net: via-rhine: remove unnecessary pci_set_drvdata()
[linux-2.6.git] / drivers / net / ethernet / via / via-rhine.c
blob4a7293ed95e9c124b84ec87cabf1a9c1ef6ab1f9
1 /* via-rhine.c: A Linux Ethernet device driver for VIA Rhine family chips. */
2 /*
3 Written 1998-2001 by Donald Becker.
5 Current Maintainer: Roger Luethi <rl@hellgate.ch>
7 This software may be used and distributed according to the terms of
8 the GNU General Public License (GPL), incorporated herein by reference.
9 Drivers based on or derived from this code fall under the GPL and must
10 retain the authorship, copyright and license notice. This file is not
11 a complete program and may only be used when the entire operating
12 system is licensed under the GPL.
14 This driver is designed for the VIA VT86C100A Rhine-I.
15 It also works with the Rhine-II (6102) and Rhine-III (6105/6105L/6105LOM
16 and management NIC 6105M).
18 The author may be reached as becker@scyld.com, or C/O
19 Scyld Computing Corporation
20 410 Severn Ave., Suite 210
21 Annapolis MD 21403
24 This driver contains some changes from the original Donald Becker
25 version. He may or may not be interested in bug reports on this
26 code. You can find his versions at:
27 http://www.scyld.com/network/via-rhine.html
28 [link no longer provides useful info -jgarzik]
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
34 #define DRV_NAME "via-rhine"
35 #define DRV_VERSION "1.5.1"
36 #define DRV_RELDATE "2010-10-09"
38 #include <linux/types.h>
40 /* A few user-configurable values.
41 These may be modified when a driver module is loaded. */
42 static int debug = 0;
43 #define RHINE_MSG_DEFAULT \
44 (0x0000)
46 /* Set the copy breakpoint for the copy-only-tiny-frames scheme.
47 Setting to > 1518 effectively disables this feature. */
48 #if defined(__alpha__) || defined(__arm__) || defined(__hppa__) || \
49 defined(CONFIG_SPARC) || defined(__ia64__) || \
50 defined(__sh__) || defined(__mips__)
51 static int rx_copybreak = 1518;
52 #else
53 static int rx_copybreak;
54 #endif
56 /* Work-around for broken BIOSes: they are unable to get the chip back out of
57 power state D3 so PXE booting fails. bootparam(7): via-rhine.avoid_D3=1 */
58 static bool avoid_D3;
61 * In case you are looking for 'options[]' or 'full_duplex[]', they
62 * are gone. Use ethtool(8) instead.
65 /* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
66 The Rhine has a 64 element 8390-like hash table. */
67 static const int multicast_filter_limit = 32;
70 /* Operational parameters that are set at compile time. */
72 /* Keep the ring sizes a power of two for compile efficiency.
73 The compiler will convert <unsigned>'%'<2^N> into a bit mask.
74 Making the Tx ring too large decreases the effectiveness of channel
75 bonding and packet priority.
76 There are no ill effects from too-large receive rings. */
77 #define TX_RING_SIZE 16
78 #define TX_QUEUE_LEN 10 /* Limit ring entries actually used. */
79 #define RX_RING_SIZE 64
81 /* Operational parameters that usually are not changed. */
83 /* Time in jiffies before concluding the transmitter is hung. */
84 #define TX_TIMEOUT (2*HZ)
86 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
88 #include <linux/module.h>
89 #include <linux/moduleparam.h>
90 #include <linux/kernel.h>
91 #include <linux/string.h>
92 #include <linux/timer.h>
93 #include <linux/errno.h>
94 #include <linux/ioport.h>
95 #include <linux/interrupt.h>
96 #include <linux/pci.h>
97 #include <linux/dma-mapping.h>
98 #include <linux/netdevice.h>
99 #include <linux/etherdevice.h>
100 #include <linux/skbuff.h>
101 #include <linux/init.h>
102 #include <linux/delay.h>
103 #include <linux/mii.h>
104 #include <linux/ethtool.h>
105 #include <linux/crc32.h>
106 #include <linux/if_vlan.h>
107 #include <linux/bitops.h>
108 #include <linux/workqueue.h>
109 #include <asm/processor.h> /* Processor type for cache alignment. */
110 #include <asm/io.h>
111 #include <asm/irq.h>
112 #include <asm/uaccess.h>
113 #include <linux/dmi.h>
115 /* These identify the driver base version and may not be removed. */
116 static const char version[] =
117 "v1.10-LK" DRV_VERSION " " DRV_RELDATE " Written by Donald Becker";
119 /* This driver was written to use PCI memory space. Some early versions
120 of the Rhine may only work correctly with I/O space accesses. */
121 #ifdef CONFIG_VIA_RHINE_MMIO
122 #define USE_MMIO
123 #else
124 #endif
126 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
127 MODULE_DESCRIPTION("VIA Rhine PCI Fast Ethernet driver");
128 MODULE_LICENSE("GPL");
130 module_param(debug, int, 0);
131 module_param(rx_copybreak, int, 0);
132 module_param(avoid_D3, bool, 0);
133 MODULE_PARM_DESC(debug, "VIA Rhine debug message flags");
134 MODULE_PARM_DESC(rx_copybreak, "VIA Rhine copy breakpoint for copy-only-tiny-frames");
135 MODULE_PARM_DESC(avoid_D3, "Avoid power state D3 (work-around for broken BIOSes)");
137 #define MCAM_SIZE 32
138 #define VCAM_SIZE 32
141 Theory of Operation
143 I. Board Compatibility
145 This driver is designed for the VIA 86c100A Rhine-II PCI Fast Ethernet
146 controller.
148 II. Board-specific settings
150 Boards with this chip are functional only in a bus-master PCI slot.
152 Many operational settings are loaded from the EEPROM to the Config word at
153 offset 0x78. For most of these settings, this driver assumes that they are
154 correct.
155 If this driver is compiled to use PCI memory space operations the EEPROM
156 must be configured to enable memory ops.
158 III. Driver operation
160 IIIa. Ring buffers
162 This driver uses two statically allocated fixed-size descriptor lists
163 formed into rings by a branch from the final descriptor to the beginning of
164 the list. The ring sizes are set at compile time by RX/TX_RING_SIZE.
166 IIIb/c. Transmit/Receive Structure
168 This driver attempts to use a zero-copy receive and transmit scheme.
170 Alas, all data buffers are required to start on a 32 bit boundary, so
171 the driver must often copy transmit packets into bounce buffers.
173 The driver allocates full frame size skbuffs for the Rx ring buffers at
174 open() time and passes the skb->data field to the chip as receive data
175 buffers. When an incoming frame is less than RX_COPYBREAK bytes long,
176 a fresh skbuff is allocated and the frame is copied to the new skbuff.
177 When the incoming frame is larger, the skbuff is passed directly up the
178 protocol stack. Buffers consumed this way are replaced by newly allocated
179 skbuffs in the last phase of rhine_rx().
181 The RX_COPYBREAK value is chosen to trade-off the memory wasted by
182 using a full-sized skbuff for small frames vs. the copying costs of larger
183 frames. New boards are typically used in generously configured machines
184 and the underfilled buffers have negligible impact compared to the benefit of
185 a single allocation size, so the default value of zero results in never
186 copying packets. When copying is done, the cost is usually mitigated by using
187 a combined copy/checksum routine. Copying also preloads the cache, which is
188 most useful with small frames.
190 Since the VIA chips are only able to transfer data to buffers on 32 bit
191 boundaries, the IP header at offset 14 in an ethernet frame isn't
192 longword aligned for further processing. Copying these unaligned buffers
193 has the beneficial effect of 16-byte aligning the IP header.
195 IIId. Synchronization
197 The driver runs as two independent, single-threaded flows of control. One
198 is the send-packet routine, which enforces single-threaded use by the
199 netdev_priv(dev)->lock spinlock. The other thread is the interrupt handler,
200 which is single threaded by the hardware and interrupt handling software.
202 The send packet thread has partial control over the Tx ring. It locks the
203 netdev_priv(dev)->lock whenever it's queuing a Tx packet. If the next slot in
204 the ring is not available it stops the transmit queue by
205 calling netif_stop_queue.
207 The interrupt handler has exclusive control over the Rx ring and records stats
208 from the Tx ring. After reaping the stats, it marks the Tx queue entry as
209 empty by incrementing the dirty_tx mark. If at least half of the entries in
210 the Rx ring are available the transmit queue is woken up if it was stopped.
212 IV. Notes
214 IVb. References
216 Preliminary VT86C100A manual from http://www.via.com.tw/
217 http://www.scyld.com/expert/100mbps.html
218 http://www.scyld.com/expert/NWay.html
219 ftp://ftp.via.com.tw/public/lan/Products/NIC/VT86C100A/Datasheet/VT86C100A03.pdf
220 ftp://ftp.via.com.tw/public/lan/Products/NIC/VT6102/Datasheet/VT6102_021.PDF
223 IVc. Errata
225 The VT86C100A manual is not reliable information.
226 The 3043 chip does not handle unaligned transmit or receive buffers, resulting
227 in significant performance degradation for bounce buffer copies on transmit
228 and unaligned IP headers on receive.
229 The chip does not pad to minimum transmit length.
234 /* This table drives the PCI probe routines. It's mostly boilerplate in all
235 of the drivers, and will likely be provided by some future kernel.
236 Note the matching code -- the first table entry matchs all 56** cards but
237 second only the 1234 card.
240 enum rhine_revs {
241 VT86C100A = 0x00,
242 VTunknown0 = 0x20,
243 VT6102 = 0x40,
244 VT8231 = 0x50, /* Integrated MAC */
245 VT8233 = 0x60, /* Integrated MAC */
246 VT8235 = 0x74, /* Integrated MAC */
247 VT8237 = 0x78, /* Integrated MAC */
248 VTunknown1 = 0x7C,
249 VT6105 = 0x80,
250 VT6105_B0 = 0x83,
251 VT6105L = 0x8A,
252 VT6107 = 0x8C,
253 VTunknown2 = 0x8E,
254 VT6105M = 0x90, /* Management adapter */
257 enum rhine_quirks {
258 rqWOL = 0x0001, /* Wake-On-LAN support */
259 rqForceReset = 0x0002,
260 rq6patterns = 0x0040, /* 6 instead of 4 patterns for WOL */
261 rqStatusWBRace = 0x0080, /* Tx Status Writeback Error possible */
262 rqRhineI = 0x0100, /* See comment below */
265 * rqRhineI: VT86C100A (aka Rhine-I) uses different bits to enable
266 * MMIO as well as for the collision counter and the Tx FIFO underflow
267 * indicator. In addition, Tx and Rx buffers need to 4 byte aligned.
270 /* Beware of PCI posted writes */
271 #define IOSYNC do { ioread8(ioaddr + StationAddr); } while (0)
273 static DEFINE_PCI_DEVICE_TABLE(rhine_pci_tbl) = {
274 { 0x1106, 0x3043, PCI_ANY_ID, PCI_ANY_ID, }, /* VT86C100A */
275 { 0x1106, 0x3065, PCI_ANY_ID, PCI_ANY_ID, }, /* VT6102 */
276 { 0x1106, 0x3106, PCI_ANY_ID, PCI_ANY_ID, }, /* 6105{,L,LOM} */
277 { 0x1106, 0x3053, PCI_ANY_ID, PCI_ANY_ID, }, /* VT6105M */
278 { } /* terminate list */
280 MODULE_DEVICE_TABLE(pci, rhine_pci_tbl);
283 /* Offsets to the device registers. */
284 enum register_offsets {
285 StationAddr=0x00, RxConfig=0x06, TxConfig=0x07, ChipCmd=0x08,
286 ChipCmd1=0x09, TQWake=0x0A,
287 IntrStatus=0x0C, IntrEnable=0x0E,
288 MulticastFilter0=0x10, MulticastFilter1=0x14,
289 RxRingPtr=0x18, TxRingPtr=0x1C, GFIFOTest=0x54,
290 MIIPhyAddr=0x6C, MIIStatus=0x6D, PCIBusConfig=0x6E, PCIBusConfig1=0x6F,
291 MIICmd=0x70, MIIRegAddr=0x71, MIIData=0x72, MACRegEEcsr=0x74,
292 ConfigA=0x78, ConfigB=0x79, ConfigC=0x7A, ConfigD=0x7B,
293 RxMissed=0x7C, RxCRCErrs=0x7E, MiscCmd=0x81,
294 StickyHW=0x83, IntrStatus2=0x84,
295 CamMask=0x88, CamCon=0x92, CamAddr=0x93,
296 WOLcrSet=0xA0, PwcfgSet=0xA1, WOLcgSet=0xA3, WOLcrClr=0xA4,
297 WOLcrClr1=0xA6, WOLcgClr=0xA7,
298 PwrcsrSet=0xA8, PwrcsrSet1=0xA9, PwrcsrClr=0xAC, PwrcsrClr1=0xAD,
301 /* Bits in ConfigD */
302 enum backoff_bits {
303 BackOptional=0x01, BackModify=0x02,
304 BackCaptureEffect=0x04, BackRandom=0x08
307 /* Bits in the TxConfig (TCR) register */
308 enum tcr_bits {
309 TCR_PQEN=0x01,
310 TCR_LB0=0x02, /* loopback[0] */
311 TCR_LB1=0x04, /* loopback[1] */
312 TCR_OFSET=0x08,
313 TCR_RTGOPT=0x10,
314 TCR_RTFT0=0x20,
315 TCR_RTFT1=0x40,
316 TCR_RTSF=0x80,
319 /* Bits in the CamCon (CAMC) register */
320 enum camcon_bits {
321 CAMC_CAMEN=0x01,
322 CAMC_VCAMSL=0x02,
323 CAMC_CAMWR=0x04,
324 CAMC_CAMRD=0x08,
327 /* Bits in the PCIBusConfig1 (BCR1) register */
328 enum bcr1_bits {
329 BCR1_POT0=0x01,
330 BCR1_POT1=0x02,
331 BCR1_POT2=0x04,
332 BCR1_CTFT0=0x08,
333 BCR1_CTFT1=0x10,
334 BCR1_CTSF=0x20,
335 BCR1_TXQNOBK=0x40, /* for VT6105 */
336 BCR1_VIDFR=0x80, /* for VT6105 */
337 BCR1_MED0=0x40, /* for VT6102 */
338 BCR1_MED1=0x80, /* for VT6102 */
341 #ifdef USE_MMIO
342 /* Registers we check that mmio and reg are the same. */
343 static const int mmio_verify_registers[] = {
344 RxConfig, TxConfig, IntrEnable, ConfigA, ConfigB, ConfigC, ConfigD,
347 #endif
349 /* Bits in the interrupt status/mask registers. */
350 enum intr_status_bits {
351 IntrRxDone = 0x0001,
352 IntrTxDone = 0x0002,
353 IntrRxErr = 0x0004,
354 IntrTxError = 0x0008,
355 IntrRxEmpty = 0x0020,
356 IntrPCIErr = 0x0040,
357 IntrStatsMax = 0x0080,
358 IntrRxEarly = 0x0100,
359 IntrTxUnderrun = 0x0210,
360 IntrRxOverflow = 0x0400,
361 IntrRxDropped = 0x0800,
362 IntrRxNoBuf = 0x1000,
363 IntrTxAborted = 0x2000,
364 IntrLinkChange = 0x4000,
365 IntrRxWakeUp = 0x8000,
366 IntrTxDescRace = 0x080000, /* mapped from IntrStatus2 */
367 IntrNormalSummary = IntrRxDone | IntrTxDone,
368 IntrTxErrSummary = IntrTxDescRace | IntrTxAborted | IntrTxError |
369 IntrTxUnderrun,
372 /* Bits in WOLcrSet/WOLcrClr and PwrcsrSet/PwrcsrClr */
373 enum wol_bits {
374 WOLucast = 0x10,
375 WOLmagic = 0x20,
376 WOLbmcast = 0x30,
377 WOLlnkon = 0x40,
378 WOLlnkoff = 0x80,
381 /* The Rx and Tx buffer descriptors. */
382 struct rx_desc {
383 __le32 rx_status;
384 __le32 desc_length; /* Chain flag, Buffer/frame length */
385 __le32 addr;
386 __le32 next_desc;
388 struct tx_desc {
389 __le32 tx_status;
390 __le32 desc_length; /* Chain flag, Tx Config, Frame length */
391 __le32 addr;
392 __le32 next_desc;
395 /* Initial value for tx_desc.desc_length, Buffer size goes to bits 0-10 */
396 #define TXDESC 0x00e08000
398 enum rx_status_bits {
399 RxOK=0x8000, RxWholePkt=0x0300, RxErr=0x008F
402 /* Bits in *_desc.*_status */
403 enum desc_status_bits {
404 DescOwn=0x80000000
407 /* Bits in *_desc.*_length */
408 enum desc_length_bits {
409 DescTag=0x00010000
412 /* Bits in ChipCmd. */
413 enum chip_cmd_bits {
414 CmdInit=0x01, CmdStart=0x02, CmdStop=0x04, CmdRxOn=0x08,
415 CmdTxOn=0x10, Cmd1TxDemand=0x20, CmdRxDemand=0x40,
416 Cmd1EarlyRx=0x01, Cmd1EarlyTx=0x02, Cmd1FDuplex=0x04,
417 Cmd1NoTxPoll=0x08, Cmd1Reset=0x80,
420 struct rhine_stats {
421 u64 packets;
422 u64 bytes;
423 struct u64_stats_sync syncp;
426 struct rhine_private {
427 /* Bit mask for configured VLAN ids */
428 unsigned long active_vlans[BITS_TO_LONGS(VLAN_N_VID)];
430 /* Descriptor rings */
431 struct rx_desc *rx_ring;
432 struct tx_desc *tx_ring;
433 dma_addr_t rx_ring_dma;
434 dma_addr_t tx_ring_dma;
436 /* The addresses of receive-in-place skbuffs. */
437 struct sk_buff *rx_skbuff[RX_RING_SIZE];
438 dma_addr_t rx_skbuff_dma[RX_RING_SIZE];
440 /* The saved address of a sent-in-place packet/buffer, for later free(). */
441 struct sk_buff *tx_skbuff[TX_RING_SIZE];
442 dma_addr_t tx_skbuff_dma[TX_RING_SIZE];
444 /* Tx bounce buffers (Rhine-I only) */
445 unsigned char *tx_buf[TX_RING_SIZE];
446 unsigned char *tx_bufs;
447 dma_addr_t tx_bufs_dma;
449 struct pci_dev *pdev;
450 long pioaddr;
451 struct net_device *dev;
452 struct napi_struct napi;
453 spinlock_t lock;
454 struct mutex task_lock;
455 bool task_enable;
456 struct work_struct slow_event_task;
457 struct work_struct reset_task;
459 u32 msg_enable;
461 /* Frequently used values: keep some adjacent for cache effect. */
462 u32 quirks;
463 struct rx_desc *rx_head_desc;
464 unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */
465 unsigned int cur_tx, dirty_tx;
466 unsigned int rx_buf_sz; /* Based on MTU+slack. */
467 struct rhine_stats rx_stats;
468 struct rhine_stats tx_stats;
469 u8 wolopts;
471 u8 tx_thresh, rx_thresh;
473 struct mii_if_info mii_if;
474 void __iomem *base;
477 #define BYTE_REG_BITS_ON(x, p) do { iowrite8((ioread8((p))|(x)), (p)); } while (0)
478 #define WORD_REG_BITS_ON(x, p) do { iowrite16((ioread16((p))|(x)), (p)); } while (0)
479 #define DWORD_REG_BITS_ON(x, p) do { iowrite32((ioread32((p))|(x)), (p)); } while (0)
481 #define BYTE_REG_BITS_IS_ON(x, p) (ioread8((p)) & (x))
482 #define WORD_REG_BITS_IS_ON(x, p) (ioread16((p)) & (x))
483 #define DWORD_REG_BITS_IS_ON(x, p) (ioread32((p)) & (x))
485 #define BYTE_REG_BITS_OFF(x, p) do { iowrite8(ioread8((p)) & (~(x)), (p)); } while (0)
486 #define WORD_REG_BITS_OFF(x, p) do { iowrite16(ioread16((p)) & (~(x)), (p)); } while (0)
487 #define DWORD_REG_BITS_OFF(x, p) do { iowrite32(ioread32((p)) & (~(x)), (p)); } while (0)
489 #define BYTE_REG_BITS_SET(x, m, p) do { iowrite8((ioread8((p)) & (~(m)))|(x), (p)); } while (0)
490 #define WORD_REG_BITS_SET(x, m, p) do { iowrite16((ioread16((p)) & (~(m)))|(x), (p)); } while (0)
491 #define DWORD_REG_BITS_SET(x, m, p) do { iowrite32((ioread32((p)) & (~(m)))|(x), (p)); } while (0)
494 static int mdio_read(struct net_device *dev, int phy_id, int location);
495 static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
496 static int rhine_open(struct net_device *dev);
497 static void rhine_reset_task(struct work_struct *work);
498 static void rhine_slow_event_task(struct work_struct *work);
499 static void rhine_tx_timeout(struct net_device *dev);
500 static netdev_tx_t rhine_start_tx(struct sk_buff *skb,
501 struct net_device *dev);
502 static irqreturn_t rhine_interrupt(int irq, void *dev_instance);
503 static void rhine_tx(struct net_device *dev);
504 static int rhine_rx(struct net_device *dev, int limit);
505 static void rhine_set_rx_mode(struct net_device *dev);
506 static struct rtnl_link_stats64 *rhine_get_stats64(struct net_device *dev,
507 struct rtnl_link_stats64 *stats);
508 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
509 static const struct ethtool_ops netdev_ethtool_ops;
510 static int rhine_close(struct net_device *dev);
511 static int rhine_vlan_rx_add_vid(struct net_device *dev,
512 __be16 proto, u16 vid);
513 static int rhine_vlan_rx_kill_vid(struct net_device *dev,
514 __be16 proto, u16 vid);
515 static void rhine_restart_tx(struct net_device *dev);
517 static void rhine_wait_bit(struct rhine_private *rp, u8 reg, u8 mask, bool low)
519 void __iomem *ioaddr = rp->base;
520 int i;
522 for (i = 0; i < 1024; i++) {
523 bool has_mask_bits = !!(ioread8(ioaddr + reg) & mask);
525 if (low ^ has_mask_bits)
526 break;
527 udelay(10);
529 if (i > 64) {
530 netif_dbg(rp, hw, rp->dev, "%s bit wait (%02x/%02x) cycle "
531 "count: %04d\n", low ? "low" : "high", reg, mask, i);
535 static void rhine_wait_bit_high(struct rhine_private *rp, u8 reg, u8 mask)
537 rhine_wait_bit(rp, reg, mask, false);
540 static void rhine_wait_bit_low(struct rhine_private *rp, u8 reg, u8 mask)
542 rhine_wait_bit(rp, reg, mask, true);
545 static u32 rhine_get_events(struct rhine_private *rp)
547 void __iomem *ioaddr = rp->base;
548 u32 intr_status;
550 intr_status = ioread16(ioaddr + IntrStatus);
551 /* On Rhine-II, Bit 3 indicates Tx descriptor write-back race. */
552 if (rp->quirks & rqStatusWBRace)
553 intr_status |= ioread8(ioaddr + IntrStatus2) << 16;
554 return intr_status;
557 static void rhine_ack_events(struct rhine_private *rp, u32 mask)
559 void __iomem *ioaddr = rp->base;
561 if (rp->quirks & rqStatusWBRace)
562 iowrite8(mask >> 16, ioaddr + IntrStatus2);
563 iowrite16(mask, ioaddr + IntrStatus);
564 mmiowb();
568 * Get power related registers into sane state.
569 * Notify user about past WOL event.
571 static void rhine_power_init(struct net_device *dev)
573 struct rhine_private *rp = netdev_priv(dev);
574 void __iomem *ioaddr = rp->base;
575 u16 wolstat;
577 if (rp->quirks & rqWOL) {
578 /* Make sure chip is in power state D0 */
579 iowrite8(ioread8(ioaddr + StickyHW) & 0xFC, ioaddr + StickyHW);
581 /* Disable "force PME-enable" */
582 iowrite8(0x80, ioaddr + WOLcgClr);
584 /* Clear power-event config bits (WOL) */
585 iowrite8(0xFF, ioaddr + WOLcrClr);
586 /* More recent cards can manage two additional patterns */
587 if (rp->quirks & rq6patterns)
588 iowrite8(0x03, ioaddr + WOLcrClr1);
590 /* Save power-event status bits */
591 wolstat = ioread8(ioaddr + PwrcsrSet);
592 if (rp->quirks & rq6patterns)
593 wolstat |= (ioread8(ioaddr + PwrcsrSet1) & 0x03) << 8;
595 /* Clear power-event status bits */
596 iowrite8(0xFF, ioaddr + PwrcsrClr);
597 if (rp->quirks & rq6patterns)
598 iowrite8(0x03, ioaddr + PwrcsrClr1);
600 if (wolstat) {
601 char *reason;
602 switch (wolstat) {
603 case WOLmagic:
604 reason = "Magic packet";
605 break;
606 case WOLlnkon:
607 reason = "Link went up";
608 break;
609 case WOLlnkoff:
610 reason = "Link went down";
611 break;
612 case WOLucast:
613 reason = "Unicast packet";
614 break;
615 case WOLbmcast:
616 reason = "Multicast/broadcast packet";
617 break;
618 default:
619 reason = "Unknown";
621 netdev_info(dev, "Woke system up. Reason: %s\n",
622 reason);
627 static void rhine_chip_reset(struct net_device *dev)
629 struct rhine_private *rp = netdev_priv(dev);
630 void __iomem *ioaddr = rp->base;
631 u8 cmd1;
633 iowrite8(Cmd1Reset, ioaddr + ChipCmd1);
634 IOSYNC;
636 if (ioread8(ioaddr + ChipCmd1) & Cmd1Reset) {
637 netdev_info(dev, "Reset not complete yet. Trying harder.\n");
639 /* Force reset */
640 if (rp->quirks & rqForceReset)
641 iowrite8(0x40, ioaddr + MiscCmd);
643 /* Reset can take somewhat longer (rare) */
644 rhine_wait_bit_low(rp, ChipCmd1, Cmd1Reset);
647 cmd1 = ioread8(ioaddr + ChipCmd1);
648 netif_info(rp, hw, dev, "Reset %s\n", (cmd1 & Cmd1Reset) ?
649 "failed" : "succeeded");
652 #ifdef USE_MMIO
653 static void enable_mmio(long pioaddr, u32 quirks)
655 int n;
656 if (quirks & rqRhineI) {
657 /* More recent docs say that this bit is reserved ... */
658 n = inb(pioaddr + ConfigA) | 0x20;
659 outb(n, pioaddr + ConfigA);
660 } else {
661 n = inb(pioaddr + ConfigD) | 0x80;
662 outb(n, pioaddr + ConfigD);
665 #endif
668 * Loads bytes 0x00-0x05, 0x6E-0x6F, 0x78-0x7B from EEPROM
669 * (plus 0x6C for Rhine-I/II)
671 static void rhine_reload_eeprom(long pioaddr, struct net_device *dev)
673 struct rhine_private *rp = netdev_priv(dev);
674 void __iomem *ioaddr = rp->base;
675 int i;
677 outb(0x20, pioaddr + MACRegEEcsr);
678 for (i = 0; i < 1024; i++) {
679 if (!(inb(pioaddr + MACRegEEcsr) & 0x20))
680 break;
682 if (i > 512)
683 pr_info("%4d cycles used @ %s:%d\n", i, __func__, __LINE__);
685 #ifdef USE_MMIO
687 * Reloading from EEPROM overwrites ConfigA-D, so we must re-enable
688 * MMIO. If reloading EEPROM was done first this could be avoided, but
689 * it is not known if that still works with the "win98-reboot" problem.
691 enable_mmio(pioaddr, rp->quirks);
692 #endif
694 /* Turn off EEPROM-controlled wake-up (magic packet) */
695 if (rp->quirks & rqWOL)
696 iowrite8(ioread8(ioaddr + ConfigA) & 0xFC, ioaddr + ConfigA);
700 #ifdef CONFIG_NET_POLL_CONTROLLER
701 static void rhine_poll(struct net_device *dev)
703 struct rhine_private *rp = netdev_priv(dev);
704 const int irq = rp->pdev->irq;
706 disable_irq(irq);
707 rhine_interrupt(irq, dev);
708 enable_irq(irq);
710 #endif
712 static void rhine_kick_tx_threshold(struct rhine_private *rp)
714 if (rp->tx_thresh < 0xe0) {
715 void __iomem *ioaddr = rp->base;
717 rp->tx_thresh += 0x20;
718 BYTE_REG_BITS_SET(rp->tx_thresh, 0x80, ioaddr + TxConfig);
722 static void rhine_tx_err(struct rhine_private *rp, u32 status)
724 struct net_device *dev = rp->dev;
726 if (status & IntrTxAborted) {
727 netif_info(rp, tx_err, dev,
728 "Abort %08x, frame dropped\n", status);
731 if (status & IntrTxUnderrun) {
732 rhine_kick_tx_threshold(rp);
733 netif_info(rp, tx_err ,dev, "Transmitter underrun, "
734 "Tx threshold now %02x\n", rp->tx_thresh);
737 if (status & IntrTxDescRace)
738 netif_info(rp, tx_err, dev, "Tx descriptor write-back race\n");
740 if ((status & IntrTxError) &&
741 (status & (IntrTxAborted | IntrTxUnderrun | IntrTxDescRace)) == 0) {
742 rhine_kick_tx_threshold(rp);
743 netif_info(rp, tx_err, dev, "Unspecified error. "
744 "Tx threshold now %02x\n", rp->tx_thresh);
747 rhine_restart_tx(dev);
750 static void rhine_update_rx_crc_and_missed_errord(struct rhine_private *rp)
752 void __iomem *ioaddr = rp->base;
753 struct net_device_stats *stats = &rp->dev->stats;
755 stats->rx_crc_errors += ioread16(ioaddr + RxCRCErrs);
756 stats->rx_missed_errors += ioread16(ioaddr + RxMissed);
759 * Clears the "tally counters" for CRC errors and missed frames(?).
760 * It has been reported that some chips need a write of 0 to clear
761 * these, for others the counters are set to 1 when written to and
762 * instead cleared when read. So we clear them both ways ...
764 iowrite32(0, ioaddr + RxMissed);
765 ioread16(ioaddr + RxCRCErrs);
766 ioread16(ioaddr + RxMissed);
769 #define RHINE_EVENT_NAPI_RX (IntrRxDone | \
770 IntrRxErr | \
771 IntrRxEmpty | \
772 IntrRxOverflow | \
773 IntrRxDropped | \
774 IntrRxNoBuf | \
775 IntrRxWakeUp)
777 #define RHINE_EVENT_NAPI_TX_ERR (IntrTxError | \
778 IntrTxAborted | \
779 IntrTxUnderrun | \
780 IntrTxDescRace)
781 #define RHINE_EVENT_NAPI_TX (IntrTxDone | RHINE_EVENT_NAPI_TX_ERR)
783 #define RHINE_EVENT_NAPI (RHINE_EVENT_NAPI_RX | \
784 RHINE_EVENT_NAPI_TX | \
785 IntrStatsMax)
786 #define RHINE_EVENT_SLOW (IntrPCIErr | IntrLinkChange)
787 #define RHINE_EVENT (RHINE_EVENT_NAPI | RHINE_EVENT_SLOW)
789 static int rhine_napipoll(struct napi_struct *napi, int budget)
791 struct rhine_private *rp = container_of(napi, struct rhine_private, napi);
792 struct net_device *dev = rp->dev;
793 void __iomem *ioaddr = rp->base;
794 u16 enable_mask = RHINE_EVENT & 0xffff;
795 int work_done = 0;
796 u32 status;
798 status = rhine_get_events(rp);
799 rhine_ack_events(rp, status & ~RHINE_EVENT_SLOW);
801 if (status & RHINE_EVENT_NAPI_RX)
802 work_done += rhine_rx(dev, budget);
804 if (status & RHINE_EVENT_NAPI_TX) {
805 if (status & RHINE_EVENT_NAPI_TX_ERR) {
806 /* Avoid scavenging before Tx engine turned off */
807 rhine_wait_bit_low(rp, ChipCmd, CmdTxOn);
808 if (ioread8(ioaddr + ChipCmd) & CmdTxOn)
809 netif_warn(rp, tx_err, dev, "Tx still on\n");
812 rhine_tx(dev);
814 if (status & RHINE_EVENT_NAPI_TX_ERR)
815 rhine_tx_err(rp, status);
818 if (status & IntrStatsMax) {
819 spin_lock(&rp->lock);
820 rhine_update_rx_crc_and_missed_errord(rp);
821 spin_unlock(&rp->lock);
824 if (status & RHINE_EVENT_SLOW) {
825 enable_mask &= ~RHINE_EVENT_SLOW;
826 schedule_work(&rp->slow_event_task);
829 if (work_done < budget) {
830 napi_complete(napi);
831 iowrite16(enable_mask, ioaddr + IntrEnable);
832 mmiowb();
834 return work_done;
837 static void rhine_hw_init(struct net_device *dev, long pioaddr)
839 struct rhine_private *rp = netdev_priv(dev);
841 /* Reset the chip to erase previous misconfiguration. */
842 rhine_chip_reset(dev);
844 /* Rhine-I needs extra time to recuperate before EEPROM reload */
845 if (rp->quirks & rqRhineI)
846 msleep(5);
848 /* Reload EEPROM controlled bytes cleared by soft reset */
849 rhine_reload_eeprom(pioaddr, dev);
852 static const struct net_device_ops rhine_netdev_ops = {
853 .ndo_open = rhine_open,
854 .ndo_stop = rhine_close,
855 .ndo_start_xmit = rhine_start_tx,
856 .ndo_get_stats64 = rhine_get_stats64,
857 .ndo_set_rx_mode = rhine_set_rx_mode,
858 .ndo_change_mtu = eth_change_mtu,
859 .ndo_validate_addr = eth_validate_addr,
860 .ndo_set_mac_address = eth_mac_addr,
861 .ndo_do_ioctl = netdev_ioctl,
862 .ndo_tx_timeout = rhine_tx_timeout,
863 .ndo_vlan_rx_add_vid = rhine_vlan_rx_add_vid,
864 .ndo_vlan_rx_kill_vid = rhine_vlan_rx_kill_vid,
865 #ifdef CONFIG_NET_POLL_CONTROLLER
866 .ndo_poll_controller = rhine_poll,
867 #endif
870 static int rhine_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
872 struct net_device *dev;
873 struct rhine_private *rp;
874 int i, rc;
875 u32 quirks;
876 long pioaddr;
877 long memaddr;
878 void __iomem *ioaddr;
879 int io_size, phy_id;
880 const char *name;
881 #ifdef USE_MMIO
882 int bar = 1;
883 #else
884 int bar = 0;
885 #endif
887 /* when built into the kernel, we only print version if device is found */
888 #ifndef MODULE
889 pr_info_once("%s\n", version);
890 #endif
892 io_size = 256;
893 phy_id = 0;
894 quirks = 0;
895 name = "Rhine";
896 if (pdev->revision < VTunknown0) {
897 quirks = rqRhineI;
898 io_size = 128;
900 else if (pdev->revision >= VT6102) {
901 quirks = rqWOL | rqForceReset;
902 if (pdev->revision < VT6105) {
903 name = "Rhine II";
904 quirks |= rqStatusWBRace; /* Rhine-II exclusive */
906 else {
907 phy_id = 1; /* Integrated PHY, phy_id fixed to 1 */
908 if (pdev->revision >= VT6105_B0)
909 quirks |= rq6patterns;
910 if (pdev->revision < VT6105M)
911 name = "Rhine III";
912 else
913 name = "Rhine III (Management Adapter)";
917 rc = pci_enable_device(pdev);
918 if (rc)
919 goto err_out;
921 /* this should always be supported */
922 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
923 if (rc) {
924 dev_err(&pdev->dev,
925 "32-bit PCI DMA addresses not supported by the card!?\n");
926 goto err_out;
929 /* sanity check */
930 if ((pci_resource_len(pdev, 0) < io_size) ||
931 (pci_resource_len(pdev, 1) < io_size)) {
932 rc = -EIO;
933 dev_err(&pdev->dev, "Insufficient PCI resources, aborting\n");
934 goto err_out;
937 pioaddr = pci_resource_start(pdev, 0);
938 memaddr = pci_resource_start(pdev, 1);
940 pci_set_master(pdev);
942 dev = alloc_etherdev(sizeof(struct rhine_private));
943 if (!dev) {
944 rc = -ENOMEM;
945 goto err_out;
947 SET_NETDEV_DEV(dev, &pdev->dev);
949 rp = netdev_priv(dev);
950 rp->dev = dev;
951 rp->quirks = quirks;
952 rp->pioaddr = pioaddr;
953 rp->pdev = pdev;
954 rp->msg_enable = netif_msg_init(debug, RHINE_MSG_DEFAULT);
956 rc = pci_request_regions(pdev, DRV_NAME);
957 if (rc)
958 goto err_out_free_netdev;
960 ioaddr = pci_iomap(pdev, bar, io_size);
961 if (!ioaddr) {
962 rc = -EIO;
963 dev_err(&pdev->dev,
964 "ioremap failed for device %s, region 0x%X @ 0x%lX\n",
965 pci_name(pdev), io_size, memaddr);
966 goto err_out_free_res;
969 #ifdef USE_MMIO
970 enable_mmio(pioaddr, quirks);
972 /* Check that selected MMIO registers match the PIO ones */
973 i = 0;
974 while (mmio_verify_registers[i]) {
975 int reg = mmio_verify_registers[i++];
976 unsigned char a = inb(pioaddr+reg);
977 unsigned char b = readb(ioaddr+reg);
978 if (a != b) {
979 rc = -EIO;
980 dev_err(&pdev->dev,
981 "MMIO do not match PIO [%02x] (%02x != %02x)\n",
982 reg, a, b);
983 goto err_out_unmap;
986 #endif /* USE_MMIO */
988 rp->base = ioaddr;
990 /* Get chip registers into a sane state */
991 rhine_power_init(dev);
992 rhine_hw_init(dev, pioaddr);
994 for (i = 0; i < 6; i++)
995 dev->dev_addr[i] = ioread8(ioaddr + StationAddr + i);
997 if (!is_valid_ether_addr(dev->dev_addr)) {
998 /* Report it and use a random ethernet address instead */
999 netdev_err(dev, "Invalid MAC address: %pM\n", dev->dev_addr);
1000 eth_hw_addr_random(dev);
1001 netdev_info(dev, "Using random MAC address: %pM\n",
1002 dev->dev_addr);
1005 /* For Rhine-I/II, phy_id is loaded from EEPROM */
1006 if (!phy_id)
1007 phy_id = ioread8(ioaddr + 0x6C);
1009 spin_lock_init(&rp->lock);
1010 mutex_init(&rp->task_lock);
1011 INIT_WORK(&rp->reset_task, rhine_reset_task);
1012 INIT_WORK(&rp->slow_event_task, rhine_slow_event_task);
1014 rp->mii_if.dev = dev;
1015 rp->mii_if.mdio_read = mdio_read;
1016 rp->mii_if.mdio_write = mdio_write;
1017 rp->mii_if.phy_id_mask = 0x1f;
1018 rp->mii_if.reg_num_mask = 0x1f;
1020 /* The chip-specific entries in the device structure. */
1021 dev->netdev_ops = &rhine_netdev_ops;
1022 dev->ethtool_ops = &netdev_ethtool_ops,
1023 dev->watchdog_timeo = TX_TIMEOUT;
1025 netif_napi_add(dev, &rp->napi, rhine_napipoll, 64);
1027 if (rp->quirks & rqRhineI)
1028 dev->features |= NETIF_F_SG|NETIF_F_HW_CSUM;
1030 if (pdev->revision >= VT6105M)
1031 dev->features |= NETIF_F_HW_VLAN_CTAG_TX |
1032 NETIF_F_HW_VLAN_CTAG_RX |
1033 NETIF_F_HW_VLAN_CTAG_FILTER;
1035 /* dev->name not defined before register_netdev()! */
1036 rc = register_netdev(dev);
1037 if (rc)
1038 goto err_out_unmap;
1040 netdev_info(dev, "VIA %s at 0x%lx, %pM, IRQ %d\n",
1041 name,
1042 #ifdef USE_MMIO
1043 memaddr,
1044 #else
1045 (long)ioaddr,
1046 #endif
1047 dev->dev_addr, pdev->irq);
1049 pci_set_drvdata(pdev, dev);
1052 u16 mii_cmd;
1053 int mii_status = mdio_read(dev, phy_id, 1);
1054 mii_cmd = mdio_read(dev, phy_id, MII_BMCR) & ~BMCR_ISOLATE;
1055 mdio_write(dev, phy_id, MII_BMCR, mii_cmd);
1056 if (mii_status != 0xffff && mii_status != 0x0000) {
1057 rp->mii_if.advertising = mdio_read(dev, phy_id, 4);
1058 netdev_info(dev,
1059 "MII PHY found at address %d, status 0x%04x advertising %04x Link %04x\n",
1060 phy_id,
1061 mii_status, rp->mii_if.advertising,
1062 mdio_read(dev, phy_id, 5));
1064 /* set IFF_RUNNING */
1065 if (mii_status & BMSR_LSTATUS)
1066 netif_carrier_on(dev);
1067 else
1068 netif_carrier_off(dev);
1072 rp->mii_if.phy_id = phy_id;
1073 if (avoid_D3)
1074 netif_info(rp, probe, dev, "No D3 power state at shutdown\n");
1076 return 0;
1078 err_out_unmap:
1079 pci_iounmap(pdev, ioaddr);
1080 err_out_free_res:
1081 pci_release_regions(pdev);
1082 err_out_free_netdev:
1083 free_netdev(dev);
1084 err_out:
1085 return rc;
1088 static int alloc_ring(struct net_device* dev)
1090 struct rhine_private *rp = netdev_priv(dev);
1091 void *ring;
1092 dma_addr_t ring_dma;
1094 ring = pci_alloc_consistent(rp->pdev,
1095 RX_RING_SIZE * sizeof(struct rx_desc) +
1096 TX_RING_SIZE * sizeof(struct tx_desc),
1097 &ring_dma);
1098 if (!ring) {
1099 netdev_err(dev, "Could not allocate DMA memory\n");
1100 return -ENOMEM;
1102 if (rp->quirks & rqRhineI) {
1103 rp->tx_bufs = pci_alloc_consistent(rp->pdev,
1104 PKT_BUF_SZ * TX_RING_SIZE,
1105 &rp->tx_bufs_dma);
1106 if (rp->tx_bufs == NULL) {
1107 pci_free_consistent(rp->pdev,
1108 RX_RING_SIZE * sizeof(struct rx_desc) +
1109 TX_RING_SIZE * sizeof(struct tx_desc),
1110 ring, ring_dma);
1111 return -ENOMEM;
1115 rp->rx_ring = ring;
1116 rp->tx_ring = ring + RX_RING_SIZE * sizeof(struct rx_desc);
1117 rp->rx_ring_dma = ring_dma;
1118 rp->tx_ring_dma = ring_dma + RX_RING_SIZE * sizeof(struct rx_desc);
1120 return 0;
1123 static void free_ring(struct net_device* dev)
1125 struct rhine_private *rp = netdev_priv(dev);
1127 pci_free_consistent(rp->pdev,
1128 RX_RING_SIZE * sizeof(struct rx_desc) +
1129 TX_RING_SIZE * sizeof(struct tx_desc),
1130 rp->rx_ring, rp->rx_ring_dma);
1131 rp->tx_ring = NULL;
1133 if (rp->tx_bufs)
1134 pci_free_consistent(rp->pdev, PKT_BUF_SZ * TX_RING_SIZE,
1135 rp->tx_bufs, rp->tx_bufs_dma);
1137 rp->tx_bufs = NULL;
1141 static void alloc_rbufs(struct net_device *dev)
1143 struct rhine_private *rp = netdev_priv(dev);
1144 dma_addr_t next;
1145 int i;
1147 rp->dirty_rx = rp->cur_rx = 0;
1149 rp->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
1150 rp->rx_head_desc = &rp->rx_ring[0];
1151 next = rp->rx_ring_dma;
1153 /* Init the ring entries */
1154 for (i = 0; i < RX_RING_SIZE; i++) {
1155 rp->rx_ring[i].rx_status = 0;
1156 rp->rx_ring[i].desc_length = cpu_to_le32(rp->rx_buf_sz);
1157 next += sizeof(struct rx_desc);
1158 rp->rx_ring[i].next_desc = cpu_to_le32(next);
1159 rp->rx_skbuff[i] = NULL;
1161 /* Mark the last entry as wrapping the ring. */
1162 rp->rx_ring[i-1].next_desc = cpu_to_le32(rp->rx_ring_dma);
1164 /* Fill in the Rx buffers. Handle allocation failure gracefully. */
1165 for (i = 0; i < RX_RING_SIZE; i++) {
1166 struct sk_buff *skb = netdev_alloc_skb(dev, rp->rx_buf_sz);
1167 rp->rx_skbuff[i] = skb;
1168 if (skb == NULL)
1169 break;
1171 rp->rx_skbuff_dma[i] =
1172 pci_map_single(rp->pdev, skb->data, rp->rx_buf_sz,
1173 PCI_DMA_FROMDEVICE);
1174 if (dma_mapping_error(&rp->pdev->dev, rp->rx_skbuff_dma[i])) {
1175 rp->rx_skbuff_dma[i] = 0;
1176 dev_kfree_skb(skb);
1177 break;
1179 rp->rx_ring[i].addr = cpu_to_le32(rp->rx_skbuff_dma[i]);
1180 rp->rx_ring[i].rx_status = cpu_to_le32(DescOwn);
1182 rp->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
1185 static void free_rbufs(struct net_device* dev)
1187 struct rhine_private *rp = netdev_priv(dev);
1188 int i;
1190 /* Free all the skbuffs in the Rx queue. */
1191 for (i = 0; i < RX_RING_SIZE; i++) {
1192 rp->rx_ring[i].rx_status = 0;
1193 rp->rx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
1194 if (rp->rx_skbuff[i]) {
1195 pci_unmap_single(rp->pdev,
1196 rp->rx_skbuff_dma[i],
1197 rp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1198 dev_kfree_skb(rp->rx_skbuff[i]);
1200 rp->rx_skbuff[i] = NULL;
1204 static void alloc_tbufs(struct net_device* dev)
1206 struct rhine_private *rp = netdev_priv(dev);
1207 dma_addr_t next;
1208 int i;
1210 rp->dirty_tx = rp->cur_tx = 0;
1211 next = rp->tx_ring_dma;
1212 for (i = 0; i < TX_RING_SIZE; i++) {
1213 rp->tx_skbuff[i] = NULL;
1214 rp->tx_ring[i].tx_status = 0;
1215 rp->tx_ring[i].desc_length = cpu_to_le32(TXDESC);
1216 next += sizeof(struct tx_desc);
1217 rp->tx_ring[i].next_desc = cpu_to_le32(next);
1218 if (rp->quirks & rqRhineI)
1219 rp->tx_buf[i] = &rp->tx_bufs[i * PKT_BUF_SZ];
1221 rp->tx_ring[i-1].next_desc = cpu_to_le32(rp->tx_ring_dma);
1225 static void free_tbufs(struct net_device* dev)
1227 struct rhine_private *rp = netdev_priv(dev);
1228 int i;
1230 for (i = 0; i < TX_RING_SIZE; i++) {
1231 rp->tx_ring[i].tx_status = 0;
1232 rp->tx_ring[i].desc_length = cpu_to_le32(TXDESC);
1233 rp->tx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
1234 if (rp->tx_skbuff[i]) {
1235 if (rp->tx_skbuff_dma[i]) {
1236 pci_unmap_single(rp->pdev,
1237 rp->tx_skbuff_dma[i],
1238 rp->tx_skbuff[i]->len,
1239 PCI_DMA_TODEVICE);
1241 dev_kfree_skb(rp->tx_skbuff[i]);
1243 rp->tx_skbuff[i] = NULL;
1244 rp->tx_buf[i] = NULL;
1248 static void rhine_check_media(struct net_device *dev, unsigned int init_media)
1250 struct rhine_private *rp = netdev_priv(dev);
1251 void __iomem *ioaddr = rp->base;
1253 mii_check_media(&rp->mii_if, netif_msg_link(rp), init_media);
1255 if (rp->mii_if.full_duplex)
1256 iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1FDuplex,
1257 ioaddr + ChipCmd1);
1258 else
1259 iowrite8(ioread8(ioaddr + ChipCmd1) & ~Cmd1FDuplex,
1260 ioaddr + ChipCmd1);
1262 netif_info(rp, link, dev, "force_media %d, carrier %d\n",
1263 rp->mii_if.force_media, netif_carrier_ok(dev));
1266 /* Called after status of force_media possibly changed */
1267 static void rhine_set_carrier(struct mii_if_info *mii)
1269 struct net_device *dev = mii->dev;
1270 struct rhine_private *rp = netdev_priv(dev);
1272 if (mii->force_media) {
1273 /* autoneg is off: Link is always assumed to be up */
1274 if (!netif_carrier_ok(dev))
1275 netif_carrier_on(dev);
1276 } else /* Let MMI library update carrier status */
1277 rhine_check_media(dev, 0);
1279 netif_info(rp, link, dev, "force_media %d, carrier %d\n",
1280 mii->force_media, netif_carrier_ok(dev));
1284 * rhine_set_cam - set CAM multicast filters
1285 * @ioaddr: register block of this Rhine
1286 * @idx: multicast CAM index [0..MCAM_SIZE-1]
1287 * @addr: multicast address (6 bytes)
1289 * Load addresses into multicast filters.
1291 static void rhine_set_cam(void __iomem *ioaddr, int idx, u8 *addr)
1293 int i;
1295 iowrite8(CAMC_CAMEN, ioaddr + CamCon);
1296 wmb();
1298 /* Paranoid -- idx out of range should never happen */
1299 idx &= (MCAM_SIZE - 1);
1301 iowrite8((u8) idx, ioaddr + CamAddr);
1303 for (i = 0; i < 6; i++, addr++)
1304 iowrite8(*addr, ioaddr + MulticastFilter0 + i);
1305 udelay(10);
1306 wmb();
1308 iowrite8(CAMC_CAMWR | CAMC_CAMEN, ioaddr + CamCon);
1309 udelay(10);
1311 iowrite8(0, ioaddr + CamCon);
1315 * rhine_set_vlan_cam - set CAM VLAN filters
1316 * @ioaddr: register block of this Rhine
1317 * @idx: VLAN CAM index [0..VCAM_SIZE-1]
1318 * @addr: VLAN ID (2 bytes)
1320 * Load addresses into VLAN filters.
1322 static void rhine_set_vlan_cam(void __iomem *ioaddr, int idx, u8 *addr)
1324 iowrite8(CAMC_CAMEN | CAMC_VCAMSL, ioaddr + CamCon);
1325 wmb();
1327 /* Paranoid -- idx out of range should never happen */
1328 idx &= (VCAM_SIZE - 1);
1330 iowrite8((u8) idx, ioaddr + CamAddr);
1332 iowrite16(*((u16 *) addr), ioaddr + MulticastFilter0 + 6);
1333 udelay(10);
1334 wmb();
1336 iowrite8(CAMC_CAMWR | CAMC_CAMEN, ioaddr + CamCon);
1337 udelay(10);
1339 iowrite8(0, ioaddr + CamCon);
1343 * rhine_set_cam_mask - set multicast CAM mask
1344 * @ioaddr: register block of this Rhine
1345 * @mask: multicast CAM mask
1347 * Mask sets multicast filters active/inactive.
1349 static void rhine_set_cam_mask(void __iomem *ioaddr, u32 mask)
1351 iowrite8(CAMC_CAMEN, ioaddr + CamCon);
1352 wmb();
1354 /* write mask */
1355 iowrite32(mask, ioaddr + CamMask);
1357 /* disable CAMEN */
1358 iowrite8(0, ioaddr + CamCon);
1362 * rhine_set_vlan_cam_mask - set VLAN CAM mask
1363 * @ioaddr: register block of this Rhine
1364 * @mask: VLAN CAM mask
1366 * Mask sets VLAN filters active/inactive.
1368 static void rhine_set_vlan_cam_mask(void __iomem *ioaddr, u32 mask)
1370 iowrite8(CAMC_CAMEN | CAMC_VCAMSL, ioaddr + CamCon);
1371 wmb();
1373 /* write mask */
1374 iowrite32(mask, ioaddr + CamMask);
1376 /* disable CAMEN */
1377 iowrite8(0, ioaddr + CamCon);
1381 * rhine_init_cam_filter - initialize CAM filters
1382 * @dev: network device
1384 * Initialize (disable) hardware VLAN and multicast support on this
1385 * Rhine.
1387 static void rhine_init_cam_filter(struct net_device *dev)
1389 struct rhine_private *rp = netdev_priv(dev);
1390 void __iomem *ioaddr = rp->base;
1392 /* Disable all CAMs */
1393 rhine_set_vlan_cam_mask(ioaddr, 0);
1394 rhine_set_cam_mask(ioaddr, 0);
1396 /* disable hardware VLAN support */
1397 BYTE_REG_BITS_ON(TCR_PQEN, ioaddr + TxConfig);
1398 BYTE_REG_BITS_OFF(BCR1_VIDFR, ioaddr + PCIBusConfig1);
1402 * rhine_update_vcam - update VLAN CAM filters
1403 * @rp: rhine_private data of this Rhine
1405 * Update VLAN CAM filters to match configuration change.
1407 static void rhine_update_vcam(struct net_device *dev)
1409 struct rhine_private *rp = netdev_priv(dev);
1410 void __iomem *ioaddr = rp->base;
1411 u16 vid;
1412 u32 vCAMmask = 0; /* 32 vCAMs (6105M and better) */
1413 unsigned int i = 0;
1415 for_each_set_bit(vid, rp->active_vlans, VLAN_N_VID) {
1416 rhine_set_vlan_cam(ioaddr, i, (u8 *)&vid);
1417 vCAMmask |= 1 << i;
1418 if (++i >= VCAM_SIZE)
1419 break;
1421 rhine_set_vlan_cam_mask(ioaddr, vCAMmask);
1424 static int rhine_vlan_rx_add_vid(struct net_device *dev, __be16 proto, u16 vid)
1426 struct rhine_private *rp = netdev_priv(dev);
1428 spin_lock_bh(&rp->lock);
1429 set_bit(vid, rp->active_vlans);
1430 rhine_update_vcam(dev);
1431 spin_unlock_bh(&rp->lock);
1432 return 0;
1435 static int rhine_vlan_rx_kill_vid(struct net_device *dev, __be16 proto, u16 vid)
1437 struct rhine_private *rp = netdev_priv(dev);
1439 spin_lock_bh(&rp->lock);
1440 clear_bit(vid, rp->active_vlans);
1441 rhine_update_vcam(dev);
1442 spin_unlock_bh(&rp->lock);
1443 return 0;
1446 static void init_registers(struct net_device *dev)
1448 struct rhine_private *rp = netdev_priv(dev);
1449 void __iomem *ioaddr = rp->base;
1450 int i;
1452 for (i = 0; i < 6; i++)
1453 iowrite8(dev->dev_addr[i], ioaddr + StationAddr + i);
1455 /* Initialize other registers. */
1456 iowrite16(0x0006, ioaddr + PCIBusConfig); /* Tune configuration??? */
1457 /* Configure initial FIFO thresholds. */
1458 iowrite8(0x20, ioaddr + TxConfig);
1459 rp->tx_thresh = 0x20;
1460 rp->rx_thresh = 0x60; /* Written in rhine_set_rx_mode(). */
1462 iowrite32(rp->rx_ring_dma, ioaddr + RxRingPtr);
1463 iowrite32(rp->tx_ring_dma, ioaddr + TxRingPtr);
1465 rhine_set_rx_mode(dev);
1467 if (rp->pdev->revision >= VT6105M)
1468 rhine_init_cam_filter(dev);
1470 napi_enable(&rp->napi);
1472 iowrite16(RHINE_EVENT & 0xffff, ioaddr + IntrEnable);
1474 iowrite16(CmdStart | CmdTxOn | CmdRxOn | (Cmd1NoTxPoll << 8),
1475 ioaddr + ChipCmd);
1476 rhine_check_media(dev, 1);
1479 /* Enable MII link status auto-polling (required for IntrLinkChange) */
1480 static void rhine_enable_linkmon(struct rhine_private *rp)
1482 void __iomem *ioaddr = rp->base;
1484 iowrite8(0, ioaddr + MIICmd);
1485 iowrite8(MII_BMSR, ioaddr + MIIRegAddr);
1486 iowrite8(0x80, ioaddr + MIICmd);
1488 rhine_wait_bit_high(rp, MIIRegAddr, 0x20);
1490 iowrite8(MII_BMSR | 0x40, ioaddr + MIIRegAddr);
1493 /* Disable MII link status auto-polling (required for MDIO access) */
1494 static void rhine_disable_linkmon(struct rhine_private *rp)
1496 void __iomem *ioaddr = rp->base;
1498 iowrite8(0, ioaddr + MIICmd);
1500 if (rp->quirks & rqRhineI) {
1501 iowrite8(0x01, ioaddr + MIIRegAddr); // MII_BMSR
1503 /* Can be called from ISR. Evil. */
1504 mdelay(1);
1506 /* 0x80 must be set immediately before turning it off */
1507 iowrite8(0x80, ioaddr + MIICmd);
1509 rhine_wait_bit_high(rp, MIIRegAddr, 0x20);
1511 /* Heh. Now clear 0x80 again. */
1512 iowrite8(0, ioaddr + MIICmd);
1514 else
1515 rhine_wait_bit_high(rp, MIIRegAddr, 0x80);
1518 /* Read and write over the MII Management Data I/O (MDIO) interface. */
1520 static int mdio_read(struct net_device *dev, int phy_id, int regnum)
1522 struct rhine_private *rp = netdev_priv(dev);
1523 void __iomem *ioaddr = rp->base;
1524 int result;
1526 rhine_disable_linkmon(rp);
1528 /* rhine_disable_linkmon already cleared MIICmd */
1529 iowrite8(phy_id, ioaddr + MIIPhyAddr);
1530 iowrite8(regnum, ioaddr + MIIRegAddr);
1531 iowrite8(0x40, ioaddr + MIICmd); /* Trigger read */
1532 rhine_wait_bit_low(rp, MIICmd, 0x40);
1533 result = ioread16(ioaddr + MIIData);
1535 rhine_enable_linkmon(rp);
1536 return result;
1539 static void mdio_write(struct net_device *dev, int phy_id, int regnum, int value)
1541 struct rhine_private *rp = netdev_priv(dev);
1542 void __iomem *ioaddr = rp->base;
1544 rhine_disable_linkmon(rp);
1546 /* rhine_disable_linkmon already cleared MIICmd */
1547 iowrite8(phy_id, ioaddr + MIIPhyAddr);
1548 iowrite8(regnum, ioaddr + MIIRegAddr);
1549 iowrite16(value, ioaddr + MIIData);
1550 iowrite8(0x20, ioaddr + MIICmd); /* Trigger write */
1551 rhine_wait_bit_low(rp, MIICmd, 0x20);
1553 rhine_enable_linkmon(rp);
1556 static void rhine_task_disable(struct rhine_private *rp)
1558 mutex_lock(&rp->task_lock);
1559 rp->task_enable = false;
1560 mutex_unlock(&rp->task_lock);
1562 cancel_work_sync(&rp->slow_event_task);
1563 cancel_work_sync(&rp->reset_task);
1566 static void rhine_task_enable(struct rhine_private *rp)
1568 mutex_lock(&rp->task_lock);
1569 rp->task_enable = true;
1570 mutex_unlock(&rp->task_lock);
1573 static int rhine_open(struct net_device *dev)
1575 struct rhine_private *rp = netdev_priv(dev);
1576 void __iomem *ioaddr = rp->base;
1577 int rc;
1579 rc = request_irq(rp->pdev->irq, rhine_interrupt, IRQF_SHARED, dev->name,
1580 dev);
1581 if (rc)
1582 return rc;
1584 netif_dbg(rp, ifup, dev, "%s() irq %d\n", __func__, rp->pdev->irq);
1586 rc = alloc_ring(dev);
1587 if (rc) {
1588 free_irq(rp->pdev->irq, dev);
1589 return rc;
1591 alloc_rbufs(dev);
1592 alloc_tbufs(dev);
1593 rhine_chip_reset(dev);
1594 rhine_task_enable(rp);
1595 init_registers(dev);
1597 netif_dbg(rp, ifup, dev, "%s() Done - status %04x MII status: %04x\n",
1598 __func__, ioread16(ioaddr + ChipCmd),
1599 mdio_read(dev, rp->mii_if.phy_id, MII_BMSR));
1601 netif_start_queue(dev);
1603 return 0;
1606 static void rhine_reset_task(struct work_struct *work)
1608 struct rhine_private *rp = container_of(work, struct rhine_private,
1609 reset_task);
1610 struct net_device *dev = rp->dev;
1612 mutex_lock(&rp->task_lock);
1614 if (!rp->task_enable)
1615 goto out_unlock;
1617 napi_disable(&rp->napi);
1618 spin_lock_bh(&rp->lock);
1620 /* clear all descriptors */
1621 free_tbufs(dev);
1622 free_rbufs(dev);
1623 alloc_tbufs(dev);
1624 alloc_rbufs(dev);
1626 /* Reinitialize the hardware. */
1627 rhine_chip_reset(dev);
1628 init_registers(dev);
1630 spin_unlock_bh(&rp->lock);
1632 dev->trans_start = jiffies; /* prevent tx timeout */
1633 dev->stats.tx_errors++;
1634 netif_wake_queue(dev);
1636 out_unlock:
1637 mutex_unlock(&rp->task_lock);
1640 static void rhine_tx_timeout(struct net_device *dev)
1642 struct rhine_private *rp = netdev_priv(dev);
1643 void __iomem *ioaddr = rp->base;
1645 netdev_warn(dev, "Transmit timed out, status %04x, PHY status %04x, resetting...\n",
1646 ioread16(ioaddr + IntrStatus),
1647 mdio_read(dev, rp->mii_if.phy_id, MII_BMSR));
1649 schedule_work(&rp->reset_task);
1652 static netdev_tx_t rhine_start_tx(struct sk_buff *skb,
1653 struct net_device *dev)
1655 struct rhine_private *rp = netdev_priv(dev);
1656 void __iomem *ioaddr = rp->base;
1657 unsigned entry;
1659 /* Caution: the write order is important here, set the field
1660 with the "ownership" bits last. */
1662 /* Calculate the next Tx descriptor entry. */
1663 entry = rp->cur_tx % TX_RING_SIZE;
1665 if (skb_padto(skb, ETH_ZLEN))
1666 return NETDEV_TX_OK;
1668 rp->tx_skbuff[entry] = skb;
1670 if ((rp->quirks & rqRhineI) &&
1671 (((unsigned long)skb->data & 3) || skb_shinfo(skb)->nr_frags != 0 || skb->ip_summed == CHECKSUM_PARTIAL)) {
1672 /* Must use alignment buffer. */
1673 if (skb->len > PKT_BUF_SZ) {
1674 /* packet too long, drop it */
1675 dev_kfree_skb(skb);
1676 rp->tx_skbuff[entry] = NULL;
1677 dev->stats.tx_dropped++;
1678 return NETDEV_TX_OK;
1681 /* Padding is not copied and so must be redone. */
1682 skb_copy_and_csum_dev(skb, rp->tx_buf[entry]);
1683 if (skb->len < ETH_ZLEN)
1684 memset(rp->tx_buf[entry] + skb->len, 0,
1685 ETH_ZLEN - skb->len);
1686 rp->tx_skbuff_dma[entry] = 0;
1687 rp->tx_ring[entry].addr = cpu_to_le32(rp->tx_bufs_dma +
1688 (rp->tx_buf[entry] -
1689 rp->tx_bufs));
1690 } else {
1691 rp->tx_skbuff_dma[entry] =
1692 pci_map_single(rp->pdev, skb->data, skb->len,
1693 PCI_DMA_TODEVICE);
1694 if (dma_mapping_error(&rp->pdev->dev, rp->tx_skbuff_dma[entry])) {
1695 dev_kfree_skb(skb);
1696 rp->tx_skbuff_dma[entry] = 0;
1697 dev->stats.tx_dropped++;
1698 return NETDEV_TX_OK;
1700 rp->tx_ring[entry].addr = cpu_to_le32(rp->tx_skbuff_dma[entry]);
1703 rp->tx_ring[entry].desc_length =
1704 cpu_to_le32(TXDESC | (skb->len >= ETH_ZLEN ? skb->len : ETH_ZLEN));
1706 if (unlikely(vlan_tx_tag_present(skb))) {
1707 u16 vid_pcp = vlan_tx_tag_get(skb);
1709 /* drop CFI/DEI bit, register needs VID and PCP */
1710 vid_pcp = (vid_pcp & VLAN_VID_MASK) |
1711 ((vid_pcp & VLAN_PRIO_MASK) >> 1);
1712 rp->tx_ring[entry].tx_status = cpu_to_le32((vid_pcp) << 16);
1713 /* request tagging */
1714 rp->tx_ring[entry].desc_length |= cpu_to_le32(0x020000);
1716 else
1717 rp->tx_ring[entry].tx_status = 0;
1719 /* lock eth irq */
1720 wmb();
1721 rp->tx_ring[entry].tx_status |= cpu_to_le32(DescOwn);
1722 wmb();
1724 rp->cur_tx++;
1726 /* Non-x86 Todo: explicitly flush cache lines here. */
1728 if (vlan_tx_tag_present(skb))
1729 /* Tx queues are bits 7-0 (first Tx queue: bit 7) */
1730 BYTE_REG_BITS_ON(1 << 7, ioaddr + TQWake);
1732 /* Wake the potentially-idle transmit channel */
1733 iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1TxDemand,
1734 ioaddr + ChipCmd1);
1735 IOSYNC;
1737 if (rp->cur_tx == rp->dirty_tx + TX_QUEUE_LEN)
1738 netif_stop_queue(dev);
1740 netif_dbg(rp, tx_queued, dev, "Transmit frame #%d queued in slot %d\n",
1741 rp->cur_tx - 1, entry);
1743 return NETDEV_TX_OK;
1746 static void rhine_irq_disable(struct rhine_private *rp)
1748 iowrite16(0x0000, rp->base + IntrEnable);
1749 mmiowb();
1752 /* The interrupt handler does all of the Rx thread work and cleans up
1753 after the Tx thread. */
1754 static irqreturn_t rhine_interrupt(int irq, void *dev_instance)
1756 struct net_device *dev = dev_instance;
1757 struct rhine_private *rp = netdev_priv(dev);
1758 u32 status;
1759 int handled = 0;
1761 status = rhine_get_events(rp);
1763 netif_dbg(rp, intr, dev, "Interrupt, status %08x\n", status);
1765 if (status & RHINE_EVENT) {
1766 handled = 1;
1768 rhine_irq_disable(rp);
1769 napi_schedule(&rp->napi);
1772 if (status & ~(IntrLinkChange | IntrStatsMax | RHINE_EVENT_NAPI)) {
1773 netif_err(rp, intr, dev, "Something Wicked happened! %08x\n",
1774 status);
1777 return IRQ_RETVAL(handled);
1780 /* This routine is logically part of the interrupt handler, but isolated
1781 for clarity. */
1782 static void rhine_tx(struct net_device *dev)
1784 struct rhine_private *rp = netdev_priv(dev);
1785 int txstatus = 0, entry = rp->dirty_tx % TX_RING_SIZE;
1787 /* find and cleanup dirty tx descriptors */
1788 while (rp->dirty_tx != rp->cur_tx) {
1789 txstatus = le32_to_cpu(rp->tx_ring[entry].tx_status);
1790 netif_dbg(rp, tx_done, dev, "Tx scavenge %d status %08x\n",
1791 entry, txstatus);
1792 if (txstatus & DescOwn)
1793 break;
1794 if (txstatus & 0x8000) {
1795 netif_dbg(rp, tx_done, dev,
1796 "Transmit error, Tx status %08x\n", txstatus);
1797 dev->stats.tx_errors++;
1798 if (txstatus & 0x0400)
1799 dev->stats.tx_carrier_errors++;
1800 if (txstatus & 0x0200)
1801 dev->stats.tx_window_errors++;
1802 if (txstatus & 0x0100)
1803 dev->stats.tx_aborted_errors++;
1804 if (txstatus & 0x0080)
1805 dev->stats.tx_heartbeat_errors++;
1806 if (((rp->quirks & rqRhineI) && txstatus & 0x0002) ||
1807 (txstatus & 0x0800) || (txstatus & 0x1000)) {
1808 dev->stats.tx_fifo_errors++;
1809 rp->tx_ring[entry].tx_status = cpu_to_le32(DescOwn);
1810 break; /* Keep the skb - we try again */
1812 /* Transmitter restarted in 'abnormal' handler. */
1813 } else {
1814 if (rp->quirks & rqRhineI)
1815 dev->stats.collisions += (txstatus >> 3) & 0x0F;
1816 else
1817 dev->stats.collisions += txstatus & 0x0F;
1818 netif_dbg(rp, tx_done, dev, "collisions: %1.1x:%1.1x\n",
1819 (txstatus >> 3) & 0xF, txstatus & 0xF);
1821 u64_stats_update_begin(&rp->tx_stats.syncp);
1822 rp->tx_stats.bytes += rp->tx_skbuff[entry]->len;
1823 rp->tx_stats.packets++;
1824 u64_stats_update_end(&rp->tx_stats.syncp);
1826 /* Free the original skb. */
1827 if (rp->tx_skbuff_dma[entry]) {
1828 pci_unmap_single(rp->pdev,
1829 rp->tx_skbuff_dma[entry],
1830 rp->tx_skbuff[entry]->len,
1831 PCI_DMA_TODEVICE);
1833 dev_kfree_skb(rp->tx_skbuff[entry]);
1834 rp->tx_skbuff[entry] = NULL;
1835 entry = (++rp->dirty_tx) % TX_RING_SIZE;
1837 if ((rp->cur_tx - rp->dirty_tx) < TX_QUEUE_LEN - 4)
1838 netif_wake_queue(dev);
1842 * rhine_get_vlan_tci - extract TCI from Rx data buffer
1843 * @skb: pointer to sk_buff
1844 * @data_size: used data area of the buffer including CRC
1846 * If hardware VLAN tag extraction is enabled and the chip indicates a 802.1Q
1847 * packet, the extracted 802.1Q header (2 bytes TPID + 2 bytes TCI) is 4-byte
1848 * aligned following the CRC.
1850 static inline u16 rhine_get_vlan_tci(struct sk_buff *skb, int data_size)
1852 u8 *trailer = (u8 *)skb->data + ((data_size + 3) & ~3) + 2;
1853 return be16_to_cpup((__be16 *)trailer);
1856 /* Process up to limit frames from receive ring */
1857 static int rhine_rx(struct net_device *dev, int limit)
1859 struct rhine_private *rp = netdev_priv(dev);
1860 int count;
1861 int entry = rp->cur_rx % RX_RING_SIZE;
1863 netif_dbg(rp, rx_status, dev, "%s(), entry %d status %08x\n", __func__,
1864 entry, le32_to_cpu(rp->rx_head_desc->rx_status));
1866 /* If EOP is set on the next entry, it's a new packet. Send it up. */
1867 for (count = 0; count < limit; ++count) {
1868 struct rx_desc *desc = rp->rx_head_desc;
1869 u32 desc_status = le32_to_cpu(desc->rx_status);
1870 u32 desc_length = le32_to_cpu(desc->desc_length);
1871 int data_size = desc_status >> 16;
1873 if (desc_status & DescOwn)
1874 break;
1876 netif_dbg(rp, rx_status, dev, "%s() status %08x\n", __func__,
1877 desc_status);
1879 if ((desc_status & (RxWholePkt | RxErr)) != RxWholePkt) {
1880 if ((desc_status & RxWholePkt) != RxWholePkt) {
1881 netdev_warn(dev,
1882 "Oversized Ethernet frame spanned multiple buffers, "
1883 "entry %#x length %d status %08x!\n",
1884 entry, data_size,
1885 desc_status);
1886 netdev_warn(dev,
1887 "Oversized Ethernet frame %p vs %p\n",
1888 rp->rx_head_desc,
1889 &rp->rx_ring[entry]);
1890 dev->stats.rx_length_errors++;
1891 } else if (desc_status & RxErr) {
1892 /* There was a error. */
1893 netif_dbg(rp, rx_err, dev,
1894 "%s() Rx error %08x\n", __func__,
1895 desc_status);
1896 dev->stats.rx_errors++;
1897 if (desc_status & 0x0030)
1898 dev->stats.rx_length_errors++;
1899 if (desc_status & 0x0048)
1900 dev->stats.rx_fifo_errors++;
1901 if (desc_status & 0x0004)
1902 dev->stats.rx_frame_errors++;
1903 if (desc_status & 0x0002) {
1904 /* this can also be updated outside the interrupt handler */
1905 spin_lock(&rp->lock);
1906 dev->stats.rx_crc_errors++;
1907 spin_unlock(&rp->lock);
1910 } else {
1911 struct sk_buff *skb = NULL;
1912 /* Length should omit the CRC */
1913 int pkt_len = data_size - 4;
1914 u16 vlan_tci = 0;
1916 /* Check if the packet is long enough to accept without
1917 copying to a minimally-sized skbuff. */
1918 if (pkt_len < rx_copybreak)
1919 skb = netdev_alloc_skb_ip_align(dev, pkt_len);
1920 if (skb) {
1921 pci_dma_sync_single_for_cpu(rp->pdev,
1922 rp->rx_skbuff_dma[entry],
1923 rp->rx_buf_sz,
1924 PCI_DMA_FROMDEVICE);
1926 skb_copy_to_linear_data(skb,
1927 rp->rx_skbuff[entry]->data,
1928 pkt_len);
1929 skb_put(skb, pkt_len);
1930 pci_dma_sync_single_for_device(rp->pdev,
1931 rp->rx_skbuff_dma[entry],
1932 rp->rx_buf_sz,
1933 PCI_DMA_FROMDEVICE);
1934 } else {
1935 skb = rp->rx_skbuff[entry];
1936 if (skb == NULL) {
1937 netdev_err(dev, "Inconsistent Rx descriptor chain\n");
1938 break;
1940 rp->rx_skbuff[entry] = NULL;
1941 skb_put(skb, pkt_len);
1942 pci_unmap_single(rp->pdev,
1943 rp->rx_skbuff_dma[entry],
1944 rp->rx_buf_sz,
1945 PCI_DMA_FROMDEVICE);
1948 if (unlikely(desc_length & DescTag))
1949 vlan_tci = rhine_get_vlan_tci(skb, data_size);
1951 skb->protocol = eth_type_trans(skb, dev);
1953 if (unlikely(desc_length & DescTag))
1954 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tci);
1955 netif_receive_skb(skb);
1957 u64_stats_update_begin(&rp->rx_stats.syncp);
1958 rp->rx_stats.bytes += pkt_len;
1959 rp->rx_stats.packets++;
1960 u64_stats_update_end(&rp->rx_stats.syncp);
1962 entry = (++rp->cur_rx) % RX_RING_SIZE;
1963 rp->rx_head_desc = &rp->rx_ring[entry];
1966 /* Refill the Rx ring buffers. */
1967 for (; rp->cur_rx - rp->dirty_rx > 0; rp->dirty_rx++) {
1968 struct sk_buff *skb;
1969 entry = rp->dirty_rx % RX_RING_SIZE;
1970 if (rp->rx_skbuff[entry] == NULL) {
1971 skb = netdev_alloc_skb(dev, rp->rx_buf_sz);
1972 rp->rx_skbuff[entry] = skb;
1973 if (skb == NULL)
1974 break; /* Better luck next round. */
1975 rp->rx_skbuff_dma[entry] =
1976 pci_map_single(rp->pdev, skb->data,
1977 rp->rx_buf_sz,
1978 PCI_DMA_FROMDEVICE);
1979 if (dma_mapping_error(&rp->pdev->dev, rp->rx_skbuff_dma[entry])) {
1980 dev_kfree_skb(skb);
1981 rp->rx_skbuff_dma[entry] = 0;
1982 break;
1984 rp->rx_ring[entry].addr = cpu_to_le32(rp->rx_skbuff_dma[entry]);
1986 rp->rx_ring[entry].rx_status = cpu_to_le32(DescOwn);
1989 return count;
1992 static void rhine_restart_tx(struct net_device *dev) {
1993 struct rhine_private *rp = netdev_priv(dev);
1994 void __iomem *ioaddr = rp->base;
1995 int entry = rp->dirty_tx % TX_RING_SIZE;
1996 u32 intr_status;
1999 * If new errors occurred, we need to sort them out before doing Tx.
2000 * In that case the ISR will be back here RSN anyway.
2002 intr_status = rhine_get_events(rp);
2004 if ((intr_status & IntrTxErrSummary) == 0) {
2006 /* We know better than the chip where it should continue. */
2007 iowrite32(rp->tx_ring_dma + entry * sizeof(struct tx_desc),
2008 ioaddr + TxRingPtr);
2010 iowrite8(ioread8(ioaddr + ChipCmd) | CmdTxOn,
2011 ioaddr + ChipCmd);
2013 if (rp->tx_ring[entry].desc_length & cpu_to_le32(0x020000))
2014 /* Tx queues are bits 7-0 (first Tx queue: bit 7) */
2015 BYTE_REG_BITS_ON(1 << 7, ioaddr + TQWake);
2017 iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1TxDemand,
2018 ioaddr + ChipCmd1);
2019 IOSYNC;
2021 else {
2022 /* This should never happen */
2023 netif_warn(rp, tx_err, dev, "another error occurred %08x\n",
2024 intr_status);
2029 static void rhine_slow_event_task(struct work_struct *work)
2031 struct rhine_private *rp =
2032 container_of(work, struct rhine_private, slow_event_task);
2033 struct net_device *dev = rp->dev;
2034 u32 intr_status;
2036 mutex_lock(&rp->task_lock);
2038 if (!rp->task_enable)
2039 goto out_unlock;
2041 intr_status = rhine_get_events(rp);
2042 rhine_ack_events(rp, intr_status & RHINE_EVENT_SLOW);
2044 if (intr_status & IntrLinkChange)
2045 rhine_check_media(dev, 0);
2047 if (intr_status & IntrPCIErr)
2048 netif_warn(rp, hw, dev, "PCI error\n");
2050 iowrite16(RHINE_EVENT & 0xffff, rp->base + IntrEnable);
2052 out_unlock:
2053 mutex_unlock(&rp->task_lock);
2056 static struct rtnl_link_stats64 *
2057 rhine_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
2059 struct rhine_private *rp = netdev_priv(dev);
2060 unsigned int start;
2062 spin_lock_bh(&rp->lock);
2063 rhine_update_rx_crc_and_missed_errord(rp);
2064 spin_unlock_bh(&rp->lock);
2066 netdev_stats_to_stats64(stats, &dev->stats);
2068 do {
2069 start = u64_stats_fetch_begin_bh(&rp->rx_stats.syncp);
2070 stats->rx_packets = rp->rx_stats.packets;
2071 stats->rx_bytes = rp->rx_stats.bytes;
2072 } while (u64_stats_fetch_retry_bh(&rp->rx_stats.syncp, start));
2074 do {
2075 start = u64_stats_fetch_begin_bh(&rp->tx_stats.syncp);
2076 stats->tx_packets = rp->tx_stats.packets;
2077 stats->tx_bytes = rp->tx_stats.bytes;
2078 } while (u64_stats_fetch_retry_bh(&rp->tx_stats.syncp, start));
2080 return stats;
2083 static void rhine_set_rx_mode(struct net_device *dev)
2085 struct rhine_private *rp = netdev_priv(dev);
2086 void __iomem *ioaddr = rp->base;
2087 u32 mc_filter[2]; /* Multicast hash filter */
2088 u8 rx_mode = 0x0C; /* Note: 0x02=accept runt, 0x01=accept errs */
2089 struct netdev_hw_addr *ha;
2091 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
2092 rx_mode = 0x1C;
2093 iowrite32(0xffffffff, ioaddr + MulticastFilter0);
2094 iowrite32(0xffffffff, ioaddr + MulticastFilter1);
2095 } else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
2096 (dev->flags & IFF_ALLMULTI)) {
2097 /* Too many to match, or accept all multicasts. */
2098 iowrite32(0xffffffff, ioaddr + MulticastFilter0);
2099 iowrite32(0xffffffff, ioaddr + MulticastFilter1);
2100 } else if (rp->pdev->revision >= VT6105M) {
2101 int i = 0;
2102 u32 mCAMmask = 0; /* 32 mCAMs (6105M and better) */
2103 netdev_for_each_mc_addr(ha, dev) {
2104 if (i == MCAM_SIZE)
2105 break;
2106 rhine_set_cam(ioaddr, i, ha->addr);
2107 mCAMmask |= 1 << i;
2108 i++;
2110 rhine_set_cam_mask(ioaddr, mCAMmask);
2111 } else {
2112 memset(mc_filter, 0, sizeof(mc_filter));
2113 netdev_for_each_mc_addr(ha, dev) {
2114 int bit_nr = ether_crc(ETH_ALEN, ha->addr) >> 26;
2116 mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31);
2118 iowrite32(mc_filter[0], ioaddr + MulticastFilter0);
2119 iowrite32(mc_filter[1], ioaddr + MulticastFilter1);
2121 /* enable/disable VLAN receive filtering */
2122 if (rp->pdev->revision >= VT6105M) {
2123 if (dev->flags & IFF_PROMISC)
2124 BYTE_REG_BITS_OFF(BCR1_VIDFR, ioaddr + PCIBusConfig1);
2125 else
2126 BYTE_REG_BITS_ON(BCR1_VIDFR, ioaddr + PCIBusConfig1);
2128 BYTE_REG_BITS_ON(rx_mode, ioaddr + RxConfig);
2131 static void netdev_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2133 struct rhine_private *rp = netdev_priv(dev);
2135 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
2136 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
2137 strlcpy(info->bus_info, pci_name(rp->pdev), sizeof(info->bus_info));
2140 static int netdev_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2142 struct rhine_private *rp = netdev_priv(dev);
2143 int rc;
2145 mutex_lock(&rp->task_lock);
2146 rc = mii_ethtool_gset(&rp->mii_if, cmd);
2147 mutex_unlock(&rp->task_lock);
2149 return rc;
2152 static int netdev_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2154 struct rhine_private *rp = netdev_priv(dev);
2155 int rc;
2157 mutex_lock(&rp->task_lock);
2158 rc = mii_ethtool_sset(&rp->mii_if, cmd);
2159 rhine_set_carrier(&rp->mii_if);
2160 mutex_unlock(&rp->task_lock);
2162 return rc;
2165 static int netdev_nway_reset(struct net_device *dev)
2167 struct rhine_private *rp = netdev_priv(dev);
2169 return mii_nway_restart(&rp->mii_if);
2172 static u32 netdev_get_link(struct net_device *dev)
2174 struct rhine_private *rp = netdev_priv(dev);
2176 return mii_link_ok(&rp->mii_if);
2179 static u32 netdev_get_msglevel(struct net_device *dev)
2181 struct rhine_private *rp = netdev_priv(dev);
2183 return rp->msg_enable;
2186 static void netdev_set_msglevel(struct net_device *dev, u32 value)
2188 struct rhine_private *rp = netdev_priv(dev);
2190 rp->msg_enable = value;
2193 static void rhine_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2195 struct rhine_private *rp = netdev_priv(dev);
2197 if (!(rp->quirks & rqWOL))
2198 return;
2200 spin_lock_irq(&rp->lock);
2201 wol->supported = WAKE_PHY | WAKE_MAGIC |
2202 WAKE_UCAST | WAKE_MCAST | WAKE_BCAST; /* Untested */
2203 wol->wolopts = rp->wolopts;
2204 spin_unlock_irq(&rp->lock);
2207 static int rhine_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2209 struct rhine_private *rp = netdev_priv(dev);
2210 u32 support = WAKE_PHY | WAKE_MAGIC |
2211 WAKE_UCAST | WAKE_MCAST | WAKE_BCAST; /* Untested */
2213 if (!(rp->quirks & rqWOL))
2214 return -EINVAL;
2216 if (wol->wolopts & ~support)
2217 return -EINVAL;
2219 spin_lock_irq(&rp->lock);
2220 rp->wolopts = wol->wolopts;
2221 spin_unlock_irq(&rp->lock);
2223 return 0;
2226 static const struct ethtool_ops netdev_ethtool_ops = {
2227 .get_drvinfo = netdev_get_drvinfo,
2228 .get_settings = netdev_get_settings,
2229 .set_settings = netdev_set_settings,
2230 .nway_reset = netdev_nway_reset,
2231 .get_link = netdev_get_link,
2232 .get_msglevel = netdev_get_msglevel,
2233 .set_msglevel = netdev_set_msglevel,
2234 .get_wol = rhine_get_wol,
2235 .set_wol = rhine_set_wol,
2238 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2240 struct rhine_private *rp = netdev_priv(dev);
2241 int rc;
2243 if (!netif_running(dev))
2244 return -EINVAL;
2246 mutex_lock(&rp->task_lock);
2247 rc = generic_mii_ioctl(&rp->mii_if, if_mii(rq), cmd, NULL);
2248 rhine_set_carrier(&rp->mii_if);
2249 mutex_unlock(&rp->task_lock);
2251 return rc;
2254 static int rhine_close(struct net_device *dev)
2256 struct rhine_private *rp = netdev_priv(dev);
2257 void __iomem *ioaddr = rp->base;
2259 rhine_task_disable(rp);
2260 napi_disable(&rp->napi);
2261 netif_stop_queue(dev);
2263 netif_dbg(rp, ifdown, dev, "Shutting down ethercard, status was %04x\n",
2264 ioread16(ioaddr + ChipCmd));
2266 /* Switch to loopback mode to avoid hardware races. */
2267 iowrite8(rp->tx_thresh | 0x02, ioaddr + TxConfig);
2269 rhine_irq_disable(rp);
2271 /* Stop the chip's Tx and Rx processes. */
2272 iowrite16(CmdStop, ioaddr + ChipCmd);
2274 free_irq(rp->pdev->irq, dev);
2275 free_rbufs(dev);
2276 free_tbufs(dev);
2277 free_ring(dev);
2279 return 0;
2283 static void rhine_remove_one(struct pci_dev *pdev)
2285 struct net_device *dev = pci_get_drvdata(pdev);
2286 struct rhine_private *rp = netdev_priv(dev);
2288 unregister_netdev(dev);
2290 pci_iounmap(pdev, rp->base);
2291 pci_release_regions(pdev);
2293 free_netdev(dev);
2294 pci_disable_device(pdev);
2297 static void rhine_shutdown (struct pci_dev *pdev)
2299 struct net_device *dev = pci_get_drvdata(pdev);
2300 struct rhine_private *rp = netdev_priv(dev);
2301 void __iomem *ioaddr = rp->base;
2303 if (!(rp->quirks & rqWOL))
2304 return; /* Nothing to do for non-WOL adapters */
2306 rhine_power_init(dev);
2308 /* Make sure we use pattern 0, 1 and not 4, 5 */
2309 if (rp->quirks & rq6patterns)
2310 iowrite8(0x04, ioaddr + WOLcgClr);
2312 spin_lock(&rp->lock);
2314 if (rp->wolopts & WAKE_MAGIC) {
2315 iowrite8(WOLmagic, ioaddr + WOLcrSet);
2317 * Turn EEPROM-controlled wake-up back on -- some hardware may
2318 * not cooperate otherwise.
2320 iowrite8(ioread8(ioaddr + ConfigA) | 0x03, ioaddr + ConfigA);
2323 if (rp->wolopts & (WAKE_BCAST|WAKE_MCAST))
2324 iowrite8(WOLbmcast, ioaddr + WOLcgSet);
2326 if (rp->wolopts & WAKE_PHY)
2327 iowrite8(WOLlnkon | WOLlnkoff, ioaddr + WOLcrSet);
2329 if (rp->wolopts & WAKE_UCAST)
2330 iowrite8(WOLucast, ioaddr + WOLcrSet);
2332 if (rp->wolopts) {
2333 /* Enable legacy WOL (for old motherboards) */
2334 iowrite8(0x01, ioaddr + PwcfgSet);
2335 iowrite8(ioread8(ioaddr + StickyHW) | 0x04, ioaddr + StickyHW);
2338 spin_unlock(&rp->lock);
2340 if (system_state == SYSTEM_POWER_OFF && !avoid_D3) {
2341 iowrite8(ioread8(ioaddr + StickyHW) | 0x03, ioaddr + StickyHW);
2343 pci_wake_from_d3(pdev, true);
2344 pci_set_power_state(pdev, PCI_D3hot);
2348 #ifdef CONFIG_PM_SLEEP
2349 static int rhine_suspend(struct device *device)
2351 struct pci_dev *pdev = to_pci_dev(device);
2352 struct net_device *dev = pci_get_drvdata(pdev);
2353 struct rhine_private *rp = netdev_priv(dev);
2355 if (!netif_running(dev))
2356 return 0;
2358 rhine_task_disable(rp);
2359 rhine_irq_disable(rp);
2360 napi_disable(&rp->napi);
2362 netif_device_detach(dev);
2364 rhine_shutdown(pdev);
2366 return 0;
2369 static int rhine_resume(struct device *device)
2371 struct pci_dev *pdev = to_pci_dev(device);
2372 struct net_device *dev = pci_get_drvdata(pdev);
2373 struct rhine_private *rp = netdev_priv(dev);
2375 if (!netif_running(dev))
2376 return 0;
2378 #ifdef USE_MMIO
2379 enable_mmio(rp->pioaddr, rp->quirks);
2380 #endif
2381 rhine_power_init(dev);
2382 free_tbufs(dev);
2383 free_rbufs(dev);
2384 alloc_tbufs(dev);
2385 alloc_rbufs(dev);
2386 rhine_task_enable(rp);
2387 spin_lock_bh(&rp->lock);
2388 init_registers(dev);
2389 spin_unlock_bh(&rp->lock);
2391 netif_device_attach(dev);
2393 return 0;
2396 static SIMPLE_DEV_PM_OPS(rhine_pm_ops, rhine_suspend, rhine_resume);
2397 #define RHINE_PM_OPS (&rhine_pm_ops)
2399 #else
2401 #define RHINE_PM_OPS NULL
2403 #endif /* !CONFIG_PM_SLEEP */
2405 static struct pci_driver rhine_driver = {
2406 .name = DRV_NAME,
2407 .id_table = rhine_pci_tbl,
2408 .probe = rhine_init_one,
2409 .remove = rhine_remove_one,
2410 .shutdown = rhine_shutdown,
2411 .driver.pm = RHINE_PM_OPS,
2414 static struct dmi_system_id rhine_dmi_table[] __initdata = {
2416 .ident = "EPIA-M",
2417 .matches = {
2418 DMI_MATCH(DMI_BIOS_VENDOR, "Award Software International, Inc."),
2419 DMI_MATCH(DMI_BIOS_VERSION, "6.00 PG"),
2423 .ident = "KV7",
2424 .matches = {
2425 DMI_MATCH(DMI_BIOS_VENDOR, "Phoenix Technologies, LTD"),
2426 DMI_MATCH(DMI_BIOS_VERSION, "6.00 PG"),
2429 { NULL }
2432 static int __init rhine_init(void)
2434 /* when a module, this is printed whether or not devices are found in probe */
2435 #ifdef MODULE
2436 pr_info("%s\n", version);
2437 #endif
2438 if (dmi_check_system(rhine_dmi_table)) {
2439 /* these BIOSes fail at PXE boot if chip is in D3 */
2440 avoid_D3 = true;
2441 pr_warn("Broken BIOS detected, avoid_D3 enabled\n");
2443 else if (avoid_D3)
2444 pr_info("avoid_D3 set\n");
2446 return pci_register_driver(&rhine_driver);
2450 static void __exit rhine_cleanup(void)
2452 pci_unregister_driver(&rhine_driver);
2456 module_init(rhine_init);
2457 module_exit(rhine_cleanup);