1 /* Generic associative array implementation.
3 * See Documentation/assoc_array.txt for information.
5 * Copyright (C) 2013 Red Hat, Inc. All Rights Reserved.
6 * Written by David Howells (dhowells@redhat.com)
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public Licence
10 * as published by the Free Software Foundation; either version
11 * 2 of the Licence, or (at your option) any later version.
14 #include <linux/slab.h>
15 #include <linux/err.h>
16 #include <linux/assoc_array_priv.h>
19 * Iterate over an associative array. The caller must hold the RCU read lock
22 static int assoc_array_subtree_iterate(const struct assoc_array_ptr
*root
,
23 const struct assoc_array_ptr
*stop
,
24 int (*iterator
)(const void *leaf
,
28 const struct assoc_array_shortcut
*shortcut
;
29 const struct assoc_array_node
*node
;
30 const struct assoc_array_ptr
*cursor
, *ptr
, *parent
;
31 unsigned long has_meta
;
37 if (assoc_array_ptr_is_shortcut(cursor
)) {
38 /* Descend through a shortcut */
39 shortcut
= assoc_array_ptr_to_shortcut(cursor
);
40 smp_read_barrier_depends();
41 cursor
= ACCESS_ONCE(shortcut
->next_node
);
44 node
= assoc_array_ptr_to_node(cursor
);
45 smp_read_barrier_depends();
48 /* We perform two passes of each node.
50 * The first pass does all the leaves in this node. This means we
51 * don't miss any leaves if the node is split up by insertion whilst
52 * we're iterating over the branches rooted here (we may, however, see
56 for (; slot
< ASSOC_ARRAY_FAN_OUT
; slot
++) {
57 ptr
= ACCESS_ONCE(node
->slots
[slot
]);
58 has_meta
|= (unsigned long)ptr
;
59 if (ptr
&& assoc_array_ptr_is_leaf(ptr
)) {
60 /* We need a barrier between the read of the pointer
61 * and dereferencing the pointer - but only if we are
62 * actually going to dereference it.
64 smp_read_barrier_depends();
66 /* Invoke the callback */
67 ret
= iterator(assoc_array_ptr_to_leaf(ptr
),
74 /* The second pass attends to all the metadata pointers. If we follow
75 * one of these we may find that we don't come back here, but rather go
76 * back to a replacement node with the leaves in a different layout.
78 * We are guaranteed to make progress, however, as the slot number for
79 * a particular portion of the key space cannot change - and we
80 * continue at the back pointer + 1.
82 if (!(has_meta
& ASSOC_ARRAY_PTR_META_TYPE
))
87 node
= assoc_array_ptr_to_node(cursor
);
88 smp_read_barrier_depends();
90 for (; slot
< ASSOC_ARRAY_FAN_OUT
; slot
++) {
91 ptr
= ACCESS_ONCE(node
->slots
[slot
]);
92 if (assoc_array_ptr_is_meta(ptr
)) {
99 /* Move up to the parent (may need to skip back over a shortcut) */
100 parent
= ACCESS_ONCE(node
->back_pointer
);
101 slot
= node
->parent_slot
;
105 if (assoc_array_ptr_is_shortcut(parent
)) {
106 shortcut
= assoc_array_ptr_to_shortcut(parent
);
107 smp_read_barrier_depends();
109 parent
= ACCESS_ONCE(shortcut
->back_pointer
);
110 slot
= shortcut
->parent_slot
;
115 /* Ascend to next slot in parent node */
122 * assoc_array_iterate - Pass all objects in the array to a callback
123 * @array: The array to iterate over.
124 * @iterator: The callback function.
125 * @iterator_data: Private data for the callback function.
127 * Iterate over all the objects in an associative array. Each one will be
128 * presented to the iterator function.
130 * If the array is being modified concurrently with the iteration then it is
131 * possible that some objects in the array will be passed to the iterator
132 * callback more than once - though every object should be passed at least
133 * once. If this is undesirable then the caller must lock against modification
134 * for the duration of this function.
136 * The function will return 0 if no objects were in the array or else it will
137 * return the result of the last iterator function called. Iteration stops
138 * immediately if any call to the iteration function results in a non-zero
141 * The caller should hold the RCU read lock or better if concurrent
142 * modification is possible.
144 int assoc_array_iterate(const struct assoc_array
*array
,
145 int (*iterator
)(const void *object
,
146 void *iterator_data
),
149 struct assoc_array_ptr
*root
= ACCESS_ONCE(array
->root
);
153 return assoc_array_subtree_iterate(root
, NULL
, iterator
, iterator_data
);
156 enum assoc_array_walk_status
{
157 assoc_array_walk_tree_empty
,
158 assoc_array_walk_found_terminal_node
,
159 assoc_array_walk_found_wrong_shortcut
,
162 struct assoc_array_walk_result
{
164 struct assoc_array_node
*node
; /* Node in which leaf might be found */
169 struct assoc_array_shortcut
*shortcut
;
172 unsigned long sc_segments
;
173 unsigned long dissimilarity
;
178 * Navigate through the internal tree looking for the closest node to the key.
180 static enum assoc_array_walk_status
181 assoc_array_walk(const struct assoc_array
*array
,
182 const struct assoc_array_ops
*ops
,
183 const void *index_key
,
184 struct assoc_array_walk_result
*result
)
186 struct assoc_array_shortcut
*shortcut
;
187 struct assoc_array_node
*node
;
188 struct assoc_array_ptr
*cursor
, *ptr
;
189 unsigned long sc_segments
, dissimilarity
;
190 unsigned long segments
;
191 int level
, sc_level
, next_sc_level
;
194 pr_devel("-->%s()\n", __func__
);
196 cursor
= ACCESS_ONCE(array
->root
);
198 return assoc_array_walk_tree_empty
;
202 /* Use segments from the key for the new leaf to navigate through the
203 * internal tree, skipping through nodes and shortcuts that are on
204 * route to the destination. Eventually we'll come to a slot that is
205 * either empty or contains a leaf at which point we've found a node in
206 * which the leaf we're looking for might be found or into which it
207 * should be inserted.
210 segments
= ops
->get_key_chunk(index_key
, level
);
211 pr_devel("segments[%d]: %lx\n", level
, segments
);
213 if (assoc_array_ptr_is_shortcut(cursor
))
214 goto follow_shortcut
;
217 node
= assoc_array_ptr_to_node(cursor
);
218 smp_read_barrier_depends();
220 slot
= segments
>> (level
& ASSOC_ARRAY_KEY_CHUNK_MASK
);
221 slot
&= ASSOC_ARRAY_FAN_MASK
;
222 ptr
= ACCESS_ONCE(node
->slots
[slot
]);
224 pr_devel("consider slot %x [ix=%d type=%lu]\n",
225 slot
, level
, (unsigned long)ptr
& 3);
227 if (!assoc_array_ptr_is_meta(ptr
)) {
228 /* The node doesn't have a node/shortcut pointer in the slot
229 * corresponding to the index key that we have to follow.
231 result
->terminal_node
.node
= node
;
232 result
->terminal_node
.level
= level
;
233 result
->terminal_node
.slot
= slot
;
234 pr_devel("<--%s() = terminal_node\n", __func__
);
235 return assoc_array_walk_found_terminal_node
;
238 if (assoc_array_ptr_is_node(ptr
)) {
239 /* There is a pointer to a node in the slot corresponding to
240 * this index key segment, so we need to follow it.
243 level
+= ASSOC_ARRAY_LEVEL_STEP
;
244 if ((level
& ASSOC_ARRAY_KEY_CHUNK_MASK
) != 0)
249 /* There is a shortcut in the slot corresponding to the index key
250 * segment. We follow the shortcut if its partial index key matches
251 * this leaf's. Otherwise we need to split the shortcut.
255 shortcut
= assoc_array_ptr_to_shortcut(cursor
);
256 smp_read_barrier_depends();
257 pr_devel("shortcut to %d\n", shortcut
->skip_to_level
);
258 sc_level
= level
+ ASSOC_ARRAY_LEVEL_STEP
;
259 BUG_ON(sc_level
> shortcut
->skip_to_level
);
262 /* Check the leaf against the shortcut's index key a word at a
263 * time, trimming the final word (the shortcut stores the index
264 * key completely from the root to the shortcut's target).
266 if ((sc_level
& ASSOC_ARRAY_KEY_CHUNK_MASK
) == 0)
267 segments
= ops
->get_key_chunk(index_key
, sc_level
);
269 sc_segments
= shortcut
->index_key
[sc_level
>> ASSOC_ARRAY_KEY_CHUNK_SHIFT
];
270 dissimilarity
= segments
^ sc_segments
;
272 if (round_up(sc_level
, ASSOC_ARRAY_KEY_CHUNK_SIZE
) > shortcut
->skip_to_level
) {
273 /* Trim segments that are beyond the shortcut */
274 int shift
= shortcut
->skip_to_level
& ASSOC_ARRAY_KEY_CHUNK_MASK
;
275 dissimilarity
&= ~(ULONG_MAX
<< shift
);
276 next_sc_level
= shortcut
->skip_to_level
;
278 next_sc_level
= sc_level
+ ASSOC_ARRAY_KEY_CHUNK_SIZE
;
279 next_sc_level
= round_down(next_sc_level
, ASSOC_ARRAY_KEY_CHUNK_SIZE
);
282 if (dissimilarity
!= 0) {
283 /* This shortcut points elsewhere */
284 result
->wrong_shortcut
.shortcut
= shortcut
;
285 result
->wrong_shortcut
.level
= level
;
286 result
->wrong_shortcut
.sc_level
= sc_level
;
287 result
->wrong_shortcut
.sc_segments
= sc_segments
;
288 result
->wrong_shortcut
.dissimilarity
= dissimilarity
;
289 return assoc_array_walk_found_wrong_shortcut
;
292 sc_level
= next_sc_level
;
293 } while (sc_level
< shortcut
->skip_to_level
);
295 /* The shortcut matches the leaf's index to this point. */
296 cursor
= ACCESS_ONCE(shortcut
->next_node
);
297 if (((level
^ sc_level
) & ~ASSOC_ARRAY_KEY_CHUNK_MASK
) != 0) {
307 * assoc_array_find - Find an object by index key
308 * @array: The associative array to search.
309 * @ops: The operations to use.
310 * @index_key: The key to the object.
312 * Find an object in an associative array by walking through the internal tree
313 * to the node that should contain the object and then searching the leaves
314 * there. NULL is returned if the requested object was not found in the array.
316 * The caller must hold the RCU read lock or better.
318 void *assoc_array_find(const struct assoc_array
*array
,
319 const struct assoc_array_ops
*ops
,
320 const void *index_key
)
322 struct assoc_array_walk_result result
;
323 const struct assoc_array_node
*node
;
324 const struct assoc_array_ptr
*ptr
;
328 if (assoc_array_walk(array
, ops
, index_key
, &result
) !=
329 assoc_array_walk_found_terminal_node
)
332 node
= result
.terminal_node
.node
;
333 smp_read_barrier_depends();
335 /* If the target key is available to us, it's has to be pointed to by
338 for (slot
= 0; slot
< ASSOC_ARRAY_FAN_OUT
; slot
++) {
339 ptr
= ACCESS_ONCE(node
->slots
[slot
]);
340 if (ptr
&& assoc_array_ptr_is_leaf(ptr
)) {
341 /* We need a barrier between the read of the pointer
342 * and dereferencing the pointer - but only if we are
343 * actually going to dereference it.
345 leaf
= assoc_array_ptr_to_leaf(ptr
);
346 smp_read_barrier_depends();
347 if (ops
->compare_object(leaf
, index_key
))
356 * Destructively iterate over an associative array. The caller must prevent
357 * other simultaneous accesses.
359 static void assoc_array_destroy_subtree(struct assoc_array_ptr
*root
,
360 const struct assoc_array_ops
*ops
)
362 struct assoc_array_shortcut
*shortcut
;
363 struct assoc_array_node
*node
;
364 struct assoc_array_ptr
*cursor
, *parent
= NULL
;
367 pr_devel("-->%s()\n", __func__
);
376 if (assoc_array_ptr_is_shortcut(cursor
)) {
377 /* Descend through a shortcut */
378 pr_devel("[%d] shortcut\n", slot
);
379 BUG_ON(!assoc_array_ptr_is_shortcut(cursor
));
380 shortcut
= assoc_array_ptr_to_shortcut(cursor
);
381 BUG_ON(shortcut
->back_pointer
!= parent
);
382 BUG_ON(slot
!= -1 && shortcut
->parent_slot
!= slot
);
384 cursor
= shortcut
->next_node
;
386 BUG_ON(!assoc_array_ptr_is_node(cursor
));
389 pr_devel("[%d] node\n", slot
);
390 node
= assoc_array_ptr_to_node(cursor
);
391 BUG_ON(node
->back_pointer
!= parent
);
392 BUG_ON(slot
!= -1 && node
->parent_slot
!= slot
);
396 pr_devel("Node %p [back=%p]\n", node
, node
->back_pointer
);
397 for (; slot
< ASSOC_ARRAY_FAN_OUT
; slot
++) {
398 struct assoc_array_ptr
*ptr
= node
->slots
[slot
];
401 if (assoc_array_ptr_is_meta(ptr
)) {
408 pr_devel("[%d] free leaf\n", slot
);
409 ops
->free_object(assoc_array_ptr_to_leaf(ptr
));
413 parent
= node
->back_pointer
;
414 slot
= node
->parent_slot
;
415 pr_devel("free node\n");
420 /* Move back up to the parent (may need to free a shortcut on
422 if (assoc_array_ptr_is_shortcut(parent
)) {
423 shortcut
= assoc_array_ptr_to_shortcut(parent
);
424 BUG_ON(shortcut
->next_node
!= cursor
);
426 parent
= shortcut
->back_pointer
;
427 slot
= shortcut
->parent_slot
;
428 pr_devel("free shortcut\n");
433 BUG_ON(!assoc_array_ptr_is_node(parent
));
436 /* Ascend to next slot in parent node */
437 pr_devel("ascend to %p[%d]\n", parent
, slot
);
439 node
= assoc_array_ptr_to_node(cursor
);
445 * assoc_array_destroy - Destroy an associative array
446 * @array: The array to destroy.
447 * @ops: The operations to use.
449 * Discard all metadata and free all objects in an associative array. The
450 * array will be empty and ready to use again upon completion. This function
453 * The caller must prevent all other accesses whilst this takes place as no
454 * attempt is made to adjust pointers gracefully to permit RCU readlock-holding
455 * accesses to continue. On the other hand, no memory allocation is required.
457 void assoc_array_destroy(struct assoc_array
*array
,
458 const struct assoc_array_ops
*ops
)
460 assoc_array_destroy_subtree(array
->root
, ops
);
465 * Handle insertion into an empty tree.
467 static bool assoc_array_insert_in_empty_tree(struct assoc_array_edit
*edit
)
469 struct assoc_array_node
*new_n0
;
471 pr_devel("-->%s()\n", __func__
);
473 new_n0
= kzalloc(sizeof(struct assoc_array_node
), GFP_KERNEL
);
477 edit
->new_meta
[0] = assoc_array_node_to_ptr(new_n0
);
478 edit
->leaf_p
= &new_n0
->slots
[0];
479 edit
->adjust_count_on
= new_n0
;
480 edit
->set
[0].ptr
= &edit
->array
->root
;
481 edit
->set
[0].to
= assoc_array_node_to_ptr(new_n0
);
483 pr_devel("<--%s() = ok [no root]\n", __func__
);
488 * Handle insertion into a terminal node.
490 static bool assoc_array_insert_into_terminal_node(struct assoc_array_edit
*edit
,
491 const struct assoc_array_ops
*ops
,
492 const void *index_key
,
493 struct assoc_array_walk_result
*result
)
495 struct assoc_array_shortcut
*shortcut
, *new_s0
;
496 struct assoc_array_node
*node
, *new_n0
, *new_n1
, *side
;
497 struct assoc_array_ptr
*ptr
;
498 unsigned long dissimilarity
, base_seg
, blank
;
502 int slot
, next_slot
, free_slot
, i
, j
;
504 node
= result
->terminal_node
.node
;
505 level
= result
->terminal_node
.level
;
506 edit
->segment_cache
[ASSOC_ARRAY_FAN_OUT
] = result
->terminal_node
.slot
;
508 pr_devel("-->%s()\n", __func__
);
510 /* We arrived at a node which doesn't have an onward node or shortcut
511 * pointer that we have to follow. This means that (a) the leaf we
512 * want must go here (either by insertion or replacement) or (b) we
513 * need to split this node and insert in one of the fragments.
517 /* Firstly, we have to check the leaves in this node to see if there's
518 * a matching one we should replace in place.
520 for (i
= 0; i
< ASSOC_ARRAY_FAN_OUT
; i
++) {
521 ptr
= node
->slots
[i
];
526 if (ops
->compare_object(assoc_array_ptr_to_leaf(ptr
), index_key
)) {
527 pr_devel("replace in slot %d\n", i
);
528 edit
->leaf_p
= &node
->slots
[i
];
529 edit
->dead_leaf
= node
->slots
[i
];
530 pr_devel("<--%s() = ok [replace]\n", __func__
);
535 /* If there is a free slot in this node then we can just insert the
538 if (free_slot
>= 0) {
539 pr_devel("insert in free slot %d\n", free_slot
);
540 edit
->leaf_p
= &node
->slots
[free_slot
];
541 edit
->adjust_count_on
= node
;
542 pr_devel("<--%s() = ok [insert]\n", __func__
);
546 /* The node has no spare slots - so we're either going to have to split
547 * it or insert another node before it.
549 * Whatever, we're going to need at least two new nodes - so allocate
550 * those now. We may also need a new shortcut, but we deal with that
553 new_n0
= kzalloc(sizeof(struct assoc_array_node
), GFP_KERNEL
);
556 edit
->new_meta
[0] = assoc_array_node_to_ptr(new_n0
);
557 new_n1
= kzalloc(sizeof(struct assoc_array_node
), GFP_KERNEL
);
560 edit
->new_meta
[1] = assoc_array_node_to_ptr(new_n1
);
562 /* We need to find out how similar the leaves are. */
563 pr_devel("no spare slots\n");
565 for (i
= 0; i
< ASSOC_ARRAY_FAN_OUT
; i
++) {
566 ptr
= node
->slots
[i
];
567 if (assoc_array_ptr_is_meta(ptr
)) {
568 edit
->segment_cache
[i
] = 0xff;
572 base_seg
= ops
->get_object_key_chunk(
573 assoc_array_ptr_to_leaf(ptr
), level
);
574 base_seg
>>= level
& ASSOC_ARRAY_KEY_CHUNK_MASK
;
575 edit
->segment_cache
[i
] = base_seg
& ASSOC_ARRAY_FAN_MASK
;
579 pr_devel("have meta\n");
583 /* The node contains only leaves */
585 base_seg
= edit
->segment_cache
[0];
586 for (i
= 1; i
< ASSOC_ARRAY_FAN_OUT
; i
++)
587 dissimilarity
|= edit
->segment_cache
[i
] ^ base_seg
;
589 pr_devel("only leaves; dissimilarity=%lx\n", dissimilarity
);
591 if ((dissimilarity
& ASSOC_ARRAY_FAN_MASK
) == 0) {
592 /* The old leaves all cluster in the same slot. We will need
593 * to insert a shortcut if the new node wants to cluster with them.
595 if ((edit
->segment_cache
[ASSOC_ARRAY_FAN_OUT
] ^ base_seg
) == 0)
596 goto all_leaves_cluster_together
;
598 /* Otherwise we can just insert a new node ahead of the old
601 goto present_leaves_cluster_but_not_new_leaf
;
605 pr_devel("split node\n");
607 /* We need to split the current node; we know that the node doesn't
608 * simply contain a full set of leaves that cluster together (it
609 * contains meta pointers and/or non-clustering leaves).
611 * We need to expel at least two leaves out of a set consisting of the
612 * leaves in the node and the new leaf.
614 * We need a new node (n0) to replace the current one and a new node to
615 * take the expelled nodes (n1).
617 edit
->set
[0].to
= assoc_array_node_to_ptr(new_n0
);
618 new_n0
->back_pointer
= node
->back_pointer
;
619 new_n0
->parent_slot
= node
->parent_slot
;
620 new_n1
->back_pointer
= assoc_array_node_to_ptr(new_n0
);
621 new_n1
->parent_slot
= -1; /* Need to calculate this */
624 pr_devel("do_split_node\n");
626 new_n0
->nr_leaves_on_branch
= node
->nr_leaves_on_branch
;
627 new_n1
->nr_leaves_on_branch
= 0;
629 /* Begin by finding two matching leaves. There have to be at least two
630 * that match - even if there are meta pointers - because any leaf that
631 * would match a slot with a meta pointer in it must be somewhere
632 * behind that meta pointer and cannot be here. Further, given N
633 * remaining leaf slots, we now have N+1 leaves to go in them.
635 for (i
= 0; i
< ASSOC_ARRAY_FAN_OUT
; i
++) {
636 slot
= edit
->segment_cache
[i
];
638 for (j
= i
+ 1; j
< ASSOC_ARRAY_FAN_OUT
+ 1; j
++)
639 if (edit
->segment_cache
[j
] == slot
)
640 goto found_slot_for_multiple_occupancy
;
642 found_slot_for_multiple_occupancy
:
643 pr_devel("same slot: %x %x [%02x]\n", i
, j
, slot
);
644 BUG_ON(i
>= ASSOC_ARRAY_FAN_OUT
);
645 BUG_ON(j
>= ASSOC_ARRAY_FAN_OUT
+ 1);
646 BUG_ON(slot
>= ASSOC_ARRAY_FAN_OUT
);
648 new_n1
->parent_slot
= slot
;
650 /* Metadata pointers cannot change slot */
651 for (i
= 0; i
< ASSOC_ARRAY_FAN_OUT
; i
++)
652 if (assoc_array_ptr_is_meta(node
->slots
[i
]))
653 new_n0
->slots
[i
] = node
->slots
[i
];
655 new_n0
->slots
[i
] = NULL
;
656 BUG_ON(new_n0
->slots
[slot
] != NULL
);
657 new_n0
->slots
[slot
] = assoc_array_node_to_ptr(new_n1
);
659 /* Filter the leaf pointers between the new nodes */
662 for (i
= 0; i
< ASSOC_ARRAY_FAN_OUT
; i
++) {
663 if (assoc_array_ptr_is_meta(node
->slots
[i
]))
665 if (edit
->segment_cache
[i
] == slot
) {
666 new_n1
->slots
[next_slot
++] = node
->slots
[i
];
667 new_n1
->nr_leaves_on_branch
++;
671 } while (new_n0
->slots
[free_slot
] != NULL
);
672 new_n0
->slots
[free_slot
] = node
->slots
[i
];
676 pr_devel("filtered: f=%x n=%x\n", free_slot
, next_slot
);
678 if (edit
->segment_cache
[ASSOC_ARRAY_FAN_OUT
] != slot
) {
681 } while (new_n0
->slots
[free_slot
] != NULL
);
682 edit
->leaf_p
= &new_n0
->slots
[free_slot
];
683 edit
->adjust_count_on
= new_n0
;
685 edit
->leaf_p
= &new_n1
->slots
[next_slot
++];
686 edit
->adjust_count_on
= new_n1
;
689 BUG_ON(next_slot
<= 1);
691 edit
->set_backpointers_to
= assoc_array_node_to_ptr(new_n0
);
692 for (i
= 0; i
< ASSOC_ARRAY_FAN_OUT
; i
++) {
693 if (edit
->segment_cache
[i
] == 0xff) {
694 ptr
= node
->slots
[i
];
695 BUG_ON(assoc_array_ptr_is_leaf(ptr
));
696 if (assoc_array_ptr_is_node(ptr
)) {
697 side
= assoc_array_ptr_to_node(ptr
);
698 edit
->set_backpointers
[i
] = &side
->back_pointer
;
700 shortcut
= assoc_array_ptr_to_shortcut(ptr
);
701 edit
->set_backpointers
[i
] = &shortcut
->back_pointer
;
706 ptr
= node
->back_pointer
;
708 edit
->set
[0].ptr
= &edit
->array
->root
;
709 else if (assoc_array_ptr_is_node(ptr
))
710 edit
->set
[0].ptr
= &assoc_array_ptr_to_node(ptr
)->slots
[node
->parent_slot
];
712 edit
->set
[0].ptr
= &assoc_array_ptr_to_shortcut(ptr
)->next_node
;
713 edit
->excised_meta
[0] = assoc_array_node_to_ptr(node
);
714 pr_devel("<--%s() = ok [split node]\n", __func__
);
717 present_leaves_cluster_but_not_new_leaf
:
718 /* All the old leaves cluster in the same slot, but the new leaf wants
719 * to go into a different slot, so we create a new node to hold the new
720 * leaf and a pointer to a new node holding all the old leaves.
722 pr_devel("present leaves cluster but not new leaf\n");
724 new_n0
->back_pointer
= node
->back_pointer
;
725 new_n0
->parent_slot
= node
->parent_slot
;
726 new_n0
->nr_leaves_on_branch
= node
->nr_leaves_on_branch
;
727 new_n1
->back_pointer
= assoc_array_node_to_ptr(new_n0
);
728 new_n1
->parent_slot
= edit
->segment_cache
[0];
729 new_n1
->nr_leaves_on_branch
= node
->nr_leaves_on_branch
;
730 edit
->adjust_count_on
= new_n0
;
732 for (i
= 0; i
< ASSOC_ARRAY_FAN_OUT
; i
++)
733 new_n1
->slots
[i
] = node
->slots
[i
];
735 new_n0
->slots
[edit
->segment_cache
[0]] = assoc_array_node_to_ptr(new_n0
);
736 edit
->leaf_p
= &new_n0
->slots
[edit
->segment_cache
[ASSOC_ARRAY_FAN_OUT
]];
738 edit
->set
[0].ptr
= &assoc_array_ptr_to_node(node
->back_pointer
)->slots
[node
->parent_slot
];
739 edit
->set
[0].to
= assoc_array_node_to_ptr(new_n0
);
740 edit
->excised_meta
[0] = assoc_array_node_to_ptr(node
);
741 pr_devel("<--%s() = ok [insert node before]\n", __func__
);
744 all_leaves_cluster_together
:
745 /* All the leaves, new and old, want to cluster together in this node
746 * in the same slot, so we have to replace this node with a shortcut to
747 * skip over the identical parts of the key and then place a pair of
748 * nodes, one inside the other, at the end of the shortcut and
749 * distribute the keys between them.
751 * Firstly we need to work out where the leaves start diverging as a
752 * bit position into their keys so that we know how big the shortcut
755 * We only need to make a single pass of N of the N+1 leaves because if
756 * any keys differ between themselves at bit X then at least one of
757 * them must also differ with the base key at bit X or before.
759 pr_devel("all leaves cluster together\n");
761 for (i
= 0; i
< ASSOC_ARRAY_FAN_OUT
; i
++) {
762 int x
= ops
->diff_objects(assoc_array_ptr_to_leaf(edit
->leaf
),
763 assoc_array_ptr_to_leaf(node
->slots
[i
]));
769 BUG_ON(diff
== INT_MAX
);
770 BUG_ON(diff
< level
+ ASSOC_ARRAY_LEVEL_STEP
);
772 keylen
= round_up(diff
, ASSOC_ARRAY_KEY_CHUNK_SIZE
);
773 keylen
>>= ASSOC_ARRAY_KEY_CHUNK_SHIFT
;
775 new_s0
= kzalloc(sizeof(struct assoc_array_shortcut
) +
776 keylen
* sizeof(unsigned long), GFP_KERNEL
);
779 edit
->new_meta
[2] = assoc_array_shortcut_to_ptr(new_s0
);
781 edit
->set
[0].to
= assoc_array_shortcut_to_ptr(new_s0
);
782 new_s0
->back_pointer
= node
->back_pointer
;
783 new_s0
->parent_slot
= node
->parent_slot
;
784 new_s0
->next_node
= assoc_array_node_to_ptr(new_n0
);
785 new_n0
->back_pointer
= assoc_array_shortcut_to_ptr(new_s0
);
786 new_n0
->parent_slot
= 0;
787 new_n1
->back_pointer
= assoc_array_node_to_ptr(new_n0
);
788 new_n1
->parent_slot
= -1; /* Need to calculate this */
790 new_s0
->skip_to_level
= level
= diff
& ~ASSOC_ARRAY_LEVEL_STEP_MASK
;
791 pr_devel("skip_to_level = %d [diff %d]\n", level
, diff
);
794 for (i
= 0; i
< keylen
; i
++)
795 new_s0
->index_key
[i
] =
796 ops
->get_key_chunk(index_key
, i
* ASSOC_ARRAY_KEY_CHUNK_SIZE
);
798 blank
= ULONG_MAX
<< (level
& ASSOC_ARRAY_KEY_CHUNK_MASK
);
799 pr_devel("blank off [%zu] %d: %lx\n", keylen
- 1, level
, blank
);
800 new_s0
->index_key
[keylen
- 1] &= ~blank
;
802 /* This now reduces to a node splitting exercise for which we'll need
803 * to regenerate the disparity table.
805 for (i
= 0; i
< ASSOC_ARRAY_FAN_OUT
; i
++) {
806 ptr
= node
->slots
[i
];
807 base_seg
= ops
->get_object_key_chunk(assoc_array_ptr_to_leaf(ptr
),
809 base_seg
>>= level
& ASSOC_ARRAY_KEY_CHUNK_MASK
;
810 edit
->segment_cache
[i
] = base_seg
& ASSOC_ARRAY_FAN_MASK
;
813 base_seg
= ops
->get_key_chunk(index_key
, level
);
814 base_seg
>>= level
& ASSOC_ARRAY_KEY_CHUNK_MASK
;
815 edit
->segment_cache
[ASSOC_ARRAY_FAN_OUT
] = base_seg
& ASSOC_ARRAY_FAN_MASK
;
820 * Handle insertion into the middle of a shortcut.
822 static bool assoc_array_insert_mid_shortcut(struct assoc_array_edit
*edit
,
823 const struct assoc_array_ops
*ops
,
824 struct assoc_array_walk_result
*result
)
826 struct assoc_array_shortcut
*shortcut
, *new_s0
, *new_s1
;
827 struct assoc_array_node
*node
, *new_n0
, *side
;
828 unsigned long sc_segments
, dissimilarity
, blank
;
830 int level
, sc_level
, diff
;
833 shortcut
= result
->wrong_shortcut
.shortcut
;
834 level
= result
->wrong_shortcut
.level
;
835 sc_level
= result
->wrong_shortcut
.sc_level
;
836 sc_segments
= result
->wrong_shortcut
.sc_segments
;
837 dissimilarity
= result
->wrong_shortcut
.dissimilarity
;
839 pr_devel("-->%s(ix=%d dis=%lx scix=%d)\n",
840 __func__
, level
, dissimilarity
, sc_level
);
842 /* We need to split a shortcut and insert a node between the two
843 * pieces. Zero-length pieces will be dispensed with entirely.
845 * First of all, we need to find out in which level the first
848 diff
= __ffs(dissimilarity
);
849 diff
&= ~ASSOC_ARRAY_LEVEL_STEP_MASK
;
850 diff
+= sc_level
& ~ASSOC_ARRAY_KEY_CHUNK_MASK
;
851 pr_devel("diff=%d\n", diff
);
853 if (!shortcut
->back_pointer
) {
854 edit
->set
[0].ptr
= &edit
->array
->root
;
855 } else if (assoc_array_ptr_is_node(shortcut
->back_pointer
)) {
856 node
= assoc_array_ptr_to_node(shortcut
->back_pointer
);
857 edit
->set
[0].ptr
= &node
->slots
[shortcut
->parent_slot
];
862 edit
->excised_meta
[0] = assoc_array_shortcut_to_ptr(shortcut
);
864 /* Create a new node now since we're going to need it anyway */
865 new_n0
= kzalloc(sizeof(struct assoc_array_node
), GFP_KERNEL
);
868 edit
->new_meta
[0] = assoc_array_node_to_ptr(new_n0
);
869 edit
->adjust_count_on
= new_n0
;
871 /* Insert a new shortcut before the new node if this segment isn't of
872 * zero length - otherwise we just connect the new node directly to the
875 level
+= ASSOC_ARRAY_LEVEL_STEP
;
877 pr_devel("pre-shortcut %d...%d\n", level
, diff
);
878 keylen
= round_up(diff
, ASSOC_ARRAY_KEY_CHUNK_SIZE
);
879 keylen
>>= ASSOC_ARRAY_KEY_CHUNK_SHIFT
;
881 new_s0
= kzalloc(sizeof(struct assoc_array_shortcut
) +
882 keylen
* sizeof(unsigned long), GFP_KERNEL
);
885 edit
->new_meta
[1] = assoc_array_shortcut_to_ptr(new_s0
);
886 edit
->set
[0].to
= assoc_array_shortcut_to_ptr(new_s0
);
887 new_s0
->back_pointer
= shortcut
->back_pointer
;
888 new_s0
->parent_slot
= shortcut
->parent_slot
;
889 new_s0
->next_node
= assoc_array_node_to_ptr(new_n0
);
890 new_s0
->skip_to_level
= diff
;
892 new_n0
->back_pointer
= assoc_array_shortcut_to_ptr(new_s0
);
893 new_n0
->parent_slot
= 0;
895 memcpy(new_s0
->index_key
, shortcut
->index_key
,
896 keylen
* sizeof(unsigned long));
898 blank
= ULONG_MAX
<< (diff
& ASSOC_ARRAY_KEY_CHUNK_MASK
);
899 pr_devel("blank off [%zu] %d: %lx\n", keylen
- 1, diff
, blank
);
900 new_s0
->index_key
[keylen
- 1] &= ~blank
;
902 pr_devel("no pre-shortcut\n");
903 edit
->set
[0].to
= assoc_array_node_to_ptr(new_n0
);
904 new_n0
->back_pointer
= shortcut
->back_pointer
;
905 new_n0
->parent_slot
= shortcut
->parent_slot
;
908 side
= assoc_array_ptr_to_node(shortcut
->next_node
);
909 new_n0
->nr_leaves_on_branch
= side
->nr_leaves_on_branch
;
911 /* We need to know which slot in the new node is going to take a
914 sc_slot
= sc_segments
>> (diff
& ASSOC_ARRAY_KEY_CHUNK_MASK
);
915 sc_slot
&= ASSOC_ARRAY_FAN_MASK
;
917 pr_devel("new slot %lx >> %d -> %d\n",
918 sc_segments
, diff
& ASSOC_ARRAY_KEY_CHUNK_MASK
, sc_slot
);
920 /* Determine whether we need to follow the new node with a replacement
921 * for the current shortcut. We could in theory reuse the current
922 * shortcut if its parent slot number doesn't change - but that's a
923 * 1-in-16 chance so not worth expending the code upon.
925 level
= diff
+ ASSOC_ARRAY_LEVEL_STEP
;
926 if (level
< shortcut
->skip_to_level
) {
927 pr_devel("post-shortcut %d...%d\n", level
, shortcut
->skip_to_level
);
928 keylen
= round_up(shortcut
->skip_to_level
, ASSOC_ARRAY_KEY_CHUNK_SIZE
);
929 keylen
>>= ASSOC_ARRAY_KEY_CHUNK_SHIFT
;
931 new_s1
= kzalloc(sizeof(struct assoc_array_shortcut
) +
932 keylen
* sizeof(unsigned long), GFP_KERNEL
);
935 edit
->new_meta
[2] = assoc_array_shortcut_to_ptr(new_s1
);
937 new_s1
->back_pointer
= assoc_array_node_to_ptr(new_n0
);
938 new_s1
->parent_slot
= sc_slot
;
939 new_s1
->next_node
= shortcut
->next_node
;
940 new_s1
->skip_to_level
= shortcut
->skip_to_level
;
942 new_n0
->slots
[sc_slot
] = assoc_array_shortcut_to_ptr(new_s1
);
944 memcpy(new_s1
->index_key
, shortcut
->index_key
,
945 keylen
* sizeof(unsigned long));
947 edit
->set
[1].ptr
= &side
->back_pointer
;
948 edit
->set
[1].to
= assoc_array_shortcut_to_ptr(new_s1
);
950 pr_devel("no post-shortcut\n");
952 /* We don't have to replace the pointed-to node as long as we
953 * use memory barriers to make sure the parent slot number is
954 * changed before the back pointer (the parent slot number is
955 * irrelevant to the old parent shortcut).
957 new_n0
->slots
[sc_slot
] = shortcut
->next_node
;
958 edit
->set_parent_slot
[0].p
= &side
->parent_slot
;
959 edit
->set_parent_slot
[0].to
= sc_slot
;
960 edit
->set
[1].ptr
= &side
->back_pointer
;
961 edit
->set
[1].to
= assoc_array_node_to_ptr(new_n0
);
964 /* Install the new leaf in a spare slot in the new node. */
966 edit
->leaf_p
= &new_n0
->slots
[1];
968 edit
->leaf_p
= &new_n0
->slots
[0];
970 pr_devel("<--%s() = ok [split shortcut]\n", __func__
);
975 * assoc_array_insert - Script insertion of an object into an associative array
976 * @array: The array to insert into.
977 * @ops: The operations to use.
978 * @index_key: The key to insert at.
979 * @object: The object to insert.
981 * Precalculate and preallocate a script for the insertion or replacement of an
982 * object in an associative array. This results in an edit script that can
983 * either be applied or cancelled.
985 * The function returns a pointer to an edit script or -ENOMEM.
987 * The caller should lock against other modifications and must continue to hold
988 * the lock until assoc_array_apply_edit() has been called.
990 * Accesses to the tree may take place concurrently with this function,
991 * provided they hold the RCU read lock.
993 struct assoc_array_edit
*assoc_array_insert(struct assoc_array
*array
,
994 const struct assoc_array_ops
*ops
,
995 const void *index_key
,
998 struct assoc_array_walk_result result
;
999 struct assoc_array_edit
*edit
;
1001 pr_devel("-->%s()\n", __func__
);
1003 /* The leaf pointer we're given must not have the bottom bit set as we
1004 * use those for type-marking the pointer. NULL pointers are also not
1005 * allowed as they indicate an empty slot but we have to allow them
1006 * here as they can be updated later.
1008 BUG_ON(assoc_array_ptr_is_meta(object
));
1010 edit
= kzalloc(sizeof(struct assoc_array_edit
), GFP_KERNEL
);
1012 return ERR_PTR(-ENOMEM
);
1013 edit
->array
= array
;
1015 edit
->leaf
= assoc_array_leaf_to_ptr(object
);
1016 edit
->adjust_count_by
= 1;
1018 switch (assoc_array_walk(array
, ops
, index_key
, &result
)) {
1019 case assoc_array_walk_tree_empty
:
1020 /* Allocate a root node if there isn't one yet */
1021 if (!assoc_array_insert_in_empty_tree(edit
))
1025 case assoc_array_walk_found_terminal_node
:
1026 /* We found a node that doesn't have a node/shortcut pointer in
1027 * the slot corresponding to the index key that we have to
1030 if (!assoc_array_insert_into_terminal_node(edit
, ops
, index_key
,
1035 case assoc_array_walk_found_wrong_shortcut
:
1036 /* We found a shortcut that didn't match our key in a slot we
1039 if (!assoc_array_insert_mid_shortcut(edit
, ops
, &result
))
1045 /* Clean up after an out of memory error */
1046 pr_devel("enomem\n");
1047 assoc_array_cancel_edit(edit
);
1048 return ERR_PTR(-ENOMEM
);
1052 * assoc_array_insert_set_object - Set the new object pointer in an edit script
1053 * @edit: The edit script to modify.
1054 * @object: The object pointer to set.
1056 * Change the object to be inserted in an edit script. The object pointed to
1057 * by the old object is not freed. This must be done prior to applying the
1060 void assoc_array_insert_set_object(struct assoc_array_edit
*edit
, void *object
)
1063 edit
->leaf
= assoc_array_leaf_to_ptr(object
);
1066 struct assoc_array_delete_collapse_context
{
1067 struct assoc_array_node
*node
;
1068 const void *skip_leaf
;
1073 * Subtree collapse to node iterator.
1075 static int assoc_array_delete_collapse_iterator(const void *leaf
,
1076 void *iterator_data
)
1078 struct assoc_array_delete_collapse_context
*collapse
= iterator_data
;
1080 if (leaf
== collapse
->skip_leaf
)
1083 BUG_ON(collapse
->slot
>= ASSOC_ARRAY_FAN_OUT
);
1085 collapse
->node
->slots
[collapse
->slot
++] = assoc_array_leaf_to_ptr(leaf
);
1090 * assoc_array_delete - Script deletion of an object from an associative array
1091 * @array: The array to search.
1092 * @ops: The operations to use.
1093 * @index_key: The key to the object.
1095 * Precalculate and preallocate a script for the deletion of an object from an
1096 * associative array. This results in an edit script that can either be
1097 * applied or cancelled.
1099 * The function returns a pointer to an edit script if the object was found,
1100 * NULL if the object was not found or -ENOMEM.
1102 * The caller should lock against other modifications and must continue to hold
1103 * the lock until assoc_array_apply_edit() has been called.
1105 * Accesses to the tree may take place concurrently with this function,
1106 * provided they hold the RCU read lock.
1108 struct assoc_array_edit
*assoc_array_delete(struct assoc_array
*array
,
1109 const struct assoc_array_ops
*ops
,
1110 const void *index_key
)
1112 struct assoc_array_delete_collapse_context collapse
;
1113 struct assoc_array_walk_result result
;
1114 struct assoc_array_node
*node
, *new_n0
;
1115 struct assoc_array_edit
*edit
;
1116 struct assoc_array_ptr
*ptr
;
1120 pr_devel("-->%s()\n", __func__
);
1122 edit
= kzalloc(sizeof(struct assoc_array_edit
), GFP_KERNEL
);
1124 return ERR_PTR(-ENOMEM
);
1125 edit
->array
= array
;
1127 edit
->adjust_count_by
= -1;
1129 switch (assoc_array_walk(array
, ops
, index_key
, &result
)) {
1130 case assoc_array_walk_found_terminal_node
:
1131 /* We found a node that should contain the leaf we've been
1132 * asked to remove - *if* it's in the tree.
1134 pr_devel("terminal_node\n");
1135 node
= result
.terminal_node
.node
;
1137 for (slot
= 0; slot
< ASSOC_ARRAY_FAN_OUT
; slot
++) {
1138 ptr
= node
->slots
[slot
];
1140 assoc_array_ptr_is_leaf(ptr
) &&
1141 ops
->compare_object(assoc_array_ptr_to_leaf(ptr
),
1145 case assoc_array_walk_tree_empty
:
1146 case assoc_array_walk_found_wrong_shortcut
:
1148 assoc_array_cancel_edit(edit
);
1149 pr_devel("not found\n");
1154 BUG_ON(array
->nr_leaves_on_tree
<= 0);
1156 /* In the simplest form of deletion we just clear the slot and release
1157 * the leaf after a suitable interval.
1159 edit
->dead_leaf
= node
->slots
[slot
];
1160 edit
->set
[0].ptr
= &node
->slots
[slot
];
1161 edit
->set
[0].to
= NULL
;
1162 edit
->adjust_count_on
= node
;
1164 /* If that concludes erasure of the last leaf, then delete the entire
1167 if (array
->nr_leaves_on_tree
== 1) {
1168 edit
->set
[1].ptr
= &array
->root
;
1169 edit
->set
[1].to
= NULL
;
1170 edit
->adjust_count_on
= NULL
;
1171 edit
->excised_subtree
= array
->root
;
1172 pr_devel("all gone\n");
1176 /* However, we'd also like to clear up some metadata blocks if we
1179 * We go for a simple algorithm of: if this node has FAN_OUT or fewer
1180 * leaves in it, then attempt to collapse it - and attempt to
1181 * recursively collapse up the tree.
1183 * We could also try and collapse in partially filled subtrees to take
1184 * up space in this node.
1186 if (node
->nr_leaves_on_branch
<= ASSOC_ARRAY_FAN_OUT
+ 1) {
1187 struct assoc_array_node
*parent
, *grandparent
;
1188 struct assoc_array_ptr
*ptr
;
1190 /* First of all, we need to know if this node has metadata so
1191 * that we don't try collapsing if all the leaves are already
1195 for (i
= 0; i
< ASSOC_ARRAY_FAN_OUT
; i
++) {
1196 ptr
= node
->slots
[i
];
1197 if (assoc_array_ptr_is_meta(ptr
)) {
1203 pr_devel("leaves: %ld [m=%d]\n",
1204 node
->nr_leaves_on_branch
- 1, has_meta
);
1206 /* Look further up the tree to see if we can collapse this node
1207 * into a more proximal node too.
1211 pr_devel("collapse subtree: %ld\n", parent
->nr_leaves_on_branch
);
1213 ptr
= parent
->back_pointer
;
1216 if (assoc_array_ptr_is_shortcut(ptr
)) {
1217 struct assoc_array_shortcut
*s
= assoc_array_ptr_to_shortcut(ptr
);
1218 ptr
= s
->back_pointer
;
1223 grandparent
= assoc_array_ptr_to_node(ptr
);
1224 if (grandparent
->nr_leaves_on_branch
<= ASSOC_ARRAY_FAN_OUT
+ 1) {
1225 parent
= grandparent
;
1230 /* There's no point collapsing if the original node has no meta
1231 * pointers to discard and if we didn't merge into one of that
1234 if (has_meta
|| parent
!= node
) {
1237 /* Create a new node to collapse into */
1238 new_n0
= kzalloc(sizeof(struct assoc_array_node
), GFP_KERNEL
);
1241 edit
->new_meta
[0] = assoc_array_node_to_ptr(new_n0
);
1243 new_n0
->back_pointer
= node
->back_pointer
;
1244 new_n0
->parent_slot
= node
->parent_slot
;
1245 new_n0
->nr_leaves_on_branch
= node
->nr_leaves_on_branch
;
1246 edit
->adjust_count_on
= new_n0
;
1248 collapse
.node
= new_n0
;
1249 collapse
.skip_leaf
= assoc_array_ptr_to_leaf(edit
->dead_leaf
);
1251 assoc_array_subtree_iterate(assoc_array_node_to_ptr(node
),
1253 assoc_array_delete_collapse_iterator
,
1255 pr_devel("collapsed %d,%lu\n", collapse
.slot
, new_n0
->nr_leaves_on_branch
);
1256 BUG_ON(collapse
.slot
!= new_n0
->nr_leaves_on_branch
- 1);
1258 if (!node
->back_pointer
) {
1259 edit
->set
[1].ptr
= &array
->root
;
1260 } else if (assoc_array_ptr_is_leaf(node
->back_pointer
)) {
1262 } else if (assoc_array_ptr_is_node(node
->back_pointer
)) {
1263 struct assoc_array_node
*p
=
1264 assoc_array_ptr_to_node(node
->back_pointer
);
1265 edit
->set
[1].ptr
= &p
->slots
[node
->parent_slot
];
1266 } else if (assoc_array_ptr_is_shortcut(node
->back_pointer
)) {
1267 struct assoc_array_shortcut
*s
=
1268 assoc_array_ptr_to_shortcut(node
->back_pointer
);
1269 edit
->set
[1].ptr
= &s
->next_node
;
1271 edit
->set
[1].to
= assoc_array_node_to_ptr(new_n0
);
1272 edit
->excised_subtree
= assoc_array_node_to_ptr(node
);
1279 /* Clean up after an out of memory error */
1280 pr_devel("enomem\n");
1281 assoc_array_cancel_edit(edit
);
1282 return ERR_PTR(-ENOMEM
);
1286 * assoc_array_clear - Script deletion of all objects from an associative array
1287 * @array: The array to clear.
1288 * @ops: The operations to use.
1290 * Precalculate and preallocate a script for the deletion of all the objects
1291 * from an associative array. This results in an edit script that can either
1292 * be applied or cancelled.
1294 * The function returns a pointer to an edit script if there are objects to be
1295 * deleted, NULL if there are no objects in the array or -ENOMEM.
1297 * The caller should lock against other modifications and must continue to hold
1298 * the lock until assoc_array_apply_edit() has been called.
1300 * Accesses to the tree may take place concurrently with this function,
1301 * provided they hold the RCU read lock.
1303 struct assoc_array_edit
*assoc_array_clear(struct assoc_array
*array
,
1304 const struct assoc_array_ops
*ops
)
1306 struct assoc_array_edit
*edit
;
1308 pr_devel("-->%s()\n", __func__
);
1313 edit
= kzalloc(sizeof(struct assoc_array_edit
), GFP_KERNEL
);
1315 return ERR_PTR(-ENOMEM
);
1316 edit
->array
= array
;
1318 edit
->set
[1].ptr
= &array
->root
;
1319 edit
->set
[1].to
= NULL
;
1320 edit
->excised_subtree
= array
->root
;
1321 edit
->ops_for_excised_subtree
= ops
;
1322 pr_devel("all gone\n");
1327 * Handle the deferred destruction after an applied edit.
1329 static void assoc_array_rcu_cleanup(struct rcu_head
*head
)
1331 struct assoc_array_edit
*edit
=
1332 container_of(head
, struct assoc_array_edit
, rcu
);
1335 pr_devel("-->%s()\n", __func__
);
1337 if (edit
->dead_leaf
)
1338 edit
->ops
->free_object(assoc_array_ptr_to_leaf(edit
->dead_leaf
));
1339 for (i
= 0; i
< ARRAY_SIZE(edit
->excised_meta
); i
++)
1340 if (edit
->excised_meta
[i
])
1341 kfree(assoc_array_ptr_to_node(edit
->excised_meta
[i
]));
1343 if (edit
->excised_subtree
) {
1344 BUG_ON(assoc_array_ptr_is_leaf(edit
->excised_subtree
));
1345 if (assoc_array_ptr_is_node(edit
->excised_subtree
)) {
1346 struct assoc_array_node
*n
=
1347 assoc_array_ptr_to_node(edit
->excised_subtree
);
1348 n
->back_pointer
= NULL
;
1350 struct assoc_array_shortcut
*s
=
1351 assoc_array_ptr_to_shortcut(edit
->excised_subtree
);
1352 s
->back_pointer
= NULL
;
1354 assoc_array_destroy_subtree(edit
->excised_subtree
,
1355 edit
->ops_for_excised_subtree
);
1362 * assoc_array_apply_edit - Apply an edit script to an associative array
1363 * @edit: The script to apply.
1365 * Apply an edit script to an associative array to effect an insertion,
1366 * deletion or clearance. As the edit script includes preallocated memory,
1367 * this is guaranteed not to fail.
1369 * The edit script, dead objects and dead metadata will be scheduled for
1370 * destruction after an RCU grace period to permit those doing read-only
1371 * accesses on the array to continue to do so under the RCU read lock whilst
1372 * the edit is taking place.
1374 void assoc_array_apply_edit(struct assoc_array_edit
*edit
)
1376 struct assoc_array_shortcut
*shortcut
;
1377 struct assoc_array_node
*node
;
1378 struct assoc_array_ptr
*ptr
;
1381 pr_devel("-->%s()\n", __func__
);
1385 *edit
->leaf_p
= edit
->leaf
;
1388 for (i
= 0; i
< ARRAY_SIZE(edit
->set_parent_slot
); i
++)
1389 if (edit
->set_parent_slot
[i
].p
)
1390 *edit
->set_parent_slot
[i
].p
= edit
->set_parent_slot
[i
].to
;
1393 for (i
= 0; i
< ARRAY_SIZE(edit
->set_backpointers
); i
++)
1394 if (edit
->set_backpointers
[i
])
1395 *edit
->set_backpointers
[i
] = edit
->set_backpointers_to
;
1398 for (i
= 0; i
< ARRAY_SIZE(edit
->set
); i
++)
1399 if (edit
->set
[i
].ptr
)
1400 *edit
->set
[i
].ptr
= edit
->set
[i
].to
;
1402 if (edit
->array
->root
== NULL
) {
1403 edit
->array
->nr_leaves_on_tree
= 0;
1404 } else if (edit
->adjust_count_on
) {
1405 node
= edit
->adjust_count_on
;
1407 node
->nr_leaves_on_branch
+= edit
->adjust_count_by
;
1409 ptr
= node
->back_pointer
;
1412 if (assoc_array_ptr_is_shortcut(ptr
)) {
1413 shortcut
= assoc_array_ptr_to_shortcut(ptr
);
1414 ptr
= shortcut
->back_pointer
;
1418 BUG_ON(!assoc_array_ptr_is_node(ptr
));
1419 node
= assoc_array_ptr_to_node(ptr
);
1422 edit
->array
->nr_leaves_on_tree
+= edit
->adjust_count_by
;
1425 call_rcu(&edit
->rcu
, assoc_array_rcu_cleanup
);
1429 * assoc_array_cancel_edit - Discard an edit script.
1430 * @edit: The script to discard.
1432 * Free an edit script and all the preallocated data it holds without making
1433 * any changes to the associative array it was intended for.
1435 * NOTE! In the case of an insertion script, this does _not_ release the leaf
1436 * that was to be inserted. That is left to the caller.
1438 void assoc_array_cancel_edit(struct assoc_array_edit
*edit
)
1440 struct assoc_array_ptr
*ptr
;
1443 pr_devel("-->%s()\n", __func__
);
1445 /* Clean up after an out of memory error */
1446 for (i
= 0; i
< ARRAY_SIZE(edit
->new_meta
); i
++) {
1447 ptr
= edit
->new_meta
[i
];
1449 if (assoc_array_ptr_is_node(ptr
))
1450 kfree(assoc_array_ptr_to_node(ptr
));
1452 kfree(assoc_array_ptr_to_shortcut(ptr
));
1459 * assoc_array_gc - Garbage collect an associative array.
1460 * @array: The array to clean.
1461 * @ops: The operations to use.
1462 * @iterator: A callback function to pass judgement on each object.
1463 * @iterator_data: Private data for the callback function.
1465 * Collect garbage from an associative array and pack down the internal tree to
1468 * The iterator function is asked to pass judgement upon each object in the
1469 * array. If it returns false, the object is discard and if it returns true,
1470 * the object is kept. If it returns true, it must increment the object's
1471 * usage count (or whatever it needs to do to retain it) before returning.
1473 * This function returns 0 if successful or -ENOMEM if out of memory. In the
1474 * latter case, the array is not changed.
1476 * The caller should lock against other modifications and must continue to hold
1477 * the lock until assoc_array_apply_edit() has been called.
1479 * Accesses to the tree may take place concurrently with this function,
1480 * provided they hold the RCU read lock.
1482 int assoc_array_gc(struct assoc_array
*array
,
1483 const struct assoc_array_ops
*ops
,
1484 bool (*iterator
)(void *object
, void *iterator_data
),
1485 void *iterator_data
)
1487 struct assoc_array_shortcut
*shortcut
, *new_s
;
1488 struct assoc_array_node
*node
, *new_n
;
1489 struct assoc_array_edit
*edit
;
1490 struct assoc_array_ptr
*cursor
, *ptr
;
1491 struct assoc_array_ptr
*new_root
, *new_parent
, **new_ptr_pp
;
1492 unsigned long nr_leaves_on_tree
;
1493 int keylen
, slot
, nr_free
, next_slot
, i
;
1495 pr_devel("-->%s()\n", __func__
);
1500 edit
= kzalloc(sizeof(struct assoc_array_edit
), GFP_KERNEL
);
1503 edit
->array
= array
;
1505 edit
->ops_for_excised_subtree
= ops
;
1506 edit
->set
[0].ptr
= &array
->root
;
1507 edit
->excised_subtree
= array
->root
;
1509 new_root
= new_parent
= NULL
;
1510 new_ptr_pp
= &new_root
;
1511 cursor
= array
->root
;
1514 /* If this point is a shortcut, then we need to duplicate it and
1515 * advance the target cursor.
1517 if (assoc_array_ptr_is_shortcut(cursor
)) {
1518 shortcut
= assoc_array_ptr_to_shortcut(cursor
);
1519 keylen
= round_up(shortcut
->skip_to_level
, ASSOC_ARRAY_KEY_CHUNK_SIZE
);
1520 keylen
>>= ASSOC_ARRAY_KEY_CHUNK_SHIFT
;
1521 new_s
= kmalloc(sizeof(struct assoc_array_shortcut
) +
1522 keylen
* sizeof(unsigned long), GFP_KERNEL
);
1525 pr_devel("dup shortcut %p -> %p\n", shortcut
, new_s
);
1526 memcpy(new_s
, shortcut
, (sizeof(struct assoc_array_shortcut
) +
1527 keylen
* sizeof(unsigned long)));
1528 new_s
->back_pointer
= new_parent
;
1529 new_s
->parent_slot
= shortcut
->parent_slot
;
1530 *new_ptr_pp
= new_parent
= assoc_array_shortcut_to_ptr(new_s
);
1531 new_ptr_pp
= &new_s
->next_node
;
1532 cursor
= shortcut
->next_node
;
1535 /* Duplicate the node at this position */
1536 node
= assoc_array_ptr_to_node(cursor
);
1537 new_n
= kzalloc(sizeof(struct assoc_array_node
), GFP_KERNEL
);
1540 pr_devel("dup node %p -> %p\n", node
, new_n
);
1541 new_n
->back_pointer
= new_parent
;
1542 new_n
->parent_slot
= node
->parent_slot
;
1543 *new_ptr_pp
= new_parent
= assoc_array_node_to_ptr(new_n
);
1548 /* Filter across any leaves and gc any subtrees */
1549 for (; slot
< ASSOC_ARRAY_FAN_OUT
; slot
++) {
1550 ptr
= node
->slots
[slot
];
1554 if (assoc_array_ptr_is_leaf(ptr
)) {
1555 if (iterator(assoc_array_ptr_to_leaf(ptr
),
1557 /* The iterator will have done any reference
1558 * counting on the object for us.
1560 new_n
->slots
[slot
] = ptr
;
1564 new_ptr_pp
= &new_n
->slots
[slot
];
1569 pr_devel("-- compress node %p --\n", new_n
);
1571 /* Count up the number of empty slots in this node and work out the
1572 * subtree leaf count.
1574 new_n
->nr_leaves_on_branch
= 0;
1576 for (slot
= 0; slot
< ASSOC_ARRAY_FAN_OUT
; slot
++) {
1577 ptr
= new_n
->slots
[slot
];
1580 else if (assoc_array_ptr_is_leaf(ptr
))
1581 new_n
->nr_leaves_on_branch
++;
1583 pr_devel("free=%d, leaves=%lu\n", nr_free
, new_n
->nr_leaves_on_branch
);
1585 /* See what we can fold in */
1587 for (slot
= 0; slot
< ASSOC_ARRAY_FAN_OUT
; slot
++) {
1588 struct assoc_array_shortcut
*s
;
1589 struct assoc_array_node
*child
;
1591 ptr
= new_n
->slots
[slot
];
1592 if (!ptr
|| assoc_array_ptr_is_leaf(ptr
))
1596 if (assoc_array_ptr_is_shortcut(ptr
)) {
1597 s
= assoc_array_ptr_to_shortcut(ptr
);
1601 child
= assoc_array_ptr_to_node(ptr
);
1602 new_n
->nr_leaves_on_branch
+= child
->nr_leaves_on_branch
;
1604 if (child
->nr_leaves_on_branch
<= nr_free
+ 1) {
1605 /* Fold the child node into this one */
1606 pr_devel("[%d] fold node %lu/%d [nx %d]\n",
1607 slot
, child
->nr_leaves_on_branch
, nr_free
+ 1,
1610 /* We would already have reaped an intervening shortcut
1611 * on the way back up the tree.
1615 new_n
->slots
[slot
] = NULL
;
1617 if (slot
< next_slot
)
1619 for (i
= 0; i
< ASSOC_ARRAY_FAN_OUT
; i
++) {
1620 struct assoc_array_ptr
*p
= child
->slots
[i
];
1623 BUG_ON(assoc_array_ptr_is_meta(p
));
1624 while (new_n
->slots
[next_slot
])
1626 BUG_ON(next_slot
>= ASSOC_ARRAY_FAN_OUT
);
1627 new_n
->slots
[next_slot
++] = p
;
1632 pr_devel("[%d] retain node %lu/%d [nx %d]\n",
1633 slot
, child
->nr_leaves_on_branch
, nr_free
+ 1,
1638 pr_devel("after: %lu\n", new_n
->nr_leaves_on_branch
);
1640 nr_leaves_on_tree
= new_n
->nr_leaves_on_branch
;
1642 /* Excise this node if it is singly occupied by a shortcut */
1643 if (nr_free
== ASSOC_ARRAY_FAN_OUT
- 1) {
1644 for (slot
= 0; slot
< ASSOC_ARRAY_FAN_OUT
; slot
++)
1645 if ((ptr
= new_n
->slots
[slot
]))
1648 if (assoc_array_ptr_is_meta(ptr
) &&
1649 assoc_array_ptr_is_shortcut(ptr
)) {
1650 pr_devel("excise node %p with 1 shortcut\n", new_n
);
1651 new_s
= assoc_array_ptr_to_shortcut(ptr
);
1652 new_parent
= new_n
->back_pointer
;
1653 slot
= new_n
->parent_slot
;
1656 new_s
->back_pointer
= NULL
;
1657 new_s
->parent_slot
= 0;
1662 if (assoc_array_ptr_is_shortcut(new_parent
)) {
1663 /* We can discard any preceding shortcut also */
1664 struct assoc_array_shortcut
*s
=
1665 assoc_array_ptr_to_shortcut(new_parent
);
1667 pr_devel("excise preceding shortcut\n");
1669 new_parent
= new_s
->back_pointer
= s
->back_pointer
;
1670 slot
= new_s
->parent_slot
= s
->parent_slot
;
1673 new_s
->back_pointer
= NULL
;
1674 new_s
->parent_slot
= 0;
1680 new_s
->back_pointer
= new_parent
;
1681 new_s
->parent_slot
= slot
;
1682 new_n
= assoc_array_ptr_to_node(new_parent
);
1683 new_n
->slots
[slot
] = ptr
;
1684 goto ascend_old_tree
;
1688 /* Excise any shortcuts we might encounter that point to nodes that
1689 * only contain leaves.
1691 ptr
= new_n
->back_pointer
;
1695 if (assoc_array_ptr_is_shortcut(ptr
)) {
1696 new_s
= assoc_array_ptr_to_shortcut(ptr
);
1697 new_parent
= new_s
->back_pointer
;
1698 slot
= new_s
->parent_slot
;
1700 if (new_n
->nr_leaves_on_branch
<= ASSOC_ARRAY_FAN_OUT
) {
1701 struct assoc_array_node
*n
;
1703 pr_devel("excise shortcut\n");
1704 new_n
->back_pointer
= new_parent
;
1705 new_n
->parent_slot
= slot
;
1708 new_root
= assoc_array_node_to_ptr(new_n
);
1712 n
= assoc_array_ptr_to_node(new_parent
);
1713 n
->slots
[slot
] = assoc_array_node_to_ptr(new_n
);
1718 new_n
= assoc_array_ptr_to_node(new_parent
);
1721 ptr
= node
->back_pointer
;
1722 if (assoc_array_ptr_is_shortcut(ptr
)) {
1723 shortcut
= assoc_array_ptr_to_shortcut(ptr
);
1724 slot
= shortcut
->parent_slot
;
1725 cursor
= shortcut
->back_pointer
;
1727 slot
= node
->parent_slot
;
1731 node
= assoc_array_ptr_to_node(cursor
);
1736 edit
->set
[0].to
= new_root
;
1737 assoc_array_apply_edit(edit
);
1738 edit
->array
->nr_leaves_on_tree
= nr_leaves_on_tree
;
1742 pr_devel("enomem\n");
1743 assoc_array_destroy_subtree(new_root
, edit
->ops
);