2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 #include "xfs_types.h"
24 #include "xfs_trans.h"
28 #include "xfs_dmapi.h"
29 #include "xfs_mount.h"
30 #include "xfs_bmap_btree.h"
31 #include "xfs_alloc_btree.h"
32 #include "xfs_ialloc_btree.h"
33 #include "xfs_dir2_sf.h"
34 #include "xfs_attr_sf.h"
35 #include "xfs_dinode.h"
36 #include "xfs_inode.h"
37 #include "xfs_btree.h"
38 #include "xfs_ialloc.h"
39 #include "xfs_alloc.h"
40 #include "xfs_rtalloc.h"
42 #include "xfs_error.h"
44 #include "xfs_quota.h"
45 #include "xfs_fsops.h"
46 #include "xfs_utils.h"
48 STATIC
void xfs_unmountfs_wait(xfs_mount_t
*);
52 STATIC
void xfs_icsb_balance_counter(xfs_mount_t
*, xfs_sb_field_t
,
54 STATIC
void xfs_icsb_balance_counter_locked(xfs_mount_t
*, xfs_sb_field_t
,
56 STATIC
int xfs_icsb_modify_counters(xfs_mount_t
*, xfs_sb_field_t
,
58 STATIC
void xfs_icsb_disable_counter(xfs_mount_t
*, xfs_sb_field_t
);
62 #define xfs_icsb_balance_counter(mp, a, b) do { } while (0)
63 #define xfs_icsb_balance_counter_locked(mp, a, b) do { } while (0)
64 #define xfs_icsb_modify_counters(mp, a, b, c) do { } while (0)
70 short type
; /* 0 = integer
71 * 1 = binary / string (no translation)
74 { offsetof(xfs_sb_t
, sb_magicnum
), 0 },
75 { offsetof(xfs_sb_t
, sb_blocksize
), 0 },
76 { offsetof(xfs_sb_t
, sb_dblocks
), 0 },
77 { offsetof(xfs_sb_t
, sb_rblocks
), 0 },
78 { offsetof(xfs_sb_t
, sb_rextents
), 0 },
79 { offsetof(xfs_sb_t
, sb_uuid
), 1 },
80 { offsetof(xfs_sb_t
, sb_logstart
), 0 },
81 { offsetof(xfs_sb_t
, sb_rootino
), 0 },
82 { offsetof(xfs_sb_t
, sb_rbmino
), 0 },
83 { offsetof(xfs_sb_t
, sb_rsumino
), 0 },
84 { offsetof(xfs_sb_t
, sb_rextsize
), 0 },
85 { offsetof(xfs_sb_t
, sb_agblocks
), 0 },
86 { offsetof(xfs_sb_t
, sb_agcount
), 0 },
87 { offsetof(xfs_sb_t
, sb_rbmblocks
), 0 },
88 { offsetof(xfs_sb_t
, sb_logblocks
), 0 },
89 { offsetof(xfs_sb_t
, sb_versionnum
), 0 },
90 { offsetof(xfs_sb_t
, sb_sectsize
), 0 },
91 { offsetof(xfs_sb_t
, sb_inodesize
), 0 },
92 { offsetof(xfs_sb_t
, sb_inopblock
), 0 },
93 { offsetof(xfs_sb_t
, sb_fname
[0]), 1 },
94 { offsetof(xfs_sb_t
, sb_blocklog
), 0 },
95 { offsetof(xfs_sb_t
, sb_sectlog
), 0 },
96 { offsetof(xfs_sb_t
, sb_inodelog
), 0 },
97 { offsetof(xfs_sb_t
, sb_inopblog
), 0 },
98 { offsetof(xfs_sb_t
, sb_agblklog
), 0 },
99 { offsetof(xfs_sb_t
, sb_rextslog
), 0 },
100 { offsetof(xfs_sb_t
, sb_inprogress
), 0 },
101 { offsetof(xfs_sb_t
, sb_imax_pct
), 0 },
102 { offsetof(xfs_sb_t
, sb_icount
), 0 },
103 { offsetof(xfs_sb_t
, sb_ifree
), 0 },
104 { offsetof(xfs_sb_t
, sb_fdblocks
), 0 },
105 { offsetof(xfs_sb_t
, sb_frextents
), 0 },
106 { offsetof(xfs_sb_t
, sb_uquotino
), 0 },
107 { offsetof(xfs_sb_t
, sb_gquotino
), 0 },
108 { offsetof(xfs_sb_t
, sb_qflags
), 0 },
109 { offsetof(xfs_sb_t
, sb_flags
), 0 },
110 { offsetof(xfs_sb_t
, sb_shared_vn
), 0 },
111 { offsetof(xfs_sb_t
, sb_inoalignmt
), 0 },
112 { offsetof(xfs_sb_t
, sb_unit
), 0 },
113 { offsetof(xfs_sb_t
, sb_width
), 0 },
114 { offsetof(xfs_sb_t
, sb_dirblklog
), 0 },
115 { offsetof(xfs_sb_t
, sb_logsectlog
), 0 },
116 { offsetof(xfs_sb_t
, sb_logsectsize
),0 },
117 { offsetof(xfs_sb_t
, sb_logsunit
), 0 },
118 { offsetof(xfs_sb_t
, sb_features2
), 0 },
119 { offsetof(xfs_sb_t
, sb_bad_features2
), 0 },
120 { sizeof(xfs_sb_t
), 0 }
123 static DEFINE_MUTEX(xfs_uuid_table_mutex
);
124 static int xfs_uuid_table_size
;
125 static uuid_t
*xfs_uuid_table
;
128 * See if the UUID is unique among mounted XFS filesystems.
129 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
133 struct xfs_mount
*mp
)
135 uuid_t
*uuid
= &mp
->m_sb
.sb_uuid
;
138 if (mp
->m_flags
& XFS_MOUNT_NOUUID
)
141 if (uuid_is_nil(uuid
)) {
143 "XFS: Filesystem %s has nil UUID - can't mount",
145 return XFS_ERROR(EINVAL
);
148 mutex_lock(&xfs_uuid_table_mutex
);
149 for (i
= 0, hole
= -1; i
< xfs_uuid_table_size
; i
++) {
150 if (uuid_is_nil(&xfs_uuid_table
[i
])) {
154 if (uuid_equal(uuid
, &xfs_uuid_table
[i
]))
159 xfs_uuid_table
= kmem_realloc(xfs_uuid_table
,
160 (xfs_uuid_table_size
+ 1) * sizeof(*xfs_uuid_table
),
161 xfs_uuid_table_size
* sizeof(*xfs_uuid_table
),
163 hole
= xfs_uuid_table_size
++;
165 xfs_uuid_table
[hole
] = *uuid
;
166 mutex_unlock(&xfs_uuid_table_mutex
);
171 mutex_unlock(&xfs_uuid_table_mutex
);
172 cmn_err(CE_WARN
, "XFS: Filesystem %s has duplicate UUID - can't mount",
174 return XFS_ERROR(EINVAL
);
179 struct xfs_mount
*mp
)
181 uuid_t
*uuid
= &mp
->m_sb
.sb_uuid
;
184 if (mp
->m_flags
& XFS_MOUNT_NOUUID
)
187 mutex_lock(&xfs_uuid_table_mutex
);
188 for (i
= 0; i
< xfs_uuid_table_size
; i
++) {
189 if (uuid_is_nil(&xfs_uuid_table
[i
]))
191 if (!uuid_equal(uuid
, &xfs_uuid_table
[i
]))
193 memset(&xfs_uuid_table
[i
], 0, sizeof(uuid_t
));
196 ASSERT(i
< xfs_uuid_table_size
);
197 mutex_unlock(&xfs_uuid_table_mutex
);
202 * Free up the resources associated with a mount structure. Assume that
203 * the structure was initially zeroed, so we can tell which fields got
213 for (agno
= 0; agno
< mp
->m_maxagi
; agno
++)
214 if (mp
->m_perag
[agno
].pagb_list
)
215 kmem_free(mp
->m_perag
[agno
].pagb_list
);
216 kmem_free(mp
->m_perag
);
221 * Check size of device based on the (data/realtime) block count.
222 * Note: this check is used by the growfs code as well as mount.
225 xfs_sb_validate_fsb_count(
229 ASSERT(PAGE_SHIFT
>= sbp
->sb_blocklog
);
230 ASSERT(sbp
->sb_blocklog
>= BBSHIFT
);
232 #if XFS_BIG_BLKNOS /* Limited by ULONG_MAX of page cache index */
233 if (nblocks
>> (PAGE_CACHE_SHIFT
- sbp
->sb_blocklog
) > ULONG_MAX
)
235 #else /* Limited by UINT_MAX of sectors */
236 if (nblocks
<< (sbp
->sb_blocklog
- BBSHIFT
) > UINT_MAX
)
243 * Check the validity of the SB found.
246 xfs_mount_validate_sb(
252 * If the log device and data device have the
253 * same device number, the log is internal.
254 * Consequently, the sb_logstart should be non-zero. If
255 * we have a zero sb_logstart in this case, we may be trying to mount
256 * a volume filesystem in a non-volume manner.
258 if (sbp
->sb_magicnum
!= XFS_SB_MAGIC
) {
259 xfs_fs_mount_cmn_err(flags
, "bad magic number");
260 return XFS_ERROR(EWRONGFS
);
263 if (!xfs_sb_good_version(sbp
)) {
264 xfs_fs_mount_cmn_err(flags
, "bad version");
265 return XFS_ERROR(EWRONGFS
);
269 sbp
->sb_logstart
== 0 && mp
->m_logdev_targp
== mp
->m_ddev_targp
)) {
270 xfs_fs_mount_cmn_err(flags
,
271 "filesystem is marked as having an external log; "
272 "specify logdev on the\nmount command line.");
273 return XFS_ERROR(EINVAL
);
277 sbp
->sb_logstart
!= 0 && mp
->m_logdev_targp
!= mp
->m_ddev_targp
)) {
278 xfs_fs_mount_cmn_err(flags
,
279 "filesystem is marked as having an internal log; "
280 "do not specify logdev on\nthe mount command line.");
281 return XFS_ERROR(EINVAL
);
285 * More sanity checking. These were stolen directly from
289 sbp
->sb_agcount
<= 0 ||
290 sbp
->sb_sectsize
< XFS_MIN_SECTORSIZE
||
291 sbp
->sb_sectsize
> XFS_MAX_SECTORSIZE
||
292 sbp
->sb_sectlog
< XFS_MIN_SECTORSIZE_LOG
||
293 sbp
->sb_sectlog
> XFS_MAX_SECTORSIZE_LOG
||
294 sbp
->sb_sectsize
!= (1 << sbp
->sb_sectlog
) ||
295 sbp
->sb_blocksize
< XFS_MIN_BLOCKSIZE
||
296 sbp
->sb_blocksize
> XFS_MAX_BLOCKSIZE
||
297 sbp
->sb_blocklog
< XFS_MIN_BLOCKSIZE_LOG
||
298 sbp
->sb_blocklog
> XFS_MAX_BLOCKSIZE_LOG
||
299 sbp
->sb_blocksize
!= (1 << sbp
->sb_blocklog
) ||
300 sbp
->sb_inodesize
< XFS_DINODE_MIN_SIZE
||
301 sbp
->sb_inodesize
> XFS_DINODE_MAX_SIZE
||
302 sbp
->sb_inodelog
< XFS_DINODE_MIN_LOG
||
303 sbp
->sb_inodelog
> XFS_DINODE_MAX_LOG
||
304 sbp
->sb_inodesize
!= (1 << sbp
->sb_inodelog
) ||
305 (sbp
->sb_blocklog
- sbp
->sb_inodelog
!= sbp
->sb_inopblog
) ||
306 (sbp
->sb_rextsize
* sbp
->sb_blocksize
> XFS_MAX_RTEXTSIZE
) ||
307 (sbp
->sb_rextsize
* sbp
->sb_blocksize
< XFS_MIN_RTEXTSIZE
) ||
308 (sbp
->sb_imax_pct
> 100 /* zero sb_imax_pct is valid */))) {
309 xfs_fs_mount_cmn_err(flags
, "SB sanity check 1 failed");
310 return XFS_ERROR(EFSCORRUPTED
);
314 * Sanity check AG count, size fields against data size field
317 sbp
->sb_dblocks
== 0 ||
319 (xfs_drfsbno_t
)sbp
->sb_agcount
* sbp
->sb_agblocks
||
320 sbp
->sb_dblocks
< (xfs_drfsbno_t
)(sbp
->sb_agcount
- 1) *
321 sbp
->sb_agblocks
+ XFS_MIN_AG_BLOCKS
)) {
322 xfs_fs_mount_cmn_err(flags
, "SB sanity check 2 failed");
323 return XFS_ERROR(EFSCORRUPTED
);
327 * Until this is fixed only page-sized or smaller data blocks work.
329 if (unlikely(sbp
->sb_blocksize
> PAGE_SIZE
)) {
330 xfs_fs_mount_cmn_err(flags
,
331 "file system with blocksize %d bytes",
333 xfs_fs_mount_cmn_err(flags
,
334 "only pagesize (%ld) or less will currently work.",
336 return XFS_ERROR(ENOSYS
);
340 * Currently only very few inode sizes are supported.
342 switch (sbp
->sb_inodesize
) {
349 xfs_fs_mount_cmn_err(flags
,
350 "inode size of %d bytes not supported",
352 return XFS_ERROR(ENOSYS
);
355 if (xfs_sb_validate_fsb_count(sbp
, sbp
->sb_dblocks
) ||
356 xfs_sb_validate_fsb_count(sbp
, sbp
->sb_rblocks
)) {
357 xfs_fs_mount_cmn_err(flags
,
358 "file system too large to be mounted on this system.");
359 return XFS_ERROR(E2BIG
);
362 if (unlikely(sbp
->sb_inprogress
)) {
363 xfs_fs_mount_cmn_err(flags
, "file system busy");
364 return XFS_ERROR(EFSCORRUPTED
);
368 * Version 1 directory format has never worked on Linux.
370 if (unlikely(!xfs_sb_version_hasdirv2(sbp
))) {
371 xfs_fs_mount_cmn_err(flags
,
372 "file system using version 1 directory format");
373 return XFS_ERROR(ENOSYS
);
380 xfs_initialize_perag_icache(
383 if (!pag
->pag_ici_init
) {
384 rwlock_init(&pag
->pag_ici_lock
);
385 INIT_RADIX_TREE(&pag
->pag_ici_root
, GFP_ATOMIC
);
386 pag
->pag_ici_init
= 1;
391 xfs_initialize_perag(
393 xfs_agnumber_t agcount
)
395 xfs_agnumber_t index
, max_metadata
;
399 xfs_sb_t
*sbp
= &mp
->m_sb
;
400 xfs_ino_t max_inum
= XFS_MAXINUMBER_32
;
402 /* Check to see if the filesystem can overflow 32 bit inodes */
403 agino
= XFS_OFFBNO_TO_AGINO(mp
, sbp
->sb_agblocks
- 1, 0);
404 ino
= XFS_AGINO_TO_INO(mp
, agcount
- 1, agino
);
406 /* Clear the mount flag if no inode can overflow 32 bits
407 * on this filesystem, or if specifically requested..
409 if ((mp
->m_flags
& XFS_MOUNT_SMALL_INUMS
) && ino
> max_inum
) {
410 mp
->m_flags
|= XFS_MOUNT_32BITINODES
;
412 mp
->m_flags
&= ~XFS_MOUNT_32BITINODES
;
415 /* If we can overflow then setup the ag headers accordingly */
416 if (mp
->m_flags
& XFS_MOUNT_32BITINODES
) {
417 /* Calculate how much should be reserved for inodes to
418 * meet the max inode percentage.
420 if (mp
->m_maxicount
) {
423 icount
= sbp
->sb_dblocks
* sbp
->sb_imax_pct
;
425 icount
+= sbp
->sb_agblocks
- 1;
426 do_div(icount
, sbp
->sb_agblocks
);
427 max_metadata
= icount
;
429 max_metadata
= agcount
;
431 for (index
= 0; index
< agcount
; index
++) {
432 ino
= XFS_AGINO_TO_INO(mp
, index
, agino
);
433 if (ino
> max_inum
) {
438 /* This ag is preferred for inodes */
439 pag
= &mp
->m_perag
[index
];
440 pag
->pagi_inodeok
= 1;
441 if (index
< max_metadata
)
442 pag
->pagf_metadata
= 1;
443 xfs_initialize_perag_icache(pag
);
446 /* Setup default behavior for smaller filesystems */
447 for (index
= 0; index
< agcount
; index
++) {
448 pag
= &mp
->m_perag
[index
];
449 pag
->pagi_inodeok
= 1;
450 xfs_initialize_perag_icache(pag
);
461 to
->sb_magicnum
= be32_to_cpu(from
->sb_magicnum
);
462 to
->sb_blocksize
= be32_to_cpu(from
->sb_blocksize
);
463 to
->sb_dblocks
= be64_to_cpu(from
->sb_dblocks
);
464 to
->sb_rblocks
= be64_to_cpu(from
->sb_rblocks
);
465 to
->sb_rextents
= be64_to_cpu(from
->sb_rextents
);
466 memcpy(&to
->sb_uuid
, &from
->sb_uuid
, sizeof(to
->sb_uuid
));
467 to
->sb_logstart
= be64_to_cpu(from
->sb_logstart
);
468 to
->sb_rootino
= be64_to_cpu(from
->sb_rootino
);
469 to
->sb_rbmino
= be64_to_cpu(from
->sb_rbmino
);
470 to
->sb_rsumino
= be64_to_cpu(from
->sb_rsumino
);
471 to
->sb_rextsize
= be32_to_cpu(from
->sb_rextsize
);
472 to
->sb_agblocks
= be32_to_cpu(from
->sb_agblocks
);
473 to
->sb_agcount
= be32_to_cpu(from
->sb_agcount
);
474 to
->sb_rbmblocks
= be32_to_cpu(from
->sb_rbmblocks
);
475 to
->sb_logblocks
= be32_to_cpu(from
->sb_logblocks
);
476 to
->sb_versionnum
= be16_to_cpu(from
->sb_versionnum
);
477 to
->sb_sectsize
= be16_to_cpu(from
->sb_sectsize
);
478 to
->sb_inodesize
= be16_to_cpu(from
->sb_inodesize
);
479 to
->sb_inopblock
= be16_to_cpu(from
->sb_inopblock
);
480 memcpy(&to
->sb_fname
, &from
->sb_fname
, sizeof(to
->sb_fname
));
481 to
->sb_blocklog
= from
->sb_blocklog
;
482 to
->sb_sectlog
= from
->sb_sectlog
;
483 to
->sb_inodelog
= from
->sb_inodelog
;
484 to
->sb_inopblog
= from
->sb_inopblog
;
485 to
->sb_agblklog
= from
->sb_agblklog
;
486 to
->sb_rextslog
= from
->sb_rextslog
;
487 to
->sb_inprogress
= from
->sb_inprogress
;
488 to
->sb_imax_pct
= from
->sb_imax_pct
;
489 to
->sb_icount
= be64_to_cpu(from
->sb_icount
);
490 to
->sb_ifree
= be64_to_cpu(from
->sb_ifree
);
491 to
->sb_fdblocks
= be64_to_cpu(from
->sb_fdblocks
);
492 to
->sb_frextents
= be64_to_cpu(from
->sb_frextents
);
493 to
->sb_uquotino
= be64_to_cpu(from
->sb_uquotino
);
494 to
->sb_gquotino
= be64_to_cpu(from
->sb_gquotino
);
495 to
->sb_qflags
= be16_to_cpu(from
->sb_qflags
);
496 to
->sb_flags
= from
->sb_flags
;
497 to
->sb_shared_vn
= from
->sb_shared_vn
;
498 to
->sb_inoalignmt
= be32_to_cpu(from
->sb_inoalignmt
);
499 to
->sb_unit
= be32_to_cpu(from
->sb_unit
);
500 to
->sb_width
= be32_to_cpu(from
->sb_width
);
501 to
->sb_dirblklog
= from
->sb_dirblklog
;
502 to
->sb_logsectlog
= from
->sb_logsectlog
;
503 to
->sb_logsectsize
= be16_to_cpu(from
->sb_logsectsize
);
504 to
->sb_logsunit
= be32_to_cpu(from
->sb_logsunit
);
505 to
->sb_features2
= be32_to_cpu(from
->sb_features2
);
506 to
->sb_bad_features2
= be32_to_cpu(from
->sb_bad_features2
);
510 * Copy in core superblock to ondisk one.
512 * The fields argument is mask of superblock fields to copy.
520 xfs_caddr_t to_ptr
= (xfs_caddr_t
)to
;
521 xfs_caddr_t from_ptr
= (xfs_caddr_t
)from
;
531 f
= (xfs_sb_field_t
)xfs_lowbit64((__uint64_t
)fields
);
532 first
= xfs_sb_info
[f
].offset
;
533 size
= xfs_sb_info
[f
+ 1].offset
- first
;
535 ASSERT(xfs_sb_info
[f
].type
== 0 || xfs_sb_info
[f
].type
== 1);
537 if (size
== 1 || xfs_sb_info
[f
].type
== 1) {
538 memcpy(to_ptr
+ first
, from_ptr
+ first
, size
);
542 *(__be16
*)(to_ptr
+ first
) =
543 cpu_to_be16(*(__u16
*)(from_ptr
+ first
));
546 *(__be32
*)(to_ptr
+ first
) =
547 cpu_to_be32(*(__u32
*)(from_ptr
+ first
));
550 *(__be64
*)(to_ptr
+ first
) =
551 cpu_to_be64(*(__u64
*)(from_ptr
+ first
));
558 fields
&= ~(1LL << f
);
565 * Does the initial read of the superblock.
568 xfs_readsb(xfs_mount_t
*mp
, int flags
)
570 unsigned int sector_size
;
571 unsigned int extra_flags
;
575 ASSERT(mp
->m_sb_bp
== NULL
);
576 ASSERT(mp
->m_ddev_targp
!= NULL
);
579 * Allocate a (locked) buffer to hold the superblock.
580 * This will be kept around at all times to optimize
581 * access to the superblock.
583 sector_size
= xfs_getsize_buftarg(mp
->m_ddev_targp
);
584 extra_flags
= XFS_BUF_LOCK
| XFS_BUF_MANAGE
| XFS_BUF_MAPPED
;
586 bp
= xfs_buf_read_flags(mp
->m_ddev_targp
, XFS_SB_DADDR
,
587 BTOBB(sector_size
), extra_flags
);
588 if (!bp
|| XFS_BUF_ISERROR(bp
)) {
589 xfs_fs_mount_cmn_err(flags
, "SB read failed");
590 error
= bp
? XFS_BUF_GETERROR(bp
) : ENOMEM
;
593 ASSERT(XFS_BUF_ISBUSY(bp
));
594 ASSERT(XFS_BUF_VALUSEMA(bp
) <= 0);
597 * Initialize the mount structure from the superblock.
598 * But first do some basic consistency checking.
600 xfs_sb_from_disk(&mp
->m_sb
, XFS_BUF_TO_SBP(bp
));
602 error
= xfs_mount_validate_sb(mp
, &(mp
->m_sb
), flags
);
604 xfs_fs_mount_cmn_err(flags
, "SB validate failed");
609 * We must be able to do sector-sized and sector-aligned IO.
611 if (sector_size
> mp
->m_sb
.sb_sectsize
) {
612 xfs_fs_mount_cmn_err(flags
,
613 "device supports only %u byte sectors (not %u)",
614 sector_size
, mp
->m_sb
.sb_sectsize
);
620 * If device sector size is smaller than the superblock size,
621 * re-read the superblock so the buffer is correctly sized.
623 if (sector_size
< mp
->m_sb
.sb_sectsize
) {
624 XFS_BUF_UNMANAGE(bp
);
626 sector_size
= mp
->m_sb
.sb_sectsize
;
627 bp
= xfs_buf_read_flags(mp
->m_ddev_targp
, XFS_SB_DADDR
,
628 BTOBB(sector_size
), extra_flags
);
629 if (!bp
|| XFS_BUF_ISERROR(bp
)) {
630 xfs_fs_mount_cmn_err(flags
, "SB re-read failed");
631 error
= bp
? XFS_BUF_GETERROR(bp
) : ENOMEM
;
634 ASSERT(XFS_BUF_ISBUSY(bp
));
635 ASSERT(XFS_BUF_VALUSEMA(bp
) <= 0);
638 /* Initialize per-cpu counters */
639 xfs_icsb_reinit_counters(mp
);
643 ASSERT(XFS_BUF_VALUSEMA(bp
) > 0);
648 XFS_BUF_UNMANAGE(bp
);
658 * Mount initialization code establishing various mount
659 * fields from the superblock associated with the given
663 xfs_mount_common(xfs_mount_t
*mp
, xfs_sb_t
*sbp
)
665 mp
->m_agfrotor
= mp
->m_agirotor
= 0;
666 spin_lock_init(&mp
->m_agirotor_lock
);
667 mp
->m_maxagi
= mp
->m_sb
.sb_agcount
;
668 mp
->m_blkbit_log
= sbp
->sb_blocklog
+ XFS_NBBYLOG
;
669 mp
->m_blkbb_log
= sbp
->sb_blocklog
- BBSHIFT
;
670 mp
->m_sectbb_log
= sbp
->sb_sectlog
- BBSHIFT
;
671 mp
->m_agno_log
= xfs_highbit32(sbp
->sb_agcount
- 1) + 1;
672 mp
->m_agino_log
= sbp
->sb_inopblog
+ sbp
->sb_agblklog
;
673 mp
->m_blockmask
= sbp
->sb_blocksize
- 1;
674 mp
->m_blockwsize
= sbp
->sb_blocksize
>> XFS_WORDLOG
;
675 mp
->m_blockwmask
= mp
->m_blockwsize
- 1;
677 mp
->m_alloc_mxr
[0] = xfs_allocbt_maxrecs(mp
, sbp
->sb_blocksize
, 1);
678 mp
->m_alloc_mxr
[1] = xfs_allocbt_maxrecs(mp
, sbp
->sb_blocksize
, 0);
679 mp
->m_alloc_mnr
[0] = mp
->m_alloc_mxr
[0] / 2;
680 mp
->m_alloc_mnr
[1] = mp
->m_alloc_mxr
[1] / 2;
682 mp
->m_inobt_mxr
[0] = xfs_inobt_maxrecs(mp
, sbp
->sb_blocksize
, 1);
683 mp
->m_inobt_mxr
[1] = xfs_inobt_maxrecs(mp
, sbp
->sb_blocksize
, 0);
684 mp
->m_inobt_mnr
[0] = mp
->m_inobt_mxr
[0] / 2;
685 mp
->m_inobt_mnr
[1] = mp
->m_inobt_mxr
[1] / 2;
687 mp
->m_bmap_dmxr
[0] = xfs_bmbt_maxrecs(mp
, sbp
->sb_blocksize
, 1);
688 mp
->m_bmap_dmxr
[1] = xfs_bmbt_maxrecs(mp
, sbp
->sb_blocksize
, 0);
689 mp
->m_bmap_dmnr
[0] = mp
->m_bmap_dmxr
[0] / 2;
690 mp
->m_bmap_dmnr
[1] = mp
->m_bmap_dmxr
[1] / 2;
692 mp
->m_bsize
= XFS_FSB_TO_BB(mp
, 1);
693 mp
->m_ialloc_inos
= (int)MAX((__uint16_t
)XFS_INODES_PER_CHUNK
,
695 mp
->m_ialloc_blks
= mp
->m_ialloc_inos
>> sbp
->sb_inopblog
;
699 * xfs_initialize_perag_data
701 * Read in each per-ag structure so we can count up the number of
702 * allocated inodes, free inodes and used filesystem blocks as this
703 * information is no longer persistent in the superblock. Once we have
704 * this information, write it into the in-core superblock structure.
707 xfs_initialize_perag_data(xfs_mount_t
*mp
, xfs_agnumber_t agcount
)
709 xfs_agnumber_t index
;
711 xfs_sb_t
*sbp
= &mp
->m_sb
;
715 uint64_t bfreelst
= 0;
719 for (index
= 0; index
< agcount
; index
++) {
721 * read the agf, then the agi. This gets us
722 * all the information we need and populates the
723 * per-ag structures for us.
725 error
= xfs_alloc_pagf_init(mp
, NULL
, index
, 0);
729 error
= xfs_ialloc_pagi_init(mp
, NULL
, index
);
732 pag
= &mp
->m_perag
[index
];
733 ifree
+= pag
->pagi_freecount
;
734 ialloc
+= pag
->pagi_count
;
735 bfree
+= pag
->pagf_freeblks
;
736 bfreelst
+= pag
->pagf_flcount
;
737 btree
+= pag
->pagf_btreeblks
;
740 * Overwrite incore superblock counters with just-read data
742 spin_lock(&mp
->m_sb_lock
);
743 sbp
->sb_ifree
= ifree
;
744 sbp
->sb_icount
= ialloc
;
745 sbp
->sb_fdblocks
= bfree
+ bfreelst
+ btree
;
746 spin_unlock(&mp
->m_sb_lock
);
748 /* Fixup the per-cpu counters as well. */
749 xfs_icsb_reinit_counters(mp
);
755 * Update alignment values based on mount options and sb values
758 xfs_update_alignment(xfs_mount_t
*mp
)
760 xfs_sb_t
*sbp
= &(mp
->m_sb
);
764 * If stripe unit and stripe width are not multiples
765 * of the fs blocksize turn off alignment.
767 if ((BBTOB(mp
->m_dalign
) & mp
->m_blockmask
) ||
768 (BBTOB(mp
->m_swidth
) & mp
->m_blockmask
)) {
769 if (mp
->m_flags
& XFS_MOUNT_RETERR
) {
771 "XFS: alignment check 1 failed");
772 return XFS_ERROR(EINVAL
);
774 mp
->m_dalign
= mp
->m_swidth
= 0;
777 * Convert the stripe unit and width to FSBs.
779 mp
->m_dalign
= XFS_BB_TO_FSBT(mp
, mp
->m_dalign
);
780 if (mp
->m_dalign
&& (sbp
->sb_agblocks
% mp
->m_dalign
)) {
781 if (mp
->m_flags
& XFS_MOUNT_RETERR
) {
782 return XFS_ERROR(EINVAL
);
784 xfs_fs_cmn_err(CE_WARN
, mp
,
785 "stripe alignment turned off: sunit(%d)/swidth(%d) incompatible with agsize(%d)",
786 mp
->m_dalign
, mp
->m_swidth
,
791 } else if (mp
->m_dalign
) {
792 mp
->m_swidth
= XFS_BB_TO_FSBT(mp
, mp
->m_swidth
);
794 if (mp
->m_flags
& XFS_MOUNT_RETERR
) {
795 xfs_fs_cmn_err(CE_WARN
, mp
,
796 "stripe alignment turned off: sunit(%d) less than bsize(%d)",
799 return XFS_ERROR(EINVAL
);
806 * Update superblock with new values
809 if (xfs_sb_version_hasdalign(sbp
)) {
810 if (sbp
->sb_unit
!= mp
->m_dalign
) {
811 sbp
->sb_unit
= mp
->m_dalign
;
812 mp
->m_update_flags
|= XFS_SB_UNIT
;
814 if (sbp
->sb_width
!= mp
->m_swidth
) {
815 sbp
->sb_width
= mp
->m_swidth
;
816 mp
->m_update_flags
|= XFS_SB_WIDTH
;
819 } else if ((mp
->m_flags
& XFS_MOUNT_NOALIGN
) != XFS_MOUNT_NOALIGN
&&
820 xfs_sb_version_hasdalign(&mp
->m_sb
)) {
821 mp
->m_dalign
= sbp
->sb_unit
;
822 mp
->m_swidth
= sbp
->sb_width
;
829 * Set the maximum inode count for this filesystem
832 xfs_set_maxicount(xfs_mount_t
*mp
)
834 xfs_sb_t
*sbp
= &(mp
->m_sb
);
837 if (sbp
->sb_imax_pct
) {
839 * Make sure the maximum inode count is a multiple
840 * of the units we allocate inodes in.
842 icount
= sbp
->sb_dblocks
* sbp
->sb_imax_pct
;
844 do_div(icount
, mp
->m_ialloc_blks
);
845 mp
->m_maxicount
= (icount
* mp
->m_ialloc_blks
) <<
853 * Set the default minimum read and write sizes unless
854 * already specified in a mount option.
855 * We use smaller I/O sizes when the file system
856 * is being used for NFS service (wsync mount option).
859 xfs_set_rw_sizes(xfs_mount_t
*mp
)
861 xfs_sb_t
*sbp
= &(mp
->m_sb
);
862 int readio_log
, writeio_log
;
864 if (!(mp
->m_flags
& XFS_MOUNT_DFLT_IOSIZE
)) {
865 if (mp
->m_flags
& XFS_MOUNT_WSYNC
) {
866 readio_log
= XFS_WSYNC_READIO_LOG
;
867 writeio_log
= XFS_WSYNC_WRITEIO_LOG
;
869 readio_log
= XFS_READIO_LOG_LARGE
;
870 writeio_log
= XFS_WRITEIO_LOG_LARGE
;
873 readio_log
= mp
->m_readio_log
;
874 writeio_log
= mp
->m_writeio_log
;
877 if (sbp
->sb_blocklog
> readio_log
) {
878 mp
->m_readio_log
= sbp
->sb_blocklog
;
880 mp
->m_readio_log
= readio_log
;
882 mp
->m_readio_blocks
= 1 << (mp
->m_readio_log
- sbp
->sb_blocklog
);
883 if (sbp
->sb_blocklog
> writeio_log
) {
884 mp
->m_writeio_log
= sbp
->sb_blocklog
;
886 mp
->m_writeio_log
= writeio_log
;
888 mp
->m_writeio_blocks
= 1 << (mp
->m_writeio_log
- sbp
->sb_blocklog
);
892 * Set whether we're using inode alignment.
895 xfs_set_inoalignment(xfs_mount_t
*mp
)
897 if (xfs_sb_version_hasalign(&mp
->m_sb
) &&
898 mp
->m_sb
.sb_inoalignmt
>=
899 XFS_B_TO_FSBT(mp
, mp
->m_inode_cluster_size
))
900 mp
->m_inoalign_mask
= mp
->m_sb
.sb_inoalignmt
- 1;
902 mp
->m_inoalign_mask
= 0;
904 * If we are using stripe alignment, check whether
905 * the stripe unit is a multiple of the inode alignment
907 if (mp
->m_dalign
&& mp
->m_inoalign_mask
&&
908 !(mp
->m_dalign
& mp
->m_inoalign_mask
))
909 mp
->m_sinoalign
= mp
->m_dalign
;
915 * Check that the data (and log if separate) are an ok size.
918 xfs_check_sizes(xfs_mount_t
*mp
)
924 d
= (xfs_daddr_t
)XFS_FSB_TO_BB(mp
, mp
->m_sb
.sb_dblocks
);
925 if (XFS_BB_TO_FSB(mp
, d
) != mp
->m_sb
.sb_dblocks
) {
926 cmn_err(CE_WARN
, "XFS: size check 1 failed");
927 return XFS_ERROR(E2BIG
);
929 error
= xfs_read_buf(mp
, mp
->m_ddev_targp
,
930 d
- XFS_FSS_TO_BB(mp
, 1),
931 XFS_FSS_TO_BB(mp
, 1), 0, &bp
);
935 cmn_err(CE_WARN
, "XFS: size check 2 failed");
937 error
= XFS_ERROR(E2BIG
);
941 if (mp
->m_logdev_targp
!= mp
->m_ddev_targp
) {
942 d
= (xfs_daddr_t
)XFS_FSB_TO_BB(mp
, mp
->m_sb
.sb_logblocks
);
943 if (XFS_BB_TO_FSB(mp
, d
) != mp
->m_sb
.sb_logblocks
) {
944 cmn_err(CE_WARN
, "XFS: size check 3 failed");
945 return XFS_ERROR(E2BIG
);
947 error
= xfs_read_buf(mp
, mp
->m_logdev_targp
,
948 d
- XFS_FSB_TO_BB(mp
, 1),
949 XFS_FSB_TO_BB(mp
, 1), 0, &bp
);
953 cmn_err(CE_WARN
, "XFS: size check 3 failed");
955 error
= XFS_ERROR(E2BIG
);
963 * Clear the quotaflags in memory and in the superblock.
966 xfs_mount_reset_sbqflags(
967 struct xfs_mount
*mp
)
970 struct xfs_trans
*tp
;
975 * It is OK to look at sb_qflags here in mount path,
978 if (mp
->m_sb
.sb_qflags
== 0)
980 spin_lock(&mp
->m_sb_lock
);
981 mp
->m_sb
.sb_qflags
= 0;
982 spin_unlock(&mp
->m_sb_lock
);
985 * If the fs is readonly, let the incore superblock run
986 * with quotas off but don't flush the update out to disk
988 if (mp
->m_flags
& XFS_MOUNT_RDONLY
)
992 xfs_fs_cmn_err(CE_NOTE
, mp
, "Writing superblock quota changes");
995 tp
= xfs_trans_alloc(mp
, XFS_TRANS_QM_SBCHANGE
);
996 error
= xfs_trans_reserve(tp
, 0, mp
->m_sb
.sb_sectsize
+ 128, 0, 0,
997 XFS_DEFAULT_LOG_COUNT
);
999 xfs_trans_cancel(tp
, 0);
1000 xfs_fs_cmn_err(CE_ALERT
, mp
,
1001 "xfs_mount_reset_sbqflags: Superblock update failed!");
1005 xfs_mod_sb(tp
, XFS_SB_QFLAGS
);
1006 return xfs_trans_commit(tp
, 0);
1010 * This function does the following on an initial mount of a file system:
1011 * - reads the superblock from disk and init the mount struct
1012 * - if we're a 32-bit kernel, do a size check on the superblock
1013 * so we don't mount terabyte filesystems
1014 * - init mount struct realtime fields
1015 * - allocate inode hash table for fs
1016 * - init directory manager
1017 * - perform recovery and init the log manager
1023 xfs_sb_t
*sbp
= &(mp
->m_sb
);
1026 uint quotamount
= 0;
1027 uint quotaflags
= 0;
1030 xfs_mount_common(mp
, sbp
);
1033 * Check for a mismatched features2 values. Older kernels
1034 * read & wrote into the wrong sb offset for sb_features2
1035 * on some platforms due to xfs_sb_t not being 64bit size aligned
1036 * when sb_features2 was added, which made older superblock
1037 * reading/writing routines swap it as a 64-bit value.
1039 * For backwards compatibility, we make both slots equal.
1041 * If we detect a mismatched field, we OR the set bits into the
1042 * existing features2 field in case it has already been modified; we
1043 * don't want to lose any features. We then update the bad location
1044 * with the ORed value so that older kernels will see any features2
1045 * flags, and mark the two fields as needing updates once the
1046 * transaction subsystem is online.
1048 if (xfs_sb_has_mismatched_features2(sbp
)) {
1050 "XFS: correcting sb_features alignment problem");
1051 sbp
->sb_features2
|= sbp
->sb_bad_features2
;
1052 sbp
->sb_bad_features2
= sbp
->sb_features2
;
1053 mp
->m_update_flags
|= XFS_SB_FEATURES2
| XFS_SB_BAD_FEATURES2
;
1056 * Re-check for ATTR2 in case it was found in bad_features2
1059 if (xfs_sb_version_hasattr2(&mp
->m_sb
) &&
1060 !(mp
->m_flags
& XFS_MOUNT_NOATTR2
))
1061 mp
->m_flags
|= XFS_MOUNT_ATTR2
;
1064 if (xfs_sb_version_hasattr2(&mp
->m_sb
) &&
1065 (mp
->m_flags
& XFS_MOUNT_NOATTR2
)) {
1066 xfs_sb_version_removeattr2(&mp
->m_sb
);
1067 mp
->m_update_flags
|= XFS_SB_FEATURES2
;
1069 /* update sb_versionnum for the clearing of the morebits */
1070 if (!sbp
->sb_features2
)
1071 mp
->m_update_flags
|= XFS_SB_VERSIONNUM
;
1075 * Check if sb_agblocks is aligned at stripe boundary
1076 * If sb_agblocks is NOT aligned turn off m_dalign since
1077 * allocator alignment is within an ag, therefore ag has
1078 * to be aligned at stripe boundary.
1080 error
= xfs_update_alignment(mp
);
1084 xfs_alloc_compute_maxlevels(mp
);
1085 xfs_bmap_compute_maxlevels(mp
, XFS_DATA_FORK
);
1086 xfs_bmap_compute_maxlevels(mp
, XFS_ATTR_FORK
);
1087 xfs_ialloc_compute_maxlevels(mp
);
1089 xfs_set_maxicount(mp
);
1091 mp
->m_maxioffset
= xfs_max_file_offset(sbp
->sb_blocklog
);
1093 error
= xfs_uuid_mount(mp
);
1098 * Set the minimum read and write sizes
1100 xfs_set_rw_sizes(mp
);
1103 * Set the inode cluster size.
1104 * This may still be overridden by the file system
1105 * block size if it is larger than the chosen cluster size.
1107 mp
->m_inode_cluster_size
= XFS_INODE_BIG_CLUSTER_SIZE
;
1110 * Set inode alignment fields
1112 xfs_set_inoalignment(mp
);
1115 * Check that the data (and log if separate) are an ok size.
1117 error
= xfs_check_sizes(mp
);
1119 goto out_remove_uuid
;
1122 * Initialize realtime fields in the mount structure
1124 error
= xfs_rtmount_init(mp
);
1126 cmn_err(CE_WARN
, "XFS: RT mount failed");
1127 goto out_remove_uuid
;
1131 * Copies the low order bits of the timestamp and the randomly
1132 * set "sequence" number out of a UUID.
1134 uuid_getnodeuniq(&sbp
->sb_uuid
, mp
->m_fixedfsid
);
1136 mp
->m_dmevmask
= 0; /* not persistent; set after each mount */
1141 * Initialize the attribute manager's entries.
1143 mp
->m_attr_magicpct
= (mp
->m_sb
.sb_blocksize
* 37) / 100;
1146 * Initialize the precomputed transaction reservations values.
1151 * Allocate and initialize the per-ag data.
1153 init_rwsem(&mp
->m_peraglock
);
1154 mp
->m_perag
= kmem_zalloc(sbp
->sb_agcount
* sizeof(xfs_perag_t
),
1157 goto out_remove_uuid
;
1159 mp
->m_maxagi
= xfs_initialize_perag(mp
, sbp
->sb_agcount
);
1161 if (!sbp
->sb_logblocks
) {
1162 cmn_err(CE_WARN
, "XFS: no log defined");
1163 XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW
, mp
);
1164 error
= XFS_ERROR(EFSCORRUPTED
);
1165 goto out_free_perag
;
1169 * log's mount-time initialization. Perform 1st part recovery if needed
1171 error
= xfs_log_mount(mp
, mp
->m_logdev_targp
,
1172 XFS_FSB_TO_DADDR(mp
, sbp
->sb_logstart
),
1173 XFS_FSB_TO_BB(mp
, sbp
->sb_logblocks
));
1175 cmn_err(CE_WARN
, "XFS: log mount failed");
1176 goto out_free_perag
;
1180 * Now the log is mounted, we know if it was an unclean shutdown or
1181 * not. If it was, with the first phase of recovery has completed, we
1182 * have consistent AG blocks on disk. We have not recovered EFIs yet,
1183 * but they are recovered transactionally in the second recovery phase
1186 * Hence we can safely re-initialise incore superblock counters from
1187 * the per-ag data. These may not be correct if the filesystem was not
1188 * cleanly unmounted, so we need to wait for recovery to finish before
1191 * If the filesystem was cleanly unmounted, then we can trust the
1192 * values in the superblock to be correct and we don't need to do
1195 * If we are currently making the filesystem, the initialisation will
1196 * fail as the perag data is in an undefined state.
1198 if (xfs_sb_version_haslazysbcount(&mp
->m_sb
) &&
1199 !XFS_LAST_UNMOUNT_WAS_CLEAN(mp
) &&
1200 !mp
->m_sb
.sb_inprogress
) {
1201 error
= xfs_initialize_perag_data(mp
, sbp
->sb_agcount
);
1203 goto out_free_perag
;
1207 * Get and sanity-check the root inode.
1208 * Save the pointer to it in the mount structure.
1210 error
= xfs_iget(mp
, NULL
, sbp
->sb_rootino
, 0, XFS_ILOCK_EXCL
, &rip
, 0);
1212 cmn_err(CE_WARN
, "XFS: failed to read root inode");
1213 goto out_log_dealloc
;
1216 ASSERT(rip
!= NULL
);
1218 if (unlikely((rip
->i_d
.di_mode
& S_IFMT
) != S_IFDIR
)) {
1219 cmn_err(CE_WARN
, "XFS: corrupted root inode");
1220 cmn_err(CE_WARN
, "Device %s - root %llu is not a directory",
1221 XFS_BUFTARG_NAME(mp
->m_ddev_targp
),
1222 (unsigned long long)rip
->i_ino
);
1223 xfs_iunlock(rip
, XFS_ILOCK_EXCL
);
1224 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW
,
1226 error
= XFS_ERROR(EFSCORRUPTED
);
1229 mp
->m_rootip
= rip
; /* save it */
1231 xfs_iunlock(rip
, XFS_ILOCK_EXCL
);
1234 * Initialize realtime inode pointers in the mount structure
1236 error
= xfs_rtmount_inodes(mp
);
1239 * Free up the root inode.
1241 cmn_err(CE_WARN
, "XFS: failed to read RT inodes");
1246 * If this is a read-only mount defer the superblock updates until
1247 * the next remount into writeable mode. Otherwise we would never
1248 * perform the update e.g. for the root filesystem.
1250 if (mp
->m_update_flags
&& !(mp
->m_flags
& XFS_MOUNT_RDONLY
)) {
1251 error
= xfs_mount_log_sb(mp
, mp
->m_update_flags
);
1253 cmn_err(CE_WARN
, "XFS: failed to write sb changes");
1259 * Initialise the XFS quota management subsystem for this mount
1261 if (XFS_IS_QUOTA_RUNNING(mp
)) {
1262 error
= xfs_qm_newmount(mp
, "amount
, "aflags
);
1266 ASSERT(!XFS_IS_QUOTA_ON(mp
));
1269 * If a file system had quotas running earlier, but decided to
1270 * mount without -o uquota/pquota/gquota options, revoke the
1271 * quotachecked license.
1273 if (mp
->m_sb
.sb_qflags
& XFS_ALL_QUOTA_ACCT
) {
1275 "XFS: resetting qflags for filesystem %s",
1278 error
= xfs_mount_reset_sbqflags(mp
);
1285 * Finish recovering the file system. This part needed to be
1286 * delayed until after the root and real-time bitmap inodes
1287 * were consistently read in.
1289 error
= xfs_log_mount_finish(mp
);
1291 cmn_err(CE_WARN
, "XFS: log mount finish failed");
1296 * Complete the quota initialisation, post-log-replay component.
1299 ASSERT(mp
->m_qflags
== 0);
1300 mp
->m_qflags
= quotaflags
;
1302 xfs_qm_mount_quotas(mp
);
1305 #if defined(DEBUG) && defined(XFS_LOUD_RECOVERY)
1306 if (XFS_IS_QUOTA_ON(mp
))
1307 xfs_fs_cmn_err(CE_NOTE
, mp
, "Disk quotas turned on");
1309 xfs_fs_cmn_err(CE_NOTE
, mp
, "Disk quotas not turned on");
1313 * Now we are mounted, reserve a small amount of unused space for
1314 * privileged transactions. This is needed so that transaction
1315 * space required for critical operations can dip into this pool
1316 * when at ENOSPC. This is needed for operations like create with
1317 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
1318 * are not allowed to use this reserved space.
1320 * We default to 5% or 1024 fsbs of space reserved, whichever is smaller.
1321 * This may drive us straight to ENOSPC on mount, but that implies
1322 * we were already there on the last unmount. Warn if this occurs.
1324 resblks
= mp
->m_sb
.sb_dblocks
;
1325 do_div(resblks
, 20);
1326 resblks
= min_t(__uint64_t
, resblks
, 1024);
1327 error
= xfs_reserve_blocks(mp
, &resblks
, NULL
);
1329 cmn_err(CE_WARN
, "XFS: Unable to allocate reserve blocks. "
1330 "Continuing without a reserve pool.");
1335 xfs_rtunmount_inodes(mp
);
1339 xfs_log_unmount(mp
);
1343 xfs_uuid_unmount(mp
);
1349 * This flushes out the inodes,dquots and the superblock, unmounts the
1350 * log and makes sure that incore structures are freed.
1354 struct xfs_mount
*mp
)
1359 xfs_qm_unmount_quotas(mp
);
1360 xfs_rtunmount_inodes(mp
);
1361 IRELE(mp
->m_rootip
);
1364 * We can potentially deadlock here if we have an inode cluster
1365 * that has been freed has its buffer still pinned in memory because
1366 * the transaction is still sitting in a iclog. The stale inodes
1367 * on that buffer will have their flush locks held until the
1368 * transaction hits the disk and the callbacks run. the inode
1369 * flush takes the flush lock unconditionally and with nothing to
1370 * push out the iclog we will never get that unlocked. hence we
1371 * need to force the log first.
1373 xfs_log_force(mp
, (xfs_lsn_t
)0, XFS_LOG_FORCE
| XFS_LOG_SYNC
);
1374 xfs_reclaim_inodes(mp
, XFS_IFLUSH_ASYNC
);
1379 * Flush out the log synchronously so that we know for sure
1380 * that nothing is pinned. This is important because bflush()
1381 * will skip pinned buffers.
1383 xfs_log_force(mp
, (xfs_lsn_t
)0, XFS_LOG_FORCE
| XFS_LOG_SYNC
);
1385 xfs_binval(mp
->m_ddev_targp
);
1386 if (mp
->m_rtdev_targp
) {
1387 xfs_binval(mp
->m_rtdev_targp
);
1391 * Unreserve any blocks we have so that when we unmount we don't account
1392 * the reserved free space as used. This is really only necessary for
1393 * lazy superblock counting because it trusts the incore superblock
1394 * counters to be absolutely correct on clean unmount.
1396 * We don't bother correcting this elsewhere for lazy superblock
1397 * counting because on mount of an unclean filesystem we reconstruct the
1398 * correct counter value and this is irrelevant.
1400 * For non-lazy counter filesystems, this doesn't matter at all because
1401 * we only every apply deltas to the superblock and hence the incore
1402 * value does not matter....
1405 error
= xfs_reserve_blocks(mp
, &resblks
, NULL
);
1407 cmn_err(CE_WARN
, "XFS: Unable to free reserved block pool. "
1408 "Freespace may not be correct on next mount.");
1410 error
= xfs_log_sbcount(mp
, 1);
1412 cmn_err(CE_WARN
, "XFS: Unable to update superblock counters. "
1413 "Freespace may not be correct on next mount.");
1414 xfs_unmountfs_writesb(mp
);
1415 xfs_unmountfs_wait(mp
); /* wait for async bufs */
1416 xfs_log_unmount_write(mp
);
1417 xfs_log_unmount(mp
);
1418 xfs_uuid_unmount(mp
);
1421 xfs_errortag_clearall(mp
, 0);
1427 xfs_unmountfs_wait(xfs_mount_t
*mp
)
1429 if (mp
->m_logdev_targp
!= mp
->m_ddev_targp
)
1430 xfs_wait_buftarg(mp
->m_logdev_targp
);
1431 if (mp
->m_rtdev_targp
)
1432 xfs_wait_buftarg(mp
->m_rtdev_targp
);
1433 xfs_wait_buftarg(mp
->m_ddev_targp
);
1437 xfs_fs_writable(xfs_mount_t
*mp
)
1439 return !(xfs_test_for_freeze(mp
) || XFS_FORCED_SHUTDOWN(mp
) ||
1440 (mp
->m_flags
& XFS_MOUNT_RDONLY
));
1446 * Called either periodically to keep the on disk superblock values
1447 * roughly up to date or from unmount to make sure the values are
1448 * correct on a clean unmount.
1450 * Note this code can be called during the process of freezing, so
1451 * we may need to use the transaction allocator which does not not
1452 * block when the transaction subsystem is in its frozen state.
1462 if (!xfs_fs_writable(mp
))
1465 xfs_icsb_sync_counters(mp
, 0);
1468 * we don't need to do this if we are updating the superblock
1469 * counters on every modification.
1471 if (!xfs_sb_version_haslazysbcount(&mp
->m_sb
))
1474 tp
= _xfs_trans_alloc(mp
, XFS_TRANS_SB_COUNT
);
1475 error
= xfs_trans_reserve(tp
, 0, mp
->m_sb
.sb_sectsize
+ 128, 0, 0,
1476 XFS_DEFAULT_LOG_COUNT
);
1478 xfs_trans_cancel(tp
, 0);
1482 xfs_mod_sb(tp
, XFS_SB_IFREE
| XFS_SB_ICOUNT
| XFS_SB_FDBLOCKS
);
1484 xfs_trans_set_sync(tp
);
1485 error
= xfs_trans_commit(tp
, 0);
1490 xfs_unmountfs_writesb(xfs_mount_t
*mp
)
1496 * skip superblock write if fs is read-only, or
1497 * if we are doing a forced umount.
1499 if (!((mp
->m_flags
& XFS_MOUNT_RDONLY
) ||
1500 XFS_FORCED_SHUTDOWN(mp
))) {
1502 sbp
= xfs_getsb(mp
, 0);
1504 XFS_BUF_UNDONE(sbp
);
1505 XFS_BUF_UNREAD(sbp
);
1506 XFS_BUF_UNDELAYWRITE(sbp
);
1508 XFS_BUF_UNASYNC(sbp
);
1509 ASSERT(XFS_BUF_TARGET(sbp
) == mp
->m_ddev_targp
);
1510 xfsbdstrat(mp
, sbp
);
1511 error
= xfs_iowait(sbp
);
1513 xfs_ioerror_alert("xfs_unmountfs_writesb",
1514 mp
, sbp
, XFS_BUF_ADDR(sbp
));
1521 * xfs_mod_sb() can be used to copy arbitrary changes to the
1522 * in-core superblock into the superblock buffer to be logged.
1523 * It does not provide the higher level of locking that is
1524 * needed to protect the in-core superblock from concurrent
1528 xfs_mod_sb(xfs_trans_t
*tp
, __int64_t fields
)
1540 bp
= xfs_trans_getsb(tp
, mp
, 0);
1541 first
= sizeof(xfs_sb_t
);
1544 /* translate/copy */
1546 xfs_sb_to_disk(XFS_BUF_TO_SBP(bp
), &mp
->m_sb
, fields
);
1548 /* find modified range */
1550 f
= (xfs_sb_field_t
)xfs_lowbit64((__uint64_t
)fields
);
1551 ASSERT((1LL << f
) & XFS_SB_MOD_BITS
);
1552 first
= xfs_sb_info
[f
].offset
;
1554 f
= (xfs_sb_field_t
)xfs_highbit64((__uint64_t
)fields
);
1555 ASSERT((1LL << f
) & XFS_SB_MOD_BITS
);
1556 last
= xfs_sb_info
[f
+ 1].offset
- 1;
1558 xfs_trans_log_buf(tp
, bp
, first
, last
);
1563 * xfs_mod_incore_sb_unlocked() is a utility routine common used to apply
1564 * a delta to a specified field in the in-core superblock. Simply
1565 * switch on the field indicated and apply the delta to that field.
1566 * Fields are not allowed to dip below zero, so if the delta would
1567 * do this do not apply it and return EINVAL.
1569 * The m_sb_lock must be held when this routine is called.
1572 xfs_mod_incore_sb_unlocked(
1574 xfs_sb_field_t field
,
1578 int scounter
; /* short counter for 32 bit fields */
1579 long long lcounter
; /* long counter for 64 bit fields */
1580 long long res_used
, rem
;
1583 * With the in-core superblock spin lock held, switch
1584 * on the indicated field. Apply the delta to the
1585 * proper field. If the fields value would dip below
1586 * 0, then do not apply the delta and return EINVAL.
1589 case XFS_SBS_ICOUNT
:
1590 lcounter
= (long long)mp
->m_sb
.sb_icount
;
1594 return XFS_ERROR(EINVAL
);
1596 mp
->m_sb
.sb_icount
= lcounter
;
1599 lcounter
= (long long)mp
->m_sb
.sb_ifree
;
1603 return XFS_ERROR(EINVAL
);
1605 mp
->m_sb
.sb_ifree
= lcounter
;
1607 case XFS_SBS_FDBLOCKS
:
1608 lcounter
= (long long)
1609 mp
->m_sb
.sb_fdblocks
- XFS_ALLOC_SET_ASIDE(mp
);
1610 res_used
= (long long)(mp
->m_resblks
- mp
->m_resblks_avail
);
1612 if (delta
> 0) { /* Putting blocks back */
1613 if (res_used
> delta
) {
1614 mp
->m_resblks_avail
+= delta
;
1616 rem
= delta
- res_used
;
1617 mp
->m_resblks_avail
= mp
->m_resblks
;
1620 } else { /* Taking blocks away */
1625 * If were out of blocks, use any available reserved blocks if
1631 lcounter
= (long long)mp
->m_resblks_avail
+ delta
;
1633 return XFS_ERROR(ENOSPC
);
1635 mp
->m_resblks_avail
= lcounter
;
1637 } else { /* not reserved */
1638 return XFS_ERROR(ENOSPC
);
1643 mp
->m_sb
.sb_fdblocks
= lcounter
+ XFS_ALLOC_SET_ASIDE(mp
);
1645 case XFS_SBS_FREXTENTS
:
1646 lcounter
= (long long)mp
->m_sb
.sb_frextents
;
1649 return XFS_ERROR(ENOSPC
);
1651 mp
->m_sb
.sb_frextents
= lcounter
;
1653 case XFS_SBS_DBLOCKS
:
1654 lcounter
= (long long)mp
->m_sb
.sb_dblocks
;
1658 return XFS_ERROR(EINVAL
);
1660 mp
->m_sb
.sb_dblocks
= lcounter
;
1662 case XFS_SBS_AGCOUNT
:
1663 scounter
= mp
->m_sb
.sb_agcount
;
1667 return XFS_ERROR(EINVAL
);
1669 mp
->m_sb
.sb_agcount
= scounter
;
1671 case XFS_SBS_IMAX_PCT
:
1672 scounter
= mp
->m_sb
.sb_imax_pct
;
1676 return XFS_ERROR(EINVAL
);
1678 mp
->m_sb
.sb_imax_pct
= scounter
;
1680 case XFS_SBS_REXTSIZE
:
1681 scounter
= mp
->m_sb
.sb_rextsize
;
1685 return XFS_ERROR(EINVAL
);
1687 mp
->m_sb
.sb_rextsize
= scounter
;
1689 case XFS_SBS_RBMBLOCKS
:
1690 scounter
= mp
->m_sb
.sb_rbmblocks
;
1694 return XFS_ERROR(EINVAL
);
1696 mp
->m_sb
.sb_rbmblocks
= scounter
;
1698 case XFS_SBS_RBLOCKS
:
1699 lcounter
= (long long)mp
->m_sb
.sb_rblocks
;
1703 return XFS_ERROR(EINVAL
);
1705 mp
->m_sb
.sb_rblocks
= lcounter
;
1707 case XFS_SBS_REXTENTS
:
1708 lcounter
= (long long)mp
->m_sb
.sb_rextents
;
1712 return XFS_ERROR(EINVAL
);
1714 mp
->m_sb
.sb_rextents
= lcounter
;
1716 case XFS_SBS_REXTSLOG
:
1717 scounter
= mp
->m_sb
.sb_rextslog
;
1721 return XFS_ERROR(EINVAL
);
1723 mp
->m_sb
.sb_rextslog
= scounter
;
1727 return XFS_ERROR(EINVAL
);
1732 * xfs_mod_incore_sb() is used to change a field in the in-core
1733 * superblock structure by the specified delta. This modification
1734 * is protected by the m_sb_lock. Just use the xfs_mod_incore_sb_unlocked()
1735 * routine to do the work.
1740 xfs_sb_field_t field
,
1746 /* check for per-cpu counters */
1748 #ifdef HAVE_PERCPU_SB
1749 case XFS_SBS_ICOUNT
:
1751 case XFS_SBS_FDBLOCKS
:
1752 if (!(mp
->m_flags
& XFS_MOUNT_NO_PERCPU_SB
)) {
1753 status
= xfs_icsb_modify_counters(mp
, field
,
1760 spin_lock(&mp
->m_sb_lock
);
1761 status
= xfs_mod_incore_sb_unlocked(mp
, field
, delta
, rsvd
);
1762 spin_unlock(&mp
->m_sb_lock
);
1770 * xfs_mod_incore_sb_batch() is used to change more than one field
1771 * in the in-core superblock structure at a time. This modification
1772 * is protected by a lock internal to this module. The fields and
1773 * changes to those fields are specified in the array of xfs_mod_sb
1774 * structures passed in.
1776 * Either all of the specified deltas will be applied or none of
1777 * them will. If any modified field dips below 0, then all modifications
1778 * will be backed out and EINVAL will be returned.
1781 xfs_mod_incore_sb_batch(xfs_mount_t
*mp
, xfs_mod_sb_t
*msb
, uint nmsb
, int rsvd
)
1787 * Loop through the array of mod structures and apply each
1788 * individually. If any fail, then back out all those
1789 * which have already been applied. Do all of this within
1790 * the scope of the m_sb_lock so that all of the changes will
1793 spin_lock(&mp
->m_sb_lock
);
1795 for (msbp
= &msbp
[0]; msbp
< (msb
+ nmsb
); msbp
++) {
1797 * Apply the delta at index n. If it fails, break
1798 * from the loop so we'll fall into the undo loop
1801 switch (msbp
->msb_field
) {
1802 #ifdef HAVE_PERCPU_SB
1803 case XFS_SBS_ICOUNT
:
1805 case XFS_SBS_FDBLOCKS
:
1806 if (!(mp
->m_flags
& XFS_MOUNT_NO_PERCPU_SB
)) {
1807 spin_unlock(&mp
->m_sb_lock
);
1808 status
= xfs_icsb_modify_counters(mp
,
1810 msbp
->msb_delta
, rsvd
);
1811 spin_lock(&mp
->m_sb_lock
);
1817 status
= xfs_mod_incore_sb_unlocked(mp
,
1819 msbp
->msb_delta
, rsvd
);
1829 * If we didn't complete the loop above, then back out
1830 * any changes made to the superblock. If you add code
1831 * between the loop above and here, make sure that you
1832 * preserve the value of status. Loop back until
1833 * we step below the beginning of the array. Make sure
1834 * we don't touch anything back there.
1838 while (msbp
>= msb
) {
1839 switch (msbp
->msb_field
) {
1840 #ifdef HAVE_PERCPU_SB
1841 case XFS_SBS_ICOUNT
:
1843 case XFS_SBS_FDBLOCKS
:
1844 if (!(mp
->m_flags
& XFS_MOUNT_NO_PERCPU_SB
)) {
1845 spin_unlock(&mp
->m_sb_lock
);
1846 status
= xfs_icsb_modify_counters(mp
,
1850 spin_lock(&mp
->m_sb_lock
);
1856 status
= xfs_mod_incore_sb_unlocked(mp
,
1862 ASSERT(status
== 0);
1866 spin_unlock(&mp
->m_sb_lock
);
1871 * xfs_getsb() is called to obtain the buffer for the superblock.
1872 * The buffer is returned locked and read in from disk.
1873 * The buffer should be released with a call to xfs_brelse().
1875 * If the flags parameter is BUF_TRYLOCK, then we'll only return
1876 * the superblock buffer if it can be locked without sleeping.
1877 * If it can't then we'll return NULL.
1886 ASSERT(mp
->m_sb_bp
!= NULL
);
1888 if (flags
& XFS_BUF_TRYLOCK
) {
1889 if (!XFS_BUF_CPSEMA(bp
)) {
1893 XFS_BUF_PSEMA(bp
, PRIBIO
);
1896 ASSERT(XFS_BUF_ISDONE(bp
));
1901 * Used to free the superblock along various error paths.
1910 * Use xfs_getsb() so that the buffer will be locked
1911 * when we call xfs_buf_relse().
1913 bp
= xfs_getsb(mp
, 0);
1914 XFS_BUF_UNMANAGE(bp
);
1920 * Used to log changes to the superblock unit and width fields which could
1921 * be altered by the mount options, as well as any potential sb_features2
1922 * fixup. Only the first superblock is updated.
1932 ASSERT(fields
& (XFS_SB_UNIT
| XFS_SB_WIDTH
| XFS_SB_UUID
|
1933 XFS_SB_FEATURES2
| XFS_SB_BAD_FEATURES2
|
1934 XFS_SB_VERSIONNUM
));
1936 tp
= xfs_trans_alloc(mp
, XFS_TRANS_SB_UNIT
);
1937 error
= xfs_trans_reserve(tp
, 0, mp
->m_sb
.sb_sectsize
+ 128, 0, 0,
1938 XFS_DEFAULT_LOG_COUNT
);
1940 xfs_trans_cancel(tp
, 0);
1943 xfs_mod_sb(tp
, fields
);
1944 error
= xfs_trans_commit(tp
, 0);
1949 #ifdef HAVE_PERCPU_SB
1951 * Per-cpu incore superblock counters
1953 * Simple concept, difficult implementation
1955 * Basically, replace the incore superblock counters with a distributed per cpu
1956 * counter for contended fields (e.g. free block count).
1958 * Difficulties arise in that the incore sb is used for ENOSPC checking, and
1959 * hence needs to be accurately read when we are running low on space. Hence
1960 * there is a method to enable and disable the per-cpu counters based on how
1961 * much "stuff" is available in them.
1963 * Basically, a counter is enabled if there is enough free resource to justify
1964 * running a per-cpu fast-path. If the per-cpu counter runs out (i.e. a local
1965 * ENOSPC), then we disable the counters to synchronise all callers and
1966 * re-distribute the available resources.
1968 * If, once we redistributed the available resources, we still get a failure,
1969 * we disable the per-cpu counter and go through the slow path.
1971 * The slow path is the current xfs_mod_incore_sb() function. This means that
1972 * when we disable a per-cpu counter, we need to drain its resources back to
1973 * the global superblock. We do this after disabling the counter to prevent
1974 * more threads from queueing up on the counter.
1976 * Essentially, this means that we still need a lock in the fast path to enable
1977 * synchronisation between the global counters and the per-cpu counters. This
1978 * is not a problem because the lock will be local to a CPU almost all the time
1979 * and have little contention except when we get to ENOSPC conditions.
1981 * Basically, this lock becomes a barrier that enables us to lock out the fast
1982 * path while we do things like enabling and disabling counters and
1983 * synchronising the counters.
1987 * 1. m_sb_lock before picking up per-cpu locks
1988 * 2. per-cpu locks always picked up via for_each_online_cpu() order
1989 * 3. accurate counter sync requires m_sb_lock + per cpu locks
1990 * 4. modifying per-cpu counters requires holding per-cpu lock
1991 * 5. modifying global counters requires holding m_sb_lock
1992 * 6. enabling or disabling a counter requires holding the m_sb_lock
1993 * and _none_ of the per-cpu locks.
1995 * Disabled counters are only ever re-enabled by a balance operation
1996 * that results in more free resources per CPU than a given threshold.
1997 * To ensure counters don't remain disabled, they are rebalanced when
1998 * the global resource goes above a higher threshold (i.e. some hysteresis
1999 * is present to prevent thrashing).
2002 #ifdef CONFIG_HOTPLUG_CPU
2004 * hot-plug CPU notifier support.
2006 * We need a notifier per filesystem as we need to be able to identify
2007 * the filesystem to balance the counters out. This is achieved by
2008 * having a notifier block embedded in the xfs_mount_t and doing pointer
2009 * magic to get the mount pointer from the notifier block address.
2012 xfs_icsb_cpu_notify(
2013 struct notifier_block
*nfb
,
2014 unsigned long action
,
2017 xfs_icsb_cnts_t
*cntp
;
2020 mp
= (xfs_mount_t
*)container_of(nfb
, xfs_mount_t
, m_icsb_notifier
);
2021 cntp
= (xfs_icsb_cnts_t
*)
2022 per_cpu_ptr(mp
->m_sb_cnts
, (unsigned long)hcpu
);
2024 case CPU_UP_PREPARE
:
2025 case CPU_UP_PREPARE_FROZEN
:
2026 /* Easy Case - initialize the area and locks, and
2027 * then rebalance when online does everything else for us. */
2028 memset(cntp
, 0, sizeof(xfs_icsb_cnts_t
));
2031 case CPU_ONLINE_FROZEN
:
2033 xfs_icsb_balance_counter(mp
, XFS_SBS_ICOUNT
, 0);
2034 xfs_icsb_balance_counter(mp
, XFS_SBS_IFREE
, 0);
2035 xfs_icsb_balance_counter(mp
, XFS_SBS_FDBLOCKS
, 0);
2036 xfs_icsb_unlock(mp
);
2039 case CPU_DEAD_FROZEN
:
2040 /* Disable all the counters, then fold the dead cpu's
2041 * count into the total on the global superblock and
2042 * re-enable the counters. */
2044 spin_lock(&mp
->m_sb_lock
);
2045 xfs_icsb_disable_counter(mp
, XFS_SBS_ICOUNT
);
2046 xfs_icsb_disable_counter(mp
, XFS_SBS_IFREE
);
2047 xfs_icsb_disable_counter(mp
, XFS_SBS_FDBLOCKS
);
2049 mp
->m_sb
.sb_icount
+= cntp
->icsb_icount
;
2050 mp
->m_sb
.sb_ifree
+= cntp
->icsb_ifree
;
2051 mp
->m_sb
.sb_fdblocks
+= cntp
->icsb_fdblocks
;
2053 memset(cntp
, 0, sizeof(xfs_icsb_cnts_t
));
2055 xfs_icsb_balance_counter_locked(mp
, XFS_SBS_ICOUNT
, 0);
2056 xfs_icsb_balance_counter_locked(mp
, XFS_SBS_IFREE
, 0);
2057 xfs_icsb_balance_counter_locked(mp
, XFS_SBS_FDBLOCKS
, 0);
2058 spin_unlock(&mp
->m_sb_lock
);
2059 xfs_icsb_unlock(mp
);
2065 #endif /* CONFIG_HOTPLUG_CPU */
2068 xfs_icsb_init_counters(
2071 xfs_icsb_cnts_t
*cntp
;
2074 mp
->m_sb_cnts
= alloc_percpu(xfs_icsb_cnts_t
);
2075 if (mp
->m_sb_cnts
== NULL
)
2078 #ifdef CONFIG_HOTPLUG_CPU
2079 mp
->m_icsb_notifier
.notifier_call
= xfs_icsb_cpu_notify
;
2080 mp
->m_icsb_notifier
.priority
= 0;
2081 register_hotcpu_notifier(&mp
->m_icsb_notifier
);
2082 #endif /* CONFIG_HOTPLUG_CPU */
2084 for_each_online_cpu(i
) {
2085 cntp
= (xfs_icsb_cnts_t
*)per_cpu_ptr(mp
->m_sb_cnts
, i
);
2086 memset(cntp
, 0, sizeof(xfs_icsb_cnts_t
));
2089 mutex_init(&mp
->m_icsb_mutex
);
2092 * start with all counters disabled so that the
2093 * initial balance kicks us off correctly
2095 mp
->m_icsb_counters
= -1;
2100 xfs_icsb_reinit_counters(
2105 * start with all counters disabled so that the
2106 * initial balance kicks us off correctly
2108 mp
->m_icsb_counters
= -1;
2109 xfs_icsb_balance_counter(mp
, XFS_SBS_ICOUNT
, 0);
2110 xfs_icsb_balance_counter(mp
, XFS_SBS_IFREE
, 0);
2111 xfs_icsb_balance_counter(mp
, XFS_SBS_FDBLOCKS
, 0);
2112 xfs_icsb_unlock(mp
);
2116 xfs_icsb_destroy_counters(
2119 if (mp
->m_sb_cnts
) {
2120 unregister_hotcpu_notifier(&mp
->m_icsb_notifier
);
2121 free_percpu(mp
->m_sb_cnts
);
2123 mutex_destroy(&mp
->m_icsb_mutex
);
2128 xfs_icsb_cnts_t
*icsbp
)
2130 while (test_and_set_bit(XFS_ICSB_FLAG_LOCK
, &icsbp
->icsb_flags
)) {
2136 xfs_icsb_unlock_cntr(
2137 xfs_icsb_cnts_t
*icsbp
)
2139 clear_bit(XFS_ICSB_FLAG_LOCK
, &icsbp
->icsb_flags
);
2144 xfs_icsb_lock_all_counters(
2147 xfs_icsb_cnts_t
*cntp
;
2150 for_each_online_cpu(i
) {
2151 cntp
= (xfs_icsb_cnts_t
*)per_cpu_ptr(mp
->m_sb_cnts
, i
);
2152 xfs_icsb_lock_cntr(cntp
);
2157 xfs_icsb_unlock_all_counters(
2160 xfs_icsb_cnts_t
*cntp
;
2163 for_each_online_cpu(i
) {
2164 cntp
= (xfs_icsb_cnts_t
*)per_cpu_ptr(mp
->m_sb_cnts
, i
);
2165 xfs_icsb_unlock_cntr(cntp
);
2172 xfs_icsb_cnts_t
*cnt
,
2175 xfs_icsb_cnts_t
*cntp
;
2178 memset(cnt
, 0, sizeof(xfs_icsb_cnts_t
));
2180 if (!(flags
& XFS_ICSB_LAZY_COUNT
))
2181 xfs_icsb_lock_all_counters(mp
);
2183 for_each_online_cpu(i
) {
2184 cntp
= (xfs_icsb_cnts_t
*)per_cpu_ptr(mp
->m_sb_cnts
, i
);
2185 cnt
->icsb_icount
+= cntp
->icsb_icount
;
2186 cnt
->icsb_ifree
+= cntp
->icsb_ifree
;
2187 cnt
->icsb_fdblocks
+= cntp
->icsb_fdblocks
;
2190 if (!(flags
& XFS_ICSB_LAZY_COUNT
))
2191 xfs_icsb_unlock_all_counters(mp
);
2195 xfs_icsb_counter_disabled(
2197 xfs_sb_field_t field
)
2199 ASSERT((field
>= XFS_SBS_ICOUNT
) && (field
<= XFS_SBS_FDBLOCKS
));
2200 return test_bit(field
, &mp
->m_icsb_counters
);
2204 xfs_icsb_disable_counter(
2206 xfs_sb_field_t field
)
2208 xfs_icsb_cnts_t cnt
;
2210 ASSERT((field
>= XFS_SBS_ICOUNT
) && (field
<= XFS_SBS_FDBLOCKS
));
2213 * If we are already disabled, then there is nothing to do
2214 * here. We check before locking all the counters to avoid
2215 * the expensive lock operation when being called in the
2216 * slow path and the counter is already disabled. This is
2217 * safe because the only time we set or clear this state is under
2220 if (xfs_icsb_counter_disabled(mp
, field
))
2223 xfs_icsb_lock_all_counters(mp
);
2224 if (!test_and_set_bit(field
, &mp
->m_icsb_counters
)) {
2225 /* drain back to superblock */
2227 xfs_icsb_count(mp
, &cnt
, XFS_ICSB_LAZY_COUNT
);
2229 case XFS_SBS_ICOUNT
:
2230 mp
->m_sb
.sb_icount
= cnt
.icsb_icount
;
2233 mp
->m_sb
.sb_ifree
= cnt
.icsb_ifree
;
2235 case XFS_SBS_FDBLOCKS
:
2236 mp
->m_sb
.sb_fdblocks
= cnt
.icsb_fdblocks
;
2243 xfs_icsb_unlock_all_counters(mp
);
2247 xfs_icsb_enable_counter(
2249 xfs_sb_field_t field
,
2253 xfs_icsb_cnts_t
*cntp
;
2256 ASSERT((field
>= XFS_SBS_ICOUNT
) && (field
<= XFS_SBS_FDBLOCKS
));
2258 xfs_icsb_lock_all_counters(mp
);
2259 for_each_online_cpu(i
) {
2260 cntp
= per_cpu_ptr(mp
->m_sb_cnts
, i
);
2262 case XFS_SBS_ICOUNT
:
2263 cntp
->icsb_icount
= count
+ resid
;
2266 cntp
->icsb_ifree
= count
+ resid
;
2268 case XFS_SBS_FDBLOCKS
:
2269 cntp
->icsb_fdblocks
= count
+ resid
;
2277 clear_bit(field
, &mp
->m_icsb_counters
);
2278 xfs_icsb_unlock_all_counters(mp
);
2282 xfs_icsb_sync_counters_locked(
2286 xfs_icsb_cnts_t cnt
;
2288 xfs_icsb_count(mp
, &cnt
, flags
);
2290 if (!xfs_icsb_counter_disabled(mp
, XFS_SBS_ICOUNT
))
2291 mp
->m_sb
.sb_icount
= cnt
.icsb_icount
;
2292 if (!xfs_icsb_counter_disabled(mp
, XFS_SBS_IFREE
))
2293 mp
->m_sb
.sb_ifree
= cnt
.icsb_ifree
;
2294 if (!xfs_icsb_counter_disabled(mp
, XFS_SBS_FDBLOCKS
))
2295 mp
->m_sb
.sb_fdblocks
= cnt
.icsb_fdblocks
;
2299 * Accurate update of per-cpu counters to incore superblock
2302 xfs_icsb_sync_counters(
2306 spin_lock(&mp
->m_sb_lock
);
2307 xfs_icsb_sync_counters_locked(mp
, flags
);
2308 spin_unlock(&mp
->m_sb_lock
);
2312 * Balance and enable/disable counters as necessary.
2314 * Thresholds for re-enabling counters are somewhat magic. inode counts are
2315 * chosen to be the same number as single on disk allocation chunk per CPU, and
2316 * free blocks is something far enough zero that we aren't going thrash when we
2317 * get near ENOSPC. We also need to supply a minimum we require per cpu to
2318 * prevent looping endlessly when xfs_alloc_space asks for more than will
2319 * be distributed to a single CPU but each CPU has enough blocks to be
2322 * Note that we can be called when counters are already disabled.
2323 * xfs_icsb_disable_counter() optimises the counter locking in this case to
2324 * prevent locking every per-cpu counter needlessly.
2327 #define XFS_ICSB_INO_CNTR_REENABLE (uint64_t)64
2328 #define XFS_ICSB_FDBLK_CNTR_REENABLE(mp) \
2329 (uint64_t)(512 + XFS_ALLOC_SET_ASIDE(mp))
2331 xfs_icsb_balance_counter_locked(
2333 xfs_sb_field_t field
,
2336 uint64_t count
, resid
;
2337 int weight
= num_online_cpus();
2338 uint64_t min
= (uint64_t)min_per_cpu
;
2340 /* disable counter and sync counter */
2341 xfs_icsb_disable_counter(mp
, field
);
2343 /* update counters - first CPU gets residual*/
2345 case XFS_SBS_ICOUNT
:
2346 count
= mp
->m_sb
.sb_icount
;
2347 resid
= do_div(count
, weight
);
2348 if (count
< max(min
, XFS_ICSB_INO_CNTR_REENABLE
))
2352 count
= mp
->m_sb
.sb_ifree
;
2353 resid
= do_div(count
, weight
);
2354 if (count
< max(min
, XFS_ICSB_INO_CNTR_REENABLE
))
2357 case XFS_SBS_FDBLOCKS
:
2358 count
= mp
->m_sb
.sb_fdblocks
;
2359 resid
= do_div(count
, weight
);
2360 if (count
< max(min
, XFS_ICSB_FDBLK_CNTR_REENABLE(mp
)))
2365 count
= resid
= 0; /* quiet, gcc */
2369 xfs_icsb_enable_counter(mp
, field
, count
, resid
);
2373 xfs_icsb_balance_counter(
2375 xfs_sb_field_t fields
,
2378 spin_lock(&mp
->m_sb_lock
);
2379 xfs_icsb_balance_counter_locked(mp
, fields
, min_per_cpu
);
2380 spin_unlock(&mp
->m_sb_lock
);
2384 xfs_icsb_modify_counters(
2386 xfs_sb_field_t field
,
2390 xfs_icsb_cnts_t
*icsbp
;
2391 long long lcounter
; /* long counter for 64 bit fields */
2397 icsbp
= (xfs_icsb_cnts_t
*)per_cpu_ptr(mp
->m_sb_cnts
, cpu
);
2400 * if the counter is disabled, go to slow path
2402 if (unlikely(xfs_icsb_counter_disabled(mp
, field
)))
2404 xfs_icsb_lock_cntr(icsbp
);
2405 if (unlikely(xfs_icsb_counter_disabled(mp
, field
))) {
2406 xfs_icsb_unlock_cntr(icsbp
);
2411 case XFS_SBS_ICOUNT
:
2412 lcounter
= icsbp
->icsb_icount
;
2414 if (unlikely(lcounter
< 0))
2415 goto balance_counter
;
2416 icsbp
->icsb_icount
= lcounter
;
2420 lcounter
= icsbp
->icsb_ifree
;
2422 if (unlikely(lcounter
< 0))
2423 goto balance_counter
;
2424 icsbp
->icsb_ifree
= lcounter
;
2427 case XFS_SBS_FDBLOCKS
:
2428 BUG_ON((mp
->m_resblks
- mp
->m_resblks_avail
) != 0);
2430 lcounter
= icsbp
->icsb_fdblocks
- XFS_ALLOC_SET_ASIDE(mp
);
2432 if (unlikely(lcounter
< 0))
2433 goto balance_counter
;
2434 icsbp
->icsb_fdblocks
= lcounter
+ XFS_ALLOC_SET_ASIDE(mp
);
2440 xfs_icsb_unlock_cntr(icsbp
);
2448 * serialise with a mutex so we don't burn lots of cpu on
2449 * the superblock lock. We still need to hold the superblock
2450 * lock, however, when we modify the global structures.
2455 * Now running atomically.
2457 * If the counter is enabled, someone has beaten us to rebalancing.
2458 * Drop the lock and try again in the fast path....
2460 if (!(xfs_icsb_counter_disabled(mp
, field
))) {
2461 xfs_icsb_unlock(mp
);
2466 * The counter is currently disabled. Because we are
2467 * running atomically here, we know a rebalance cannot
2468 * be in progress. Hence we can go straight to operating
2469 * on the global superblock. We do not call xfs_mod_incore_sb()
2470 * here even though we need to get the m_sb_lock. Doing so
2471 * will cause us to re-enter this function and deadlock.
2472 * Hence we get the m_sb_lock ourselves and then call
2473 * xfs_mod_incore_sb_unlocked() as the unlocked path operates
2474 * directly on the global counters.
2476 spin_lock(&mp
->m_sb_lock
);
2477 ret
= xfs_mod_incore_sb_unlocked(mp
, field
, delta
, rsvd
);
2478 spin_unlock(&mp
->m_sb_lock
);
2481 * Now that we've modified the global superblock, we
2482 * may be able to re-enable the distributed counters
2483 * (e.g. lots of space just got freed). After that
2487 xfs_icsb_balance_counter(mp
, field
, 0);
2488 xfs_icsb_unlock(mp
);
2492 xfs_icsb_unlock_cntr(icsbp
);
2496 * We may have multiple threads here if multiple per-cpu
2497 * counters run dry at the same time. This will mean we can
2498 * do more balances than strictly necessary but it is not
2499 * the common slowpath case.
2504 * running atomically.
2506 * This will leave the counter in the correct state for future
2507 * accesses. After the rebalance, we simply try again and our retry
2508 * will either succeed through the fast path or slow path without
2509 * another balance operation being required.
2511 xfs_icsb_balance_counter(mp
, field
, delta
);
2512 xfs_icsb_unlock(mp
);