ath5k: clean up some comments
[linux-2.6.git] / drivers / net / wireless / ath / ath5k / reset.c
blob4154959125b6fe1b3d435c30c703ae6fc30cd034
1 /*
2 * Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org>
3 * Copyright (c) 2006-2008 Nick Kossifidis <mickflemm@gmail.com>
4 * Copyright (c) 2007-2008 Luis Rodriguez <mcgrof@winlab.rutgers.edu>
5 * Copyright (c) 2007-2008 Pavel Roskin <proski@gnu.org>
6 * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
8 * Permission to use, copy, modify, and distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
22 /*****************************\
23 Reset functions and helpers
24 \*****************************/
26 #include <asm/unaligned.h>
28 #include <linux/pci.h> /* To determine if a card is pci-e */
29 #include <linux/log2.h>
30 #include "ath5k.h"
31 #include "reg.h"
32 #include "base.h"
33 #include "debug.h"
36 * Check if a register write has been completed
38 int ath5k_hw_register_timeout(struct ath5k_hw *ah, u32 reg, u32 flag, u32 val,
39 bool is_set)
41 int i;
42 u32 data;
44 for (i = AR5K_TUNE_REGISTER_TIMEOUT; i > 0; i--) {
45 data = ath5k_hw_reg_read(ah, reg);
46 if (is_set && (data & flag))
47 break;
48 else if ((data & flag) == val)
49 break;
50 udelay(15);
53 return (i <= 0) ? -EAGAIN : 0;
56 /**
57 * ath5k_hw_write_ofdm_timings - set OFDM timings on AR5212
59 * @ah: the &struct ath5k_hw
60 * @channel: the currently set channel upon reset
62 * Write the delta slope coefficient (used on pilot tracking ?) for OFDM
63 * operation on the AR5212 upon reset. This is a helper for ath5k_hw_reset().
65 * Since delta slope is floating point we split it on its exponent and
66 * mantissa and provide these values on hw.
68 * For more infos i think this patent is related
69 * http://www.freepatentsonline.com/7184495.html
71 static inline int ath5k_hw_write_ofdm_timings(struct ath5k_hw *ah,
72 struct ieee80211_channel *channel)
74 /* Get exponent and mantissa and set it */
75 u32 coef_scaled, coef_exp, coef_man,
76 ds_coef_exp, ds_coef_man, clock;
78 BUG_ON(!(ah->ah_version == AR5K_AR5212) ||
79 !(channel->hw_value & CHANNEL_OFDM));
81 /* Get coefficient
82 * ALGO: coef = (5 * clock / carrier_freq) / 2
83 * we scale coef by shifting clock value by 24 for
84 * better precision since we use integers */
85 /* TODO: Half/quarter rate */
86 clock = (channel->hw_value & CHANNEL_TURBO) ? 80 : 40;
87 coef_scaled = ((5 * (clock << 24)) / 2) / channel->center_freq;
89 /* Get exponent
90 * ALGO: coef_exp = 14 - highest set bit position */
91 coef_exp = ilog2(coef_scaled);
93 /* Doesn't make sense if it's zero*/
94 if (!coef_scaled || !coef_exp)
95 return -EINVAL;
97 /* Note: we've shifted coef_scaled by 24 */
98 coef_exp = 14 - (coef_exp - 24);
101 /* Get mantissa (significant digits)
102 * ALGO: coef_mant = floor(coef_scaled* 2^coef_exp+0.5) */
103 coef_man = coef_scaled +
104 (1 << (24 - coef_exp - 1));
106 /* Calculate delta slope coefficient exponent
107 * and mantissa (remove scaling) and set them on hw */
108 ds_coef_man = coef_man >> (24 - coef_exp);
109 ds_coef_exp = coef_exp - 16;
111 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
112 AR5K_PHY_TIMING_3_DSC_MAN, ds_coef_man);
113 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
114 AR5K_PHY_TIMING_3_DSC_EXP, ds_coef_exp);
116 return 0;
121 * index into rates for control rates, we can set it up like this because
122 * this is only used for AR5212 and we know it supports G mode
124 static const unsigned int control_rates[] =
125 { 0, 1, 1, 1, 4, 4, 6, 6, 8, 8, 8, 8 };
128 * ath5k_hw_write_rate_duration - fill rate code to duration table
130 * @ah: the &struct ath5k_hw
131 * @mode: one of enum ath5k_driver_mode
133 * Write the rate code to duration table upon hw reset. This is a helper for
134 * ath5k_hw_reset(). It seems all this is doing is setting an ACK timeout on
135 * the hardware, based on current mode, for each rate. The rates which are
136 * capable of short preamble (802.11b rates 2Mbps, 5.5Mbps, and 11Mbps) have
137 * different rate code so we write their value twice (one for long preample
138 * and one for short).
140 * Note: Band doesn't matter here, if we set the values for OFDM it works
141 * on both a and g modes. So all we have to do is set values for all g rates
142 * that include all OFDM and CCK rates. If we operate in turbo or xr/half/
143 * quarter rate mode, we need to use another set of bitrates (that's why we
144 * need the mode parameter) but we don't handle these proprietary modes yet.
146 static inline void ath5k_hw_write_rate_duration(struct ath5k_hw *ah,
147 unsigned int mode)
149 struct ath5k_softc *sc = ah->ah_sc;
150 struct ieee80211_rate *rate;
151 unsigned int i;
153 /* Write rate duration table */
154 for (i = 0; i < sc->sbands[IEEE80211_BAND_2GHZ].n_bitrates; i++) {
155 u32 reg;
156 u16 tx_time;
158 rate = &sc->sbands[IEEE80211_BAND_2GHZ].bitrates[control_rates[i]];
160 /* Set ACK timeout */
161 reg = AR5K_RATE_DUR(rate->hw_value);
163 /* An ACK frame consists of 10 bytes. If you add the FCS,
164 * which ieee80211_generic_frame_duration() adds,
165 * its 14 bytes. Note we use the control rate and not the
166 * actual rate for this rate. See mac80211 tx.c
167 * ieee80211_duration() for a brief description of
168 * what rate we should choose to TX ACKs. */
169 tx_time = le16_to_cpu(ieee80211_generic_frame_duration(sc->hw,
170 sc->vif, 10, rate));
172 ath5k_hw_reg_write(ah, tx_time, reg);
174 if (!(rate->flags & IEEE80211_RATE_SHORT_PREAMBLE))
175 continue;
178 * We're not distinguishing short preamble here,
179 * This is true, all we'll get is a longer value here
180 * which is not necessarilly bad. We could use
181 * export ieee80211_frame_duration() but that needs to be
182 * fixed first to be properly used by mac802111 drivers:
184 * - remove erp stuff and let the routine figure ofdm
185 * erp rates
186 * - remove passing argument ieee80211_local as
187 * drivers don't have access to it
188 * - move drivers using ieee80211_generic_frame_duration()
189 * to this
191 ath5k_hw_reg_write(ah, tx_time,
192 reg + (AR5K_SET_SHORT_PREAMBLE << 2));
197 * Reset chipset
199 static int ath5k_hw_nic_reset(struct ath5k_hw *ah, u32 val)
201 int ret;
202 u32 mask = val ? val : ~0U;
204 /* Read-and-clear RX Descriptor Pointer*/
205 ath5k_hw_reg_read(ah, AR5K_RXDP);
208 * Reset the device and wait until success
210 ath5k_hw_reg_write(ah, val, AR5K_RESET_CTL);
212 /* Wait at least 128 PCI clocks */
213 udelay(15);
215 if (ah->ah_version == AR5K_AR5210) {
216 val &= AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_DMA
217 | AR5K_RESET_CTL_MAC | AR5K_RESET_CTL_PHY;
218 mask &= AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_DMA
219 | AR5K_RESET_CTL_MAC | AR5K_RESET_CTL_PHY;
220 } else {
221 val &= AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_BASEBAND;
222 mask &= AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_BASEBAND;
225 ret = ath5k_hw_register_timeout(ah, AR5K_RESET_CTL, mask, val, false);
228 * Reset configuration register (for hw byte-swap). Note that this
229 * is only set for big endian. We do the necessary magic in
230 * AR5K_INIT_CFG.
232 if ((val & AR5K_RESET_CTL_PCU) == 0)
233 ath5k_hw_reg_write(ah, AR5K_INIT_CFG, AR5K_CFG);
235 return ret;
239 * Sleep control
241 static int ath5k_hw_set_power(struct ath5k_hw *ah, enum ath5k_power_mode mode,
242 bool set_chip, u16 sleep_duration)
244 unsigned int i;
245 u32 staid, data;
247 staid = ath5k_hw_reg_read(ah, AR5K_STA_ID1);
249 switch (mode) {
250 case AR5K_PM_AUTO:
251 staid &= ~AR5K_STA_ID1_DEFAULT_ANTENNA;
252 /* fallthrough */
253 case AR5K_PM_NETWORK_SLEEP:
254 if (set_chip)
255 ath5k_hw_reg_write(ah,
256 AR5K_SLEEP_CTL_SLE_ALLOW |
257 sleep_duration,
258 AR5K_SLEEP_CTL);
260 staid |= AR5K_STA_ID1_PWR_SV;
261 break;
263 case AR5K_PM_FULL_SLEEP:
264 if (set_chip)
265 ath5k_hw_reg_write(ah, AR5K_SLEEP_CTL_SLE_SLP,
266 AR5K_SLEEP_CTL);
268 staid |= AR5K_STA_ID1_PWR_SV;
269 break;
271 case AR5K_PM_AWAKE:
273 staid &= ~AR5K_STA_ID1_PWR_SV;
275 if (!set_chip)
276 goto commit;
278 data = ath5k_hw_reg_read(ah, AR5K_SLEEP_CTL);
280 /* If card is down we 'll get 0xffff... so we
281 * need to clean this up before we write the register
283 if (data & 0xffc00000)
284 data = 0;
285 else
286 /* Preserve sleep duration etc */
287 data = data & ~AR5K_SLEEP_CTL_SLE;
289 ath5k_hw_reg_write(ah, data | AR5K_SLEEP_CTL_SLE_WAKE,
290 AR5K_SLEEP_CTL);
291 udelay(15);
293 for (i = 200; i > 0; i--) {
294 /* Check if the chip did wake up */
295 if ((ath5k_hw_reg_read(ah, AR5K_PCICFG) &
296 AR5K_PCICFG_SPWR_DN) == 0)
297 break;
299 /* Wait a bit and retry */
300 udelay(50);
301 ath5k_hw_reg_write(ah, data | AR5K_SLEEP_CTL_SLE_WAKE,
302 AR5K_SLEEP_CTL);
305 /* Fail if the chip didn't wake up */
306 if (i == 0)
307 return -EIO;
309 break;
311 default:
312 return -EINVAL;
315 commit:
316 ath5k_hw_reg_write(ah, staid, AR5K_STA_ID1);
318 return 0;
322 * Put device on hold
324 * Put MAC and Baseband on warm reset and
325 * keep that state (don't clean sleep control
326 * register). After this MAC and Baseband are
327 * disabled and a full reset is needed to come
328 * back. This way we save as much power as possible
329 * without puting the card on full sleep.
331 int ath5k_hw_on_hold(struct ath5k_hw *ah)
333 struct pci_dev *pdev = ah->ah_sc->pdev;
334 u32 bus_flags;
335 int ret;
337 /* Make sure device is awake */
338 ret = ath5k_hw_set_power(ah, AR5K_PM_AWAKE, true, 0);
339 if (ret) {
340 ATH5K_ERR(ah->ah_sc, "failed to wakeup the MAC Chip\n");
341 return ret;
345 * Put chipset on warm reset...
347 * Note: puting PCI core on warm reset on PCI-E cards
348 * results card to hang and always return 0xffff... so
349 * we ingore that flag for PCI-E cards. On PCI cards
350 * this flag gets cleared after 64 PCI clocks.
352 bus_flags = (pdev->is_pcie) ? 0 : AR5K_RESET_CTL_PCI;
354 if (ah->ah_version == AR5K_AR5210) {
355 ret = ath5k_hw_nic_reset(ah, AR5K_RESET_CTL_PCU |
356 AR5K_RESET_CTL_MAC | AR5K_RESET_CTL_DMA |
357 AR5K_RESET_CTL_PHY | AR5K_RESET_CTL_PCI);
358 mdelay(2);
359 } else {
360 ret = ath5k_hw_nic_reset(ah, AR5K_RESET_CTL_PCU |
361 AR5K_RESET_CTL_BASEBAND | bus_flags);
364 if (ret) {
365 ATH5K_ERR(ah->ah_sc, "failed to put device on warm reset\n");
366 return -EIO;
369 /* ...wakeup again!*/
370 ret = ath5k_hw_set_power(ah, AR5K_PM_AWAKE, true, 0);
371 if (ret) {
372 ATH5K_ERR(ah->ah_sc, "failed to put device on hold\n");
373 return ret;
376 return ret;
380 * Bring up MAC + PHY Chips and program PLL
381 * TODO: Half/Quarter rate support
383 int ath5k_hw_nic_wakeup(struct ath5k_hw *ah, int flags, bool initial)
385 struct pci_dev *pdev = ah->ah_sc->pdev;
386 u32 turbo, mode, clock, bus_flags;
387 int ret;
389 turbo = 0;
390 mode = 0;
391 clock = 0;
393 /* Wakeup the device */
394 ret = ath5k_hw_set_power(ah, AR5K_PM_AWAKE, true, 0);
395 if (ret) {
396 ATH5K_ERR(ah->ah_sc, "failed to wakeup the MAC Chip\n");
397 return ret;
401 * Put chipset on warm reset...
403 * Note: puting PCI core on warm reset on PCI-E cards
404 * results card to hang and always return 0xffff... so
405 * we ingore that flag for PCI-E cards. On PCI cards
406 * this flag gets cleared after 64 PCI clocks.
408 bus_flags = (pdev->is_pcie) ? 0 : AR5K_RESET_CTL_PCI;
410 if (ah->ah_version == AR5K_AR5210) {
411 ret = ath5k_hw_nic_reset(ah, AR5K_RESET_CTL_PCU |
412 AR5K_RESET_CTL_MAC | AR5K_RESET_CTL_DMA |
413 AR5K_RESET_CTL_PHY | AR5K_RESET_CTL_PCI);
414 mdelay(2);
415 } else {
416 ret = ath5k_hw_nic_reset(ah, AR5K_RESET_CTL_PCU |
417 AR5K_RESET_CTL_BASEBAND | bus_flags);
420 if (ret) {
421 ATH5K_ERR(ah->ah_sc, "failed to reset the MAC Chip\n");
422 return -EIO;
425 /* ...wakeup again!...*/
426 ret = ath5k_hw_set_power(ah, AR5K_PM_AWAKE, true, 0);
427 if (ret) {
428 ATH5K_ERR(ah->ah_sc, "failed to resume the MAC Chip\n");
429 return ret;
432 /* ...clear reset control register and pull device out of
433 * warm reset */
434 if (ath5k_hw_nic_reset(ah, 0)) {
435 ATH5K_ERR(ah->ah_sc, "failed to warm reset the MAC Chip\n");
436 return -EIO;
439 /* On initialization skip PLL programming since we don't have
440 * a channel / mode set yet */
441 if (initial)
442 return 0;
444 if (ah->ah_version != AR5K_AR5210) {
446 * Get channel mode flags
449 if (ah->ah_radio >= AR5K_RF5112) {
450 mode = AR5K_PHY_MODE_RAD_RF5112;
451 clock = AR5K_PHY_PLL_RF5112;
452 } else {
453 mode = AR5K_PHY_MODE_RAD_RF5111; /*Zero*/
454 clock = AR5K_PHY_PLL_RF5111; /*Zero*/
457 if (flags & CHANNEL_2GHZ) {
458 mode |= AR5K_PHY_MODE_FREQ_2GHZ;
459 clock |= AR5K_PHY_PLL_44MHZ;
461 if (flags & CHANNEL_CCK) {
462 mode |= AR5K_PHY_MODE_MOD_CCK;
463 } else if (flags & CHANNEL_OFDM) {
464 /* XXX Dynamic OFDM/CCK is not supported by the
465 * AR5211 so we set MOD_OFDM for plain g (no
466 * CCK headers) operation. We need to test
467 * this, 5211 might support ofdm-only g after
468 * all, there are also initial register values
469 * in the code for g mode (see initvals.c). */
470 if (ah->ah_version == AR5K_AR5211)
471 mode |= AR5K_PHY_MODE_MOD_OFDM;
472 else
473 mode |= AR5K_PHY_MODE_MOD_DYN;
474 } else {
475 ATH5K_ERR(ah->ah_sc,
476 "invalid radio modulation mode\n");
477 return -EINVAL;
479 } else if (flags & CHANNEL_5GHZ) {
480 mode |= AR5K_PHY_MODE_FREQ_5GHZ;
482 if (ah->ah_radio == AR5K_RF5413)
483 clock = AR5K_PHY_PLL_40MHZ_5413;
484 else
485 clock |= AR5K_PHY_PLL_40MHZ;
487 if (flags & CHANNEL_OFDM)
488 mode |= AR5K_PHY_MODE_MOD_OFDM;
489 else {
490 ATH5K_ERR(ah->ah_sc,
491 "invalid radio modulation mode\n");
492 return -EINVAL;
494 } else {
495 ATH5K_ERR(ah->ah_sc, "invalid radio frequency mode\n");
496 return -EINVAL;
499 if (flags & CHANNEL_TURBO)
500 turbo = AR5K_PHY_TURBO_MODE | AR5K_PHY_TURBO_SHORT;
501 } else { /* Reset the device */
503 /* ...enable Atheros turbo mode if requested */
504 if (flags & CHANNEL_TURBO)
505 ath5k_hw_reg_write(ah, AR5K_PHY_TURBO_MODE,
506 AR5K_PHY_TURBO);
509 if (ah->ah_version != AR5K_AR5210) {
511 /* ...update PLL if needed */
512 if (ath5k_hw_reg_read(ah, AR5K_PHY_PLL) != clock) {
513 ath5k_hw_reg_write(ah, clock, AR5K_PHY_PLL);
514 udelay(300);
517 /* ...set the PHY operating mode */
518 ath5k_hw_reg_write(ah, mode, AR5K_PHY_MODE);
519 ath5k_hw_reg_write(ah, turbo, AR5K_PHY_TURBO);
522 return 0;
526 * If there is an external 32KHz crystal available, use it
527 * as ref. clock instead of 32/40MHz clock and baseband clocks
528 * to save power during sleep or restore normal 32/40MHz
529 * operation.
531 * XXX: When operating on 32KHz certain PHY registers (27 - 31,
532 * 123 - 127) require delay on access.
534 static void ath5k_hw_set_sleep_clock(struct ath5k_hw *ah, bool enable)
536 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
537 u32 scal, spending, usec32;
539 /* Only set 32KHz settings if we have an external
540 * 32KHz crystal present */
541 if ((AR5K_EEPROM_HAS32KHZCRYSTAL(ee->ee_misc1) ||
542 AR5K_EEPROM_HAS32KHZCRYSTAL_OLD(ee->ee_misc1)) &&
543 enable) {
545 /* 1 usec/cycle */
546 AR5K_REG_WRITE_BITS(ah, AR5K_USEC_5211, AR5K_USEC_32, 1);
547 /* Set up tsf increment on each cycle */
548 AR5K_REG_WRITE_BITS(ah, AR5K_TSF_PARM, AR5K_TSF_PARM_INC, 61);
550 /* Set baseband sleep control registers
551 * and sleep control rate */
552 ath5k_hw_reg_write(ah, 0x1f, AR5K_PHY_SCR);
554 if ((ah->ah_radio == AR5K_RF5112) ||
555 (ah->ah_radio == AR5K_RF5413) ||
556 (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)))
557 spending = 0x14;
558 else
559 spending = 0x18;
560 ath5k_hw_reg_write(ah, spending, AR5K_PHY_SPENDING);
562 if ((ah->ah_radio == AR5K_RF5112) ||
563 (ah->ah_radio == AR5K_RF5413) ||
564 (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4))) {
565 ath5k_hw_reg_write(ah, 0x26, AR5K_PHY_SLMT);
566 ath5k_hw_reg_write(ah, 0x0d, AR5K_PHY_SCAL);
567 ath5k_hw_reg_write(ah, 0x07, AR5K_PHY_SCLOCK);
568 ath5k_hw_reg_write(ah, 0x3f, AR5K_PHY_SDELAY);
569 AR5K_REG_WRITE_BITS(ah, AR5K_PCICFG,
570 AR5K_PCICFG_SLEEP_CLOCK_RATE, 0x02);
571 } else {
572 ath5k_hw_reg_write(ah, 0x0a, AR5K_PHY_SLMT);
573 ath5k_hw_reg_write(ah, 0x0c, AR5K_PHY_SCAL);
574 ath5k_hw_reg_write(ah, 0x03, AR5K_PHY_SCLOCK);
575 ath5k_hw_reg_write(ah, 0x20, AR5K_PHY_SDELAY);
576 AR5K_REG_WRITE_BITS(ah, AR5K_PCICFG,
577 AR5K_PCICFG_SLEEP_CLOCK_RATE, 0x03);
580 /* Enable sleep clock operation */
581 AR5K_REG_ENABLE_BITS(ah, AR5K_PCICFG,
582 AR5K_PCICFG_SLEEP_CLOCK_EN);
584 } else {
586 /* Disable sleep clock operation and
587 * restore default parameters */
588 AR5K_REG_DISABLE_BITS(ah, AR5K_PCICFG,
589 AR5K_PCICFG_SLEEP_CLOCK_EN);
591 AR5K_REG_WRITE_BITS(ah, AR5K_PCICFG,
592 AR5K_PCICFG_SLEEP_CLOCK_RATE, 0);
594 ath5k_hw_reg_write(ah, 0x1f, AR5K_PHY_SCR);
595 ath5k_hw_reg_write(ah, AR5K_PHY_SLMT_32MHZ, AR5K_PHY_SLMT);
597 if (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4))
598 scal = AR5K_PHY_SCAL_32MHZ_2417;
599 else if (ee->ee_is_hb63)
600 scal = AR5K_PHY_SCAL_32MHZ_HB63;
601 else
602 scal = AR5K_PHY_SCAL_32MHZ;
603 ath5k_hw_reg_write(ah, scal, AR5K_PHY_SCAL);
605 ath5k_hw_reg_write(ah, AR5K_PHY_SCLOCK_32MHZ, AR5K_PHY_SCLOCK);
606 ath5k_hw_reg_write(ah, AR5K_PHY_SDELAY_32MHZ, AR5K_PHY_SDELAY);
608 if ((ah->ah_radio == AR5K_RF5112) ||
609 (ah->ah_radio == AR5K_RF5413) ||
610 (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)))
611 spending = 0x14;
612 else
613 spending = 0x18;
614 ath5k_hw_reg_write(ah, spending, AR5K_PHY_SPENDING);
616 if ((ah->ah_radio == AR5K_RF5112) ||
617 (ah->ah_radio == AR5K_RF5413))
618 usec32 = 39;
619 else
620 usec32 = 31;
621 AR5K_REG_WRITE_BITS(ah, AR5K_USEC_5211, AR5K_USEC_32, usec32);
623 AR5K_REG_WRITE_BITS(ah, AR5K_TSF_PARM, AR5K_TSF_PARM_INC, 1);
627 /* TODO: Half/Quarter rate */
628 static void ath5k_hw_tweak_initval_settings(struct ath5k_hw *ah,
629 struct ieee80211_channel *channel)
631 if (ah->ah_version == AR5K_AR5212 &&
632 ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
634 /* Setup ADC control */
635 ath5k_hw_reg_write(ah,
636 (AR5K_REG_SM(2,
637 AR5K_PHY_ADC_CTL_INBUFGAIN_OFF) |
638 AR5K_REG_SM(2,
639 AR5K_PHY_ADC_CTL_INBUFGAIN_ON) |
640 AR5K_PHY_ADC_CTL_PWD_DAC_OFF |
641 AR5K_PHY_ADC_CTL_PWD_ADC_OFF),
642 AR5K_PHY_ADC_CTL);
646 /* Disable barker RSSI threshold */
647 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_DAG_CCK_CTL,
648 AR5K_PHY_DAG_CCK_CTL_EN_RSSI_THR);
650 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DAG_CCK_CTL,
651 AR5K_PHY_DAG_CCK_CTL_RSSI_THR, 2);
653 /* Set the mute mask */
654 ath5k_hw_reg_write(ah, 0x0000000f, AR5K_SEQ_MASK);
657 /* Clear PHY_BLUETOOTH to allow RX_CLEAR line debug */
658 if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212B)
659 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BLUETOOTH);
661 /* Enable DCU double buffering */
662 if (ah->ah_phy_revision > AR5K_SREV_PHY_5212B)
663 AR5K_REG_DISABLE_BITS(ah, AR5K_TXCFG,
664 AR5K_TXCFG_DCU_DBL_BUF_DIS);
666 /* Set DAC/ADC delays */
667 if (ah->ah_version == AR5K_AR5212) {
668 u32 scal;
669 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
670 if (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4))
671 scal = AR5K_PHY_SCAL_32MHZ_2417;
672 else if (ee->ee_is_hb63)
673 scal = AR5K_PHY_SCAL_32MHZ_HB63;
674 else
675 scal = AR5K_PHY_SCAL_32MHZ;
676 ath5k_hw_reg_write(ah, scal, AR5K_PHY_SCAL);
679 /* Set fast ADC */
680 if ((ah->ah_radio == AR5K_RF5413) ||
681 (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4))) {
682 u32 fast_adc = true;
684 if (channel->center_freq == 2462 ||
685 channel->center_freq == 2467)
686 fast_adc = 0;
688 /* Only update if needed */
689 if (ath5k_hw_reg_read(ah, AR5K_PHY_FAST_ADC) != fast_adc)
690 ath5k_hw_reg_write(ah, fast_adc,
691 AR5K_PHY_FAST_ADC);
694 /* Fix for first revision of the RF5112 RF chipset */
695 if (ah->ah_radio == AR5K_RF5112 &&
696 ah->ah_radio_5ghz_revision <
697 AR5K_SREV_RAD_5112A) {
698 u32 data;
699 ath5k_hw_reg_write(ah, AR5K_PHY_CCKTXCTL_WORLD,
700 AR5K_PHY_CCKTXCTL);
701 if (channel->hw_value & CHANNEL_5GHZ)
702 data = 0xffb81020;
703 else
704 data = 0xffb80d20;
705 ath5k_hw_reg_write(ah, data, AR5K_PHY_FRAME_CTL);
708 if (ah->ah_mac_srev < AR5K_SREV_AR5211) {
709 u32 usec_reg;
710 /* 5311 has different tx/rx latency masks
711 * from 5211, since we deal 5311 the same
712 * as 5211 when setting initvals, shift
713 * values here to their proper locations */
714 usec_reg = ath5k_hw_reg_read(ah, AR5K_USEC_5211);
715 ath5k_hw_reg_write(ah, usec_reg & (AR5K_USEC_1 |
716 AR5K_USEC_32 |
717 AR5K_USEC_TX_LATENCY_5211 |
718 AR5K_REG_SM(29,
719 AR5K_USEC_RX_LATENCY_5210)),
720 AR5K_USEC_5211);
721 /* Clear QCU/DCU clock gating register */
722 ath5k_hw_reg_write(ah, 0, AR5K_QCUDCU_CLKGT);
723 /* Set DAC/ADC delays */
724 ath5k_hw_reg_write(ah, 0x08, AR5K_PHY_SCAL);
725 /* Enable PCU FIFO corruption ECO */
726 AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW_5211,
727 AR5K_DIAG_SW_ECO_ENABLE);
731 static void ath5k_hw_commit_eeprom_settings(struct ath5k_hw *ah,
732 struct ieee80211_channel *channel, u8 ee_mode)
734 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
735 s16 cck_ofdm_pwr_delta;
737 /* Adjust power delta for channel 14 */
738 if (channel->center_freq == 2484)
739 cck_ofdm_pwr_delta =
740 ((ee->ee_cck_ofdm_power_delta -
741 ee->ee_scaled_cck_delta) * 2) / 10;
742 else
743 cck_ofdm_pwr_delta =
744 (ee->ee_cck_ofdm_power_delta * 2) / 10;
746 /* Set CCK to OFDM power delta on tx power
747 * adjustment register */
748 if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
749 if (channel->hw_value == CHANNEL_G)
750 ath5k_hw_reg_write(ah,
751 AR5K_REG_SM((ee->ee_cck_ofdm_gain_delta * -1),
752 AR5K_PHY_TX_PWR_ADJ_CCK_GAIN_DELTA) |
753 AR5K_REG_SM((cck_ofdm_pwr_delta * -1),
754 AR5K_PHY_TX_PWR_ADJ_CCK_PCDAC_INDEX),
755 AR5K_PHY_TX_PWR_ADJ);
756 else
757 ath5k_hw_reg_write(ah, 0, AR5K_PHY_TX_PWR_ADJ);
758 } else {
759 /* For older revs we scale power on sw during tx power
760 * setup */
761 ah->ah_txpower.txp_cck_ofdm_pwr_delta = cck_ofdm_pwr_delta;
762 ah->ah_txpower.txp_cck_ofdm_gainf_delta =
763 ee->ee_cck_ofdm_gain_delta;
766 /* XXX: necessary here? is called from ath5k_hw_set_antenna_mode()
767 * too */
768 ath5k_hw_set_antenna_switch(ah, ee_mode);
770 /* Noise floor threshold */
771 ath5k_hw_reg_write(ah,
772 AR5K_PHY_NF_SVAL(ee->ee_noise_floor_thr[ee_mode]),
773 AR5K_PHY_NFTHRES);
775 if ((channel->hw_value & CHANNEL_TURBO) &&
776 (ah->ah_ee_version >= AR5K_EEPROM_VERSION_5_0)) {
777 /* Switch settling time (Turbo) */
778 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_SETTLING,
779 AR5K_PHY_SETTLING_SWITCH,
780 ee->ee_switch_settling_turbo[ee_mode]);
782 /* Tx/Rx attenuation (Turbo) */
783 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_GAIN,
784 AR5K_PHY_GAIN_TXRX_ATTEN,
785 ee->ee_atn_tx_rx_turbo[ee_mode]);
787 /* ADC/PGA desired size (Turbo) */
788 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DESIRED_SIZE,
789 AR5K_PHY_DESIRED_SIZE_ADC,
790 ee->ee_adc_desired_size_turbo[ee_mode]);
792 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DESIRED_SIZE,
793 AR5K_PHY_DESIRED_SIZE_PGA,
794 ee->ee_pga_desired_size_turbo[ee_mode]);
796 /* Tx/Rx margin (Turbo) */
797 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_GAIN_2GHZ,
798 AR5K_PHY_GAIN_2GHZ_MARGIN_TXRX,
799 ee->ee_margin_tx_rx_turbo[ee_mode]);
801 } else {
802 /* Switch settling time */
803 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_SETTLING,
804 AR5K_PHY_SETTLING_SWITCH,
805 ee->ee_switch_settling[ee_mode]);
807 /* Tx/Rx attenuation */
808 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_GAIN,
809 AR5K_PHY_GAIN_TXRX_ATTEN,
810 ee->ee_atn_tx_rx[ee_mode]);
812 /* ADC/PGA desired size */
813 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DESIRED_SIZE,
814 AR5K_PHY_DESIRED_SIZE_ADC,
815 ee->ee_adc_desired_size[ee_mode]);
817 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DESIRED_SIZE,
818 AR5K_PHY_DESIRED_SIZE_PGA,
819 ee->ee_pga_desired_size[ee_mode]);
821 /* Tx/Rx margin */
822 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
823 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_GAIN_2GHZ,
824 AR5K_PHY_GAIN_2GHZ_MARGIN_TXRX,
825 ee->ee_margin_tx_rx[ee_mode]);
828 /* XPA delays */
829 ath5k_hw_reg_write(ah,
830 (ee->ee_tx_end2xpa_disable[ee_mode] << 24) |
831 (ee->ee_tx_end2xpa_disable[ee_mode] << 16) |
832 (ee->ee_tx_frm2xpa_enable[ee_mode] << 8) |
833 (ee->ee_tx_frm2xpa_enable[ee_mode]), AR5K_PHY_RF_CTL4);
835 /* XLNA delay */
836 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RF_CTL3,
837 AR5K_PHY_RF_CTL3_TXE2XLNA_ON,
838 ee->ee_tx_end2xlna_enable[ee_mode]);
840 /* Thresh64 (ANI) */
841 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_NF,
842 AR5K_PHY_NF_THRESH62,
843 ee->ee_thr_62[ee_mode]);
845 /* False detect backoff for channels
846 * that have spur noise. Write the new
847 * cyclic power RSSI threshold. */
848 if (ath5k_hw_chan_has_spur_noise(ah, channel))
849 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_OFDM_SELFCORR,
850 AR5K_PHY_OFDM_SELFCORR_CYPWR_THR1,
851 AR5K_INIT_CYCRSSI_THR1 +
852 ee->ee_false_detect[ee_mode]);
853 else
854 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_OFDM_SELFCORR,
855 AR5K_PHY_OFDM_SELFCORR_CYPWR_THR1,
856 AR5K_INIT_CYCRSSI_THR1);
858 /* I/Q correction (set enable bit last to match HAL sources) */
859 /* TODO: Per channel i/q infos ? */
860 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) {
861 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_I_COFF,
862 ee->ee_i_cal[ee_mode]);
863 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_Q_COFF,
864 ee->ee_q_cal[ee_mode]);
865 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_ENABLE);
868 /* Heavy clipping -disable for now */
869 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_5_1)
870 ath5k_hw_reg_write(ah, 0, AR5K_PHY_HEAVY_CLIP_ENABLE);
874 * Main reset function
876 int ath5k_hw_reset(struct ath5k_hw *ah, enum nl80211_iftype op_mode,
877 struct ieee80211_channel *channel, bool change_channel)
879 struct ath_common *common = ath5k_hw_common(ah);
880 u32 s_seq[10], s_led[3], staid1_flags, tsf_up, tsf_lo;
881 u32 phy_tst1;
882 u8 mode, freq, ee_mode;
883 int i, ret;
885 ee_mode = 0;
886 staid1_flags = 0;
887 tsf_up = 0;
888 tsf_lo = 0;
889 freq = 0;
890 mode = 0;
893 * Save some registers before a reset
895 /*DCU/Antenna selection not available on 5210*/
896 if (ah->ah_version != AR5K_AR5210) {
898 switch (channel->hw_value & CHANNEL_MODES) {
899 case CHANNEL_A:
900 mode = AR5K_MODE_11A;
901 freq = AR5K_INI_RFGAIN_5GHZ;
902 ee_mode = AR5K_EEPROM_MODE_11A;
903 break;
904 case CHANNEL_G:
905 mode = AR5K_MODE_11G;
906 freq = AR5K_INI_RFGAIN_2GHZ;
907 ee_mode = AR5K_EEPROM_MODE_11G;
908 break;
909 case CHANNEL_B:
910 mode = AR5K_MODE_11B;
911 freq = AR5K_INI_RFGAIN_2GHZ;
912 ee_mode = AR5K_EEPROM_MODE_11B;
913 break;
914 case CHANNEL_T:
915 mode = AR5K_MODE_11A_TURBO;
916 freq = AR5K_INI_RFGAIN_5GHZ;
917 ee_mode = AR5K_EEPROM_MODE_11A;
918 break;
919 case CHANNEL_TG:
920 if (ah->ah_version == AR5K_AR5211) {
921 ATH5K_ERR(ah->ah_sc,
922 "TurboG mode not available on 5211");
923 return -EINVAL;
925 mode = AR5K_MODE_11G_TURBO;
926 freq = AR5K_INI_RFGAIN_2GHZ;
927 ee_mode = AR5K_EEPROM_MODE_11G;
928 break;
929 case CHANNEL_XR:
930 if (ah->ah_version == AR5K_AR5211) {
931 ATH5K_ERR(ah->ah_sc,
932 "XR mode not available on 5211");
933 return -EINVAL;
935 mode = AR5K_MODE_XR;
936 freq = AR5K_INI_RFGAIN_5GHZ;
937 ee_mode = AR5K_EEPROM_MODE_11A;
938 break;
939 default:
940 ATH5K_ERR(ah->ah_sc,
941 "invalid channel: %d\n", channel->center_freq);
942 return -EINVAL;
945 if (change_channel) {
947 * Save frame sequence count
948 * For revs. after Oahu, only save
949 * seq num for DCU 0 (Global seq num)
951 if (ah->ah_mac_srev < AR5K_SREV_AR5211) {
953 for (i = 0; i < 10; i++)
954 s_seq[i] = ath5k_hw_reg_read(ah,
955 AR5K_QUEUE_DCU_SEQNUM(i));
957 } else {
958 s_seq[0] = ath5k_hw_reg_read(ah,
959 AR5K_QUEUE_DCU_SEQNUM(0));
962 /* TSF accelerates on AR5211 during reset
963 * As a workaround save it here and restore
964 * it later so that it's back in time after
965 * reset. This way it'll get re-synced on the
966 * next beacon without breaking ad-hoc.
968 * On AR5212 TSF is almost preserved across a
969 * reset so it stays back in time anyway and
970 * we don't have to save/restore it.
972 * XXX: Since this breaks power saving we have
973 * to disable power saving until we receive the
974 * next beacon, so we can resync beacon timers */
975 if (ah->ah_version == AR5K_AR5211) {
976 tsf_up = ath5k_hw_reg_read(ah, AR5K_TSF_U32);
977 tsf_lo = ath5k_hw_reg_read(ah, AR5K_TSF_L32);
981 if (ah->ah_version == AR5K_AR5212) {
982 /* Restore normal 32/40MHz clock operation
983 * to avoid register access delay on certain
984 * PHY registers */
985 ath5k_hw_set_sleep_clock(ah, false);
987 /* Since we are going to write rf buffer
988 * check if we have any pending gain_F
989 * optimization settings */
990 if (change_channel && ah->ah_rf_banks != NULL)
991 ath5k_hw_gainf_calibrate(ah);
995 /*GPIOs*/
996 s_led[0] = ath5k_hw_reg_read(ah, AR5K_PCICFG) &
997 AR5K_PCICFG_LEDSTATE;
998 s_led[1] = ath5k_hw_reg_read(ah, AR5K_GPIOCR);
999 s_led[2] = ath5k_hw_reg_read(ah, AR5K_GPIODO);
1001 /* AR5K_STA_ID1 flags, only preserve antenna
1002 * settings and ack/cts rate mode */
1003 staid1_flags = ath5k_hw_reg_read(ah, AR5K_STA_ID1) &
1004 (AR5K_STA_ID1_DEFAULT_ANTENNA |
1005 AR5K_STA_ID1_DESC_ANTENNA |
1006 AR5K_STA_ID1_RTS_DEF_ANTENNA |
1007 AR5K_STA_ID1_ACKCTS_6MB |
1008 AR5K_STA_ID1_BASE_RATE_11B |
1009 AR5K_STA_ID1_SELFGEN_DEF_ANT);
1011 /* Wakeup the device */
1012 ret = ath5k_hw_nic_wakeup(ah, channel->hw_value, false);
1013 if (ret)
1014 return ret;
1016 /* PHY access enable */
1017 if (ah->ah_mac_srev >= AR5K_SREV_AR5211)
1018 ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
1019 else
1020 ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ | 0x40,
1021 AR5K_PHY(0));
1023 /* Write initial settings */
1024 ret = ath5k_hw_write_initvals(ah, mode, change_channel);
1025 if (ret)
1026 return ret;
1029 * 5211/5212 Specific
1031 if (ah->ah_version != AR5K_AR5210) {
1034 * Write initial RF gain settings
1035 * This should work for both 5111/5112
1037 ret = ath5k_hw_rfgain_init(ah, freq);
1038 if (ret)
1039 return ret;
1041 mdelay(1);
1044 * Tweak initval settings for revised
1045 * chipsets and add some more config
1046 * bits
1048 ath5k_hw_tweak_initval_settings(ah, channel);
1051 * Set TX power
1053 ret = ath5k_hw_txpower(ah, channel, ee_mode,
1054 ah->ah_txpower.txp_max_pwr / 2);
1055 if (ret)
1056 return ret;
1058 /* Write rate duration table only on AR5212 and if
1059 * virtual interface has already been brought up
1060 * XXX: rethink this after new mode changes to
1061 * mac80211 are integrated */
1062 if (ah->ah_version == AR5K_AR5212 &&
1063 ah->ah_sc->vif != NULL)
1064 ath5k_hw_write_rate_duration(ah, mode);
1067 * Write RF buffer
1069 ret = ath5k_hw_rfregs_init(ah, channel, mode);
1070 if (ret)
1071 return ret;
1074 /* Write OFDM timings on 5212*/
1075 if (ah->ah_version == AR5K_AR5212 &&
1076 channel->hw_value & CHANNEL_OFDM) {
1078 ret = ath5k_hw_write_ofdm_timings(ah, channel);
1079 if (ret)
1080 return ret;
1082 /* Spur info is available only from EEPROM versions
1083 * greater than 5.3, but the EEPROM routines will use
1084 * static values for older versions */
1085 if (ah->ah_mac_srev >= AR5K_SREV_AR5424)
1086 ath5k_hw_set_spur_mitigation_filter(ah,
1087 channel);
1090 /*Enable/disable 802.11b mode on 5111
1091 (enable 2111 frequency converter + CCK)*/
1092 if (ah->ah_radio == AR5K_RF5111) {
1093 if (mode == AR5K_MODE_11B)
1094 AR5K_REG_ENABLE_BITS(ah, AR5K_TXCFG,
1095 AR5K_TXCFG_B_MODE);
1096 else
1097 AR5K_REG_DISABLE_BITS(ah, AR5K_TXCFG,
1098 AR5K_TXCFG_B_MODE);
1101 /* Commit values from EEPROM */
1102 ath5k_hw_commit_eeprom_settings(ah, channel, ee_mode);
1104 } else {
1106 * For 5210 we do all initialization using
1107 * initvals, so we don't have to modify
1108 * any settings (5210 also only supports
1109 * a/aturbo modes)
1111 mdelay(1);
1112 /* Disable phy and wait */
1113 ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
1114 mdelay(1);
1118 * Restore saved values
1121 /*DCU/Antenna selection not available on 5210*/
1122 if (ah->ah_version != AR5K_AR5210) {
1124 if (change_channel) {
1125 if (ah->ah_mac_srev < AR5K_SREV_AR5211) {
1126 for (i = 0; i < 10; i++)
1127 ath5k_hw_reg_write(ah, s_seq[i],
1128 AR5K_QUEUE_DCU_SEQNUM(i));
1129 } else {
1130 ath5k_hw_reg_write(ah, s_seq[0],
1131 AR5K_QUEUE_DCU_SEQNUM(0));
1135 if (ah->ah_version == AR5K_AR5211) {
1136 ath5k_hw_reg_write(ah, tsf_up, AR5K_TSF_U32);
1137 ath5k_hw_reg_write(ah, tsf_lo, AR5K_TSF_L32);
1142 /* Ledstate */
1143 AR5K_REG_ENABLE_BITS(ah, AR5K_PCICFG, s_led[0]);
1145 /* Gpio settings */
1146 ath5k_hw_reg_write(ah, s_led[1], AR5K_GPIOCR);
1147 ath5k_hw_reg_write(ah, s_led[2], AR5K_GPIODO);
1149 /* Restore sta_id flags and preserve our mac address*/
1150 ath5k_hw_reg_write(ah,
1151 get_unaligned_le32(common->macaddr),
1152 AR5K_STA_ID0);
1153 ath5k_hw_reg_write(ah,
1154 staid1_flags | get_unaligned_le16(common->macaddr + 4),
1155 AR5K_STA_ID1);
1159 * Configure PCU
1162 /* Restore bssid and bssid mask */
1163 ath5k_hw_set_bssid(ah);
1165 /* Set PCU config */
1166 ath5k_hw_set_opmode(ah, op_mode);
1168 /* Clear any pending interrupts
1169 * PISR/SISR Not available on 5210 */
1170 if (ah->ah_version != AR5K_AR5210)
1171 ath5k_hw_reg_write(ah, 0xffffffff, AR5K_PISR);
1173 /* Set RSSI/BRSSI thresholds
1175 * Note: If we decide to set this value
1176 * dynamically, keep in mind that when AR5K_RSSI_THR
1177 * register is read, it might return 0x40 if we haven't
1178 * written anything to it. Also, BMISS RSSI threshold is zeroed.
1179 * So doing a save/restore procedure here isn't the right
1180 * choice. Instead, store it in ath5k_hw */
1181 ath5k_hw_reg_write(ah, (AR5K_TUNE_RSSI_THRES |
1182 AR5K_TUNE_BMISS_THRES <<
1183 AR5K_RSSI_THR_BMISS_S),
1184 AR5K_RSSI_THR);
1186 /* MIC QoS support */
1187 if (ah->ah_mac_srev >= AR5K_SREV_AR2413) {
1188 ath5k_hw_reg_write(ah, 0x000100aa, AR5K_MIC_QOS_CTL);
1189 ath5k_hw_reg_write(ah, 0x00003210, AR5K_MIC_QOS_SEL);
1192 /* QoS NOACK Policy */
1193 if (ah->ah_version == AR5K_AR5212) {
1194 ath5k_hw_reg_write(ah,
1195 AR5K_REG_SM(2, AR5K_QOS_NOACK_2BIT_VALUES) |
1196 AR5K_REG_SM(5, AR5K_QOS_NOACK_BIT_OFFSET) |
1197 AR5K_REG_SM(0, AR5K_QOS_NOACK_BYTE_OFFSET),
1198 AR5K_QOS_NOACK);
1203 * Configure PHY
1206 /* Set channel on PHY */
1207 ret = ath5k_hw_channel(ah, channel);
1208 if (ret)
1209 return ret;
1212 * Enable the PHY and wait until completion
1213 * This includes BaseBand and Synthesizer
1214 * activation.
1216 ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
1219 * On 5211+ read activation -> rx delay
1220 * and use it.
1222 * TODO: Half/quarter rate support
1224 if (ah->ah_version != AR5K_AR5210) {
1225 u32 delay;
1226 delay = ath5k_hw_reg_read(ah, AR5K_PHY_RX_DELAY) &
1227 AR5K_PHY_RX_DELAY_M;
1228 delay = (channel->hw_value & CHANNEL_CCK) ?
1229 ((delay << 2) / 22) : (delay / 10);
1231 udelay(100 + (2 * delay));
1232 } else {
1233 mdelay(1);
1237 * Perform ADC test to see if baseband is ready
1238 * Set TX hold and check ADC test register
1240 phy_tst1 = ath5k_hw_reg_read(ah, AR5K_PHY_TST1);
1241 ath5k_hw_reg_write(ah, AR5K_PHY_TST1_TXHOLD, AR5K_PHY_TST1);
1242 for (i = 0; i <= 20; i++) {
1243 if (!(ath5k_hw_reg_read(ah, AR5K_PHY_ADC_TEST) & 0x10))
1244 break;
1245 udelay(200);
1247 ath5k_hw_reg_write(ah, phy_tst1, AR5K_PHY_TST1);
1250 * Start automatic gain control calibration
1252 * During AGC calibration RX path is re-routed to
1253 * a power detector so we don't receive anything.
1255 * This method is used to calibrate some static offsets
1256 * used together with on-the fly I/Q calibration (the
1257 * one performed via ath5k_hw_phy_calibrate), which doesn't
1258 * interrupt rx path.
1260 * While rx path is re-routed to the power detector we also
1261 * start a noise floor calibration to measure the
1262 * card's noise floor (the noise we measure when we are not
1263 * transmitting or receiving anything).
1265 * If we are in a noisy environment, AGC calibration may time
1266 * out and/or noise floor calibration might timeout.
1268 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1269 AR5K_PHY_AGCCTL_CAL | AR5K_PHY_AGCCTL_NF);
1271 /* At the same time start I/Q calibration for QAM constellation
1272 * -no need for CCK- */
1273 ah->ah_calibration = false;
1274 if (!(mode == AR5K_MODE_11B)) {
1275 ah->ah_calibration = true;
1276 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
1277 AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
1278 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
1279 AR5K_PHY_IQ_RUN);
1282 /* Wait for gain calibration to finish (we check for I/Q calibration
1283 * during ath5k_phy_calibrate) */
1284 if (ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
1285 AR5K_PHY_AGCCTL_CAL, 0, false)) {
1286 ATH5K_ERR(ah->ah_sc, "gain calibration timeout (%uMHz)\n",
1287 channel->center_freq);
1290 /* Restore antenna mode */
1291 ath5k_hw_set_antenna_mode(ah, ah->ah_ant_mode);
1293 /* Restore slot time and ACK timeouts */
1294 if (ah->ah_coverage_class > 0)
1295 ath5k_hw_set_coverage_class(ah, ah->ah_coverage_class);
1298 * Configure QCUs/DCUs
1301 /* TODO: HW Compression support for data queues */
1302 /* TODO: Burst prefetch for data queues */
1305 * Reset queues and start beacon timers at the end of the reset routine
1306 * This also sets QCU mask on each DCU for 1:1 qcu to dcu mapping
1307 * Note: If we want we can assign multiple qcus on one dcu.
1309 for (i = 0; i < ah->ah_capabilities.cap_queues.q_tx_num; i++) {
1310 ret = ath5k_hw_reset_tx_queue(ah, i);
1311 if (ret) {
1312 ATH5K_ERR(ah->ah_sc,
1313 "failed to reset TX queue #%d\n", i);
1314 return ret;
1320 * Configure DMA/Interrupts
1324 * Set Rx/Tx DMA Configuration
1326 * Set standard DMA size (128). Note that
1327 * a DMA size of 512 causes rx overruns and tx errors
1328 * on pci-e cards (tested on 5424 but since rx overruns
1329 * also occur on 5416/5418 with madwifi we set 128
1330 * for all PCI-E cards to be safe).
1332 * XXX: need to check 5210 for this
1333 * TODO: Check out tx triger level, it's always 64 on dumps but I
1334 * guess we can tweak it and see how it goes ;-)
1336 if (ah->ah_version != AR5K_AR5210) {
1337 AR5K_REG_WRITE_BITS(ah, AR5K_TXCFG,
1338 AR5K_TXCFG_SDMAMR, AR5K_DMASIZE_128B);
1339 AR5K_REG_WRITE_BITS(ah, AR5K_RXCFG,
1340 AR5K_RXCFG_SDMAMW, AR5K_DMASIZE_128B);
1343 /* Pre-enable interrupts on 5211/5212*/
1344 if (ah->ah_version != AR5K_AR5210)
1345 ath5k_hw_set_imr(ah, ah->ah_imr);
1347 /* Enable 32KHz clock function for AR5212+ chips
1348 * Set clocks to 32KHz operation and use an
1349 * external 32KHz crystal when sleeping if one
1350 * exists */
1351 if (ah->ah_version == AR5K_AR5212 &&
1352 op_mode != NL80211_IFTYPE_AP)
1353 ath5k_hw_set_sleep_clock(ah, true);
1356 * Disable beacons and reset the TSF
1358 AR5K_REG_DISABLE_BITS(ah, AR5K_BEACON, AR5K_BEACON_ENABLE);
1359 ath5k_hw_reset_tsf(ah);
1360 return 0;