3 * Library for filesystems writers.
6 #include <linux/export.h>
7 #include <linux/pagemap.h>
8 #include <linux/slab.h>
9 #include <linux/mount.h>
10 #include <linux/vfs.h>
11 #include <linux/quotaops.h>
12 #include <linux/mutex.h>
13 #include <linux/exportfs.h>
14 #include <linux/writeback.h>
15 #include <linux/buffer_head.h> /* sync_mapping_buffers */
17 #include <asm/uaccess.h>
21 static inline int simple_positive(struct dentry
*dentry
)
23 return dentry
->d_inode
&& !d_unhashed(dentry
);
26 int simple_getattr(struct vfsmount
*mnt
, struct dentry
*dentry
,
29 struct inode
*inode
= dentry
->d_inode
;
30 generic_fillattr(inode
, stat
);
31 stat
->blocks
= inode
->i_mapping
->nrpages
<< (PAGE_CACHE_SHIFT
- 9);
35 int simple_statfs(struct dentry
*dentry
, struct kstatfs
*buf
)
37 buf
->f_type
= dentry
->d_sb
->s_magic
;
38 buf
->f_bsize
= PAGE_CACHE_SIZE
;
39 buf
->f_namelen
= NAME_MAX
;
44 * Retaining negative dentries for an in-memory filesystem just wastes
45 * memory and lookup time: arrange for them to be deleted immediately.
47 static int simple_delete_dentry(const struct dentry
*dentry
)
53 * Lookup the data. This is trivial - if the dentry didn't already
54 * exist, we know it is negative. Set d_op to delete negative dentries.
56 struct dentry
*simple_lookup(struct inode
*dir
, struct dentry
*dentry
, unsigned int flags
)
58 static const struct dentry_operations simple_dentry_operations
= {
59 .d_delete
= simple_delete_dentry
,
62 if (dentry
->d_name
.len
> NAME_MAX
)
63 return ERR_PTR(-ENAMETOOLONG
);
64 d_set_d_op(dentry
, &simple_dentry_operations
);
69 int dcache_dir_open(struct inode
*inode
, struct file
*file
)
71 static struct qstr cursor_name
= QSTR_INIT(".", 1);
73 file
->private_data
= d_alloc(file
->f_path
.dentry
, &cursor_name
);
75 return file
->private_data
? 0 : -ENOMEM
;
78 int dcache_dir_close(struct inode
*inode
, struct file
*file
)
80 dput(file
->private_data
);
84 loff_t
dcache_dir_lseek(struct file
*file
, loff_t offset
, int whence
)
86 struct dentry
*dentry
= file
->f_path
.dentry
;
87 mutex_lock(&dentry
->d_inode
->i_mutex
);
90 offset
+= file
->f_pos
;
95 mutex_unlock(&dentry
->d_inode
->i_mutex
);
98 if (offset
!= file
->f_pos
) {
100 if (file
->f_pos
>= 2) {
102 struct dentry
*cursor
= file
->private_data
;
103 loff_t n
= file
->f_pos
- 2;
105 spin_lock(&dentry
->d_lock
);
106 /* d_lock not required for cursor */
107 list_del(&cursor
->d_u
.d_child
);
108 p
= dentry
->d_subdirs
.next
;
109 while (n
&& p
!= &dentry
->d_subdirs
) {
111 next
= list_entry(p
, struct dentry
, d_u
.d_child
);
112 spin_lock_nested(&next
->d_lock
, DENTRY_D_LOCK_NESTED
);
113 if (simple_positive(next
))
115 spin_unlock(&next
->d_lock
);
118 list_add_tail(&cursor
->d_u
.d_child
, p
);
119 spin_unlock(&dentry
->d_lock
);
122 mutex_unlock(&dentry
->d_inode
->i_mutex
);
126 /* Relationship between i_mode and the DT_xxx types */
127 static inline unsigned char dt_type(struct inode
*inode
)
129 return (inode
->i_mode
>> 12) & 15;
133 * Directory is locked and all positive dentries in it are safe, since
134 * for ramfs-type trees they can't go away without unlink() or rmdir(),
135 * both impossible due to the lock on directory.
138 int dcache_readdir(struct file
*file
, struct dir_context
*ctx
)
140 struct dentry
*dentry
= file
->f_path
.dentry
;
141 struct dentry
*cursor
= file
->private_data
;
142 struct list_head
*p
, *q
= &cursor
->d_u
.d_child
;
144 if (!dir_emit_dots(file
, ctx
))
146 spin_lock(&dentry
->d_lock
);
148 list_move(q
, &dentry
->d_subdirs
);
150 for (p
= q
->next
; p
!= &dentry
->d_subdirs
; p
= p
->next
) {
151 struct dentry
*next
= list_entry(p
, struct dentry
, d_u
.d_child
);
152 spin_lock_nested(&next
->d_lock
, DENTRY_D_LOCK_NESTED
);
153 if (!simple_positive(next
)) {
154 spin_unlock(&next
->d_lock
);
158 spin_unlock(&next
->d_lock
);
159 spin_unlock(&dentry
->d_lock
);
160 if (!dir_emit(ctx
, next
->d_name
.name
, next
->d_name
.len
,
161 next
->d_inode
->i_ino
, dt_type(next
->d_inode
)))
163 spin_lock(&dentry
->d_lock
);
164 spin_lock_nested(&next
->d_lock
, DENTRY_D_LOCK_NESTED
);
165 /* next is still alive */
167 spin_unlock(&next
->d_lock
);
171 spin_unlock(&dentry
->d_lock
);
175 ssize_t
generic_read_dir(struct file
*filp
, char __user
*buf
, size_t siz
, loff_t
*ppos
)
180 const struct file_operations simple_dir_operations
= {
181 .open
= dcache_dir_open
,
182 .release
= dcache_dir_close
,
183 .llseek
= dcache_dir_lseek
,
184 .read
= generic_read_dir
,
185 .iterate
= dcache_readdir
,
189 const struct inode_operations simple_dir_inode_operations
= {
190 .lookup
= simple_lookup
,
193 static const struct super_operations simple_super_operations
= {
194 .statfs
= simple_statfs
,
198 * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
199 * will never be mountable)
201 struct dentry
*mount_pseudo(struct file_system_type
*fs_type
, char *name
,
202 const struct super_operations
*ops
,
203 const struct dentry_operations
*dops
, unsigned long magic
)
205 struct super_block
*s
;
206 struct dentry
*dentry
;
208 struct qstr d_name
= QSTR_INIT(name
, strlen(name
));
210 s
= sget(fs_type
, NULL
, set_anon_super
, MS_NOUSER
, NULL
);
214 s
->s_maxbytes
= MAX_LFS_FILESIZE
;
215 s
->s_blocksize
= PAGE_SIZE
;
216 s
->s_blocksize_bits
= PAGE_SHIFT
;
218 s
->s_op
= ops
? ops
: &simple_super_operations
;
224 * since this is the first inode, make it number 1. New inodes created
225 * after this must take care not to collide with it (by passing
226 * max_reserved of 1 to iunique).
229 root
->i_mode
= S_IFDIR
| S_IRUSR
| S_IWUSR
;
230 root
->i_atime
= root
->i_mtime
= root
->i_ctime
= CURRENT_TIME
;
231 dentry
= __d_alloc(s
, &d_name
);
236 d_instantiate(dentry
, root
);
239 s
->s_flags
|= MS_ACTIVE
;
240 return dget(s
->s_root
);
243 deactivate_locked_super(s
);
244 return ERR_PTR(-ENOMEM
);
247 int simple_open(struct inode
*inode
, struct file
*file
)
249 if (inode
->i_private
)
250 file
->private_data
= inode
->i_private
;
254 int simple_link(struct dentry
*old_dentry
, struct inode
*dir
, struct dentry
*dentry
)
256 struct inode
*inode
= old_dentry
->d_inode
;
258 inode
->i_ctime
= dir
->i_ctime
= dir
->i_mtime
= CURRENT_TIME
;
262 d_instantiate(dentry
, inode
);
266 int simple_empty(struct dentry
*dentry
)
268 struct dentry
*child
;
271 spin_lock(&dentry
->d_lock
);
272 list_for_each_entry(child
, &dentry
->d_subdirs
, d_u
.d_child
) {
273 spin_lock_nested(&child
->d_lock
, DENTRY_D_LOCK_NESTED
);
274 if (simple_positive(child
)) {
275 spin_unlock(&child
->d_lock
);
278 spin_unlock(&child
->d_lock
);
282 spin_unlock(&dentry
->d_lock
);
286 int simple_unlink(struct inode
*dir
, struct dentry
*dentry
)
288 struct inode
*inode
= dentry
->d_inode
;
290 inode
->i_ctime
= dir
->i_ctime
= dir
->i_mtime
= CURRENT_TIME
;
296 int simple_rmdir(struct inode
*dir
, struct dentry
*dentry
)
298 if (!simple_empty(dentry
))
301 drop_nlink(dentry
->d_inode
);
302 simple_unlink(dir
, dentry
);
307 int simple_rename(struct inode
*old_dir
, struct dentry
*old_dentry
,
308 struct inode
*new_dir
, struct dentry
*new_dentry
)
310 struct inode
*inode
= old_dentry
->d_inode
;
311 int they_are_dirs
= S_ISDIR(old_dentry
->d_inode
->i_mode
);
313 if (!simple_empty(new_dentry
))
316 if (new_dentry
->d_inode
) {
317 simple_unlink(new_dir
, new_dentry
);
319 drop_nlink(new_dentry
->d_inode
);
322 } else if (they_are_dirs
) {
327 old_dir
->i_ctime
= old_dir
->i_mtime
= new_dir
->i_ctime
=
328 new_dir
->i_mtime
= inode
->i_ctime
= CURRENT_TIME
;
334 * simple_setattr - setattr for simple filesystem
336 * @iattr: iattr structure
338 * Returns 0 on success, -error on failure.
340 * simple_setattr is a simple ->setattr implementation without a proper
341 * implementation of size changes.
343 * It can either be used for in-memory filesystems or special files
344 * on simple regular filesystems. Anything that needs to change on-disk
345 * or wire state on size changes needs its own setattr method.
347 int simple_setattr(struct dentry
*dentry
, struct iattr
*iattr
)
349 struct inode
*inode
= dentry
->d_inode
;
352 error
= inode_change_ok(inode
, iattr
);
356 if (iattr
->ia_valid
& ATTR_SIZE
)
357 truncate_setsize(inode
, iattr
->ia_size
);
358 setattr_copy(inode
, iattr
);
359 mark_inode_dirty(inode
);
362 EXPORT_SYMBOL(simple_setattr
);
364 int simple_readpage(struct file
*file
, struct page
*page
)
366 clear_highpage(page
);
367 flush_dcache_page(page
);
368 SetPageUptodate(page
);
373 int simple_write_begin(struct file
*file
, struct address_space
*mapping
,
374 loff_t pos
, unsigned len
, unsigned flags
,
375 struct page
**pagep
, void **fsdata
)
380 index
= pos
>> PAGE_CACHE_SHIFT
;
382 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
388 if (!PageUptodate(page
) && (len
!= PAGE_CACHE_SIZE
)) {
389 unsigned from
= pos
& (PAGE_CACHE_SIZE
- 1);
391 zero_user_segments(page
, 0, from
, from
+ len
, PAGE_CACHE_SIZE
);
397 * simple_write_end - .write_end helper for non-block-device FSes
398 * @available: See .write_end of address_space_operations
407 * simple_write_end does the minimum needed for updating a page after writing is
408 * done. It has the same API signature as the .write_end of
409 * address_space_operations vector. So it can just be set onto .write_end for
410 * FSes that don't need any other processing. i_mutex is assumed to be held.
411 * Block based filesystems should use generic_write_end().
412 * NOTE: Even though i_size might get updated by this function, mark_inode_dirty
413 * is not called, so a filesystem that actually does store data in .write_inode
414 * should extend on what's done here with a call to mark_inode_dirty() in the
415 * case that i_size has changed.
417 int simple_write_end(struct file
*file
, struct address_space
*mapping
,
418 loff_t pos
, unsigned len
, unsigned copied
,
419 struct page
*page
, void *fsdata
)
421 struct inode
*inode
= page
->mapping
->host
;
422 loff_t last_pos
= pos
+ copied
;
424 /* zero the stale part of the page if we did a short copy */
426 unsigned from
= pos
& (PAGE_CACHE_SIZE
- 1);
428 zero_user(page
, from
+ copied
, len
- copied
);
431 if (!PageUptodate(page
))
432 SetPageUptodate(page
);
434 * No need to use i_size_read() here, the i_size
435 * cannot change under us because we hold the i_mutex.
437 if (last_pos
> inode
->i_size
)
438 i_size_write(inode
, last_pos
);
440 set_page_dirty(page
);
442 page_cache_release(page
);
448 * the inodes created here are not hashed. If you use iunique to generate
449 * unique inode values later for this filesystem, then you must take care
450 * to pass it an appropriate max_reserved value to avoid collisions.
452 int simple_fill_super(struct super_block
*s
, unsigned long magic
,
453 struct tree_descr
*files
)
457 struct dentry
*dentry
;
460 s
->s_blocksize
= PAGE_CACHE_SIZE
;
461 s
->s_blocksize_bits
= PAGE_CACHE_SHIFT
;
463 s
->s_op
= &simple_super_operations
;
466 inode
= new_inode(s
);
470 * because the root inode is 1, the files array must not contain an
474 inode
->i_mode
= S_IFDIR
| 0755;
475 inode
->i_atime
= inode
->i_mtime
= inode
->i_ctime
= CURRENT_TIME
;
476 inode
->i_op
= &simple_dir_inode_operations
;
477 inode
->i_fop
= &simple_dir_operations
;
479 root
= d_make_root(inode
);
482 for (i
= 0; !files
->name
|| files
->name
[0]; i
++, files
++) {
486 /* warn if it tries to conflict with the root inode */
487 if (unlikely(i
== 1))
488 printk(KERN_WARNING
"%s: %s passed in a files array"
489 "with an index of 1!\n", __func__
,
492 dentry
= d_alloc_name(root
, files
->name
);
495 inode
= new_inode(s
);
500 inode
->i_mode
= S_IFREG
| files
->mode
;
501 inode
->i_atime
= inode
->i_mtime
= inode
->i_ctime
= CURRENT_TIME
;
502 inode
->i_fop
= files
->ops
;
504 d_add(dentry
, inode
);
510 shrink_dcache_parent(root
);
515 static DEFINE_SPINLOCK(pin_fs_lock
);
517 int simple_pin_fs(struct file_system_type
*type
, struct vfsmount
**mount
, int *count
)
519 struct vfsmount
*mnt
= NULL
;
520 spin_lock(&pin_fs_lock
);
521 if (unlikely(!*mount
)) {
522 spin_unlock(&pin_fs_lock
);
523 mnt
= vfs_kern_mount(type
, MS_KERNMOUNT
, type
->name
, NULL
);
526 spin_lock(&pin_fs_lock
);
532 spin_unlock(&pin_fs_lock
);
537 void simple_release_fs(struct vfsmount
**mount
, int *count
)
539 struct vfsmount
*mnt
;
540 spin_lock(&pin_fs_lock
);
544 spin_unlock(&pin_fs_lock
);
549 * simple_read_from_buffer - copy data from the buffer to user space
550 * @to: the user space buffer to read to
551 * @count: the maximum number of bytes to read
552 * @ppos: the current position in the buffer
553 * @from: the buffer to read from
554 * @available: the size of the buffer
556 * The simple_read_from_buffer() function reads up to @count bytes from the
557 * buffer @from at offset @ppos into the user space address starting at @to.
559 * On success, the number of bytes read is returned and the offset @ppos is
560 * advanced by this number, or negative value is returned on error.
562 ssize_t
simple_read_from_buffer(void __user
*to
, size_t count
, loff_t
*ppos
,
563 const void *from
, size_t available
)
570 if (pos
>= available
|| !count
)
572 if (count
> available
- pos
)
573 count
= available
- pos
;
574 ret
= copy_to_user(to
, from
+ pos
, count
);
583 * simple_write_to_buffer - copy data from user space to the buffer
584 * @to: the buffer to write to
585 * @available: the size of the buffer
586 * @ppos: the current position in the buffer
587 * @from: the user space buffer to read from
588 * @count: the maximum number of bytes to read
590 * The simple_write_to_buffer() function reads up to @count bytes from the user
591 * space address starting at @from into the buffer @to at offset @ppos.
593 * On success, the number of bytes written is returned and the offset @ppos is
594 * advanced by this number, or negative value is returned on error.
596 ssize_t
simple_write_to_buffer(void *to
, size_t available
, loff_t
*ppos
,
597 const void __user
*from
, size_t count
)
604 if (pos
>= available
|| !count
)
606 if (count
> available
- pos
)
607 count
= available
- pos
;
608 res
= copy_from_user(to
+ pos
, from
, count
);
617 * memory_read_from_buffer - copy data from the buffer
618 * @to: the kernel space buffer to read to
619 * @count: the maximum number of bytes to read
620 * @ppos: the current position in the buffer
621 * @from: the buffer to read from
622 * @available: the size of the buffer
624 * The memory_read_from_buffer() function reads up to @count bytes from the
625 * buffer @from at offset @ppos into the kernel space address starting at @to.
627 * On success, the number of bytes read is returned and the offset @ppos is
628 * advanced by this number, or negative value is returned on error.
630 ssize_t
memory_read_from_buffer(void *to
, size_t count
, loff_t
*ppos
,
631 const void *from
, size_t available
)
637 if (pos
>= available
)
639 if (count
> available
- pos
)
640 count
= available
- pos
;
641 memcpy(to
, from
+ pos
, count
);
648 * Transaction based IO.
649 * The file expects a single write which triggers the transaction, and then
650 * possibly a read which collects the result - which is stored in a
654 void simple_transaction_set(struct file
*file
, size_t n
)
656 struct simple_transaction_argresp
*ar
= file
->private_data
;
658 BUG_ON(n
> SIMPLE_TRANSACTION_LIMIT
);
661 * The barrier ensures that ar->size will really remain zero until
662 * ar->data is ready for reading.
668 char *simple_transaction_get(struct file
*file
, const char __user
*buf
, size_t size
)
670 struct simple_transaction_argresp
*ar
;
671 static DEFINE_SPINLOCK(simple_transaction_lock
);
673 if (size
> SIMPLE_TRANSACTION_LIMIT
- 1)
674 return ERR_PTR(-EFBIG
);
676 ar
= (struct simple_transaction_argresp
*)get_zeroed_page(GFP_KERNEL
);
678 return ERR_PTR(-ENOMEM
);
680 spin_lock(&simple_transaction_lock
);
682 /* only one write allowed per open */
683 if (file
->private_data
) {
684 spin_unlock(&simple_transaction_lock
);
685 free_page((unsigned long)ar
);
686 return ERR_PTR(-EBUSY
);
689 file
->private_data
= ar
;
691 spin_unlock(&simple_transaction_lock
);
693 if (copy_from_user(ar
->data
, buf
, size
))
694 return ERR_PTR(-EFAULT
);
699 ssize_t
simple_transaction_read(struct file
*file
, char __user
*buf
, size_t size
, loff_t
*pos
)
701 struct simple_transaction_argresp
*ar
= file
->private_data
;
705 return simple_read_from_buffer(buf
, size
, pos
, ar
->data
, ar
->size
);
708 int simple_transaction_release(struct inode
*inode
, struct file
*file
)
710 free_page((unsigned long)file
->private_data
);
714 /* Simple attribute files */
717 int (*get
)(void *, u64
*);
718 int (*set
)(void *, u64
);
719 char get_buf
[24]; /* enough to store a u64 and "\n\0" */
722 const char *fmt
; /* format for read operation */
723 struct mutex mutex
; /* protects access to these buffers */
726 /* simple_attr_open is called by an actual attribute open file operation
727 * to set the attribute specific access operations. */
728 int simple_attr_open(struct inode
*inode
, struct file
*file
,
729 int (*get
)(void *, u64
*), int (*set
)(void *, u64
),
732 struct simple_attr
*attr
;
734 attr
= kmalloc(sizeof(*attr
), GFP_KERNEL
);
740 attr
->data
= inode
->i_private
;
742 mutex_init(&attr
->mutex
);
744 file
->private_data
= attr
;
746 return nonseekable_open(inode
, file
);
749 int simple_attr_release(struct inode
*inode
, struct file
*file
)
751 kfree(file
->private_data
);
755 /* read from the buffer that is filled with the get function */
756 ssize_t
simple_attr_read(struct file
*file
, char __user
*buf
,
757 size_t len
, loff_t
*ppos
)
759 struct simple_attr
*attr
;
763 attr
= file
->private_data
;
768 ret
= mutex_lock_interruptible(&attr
->mutex
);
772 if (*ppos
) { /* continued read */
773 size
= strlen(attr
->get_buf
);
774 } else { /* first read */
776 ret
= attr
->get(attr
->data
, &val
);
780 size
= scnprintf(attr
->get_buf
, sizeof(attr
->get_buf
),
781 attr
->fmt
, (unsigned long long)val
);
784 ret
= simple_read_from_buffer(buf
, len
, ppos
, attr
->get_buf
, size
);
786 mutex_unlock(&attr
->mutex
);
790 /* interpret the buffer as a number to call the set function with */
791 ssize_t
simple_attr_write(struct file
*file
, const char __user
*buf
,
792 size_t len
, loff_t
*ppos
)
794 struct simple_attr
*attr
;
799 attr
= file
->private_data
;
803 ret
= mutex_lock_interruptible(&attr
->mutex
);
808 size
= min(sizeof(attr
->set_buf
) - 1, len
);
809 if (copy_from_user(attr
->set_buf
, buf
, size
))
812 attr
->set_buf
[size
] = '\0';
813 val
= simple_strtoll(attr
->set_buf
, NULL
, 0);
814 ret
= attr
->set(attr
->data
, val
);
816 ret
= len
; /* on success, claim we got the whole input */
818 mutex_unlock(&attr
->mutex
);
823 * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
824 * @sb: filesystem to do the file handle conversion on
825 * @fid: file handle to convert
826 * @fh_len: length of the file handle in bytes
827 * @fh_type: type of file handle
828 * @get_inode: filesystem callback to retrieve inode
830 * This function decodes @fid as long as it has one of the well-known
831 * Linux filehandle types and calls @get_inode on it to retrieve the
832 * inode for the object specified in the file handle.
834 struct dentry
*generic_fh_to_dentry(struct super_block
*sb
, struct fid
*fid
,
835 int fh_len
, int fh_type
, struct inode
*(*get_inode
)
836 (struct super_block
*sb
, u64 ino
, u32 gen
))
838 struct inode
*inode
= NULL
;
844 case FILEID_INO32_GEN
:
845 case FILEID_INO32_GEN_PARENT
:
846 inode
= get_inode(sb
, fid
->i32
.ino
, fid
->i32
.gen
);
850 return d_obtain_alias(inode
);
852 EXPORT_SYMBOL_GPL(generic_fh_to_dentry
);
855 * generic_fh_to_parent - generic helper for the fh_to_parent export operation
856 * @sb: filesystem to do the file handle conversion on
857 * @fid: file handle to convert
858 * @fh_len: length of the file handle in bytes
859 * @fh_type: type of file handle
860 * @get_inode: filesystem callback to retrieve inode
862 * This function decodes @fid as long as it has one of the well-known
863 * Linux filehandle types and calls @get_inode on it to retrieve the
864 * inode for the _parent_ object specified in the file handle if it
865 * is specified in the file handle, or NULL otherwise.
867 struct dentry
*generic_fh_to_parent(struct super_block
*sb
, struct fid
*fid
,
868 int fh_len
, int fh_type
, struct inode
*(*get_inode
)
869 (struct super_block
*sb
, u64 ino
, u32 gen
))
871 struct inode
*inode
= NULL
;
877 case FILEID_INO32_GEN_PARENT
:
878 inode
= get_inode(sb
, fid
->i32
.parent_ino
,
879 (fh_len
> 3 ? fid
->i32
.parent_gen
: 0));
883 return d_obtain_alias(inode
);
885 EXPORT_SYMBOL_GPL(generic_fh_to_parent
);
888 * generic_file_fsync - generic fsync implementation for simple filesystems
889 * @file: file to synchronize
890 * @datasync: only synchronize essential metadata if true
892 * This is a generic implementation of the fsync method for simple
893 * filesystems which track all non-inode metadata in the buffers list
894 * hanging off the address_space structure.
896 int generic_file_fsync(struct file
*file
, loff_t start
, loff_t end
,
899 struct inode
*inode
= file
->f_mapping
->host
;
903 err
= filemap_write_and_wait_range(inode
->i_mapping
, start
, end
);
907 mutex_lock(&inode
->i_mutex
);
908 ret
= sync_mapping_buffers(inode
->i_mapping
);
909 if (!(inode
->i_state
& I_DIRTY
))
911 if (datasync
&& !(inode
->i_state
& I_DIRTY_DATASYNC
))
914 err
= sync_inode_metadata(inode
, 1);
918 mutex_unlock(&inode
->i_mutex
);
921 EXPORT_SYMBOL(generic_file_fsync
);
924 * generic_check_addressable - Check addressability of file system
925 * @blocksize_bits: log of file system block size
926 * @num_blocks: number of blocks in file system
928 * Determine whether a file system with @num_blocks blocks (and a
929 * block size of 2**@blocksize_bits) is addressable by the sector_t
930 * and page cache of the system. Return 0 if so and -EFBIG otherwise.
932 int generic_check_addressable(unsigned blocksize_bits
, u64 num_blocks
)
934 u64 last_fs_block
= num_blocks
- 1;
936 last_fs_block
>> (PAGE_CACHE_SHIFT
- blocksize_bits
);
938 if (unlikely(num_blocks
== 0))
941 if ((blocksize_bits
< 9) || (blocksize_bits
> PAGE_CACHE_SHIFT
))
944 if ((last_fs_block
> (sector_t
)(~0ULL) >> (blocksize_bits
- 9)) ||
945 (last_fs_page
> (pgoff_t
)(~0ULL))) {
950 EXPORT_SYMBOL(generic_check_addressable
);
953 * No-op implementation of ->fsync for in-memory filesystems.
955 int noop_fsync(struct file
*file
, loff_t start
, loff_t end
, int datasync
)
960 EXPORT_SYMBOL(dcache_dir_close
);
961 EXPORT_SYMBOL(dcache_dir_lseek
);
962 EXPORT_SYMBOL(dcache_dir_open
);
963 EXPORT_SYMBOL(dcache_readdir
);
964 EXPORT_SYMBOL(generic_read_dir
);
965 EXPORT_SYMBOL(mount_pseudo
);
966 EXPORT_SYMBOL(simple_write_begin
);
967 EXPORT_SYMBOL(simple_write_end
);
968 EXPORT_SYMBOL(simple_dir_inode_operations
);
969 EXPORT_SYMBOL(simple_dir_operations
);
970 EXPORT_SYMBOL(simple_empty
);
971 EXPORT_SYMBOL(simple_fill_super
);
972 EXPORT_SYMBOL(simple_getattr
);
973 EXPORT_SYMBOL(simple_open
);
974 EXPORT_SYMBOL(simple_link
);
975 EXPORT_SYMBOL(simple_lookup
);
976 EXPORT_SYMBOL(simple_pin_fs
);
977 EXPORT_SYMBOL(simple_readpage
);
978 EXPORT_SYMBOL(simple_release_fs
);
979 EXPORT_SYMBOL(simple_rename
);
980 EXPORT_SYMBOL(simple_rmdir
);
981 EXPORT_SYMBOL(simple_statfs
);
982 EXPORT_SYMBOL(noop_fsync
);
983 EXPORT_SYMBOL(simple_unlink
);
984 EXPORT_SYMBOL(simple_read_from_buffer
);
985 EXPORT_SYMBOL(simple_write_to_buffer
);
986 EXPORT_SYMBOL(memory_read_from_buffer
);
987 EXPORT_SYMBOL(simple_transaction_set
);
988 EXPORT_SYMBOL(simple_transaction_get
);
989 EXPORT_SYMBOL(simple_transaction_read
);
990 EXPORT_SYMBOL(simple_transaction_release
);
991 EXPORT_SYMBOL_GPL(simple_attr_open
);
992 EXPORT_SYMBOL_GPL(simple_attr_release
);
993 EXPORT_SYMBOL_GPL(simple_attr_read
);
994 EXPORT_SYMBOL_GPL(simple_attr_write
);