rnp
);
1231 rnp
->boost_kthread_status
= RCU_KTHREAD_YIELDING
;
1232 trace_rcu_utilization("End boost kthread@rcu_yield");
1233 schedule_timeout_interruptible(2);
1234 trace_rcu_utilization("Start boost kthread@rcu_yield");
1239 trace_rcu_utilization("End boost kthread@notreached");
1244 * Check to see if it is time to start boosting RCU readers that are
1245 * blocking the current grace period, and, if so, tell the per-rcu_node
1246 * kthread to start boosting them. If there is an expedited grace
1247 * period in progress, it is always time to boost.
1249 * The caller must hold rnp->lock, which this function releases.
1250 * The ->boost_kthread_task is immortal, so we don't need to worry
1251 * about it going away.
1253 static void rcu_initiate_boost(struct rcu_node
*rnp
, unsigned long flags
)
1255 struct task_struct
*t
;
1257 if (!rcu_preempt_blocked_readers_cgp(rnp
) && rnp
->exp_tasks
== NULL
) {
1258 rnp
->n_balk_exp_gp_tasks
++;
1259 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
1262 if (rnp
->exp_tasks
!= NULL
||
1263 (rnp
->gp_tasks
!= NULL
&&
1264 rnp
->boost_tasks
== NULL
&&
1266 ULONG_CMP_GE(jiffies
, rnp
->boost_time
))) {
1267 if (rnp
->exp_tasks
== NULL
)
1268 rnp
->boost_tasks
= rnp
->gp_tasks
;
1269 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
1270 t
= rnp
->boost_kthread_task
;
1272 rcu_wake_cond(t
, rnp
->boost_kthread_status
);
1274 rcu_initiate_boost_trace(rnp
);
1275 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
1280 * Wake up the per-CPU kthread to invoke RCU callbacks.
1282 static void invoke_rcu_callbacks_kthread(void)
1284 unsigned long flags
;
1286 local_irq_save(flags
);
1287 __this_cpu_write(rcu_cpu_has_work
, 1);
1288 if (__this_cpu_read(rcu_cpu_kthread_task
) != NULL
&&
1289 current
!= __this_cpu_read(rcu_cpu_kthread_task
)) {
1290 rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task
),
1291 __this_cpu_read(rcu_cpu_kthread_status
));
1293 local_irq_restore(flags
);
1297 * Is the current CPU running the RCU-callbacks kthread?
1298 * Caller must have preemption disabled.
1300 static bool rcu_is_callbacks_kthread(void)
1302 return __get_cpu_var(rcu_cpu_kthread_task
) == current
;
1305 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1308 * Do priority-boost accounting for the start of a new grace period.
1310 static void rcu_preempt_boost_start_gp(struct rcu_node
*rnp
)
1312 rnp
->boost_time
= jiffies
+ RCU_BOOST_DELAY_JIFFIES
;
1316 * Create an RCU-boost kthread for the specified node if one does not
1317 * already exist. We only create this kthread for preemptible RCU.
1318 * Returns zero if all is well, a negated errno otherwise.
1320 static int __cpuinit
rcu_spawn_one_boost_kthread(struct rcu_state
*rsp
,
1321 struct rcu_node
*rnp
)
1323 int rnp_index
= rnp
- &rsp
->node
[0];
1324 unsigned long flags
;
1325 struct sched_param sp
;
1326 struct task_struct
*t
;
1328 if (&rcu_preempt_state
!= rsp
)
1331 if (!rcu_scheduler_fully_active
|| rnp
->qsmaskinit
== 0)
1335 if (rnp
->boost_kthread_task
!= NULL
)
1337 t
= kthread_create(rcu_boost_kthread
, (void *)rnp
,
1338 "rcub/%d", rnp_index
);
1341 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
1342 rnp
->boost_kthread_task
= t
;
1343 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
1344 sp
.sched_priority
= RCU_BOOST_PRIO
;
1345 sched_setscheduler_nocheck(t
, SCHED_FIFO
, &sp
);
1346 wake_up_process(t
); /* get to TASK_INTERRUPTIBLE quickly. */
1350 static void rcu_kthread_do_work(void)
1352 rcu_do_batch(&rcu_sched_state
, &__get_cpu_var(rcu_sched_data
));
1353 rcu_do_batch(&rcu_bh_state
, &__get_cpu_var(rcu_bh_data
));
1354 rcu_preempt_do_callbacks();
1357 static void rcu_cpu_kthread_setup(unsigned int cpu
)
1359 struct sched_param sp
;
1361 sp
.sched_priority
= RCU_KTHREAD_PRIO
;
1362 sched_setscheduler_nocheck(current
, SCHED_FIFO
, &sp
);
1365 static void rcu_cpu_kthread_park(unsigned int cpu
)
1367 per_cpu(rcu_cpu_kthread_status
, cpu
) = RCU_KTHREAD_OFFCPU
;
1370 static int rcu_cpu_kthread_should_run(unsigned int cpu
)
1372 return __get_cpu_var(rcu_cpu_has_work
);
1376 * Per-CPU kernel thread that invokes RCU callbacks. This replaces the
1377 * RCU softirq used in flavors and configurations of RCU that do not
1378 * support RCU priority boosting.
1380 static void rcu_cpu_kthread(unsigned int cpu
)
1382 unsigned int *statusp
= &__get_cpu_var(rcu_cpu_kthread_status
);
1383 char work
, *workp
= &__get_cpu_var(rcu_cpu_has_work
);
1386 for (spincnt
= 0; spincnt
< 10; spincnt
++) {
1387 trace_rcu_utilization("Start CPU kthread@rcu_wait");
1389 *statusp
= RCU_KTHREAD_RUNNING
;
1390 this_cpu_inc(rcu_cpu_kthread_loops
);
1391 local_irq_disable();
1396 rcu_kthread_do_work();
1399 trace_rcu_utilization("End CPU kthread@rcu_wait");
1400 *statusp
= RCU_KTHREAD_WAITING
;
1404 *statusp
= RCU_KTHREAD_YIELDING
;
1405 trace_rcu_utilization("Start CPU kthread@rcu_yield");
1406 schedule_timeout_interruptible(2);
1407 trace_rcu_utilization("End CPU kthread@rcu_yield");
1408 *statusp
= RCU_KTHREAD_WAITING
;
1412 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1413 * served by the rcu_node in question. The CPU hotplug lock is still
1414 * held, so the value of rnp->qsmaskinit will be stable.
1416 * We don't include outgoingcpu in the affinity set, use -1 if there is
1417 * no outgoing CPU. If there are no CPUs left in the affinity set,
1418 * this function allows the kthread to execute on any CPU.
1420 static void rcu_boost_kthread_setaffinity(struct rcu_node
*rnp
, int outgoingcpu
)
1422 struct task_struct
*t
= rnp
->boost_kthread_task
;
1423 unsigned long mask
= rnp
->qsmaskinit
;
1429 if (!zalloc_cpumask_var(&cm
, GFP_KERNEL
))
1431 for (cpu
= rnp
->grplo
; cpu
<= rnp
->grphi
; cpu
++, mask
>>= 1)
1432 if ((mask
& 0x1) && cpu
!= outgoingcpu
)
1433 cpumask_set_cpu(cpu
, cm
);
1434 if (cpumask_weight(cm
) == 0) {
1436 for (cpu
= rnp
->grplo
; cpu
<= rnp
->grphi
; cpu
++)
1437 cpumask_clear_cpu(cpu
, cm
);
1438 WARN_ON_ONCE(cpumask_weight(cm
) == 0);
1440 set_cpus_allowed_ptr(t
, cm
);
1441 free_cpumask_var(cm
);
1444 static struct smp_hotplug_thread rcu_cpu_thread_spec
= {
1445 .store
= &rcu_cpu_kthread_task
,
1446 .thread_should_run
= rcu_cpu_kthread_should_run
,
1447 .thread_fn
= rcu_cpu_kthread
,
1448 .thread_comm
= "rcuc/%u",
1449 .setup
= rcu_cpu_kthread_setup
,
1450 .park
= rcu_cpu_kthread_park
,
1454 * Spawn all kthreads -- called as soon as the scheduler is running.
1456 static int __init
rcu_spawn_kthreads(void)
1458 struct rcu_node
*rnp
;
1461 rcu_scheduler_fully_active
= 1;
1462 for_each_possible_cpu(cpu
)
1463 per_cpu(rcu_cpu_has_work
, cpu
) = 0;
1464 BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec
));
1465 rnp
= rcu_get_root(rcu_state
);
1466 (void)rcu_spawn_one_boost_kthread(rcu_state
, rnp
);
1467 if (NUM_RCU_NODES
> 1) {
1468 rcu_for_each_leaf_node(rcu_state
, rnp
)
1469 (void)rcu_spawn_one_boost_kthread(rcu_state
, rnp
);
1473 early_initcall(rcu_spawn_kthreads
);
1475 static void __cpuinit
rcu_prepare_kthreads(int cpu
)
1477 struct rcu_data
*rdp
= per_cpu_ptr(rcu_state
->rda
, cpu
);
1478 struct rcu_node
*rnp
= rdp
->mynode
;
1480 /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1481 if (rcu_scheduler_fully_active
)
1482 (void)rcu_spawn_one_boost_kthread(rcu_state
, rnp
);
1485 #else /* #ifdef CONFIG_RCU_BOOST */
1487 static void rcu_initiate_boost(struct rcu_node
*rnp
, unsigned long flags
)
1489 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
1492 static void invoke_rcu_callbacks_kthread(void)
1497 static bool rcu_is_callbacks_kthread(void)
1502 static void rcu_preempt_boost_start_gp(struct rcu_node
*rnp
)
1506 static void rcu_boost_kthread_setaffinity(struct rcu_node
*rnp
, int outgoingcpu
)
1510 static int __init
rcu_scheduler_really_started(void)
1512 rcu_scheduler_fully_active
= 1;
1515 early_initcall(rcu_scheduler_really_started
);
1517 static void __cpuinit
rcu_prepare_kthreads(int cpu
)
1521 #endif /* #else #ifdef CONFIG_RCU_BOOST */
1523 #if !defined(CONFIG_RCU_FAST_NO_HZ)
1526 * Check to see if any future RCU-related work will need to be done
1527 * by the current CPU, even if none need be done immediately, returning
1528 * 1 if so. This function is part of the RCU implementation; it is -not-
1529 * an exported member of the RCU API.
1531 * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
1532 * any flavor of RCU.
1534 int rcu_needs_cpu(int cpu
, unsigned long *delta_jiffies
)
1536 *delta_jiffies
= ULONG_MAX
;
1537 return rcu_cpu_has_callbacks(cpu
);
1541 * Because we do not have RCU_FAST_NO_HZ, don't bother initializing for it.
1543 static void rcu_prepare_for_idle_init(int cpu
)
1548 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1551 static void rcu_cleanup_after_idle(int cpu
)
1556 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1559 static void rcu_prepare_for_idle(int cpu
)
1564 * Don't bother keeping a running count of the number of RCU callbacks
1565 * posted because CONFIG_RCU_FAST_NO_HZ=n.
1567 static void rcu_idle_count_callbacks_posted(void)
1571 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1574 * This code is invoked when a CPU goes idle, at which point we want
1575 * to have the CPU do everything required for RCU so that it can enter
1576 * the energy-efficient dyntick-idle mode. This is handled by a
1577 * state machine implemented by rcu_prepare_for_idle() below.
1579 * The following three proprocessor symbols control this state machine:
1581 * RCU_IDLE_FLUSHES gives the maximum number of times that we will attempt
1582 * to satisfy RCU. Beyond this point, it is better to incur a periodic
1583 * scheduling-clock interrupt than to loop through the state machine
1585 * RCU_IDLE_OPT_FLUSHES gives the number of RCU_IDLE_FLUSHES that are
1586 * optional if RCU does not need anything immediately from this
1587 * CPU, even if this CPU still has RCU callbacks queued. The first
1588 * times through the state machine are mandatory: we need to give
1589 * the state machine a chance to communicate a quiescent state
1591 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1592 * to sleep in dyntick-idle mode with RCU callbacks pending. This
1593 * is sized to be roughly one RCU grace period. Those energy-efficiency
1594 * benchmarkers who might otherwise be tempted to set this to a large
1595 * number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1596 * system. And if you are -that- concerned about energy efficiency,
1597 * just power the system down and be done with it!
1598 * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
1599 * permitted to sleep in dyntick-idle mode with only lazy RCU
1600 * callbacks pending. Setting this too high can OOM your system.
1602 * The values below work well in practice. If future workloads require
1603 * adjustment, they can be converted into kernel config parameters, though
1604 * making the state machine smarter might be a better option.
1606 #define RCU_IDLE_FLUSHES 5 /* Number of dyntick-idle tries. */
1607 #define RCU_IDLE_OPT_FLUSHES 3 /* Optional dyntick-idle tries. */
1608 #define RCU_IDLE_GP_DELAY 4 /* Roughly one grace period. */
1609 #define RCU_IDLE_LAZY_GP_DELAY (6 * HZ) /* Roughly six seconds. */
1611 extern int tick_nohz_enabled
;
1614 * Does the specified flavor of RCU have non-lazy callbacks pending on
1615 * the specified CPU? Both RCU flavor and CPU are specified by the
1616 * rcu_data structure.
1618 static bool __rcu_cpu_has_nonlazy_callbacks(struct rcu_data
*rdp
)
1620 return rdp
->qlen
!= rdp
->qlen_lazy
;
1623 #ifdef CONFIG_TREE_PREEMPT_RCU
1626 * Are there non-lazy RCU-preempt callbacks? (There cannot be if there
1627 * is no RCU-preempt in the kernel.)
1629 static bool rcu_preempt_cpu_has_nonlazy_callbacks(int cpu
)
1631 struct rcu_data
*rdp
= &per_cpu(rcu_preempt_data
, cpu
);
1633 return __rcu_cpu_has_nonlazy_callbacks(rdp
);
1636 #else /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1638 static bool rcu_preempt_cpu_has_nonlazy_callbacks(int cpu
)
1643 #endif /* else #ifdef CONFIG_TREE_PREEMPT_RCU */
1646 * Does any flavor of RCU have non-lazy callbacks on the specified CPU?
1648 static bool rcu_cpu_has_nonlazy_callbacks(int cpu
)
1650 return __rcu_cpu_has_nonlazy_callbacks(&per_cpu(rcu_sched_data
, cpu
)) ||
1651 __rcu_cpu_has_nonlazy_callbacks(&per_cpu(rcu_bh_data
, cpu
)) ||
1652 rcu_preempt_cpu_has_nonlazy_callbacks(cpu
);
1656 * Allow the CPU to enter dyntick-idle mode if either: (1) There are no
1657 * callbacks on this CPU, (2) this CPU has not yet attempted to enter
1658 * dyntick-idle mode, or (3) this CPU is in the process of attempting to
1659 * enter dyntick-idle mode. Otherwise, if we have recently tried and failed
1660 * to enter dyntick-idle mode, we refuse to try to enter it. After all,
1661 * it is better to incur scheduling-clock interrupts than to spin
1662 * continuously for the same time duration!
1664 * The delta_jiffies argument is used to store the time when RCU is
1665 * going to need the CPU again if it still has callbacks. The reason
1666 * for this is that rcu_prepare_for_idle() might need to post a timer,
1667 * but if so, it will do so after tick_nohz_stop_sched_tick() has set
1668 * the wakeup time for this CPU. This means that RCU's timer can be
1669 * delayed until the wakeup time, which defeats the purpose of posting
1672 int rcu_needs_cpu(int cpu
, unsigned long *delta_jiffies
)
1674 struct rcu_dynticks
*rdtp
= &per_cpu(rcu_dynticks
, cpu
);
1676 /* Flag a new idle sojourn to the idle-entry state machine. */
1677 rdtp
->idle_first_pass
= 1;
1678 /* If no callbacks, RCU doesn't need the CPU. */
1679 if (!rcu_cpu_has_callbacks(cpu
)) {
1680 *delta_jiffies
= ULONG_MAX
;
1683 if (rdtp
->dyntick_holdoff
== jiffies
) {
1684 /* RCU recently tried and failed, so don't try again. */
1688 /* Set up for the possibility that RCU will post a timer. */
1689 if (rcu_cpu_has_nonlazy_callbacks(cpu
)) {
1690 *delta_jiffies
= round_up(RCU_IDLE_GP_DELAY
+ jiffies
,
1691 RCU_IDLE_GP_DELAY
) - jiffies
;
1693 *delta_jiffies
= jiffies
+ RCU_IDLE_LAZY_GP_DELAY
;
1694 *delta_jiffies
= round_jiffies(*delta_jiffies
) - jiffies
;
1700 * Handler for smp_call_function_single(). The only point of this
1701 * handler is to wake the CPU up, so the handler does only tracing.
1703 void rcu_idle_demigrate(void *unused
)
1705 trace_rcu_prep_idle("Demigrate");
1709 * Timer handler used to force CPU to start pushing its remaining RCU
1710 * callbacks in the case where it entered dyntick-idle mode with callbacks
1711 * pending. The hander doesn't really need to do anything because the
1712 * real work is done upon re-entry to idle, or by the next scheduling-clock
1713 * interrupt should idle not be re-entered.
1715 * One special case: the timer gets migrated without awakening the CPU
1716 * on which the timer was scheduled on. In this case, we must wake up
1717 * that CPU. We do so with smp_call_function_single().
1719 static void rcu_idle_gp_timer_func(unsigned long cpu_in
)
1721 int cpu
= (int)cpu_in
;
1723 trace_rcu_prep_idle("Timer");
1724 if (cpu
!= smp_processor_id())
1725 smp_call_function_single(cpu
, rcu_idle_demigrate
, NULL
, 0);
1727 WARN_ON_ONCE(1); /* Getting here can hang the system... */
1731 * Initialize the timer used to pull CPUs out of dyntick-idle mode.
1733 static void rcu_prepare_for_idle_init(int cpu
)
1735 struct rcu_dynticks
*rdtp
= &per_cpu(rcu_dynticks
, cpu
);
1737 rdtp
->dyntick_holdoff
= jiffies
- 1;
1738 setup_timer(&rdtp
->idle_gp_timer
, rcu_idle_gp_timer_func
, cpu
);
1739 rdtp
->idle_gp_timer_expires
= jiffies
- 1;
1740 rdtp
->idle_first_pass
= 1;
1744 * Clean up for exit from idle. Because we are exiting from idle, there
1745 * is no longer any point to ->idle_gp_timer, so cancel it. This will
1746 * do nothing if this timer is not active, so just cancel it unconditionally.
1748 static void rcu_cleanup_after_idle(int cpu
)
1750 struct rcu_dynticks
*rdtp
= &per_cpu(rcu_dynticks
, cpu
);
1752 del_timer(&rdtp
->idle_gp_timer
);
1753 trace_rcu_prep_idle("Cleanup after idle");
1754 rdtp
->tick_nohz_enabled_snap
= ACCESS_ONCE(tick_nohz_enabled
);
1758 * Check to see if any RCU-related work can be done by the current CPU,
1759 * and if so, schedule a softirq to get it done. This function is part
1760 * of the RCU implementation; it is -not- an exported member of the RCU API.
1762 * The idea is for the current CPU to clear out all work required by the
1763 * RCU core for the current grace period, so that this CPU can be permitted
1764 * to enter dyntick-idle mode. In some cases, it will need to be awakened
1765 * at the end of the grace period by whatever CPU ends the grace period.
1766 * This allows CPUs to go dyntick-idle more quickly, and to reduce the
1767 * number of wakeups by a modest integer factor.
1769 * Because it is not legal to invoke rcu_process_callbacks() with irqs
1770 * disabled, we do one pass of force_quiescent_state(), then do a
1771 * invoke_rcu_core() to cause rcu_process_callbacks() to be invoked
1772 * later. The ->dyntick_drain field controls the sequencing.
1774 * The caller must have disabled interrupts.
1776 static void rcu_prepare_for_idle(int cpu
)
1778 struct timer_list
*tp
;
1779 struct rcu_dynticks
*rdtp
= &per_cpu(rcu_dynticks
, cpu
);
1782 /* Handle nohz enablement switches conservatively. */
1783 tne
= ACCESS_ONCE(tick_nohz_enabled
);
1784 if (tne
!= rdtp
->tick_nohz_enabled_snap
) {
1785 if (rcu_cpu_has_callbacks(cpu
))
1786 invoke_rcu_core(); /* force nohz to see update. */
1787 rdtp
->tick_nohz_enabled_snap
= tne
;
1793 /* Adaptive-tick mode, where usermode execution is idle to RCU. */
1794 if (!is_idle_task(current
)) {
1795 rdtp
->dyntick_holdoff
= jiffies
- 1;
1796 if (rcu_cpu_has_nonlazy_callbacks(cpu
)) {
1797 trace_rcu_prep_idle("User dyntick with callbacks");
1798 rdtp
->idle_gp_timer_expires
=
1799 round_up(jiffies
+ RCU_IDLE_GP_DELAY
,
1801 } else if (rcu_cpu_has_callbacks(cpu
)) {
1802 rdtp
->idle_gp_timer_expires
=
1803 round_jiffies(jiffies
+ RCU_IDLE_LAZY_GP_DELAY
);
1804 trace_rcu_prep_idle("User dyntick with lazy callbacks");
1808 tp
= &rdtp
->idle_gp_timer
;
1809 mod_timer_pinned(tp
, rdtp
->idle_gp_timer_expires
);
1814 * If this is an idle re-entry, for example, due to use of
1815 * RCU_NONIDLE() or the new idle-loop tracing API within the idle
1816 * loop, then don't take any state-machine actions, unless the
1817 * momentary exit from idle queued additional non-lazy callbacks.
1818 * Instead, repost the ->idle_gp_timer if this CPU has callbacks
1821 if (!rdtp
->idle_first_pass
&&
1822 (rdtp
->nonlazy_posted
== rdtp
->nonlazy_posted_snap
)) {
1823 if (rcu_cpu_has_callbacks(cpu
)) {
1824 tp
= &rdtp
->idle_gp_timer
;
1825 mod_timer_pinned(tp
, rdtp
->idle_gp_timer_expires
);
1829 rdtp
->idle_first_pass
= 0;
1830 rdtp
->nonlazy_posted_snap
= rdtp
->nonlazy_posted
- 1;
1833 * If there are no callbacks on this CPU, enter dyntick-idle mode.
1834 * Also reset state to avoid prejudicing later attempts.
1836 if (!rcu_cpu_has_callbacks(cpu
)) {
1837 rdtp
->dyntick_holdoff
= jiffies
- 1;
1838 rdtp
->dyntick_drain
= 0;
1839 trace_rcu_prep_idle("No callbacks");
1844 * If in holdoff mode, just return. We will presumably have
1845 * refrained from disabling the scheduling-clock tick.
1847 if (rdtp
->dyntick_holdoff
== jiffies
) {
1848 trace_rcu_prep_idle("In holdoff");
1852 /* Check and update the ->dyntick_drain sequencing. */
1853 if (rdtp
->dyntick_drain
<= 0) {
1854 /* First time through, initialize the counter. */
1855 rdtp
->dyntick_drain
= RCU_IDLE_FLUSHES
;
1856 } else if (rdtp
->dyntick_drain
<= RCU_IDLE_OPT_FLUSHES
&&
1857 !rcu_pending(cpu
) &&
1858 !local_softirq_pending()) {
1859 /* Can we go dyntick-idle despite still having callbacks? */
1860 rdtp
->dyntick_drain
= 0;
1861 rdtp
->dyntick_holdoff
= jiffies
;
1862 if (rcu_cpu_has_nonlazy_callbacks(cpu
)) {
1863 trace_rcu_prep_idle("Dyntick with callbacks");
1864 rdtp
->idle_gp_timer_expires
=
1865 round_up(jiffies
+ RCU_IDLE_GP_DELAY
,
1868 rdtp
->idle_gp_timer_expires
=
1869 round_jiffies(jiffies
+ RCU_IDLE_LAZY_GP_DELAY
);
1870 trace_rcu_prep_idle("Dyntick with lazy callbacks");
1872 tp
= &rdtp
->idle_gp_timer
;
1873 mod_timer_pinned(tp
, rdtp
->idle_gp_timer_expires
);
1874 rdtp
->nonlazy_posted_snap
= rdtp
->nonlazy_posted
;
1875 return; /* Nothing more to do immediately. */
1876 } else if (--(rdtp
->dyntick_drain
) <= 0) {
1877 /* We have hit the limit, so time to give up. */
1878 rdtp
->dyntick_holdoff
= jiffies
;
1879 trace_rcu_prep_idle("Begin holdoff");
1880 invoke_rcu_core(); /* Force the CPU out of dyntick-idle. */
1885 * Do one step of pushing the remaining RCU callbacks through
1886 * the RCU core state machine.
1888 #ifdef CONFIG_TREE_PREEMPT_RCU
1889 if (per_cpu(rcu_preempt_data
, cpu
).nxtlist
) {
1890 rcu_preempt_qs(cpu
);
1891 force_quiescent_state(&rcu_preempt_state
);
1893 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1894 if (per_cpu(rcu_sched_data
, cpu
).nxtlist
) {
1896 force_quiescent_state(&rcu_sched_state
);
1898 if (per_cpu(rcu_bh_data
, cpu
).nxtlist
) {
1900 force_quiescent_state(&rcu_bh_state
);
1904 * If RCU callbacks are still pending, RCU still needs this CPU.
1905 * So try forcing the callbacks through the grace period.
1907 if (rcu_cpu_has_callbacks(cpu
)) {
1908 trace_rcu_prep_idle("More callbacks");
1911 trace_rcu_prep_idle("Callbacks drained");
1916 * Keep a running count of the number of non-lazy callbacks posted
1917 * on this CPU. This running counter (which is never decremented) allows
1918 * rcu_prepare_for_idle() to detect when something out of the idle loop
1919 * posts a callback, even if an equal number of callbacks are invoked.
1920 * Of course, callbacks should only be posted from within a trace event
1921 * designed to be called from idle or from within RCU_NONIDLE().
1923 static void rcu_idle_count_callbacks_posted(void)
1925 __this_cpu_add(rcu_dynticks
.nonlazy_posted
, 1);
1929 * Data for flushing lazy RCU callbacks at OOM time.
1931 static atomic_t oom_callback_count
;
1932 static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq
);
1935 * RCU OOM callback -- decrement the outstanding count and deliver the
1936 * wake-up if we are the last one.
1938 static void rcu_oom_callback(struct rcu_head
*rhp
)
1940 if (atomic_dec_and_test(&oom_callback_count
))
1941 wake_up(&oom_callback_wq
);
1945 * Post an rcu_oom_notify callback on the current CPU if it has at
1946 * least one lazy callback. This will unnecessarily post callbacks
1947 * to CPUs that already have a non-lazy callback at the end of their
1948 * callback list, but this is an infrequent operation, so accept some
1949 * extra overhead to keep things simple.
1951 static void rcu_oom_notify_cpu(void *unused
)
1953 struct rcu_state
*rsp
;
1954 struct rcu_data
*rdp
;
1956 for_each_rcu_flavor(rsp
) {
1957 rdp
= __this_cpu_ptr(rsp
->rda
);
1958 if (rdp
->qlen_lazy
!= 0) {
1959 atomic_inc(&oom_callback_count
);
1960 rsp
->call(&rdp
->oom_head
, rcu_oom_callback
);
1966 * If low on memory, ensure that each CPU has a non-lazy callback.
1967 * This will wake up CPUs that have only lazy callbacks, in turn
1968 * ensuring that they free up the corresponding memory in a timely manner.
1969 * Because an uncertain amount of memory will be freed in some uncertain
1970 * timeframe, we do not claim to have freed anything.
1972 static int rcu_oom_notify(struct notifier_block
*self
,
1973 unsigned long notused
, void *nfreed
)
1977 /* Wait for callbacks from earlier instance to complete. */
1978 wait_event(oom_callback_wq
, atomic_read(&oom_callback_count
) == 0);
1981 * Prevent premature wakeup: ensure that all increments happen
1982 * before there is a chance of the counter reaching zero.
1984 atomic_set(&oom_callback_count
, 1);
1987 for_each_online_cpu(cpu
) {
1988 smp_call_function_single(cpu
, rcu_oom_notify_cpu
, NULL
, 1);
1993 /* Unconditionally decrement: no need to wake ourselves up. */
1994 atomic_dec(&oom_callback_count
);
1999 static struct notifier_block rcu_oom_nb
= {
2000 .notifier_call
= rcu_oom_notify
2003 static int __init
rcu_register_oom_notifier(void)
2005 register_oom_notifier(&rcu_oom_nb
);
2008 early_initcall(rcu_register_oom_notifier
);
2010 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
2012 #ifdef CONFIG_RCU_CPU_STALL_INFO
2014 #ifdef CONFIG_RCU_FAST_NO_HZ
2016 static void print_cpu_stall_fast_no_hz(char *cp
, int cpu
)
2018 struct rcu_dynticks
*rdtp
= &per_cpu(rcu_dynticks
, cpu
);
2019 struct timer_list
*tltp
= &rdtp
->idle_gp_timer
;
2022 c
= rdtp
->dyntick_holdoff
== jiffies
? 'H' : '.';
2023 if (timer_pending(tltp
))
2024 sprintf(cp
, "drain=%d %c timer=%lu",
2025 rdtp
->dyntick_drain
, c
, tltp
->expires
- jiffies
);
2027 sprintf(cp
, "drain=%d %c timer not pending",
2028 rdtp
->dyntick_drain
, c
);
2031 #else /* #ifdef CONFIG_RCU_FAST_NO_HZ */
2033 static void print_cpu_stall_fast_no_hz(char *cp
, int cpu
)
2038 #endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */
2040 /* Initiate the stall-info list. */
2041 static void print_cpu_stall_info_begin(void)
2043 printk(KERN_CONT
"\n");
2047 * Print out diagnostic information for the specified stalled CPU.
2049 * If the specified CPU is aware of the current RCU grace period
2050 * (flavor specified by rsp), then print the number of scheduling
2051 * clock interrupts the CPU has taken during the time that it has
2052 * been aware. Otherwise, print the number of RCU grace periods
2053 * that this CPU is ignorant of, for example, "1" if the CPU was
2054 * aware of the previous grace period.
2056 * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
2058 static void print_cpu_stall_info(struct rcu_state
*rsp
, int cpu
)
2060 char fast_no_hz
[72];
2061 struct rcu_data
*rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
2062 struct rcu_dynticks
*rdtp
= rdp
->dynticks
;
2064 unsigned long ticks_value
;
2066 if (rsp
->gpnum
== rdp
->gpnum
) {
2067 ticks_title
= "ticks this GP";
2068 ticks_value
= rdp
->ticks_this_gp
;
2070 ticks_title
= "GPs behind";
2071 ticks_value
= rsp
->gpnum
- rdp
->gpnum
;
2073 print_cpu_stall_fast_no_hz(fast_no_hz
, cpu
);
2074 printk(KERN_ERR
"\t%d: (%lu %s) idle=%03x/%llx/%d %s\n",
2075 cpu
, ticks_value
, ticks_title
,
2076 atomic_read(&rdtp
->dynticks
) & 0xfff,
2077 rdtp
->dynticks_nesting
, rdtp
->dynticks_nmi_nesting
,
2081 /* Terminate the stall-info list. */
2082 static void print_cpu_stall_info_end(void)
2084 printk(KERN_ERR
"\t");
2087 /* Zero ->ticks_this_gp for all flavors of RCU. */
2088 static void zero_cpu_stall_ticks(struct rcu_data
*rdp
)
2090 rdp
->ticks_this_gp
= 0;
2093 /* Increment ->ticks_this_gp for all flavors of RCU. */
2094 static void increment_cpu_stall_ticks(void)
2096 struct rcu_state
*rsp
;
2098 for_each_rcu_flavor(rsp
)
2099 __this_cpu_ptr(rsp
->rda
)->ticks_this_gp
++;
2102 #else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
2104 static void print_cpu_stall_info_begin(void)
2106 printk(KERN_CONT
" {");
2109 static void print_cpu_stall_info(struct rcu_state
*rsp
, int cpu
)
2111 printk(KERN_CONT
" %d", cpu
);
2114 static void print_cpu_stall_info_end(void)
2116 printk(KERN_CONT
"} ");
2119 static void zero_cpu_stall_ticks(struct rcu_data
*rdp
)
2123 static void increment_cpu_stall_ticks(void)
2127 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
2129 #ifdef CONFIG_RCU_NOCB_CPU
2132 * Offload callback processing from the boot-time-specified set of CPUs
2133 * specified by rcu_nocb_mask. For each CPU in the set, there is a
2134 * kthread created that pulls the callbacks from the corresponding CPU,
2135 * waits for a grace period to elapse, and invokes the callbacks.
2136 * The no-CBs CPUs do a wake_up() on their kthread when they insert
2137 * a callback into any empty list, unless the rcu_nocb_poll boot parameter
2138 * has been specified, in which case each kthread actively polls its
2139 * CPU. (Which isn't so great for energy efficiency, but which does
2140 * reduce RCU's overhead on that CPU.)
2142 * This is intended to be used in conjunction with Frederic Weisbecker's
2143 * adaptive-idle work, which would seriously reduce OS jitter on CPUs
2144 * running CPU-bound user-mode computations.
2146 * Offloading of callback processing could also in theory be used as
2147 * an energy-efficiency measure because CPUs with no RCU callbacks
2148 * queued are more aggressive about entering dyntick-idle mode.
2152 /* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
2153 static int __init
rcu_nocb_setup(char *str
)
2155 alloc_bootmem_cpumask_var(&rcu_nocb_mask
);
2156 have_rcu_nocb_mask
= true;
2157 cpulist_parse(str
, rcu_nocb_mask
);
2160 __setup("rcu_nocbs=", rcu_nocb_setup
);
2162 /* Is the specified CPU a no-CPUs CPU? */
2163 static bool is_nocb_cpu(int cpu
)
2165 if (have_rcu_nocb_mask
)
2166 return cpumask_test_cpu(cpu
, rcu_nocb_mask
);
2171 * Enqueue the specified string of rcu_head structures onto the specified
2172 * CPU's no-CBs lists. The CPU is specified by rdp, the head of the
2173 * string by rhp, and the tail of the string by rhtp. The non-lazy/lazy
2174 * counts are supplied by rhcount and rhcount_lazy.
2176 * If warranted, also wake up the kthread servicing this CPUs queues.
2178 static void __call_rcu_nocb_enqueue(struct rcu_data
*rdp
,
2179 struct rcu_head
*rhp
,
2180 struct rcu_head
**rhtp
,
2181 int rhcount
, int rhcount_lazy
)
2184 struct rcu_head
**old_rhpp
;
2185 struct task_struct
*t
;
2187 /* Enqueue the callback on the nocb list and update counts. */
2188 old_rhpp
= xchg(&rdp
->nocb_tail
, rhtp
);
2189 ACCESS_ONCE(*old_rhpp
) = rhp
;
2190 atomic_long_add(rhcount
, &rdp
->nocb_q_count
);
2191 atomic_long_add(rhcount_lazy
, &rdp
->nocb_q_count_lazy
);
2193 /* If we are not being polled and there is a kthread, awaken it ... */
2194 t
= ACCESS_ONCE(rdp
->nocb_kthread
);
2195 if (rcu_nocb_poll
| !t
)
2197 len
= atomic_long_read(&rdp
->nocb_q_count
);
2198 if (old_rhpp
== &rdp
->nocb_head
) {
2199 wake_up(&rdp
->nocb_wq
); /* ... only if queue was empty ... */
2200 rdp
->qlen_last_fqs_check
= 0;
2201 } else if (len
> rdp
->qlen_last_fqs_check
+ qhimark
) {
2202 wake_up_process(t
); /* ... or if many callbacks queued. */
2203 rdp
->qlen_last_fqs_check
= LONG_MAX
/ 2;
2209 * This is a helper for __call_rcu(), which invokes this when the normal
2210 * callback queue is inoperable. If this is not a no-CBs CPU, this
2211 * function returns failure back to __call_rcu(), which can complain
2214 * Otherwise, this function queues the callback where the corresponding
2215 * "rcuo" kthread can find it.
2217 static bool __call_rcu_nocb(struct rcu_data
*rdp
, struct rcu_head
*rhp
,
2221 if (!is_nocb_cpu(rdp
->cpu
))
2223 __call_rcu_nocb_enqueue(rdp
, rhp
, &rhp
->next
, 1, lazy
);
2228 * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
2231 static bool __maybe_unused
rcu_nocb_adopt_orphan_cbs(struct rcu_state
*rsp
,
2232 struct rcu_data
*rdp
)
2234 long ql
= rsp
->qlen
;
2235 long qll
= rsp
->qlen_lazy
;
2237 /* If this is not a no-CBs CPU, tell the caller to do it the old way. */
2238 if (!is_nocb_cpu(smp_processor_id()))
2243 /* First, enqueue the donelist, if any. This preserves CB ordering. */
2244 if (rsp
->orphan_donelist
!= NULL
) {
2245 __call_rcu_nocb_enqueue(rdp
, rsp
->orphan_donelist
,
2246 rsp
->orphan_donetail
, ql
, qll
);
2248 rsp
->orphan_donelist
= NULL
;
2249 rsp
->orphan_donetail
= &rsp
->orphan_donelist
;
2251 if (rsp
->orphan_nxtlist
!= NULL
) {
2252 __call_rcu_nocb_enqueue(rdp
, rsp
->orphan_nxtlist
,
2253 rsp
->orphan_nxttail
, ql
, qll
);
2255 rsp
->orphan_nxtlist
= NULL
;
2256 rsp
->orphan_nxttail
= &rsp
->orphan_nxtlist
;
2262 * There must be at least one non-no-CBs CPU in operation at any given
2263 * time, because no-CBs CPUs are not capable of initiating grace periods
2264 * independently. This function therefore complains if the specified
2265 * CPU is the last non-no-CBs CPU, allowing the CPU-hotplug system to
2266 * avoid offlining the last such CPU. (Recursion is a wonderful thing,
2267 * but you have to have a base case!)
2269 static bool nocb_cpu_expendable(int cpu
)
2271 cpumask_var_t non_nocb_cpus
;
2275 * If there are no no-CB CPUs or if this CPU is not a no-CB CPU,
2276 * then offlining this CPU is harmless. Let it happen.
2278 if (!have_rcu_nocb_mask
|| is_nocb_cpu(cpu
))
2281 /* If no memory, play it safe and keep the CPU around. */
2282 if (!alloc_cpumask_var(&non_nocb_cpus
, GFP_NOIO
))
2284 cpumask_andnot(non_nocb_cpus
, cpu_online_mask
, rcu_nocb_mask
);
2285 cpumask_clear_cpu(cpu
, non_nocb_cpus
);
2286 ret
= !cpumask_empty(non_nocb_cpus
);
2287 free_cpumask_var(non_nocb_cpus
);
2292 * Helper structure for remote registry of RCU callbacks.
2293 * This is needed for when a no-CBs CPU needs to start a grace period.
2294 * If it just invokes call_rcu(), the resulting callback will be queued,
2295 * which can result in deadlock.
2297 struct rcu_head_remote
{
2298 struct rcu_head
*rhp
;
2299 call_rcu_func_t
*crf
;
2300 void (*func
)(struct rcu_head
*rhp
);
2304 * Register a callback as specified by the rcu_head_remote struct.
2305 * This function is intended to be invoked via smp_call_function_single().
2307 static void call_rcu_local(void *arg
)
2309 struct rcu_head_remote
*rhrp
=
2310 container_of(arg
, struct rcu_head_remote
, rhp
);
2312 rhrp
->crf(rhrp
->rhp
, rhrp
->func
);
2316 * Set up an rcu_head_remote structure and the invoke call_rcu_local()
2317 * on CPU 0 (which is guaranteed to be a non-no-CBs CPU) via
2318 * smp_call_function_single().
2320 static void invoke_crf_remote(struct rcu_head
*rhp
,
2321 void (*func
)(struct rcu_head
*rhp
),
2322 call_rcu_func_t crf
)
2324 struct rcu_head_remote rhr
;
2329 smp_call_function_single(0, call_rcu_local
, &rhr
, 1);
2333 * Helper functions to be passed to wait_rcu_gp(), each of which
2334 * invokes invoke_crf_remote() to register a callback appropriately.
2336 static void __maybe_unused
2337 call_rcu_preempt_remote(struct rcu_head
*rhp
,
2338 void (*func
)(struct rcu_head
*rhp
))
2340 invoke_crf_remote(rhp
, func
, call_rcu
);
2342 static void call_rcu_bh_remote(struct rcu_head
*rhp
,
2343 void (*func
)(struct rcu_head
*rhp
))
2345 invoke_crf_remote(rhp
, func
, call_rcu_bh
);
2347 static void call_rcu_sched_remote(struct rcu_head
*rhp
,
2348 void (*func
)(struct rcu_head
*rhp
))
2350 invoke_crf_remote(rhp
, func
, call_rcu_sched
);
2354 * Per-rcu_data kthread, but only for no-CBs CPUs. Each kthread invokes
2355 * callbacks queued by the corresponding no-CBs CPU.
2357 static int rcu_nocb_kthread(void *arg
)
2360 struct rcu_head
*list
;
2361 struct rcu_head
*next
;
2362 struct rcu_head
**tail
;
2363 struct rcu_data
*rdp
= arg
;
2365 /* Each pass through this loop invokes one batch of callbacks */
2367 /* If not polling, wait for next batch of callbacks. */
2369 wait_event(rdp
->nocb_wq
, rdp
->nocb_head
);
2370 list
= ACCESS_ONCE(rdp
->nocb_head
);
2372 schedule_timeout_interruptible(1);
2377 * Extract queued callbacks, update counts, and wait
2378 * for a grace period to elapse.
2380 ACCESS_ONCE(rdp
->nocb_head
) = NULL
;
2381 tail
= xchg(&rdp
->nocb_tail
, &rdp
->nocb_head
);
2382 c
= atomic_long_xchg(&rdp
->nocb_q_count
, 0);
2383 cl
= atomic_long_xchg(&rdp
->nocb_q_count_lazy
, 0);
2384 ACCESS_ONCE(rdp
->nocb_p_count
) += c
;
2385 ACCESS_ONCE(rdp
->nocb_p_count_lazy
) += cl
;
2386 wait_rcu_gp(rdp
->rsp
->call_remote
);
2388 /* Each pass through the following loop invokes a callback. */
2389 trace_rcu_batch_start(rdp
->rsp
->name
, cl
, c
, -1);
2393 /* Wait for enqueuing to complete, if needed. */
2394 while (next
== NULL
&& &list
->next
!= tail
) {
2395 schedule_timeout_interruptible(1);
2398 debug_rcu_head_unqueue(list
);
2400 if (__rcu_reclaim(rdp
->rsp
->name
, list
))
2406 trace_rcu_batch_end(rdp
->rsp
->name
, c
, !!list
, 0, 0, 1);
2407 ACCESS_ONCE(rdp
->nocb_p_count
) -= c
;
2408 ACCESS_ONCE(rdp
->nocb_p_count_lazy
) -= cl
;
2409 rdp
->n_nocbs_invoked
+= c
;
2414 /* Initialize per-rcu_data variables for no-CBs CPUs. */
2415 static void __init
rcu_boot_init_nocb_percpu_data(struct rcu_data
*rdp
)
2417 rdp
->nocb_tail
= &rdp
->nocb_head
;
2418 init_waitqueue_head(&rdp
->nocb_wq
);
2421 /* Create a kthread for each RCU flavor for each no-CBs CPU. */
2422 static void __init
rcu_spawn_nocb_kthreads(struct rcu_state
*rsp
)
2425 struct rcu_data
*rdp
;
2426 struct task_struct
*t
;
2428 if (rcu_nocb_mask
== NULL
)
2430 for_each_cpu(cpu
, rcu_nocb_mask
) {
2431 rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
2432 t
= kthread_run(rcu_nocb_kthread
, rdp
, "rcuo%d", cpu
);
2434 ACCESS_ONCE(rdp
->nocb_kthread
) = t
;
2438 /* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
2439 static void init_nocb_callback_list(struct rcu_data
*rdp
)
2441 if (rcu_nocb_mask
== NULL
||
2442 !cpumask_test_cpu(rdp
->cpu
, rcu_nocb_mask
))
2444 rdp
->nxttail
[RCU_NEXT_TAIL
] = NULL
;
2447 /* Initialize the ->call_remote fields in the rcu_state structures. */
2448 static void __init
rcu_init_nocb(void)
2450 #ifdef CONFIG_PREEMPT_RCU
2451 rcu_preempt_state
.call_remote
= call_rcu_preempt_remote
;
2452 #endif /* #ifdef CONFIG_PREEMPT_RCU */
2453 rcu_bh_state
.call_remote
= call_rcu_bh_remote
;
2454 rcu_sched_state
.call_remote
= call_rcu_sched_remote
;
2457 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
2459 static bool is_nocb_cpu(int cpu
)
2464 static bool __call_rcu_nocb(struct rcu_data
*rdp
, struct rcu_head
*rhp
,
2470 static bool __maybe_unused
rcu_nocb_adopt_orphan_cbs(struct rcu_state
*rsp
,
2471 struct rcu_data
*rdp
)
2476 static bool nocb_cpu_expendable(int cpu
)
2481 static void __init
rcu_boot_init_nocb_percpu_data(struct rcu_data
*rdp
)
2485 static void __init
rcu_spawn_nocb_kthreads(struct rcu_state
*rsp
)
2489 static void init_nocb_callback_list(struct rcu_data
*rdp
)
2493 static void __init
rcu_init_nocb(void)
2497 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */