sched: remove redundant call to unregister_sched_domain_sysctl()
[linux-2.6.git] / kernel / sched.c
blob3cb94fad33cae5f3dabd8b4b2091b85b1ea9768e
1 /*
2 * kernel/sched.c
4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/kthread.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/sysctl.h>
61 #include <linux/syscalls.h>
62 #include <linux/times.h>
63 #include <linux/tsacct_kern.h>
64 #include <linux/kprobes.h>
65 #include <linux/delayacct.h>
66 #include <linux/reciprocal_div.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/bootmem.h>
72 #include <linux/debugfs.h>
73 #include <linux/ctype.h>
74 #include <linux/ftrace.h>
75 #include <trace/sched.h>
77 #include <asm/tlb.h>
78 #include <asm/irq_regs.h>
80 #include "sched_cpupri.h"
83 * Convert user-nice values [ -20 ... 0 ... 19 ]
84 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
85 * and back.
87 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
88 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
89 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
92 * 'User priority' is the nice value converted to something we
93 * can work with better when scaling various scheduler parameters,
94 * it's a [ 0 ... 39 ] range.
96 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
97 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
98 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
101 * Helpers for converting nanosecond timing to jiffy resolution
103 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
105 #define NICE_0_LOAD SCHED_LOAD_SCALE
106 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
109 * These are the 'tuning knobs' of the scheduler:
111 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
112 * Timeslices get refilled after they expire.
114 #define DEF_TIMESLICE (100 * HZ / 1000)
117 * single value that denotes runtime == period, ie unlimited time.
119 #define RUNTIME_INF ((u64)~0ULL)
121 #ifdef CONFIG_SMP
123 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
124 * Since cpu_power is a 'constant', we can use a reciprocal divide.
126 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
128 return reciprocal_divide(load, sg->reciprocal_cpu_power);
132 * Each time a sched group cpu_power is changed,
133 * we must compute its reciprocal value
135 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
137 sg->__cpu_power += val;
138 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
140 #endif
142 static inline int rt_policy(int policy)
144 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
145 return 1;
146 return 0;
149 static inline int task_has_rt_policy(struct task_struct *p)
151 return rt_policy(p->policy);
155 * This is the priority-queue data structure of the RT scheduling class:
157 struct rt_prio_array {
158 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
159 struct list_head queue[MAX_RT_PRIO];
162 struct rt_bandwidth {
163 /* nests inside the rq lock: */
164 spinlock_t rt_runtime_lock;
165 ktime_t rt_period;
166 u64 rt_runtime;
167 struct hrtimer rt_period_timer;
170 static struct rt_bandwidth def_rt_bandwidth;
172 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
174 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
176 struct rt_bandwidth *rt_b =
177 container_of(timer, struct rt_bandwidth, rt_period_timer);
178 ktime_t now;
179 int overrun;
180 int idle = 0;
182 for (;;) {
183 now = hrtimer_cb_get_time(timer);
184 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
186 if (!overrun)
187 break;
189 idle = do_sched_rt_period_timer(rt_b, overrun);
192 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
195 static
196 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
198 rt_b->rt_period = ns_to_ktime(period);
199 rt_b->rt_runtime = runtime;
201 spin_lock_init(&rt_b->rt_runtime_lock);
203 hrtimer_init(&rt_b->rt_period_timer,
204 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
205 rt_b->rt_period_timer.function = sched_rt_period_timer;
206 rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_UNLOCKED;
209 static inline int rt_bandwidth_enabled(void)
211 return sysctl_sched_rt_runtime >= 0;
214 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
216 ktime_t now;
218 if (rt_bandwidth_enabled() && rt_b->rt_runtime == RUNTIME_INF)
219 return;
221 if (hrtimer_active(&rt_b->rt_period_timer))
222 return;
224 spin_lock(&rt_b->rt_runtime_lock);
225 for (;;) {
226 if (hrtimer_active(&rt_b->rt_period_timer))
227 break;
229 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
230 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
231 hrtimer_start_expires(&rt_b->rt_period_timer,
232 HRTIMER_MODE_ABS);
234 spin_unlock(&rt_b->rt_runtime_lock);
237 #ifdef CONFIG_RT_GROUP_SCHED
238 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
240 hrtimer_cancel(&rt_b->rt_period_timer);
242 #endif
245 * sched_domains_mutex serializes calls to arch_init_sched_domains,
246 * detach_destroy_domains and partition_sched_domains.
248 static DEFINE_MUTEX(sched_domains_mutex);
250 #ifdef CONFIG_GROUP_SCHED
252 #include <linux/cgroup.h>
254 struct cfs_rq;
256 static LIST_HEAD(task_groups);
258 /* task group related information */
259 struct task_group {
260 #ifdef CONFIG_CGROUP_SCHED
261 struct cgroup_subsys_state css;
262 #endif
264 #ifdef CONFIG_FAIR_GROUP_SCHED
265 /* schedulable entities of this group on each cpu */
266 struct sched_entity **se;
267 /* runqueue "owned" by this group on each cpu */
268 struct cfs_rq **cfs_rq;
269 unsigned long shares;
270 #endif
272 #ifdef CONFIG_RT_GROUP_SCHED
273 struct sched_rt_entity **rt_se;
274 struct rt_rq **rt_rq;
276 struct rt_bandwidth rt_bandwidth;
277 #endif
279 struct rcu_head rcu;
280 struct list_head list;
282 struct task_group *parent;
283 struct list_head siblings;
284 struct list_head children;
287 #ifdef CONFIG_USER_SCHED
290 * Root task group.
291 * Every UID task group (including init_task_group aka UID-0) will
292 * be a child to this group.
294 struct task_group root_task_group;
296 #ifdef CONFIG_FAIR_GROUP_SCHED
297 /* Default task group's sched entity on each cpu */
298 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
299 /* Default task group's cfs_rq on each cpu */
300 static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
301 #endif /* CONFIG_FAIR_GROUP_SCHED */
303 #ifdef CONFIG_RT_GROUP_SCHED
304 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
305 static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
306 #endif /* CONFIG_RT_GROUP_SCHED */
307 #else /* !CONFIG_USER_SCHED */
308 #define root_task_group init_task_group
309 #endif /* CONFIG_USER_SCHED */
311 /* task_group_lock serializes add/remove of task groups and also changes to
312 * a task group's cpu shares.
314 static DEFINE_SPINLOCK(task_group_lock);
316 #ifdef CONFIG_FAIR_GROUP_SCHED
317 #ifdef CONFIG_USER_SCHED
318 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
319 #else /* !CONFIG_USER_SCHED */
320 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
321 #endif /* CONFIG_USER_SCHED */
324 * A weight of 0 or 1 can cause arithmetics problems.
325 * A weight of a cfs_rq is the sum of weights of which entities
326 * are queued on this cfs_rq, so a weight of a entity should not be
327 * too large, so as the shares value of a task group.
328 * (The default weight is 1024 - so there's no practical
329 * limitation from this.)
331 #define MIN_SHARES 2
332 #define MAX_SHARES (1UL << 18)
334 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
335 #endif
337 /* Default task group.
338 * Every task in system belong to this group at bootup.
340 struct task_group init_task_group;
342 /* return group to which a task belongs */
343 static inline struct task_group *task_group(struct task_struct *p)
345 struct task_group *tg;
347 #ifdef CONFIG_USER_SCHED
348 tg = p->user->tg;
349 #elif defined(CONFIG_CGROUP_SCHED)
350 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
351 struct task_group, css);
352 #else
353 tg = &init_task_group;
354 #endif
355 return tg;
358 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
359 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
361 #ifdef CONFIG_FAIR_GROUP_SCHED
362 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
363 p->se.parent = task_group(p)->se[cpu];
364 #endif
366 #ifdef CONFIG_RT_GROUP_SCHED
367 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
368 p->rt.parent = task_group(p)->rt_se[cpu];
369 #endif
372 #else
374 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
375 static inline struct task_group *task_group(struct task_struct *p)
377 return NULL;
380 #endif /* CONFIG_GROUP_SCHED */
382 /* CFS-related fields in a runqueue */
383 struct cfs_rq {
384 struct load_weight load;
385 unsigned long nr_running;
387 u64 exec_clock;
388 u64 min_vruntime;
390 struct rb_root tasks_timeline;
391 struct rb_node *rb_leftmost;
393 struct list_head tasks;
394 struct list_head *balance_iterator;
397 * 'curr' points to currently running entity on this cfs_rq.
398 * It is set to NULL otherwise (i.e when none are currently running).
400 struct sched_entity *curr, *next;
402 unsigned long nr_spread_over;
404 #ifdef CONFIG_FAIR_GROUP_SCHED
405 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
408 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
409 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
410 * (like users, containers etc.)
412 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
413 * list is used during load balance.
415 struct list_head leaf_cfs_rq_list;
416 struct task_group *tg; /* group that "owns" this runqueue */
418 #ifdef CONFIG_SMP
420 * the part of load.weight contributed by tasks
422 unsigned long task_weight;
425 * h_load = weight * f(tg)
427 * Where f(tg) is the recursive weight fraction assigned to
428 * this group.
430 unsigned long h_load;
433 * this cpu's part of tg->shares
435 unsigned long shares;
438 * load.weight at the time we set shares
440 unsigned long rq_weight;
441 #endif
442 #endif
445 /* Real-Time classes' related field in a runqueue: */
446 struct rt_rq {
447 struct rt_prio_array active;
448 unsigned long rt_nr_running;
449 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
450 int highest_prio; /* highest queued rt task prio */
451 #endif
452 #ifdef CONFIG_SMP
453 unsigned long rt_nr_migratory;
454 int overloaded;
455 #endif
456 int rt_throttled;
457 u64 rt_time;
458 u64 rt_runtime;
459 /* Nests inside the rq lock: */
460 spinlock_t rt_runtime_lock;
462 #ifdef CONFIG_RT_GROUP_SCHED
463 unsigned long rt_nr_boosted;
465 struct rq *rq;
466 struct list_head leaf_rt_rq_list;
467 struct task_group *tg;
468 struct sched_rt_entity *rt_se;
469 #endif
472 #ifdef CONFIG_SMP
475 * We add the notion of a root-domain which will be used to define per-domain
476 * variables. Each exclusive cpuset essentially defines an island domain by
477 * fully partitioning the member cpus from any other cpuset. Whenever a new
478 * exclusive cpuset is created, we also create and attach a new root-domain
479 * object.
482 struct root_domain {
483 atomic_t refcount;
484 cpumask_t span;
485 cpumask_t online;
488 * The "RT overload" flag: it gets set if a CPU has more than
489 * one runnable RT task.
491 cpumask_t rto_mask;
492 atomic_t rto_count;
493 #ifdef CONFIG_SMP
494 struct cpupri cpupri;
495 #endif
499 * By default the system creates a single root-domain with all cpus as
500 * members (mimicking the global state we have today).
502 static struct root_domain def_root_domain;
504 #endif
507 * This is the main, per-CPU runqueue data structure.
509 * Locking rule: those places that want to lock multiple runqueues
510 * (such as the load balancing or the thread migration code), lock
511 * acquire operations must be ordered by ascending &runqueue.
513 struct rq {
514 /* runqueue lock: */
515 spinlock_t lock;
518 * nr_running and cpu_load should be in the same cacheline because
519 * remote CPUs use both these fields when doing load calculation.
521 unsigned long nr_running;
522 #define CPU_LOAD_IDX_MAX 5
523 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
524 unsigned char idle_at_tick;
525 #ifdef CONFIG_NO_HZ
526 unsigned long last_tick_seen;
527 unsigned char in_nohz_recently;
528 #endif
529 /* capture load from *all* tasks on this cpu: */
530 struct load_weight load;
531 unsigned long nr_load_updates;
532 u64 nr_switches;
534 struct cfs_rq cfs;
535 struct rt_rq rt;
537 #ifdef CONFIG_FAIR_GROUP_SCHED
538 /* list of leaf cfs_rq on this cpu: */
539 struct list_head leaf_cfs_rq_list;
540 #endif
541 #ifdef CONFIG_RT_GROUP_SCHED
542 struct list_head leaf_rt_rq_list;
543 #endif
546 * This is part of a global counter where only the total sum
547 * over all CPUs matters. A task can increase this counter on
548 * one CPU and if it got migrated afterwards it may decrease
549 * it on another CPU. Always updated under the runqueue lock:
551 unsigned long nr_uninterruptible;
553 struct task_struct *curr, *idle;
554 unsigned long next_balance;
555 struct mm_struct *prev_mm;
557 u64 clock;
559 atomic_t nr_iowait;
561 #ifdef CONFIG_SMP
562 struct root_domain *rd;
563 struct sched_domain *sd;
565 /* For active balancing */
566 int active_balance;
567 int push_cpu;
568 /* cpu of this runqueue: */
569 int cpu;
570 int online;
572 unsigned long avg_load_per_task;
574 struct task_struct *migration_thread;
575 struct list_head migration_queue;
576 #endif
578 #ifdef CONFIG_SCHED_HRTICK
579 #ifdef CONFIG_SMP
580 int hrtick_csd_pending;
581 struct call_single_data hrtick_csd;
582 #endif
583 struct hrtimer hrtick_timer;
584 #endif
586 #ifdef CONFIG_SCHEDSTATS
587 /* latency stats */
588 struct sched_info rq_sched_info;
590 /* sys_sched_yield() stats */
591 unsigned int yld_exp_empty;
592 unsigned int yld_act_empty;
593 unsigned int yld_both_empty;
594 unsigned int yld_count;
596 /* schedule() stats */
597 unsigned int sched_switch;
598 unsigned int sched_count;
599 unsigned int sched_goidle;
601 /* try_to_wake_up() stats */
602 unsigned int ttwu_count;
603 unsigned int ttwu_local;
605 /* BKL stats */
606 unsigned int bkl_count;
607 #endif
610 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
612 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
614 rq->curr->sched_class->check_preempt_curr(rq, p, sync);
617 static inline int cpu_of(struct rq *rq)
619 #ifdef CONFIG_SMP
620 return rq->cpu;
621 #else
622 return 0;
623 #endif
627 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
628 * See detach_destroy_domains: synchronize_sched for details.
630 * The domain tree of any CPU may only be accessed from within
631 * preempt-disabled sections.
633 #define for_each_domain(cpu, __sd) \
634 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
636 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
637 #define this_rq() (&__get_cpu_var(runqueues))
638 #define task_rq(p) cpu_rq(task_cpu(p))
639 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
641 static inline void update_rq_clock(struct rq *rq)
643 rq->clock = sched_clock_cpu(cpu_of(rq));
647 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
649 #ifdef CONFIG_SCHED_DEBUG
650 # define const_debug __read_mostly
651 #else
652 # define const_debug static const
653 #endif
656 * runqueue_is_locked
658 * Returns true if the current cpu runqueue is locked.
659 * This interface allows printk to be called with the runqueue lock
660 * held and know whether or not it is OK to wake up the klogd.
662 int runqueue_is_locked(void)
664 int cpu = get_cpu();
665 struct rq *rq = cpu_rq(cpu);
666 int ret;
668 ret = spin_is_locked(&rq->lock);
669 put_cpu();
670 return ret;
674 * Debugging: various feature bits
677 #define SCHED_FEAT(name, enabled) \
678 __SCHED_FEAT_##name ,
680 enum {
681 #include "sched_features.h"
684 #undef SCHED_FEAT
686 #define SCHED_FEAT(name, enabled) \
687 (1UL << __SCHED_FEAT_##name) * enabled |
689 const_debug unsigned int sysctl_sched_features =
690 #include "sched_features.h"
693 #undef SCHED_FEAT
695 #ifdef CONFIG_SCHED_DEBUG
696 #define SCHED_FEAT(name, enabled) \
697 #name ,
699 static __read_mostly char *sched_feat_names[] = {
700 #include "sched_features.h"
701 NULL
704 #undef SCHED_FEAT
706 static int sched_feat_show(struct seq_file *m, void *v)
708 int i;
710 for (i = 0; sched_feat_names[i]; i++) {
711 if (!(sysctl_sched_features & (1UL << i)))
712 seq_puts(m, "NO_");
713 seq_printf(m, "%s ", sched_feat_names[i]);
715 seq_puts(m, "\n");
717 return 0;
720 static ssize_t
721 sched_feat_write(struct file *filp, const char __user *ubuf,
722 size_t cnt, loff_t *ppos)
724 char buf[64];
725 char *cmp = buf;
726 int neg = 0;
727 int i;
729 if (cnt > 63)
730 cnt = 63;
732 if (copy_from_user(&buf, ubuf, cnt))
733 return -EFAULT;
735 buf[cnt] = 0;
737 if (strncmp(buf, "NO_", 3) == 0) {
738 neg = 1;
739 cmp += 3;
742 for (i = 0; sched_feat_names[i]; i++) {
743 int len = strlen(sched_feat_names[i]);
745 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
746 if (neg)
747 sysctl_sched_features &= ~(1UL << i);
748 else
749 sysctl_sched_features |= (1UL << i);
750 break;
754 if (!sched_feat_names[i])
755 return -EINVAL;
757 filp->f_pos += cnt;
759 return cnt;
762 static int sched_feat_open(struct inode *inode, struct file *filp)
764 return single_open(filp, sched_feat_show, NULL);
767 static struct file_operations sched_feat_fops = {
768 .open = sched_feat_open,
769 .write = sched_feat_write,
770 .read = seq_read,
771 .llseek = seq_lseek,
772 .release = single_release,
775 static __init int sched_init_debug(void)
777 debugfs_create_file("sched_features", 0644, NULL, NULL,
778 &sched_feat_fops);
780 return 0;
782 late_initcall(sched_init_debug);
784 #endif
786 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
789 * Number of tasks to iterate in a single balance run.
790 * Limited because this is done with IRQs disabled.
792 const_debug unsigned int sysctl_sched_nr_migrate = 32;
795 * ratelimit for updating the group shares.
796 * default: 0.25ms
798 unsigned int sysctl_sched_shares_ratelimit = 250000;
801 * Inject some fuzzyness into changing the per-cpu group shares
802 * this avoids remote rq-locks at the expense of fairness.
803 * default: 4
805 unsigned int sysctl_sched_shares_thresh = 4;
808 * period over which we measure -rt task cpu usage in us.
809 * default: 1s
811 unsigned int sysctl_sched_rt_period = 1000000;
813 static __read_mostly int scheduler_running;
816 * part of the period that we allow rt tasks to run in us.
817 * default: 0.95s
819 int sysctl_sched_rt_runtime = 950000;
821 static inline u64 global_rt_period(void)
823 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
826 static inline u64 global_rt_runtime(void)
828 if (sysctl_sched_rt_runtime < 0)
829 return RUNTIME_INF;
831 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
834 #ifndef prepare_arch_switch
835 # define prepare_arch_switch(next) do { } while (0)
836 #endif
837 #ifndef finish_arch_switch
838 # define finish_arch_switch(prev) do { } while (0)
839 #endif
841 static inline int task_current(struct rq *rq, struct task_struct *p)
843 return rq->curr == p;
846 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
847 static inline int task_running(struct rq *rq, struct task_struct *p)
849 return task_current(rq, p);
852 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
856 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
858 #ifdef CONFIG_DEBUG_SPINLOCK
859 /* this is a valid case when another task releases the spinlock */
860 rq->lock.owner = current;
861 #endif
863 * If we are tracking spinlock dependencies then we have to
864 * fix up the runqueue lock - which gets 'carried over' from
865 * prev into current:
867 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
869 spin_unlock_irq(&rq->lock);
872 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
873 static inline int task_running(struct rq *rq, struct task_struct *p)
875 #ifdef CONFIG_SMP
876 return p->oncpu;
877 #else
878 return task_current(rq, p);
879 #endif
882 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
884 #ifdef CONFIG_SMP
886 * We can optimise this out completely for !SMP, because the
887 * SMP rebalancing from interrupt is the only thing that cares
888 * here.
890 next->oncpu = 1;
891 #endif
892 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
893 spin_unlock_irq(&rq->lock);
894 #else
895 spin_unlock(&rq->lock);
896 #endif
899 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
901 #ifdef CONFIG_SMP
903 * After ->oncpu is cleared, the task can be moved to a different CPU.
904 * We must ensure this doesn't happen until the switch is completely
905 * finished.
907 smp_wmb();
908 prev->oncpu = 0;
909 #endif
910 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
911 local_irq_enable();
912 #endif
914 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
917 * __task_rq_lock - lock the runqueue a given task resides on.
918 * Must be called interrupts disabled.
920 static inline struct rq *__task_rq_lock(struct task_struct *p)
921 __acquires(rq->lock)
923 for (;;) {
924 struct rq *rq = task_rq(p);
925 spin_lock(&rq->lock);
926 if (likely(rq == task_rq(p)))
927 return rq;
928 spin_unlock(&rq->lock);
933 * task_rq_lock - lock the runqueue a given task resides on and disable
934 * interrupts. Note the ordering: we can safely lookup the task_rq without
935 * explicitly disabling preemption.
937 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
938 __acquires(rq->lock)
940 struct rq *rq;
942 for (;;) {
943 local_irq_save(*flags);
944 rq = task_rq(p);
945 spin_lock(&rq->lock);
946 if (likely(rq == task_rq(p)))
947 return rq;
948 spin_unlock_irqrestore(&rq->lock, *flags);
952 static void __task_rq_unlock(struct rq *rq)
953 __releases(rq->lock)
955 spin_unlock(&rq->lock);
958 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
959 __releases(rq->lock)
961 spin_unlock_irqrestore(&rq->lock, *flags);
965 * this_rq_lock - lock this runqueue and disable interrupts.
967 static struct rq *this_rq_lock(void)
968 __acquires(rq->lock)
970 struct rq *rq;
972 local_irq_disable();
973 rq = this_rq();
974 spin_lock(&rq->lock);
976 return rq;
979 #ifdef CONFIG_SCHED_HRTICK
981 * Use HR-timers to deliver accurate preemption points.
983 * Its all a bit involved since we cannot program an hrt while holding the
984 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
985 * reschedule event.
987 * When we get rescheduled we reprogram the hrtick_timer outside of the
988 * rq->lock.
992 * Use hrtick when:
993 * - enabled by features
994 * - hrtimer is actually high res
996 static inline int hrtick_enabled(struct rq *rq)
998 if (!sched_feat(HRTICK))
999 return 0;
1000 if (!cpu_active(cpu_of(rq)))
1001 return 0;
1002 return hrtimer_is_hres_active(&rq->hrtick_timer);
1005 static void hrtick_clear(struct rq *rq)
1007 if (hrtimer_active(&rq->hrtick_timer))
1008 hrtimer_cancel(&rq->hrtick_timer);
1012 * High-resolution timer tick.
1013 * Runs from hardirq context with interrupts disabled.
1015 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1017 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1019 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1021 spin_lock(&rq->lock);
1022 update_rq_clock(rq);
1023 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1024 spin_unlock(&rq->lock);
1026 return HRTIMER_NORESTART;
1029 #ifdef CONFIG_SMP
1031 * called from hardirq (IPI) context
1033 static void __hrtick_start(void *arg)
1035 struct rq *rq = arg;
1037 spin_lock(&rq->lock);
1038 hrtimer_restart(&rq->hrtick_timer);
1039 rq->hrtick_csd_pending = 0;
1040 spin_unlock(&rq->lock);
1044 * Called to set the hrtick timer state.
1046 * called with rq->lock held and irqs disabled
1048 static void hrtick_start(struct rq *rq, u64 delay)
1050 struct hrtimer *timer = &rq->hrtick_timer;
1051 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1053 hrtimer_set_expires(timer, time);
1055 if (rq == this_rq()) {
1056 hrtimer_restart(timer);
1057 } else if (!rq->hrtick_csd_pending) {
1058 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
1059 rq->hrtick_csd_pending = 1;
1063 static int
1064 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1066 int cpu = (int)(long)hcpu;
1068 switch (action) {
1069 case CPU_UP_CANCELED:
1070 case CPU_UP_CANCELED_FROZEN:
1071 case CPU_DOWN_PREPARE:
1072 case CPU_DOWN_PREPARE_FROZEN:
1073 case CPU_DEAD:
1074 case CPU_DEAD_FROZEN:
1075 hrtick_clear(cpu_rq(cpu));
1076 return NOTIFY_OK;
1079 return NOTIFY_DONE;
1082 static __init void init_hrtick(void)
1084 hotcpu_notifier(hotplug_hrtick, 0);
1086 #else
1088 * Called to set the hrtick timer state.
1090 * called with rq->lock held and irqs disabled
1092 static void hrtick_start(struct rq *rq, u64 delay)
1094 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
1097 static inline void init_hrtick(void)
1100 #endif /* CONFIG_SMP */
1102 static void init_rq_hrtick(struct rq *rq)
1104 #ifdef CONFIG_SMP
1105 rq->hrtick_csd_pending = 0;
1107 rq->hrtick_csd.flags = 0;
1108 rq->hrtick_csd.func = __hrtick_start;
1109 rq->hrtick_csd.info = rq;
1110 #endif
1112 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1113 rq->hrtick_timer.function = hrtick;
1114 rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_PERCPU;
1116 #else /* CONFIG_SCHED_HRTICK */
1117 static inline void hrtick_clear(struct rq *rq)
1121 static inline void init_rq_hrtick(struct rq *rq)
1125 static inline void init_hrtick(void)
1128 #endif /* CONFIG_SCHED_HRTICK */
1131 * resched_task - mark a task 'to be rescheduled now'.
1133 * On UP this means the setting of the need_resched flag, on SMP it
1134 * might also involve a cross-CPU call to trigger the scheduler on
1135 * the target CPU.
1137 #ifdef CONFIG_SMP
1139 #ifndef tsk_is_polling
1140 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1141 #endif
1143 static void resched_task(struct task_struct *p)
1145 int cpu;
1147 assert_spin_locked(&task_rq(p)->lock);
1149 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
1150 return;
1152 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
1154 cpu = task_cpu(p);
1155 if (cpu == smp_processor_id())
1156 return;
1158 /* NEED_RESCHED must be visible before we test polling */
1159 smp_mb();
1160 if (!tsk_is_polling(p))
1161 smp_send_reschedule(cpu);
1164 static void resched_cpu(int cpu)
1166 struct rq *rq = cpu_rq(cpu);
1167 unsigned long flags;
1169 if (!spin_trylock_irqsave(&rq->lock, flags))
1170 return;
1171 resched_task(cpu_curr(cpu));
1172 spin_unlock_irqrestore(&rq->lock, flags);
1175 #ifdef CONFIG_NO_HZ
1177 * When add_timer_on() enqueues a timer into the timer wheel of an
1178 * idle CPU then this timer might expire before the next timer event
1179 * which is scheduled to wake up that CPU. In case of a completely
1180 * idle system the next event might even be infinite time into the
1181 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1182 * leaves the inner idle loop so the newly added timer is taken into
1183 * account when the CPU goes back to idle and evaluates the timer
1184 * wheel for the next timer event.
1186 void wake_up_idle_cpu(int cpu)
1188 struct rq *rq = cpu_rq(cpu);
1190 if (cpu == smp_processor_id())
1191 return;
1194 * This is safe, as this function is called with the timer
1195 * wheel base lock of (cpu) held. When the CPU is on the way
1196 * to idle and has not yet set rq->curr to idle then it will
1197 * be serialized on the timer wheel base lock and take the new
1198 * timer into account automatically.
1200 if (rq->curr != rq->idle)
1201 return;
1204 * We can set TIF_RESCHED on the idle task of the other CPU
1205 * lockless. The worst case is that the other CPU runs the
1206 * idle task through an additional NOOP schedule()
1208 set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
1210 /* NEED_RESCHED must be visible before we test polling */
1211 smp_mb();
1212 if (!tsk_is_polling(rq->idle))
1213 smp_send_reschedule(cpu);
1215 #endif /* CONFIG_NO_HZ */
1217 #else /* !CONFIG_SMP */
1218 static void resched_task(struct task_struct *p)
1220 assert_spin_locked(&task_rq(p)->lock);
1221 set_tsk_need_resched(p);
1223 #endif /* CONFIG_SMP */
1225 #if BITS_PER_LONG == 32
1226 # define WMULT_CONST (~0UL)
1227 #else
1228 # define WMULT_CONST (1UL << 32)
1229 #endif
1231 #define WMULT_SHIFT 32
1234 * Shift right and round:
1236 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1239 * delta *= weight / lw
1241 static unsigned long
1242 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1243 struct load_weight *lw)
1245 u64 tmp;
1247 if (!lw->inv_weight) {
1248 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1249 lw->inv_weight = 1;
1250 else
1251 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1252 / (lw->weight+1);
1255 tmp = (u64)delta_exec * weight;
1257 * Check whether we'd overflow the 64-bit multiplication:
1259 if (unlikely(tmp > WMULT_CONST))
1260 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1261 WMULT_SHIFT/2);
1262 else
1263 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1265 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1268 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1270 lw->weight += inc;
1271 lw->inv_weight = 0;
1274 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1276 lw->weight -= dec;
1277 lw->inv_weight = 0;
1281 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1282 * of tasks with abnormal "nice" values across CPUs the contribution that
1283 * each task makes to its run queue's load is weighted according to its
1284 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1285 * scaled version of the new time slice allocation that they receive on time
1286 * slice expiry etc.
1289 #define WEIGHT_IDLEPRIO 2
1290 #define WMULT_IDLEPRIO (1 << 31)
1293 * Nice levels are multiplicative, with a gentle 10% change for every
1294 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1295 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1296 * that remained on nice 0.
1298 * The "10% effect" is relative and cumulative: from _any_ nice level,
1299 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1300 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1301 * If a task goes up by ~10% and another task goes down by ~10% then
1302 * the relative distance between them is ~25%.)
1304 static const int prio_to_weight[40] = {
1305 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1306 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1307 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1308 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1309 /* 0 */ 1024, 820, 655, 526, 423,
1310 /* 5 */ 335, 272, 215, 172, 137,
1311 /* 10 */ 110, 87, 70, 56, 45,
1312 /* 15 */ 36, 29, 23, 18, 15,
1316 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1318 * In cases where the weight does not change often, we can use the
1319 * precalculated inverse to speed up arithmetics by turning divisions
1320 * into multiplications:
1322 static const u32 prio_to_wmult[40] = {
1323 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1324 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1325 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1326 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1327 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1328 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1329 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1330 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1333 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1336 * runqueue iterator, to support SMP load-balancing between different
1337 * scheduling classes, without having to expose their internal data
1338 * structures to the load-balancing proper:
1340 struct rq_iterator {
1341 void *arg;
1342 struct task_struct *(*start)(void *);
1343 struct task_struct *(*next)(void *);
1346 #ifdef CONFIG_SMP
1347 static unsigned long
1348 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1349 unsigned long max_load_move, struct sched_domain *sd,
1350 enum cpu_idle_type idle, int *all_pinned,
1351 int *this_best_prio, struct rq_iterator *iterator);
1353 static int
1354 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1355 struct sched_domain *sd, enum cpu_idle_type idle,
1356 struct rq_iterator *iterator);
1357 #endif
1359 #ifdef CONFIG_CGROUP_CPUACCT
1360 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1361 #else
1362 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1363 #endif
1365 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1367 update_load_add(&rq->load, load);
1370 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1372 update_load_sub(&rq->load, load);
1375 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1376 typedef int (*tg_visitor)(struct task_group *, void *);
1379 * Iterate the full tree, calling @down when first entering a node and @up when
1380 * leaving it for the final time.
1382 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1384 struct task_group *parent, *child;
1385 int ret;
1387 rcu_read_lock();
1388 parent = &root_task_group;
1389 down:
1390 ret = (*down)(parent, data);
1391 if (ret)
1392 goto out_unlock;
1393 list_for_each_entry_rcu(child, &parent->children, siblings) {
1394 parent = child;
1395 goto down;
1398 continue;
1400 ret = (*up)(parent, data);
1401 if (ret)
1402 goto out_unlock;
1404 child = parent;
1405 parent = parent->parent;
1406 if (parent)
1407 goto up;
1408 out_unlock:
1409 rcu_read_unlock();
1411 return ret;
1414 static int tg_nop(struct task_group *tg, void *data)
1416 return 0;
1418 #endif
1420 #ifdef CONFIG_SMP
1421 static unsigned long source_load(int cpu, int type);
1422 static unsigned long target_load(int cpu, int type);
1423 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1425 static unsigned long cpu_avg_load_per_task(int cpu)
1427 struct rq *rq = cpu_rq(cpu);
1429 if (rq->nr_running)
1430 rq->avg_load_per_task = rq->load.weight / rq->nr_running;
1432 return rq->avg_load_per_task;
1435 #ifdef CONFIG_FAIR_GROUP_SCHED
1437 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1440 * Calculate and set the cpu's group shares.
1442 static void
1443 update_group_shares_cpu(struct task_group *tg, int cpu,
1444 unsigned long sd_shares, unsigned long sd_rq_weight)
1446 int boost = 0;
1447 unsigned long shares;
1448 unsigned long rq_weight;
1450 if (!tg->se[cpu])
1451 return;
1453 rq_weight = tg->cfs_rq[cpu]->load.weight;
1456 * If there are currently no tasks on the cpu pretend there is one of
1457 * average load so that when a new task gets to run here it will not
1458 * get delayed by group starvation.
1460 if (!rq_weight) {
1461 boost = 1;
1462 rq_weight = NICE_0_LOAD;
1465 if (unlikely(rq_weight > sd_rq_weight))
1466 rq_weight = sd_rq_weight;
1469 * \Sum shares * rq_weight
1470 * shares = -----------------------
1471 * \Sum rq_weight
1474 shares = (sd_shares * rq_weight) / (sd_rq_weight + 1);
1475 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1477 if (abs(shares - tg->se[cpu]->load.weight) >
1478 sysctl_sched_shares_thresh) {
1479 struct rq *rq = cpu_rq(cpu);
1480 unsigned long flags;
1482 spin_lock_irqsave(&rq->lock, flags);
1484 * record the actual number of shares, not the boosted amount.
1486 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1487 tg->cfs_rq[cpu]->rq_weight = rq_weight;
1489 __set_se_shares(tg->se[cpu], shares);
1490 spin_unlock_irqrestore(&rq->lock, flags);
1495 * Re-compute the task group their per cpu shares over the given domain.
1496 * This needs to be done in a bottom-up fashion because the rq weight of a
1497 * parent group depends on the shares of its child groups.
1499 static int tg_shares_up(struct task_group *tg, void *data)
1501 unsigned long rq_weight = 0;
1502 unsigned long shares = 0;
1503 struct sched_domain *sd = data;
1504 int i;
1506 for_each_cpu_mask(i, sd->span) {
1507 rq_weight += tg->cfs_rq[i]->load.weight;
1508 shares += tg->cfs_rq[i]->shares;
1511 if ((!shares && rq_weight) || shares > tg->shares)
1512 shares = tg->shares;
1514 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1515 shares = tg->shares;
1517 if (!rq_weight)
1518 rq_weight = cpus_weight(sd->span) * NICE_0_LOAD;
1520 for_each_cpu_mask(i, sd->span)
1521 update_group_shares_cpu(tg, i, shares, rq_weight);
1523 return 0;
1527 * Compute the cpu's hierarchical load factor for each task group.
1528 * This needs to be done in a top-down fashion because the load of a child
1529 * group is a fraction of its parents load.
1531 static int tg_load_down(struct task_group *tg, void *data)
1533 unsigned long load;
1534 long cpu = (long)data;
1536 if (!tg->parent) {
1537 load = cpu_rq(cpu)->load.weight;
1538 } else {
1539 load = tg->parent->cfs_rq[cpu]->h_load;
1540 load *= tg->cfs_rq[cpu]->shares;
1541 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1544 tg->cfs_rq[cpu]->h_load = load;
1546 return 0;
1549 static void update_shares(struct sched_domain *sd)
1551 u64 now = cpu_clock(raw_smp_processor_id());
1552 s64 elapsed = now - sd->last_update;
1554 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1555 sd->last_update = now;
1556 walk_tg_tree(tg_nop, tg_shares_up, sd);
1560 static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1562 spin_unlock(&rq->lock);
1563 update_shares(sd);
1564 spin_lock(&rq->lock);
1567 static void update_h_load(long cpu)
1569 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1572 #else
1574 static inline void update_shares(struct sched_domain *sd)
1578 static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1582 #endif
1584 #endif
1586 #ifdef CONFIG_FAIR_GROUP_SCHED
1587 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1589 #ifdef CONFIG_SMP
1590 cfs_rq->shares = shares;
1591 #endif
1593 #endif
1595 #include "sched_stats.h"
1596 #include "sched_idletask.c"
1597 #include "sched_fair.c"
1598 #include "sched_rt.c"
1599 #ifdef CONFIG_SCHED_DEBUG
1600 # include "sched_debug.c"
1601 #endif
1603 #define sched_class_highest (&rt_sched_class)
1604 #define for_each_class(class) \
1605 for (class = sched_class_highest; class; class = class->next)
1607 static void inc_nr_running(struct rq *rq)
1609 rq->nr_running++;
1612 static void dec_nr_running(struct rq *rq)
1614 rq->nr_running--;
1617 static void set_load_weight(struct task_struct *p)
1619 if (task_has_rt_policy(p)) {
1620 p->se.load.weight = prio_to_weight[0] * 2;
1621 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1622 return;
1626 * SCHED_IDLE tasks get minimal weight:
1628 if (p->policy == SCHED_IDLE) {
1629 p->se.load.weight = WEIGHT_IDLEPRIO;
1630 p->se.load.inv_weight = WMULT_IDLEPRIO;
1631 return;
1634 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1635 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1638 static void update_avg(u64 *avg, u64 sample)
1640 s64 diff = sample - *avg;
1641 *avg += diff >> 3;
1644 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1646 sched_info_queued(p);
1647 p->sched_class->enqueue_task(rq, p, wakeup);
1648 p->se.on_rq = 1;
1651 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1653 if (sleep && p->se.last_wakeup) {
1654 update_avg(&p->se.avg_overlap,
1655 p->se.sum_exec_runtime - p->se.last_wakeup);
1656 p->se.last_wakeup = 0;
1659 sched_info_dequeued(p);
1660 p->sched_class->dequeue_task(rq, p, sleep);
1661 p->se.on_rq = 0;
1665 * __normal_prio - return the priority that is based on the static prio
1667 static inline int __normal_prio(struct task_struct *p)
1669 return p->static_prio;
1673 * Calculate the expected normal priority: i.e. priority
1674 * without taking RT-inheritance into account. Might be
1675 * boosted by interactivity modifiers. Changes upon fork,
1676 * setprio syscalls, and whenever the interactivity
1677 * estimator recalculates.
1679 static inline int normal_prio(struct task_struct *p)
1681 int prio;
1683 if (task_has_rt_policy(p))
1684 prio = MAX_RT_PRIO-1 - p->rt_priority;
1685 else
1686 prio = __normal_prio(p);
1687 return prio;
1691 * Calculate the current priority, i.e. the priority
1692 * taken into account by the scheduler. This value might
1693 * be boosted by RT tasks, or might be boosted by
1694 * interactivity modifiers. Will be RT if the task got
1695 * RT-boosted. If not then it returns p->normal_prio.
1697 static int effective_prio(struct task_struct *p)
1699 p->normal_prio = normal_prio(p);
1701 * If we are RT tasks or we were boosted to RT priority,
1702 * keep the priority unchanged. Otherwise, update priority
1703 * to the normal priority:
1705 if (!rt_prio(p->prio))
1706 return p->normal_prio;
1707 return p->prio;
1711 * activate_task - move a task to the runqueue.
1713 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1715 if (task_contributes_to_load(p))
1716 rq->nr_uninterruptible--;
1718 enqueue_task(rq, p, wakeup);
1719 inc_nr_running(rq);
1723 * deactivate_task - remove a task from the runqueue.
1725 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1727 if (task_contributes_to_load(p))
1728 rq->nr_uninterruptible++;
1730 dequeue_task(rq, p, sleep);
1731 dec_nr_running(rq);
1735 * task_curr - is this task currently executing on a CPU?
1736 * @p: the task in question.
1738 inline int task_curr(const struct task_struct *p)
1740 return cpu_curr(task_cpu(p)) == p;
1743 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1745 set_task_rq(p, cpu);
1746 #ifdef CONFIG_SMP
1748 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1749 * successfuly executed on another CPU. We must ensure that updates of
1750 * per-task data have been completed by this moment.
1752 smp_wmb();
1753 task_thread_info(p)->cpu = cpu;
1754 #endif
1757 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1758 const struct sched_class *prev_class,
1759 int oldprio, int running)
1761 if (prev_class != p->sched_class) {
1762 if (prev_class->switched_from)
1763 prev_class->switched_from(rq, p, running);
1764 p->sched_class->switched_to(rq, p, running);
1765 } else
1766 p->sched_class->prio_changed(rq, p, oldprio, running);
1769 #ifdef CONFIG_SMP
1771 /* Used instead of source_load when we know the type == 0 */
1772 static unsigned long weighted_cpuload(const int cpu)
1774 return cpu_rq(cpu)->load.weight;
1778 * Is this task likely cache-hot:
1780 static int
1781 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1783 s64 delta;
1786 * Buddy candidates are cache hot:
1788 if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
1789 return 1;
1791 if (p->sched_class != &fair_sched_class)
1792 return 0;
1794 if (sysctl_sched_migration_cost == -1)
1795 return 1;
1796 if (sysctl_sched_migration_cost == 0)
1797 return 0;
1799 delta = now - p->se.exec_start;
1801 return delta < (s64)sysctl_sched_migration_cost;
1805 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1807 int old_cpu = task_cpu(p);
1808 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1809 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1810 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1811 u64 clock_offset;
1813 clock_offset = old_rq->clock - new_rq->clock;
1815 #ifdef CONFIG_SCHEDSTATS
1816 if (p->se.wait_start)
1817 p->se.wait_start -= clock_offset;
1818 if (p->se.sleep_start)
1819 p->se.sleep_start -= clock_offset;
1820 if (p->se.block_start)
1821 p->se.block_start -= clock_offset;
1822 if (old_cpu != new_cpu) {
1823 schedstat_inc(p, se.nr_migrations);
1824 if (task_hot(p, old_rq->clock, NULL))
1825 schedstat_inc(p, se.nr_forced2_migrations);
1827 #endif
1828 p->se.vruntime -= old_cfsrq->min_vruntime -
1829 new_cfsrq->min_vruntime;
1831 __set_task_cpu(p, new_cpu);
1834 struct migration_req {
1835 struct list_head list;
1837 struct task_struct *task;
1838 int dest_cpu;
1840 struct completion done;
1844 * The task's runqueue lock must be held.
1845 * Returns true if you have to wait for migration thread.
1847 static int
1848 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1850 struct rq *rq = task_rq(p);
1853 * If the task is not on a runqueue (and not running), then
1854 * it is sufficient to simply update the task's cpu field.
1856 if (!p->se.on_rq && !task_running(rq, p)) {
1857 set_task_cpu(p, dest_cpu);
1858 return 0;
1861 init_completion(&req->done);
1862 req->task = p;
1863 req->dest_cpu = dest_cpu;
1864 list_add(&req->list, &rq->migration_queue);
1866 return 1;
1870 * wait_task_inactive - wait for a thread to unschedule.
1872 * If @match_state is nonzero, it's the @p->state value just checked and
1873 * not expected to change. If it changes, i.e. @p might have woken up,
1874 * then return zero. When we succeed in waiting for @p to be off its CPU,
1875 * we return a positive number (its total switch count). If a second call
1876 * a short while later returns the same number, the caller can be sure that
1877 * @p has remained unscheduled the whole time.
1879 * The caller must ensure that the task *will* unschedule sometime soon,
1880 * else this function might spin for a *long* time. This function can't
1881 * be called with interrupts off, or it may introduce deadlock with
1882 * smp_call_function() if an IPI is sent by the same process we are
1883 * waiting to become inactive.
1885 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1887 unsigned long flags;
1888 int running, on_rq;
1889 unsigned long ncsw;
1890 struct rq *rq;
1892 for (;;) {
1894 * We do the initial early heuristics without holding
1895 * any task-queue locks at all. We'll only try to get
1896 * the runqueue lock when things look like they will
1897 * work out!
1899 rq = task_rq(p);
1902 * If the task is actively running on another CPU
1903 * still, just relax and busy-wait without holding
1904 * any locks.
1906 * NOTE! Since we don't hold any locks, it's not
1907 * even sure that "rq" stays as the right runqueue!
1908 * But we don't care, since "task_running()" will
1909 * return false if the runqueue has changed and p
1910 * is actually now running somewhere else!
1912 while (task_running(rq, p)) {
1913 if (match_state && unlikely(p->state != match_state))
1914 return 0;
1915 cpu_relax();
1919 * Ok, time to look more closely! We need the rq
1920 * lock now, to be *sure*. If we're wrong, we'll
1921 * just go back and repeat.
1923 rq = task_rq_lock(p, &flags);
1924 trace_sched_wait_task(rq, p);
1925 running = task_running(rq, p);
1926 on_rq = p->se.on_rq;
1927 ncsw = 0;
1928 if (!match_state || p->state == match_state)
1929 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1930 task_rq_unlock(rq, &flags);
1933 * If it changed from the expected state, bail out now.
1935 if (unlikely(!ncsw))
1936 break;
1939 * Was it really running after all now that we
1940 * checked with the proper locks actually held?
1942 * Oops. Go back and try again..
1944 if (unlikely(running)) {
1945 cpu_relax();
1946 continue;
1950 * It's not enough that it's not actively running,
1951 * it must be off the runqueue _entirely_, and not
1952 * preempted!
1954 * So if it wa still runnable (but just not actively
1955 * running right now), it's preempted, and we should
1956 * yield - it could be a while.
1958 if (unlikely(on_rq)) {
1959 schedule_timeout_uninterruptible(1);
1960 continue;
1964 * Ahh, all good. It wasn't running, and it wasn't
1965 * runnable, which means that it will never become
1966 * running in the future either. We're all done!
1968 break;
1971 return ncsw;
1974 /***
1975 * kick_process - kick a running thread to enter/exit the kernel
1976 * @p: the to-be-kicked thread
1978 * Cause a process which is running on another CPU to enter
1979 * kernel-mode, without any delay. (to get signals handled.)
1981 * NOTE: this function doesnt have to take the runqueue lock,
1982 * because all it wants to ensure is that the remote task enters
1983 * the kernel. If the IPI races and the task has been migrated
1984 * to another CPU then no harm is done and the purpose has been
1985 * achieved as well.
1987 void kick_process(struct task_struct *p)
1989 int cpu;
1991 preempt_disable();
1992 cpu = task_cpu(p);
1993 if ((cpu != smp_processor_id()) && task_curr(p))
1994 smp_send_reschedule(cpu);
1995 preempt_enable();
1999 * Return a low guess at the load of a migration-source cpu weighted
2000 * according to the scheduling class and "nice" value.
2002 * We want to under-estimate the load of migration sources, to
2003 * balance conservatively.
2005 static unsigned long source_load(int cpu, int type)
2007 struct rq *rq = cpu_rq(cpu);
2008 unsigned long total = weighted_cpuload(cpu);
2010 if (type == 0 || !sched_feat(LB_BIAS))
2011 return total;
2013 return min(rq->cpu_load[type-1], total);
2017 * Return a high guess at the load of a migration-target cpu weighted
2018 * according to the scheduling class and "nice" value.
2020 static unsigned long target_load(int cpu, int type)
2022 struct rq *rq = cpu_rq(cpu);
2023 unsigned long total = weighted_cpuload(cpu);
2025 if (type == 0 || !sched_feat(LB_BIAS))
2026 return total;
2028 return max(rq->cpu_load[type-1], total);
2032 * find_idlest_group finds and returns the least busy CPU group within the
2033 * domain.
2035 static struct sched_group *
2036 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2038 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2039 unsigned long min_load = ULONG_MAX, this_load = 0;
2040 int load_idx = sd->forkexec_idx;
2041 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2043 do {
2044 unsigned long load, avg_load;
2045 int local_group;
2046 int i;
2048 /* Skip over this group if it has no CPUs allowed */
2049 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
2050 continue;
2052 local_group = cpu_isset(this_cpu, group->cpumask);
2054 /* Tally up the load of all CPUs in the group */
2055 avg_load = 0;
2057 for_each_cpu_mask_nr(i, group->cpumask) {
2058 /* Bias balancing toward cpus of our domain */
2059 if (local_group)
2060 load = source_load(i, load_idx);
2061 else
2062 load = target_load(i, load_idx);
2064 avg_load += load;
2067 /* Adjust by relative CPU power of the group */
2068 avg_load = sg_div_cpu_power(group,
2069 avg_load * SCHED_LOAD_SCALE);
2071 if (local_group) {
2072 this_load = avg_load;
2073 this = group;
2074 } else if (avg_load < min_load) {
2075 min_load = avg_load;
2076 idlest = group;
2078 } while (group = group->next, group != sd->groups);
2080 if (!idlest || 100*this_load < imbalance*min_load)
2081 return NULL;
2082 return idlest;
2086 * find_idlest_cpu - find the idlest cpu among the cpus in group.
2088 static int
2089 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
2090 cpumask_t *tmp)
2092 unsigned long load, min_load = ULONG_MAX;
2093 int idlest = -1;
2094 int i;
2096 /* Traverse only the allowed CPUs */
2097 cpus_and(*tmp, group->cpumask, p->cpus_allowed);
2099 for_each_cpu_mask_nr(i, *tmp) {
2100 load = weighted_cpuload(i);
2102 if (load < min_load || (load == min_load && i == this_cpu)) {
2103 min_load = load;
2104 idlest = i;
2108 return idlest;
2112 * sched_balance_self: balance the current task (running on cpu) in domains
2113 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2114 * SD_BALANCE_EXEC.
2116 * Balance, ie. select the least loaded group.
2118 * Returns the target CPU number, or the same CPU if no balancing is needed.
2120 * preempt must be disabled.
2122 static int sched_balance_self(int cpu, int flag)
2124 struct task_struct *t = current;
2125 struct sched_domain *tmp, *sd = NULL;
2127 for_each_domain(cpu, tmp) {
2129 * If power savings logic is enabled for a domain, stop there.
2131 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2132 break;
2133 if (tmp->flags & flag)
2134 sd = tmp;
2137 if (sd)
2138 update_shares(sd);
2140 while (sd) {
2141 cpumask_t span, tmpmask;
2142 struct sched_group *group;
2143 int new_cpu, weight;
2145 if (!(sd->flags & flag)) {
2146 sd = sd->child;
2147 continue;
2150 span = sd->span;
2151 group = find_idlest_group(sd, t, cpu);
2152 if (!group) {
2153 sd = sd->child;
2154 continue;
2157 new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
2158 if (new_cpu == -1 || new_cpu == cpu) {
2159 /* Now try balancing at a lower domain level of cpu */
2160 sd = sd->child;
2161 continue;
2164 /* Now try balancing at a lower domain level of new_cpu */
2165 cpu = new_cpu;
2166 sd = NULL;
2167 weight = cpus_weight(span);
2168 for_each_domain(cpu, tmp) {
2169 if (weight <= cpus_weight(tmp->span))
2170 break;
2171 if (tmp->flags & flag)
2172 sd = tmp;
2174 /* while loop will break here if sd == NULL */
2177 return cpu;
2180 #endif /* CONFIG_SMP */
2182 /***
2183 * try_to_wake_up - wake up a thread
2184 * @p: the to-be-woken-up thread
2185 * @state: the mask of task states that can be woken
2186 * @sync: do a synchronous wakeup?
2188 * Put it on the run-queue if it's not already there. The "current"
2189 * thread is always on the run-queue (except when the actual
2190 * re-schedule is in progress), and as such you're allowed to do
2191 * the simpler "current->state = TASK_RUNNING" to mark yourself
2192 * runnable without the overhead of this.
2194 * returns failure only if the task is already active.
2196 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
2198 int cpu, orig_cpu, this_cpu, success = 0;
2199 unsigned long flags;
2200 long old_state;
2201 struct rq *rq;
2203 if (!sched_feat(SYNC_WAKEUPS))
2204 sync = 0;
2206 #ifdef CONFIG_SMP
2207 if (sched_feat(LB_WAKEUP_UPDATE)) {
2208 struct sched_domain *sd;
2210 this_cpu = raw_smp_processor_id();
2211 cpu = task_cpu(p);
2213 for_each_domain(this_cpu, sd) {
2214 if (cpu_isset(cpu, sd->span)) {
2215 update_shares(sd);
2216 break;
2220 #endif
2222 smp_wmb();
2223 rq = task_rq_lock(p, &flags);
2224 old_state = p->state;
2225 if (!(old_state & state))
2226 goto out;
2228 if (p->se.on_rq)
2229 goto out_running;
2231 cpu = task_cpu(p);
2232 orig_cpu = cpu;
2233 this_cpu = smp_processor_id();
2235 #ifdef CONFIG_SMP
2236 if (unlikely(task_running(rq, p)))
2237 goto out_activate;
2239 cpu = p->sched_class->select_task_rq(p, sync);
2240 if (cpu != orig_cpu) {
2241 set_task_cpu(p, cpu);
2242 task_rq_unlock(rq, &flags);
2243 /* might preempt at this point */
2244 rq = task_rq_lock(p, &flags);
2245 old_state = p->state;
2246 if (!(old_state & state))
2247 goto out;
2248 if (p->se.on_rq)
2249 goto out_running;
2251 this_cpu = smp_processor_id();
2252 cpu = task_cpu(p);
2255 #ifdef CONFIG_SCHEDSTATS
2256 schedstat_inc(rq, ttwu_count);
2257 if (cpu == this_cpu)
2258 schedstat_inc(rq, ttwu_local);
2259 else {
2260 struct sched_domain *sd;
2261 for_each_domain(this_cpu, sd) {
2262 if (cpu_isset(cpu, sd->span)) {
2263 schedstat_inc(sd, ttwu_wake_remote);
2264 break;
2268 #endif /* CONFIG_SCHEDSTATS */
2270 out_activate:
2271 #endif /* CONFIG_SMP */
2272 schedstat_inc(p, se.nr_wakeups);
2273 if (sync)
2274 schedstat_inc(p, se.nr_wakeups_sync);
2275 if (orig_cpu != cpu)
2276 schedstat_inc(p, se.nr_wakeups_migrate);
2277 if (cpu == this_cpu)
2278 schedstat_inc(p, se.nr_wakeups_local);
2279 else
2280 schedstat_inc(p, se.nr_wakeups_remote);
2281 update_rq_clock(rq);
2282 activate_task(rq, p, 1);
2283 success = 1;
2285 out_running:
2286 trace_sched_wakeup(rq, p);
2287 check_preempt_curr(rq, p, sync);
2289 p->state = TASK_RUNNING;
2290 #ifdef CONFIG_SMP
2291 if (p->sched_class->task_wake_up)
2292 p->sched_class->task_wake_up(rq, p);
2293 #endif
2294 out:
2295 current->se.last_wakeup = current->se.sum_exec_runtime;
2297 task_rq_unlock(rq, &flags);
2299 return success;
2302 int wake_up_process(struct task_struct *p)
2304 return try_to_wake_up(p, TASK_ALL, 0);
2306 EXPORT_SYMBOL(wake_up_process);
2308 int wake_up_state(struct task_struct *p, unsigned int state)
2310 return try_to_wake_up(p, state, 0);
2314 * Perform scheduler related setup for a newly forked process p.
2315 * p is forked by current.
2317 * __sched_fork() is basic setup used by init_idle() too:
2319 static void __sched_fork(struct task_struct *p)
2321 p->se.exec_start = 0;
2322 p->se.sum_exec_runtime = 0;
2323 p->se.prev_sum_exec_runtime = 0;
2324 p->se.last_wakeup = 0;
2325 p->se.avg_overlap = 0;
2327 #ifdef CONFIG_SCHEDSTATS
2328 p->se.wait_start = 0;
2329 p->se.sum_sleep_runtime = 0;
2330 p->se.sleep_start = 0;
2331 p->se.block_start = 0;
2332 p->se.sleep_max = 0;
2333 p->se.block_max = 0;
2334 p->se.exec_max = 0;
2335 p->se.slice_max = 0;
2336 p->se.wait_max = 0;
2337 #endif
2339 INIT_LIST_HEAD(&p->rt.run_list);
2340 p->se.on_rq = 0;
2341 INIT_LIST_HEAD(&p->se.group_node);
2343 #ifdef CONFIG_PREEMPT_NOTIFIERS
2344 INIT_HLIST_HEAD(&p->preempt_notifiers);
2345 #endif
2348 * We mark the process as running here, but have not actually
2349 * inserted it onto the runqueue yet. This guarantees that
2350 * nobody will actually run it, and a signal or other external
2351 * event cannot wake it up and insert it on the runqueue either.
2353 p->state = TASK_RUNNING;
2357 * fork()/clone()-time setup:
2359 void sched_fork(struct task_struct *p, int clone_flags)
2361 int cpu = get_cpu();
2363 __sched_fork(p);
2365 #ifdef CONFIG_SMP
2366 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2367 #endif
2368 set_task_cpu(p, cpu);
2371 * Make sure we do not leak PI boosting priority to the child:
2373 p->prio = current->normal_prio;
2374 if (!rt_prio(p->prio))
2375 p->sched_class = &fair_sched_class;
2377 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2378 if (likely(sched_info_on()))
2379 memset(&p->sched_info, 0, sizeof(p->sched_info));
2380 #endif
2381 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2382 p->oncpu = 0;
2383 #endif
2384 #ifdef CONFIG_PREEMPT
2385 /* Want to start with kernel preemption disabled. */
2386 task_thread_info(p)->preempt_count = 1;
2387 #endif
2388 put_cpu();
2392 * wake_up_new_task - wake up a newly created task for the first time.
2394 * This function will do some initial scheduler statistics housekeeping
2395 * that must be done for every newly created context, then puts the task
2396 * on the runqueue and wakes it.
2398 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2400 unsigned long flags;
2401 struct rq *rq;
2403 rq = task_rq_lock(p, &flags);
2404 BUG_ON(p->state != TASK_RUNNING);
2405 update_rq_clock(rq);
2407 p->prio = effective_prio(p);
2409 if (!p->sched_class->task_new || !current->se.on_rq) {
2410 activate_task(rq, p, 0);
2411 } else {
2413 * Let the scheduling class do new task startup
2414 * management (if any):
2416 p->sched_class->task_new(rq, p);
2417 inc_nr_running(rq);
2419 trace_sched_wakeup_new(rq, p);
2420 check_preempt_curr(rq, p, 0);
2421 #ifdef CONFIG_SMP
2422 if (p->sched_class->task_wake_up)
2423 p->sched_class->task_wake_up(rq, p);
2424 #endif
2425 task_rq_unlock(rq, &flags);
2428 #ifdef CONFIG_PREEMPT_NOTIFIERS
2431 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2432 * @notifier: notifier struct to register
2434 void preempt_notifier_register(struct preempt_notifier *notifier)
2436 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2438 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2441 * preempt_notifier_unregister - no longer interested in preemption notifications
2442 * @notifier: notifier struct to unregister
2444 * This is safe to call from within a preemption notifier.
2446 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2448 hlist_del(&notifier->link);
2450 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2452 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2454 struct preempt_notifier *notifier;
2455 struct hlist_node *node;
2457 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2458 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2461 static void
2462 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2463 struct task_struct *next)
2465 struct preempt_notifier *notifier;
2466 struct hlist_node *node;
2468 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2469 notifier->ops->sched_out(notifier, next);
2472 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2474 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2478 static void
2479 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2480 struct task_struct *next)
2484 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2487 * prepare_task_switch - prepare to switch tasks
2488 * @rq: the runqueue preparing to switch
2489 * @prev: the current task that is being switched out
2490 * @next: the task we are going to switch to.
2492 * This is called with the rq lock held and interrupts off. It must
2493 * be paired with a subsequent finish_task_switch after the context
2494 * switch.
2496 * prepare_task_switch sets up locking and calls architecture specific
2497 * hooks.
2499 static inline void
2500 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2501 struct task_struct *next)
2503 fire_sched_out_preempt_notifiers(prev, next);
2504 prepare_lock_switch(rq, next);
2505 prepare_arch_switch(next);
2509 * finish_task_switch - clean up after a task-switch
2510 * @rq: runqueue associated with task-switch
2511 * @prev: the thread we just switched away from.
2513 * finish_task_switch must be called after the context switch, paired
2514 * with a prepare_task_switch call before the context switch.
2515 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2516 * and do any other architecture-specific cleanup actions.
2518 * Note that we may have delayed dropping an mm in context_switch(). If
2519 * so, we finish that here outside of the runqueue lock. (Doing it
2520 * with the lock held can cause deadlocks; see schedule() for
2521 * details.)
2523 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2524 __releases(rq->lock)
2526 struct mm_struct *mm = rq->prev_mm;
2527 long prev_state;
2529 rq->prev_mm = NULL;
2532 * A task struct has one reference for the use as "current".
2533 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2534 * schedule one last time. The schedule call will never return, and
2535 * the scheduled task must drop that reference.
2536 * The test for TASK_DEAD must occur while the runqueue locks are
2537 * still held, otherwise prev could be scheduled on another cpu, die
2538 * there before we look at prev->state, and then the reference would
2539 * be dropped twice.
2540 * Manfred Spraul <manfred@colorfullife.com>
2542 prev_state = prev->state;
2543 finish_arch_switch(prev);
2544 finish_lock_switch(rq, prev);
2545 #ifdef CONFIG_SMP
2546 if (current->sched_class->post_schedule)
2547 current->sched_class->post_schedule(rq);
2548 #endif
2550 fire_sched_in_preempt_notifiers(current);
2551 if (mm)
2552 mmdrop(mm);
2553 if (unlikely(prev_state == TASK_DEAD)) {
2555 * Remove function-return probe instances associated with this
2556 * task and put them back on the free list.
2558 kprobe_flush_task(prev);
2559 put_task_struct(prev);
2564 * schedule_tail - first thing a freshly forked thread must call.
2565 * @prev: the thread we just switched away from.
2567 asmlinkage void schedule_tail(struct task_struct *prev)
2568 __releases(rq->lock)
2570 struct rq *rq = this_rq();
2572 finish_task_switch(rq, prev);
2573 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2574 /* In this case, finish_task_switch does not reenable preemption */
2575 preempt_enable();
2576 #endif
2577 if (current->set_child_tid)
2578 put_user(task_pid_vnr(current), current->set_child_tid);
2582 * context_switch - switch to the new MM and the new
2583 * thread's register state.
2585 static inline void
2586 context_switch(struct rq *rq, struct task_struct *prev,
2587 struct task_struct *next)
2589 struct mm_struct *mm, *oldmm;
2591 prepare_task_switch(rq, prev, next);
2592 trace_sched_switch(rq, prev, next);
2593 mm = next->mm;
2594 oldmm = prev->active_mm;
2596 * For paravirt, this is coupled with an exit in switch_to to
2597 * combine the page table reload and the switch backend into
2598 * one hypercall.
2600 arch_enter_lazy_cpu_mode();
2602 if (unlikely(!mm)) {
2603 next->active_mm = oldmm;
2604 atomic_inc(&oldmm->mm_count);
2605 enter_lazy_tlb(oldmm, next);
2606 } else
2607 switch_mm(oldmm, mm, next);
2609 if (unlikely(!prev->mm)) {
2610 prev->active_mm = NULL;
2611 rq->prev_mm = oldmm;
2614 * Since the runqueue lock will be released by the next
2615 * task (which is an invalid locking op but in the case
2616 * of the scheduler it's an obvious special-case), so we
2617 * do an early lockdep release here:
2619 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2620 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2621 #endif
2623 /* Here we just switch the register state and the stack. */
2624 switch_to(prev, next, prev);
2626 barrier();
2628 * this_rq must be evaluated again because prev may have moved
2629 * CPUs since it called schedule(), thus the 'rq' on its stack
2630 * frame will be invalid.
2632 finish_task_switch(this_rq(), prev);
2636 * nr_running, nr_uninterruptible and nr_context_switches:
2638 * externally visible scheduler statistics: current number of runnable
2639 * threads, current number of uninterruptible-sleeping threads, total
2640 * number of context switches performed since bootup.
2642 unsigned long nr_running(void)
2644 unsigned long i, sum = 0;
2646 for_each_online_cpu(i)
2647 sum += cpu_rq(i)->nr_running;
2649 return sum;
2652 unsigned long nr_uninterruptible(void)
2654 unsigned long i, sum = 0;
2656 for_each_possible_cpu(i)
2657 sum += cpu_rq(i)->nr_uninterruptible;
2660 * Since we read the counters lockless, it might be slightly
2661 * inaccurate. Do not allow it to go below zero though:
2663 if (unlikely((long)sum < 0))
2664 sum = 0;
2666 return sum;
2669 unsigned long long nr_context_switches(void)
2671 int i;
2672 unsigned long long sum = 0;
2674 for_each_possible_cpu(i)
2675 sum += cpu_rq(i)->nr_switches;
2677 return sum;
2680 unsigned long nr_iowait(void)
2682 unsigned long i, sum = 0;
2684 for_each_possible_cpu(i)
2685 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2687 return sum;
2690 unsigned long nr_active(void)
2692 unsigned long i, running = 0, uninterruptible = 0;
2694 for_each_online_cpu(i) {
2695 running += cpu_rq(i)->nr_running;
2696 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2699 if (unlikely((long)uninterruptible < 0))
2700 uninterruptible = 0;
2702 return running + uninterruptible;
2706 * Update rq->cpu_load[] statistics. This function is usually called every
2707 * scheduler tick (TICK_NSEC).
2709 static void update_cpu_load(struct rq *this_rq)
2711 unsigned long this_load = this_rq->load.weight;
2712 int i, scale;
2714 this_rq->nr_load_updates++;
2716 /* Update our load: */
2717 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2718 unsigned long old_load, new_load;
2720 /* scale is effectively 1 << i now, and >> i divides by scale */
2722 old_load = this_rq->cpu_load[i];
2723 new_load = this_load;
2725 * Round up the averaging division if load is increasing. This
2726 * prevents us from getting stuck on 9 if the load is 10, for
2727 * example.
2729 if (new_load > old_load)
2730 new_load += scale-1;
2731 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2735 #ifdef CONFIG_SMP
2738 * double_rq_lock - safely lock two runqueues
2740 * Note this does not disable interrupts like task_rq_lock,
2741 * you need to do so manually before calling.
2743 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2744 __acquires(rq1->lock)
2745 __acquires(rq2->lock)
2747 BUG_ON(!irqs_disabled());
2748 if (rq1 == rq2) {
2749 spin_lock(&rq1->lock);
2750 __acquire(rq2->lock); /* Fake it out ;) */
2751 } else {
2752 if (rq1 < rq2) {
2753 spin_lock(&rq1->lock);
2754 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
2755 } else {
2756 spin_lock(&rq2->lock);
2757 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
2760 update_rq_clock(rq1);
2761 update_rq_clock(rq2);
2765 * double_rq_unlock - safely unlock two runqueues
2767 * Note this does not restore interrupts like task_rq_unlock,
2768 * you need to do so manually after calling.
2770 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2771 __releases(rq1->lock)
2772 __releases(rq2->lock)
2774 spin_unlock(&rq1->lock);
2775 if (rq1 != rq2)
2776 spin_unlock(&rq2->lock);
2777 else
2778 __release(rq2->lock);
2782 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2784 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
2785 __releases(this_rq->lock)
2786 __acquires(busiest->lock)
2787 __acquires(this_rq->lock)
2789 int ret = 0;
2791 if (unlikely(!irqs_disabled())) {
2792 /* printk() doesn't work good under rq->lock */
2793 spin_unlock(&this_rq->lock);
2794 BUG_ON(1);
2796 if (unlikely(!spin_trylock(&busiest->lock))) {
2797 if (busiest < this_rq) {
2798 spin_unlock(&this_rq->lock);
2799 spin_lock(&busiest->lock);
2800 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
2801 ret = 1;
2802 } else
2803 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
2805 return ret;
2808 static void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
2809 __releases(busiest->lock)
2811 spin_unlock(&busiest->lock);
2812 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
2816 * If dest_cpu is allowed for this process, migrate the task to it.
2817 * This is accomplished by forcing the cpu_allowed mask to only
2818 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2819 * the cpu_allowed mask is restored.
2821 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2823 struct migration_req req;
2824 unsigned long flags;
2825 struct rq *rq;
2827 rq = task_rq_lock(p, &flags);
2828 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2829 || unlikely(!cpu_active(dest_cpu)))
2830 goto out;
2832 trace_sched_migrate_task(rq, p, dest_cpu);
2833 /* force the process onto the specified CPU */
2834 if (migrate_task(p, dest_cpu, &req)) {
2835 /* Need to wait for migration thread (might exit: take ref). */
2836 struct task_struct *mt = rq->migration_thread;
2838 get_task_struct(mt);
2839 task_rq_unlock(rq, &flags);
2840 wake_up_process(mt);
2841 put_task_struct(mt);
2842 wait_for_completion(&req.done);
2844 return;
2846 out:
2847 task_rq_unlock(rq, &flags);
2851 * sched_exec - execve() is a valuable balancing opportunity, because at
2852 * this point the task has the smallest effective memory and cache footprint.
2854 void sched_exec(void)
2856 int new_cpu, this_cpu = get_cpu();
2857 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2858 put_cpu();
2859 if (new_cpu != this_cpu)
2860 sched_migrate_task(current, new_cpu);
2864 * pull_task - move a task from a remote runqueue to the local runqueue.
2865 * Both runqueues must be locked.
2867 static void pull_task(struct rq *src_rq, struct task_struct *p,
2868 struct rq *this_rq, int this_cpu)
2870 deactivate_task(src_rq, p, 0);
2871 set_task_cpu(p, this_cpu);
2872 activate_task(this_rq, p, 0);
2874 * Note that idle threads have a prio of MAX_PRIO, for this test
2875 * to be always true for them.
2877 check_preempt_curr(this_rq, p, 0);
2881 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2883 static
2884 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2885 struct sched_domain *sd, enum cpu_idle_type idle,
2886 int *all_pinned)
2889 * We do not migrate tasks that are:
2890 * 1) running (obviously), or
2891 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2892 * 3) are cache-hot on their current CPU.
2894 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2895 schedstat_inc(p, se.nr_failed_migrations_affine);
2896 return 0;
2898 *all_pinned = 0;
2900 if (task_running(rq, p)) {
2901 schedstat_inc(p, se.nr_failed_migrations_running);
2902 return 0;
2906 * Aggressive migration if:
2907 * 1) task is cache cold, or
2908 * 2) too many balance attempts have failed.
2911 if (!task_hot(p, rq->clock, sd) ||
2912 sd->nr_balance_failed > sd->cache_nice_tries) {
2913 #ifdef CONFIG_SCHEDSTATS
2914 if (task_hot(p, rq->clock, sd)) {
2915 schedstat_inc(sd, lb_hot_gained[idle]);
2916 schedstat_inc(p, se.nr_forced_migrations);
2918 #endif
2919 return 1;
2922 if (task_hot(p, rq->clock, sd)) {
2923 schedstat_inc(p, se.nr_failed_migrations_hot);
2924 return 0;
2926 return 1;
2929 static unsigned long
2930 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2931 unsigned long max_load_move, struct sched_domain *sd,
2932 enum cpu_idle_type idle, int *all_pinned,
2933 int *this_best_prio, struct rq_iterator *iterator)
2935 int loops = 0, pulled = 0, pinned = 0;
2936 struct task_struct *p;
2937 long rem_load_move = max_load_move;
2939 if (max_load_move == 0)
2940 goto out;
2942 pinned = 1;
2945 * Start the load-balancing iterator:
2947 p = iterator->start(iterator->arg);
2948 next:
2949 if (!p || loops++ > sysctl_sched_nr_migrate)
2950 goto out;
2952 if ((p->se.load.weight >> 1) > rem_load_move ||
2953 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2954 p = iterator->next(iterator->arg);
2955 goto next;
2958 pull_task(busiest, p, this_rq, this_cpu);
2959 pulled++;
2960 rem_load_move -= p->se.load.weight;
2963 * We only want to steal up to the prescribed amount of weighted load.
2965 if (rem_load_move > 0) {
2966 if (p->prio < *this_best_prio)
2967 *this_best_prio = p->prio;
2968 p = iterator->next(iterator->arg);
2969 goto next;
2971 out:
2973 * Right now, this is one of only two places pull_task() is called,
2974 * so we can safely collect pull_task() stats here rather than
2975 * inside pull_task().
2977 schedstat_add(sd, lb_gained[idle], pulled);
2979 if (all_pinned)
2980 *all_pinned = pinned;
2982 return max_load_move - rem_load_move;
2986 * move_tasks tries to move up to max_load_move weighted load from busiest to
2987 * this_rq, as part of a balancing operation within domain "sd".
2988 * Returns 1 if successful and 0 otherwise.
2990 * Called with both runqueues locked.
2992 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2993 unsigned long max_load_move,
2994 struct sched_domain *sd, enum cpu_idle_type idle,
2995 int *all_pinned)
2997 const struct sched_class *class = sched_class_highest;
2998 unsigned long total_load_moved = 0;
2999 int this_best_prio = this_rq->curr->prio;
3001 do {
3002 total_load_moved +=
3003 class->load_balance(this_rq, this_cpu, busiest,
3004 max_load_move - total_load_moved,
3005 sd, idle, all_pinned, &this_best_prio);
3006 class = class->next;
3008 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3009 break;
3011 } while (class && max_load_move > total_load_moved);
3013 return total_load_moved > 0;
3016 static int
3017 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3018 struct sched_domain *sd, enum cpu_idle_type idle,
3019 struct rq_iterator *iterator)
3021 struct task_struct *p = iterator->start(iterator->arg);
3022 int pinned = 0;
3024 while (p) {
3025 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3026 pull_task(busiest, p, this_rq, this_cpu);
3028 * Right now, this is only the second place pull_task()
3029 * is called, so we can safely collect pull_task()
3030 * stats here rather than inside pull_task().
3032 schedstat_inc(sd, lb_gained[idle]);
3034 return 1;
3036 p = iterator->next(iterator->arg);
3039 return 0;
3043 * move_one_task tries to move exactly one task from busiest to this_rq, as
3044 * part of active balancing operations within "domain".
3045 * Returns 1 if successful and 0 otherwise.
3047 * Called with both runqueues locked.
3049 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3050 struct sched_domain *sd, enum cpu_idle_type idle)
3052 const struct sched_class *class;
3054 for (class = sched_class_highest; class; class = class->next)
3055 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
3056 return 1;
3058 return 0;
3062 * find_busiest_group finds and returns the busiest CPU group within the
3063 * domain. It calculates and returns the amount of weighted load which
3064 * should be moved to restore balance via the imbalance parameter.
3066 static struct sched_group *
3067 find_busiest_group(struct sched_domain *sd, int this_cpu,
3068 unsigned long *imbalance, enum cpu_idle_type idle,
3069 int *sd_idle, const cpumask_t *cpus, int *balance)
3071 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
3072 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
3073 unsigned long max_pull;
3074 unsigned long busiest_load_per_task, busiest_nr_running;
3075 unsigned long this_load_per_task, this_nr_running;
3076 int load_idx, group_imb = 0;
3077 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3078 int power_savings_balance = 1;
3079 unsigned long leader_nr_running = 0, min_load_per_task = 0;
3080 unsigned long min_nr_running = ULONG_MAX;
3081 struct sched_group *group_min = NULL, *group_leader = NULL;
3082 #endif
3084 max_load = this_load = total_load = total_pwr = 0;
3085 busiest_load_per_task = busiest_nr_running = 0;
3086 this_load_per_task = this_nr_running = 0;
3088 if (idle == CPU_NOT_IDLE)
3089 load_idx = sd->busy_idx;
3090 else if (idle == CPU_NEWLY_IDLE)
3091 load_idx = sd->newidle_idx;
3092 else
3093 load_idx = sd->idle_idx;
3095 do {
3096 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
3097 int local_group;
3098 int i;
3099 int __group_imb = 0;
3100 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3101 unsigned long sum_nr_running, sum_weighted_load;
3102 unsigned long sum_avg_load_per_task;
3103 unsigned long avg_load_per_task;
3105 local_group = cpu_isset(this_cpu, group->cpumask);
3107 if (local_group)
3108 balance_cpu = first_cpu(group->cpumask);
3110 /* Tally up the load of all CPUs in the group */
3111 sum_weighted_load = sum_nr_running = avg_load = 0;
3112 sum_avg_load_per_task = avg_load_per_task = 0;
3114 max_cpu_load = 0;
3115 min_cpu_load = ~0UL;
3117 for_each_cpu_mask_nr(i, group->cpumask) {
3118 struct rq *rq;
3120 if (!cpu_isset(i, *cpus))
3121 continue;
3123 rq = cpu_rq(i);
3125 if (*sd_idle && rq->nr_running)
3126 *sd_idle = 0;
3128 /* Bias balancing toward cpus of our domain */
3129 if (local_group) {
3130 if (idle_cpu(i) && !first_idle_cpu) {
3131 first_idle_cpu = 1;
3132 balance_cpu = i;
3135 load = target_load(i, load_idx);
3136 } else {
3137 load = source_load(i, load_idx);
3138 if (load > max_cpu_load)
3139 max_cpu_load = load;
3140 if (min_cpu_load > load)
3141 min_cpu_load = load;
3144 avg_load += load;
3145 sum_nr_running += rq->nr_running;
3146 sum_weighted_load += weighted_cpuload(i);
3148 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3152 * First idle cpu or the first cpu(busiest) in this sched group
3153 * is eligible for doing load balancing at this and above
3154 * domains. In the newly idle case, we will allow all the cpu's
3155 * to do the newly idle load balance.
3157 if (idle != CPU_NEWLY_IDLE && local_group &&
3158 balance_cpu != this_cpu && balance) {
3159 *balance = 0;
3160 goto ret;
3163 total_load += avg_load;
3164 total_pwr += group->__cpu_power;
3166 /* Adjust by relative CPU power of the group */
3167 avg_load = sg_div_cpu_power(group,
3168 avg_load * SCHED_LOAD_SCALE);
3172 * Consider the group unbalanced when the imbalance is larger
3173 * than the average weight of two tasks.
3175 * APZ: with cgroup the avg task weight can vary wildly and
3176 * might not be a suitable number - should we keep a
3177 * normalized nr_running number somewhere that negates
3178 * the hierarchy?
3180 avg_load_per_task = sg_div_cpu_power(group,
3181 sum_avg_load_per_task * SCHED_LOAD_SCALE);
3183 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3184 __group_imb = 1;
3186 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3188 if (local_group) {
3189 this_load = avg_load;
3190 this = group;
3191 this_nr_running = sum_nr_running;
3192 this_load_per_task = sum_weighted_load;
3193 } else if (avg_load > max_load &&
3194 (sum_nr_running > group_capacity || __group_imb)) {
3195 max_load = avg_load;
3196 busiest = group;
3197 busiest_nr_running = sum_nr_running;
3198 busiest_load_per_task = sum_weighted_load;
3199 group_imb = __group_imb;
3202 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3204 * Busy processors will not participate in power savings
3205 * balance.
3207 if (idle == CPU_NOT_IDLE ||
3208 !(sd->flags & SD_POWERSAVINGS_BALANCE))
3209 goto group_next;
3212 * If the local group is idle or completely loaded
3213 * no need to do power savings balance at this domain
3215 if (local_group && (this_nr_running >= group_capacity ||
3216 !this_nr_running))
3217 power_savings_balance = 0;
3220 * If a group is already running at full capacity or idle,
3221 * don't include that group in power savings calculations
3223 if (!power_savings_balance || sum_nr_running >= group_capacity
3224 || !sum_nr_running)
3225 goto group_next;
3228 * Calculate the group which has the least non-idle load.
3229 * This is the group from where we need to pick up the load
3230 * for saving power
3232 if ((sum_nr_running < min_nr_running) ||
3233 (sum_nr_running == min_nr_running &&
3234 first_cpu(group->cpumask) <
3235 first_cpu(group_min->cpumask))) {
3236 group_min = group;
3237 min_nr_running = sum_nr_running;
3238 min_load_per_task = sum_weighted_load /
3239 sum_nr_running;
3243 * Calculate the group which is almost near its
3244 * capacity but still has some space to pick up some load
3245 * from other group and save more power
3247 if (sum_nr_running <= group_capacity - 1) {
3248 if (sum_nr_running > leader_nr_running ||
3249 (sum_nr_running == leader_nr_running &&
3250 first_cpu(group->cpumask) >
3251 first_cpu(group_leader->cpumask))) {
3252 group_leader = group;
3253 leader_nr_running = sum_nr_running;
3256 group_next:
3257 #endif
3258 group = group->next;
3259 } while (group != sd->groups);
3261 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
3262 goto out_balanced;
3264 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
3266 if (this_load >= avg_load ||
3267 100*max_load <= sd->imbalance_pct*this_load)
3268 goto out_balanced;
3270 busiest_load_per_task /= busiest_nr_running;
3271 if (group_imb)
3272 busiest_load_per_task = min(busiest_load_per_task, avg_load);
3275 * We're trying to get all the cpus to the average_load, so we don't
3276 * want to push ourselves above the average load, nor do we wish to
3277 * reduce the max loaded cpu below the average load, as either of these
3278 * actions would just result in more rebalancing later, and ping-pong
3279 * tasks around. Thus we look for the minimum possible imbalance.
3280 * Negative imbalances (*we* are more loaded than anyone else) will
3281 * be counted as no imbalance for these purposes -- we can't fix that
3282 * by pulling tasks to us. Be careful of negative numbers as they'll
3283 * appear as very large values with unsigned longs.
3285 if (max_load <= busiest_load_per_task)
3286 goto out_balanced;
3289 * In the presence of smp nice balancing, certain scenarios can have
3290 * max load less than avg load(as we skip the groups at or below
3291 * its cpu_power, while calculating max_load..)
3293 if (max_load < avg_load) {
3294 *imbalance = 0;
3295 goto small_imbalance;
3298 /* Don't want to pull so many tasks that a group would go idle */
3299 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
3301 /* How much load to actually move to equalise the imbalance */
3302 *imbalance = min(max_pull * busiest->__cpu_power,
3303 (avg_load - this_load) * this->__cpu_power)
3304 / SCHED_LOAD_SCALE;
3307 * if *imbalance is less than the average load per runnable task
3308 * there is no gaurantee that any tasks will be moved so we'll have
3309 * a think about bumping its value to force at least one task to be
3310 * moved
3312 if (*imbalance < busiest_load_per_task) {
3313 unsigned long tmp, pwr_now, pwr_move;
3314 unsigned int imbn;
3316 small_imbalance:
3317 pwr_move = pwr_now = 0;
3318 imbn = 2;
3319 if (this_nr_running) {
3320 this_load_per_task /= this_nr_running;
3321 if (busiest_load_per_task > this_load_per_task)
3322 imbn = 1;
3323 } else
3324 this_load_per_task = cpu_avg_load_per_task(this_cpu);
3326 if (max_load - this_load + busiest_load_per_task >=
3327 busiest_load_per_task * imbn) {
3328 *imbalance = busiest_load_per_task;
3329 return busiest;
3333 * OK, we don't have enough imbalance to justify moving tasks,
3334 * however we may be able to increase total CPU power used by
3335 * moving them.
3338 pwr_now += busiest->__cpu_power *
3339 min(busiest_load_per_task, max_load);
3340 pwr_now += this->__cpu_power *
3341 min(this_load_per_task, this_load);
3342 pwr_now /= SCHED_LOAD_SCALE;
3344 /* Amount of load we'd subtract */
3345 tmp = sg_div_cpu_power(busiest,
3346 busiest_load_per_task * SCHED_LOAD_SCALE);
3347 if (max_load > tmp)
3348 pwr_move += busiest->__cpu_power *
3349 min(busiest_load_per_task, max_load - tmp);
3351 /* Amount of load we'd add */
3352 if (max_load * busiest->__cpu_power <
3353 busiest_load_per_task * SCHED_LOAD_SCALE)
3354 tmp = sg_div_cpu_power(this,
3355 max_load * busiest->__cpu_power);
3356 else
3357 tmp = sg_div_cpu_power(this,
3358 busiest_load_per_task * SCHED_LOAD_SCALE);
3359 pwr_move += this->__cpu_power *
3360 min(this_load_per_task, this_load + tmp);
3361 pwr_move /= SCHED_LOAD_SCALE;
3363 /* Move if we gain throughput */
3364 if (pwr_move > pwr_now)
3365 *imbalance = busiest_load_per_task;
3368 return busiest;
3370 out_balanced:
3371 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3372 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3373 goto ret;
3375 if (this == group_leader && group_leader != group_min) {
3376 *imbalance = min_load_per_task;
3377 return group_min;
3379 #endif
3380 ret:
3381 *imbalance = 0;
3382 return NULL;
3386 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3388 static struct rq *
3389 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3390 unsigned long imbalance, const cpumask_t *cpus)
3392 struct rq *busiest = NULL, *rq;
3393 unsigned long max_load = 0;
3394 int i;
3396 for_each_cpu_mask_nr(i, group->cpumask) {
3397 unsigned long wl;
3399 if (!cpu_isset(i, *cpus))
3400 continue;
3402 rq = cpu_rq(i);
3403 wl = weighted_cpuload(i);
3405 if (rq->nr_running == 1 && wl > imbalance)
3406 continue;
3408 if (wl > max_load) {
3409 max_load = wl;
3410 busiest = rq;
3414 return busiest;
3418 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3419 * so long as it is large enough.
3421 #define MAX_PINNED_INTERVAL 512
3424 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3425 * tasks if there is an imbalance.
3427 static int load_balance(int this_cpu, struct rq *this_rq,
3428 struct sched_domain *sd, enum cpu_idle_type idle,
3429 int *balance, cpumask_t *cpus)
3431 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
3432 struct sched_group *group;
3433 unsigned long imbalance;
3434 struct rq *busiest;
3435 unsigned long flags;
3437 cpus_setall(*cpus);
3440 * When power savings policy is enabled for the parent domain, idle
3441 * sibling can pick up load irrespective of busy siblings. In this case,
3442 * let the state of idle sibling percolate up as CPU_IDLE, instead of
3443 * portraying it as CPU_NOT_IDLE.
3445 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3446 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3447 sd_idle = 1;
3449 schedstat_inc(sd, lb_count[idle]);
3451 redo:
3452 update_shares(sd);
3453 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3454 cpus, balance);
3456 if (*balance == 0)
3457 goto out_balanced;
3459 if (!group) {
3460 schedstat_inc(sd, lb_nobusyg[idle]);
3461 goto out_balanced;
3464 busiest = find_busiest_queue(group, idle, imbalance, cpus);
3465 if (!busiest) {
3466 schedstat_inc(sd, lb_nobusyq[idle]);
3467 goto out_balanced;
3470 BUG_ON(busiest == this_rq);
3472 schedstat_add(sd, lb_imbalance[idle], imbalance);
3474 ld_moved = 0;
3475 if (busiest->nr_running > 1) {
3477 * Attempt to move tasks. If find_busiest_group has found
3478 * an imbalance but busiest->nr_running <= 1, the group is
3479 * still unbalanced. ld_moved simply stays zero, so it is
3480 * correctly treated as an imbalance.
3482 local_irq_save(flags);
3483 double_rq_lock(this_rq, busiest);
3484 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3485 imbalance, sd, idle, &all_pinned);
3486 double_rq_unlock(this_rq, busiest);
3487 local_irq_restore(flags);
3490 * some other cpu did the load balance for us.
3492 if (ld_moved && this_cpu != smp_processor_id())
3493 resched_cpu(this_cpu);
3495 /* All tasks on this runqueue were pinned by CPU affinity */
3496 if (unlikely(all_pinned)) {
3497 cpu_clear(cpu_of(busiest), *cpus);
3498 if (!cpus_empty(*cpus))
3499 goto redo;
3500 goto out_balanced;
3504 if (!ld_moved) {
3505 schedstat_inc(sd, lb_failed[idle]);
3506 sd->nr_balance_failed++;
3508 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
3510 spin_lock_irqsave(&busiest->lock, flags);
3512 /* don't kick the migration_thread, if the curr
3513 * task on busiest cpu can't be moved to this_cpu
3515 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
3516 spin_unlock_irqrestore(&busiest->lock, flags);
3517 all_pinned = 1;
3518 goto out_one_pinned;
3521 if (!busiest->active_balance) {
3522 busiest->active_balance = 1;
3523 busiest->push_cpu = this_cpu;
3524 active_balance = 1;
3526 spin_unlock_irqrestore(&busiest->lock, flags);
3527 if (active_balance)
3528 wake_up_process(busiest->migration_thread);
3531 * We've kicked active balancing, reset the failure
3532 * counter.
3534 sd->nr_balance_failed = sd->cache_nice_tries+1;
3536 } else
3537 sd->nr_balance_failed = 0;
3539 if (likely(!active_balance)) {
3540 /* We were unbalanced, so reset the balancing interval */
3541 sd->balance_interval = sd->min_interval;
3542 } else {
3544 * If we've begun active balancing, start to back off. This
3545 * case may not be covered by the all_pinned logic if there
3546 * is only 1 task on the busy runqueue (because we don't call
3547 * move_tasks).
3549 if (sd->balance_interval < sd->max_interval)
3550 sd->balance_interval *= 2;
3553 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3554 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3555 ld_moved = -1;
3557 goto out;
3559 out_balanced:
3560 schedstat_inc(sd, lb_balanced[idle]);
3562 sd->nr_balance_failed = 0;
3564 out_one_pinned:
3565 /* tune up the balancing interval */
3566 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3567 (sd->balance_interval < sd->max_interval))
3568 sd->balance_interval *= 2;
3570 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3571 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3572 ld_moved = -1;
3573 else
3574 ld_moved = 0;
3575 out:
3576 if (ld_moved)
3577 update_shares(sd);
3578 return ld_moved;
3582 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3583 * tasks if there is an imbalance.
3585 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
3586 * this_rq is locked.
3588 static int
3589 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
3590 cpumask_t *cpus)
3592 struct sched_group *group;
3593 struct rq *busiest = NULL;
3594 unsigned long imbalance;
3595 int ld_moved = 0;
3596 int sd_idle = 0;
3597 int all_pinned = 0;
3599 cpus_setall(*cpus);
3602 * When power savings policy is enabled for the parent domain, idle
3603 * sibling can pick up load irrespective of busy siblings. In this case,
3604 * let the state of idle sibling percolate up as IDLE, instead of
3605 * portraying it as CPU_NOT_IDLE.
3607 if (sd->flags & SD_SHARE_CPUPOWER &&
3608 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3609 sd_idle = 1;
3611 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3612 redo:
3613 update_shares_locked(this_rq, sd);
3614 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3615 &sd_idle, cpus, NULL);
3616 if (!group) {
3617 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3618 goto out_balanced;
3621 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
3622 if (!busiest) {
3623 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3624 goto out_balanced;
3627 BUG_ON(busiest == this_rq);
3629 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3631 ld_moved = 0;
3632 if (busiest->nr_running > 1) {
3633 /* Attempt to move tasks */
3634 double_lock_balance(this_rq, busiest);
3635 /* this_rq->clock is already updated */
3636 update_rq_clock(busiest);
3637 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3638 imbalance, sd, CPU_NEWLY_IDLE,
3639 &all_pinned);
3640 double_unlock_balance(this_rq, busiest);
3642 if (unlikely(all_pinned)) {
3643 cpu_clear(cpu_of(busiest), *cpus);
3644 if (!cpus_empty(*cpus))
3645 goto redo;
3649 if (!ld_moved) {
3650 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3651 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3652 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3653 return -1;
3654 } else
3655 sd->nr_balance_failed = 0;
3657 update_shares_locked(this_rq, sd);
3658 return ld_moved;
3660 out_balanced:
3661 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3662 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3663 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3664 return -1;
3665 sd->nr_balance_failed = 0;
3667 return 0;
3671 * idle_balance is called by schedule() if this_cpu is about to become
3672 * idle. Attempts to pull tasks from other CPUs.
3674 static void idle_balance(int this_cpu, struct rq *this_rq)
3676 struct sched_domain *sd;
3677 int pulled_task = -1;
3678 unsigned long next_balance = jiffies + HZ;
3679 cpumask_t tmpmask;
3681 for_each_domain(this_cpu, sd) {
3682 unsigned long interval;
3684 if (!(sd->flags & SD_LOAD_BALANCE))
3685 continue;
3687 if (sd->flags & SD_BALANCE_NEWIDLE)
3688 /* If we've pulled tasks over stop searching: */
3689 pulled_task = load_balance_newidle(this_cpu, this_rq,
3690 sd, &tmpmask);
3692 interval = msecs_to_jiffies(sd->balance_interval);
3693 if (time_after(next_balance, sd->last_balance + interval))
3694 next_balance = sd->last_balance + interval;
3695 if (pulled_task)
3696 break;
3698 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3700 * We are going idle. next_balance may be set based on
3701 * a busy processor. So reset next_balance.
3703 this_rq->next_balance = next_balance;
3708 * active_load_balance is run by migration threads. It pushes running tasks
3709 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3710 * running on each physical CPU where possible, and avoids physical /
3711 * logical imbalances.
3713 * Called with busiest_rq locked.
3715 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
3717 int target_cpu = busiest_rq->push_cpu;
3718 struct sched_domain *sd;
3719 struct rq *target_rq;
3721 /* Is there any task to move? */
3722 if (busiest_rq->nr_running <= 1)
3723 return;
3725 target_rq = cpu_rq(target_cpu);
3728 * This condition is "impossible", if it occurs
3729 * we need to fix it. Originally reported by
3730 * Bjorn Helgaas on a 128-cpu setup.
3732 BUG_ON(busiest_rq == target_rq);
3734 /* move a task from busiest_rq to target_rq */
3735 double_lock_balance(busiest_rq, target_rq);
3736 update_rq_clock(busiest_rq);
3737 update_rq_clock(target_rq);
3739 /* Search for an sd spanning us and the target CPU. */
3740 for_each_domain(target_cpu, sd) {
3741 if ((sd->flags & SD_LOAD_BALANCE) &&
3742 cpu_isset(busiest_cpu, sd->span))
3743 break;
3746 if (likely(sd)) {
3747 schedstat_inc(sd, alb_count);
3749 if (move_one_task(target_rq, target_cpu, busiest_rq,
3750 sd, CPU_IDLE))
3751 schedstat_inc(sd, alb_pushed);
3752 else
3753 schedstat_inc(sd, alb_failed);
3755 double_unlock_balance(busiest_rq, target_rq);
3758 #ifdef CONFIG_NO_HZ
3759 static struct {
3760 atomic_t load_balancer;
3761 cpumask_t cpu_mask;
3762 } nohz ____cacheline_aligned = {
3763 .load_balancer = ATOMIC_INIT(-1),
3764 .cpu_mask = CPU_MASK_NONE,
3768 * This routine will try to nominate the ilb (idle load balancing)
3769 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3770 * load balancing on behalf of all those cpus. If all the cpus in the system
3771 * go into this tickless mode, then there will be no ilb owner (as there is
3772 * no need for one) and all the cpus will sleep till the next wakeup event
3773 * arrives...
3775 * For the ilb owner, tick is not stopped. And this tick will be used
3776 * for idle load balancing. ilb owner will still be part of
3777 * nohz.cpu_mask..
3779 * While stopping the tick, this cpu will become the ilb owner if there
3780 * is no other owner. And will be the owner till that cpu becomes busy
3781 * or if all cpus in the system stop their ticks at which point
3782 * there is no need for ilb owner.
3784 * When the ilb owner becomes busy, it nominates another owner, during the
3785 * next busy scheduler_tick()
3787 int select_nohz_load_balancer(int stop_tick)
3789 int cpu = smp_processor_id();
3791 if (stop_tick) {
3792 cpu_set(cpu, nohz.cpu_mask);
3793 cpu_rq(cpu)->in_nohz_recently = 1;
3796 * If we are going offline and still the leader, give up!
3798 if (!cpu_active(cpu) &&
3799 atomic_read(&nohz.load_balancer) == cpu) {
3800 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3801 BUG();
3802 return 0;
3805 /* time for ilb owner also to sleep */
3806 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3807 if (atomic_read(&nohz.load_balancer) == cpu)
3808 atomic_set(&nohz.load_balancer, -1);
3809 return 0;
3812 if (atomic_read(&nohz.load_balancer) == -1) {
3813 /* make me the ilb owner */
3814 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3815 return 1;
3816 } else if (atomic_read(&nohz.load_balancer) == cpu)
3817 return 1;
3818 } else {
3819 if (!cpu_isset(cpu, nohz.cpu_mask))
3820 return 0;
3822 cpu_clear(cpu, nohz.cpu_mask);
3824 if (atomic_read(&nohz.load_balancer) == cpu)
3825 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3826 BUG();
3828 return 0;
3830 #endif
3832 static DEFINE_SPINLOCK(balancing);
3835 * It checks each scheduling domain to see if it is due to be balanced,
3836 * and initiates a balancing operation if so.
3838 * Balancing parameters are set up in arch_init_sched_domains.
3840 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3842 int balance = 1;
3843 struct rq *rq = cpu_rq(cpu);
3844 unsigned long interval;
3845 struct sched_domain *sd;
3846 /* Earliest time when we have to do rebalance again */
3847 unsigned long next_balance = jiffies + 60*HZ;
3848 int update_next_balance = 0;
3849 int need_serialize;
3850 cpumask_t tmp;
3852 for_each_domain(cpu, sd) {
3853 if (!(sd->flags & SD_LOAD_BALANCE))
3854 continue;
3856 interval = sd->balance_interval;
3857 if (idle != CPU_IDLE)
3858 interval *= sd->busy_factor;
3860 /* scale ms to jiffies */
3861 interval = msecs_to_jiffies(interval);
3862 if (unlikely(!interval))
3863 interval = 1;
3864 if (interval > HZ*NR_CPUS/10)
3865 interval = HZ*NR_CPUS/10;
3867 need_serialize = sd->flags & SD_SERIALIZE;
3869 if (need_serialize) {
3870 if (!spin_trylock(&balancing))
3871 goto out;
3874 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3875 if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
3877 * We've pulled tasks over so either we're no
3878 * longer idle, or one of our SMT siblings is
3879 * not idle.
3881 idle = CPU_NOT_IDLE;
3883 sd->last_balance = jiffies;
3885 if (need_serialize)
3886 spin_unlock(&balancing);
3887 out:
3888 if (time_after(next_balance, sd->last_balance + interval)) {
3889 next_balance = sd->last_balance + interval;
3890 update_next_balance = 1;
3894 * Stop the load balance at this level. There is another
3895 * CPU in our sched group which is doing load balancing more
3896 * actively.
3898 if (!balance)
3899 break;
3903 * next_balance will be updated only when there is a need.
3904 * When the cpu is attached to null domain for ex, it will not be
3905 * updated.
3907 if (likely(update_next_balance))
3908 rq->next_balance = next_balance;
3912 * run_rebalance_domains is triggered when needed from the scheduler tick.
3913 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3914 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3916 static void run_rebalance_domains(struct softirq_action *h)
3918 int this_cpu = smp_processor_id();
3919 struct rq *this_rq = cpu_rq(this_cpu);
3920 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3921 CPU_IDLE : CPU_NOT_IDLE;
3923 rebalance_domains(this_cpu, idle);
3925 #ifdef CONFIG_NO_HZ
3927 * If this cpu is the owner for idle load balancing, then do the
3928 * balancing on behalf of the other idle cpus whose ticks are
3929 * stopped.
3931 if (this_rq->idle_at_tick &&
3932 atomic_read(&nohz.load_balancer) == this_cpu) {
3933 cpumask_t cpus = nohz.cpu_mask;
3934 struct rq *rq;
3935 int balance_cpu;
3937 cpu_clear(this_cpu, cpus);
3938 for_each_cpu_mask_nr(balance_cpu, cpus) {
3940 * If this cpu gets work to do, stop the load balancing
3941 * work being done for other cpus. Next load
3942 * balancing owner will pick it up.
3944 if (need_resched())
3945 break;
3947 rebalance_domains(balance_cpu, CPU_IDLE);
3949 rq = cpu_rq(balance_cpu);
3950 if (time_after(this_rq->next_balance, rq->next_balance))
3951 this_rq->next_balance = rq->next_balance;
3954 #endif
3958 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3960 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3961 * idle load balancing owner or decide to stop the periodic load balancing,
3962 * if the whole system is idle.
3964 static inline void trigger_load_balance(struct rq *rq, int cpu)
3966 #ifdef CONFIG_NO_HZ
3968 * If we were in the nohz mode recently and busy at the current
3969 * scheduler tick, then check if we need to nominate new idle
3970 * load balancer.
3972 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3973 rq->in_nohz_recently = 0;
3975 if (atomic_read(&nohz.load_balancer) == cpu) {
3976 cpu_clear(cpu, nohz.cpu_mask);
3977 atomic_set(&nohz.load_balancer, -1);
3980 if (atomic_read(&nohz.load_balancer) == -1) {
3982 * simple selection for now: Nominate the
3983 * first cpu in the nohz list to be the next
3984 * ilb owner.
3986 * TBD: Traverse the sched domains and nominate
3987 * the nearest cpu in the nohz.cpu_mask.
3989 int ilb = first_cpu(nohz.cpu_mask);
3991 if (ilb < nr_cpu_ids)
3992 resched_cpu(ilb);
3997 * If this cpu is idle and doing idle load balancing for all the
3998 * cpus with ticks stopped, is it time for that to stop?
4000 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4001 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
4002 resched_cpu(cpu);
4003 return;
4007 * If this cpu is idle and the idle load balancing is done by
4008 * someone else, then no need raise the SCHED_SOFTIRQ
4010 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4011 cpu_isset(cpu, nohz.cpu_mask))
4012 return;
4013 #endif
4014 if (time_after_eq(jiffies, rq->next_balance))
4015 raise_softirq(SCHED_SOFTIRQ);
4018 #else /* CONFIG_SMP */
4021 * on UP we do not need to balance between CPUs:
4023 static inline void idle_balance(int cpu, struct rq *rq)
4027 #endif
4029 DEFINE_PER_CPU(struct kernel_stat, kstat);
4031 EXPORT_PER_CPU_SYMBOL(kstat);
4034 * Return any ns on the sched_clock that have not yet been banked in
4035 * @p in case that task is currently running.
4037 unsigned long long task_delta_exec(struct task_struct *p)
4039 unsigned long flags;
4040 struct rq *rq;
4041 u64 ns = 0;
4043 rq = task_rq_lock(p, &flags);
4045 if (task_current(rq, p)) {
4046 u64 delta_exec;
4048 update_rq_clock(rq);
4049 delta_exec = rq->clock - p->se.exec_start;
4050 if ((s64)delta_exec > 0)
4051 ns = delta_exec;
4054 task_rq_unlock(rq, &flags);
4056 return ns;
4060 * Account user cpu time to a process.
4061 * @p: the process that the cpu time gets accounted to
4062 * @cputime: the cpu time spent in user space since the last update
4064 void account_user_time(struct task_struct *p, cputime_t cputime)
4066 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4067 cputime64_t tmp;
4069 p->utime = cputime_add(p->utime, cputime);
4070 account_group_user_time(p, cputime);
4072 /* Add user time to cpustat. */
4073 tmp = cputime_to_cputime64(cputime);
4074 if (TASK_NICE(p) > 0)
4075 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4076 else
4077 cpustat->user = cputime64_add(cpustat->user, tmp);
4078 /* Account for user time used */
4079 acct_update_integrals(p);
4083 * Account guest cpu time to a process.
4084 * @p: the process that the cpu time gets accounted to
4085 * @cputime: the cpu time spent in virtual machine since the last update
4087 static void account_guest_time(struct task_struct *p, cputime_t cputime)
4089 cputime64_t tmp;
4090 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4092 tmp = cputime_to_cputime64(cputime);
4094 p->utime = cputime_add(p->utime, cputime);
4095 account_group_user_time(p, cputime);
4096 p->gtime = cputime_add(p->gtime, cputime);
4098 cpustat->user = cputime64_add(cpustat->user, tmp);
4099 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4103 * Account scaled user cpu time to a process.
4104 * @p: the process that the cpu time gets accounted to
4105 * @cputime: the cpu time spent in user space since the last update
4107 void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
4109 p->utimescaled = cputime_add(p->utimescaled, cputime);
4113 * Account system cpu time to a process.
4114 * @p: the process that the cpu time gets accounted to
4115 * @hardirq_offset: the offset to subtract from hardirq_count()
4116 * @cputime: the cpu time spent in kernel space since the last update
4118 void account_system_time(struct task_struct *p, int hardirq_offset,
4119 cputime_t cputime)
4121 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4122 struct rq *rq = this_rq();
4123 cputime64_t tmp;
4125 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
4126 account_guest_time(p, cputime);
4127 return;
4130 p->stime = cputime_add(p->stime, cputime);
4131 account_group_system_time(p, cputime);
4133 /* Add system time to cpustat. */
4134 tmp = cputime_to_cputime64(cputime);
4135 if (hardirq_count() - hardirq_offset)
4136 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4137 else if (softirq_count())
4138 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
4139 else if (p != rq->idle)
4140 cpustat->system = cputime64_add(cpustat->system, tmp);
4141 else if (atomic_read(&rq->nr_iowait) > 0)
4142 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4143 else
4144 cpustat->idle = cputime64_add(cpustat->idle, tmp);
4145 /* Account for system time used */
4146 acct_update_integrals(p);
4150 * Account scaled system cpu time to a process.
4151 * @p: the process that the cpu time gets accounted to
4152 * @hardirq_offset: the offset to subtract from hardirq_count()
4153 * @cputime: the cpu time spent in kernel space since the last update
4155 void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
4157 p->stimescaled = cputime_add(p->stimescaled, cputime);
4161 * Account for involuntary wait time.
4162 * @p: the process from which the cpu time has been stolen
4163 * @steal: the cpu time spent in involuntary wait
4165 void account_steal_time(struct task_struct *p, cputime_t steal)
4167 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4168 cputime64_t tmp = cputime_to_cputime64(steal);
4169 struct rq *rq = this_rq();
4171 if (p == rq->idle) {
4172 p->stime = cputime_add(p->stime, steal);
4173 account_group_system_time(p, steal);
4174 if (atomic_read(&rq->nr_iowait) > 0)
4175 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4176 else
4177 cpustat->idle = cputime64_add(cpustat->idle, tmp);
4178 } else
4179 cpustat->steal = cputime64_add(cpustat->steal, tmp);
4183 * Use precise platform statistics if available:
4185 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
4186 cputime_t task_utime(struct task_struct *p)
4188 return p->utime;
4191 cputime_t task_stime(struct task_struct *p)
4193 return p->stime;
4195 #else
4196 cputime_t task_utime(struct task_struct *p)
4198 clock_t utime = cputime_to_clock_t(p->utime),
4199 total = utime + cputime_to_clock_t(p->stime);
4200 u64 temp;
4203 * Use CFS's precise accounting:
4205 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
4207 if (total) {
4208 temp *= utime;
4209 do_div(temp, total);
4211 utime = (clock_t)temp;
4213 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
4214 return p->prev_utime;
4217 cputime_t task_stime(struct task_struct *p)
4219 clock_t stime;
4222 * Use CFS's precise accounting. (we subtract utime from
4223 * the total, to make sure the total observed by userspace
4224 * grows monotonically - apps rely on that):
4226 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
4227 cputime_to_clock_t(task_utime(p));
4229 if (stime >= 0)
4230 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
4232 return p->prev_stime;
4234 #endif
4236 inline cputime_t task_gtime(struct task_struct *p)
4238 return p->gtime;
4242 * This function gets called by the timer code, with HZ frequency.
4243 * We call it with interrupts disabled.
4245 * It also gets called by the fork code, when changing the parent's
4246 * timeslices.
4248 void scheduler_tick(void)
4250 int cpu = smp_processor_id();
4251 struct rq *rq = cpu_rq(cpu);
4252 struct task_struct *curr = rq->curr;
4254 sched_clock_tick();
4256 spin_lock(&rq->lock);
4257 update_rq_clock(rq);
4258 update_cpu_load(rq);
4259 curr->sched_class->task_tick(rq, curr, 0);
4260 spin_unlock(&rq->lock);
4262 #ifdef CONFIG_SMP
4263 rq->idle_at_tick = idle_cpu(cpu);
4264 trigger_load_balance(rq, cpu);
4265 #endif
4268 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4269 defined(CONFIG_PREEMPT_TRACER))
4271 static inline unsigned long get_parent_ip(unsigned long addr)
4273 if (in_lock_functions(addr)) {
4274 addr = CALLER_ADDR2;
4275 if (in_lock_functions(addr))
4276 addr = CALLER_ADDR3;
4278 return addr;
4281 void __kprobes add_preempt_count(int val)
4283 #ifdef CONFIG_DEBUG_PREEMPT
4285 * Underflow?
4287 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4288 return;
4289 #endif
4290 preempt_count() += val;
4291 #ifdef CONFIG_DEBUG_PREEMPT
4293 * Spinlock count overflowing soon?
4295 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4296 PREEMPT_MASK - 10);
4297 #endif
4298 if (preempt_count() == val)
4299 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4301 EXPORT_SYMBOL(add_preempt_count);
4303 void __kprobes sub_preempt_count(int val)
4305 #ifdef CONFIG_DEBUG_PREEMPT
4307 * Underflow?
4309 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4310 return;
4312 * Is the spinlock portion underflowing?
4314 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4315 !(preempt_count() & PREEMPT_MASK)))
4316 return;
4317 #endif
4319 if (preempt_count() == val)
4320 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4321 preempt_count() -= val;
4323 EXPORT_SYMBOL(sub_preempt_count);
4325 #endif
4328 * Print scheduling while atomic bug:
4330 static noinline void __schedule_bug(struct task_struct *prev)
4332 struct pt_regs *regs = get_irq_regs();
4334 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4335 prev->comm, prev->pid, preempt_count());
4337 debug_show_held_locks(prev);
4338 print_modules();
4339 if (irqs_disabled())
4340 print_irqtrace_events(prev);
4342 if (regs)
4343 show_regs(regs);
4344 else
4345 dump_stack();
4349 * Various schedule()-time debugging checks and statistics:
4351 static inline void schedule_debug(struct task_struct *prev)
4354 * Test if we are atomic. Since do_exit() needs to call into
4355 * schedule() atomically, we ignore that path for now.
4356 * Otherwise, whine if we are scheduling when we should not be.
4358 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
4359 __schedule_bug(prev);
4361 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4363 schedstat_inc(this_rq(), sched_count);
4364 #ifdef CONFIG_SCHEDSTATS
4365 if (unlikely(prev->lock_depth >= 0)) {
4366 schedstat_inc(this_rq(), bkl_count);
4367 schedstat_inc(prev, sched_info.bkl_count);
4369 #endif
4373 * Pick up the highest-prio task:
4375 static inline struct task_struct *
4376 pick_next_task(struct rq *rq, struct task_struct *prev)
4378 const struct sched_class *class;
4379 struct task_struct *p;
4382 * Optimization: we know that if all tasks are in
4383 * the fair class we can call that function directly:
4385 if (likely(rq->nr_running == rq->cfs.nr_running)) {
4386 p = fair_sched_class.pick_next_task(rq);
4387 if (likely(p))
4388 return p;
4391 class = sched_class_highest;
4392 for ( ; ; ) {
4393 p = class->pick_next_task(rq);
4394 if (p)
4395 return p;
4397 * Will never be NULL as the idle class always
4398 * returns a non-NULL p:
4400 class = class->next;
4405 * schedule() is the main scheduler function.
4407 asmlinkage void __sched schedule(void)
4409 struct task_struct *prev, *next;
4410 unsigned long *switch_count;
4411 struct rq *rq;
4412 int cpu;
4414 need_resched:
4415 preempt_disable();
4416 cpu = smp_processor_id();
4417 rq = cpu_rq(cpu);
4418 rcu_qsctr_inc(cpu);
4419 prev = rq->curr;
4420 switch_count = &prev->nivcsw;
4422 release_kernel_lock(prev);
4423 need_resched_nonpreemptible:
4425 schedule_debug(prev);
4427 if (sched_feat(HRTICK))
4428 hrtick_clear(rq);
4430 spin_lock_irq(&rq->lock);
4431 update_rq_clock(rq);
4432 clear_tsk_need_resched(prev);
4434 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
4435 if (unlikely(signal_pending_state(prev->state, prev)))
4436 prev->state = TASK_RUNNING;
4437 else
4438 deactivate_task(rq, prev, 1);
4439 switch_count = &prev->nvcsw;
4442 #ifdef CONFIG_SMP
4443 if (prev->sched_class->pre_schedule)
4444 prev->sched_class->pre_schedule(rq, prev);
4445 #endif
4447 if (unlikely(!rq->nr_running))
4448 idle_balance(cpu, rq);
4450 prev->sched_class->put_prev_task(rq, prev);
4451 next = pick_next_task(rq, prev);
4453 if (likely(prev != next)) {
4454 sched_info_switch(prev, next);
4456 rq->nr_switches++;
4457 rq->curr = next;
4458 ++*switch_count;
4460 context_switch(rq, prev, next); /* unlocks the rq */
4462 * the context switch might have flipped the stack from under
4463 * us, hence refresh the local variables.
4465 cpu = smp_processor_id();
4466 rq = cpu_rq(cpu);
4467 } else
4468 spin_unlock_irq(&rq->lock);
4470 if (unlikely(reacquire_kernel_lock(current) < 0))
4471 goto need_resched_nonpreemptible;
4473 preempt_enable_no_resched();
4474 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
4475 goto need_resched;
4477 EXPORT_SYMBOL(schedule);
4479 #ifdef CONFIG_PREEMPT
4481 * this is the entry point to schedule() from in-kernel preemption
4482 * off of preempt_enable. Kernel preemptions off return from interrupt
4483 * occur there and call schedule directly.
4485 asmlinkage void __sched preempt_schedule(void)
4487 struct thread_info *ti = current_thread_info();
4490 * If there is a non-zero preempt_count or interrupts are disabled,
4491 * we do not want to preempt the current task. Just return..
4493 if (likely(ti->preempt_count || irqs_disabled()))
4494 return;
4496 do {
4497 add_preempt_count(PREEMPT_ACTIVE);
4498 schedule();
4499 sub_preempt_count(PREEMPT_ACTIVE);
4502 * Check again in case we missed a preemption opportunity
4503 * between schedule and now.
4505 barrier();
4506 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
4508 EXPORT_SYMBOL(preempt_schedule);
4511 * this is the entry point to schedule() from kernel preemption
4512 * off of irq context.
4513 * Note, that this is called and return with irqs disabled. This will
4514 * protect us against recursive calling from irq.
4516 asmlinkage void __sched preempt_schedule_irq(void)
4518 struct thread_info *ti = current_thread_info();
4520 /* Catch callers which need to be fixed */
4521 BUG_ON(ti->preempt_count || !irqs_disabled());
4523 do {
4524 add_preempt_count(PREEMPT_ACTIVE);
4525 local_irq_enable();
4526 schedule();
4527 local_irq_disable();
4528 sub_preempt_count(PREEMPT_ACTIVE);
4531 * Check again in case we missed a preemption opportunity
4532 * between schedule and now.
4534 barrier();
4535 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
4538 #endif /* CONFIG_PREEMPT */
4540 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4541 void *key)
4543 return try_to_wake_up(curr->private, mode, sync);
4545 EXPORT_SYMBOL(default_wake_function);
4548 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4549 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4550 * number) then we wake all the non-exclusive tasks and one exclusive task.
4552 * There are circumstances in which we can try to wake a task which has already
4553 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4554 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4556 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4557 int nr_exclusive, int sync, void *key)
4559 wait_queue_t *curr, *next;
4561 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4562 unsigned flags = curr->flags;
4564 if (curr->func(curr, mode, sync, key) &&
4565 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
4566 break;
4571 * __wake_up - wake up threads blocked on a waitqueue.
4572 * @q: the waitqueue
4573 * @mode: which threads
4574 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4575 * @key: is directly passed to the wakeup function
4577 void __wake_up(wait_queue_head_t *q, unsigned int mode,
4578 int nr_exclusive, void *key)
4580 unsigned long flags;
4582 spin_lock_irqsave(&q->lock, flags);
4583 __wake_up_common(q, mode, nr_exclusive, 0, key);
4584 spin_unlock_irqrestore(&q->lock, flags);
4586 EXPORT_SYMBOL(__wake_up);
4589 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4591 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
4593 __wake_up_common(q, mode, 1, 0, NULL);
4597 * __wake_up_sync - wake up threads blocked on a waitqueue.
4598 * @q: the waitqueue
4599 * @mode: which threads
4600 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4602 * The sync wakeup differs that the waker knows that it will schedule
4603 * away soon, so while the target thread will be woken up, it will not
4604 * be migrated to another CPU - ie. the two threads are 'synchronized'
4605 * with each other. This can prevent needless bouncing between CPUs.
4607 * On UP it can prevent extra preemption.
4609 void
4610 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4612 unsigned long flags;
4613 int sync = 1;
4615 if (unlikely(!q))
4616 return;
4618 if (unlikely(!nr_exclusive))
4619 sync = 0;
4621 spin_lock_irqsave(&q->lock, flags);
4622 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4623 spin_unlock_irqrestore(&q->lock, flags);
4625 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4628 * complete: - signals a single thread waiting on this completion
4629 * @x: holds the state of this particular completion
4631 * This will wake up a single thread waiting on this completion. Threads will be
4632 * awakened in the same order in which they were queued.
4634 * See also complete_all(), wait_for_completion() and related routines.
4636 void complete(struct completion *x)
4638 unsigned long flags;
4640 spin_lock_irqsave(&x->wait.lock, flags);
4641 x->done++;
4642 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
4643 spin_unlock_irqrestore(&x->wait.lock, flags);
4645 EXPORT_SYMBOL(complete);
4648 * complete_all: - signals all threads waiting on this completion
4649 * @x: holds the state of this particular completion
4651 * This will wake up all threads waiting on this particular completion event.
4653 void complete_all(struct completion *x)
4655 unsigned long flags;
4657 spin_lock_irqsave(&x->wait.lock, flags);
4658 x->done += UINT_MAX/2;
4659 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
4660 spin_unlock_irqrestore(&x->wait.lock, flags);
4662 EXPORT_SYMBOL(complete_all);
4664 static inline long __sched
4665 do_wait_for_common(struct completion *x, long timeout, int state)
4667 if (!x->done) {
4668 DECLARE_WAITQUEUE(wait, current);
4670 wait.flags |= WQ_FLAG_EXCLUSIVE;
4671 __add_wait_queue_tail(&x->wait, &wait);
4672 do {
4673 if (signal_pending_state(state, current)) {
4674 timeout = -ERESTARTSYS;
4675 break;
4677 __set_current_state(state);
4678 spin_unlock_irq(&x->wait.lock);
4679 timeout = schedule_timeout(timeout);
4680 spin_lock_irq(&x->wait.lock);
4681 } while (!x->done && timeout);
4682 __remove_wait_queue(&x->wait, &wait);
4683 if (!x->done)
4684 return timeout;
4686 x->done--;
4687 return timeout ?: 1;
4690 static long __sched
4691 wait_for_common(struct completion *x, long timeout, int state)
4693 might_sleep();
4695 spin_lock_irq(&x->wait.lock);
4696 timeout = do_wait_for_common(x, timeout, state);
4697 spin_unlock_irq(&x->wait.lock);
4698 return timeout;
4702 * wait_for_completion: - waits for completion of a task
4703 * @x: holds the state of this particular completion
4705 * This waits to be signaled for completion of a specific task. It is NOT
4706 * interruptible and there is no timeout.
4708 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4709 * and interrupt capability. Also see complete().
4711 void __sched wait_for_completion(struct completion *x)
4713 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
4715 EXPORT_SYMBOL(wait_for_completion);
4718 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4719 * @x: holds the state of this particular completion
4720 * @timeout: timeout value in jiffies
4722 * This waits for either a completion of a specific task to be signaled or for a
4723 * specified timeout to expire. The timeout is in jiffies. It is not
4724 * interruptible.
4726 unsigned long __sched
4727 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4729 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
4731 EXPORT_SYMBOL(wait_for_completion_timeout);
4734 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4735 * @x: holds the state of this particular completion
4737 * This waits for completion of a specific task to be signaled. It is
4738 * interruptible.
4740 int __sched wait_for_completion_interruptible(struct completion *x)
4742 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4743 if (t == -ERESTARTSYS)
4744 return t;
4745 return 0;
4747 EXPORT_SYMBOL(wait_for_completion_interruptible);
4750 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4751 * @x: holds the state of this particular completion
4752 * @timeout: timeout value in jiffies
4754 * This waits for either a completion of a specific task to be signaled or for a
4755 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4757 unsigned long __sched
4758 wait_for_completion_interruptible_timeout(struct completion *x,
4759 unsigned long timeout)
4761 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4763 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4766 * wait_for_completion_killable: - waits for completion of a task (killable)
4767 * @x: holds the state of this particular completion
4769 * This waits to be signaled for completion of a specific task. It can be
4770 * interrupted by a kill signal.
4772 int __sched wait_for_completion_killable(struct completion *x)
4774 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4775 if (t == -ERESTARTSYS)
4776 return t;
4777 return 0;
4779 EXPORT_SYMBOL(wait_for_completion_killable);
4782 * try_wait_for_completion - try to decrement a completion without blocking
4783 * @x: completion structure
4785 * Returns: 0 if a decrement cannot be done without blocking
4786 * 1 if a decrement succeeded.
4788 * If a completion is being used as a counting completion,
4789 * attempt to decrement the counter without blocking. This
4790 * enables us to avoid waiting if the resource the completion
4791 * is protecting is not available.
4793 bool try_wait_for_completion(struct completion *x)
4795 int ret = 1;
4797 spin_lock_irq(&x->wait.lock);
4798 if (!x->done)
4799 ret = 0;
4800 else
4801 x->done--;
4802 spin_unlock_irq(&x->wait.lock);
4803 return ret;
4805 EXPORT_SYMBOL(try_wait_for_completion);
4808 * completion_done - Test to see if a completion has any waiters
4809 * @x: completion structure
4811 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4812 * 1 if there are no waiters.
4815 bool completion_done(struct completion *x)
4817 int ret = 1;
4819 spin_lock_irq(&x->wait.lock);
4820 if (!x->done)
4821 ret = 0;
4822 spin_unlock_irq(&x->wait.lock);
4823 return ret;
4825 EXPORT_SYMBOL(completion_done);
4827 static long __sched
4828 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
4830 unsigned long flags;
4831 wait_queue_t wait;
4833 init_waitqueue_entry(&wait, current);
4835 __set_current_state(state);
4837 spin_lock_irqsave(&q->lock, flags);
4838 __add_wait_queue(q, &wait);
4839 spin_unlock(&q->lock);
4840 timeout = schedule_timeout(timeout);
4841 spin_lock_irq(&q->lock);
4842 __remove_wait_queue(q, &wait);
4843 spin_unlock_irqrestore(&q->lock, flags);
4845 return timeout;
4848 void __sched interruptible_sleep_on(wait_queue_head_t *q)
4850 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4852 EXPORT_SYMBOL(interruptible_sleep_on);
4854 long __sched
4855 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
4857 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
4859 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4861 void __sched sleep_on(wait_queue_head_t *q)
4863 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4865 EXPORT_SYMBOL(sleep_on);
4867 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4869 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
4871 EXPORT_SYMBOL(sleep_on_timeout);
4873 #ifdef CONFIG_RT_MUTEXES
4876 * rt_mutex_setprio - set the current priority of a task
4877 * @p: task
4878 * @prio: prio value (kernel-internal form)
4880 * This function changes the 'effective' priority of a task. It does
4881 * not touch ->normal_prio like __setscheduler().
4883 * Used by the rt_mutex code to implement priority inheritance logic.
4885 void rt_mutex_setprio(struct task_struct *p, int prio)
4887 unsigned long flags;
4888 int oldprio, on_rq, running;
4889 struct rq *rq;
4890 const struct sched_class *prev_class = p->sched_class;
4892 BUG_ON(prio < 0 || prio > MAX_PRIO);
4894 rq = task_rq_lock(p, &flags);
4895 update_rq_clock(rq);
4897 oldprio = p->prio;
4898 on_rq = p->se.on_rq;
4899 running = task_current(rq, p);
4900 if (on_rq)
4901 dequeue_task(rq, p, 0);
4902 if (running)
4903 p->sched_class->put_prev_task(rq, p);
4905 if (rt_prio(prio))
4906 p->sched_class = &rt_sched_class;
4907 else
4908 p->sched_class = &fair_sched_class;
4910 p->prio = prio;
4912 if (running)
4913 p->sched_class->set_curr_task(rq);
4914 if (on_rq) {
4915 enqueue_task(rq, p, 0);
4917 check_class_changed(rq, p, prev_class, oldprio, running);
4919 task_rq_unlock(rq, &flags);
4922 #endif
4924 void set_user_nice(struct task_struct *p, long nice)
4926 int old_prio, delta, on_rq;
4927 unsigned long flags;
4928 struct rq *rq;
4930 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4931 return;
4933 * We have to be careful, if called from sys_setpriority(),
4934 * the task might be in the middle of scheduling on another CPU.
4936 rq = task_rq_lock(p, &flags);
4937 update_rq_clock(rq);
4939 * The RT priorities are set via sched_setscheduler(), but we still
4940 * allow the 'normal' nice value to be set - but as expected
4941 * it wont have any effect on scheduling until the task is
4942 * SCHED_FIFO/SCHED_RR:
4944 if (task_has_rt_policy(p)) {
4945 p->static_prio = NICE_TO_PRIO(nice);
4946 goto out_unlock;
4948 on_rq = p->se.on_rq;
4949 if (on_rq)
4950 dequeue_task(rq, p, 0);
4952 p->static_prio = NICE_TO_PRIO(nice);
4953 set_load_weight(p);
4954 old_prio = p->prio;
4955 p->prio = effective_prio(p);
4956 delta = p->prio - old_prio;
4958 if (on_rq) {
4959 enqueue_task(rq, p, 0);
4961 * If the task increased its priority or is running and
4962 * lowered its priority, then reschedule its CPU:
4964 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4965 resched_task(rq->curr);
4967 out_unlock:
4968 task_rq_unlock(rq, &flags);
4970 EXPORT_SYMBOL(set_user_nice);
4973 * can_nice - check if a task can reduce its nice value
4974 * @p: task
4975 * @nice: nice value
4977 int can_nice(const struct task_struct *p, const int nice)
4979 /* convert nice value [19,-20] to rlimit style value [1,40] */
4980 int nice_rlim = 20 - nice;
4982 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4983 capable(CAP_SYS_NICE));
4986 #ifdef __ARCH_WANT_SYS_NICE
4989 * sys_nice - change the priority of the current process.
4990 * @increment: priority increment
4992 * sys_setpriority is a more generic, but much slower function that
4993 * does similar things.
4995 asmlinkage long sys_nice(int increment)
4997 long nice, retval;
5000 * Setpriority might change our priority at the same moment.
5001 * We don't have to worry. Conceptually one call occurs first
5002 * and we have a single winner.
5004 if (increment < -40)
5005 increment = -40;
5006 if (increment > 40)
5007 increment = 40;
5009 nice = PRIO_TO_NICE(current->static_prio) + increment;
5010 if (nice < -20)
5011 nice = -20;
5012 if (nice > 19)
5013 nice = 19;
5015 if (increment < 0 && !can_nice(current, nice))
5016 return -EPERM;
5018 retval = security_task_setnice(current, nice);
5019 if (retval)
5020 return retval;
5022 set_user_nice(current, nice);
5023 return 0;
5026 #endif
5029 * task_prio - return the priority value of a given task.
5030 * @p: the task in question.
5032 * This is the priority value as seen by users in /proc.
5033 * RT tasks are offset by -200. Normal tasks are centered
5034 * around 0, value goes from -16 to +15.
5036 int task_prio(const struct task_struct *p)
5038 return p->prio - MAX_RT_PRIO;
5042 * task_nice - return the nice value of a given task.
5043 * @p: the task in question.
5045 int task_nice(const struct task_struct *p)
5047 return TASK_NICE(p);
5049 EXPORT_SYMBOL(task_nice);
5052 * idle_cpu - is a given cpu idle currently?
5053 * @cpu: the processor in question.
5055 int idle_cpu(int cpu)
5057 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
5061 * idle_task - return the idle task for a given cpu.
5062 * @cpu: the processor in question.
5064 struct task_struct *idle_task(int cpu)
5066 return cpu_rq(cpu)->idle;
5070 * find_process_by_pid - find a process with a matching PID value.
5071 * @pid: the pid in question.
5073 static struct task_struct *find_process_by_pid(pid_t pid)
5075 return pid ? find_task_by_vpid(pid) : current;
5078 /* Actually do priority change: must hold rq lock. */
5079 static void
5080 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
5082 BUG_ON(p->se.on_rq);
5084 p->policy = policy;
5085 switch (p->policy) {
5086 case SCHED_NORMAL:
5087 case SCHED_BATCH:
5088 case SCHED_IDLE:
5089 p->sched_class = &fair_sched_class;
5090 break;
5091 case SCHED_FIFO:
5092 case SCHED_RR:
5093 p->sched_class = &rt_sched_class;
5094 break;
5097 p->rt_priority = prio;
5098 p->normal_prio = normal_prio(p);
5099 /* we are holding p->pi_lock already */
5100 p->prio = rt_mutex_getprio(p);
5101 set_load_weight(p);
5104 static int __sched_setscheduler(struct task_struct *p, int policy,
5105 struct sched_param *param, bool user)
5107 int retval, oldprio, oldpolicy = -1, on_rq, running;
5108 unsigned long flags;
5109 const struct sched_class *prev_class = p->sched_class;
5110 struct rq *rq;
5112 /* may grab non-irq protected spin_locks */
5113 BUG_ON(in_interrupt());
5114 recheck:
5115 /* double check policy once rq lock held */
5116 if (policy < 0)
5117 policy = oldpolicy = p->policy;
5118 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
5119 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5120 policy != SCHED_IDLE)
5121 return -EINVAL;
5123 * Valid priorities for SCHED_FIFO and SCHED_RR are
5124 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5125 * SCHED_BATCH and SCHED_IDLE is 0.
5127 if (param->sched_priority < 0 ||
5128 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
5129 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
5130 return -EINVAL;
5131 if (rt_policy(policy) != (param->sched_priority != 0))
5132 return -EINVAL;
5135 * Allow unprivileged RT tasks to decrease priority:
5137 if (user && !capable(CAP_SYS_NICE)) {
5138 if (rt_policy(policy)) {
5139 unsigned long rlim_rtprio;
5141 if (!lock_task_sighand(p, &flags))
5142 return -ESRCH;
5143 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
5144 unlock_task_sighand(p, &flags);
5146 /* can't set/change the rt policy */
5147 if (policy != p->policy && !rlim_rtprio)
5148 return -EPERM;
5150 /* can't increase priority */
5151 if (param->sched_priority > p->rt_priority &&
5152 param->sched_priority > rlim_rtprio)
5153 return -EPERM;
5156 * Like positive nice levels, dont allow tasks to
5157 * move out of SCHED_IDLE either:
5159 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
5160 return -EPERM;
5162 /* can't change other user's priorities */
5163 if ((current->euid != p->euid) &&
5164 (current->euid != p->uid))
5165 return -EPERM;
5168 if (user) {
5169 #ifdef CONFIG_RT_GROUP_SCHED
5171 * Do not allow realtime tasks into groups that have no runtime
5172 * assigned.
5174 if (rt_bandwidth_enabled() && rt_policy(policy) &&
5175 task_group(p)->rt_bandwidth.rt_runtime == 0)
5176 return -EPERM;
5177 #endif
5179 retval = security_task_setscheduler(p, policy, param);
5180 if (retval)
5181 return retval;
5185 * make sure no PI-waiters arrive (or leave) while we are
5186 * changing the priority of the task:
5188 spin_lock_irqsave(&p->pi_lock, flags);
5190 * To be able to change p->policy safely, the apropriate
5191 * runqueue lock must be held.
5193 rq = __task_rq_lock(p);
5194 /* recheck policy now with rq lock held */
5195 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5196 policy = oldpolicy = -1;
5197 __task_rq_unlock(rq);
5198 spin_unlock_irqrestore(&p->pi_lock, flags);
5199 goto recheck;
5201 update_rq_clock(rq);
5202 on_rq = p->se.on_rq;
5203 running = task_current(rq, p);
5204 if (on_rq)
5205 deactivate_task(rq, p, 0);
5206 if (running)
5207 p->sched_class->put_prev_task(rq, p);
5209 oldprio = p->prio;
5210 __setscheduler(rq, p, policy, param->sched_priority);
5212 if (running)
5213 p->sched_class->set_curr_task(rq);
5214 if (on_rq) {
5215 activate_task(rq, p, 0);
5217 check_class_changed(rq, p, prev_class, oldprio, running);
5219 __task_rq_unlock(rq);
5220 spin_unlock_irqrestore(&p->pi_lock, flags);
5222 rt_mutex_adjust_pi(p);
5224 return 0;
5228 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5229 * @p: the task in question.
5230 * @policy: new policy.
5231 * @param: structure containing the new RT priority.
5233 * NOTE that the task may be already dead.
5235 int sched_setscheduler(struct task_struct *p, int policy,
5236 struct sched_param *param)
5238 return __sched_setscheduler(p, policy, param, true);
5240 EXPORT_SYMBOL_GPL(sched_setscheduler);
5243 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5244 * @p: the task in question.
5245 * @policy: new policy.
5246 * @param: structure containing the new RT priority.
5248 * Just like sched_setscheduler, only don't bother checking if the
5249 * current context has permission. For example, this is needed in
5250 * stop_machine(): we create temporary high priority worker threads,
5251 * but our caller might not have that capability.
5253 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5254 struct sched_param *param)
5256 return __sched_setscheduler(p, policy, param, false);
5259 static int
5260 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5262 struct sched_param lparam;
5263 struct task_struct *p;
5264 int retval;
5266 if (!param || pid < 0)
5267 return -EINVAL;
5268 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5269 return -EFAULT;
5271 rcu_read_lock();
5272 retval = -ESRCH;
5273 p = find_process_by_pid(pid);
5274 if (p != NULL)
5275 retval = sched_setscheduler(p, policy, &lparam);
5276 rcu_read_unlock();
5278 return retval;
5282 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5283 * @pid: the pid in question.
5284 * @policy: new policy.
5285 * @param: structure containing the new RT priority.
5287 asmlinkage long
5288 sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5290 /* negative values for policy are not valid */
5291 if (policy < 0)
5292 return -EINVAL;
5294 return do_sched_setscheduler(pid, policy, param);
5298 * sys_sched_setparam - set/change the RT priority of a thread
5299 * @pid: the pid in question.
5300 * @param: structure containing the new RT priority.
5302 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
5304 return do_sched_setscheduler(pid, -1, param);
5308 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5309 * @pid: the pid in question.
5311 asmlinkage long sys_sched_getscheduler(pid_t pid)
5313 struct task_struct *p;
5314 int retval;
5316 if (pid < 0)
5317 return -EINVAL;
5319 retval = -ESRCH;
5320 read_lock(&tasklist_lock);
5321 p = find_process_by_pid(pid);
5322 if (p) {
5323 retval = security_task_getscheduler(p);
5324 if (!retval)
5325 retval = p->policy;
5327 read_unlock(&tasklist_lock);
5328 return retval;
5332 * sys_sched_getscheduler - get the RT priority of a thread
5333 * @pid: the pid in question.
5334 * @param: structure containing the RT priority.
5336 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
5338 struct sched_param lp;
5339 struct task_struct *p;
5340 int retval;
5342 if (!param || pid < 0)
5343 return -EINVAL;
5345 read_lock(&tasklist_lock);
5346 p = find_process_by_pid(pid);
5347 retval = -ESRCH;
5348 if (!p)
5349 goto out_unlock;
5351 retval = security_task_getscheduler(p);
5352 if (retval)
5353 goto out_unlock;
5355 lp.sched_priority = p->rt_priority;
5356 read_unlock(&tasklist_lock);
5359 * This one might sleep, we cannot do it with a spinlock held ...
5361 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5363 return retval;
5365 out_unlock:
5366 read_unlock(&tasklist_lock);
5367 return retval;
5370 long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
5372 cpumask_t cpus_allowed;
5373 cpumask_t new_mask = *in_mask;
5374 struct task_struct *p;
5375 int retval;
5377 get_online_cpus();
5378 read_lock(&tasklist_lock);
5380 p = find_process_by_pid(pid);
5381 if (!p) {
5382 read_unlock(&tasklist_lock);
5383 put_online_cpus();
5384 return -ESRCH;
5388 * It is not safe to call set_cpus_allowed with the
5389 * tasklist_lock held. We will bump the task_struct's
5390 * usage count and then drop tasklist_lock.
5392 get_task_struct(p);
5393 read_unlock(&tasklist_lock);
5395 retval = -EPERM;
5396 if ((current->euid != p->euid) && (current->euid != p->uid) &&
5397 !capable(CAP_SYS_NICE))
5398 goto out_unlock;
5400 retval = security_task_setscheduler(p, 0, NULL);
5401 if (retval)
5402 goto out_unlock;
5404 cpuset_cpus_allowed(p, &cpus_allowed);
5405 cpus_and(new_mask, new_mask, cpus_allowed);
5406 again:
5407 retval = set_cpus_allowed_ptr(p, &new_mask);
5409 if (!retval) {
5410 cpuset_cpus_allowed(p, &cpus_allowed);
5411 if (!cpus_subset(new_mask, cpus_allowed)) {
5413 * We must have raced with a concurrent cpuset
5414 * update. Just reset the cpus_allowed to the
5415 * cpuset's cpus_allowed
5417 new_mask = cpus_allowed;
5418 goto again;
5421 out_unlock:
5422 put_task_struct(p);
5423 put_online_cpus();
5424 return retval;
5427 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5428 cpumask_t *new_mask)
5430 if (len < sizeof(cpumask_t)) {
5431 memset(new_mask, 0, sizeof(cpumask_t));
5432 } else if (len > sizeof(cpumask_t)) {
5433 len = sizeof(cpumask_t);
5435 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5439 * sys_sched_setaffinity - set the cpu affinity of a process
5440 * @pid: pid of the process
5441 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5442 * @user_mask_ptr: user-space pointer to the new cpu mask
5444 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
5445 unsigned long __user *user_mask_ptr)
5447 cpumask_t new_mask;
5448 int retval;
5450 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
5451 if (retval)
5452 return retval;
5454 return sched_setaffinity(pid, &new_mask);
5457 long sched_getaffinity(pid_t pid, cpumask_t *mask)
5459 struct task_struct *p;
5460 int retval;
5462 get_online_cpus();
5463 read_lock(&tasklist_lock);
5465 retval = -ESRCH;
5466 p = find_process_by_pid(pid);
5467 if (!p)
5468 goto out_unlock;
5470 retval = security_task_getscheduler(p);
5471 if (retval)
5472 goto out_unlock;
5474 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
5476 out_unlock:
5477 read_unlock(&tasklist_lock);
5478 put_online_cpus();
5480 return retval;
5484 * sys_sched_getaffinity - get the cpu affinity of a process
5485 * @pid: pid of the process
5486 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5487 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5489 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
5490 unsigned long __user *user_mask_ptr)
5492 int ret;
5493 cpumask_t mask;
5495 if (len < sizeof(cpumask_t))
5496 return -EINVAL;
5498 ret = sched_getaffinity(pid, &mask);
5499 if (ret < 0)
5500 return ret;
5502 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
5503 return -EFAULT;
5505 return sizeof(cpumask_t);
5509 * sys_sched_yield - yield the current processor to other threads.
5511 * This function yields the current CPU to other tasks. If there are no
5512 * other threads running on this CPU then this function will return.
5514 asmlinkage long sys_sched_yield(void)
5516 struct rq *rq = this_rq_lock();
5518 schedstat_inc(rq, yld_count);
5519 current->sched_class->yield_task(rq);
5522 * Since we are going to call schedule() anyway, there's
5523 * no need to preempt or enable interrupts:
5525 __release(rq->lock);
5526 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
5527 _raw_spin_unlock(&rq->lock);
5528 preempt_enable_no_resched();
5530 schedule();
5532 return 0;
5535 static void __cond_resched(void)
5537 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5538 __might_sleep(__FILE__, __LINE__);
5539 #endif
5541 * The BKS might be reacquired before we have dropped
5542 * PREEMPT_ACTIVE, which could trigger a second
5543 * cond_resched() call.
5545 do {
5546 add_preempt_count(PREEMPT_ACTIVE);
5547 schedule();
5548 sub_preempt_count(PREEMPT_ACTIVE);
5549 } while (need_resched());
5552 int __sched _cond_resched(void)
5554 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
5555 system_state == SYSTEM_RUNNING) {
5556 __cond_resched();
5557 return 1;
5559 return 0;
5561 EXPORT_SYMBOL(_cond_resched);
5564 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5565 * call schedule, and on return reacquire the lock.
5567 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5568 * operations here to prevent schedule() from being called twice (once via
5569 * spin_unlock(), once by hand).
5571 int cond_resched_lock(spinlock_t *lock)
5573 int resched = need_resched() && system_state == SYSTEM_RUNNING;
5574 int ret = 0;
5576 if (spin_needbreak(lock) || resched) {
5577 spin_unlock(lock);
5578 if (resched && need_resched())
5579 __cond_resched();
5580 else
5581 cpu_relax();
5582 ret = 1;
5583 spin_lock(lock);
5585 return ret;
5587 EXPORT_SYMBOL(cond_resched_lock);
5589 int __sched cond_resched_softirq(void)
5591 BUG_ON(!in_softirq());
5593 if (need_resched() && system_state == SYSTEM_RUNNING) {
5594 local_bh_enable();
5595 __cond_resched();
5596 local_bh_disable();
5597 return 1;
5599 return 0;
5601 EXPORT_SYMBOL(cond_resched_softirq);
5604 * yield - yield the current processor to other threads.
5606 * This is a shortcut for kernel-space yielding - it marks the
5607 * thread runnable and calls sys_sched_yield().
5609 void __sched yield(void)
5611 set_current_state(TASK_RUNNING);
5612 sys_sched_yield();
5614 EXPORT_SYMBOL(yield);
5617 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5618 * that process accounting knows that this is a task in IO wait state.
5620 * But don't do that if it is a deliberate, throttling IO wait (this task
5621 * has set its backing_dev_info: the queue against which it should throttle)
5623 void __sched io_schedule(void)
5625 struct rq *rq = &__raw_get_cpu_var(runqueues);
5627 delayacct_blkio_start();
5628 atomic_inc(&rq->nr_iowait);
5629 schedule();
5630 atomic_dec(&rq->nr_iowait);
5631 delayacct_blkio_end();
5633 EXPORT_SYMBOL(io_schedule);
5635 long __sched io_schedule_timeout(long timeout)
5637 struct rq *rq = &__raw_get_cpu_var(runqueues);
5638 long ret;
5640 delayacct_blkio_start();
5641 atomic_inc(&rq->nr_iowait);
5642 ret = schedule_timeout(timeout);
5643 atomic_dec(&rq->nr_iowait);
5644 delayacct_blkio_end();
5645 return ret;
5649 * sys_sched_get_priority_max - return maximum RT priority.
5650 * @policy: scheduling class.
5652 * this syscall returns the maximum rt_priority that can be used
5653 * by a given scheduling class.
5655 asmlinkage long sys_sched_get_priority_max(int policy)
5657 int ret = -EINVAL;
5659 switch (policy) {
5660 case SCHED_FIFO:
5661 case SCHED_RR:
5662 ret = MAX_USER_RT_PRIO-1;
5663 break;
5664 case SCHED_NORMAL:
5665 case SCHED_BATCH:
5666 case SCHED_IDLE:
5667 ret = 0;
5668 break;
5670 return ret;
5674 * sys_sched_get_priority_min - return minimum RT priority.
5675 * @policy: scheduling class.
5677 * this syscall returns the minimum rt_priority that can be used
5678 * by a given scheduling class.
5680 asmlinkage long sys_sched_get_priority_min(int policy)
5682 int ret = -EINVAL;
5684 switch (policy) {
5685 case SCHED_FIFO:
5686 case SCHED_RR:
5687 ret = 1;
5688 break;
5689 case SCHED_NORMAL:
5690 case SCHED_BATCH:
5691 case SCHED_IDLE:
5692 ret = 0;
5694 return ret;
5698 * sys_sched_rr_get_interval - return the default timeslice of a process.
5699 * @pid: pid of the process.
5700 * @interval: userspace pointer to the timeslice value.
5702 * this syscall writes the default timeslice value of a given process
5703 * into the user-space timespec buffer. A value of '0' means infinity.
5705 asmlinkage
5706 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
5708 struct task_struct *p;
5709 unsigned int time_slice;
5710 int retval;
5711 struct timespec t;
5713 if (pid < 0)
5714 return -EINVAL;
5716 retval = -ESRCH;
5717 read_lock(&tasklist_lock);
5718 p = find_process_by_pid(pid);
5719 if (!p)
5720 goto out_unlock;
5722 retval = security_task_getscheduler(p);
5723 if (retval)
5724 goto out_unlock;
5727 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5728 * tasks that are on an otherwise idle runqueue:
5730 time_slice = 0;
5731 if (p->policy == SCHED_RR) {
5732 time_slice = DEF_TIMESLICE;
5733 } else if (p->policy != SCHED_FIFO) {
5734 struct sched_entity *se = &p->se;
5735 unsigned long flags;
5736 struct rq *rq;
5738 rq = task_rq_lock(p, &flags);
5739 if (rq->cfs.load.weight)
5740 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
5741 task_rq_unlock(rq, &flags);
5743 read_unlock(&tasklist_lock);
5744 jiffies_to_timespec(time_slice, &t);
5745 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5746 return retval;
5748 out_unlock:
5749 read_unlock(&tasklist_lock);
5750 return retval;
5753 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5755 void sched_show_task(struct task_struct *p)
5757 unsigned long free = 0;
5758 unsigned state;
5760 state = p->state ? __ffs(p->state) + 1 : 0;
5761 printk(KERN_INFO "%-13.13s %c", p->comm,
5762 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5763 #if BITS_PER_LONG == 32
5764 if (state == TASK_RUNNING)
5765 printk(KERN_CONT " running ");
5766 else
5767 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5768 #else
5769 if (state == TASK_RUNNING)
5770 printk(KERN_CONT " running task ");
5771 else
5772 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5773 #endif
5774 #ifdef CONFIG_DEBUG_STACK_USAGE
5776 unsigned long *n = end_of_stack(p);
5777 while (!*n)
5778 n++;
5779 free = (unsigned long)n - (unsigned long)end_of_stack(p);
5781 #endif
5782 printk(KERN_CONT "%5lu %5d %6d\n", free,
5783 task_pid_nr(p), task_pid_nr(p->real_parent));
5785 show_stack(p, NULL);
5788 void show_state_filter(unsigned long state_filter)
5790 struct task_struct *g, *p;
5792 #if BITS_PER_LONG == 32
5793 printk(KERN_INFO
5794 " task PC stack pid father\n");
5795 #else
5796 printk(KERN_INFO
5797 " task PC stack pid father\n");
5798 #endif
5799 read_lock(&tasklist_lock);
5800 do_each_thread(g, p) {
5802 * reset the NMI-timeout, listing all files on a slow
5803 * console might take alot of time:
5805 touch_nmi_watchdog();
5806 if (!state_filter || (p->state & state_filter))
5807 sched_show_task(p);
5808 } while_each_thread(g, p);
5810 touch_all_softlockup_watchdogs();
5812 #ifdef CONFIG_SCHED_DEBUG
5813 sysrq_sched_debug_show();
5814 #endif
5815 read_unlock(&tasklist_lock);
5817 * Only show locks if all tasks are dumped:
5819 if (state_filter == -1)
5820 debug_show_all_locks();
5823 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5825 idle->sched_class = &idle_sched_class;
5829 * init_idle - set up an idle thread for a given CPU
5830 * @idle: task in question
5831 * @cpu: cpu the idle task belongs to
5833 * NOTE: this function does not set the idle thread's NEED_RESCHED
5834 * flag, to make booting more robust.
5836 void __cpuinit init_idle(struct task_struct *idle, int cpu)
5838 struct rq *rq = cpu_rq(cpu);
5839 unsigned long flags;
5841 __sched_fork(idle);
5842 idle->se.exec_start = sched_clock();
5844 idle->prio = idle->normal_prio = MAX_PRIO;
5845 idle->cpus_allowed = cpumask_of_cpu(cpu);
5846 __set_task_cpu(idle, cpu);
5848 spin_lock_irqsave(&rq->lock, flags);
5849 rq->curr = rq->idle = idle;
5850 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5851 idle->oncpu = 1;
5852 #endif
5853 spin_unlock_irqrestore(&rq->lock, flags);
5855 /* Set the preempt count _outside_ the spinlocks! */
5856 #if defined(CONFIG_PREEMPT)
5857 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5858 #else
5859 task_thread_info(idle)->preempt_count = 0;
5860 #endif
5862 * The idle tasks have their own, simple scheduling class:
5864 idle->sched_class = &idle_sched_class;
5868 * In a system that switches off the HZ timer nohz_cpu_mask
5869 * indicates which cpus entered this state. This is used
5870 * in the rcu update to wait only for active cpus. For system
5871 * which do not switch off the HZ timer nohz_cpu_mask should
5872 * always be CPU_MASK_NONE.
5874 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
5877 * Increase the granularity value when there are more CPUs,
5878 * because with more CPUs the 'effective latency' as visible
5879 * to users decreases. But the relationship is not linear,
5880 * so pick a second-best guess by going with the log2 of the
5881 * number of CPUs.
5883 * This idea comes from the SD scheduler of Con Kolivas:
5885 static inline void sched_init_granularity(void)
5887 unsigned int factor = 1 + ilog2(num_online_cpus());
5888 const unsigned long limit = 200000000;
5890 sysctl_sched_min_granularity *= factor;
5891 if (sysctl_sched_min_granularity > limit)
5892 sysctl_sched_min_granularity = limit;
5894 sysctl_sched_latency *= factor;
5895 if (sysctl_sched_latency > limit)
5896 sysctl_sched_latency = limit;
5898 sysctl_sched_wakeup_granularity *= factor;
5900 sysctl_sched_shares_ratelimit *= factor;
5903 #ifdef CONFIG_SMP
5905 * This is how migration works:
5907 * 1) we queue a struct migration_req structure in the source CPU's
5908 * runqueue and wake up that CPU's migration thread.
5909 * 2) we down() the locked semaphore => thread blocks.
5910 * 3) migration thread wakes up (implicitly it forces the migrated
5911 * thread off the CPU)
5912 * 4) it gets the migration request and checks whether the migrated
5913 * task is still in the wrong runqueue.
5914 * 5) if it's in the wrong runqueue then the migration thread removes
5915 * it and puts it into the right queue.
5916 * 6) migration thread up()s the semaphore.
5917 * 7) we wake up and the migration is done.
5921 * Change a given task's CPU affinity. Migrate the thread to a
5922 * proper CPU and schedule it away if the CPU it's executing on
5923 * is removed from the allowed bitmask.
5925 * NOTE: the caller must have a valid reference to the task, the
5926 * task must not exit() & deallocate itself prematurely. The
5927 * call is not atomic; no spinlocks may be held.
5929 int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
5931 struct migration_req req;
5932 unsigned long flags;
5933 struct rq *rq;
5934 int ret = 0;
5936 rq = task_rq_lock(p, &flags);
5937 if (!cpus_intersects(*new_mask, cpu_online_map)) {
5938 ret = -EINVAL;
5939 goto out;
5942 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5943 !cpus_equal(p->cpus_allowed, *new_mask))) {
5944 ret = -EINVAL;
5945 goto out;
5948 if (p->sched_class->set_cpus_allowed)
5949 p->sched_class->set_cpus_allowed(p, new_mask);
5950 else {
5951 p->cpus_allowed = *new_mask;
5952 p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
5955 /* Can the task run on the task's current CPU? If so, we're done */
5956 if (cpu_isset(task_cpu(p), *new_mask))
5957 goto out;
5959 if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
5960 /* Need help from migration thread: drop lock and wait. */
5961 task_rq_unlock(rq, &flags);
5962 wake_up_process(rq->migration_thread);
5963 wait_for_completion(&req.done);
5964 tlb_migrate_finish(p->mm);
5965 return 0;
5967 out:
5968 task_rq_unlock(rq, &flags);
5970 return ret;
5972 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
5975 * Move (not current) task off this cpu, onto dest cpu. We're doing
5976 * this because either it can't run here any more (set_cpus_allowed()
5977 * away from this CPU, or CPU going down), or because we're
5978 * attempting to rebalance this task on exec (sched_exec).
5980 * So we race with normal scheduler movements, but that's OK, as long
5981 * as the task is no longer on this CPU.
5983 * Returns non-zero if task was successfully migrated.
5985 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5987 struct rq *rq_dest, *rq_src;
5988 int ret = 0, on_rq;
5990 if (unlikely(!cpu_active(dest_cpu)))
5991 return ret;
5993 rq_src = cpu_rq(src_cpu);
5994 rq_dest = cpu_rq(dest_cpu);
5996 double_rq_lock(rq_src, rq_dest);
5997 /* Already moved. */
5998 if (task_cpu(p) != src_cpu)
5999 goto done;
6000 /* Affinity changed (again). */
6001 if (!cpu_isset(dest_cpu, p->cpus_allowed))
6002 goto fail;
6004 on_rq = p->se.on_rq;
6005 if (on_rq)
6006 deactivate_task(rq_src, p, 0);
6008 set_task_cpu(p, dest_cpu);
6009 if (on_rq) {
6010 activate_task(rq_dest, p, 0);
6011 check_preempt_curr(rq_dest, p, 0);
6013 done:
6014 ret = 1;
6015 fail:
6016 double_rq_unlock(rq_src, rq_dest);
6017 return ret;
6021 * migration_thread - this is a highprio system thread that performs
6022 * thread migration by bumping thread off CPU then 'pushing' onto
6023 * another runqueue.
6025 static int migration_thread(void *data)
6027 int cpu = (long)data;
6028 struct rq *rq;
6030 rq = cpu_rq(cpu);
6031 BUG_ON(rq->migration_thread != current);
6033 set_current_state(TASK_INTERRUPTIBLE);
6034 while (!kthread_should_stop()) {
6035 struct migration_req *req;
6036 struct list_head *head;
6038 spin_lock_irq(&rq->lock);
6040 if (cpu_is_offline(cpu)) {
6041 spin_unlock_irq(&rq->lock);
6042 goto wait_to_die;
6045 if (rq->active_balance) {
6046 active_load_balance(rq, cpu);
6047 rq->active_balance = 0;
6050 head = &rq->migration_queue;
6052 if (list_empty(head)) {
6053 spin_unlock_irq(&rq->lock);
6054 schedule();
6055 set_current_state(TASK_INTERRUPTIBLE);
6056 continue;
6058 req = list_entry(head->next, struct migration_req, list);
6059 list_del_init(head->next);
6061 spin_unlock(&rq->lock);
6062 __migrate_task(req->task, cpu, req->dest_cpu);
6063 local_irq_enable();
6065 complete(&req->done);
6067 __set_current_state(TASK_RUNNING);
6068 return 0;
6070 wait_to_die:
6071 /* Wait for kthread_stop */
6072 set_current_state(TASK_INTERRUPTIBLE);
6073 while (!kthread_should_stop()) {
6074 schedule();
6075 set_current_state(TASK_INTERRUPTIBLE);
6077 __set_current_state(TASK_RUNNING);
6078 return 0;
6081 #ifdef CONFIG_HOTPLUG_CPU
6083 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
6085 int ret;
6087 local_irq_disable();
6088 ret = __migrate_task(p, src_cpu, dest_cpu);
6089 local_irq_enable();
6090 return ret;
6094 * Figure out where task on dead CPU should go, use force if necessary.
6095 * NOTE: interrupts should be disabled by the caller
6097 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
6099 unsigned long flags;
6100 cpumask_t mask;
6101 struct rq *rq;
6102 int dest_cpu;
6104 do {
6105 /* On same node? */
6106 mask = node_to_cpumask(cpu_to_node(dead_cpu));
6107 cpus_and(mask, mask, p->cpus_allowed);
6108 dest_cpu = any_online_cpu(mask);
6110 /* On any allowed CPU? */
6111 if (dest_cpu >= nr_cpu_ids)
6112 dest_cpu = any_online_cpu(p->cpus_allowed);
6114 /* No more Mr. Nice Guy. */
6115 if (dest_cpu >= nr_cpu_ids) {
6116 cpumask_t cpus_allowed;
6118 cpuset_cpus_allowed_locked(p, &cpus_allowed);
6120 * Try to stay on the same cpuset, where the
6121 * current cpuset may be a subset of all cpus.
6122 * The cpuset_cpus_allowed_locked() variant of
6123 * cpuset_cpus_allowed() will not block. It must be
6124 * called within calls to cpuset_lock/cpuset_unlock.
6126 rq = task_rq_lock(p, &flags);
6127 p->cpus_allowed = cpus_allowed;
6128 dest_cpu = any_online_cpu(p->cpus_allowed);
6129 task_rq_unlock(rq, &flags);
6132 * Don't tell them about moving exiting tasks or
6133 * kernel threads (both mm NULL), since they never
6134 * leave kernel.
6136 if (p->mm && printk_ratelimit()) {
6137 printk(KERN_INFO "process %d (%s) no "
6138 "longer affine to cpu%d\n",
6139 task_pid_nr(p), p->comm, dead_cpu);
6142 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
6146 * While a dead CPU has no uninterruptible tasks queued at this point,
6147 * it might still have a nonzero ->nr_uninterruptible counter, because
6148 * for performance reasons the counter is not stricly tracking tasks to
6149 * their home CPUs. So we just add the counter to another CPU's counter,
6150 * to keep the global sum constant after CPU-down:
6152 static void migrate_nr_uninterruptible(struct rq *rq_src)
6154 struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
6155 unsigned long flags;
6157 local_irq_save(flags);
6158 double_rq_lock(rq_src, rq_dest);
6159 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6160 rq_src->nr_uninterruptible = 0;
6161 double_rq_unlock(rq_src, rq_dest);
6162 local_irq_restore(flags);
6165 /* Run through task list and migrate tasks from the dead cpu. */
6166 static void migrate_live_tasks(int src_cpu)
6168 struct task_struct *p, *t;
6170 read_lock(&tasklist_lock);
6172 do_each_thread(t, p) {
6173 if (p == current)
6174 continue;
6176 if (task_cpu(p) == src_cpu)
6177 move_task_off_dead_cpu(src_cpu, p);
6178 } while_each_thread(t, p);
6180 read_unlock(&tasklist_lock);
6184 * Schedules idle task to be the next runnable task on current CPU.
6185 * It does so by boosting its priority to highest possible.
6186 * Used by CPU offline code.
6188 void sched_idle_next(void)
6190 int this_cpu = smp_processor_id();
6191 struct rq *rq = cpu_rq(this_cpu);
6192 struct task_struct *p = rq->idle;
6193 unsigned long flags;
6195 /* cpu has to be offline */
6196 BUG_ON(cpu_online(this_cpu));
6199 * Strictly not necessary since rest of the CPUs are stopped by now
6200 * and interrupts disabled on the current cpu.
6202 spin_lock_irqsave(&rq->lock, flags);
6204 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6206 update_rq_clock(rq);
6207 activate_task(rq, p, 0);
6209 spin_unlock_irqrestore(&rq->lock, flags);
6213 * Ensures that the idle task is using init_mm right before its cpu goes
6214 * offline.
6216 void idle_task_exit(void)
6218 struct mm_struct *mm = current->active_mm;
6220 BUG_ON(cpu_online(smp_processor_id()));
6222 if (mm != &init_mm)
6223 switch_mm(mm, &init_mm, current);
6224 mmdrop(mm);
6227 /* called under rq->lock with disabled interrupts */
6228 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
6230 struct rq *rq = cpu_rq(dead_cpu);
6232 /* Must be exiting, otherwise would be on tasklist. */
6233 BUG_ON(!p->exit_state);
6235 /* Cannot have done final schedule yet: would have vanished. */
6236 BUG_ON(p->state == TASK_DEAD);
6238 get_task_struct(p);
6241 * Drop lock around migration; if someone else moves it,
6242 * that's OK. No task can be added to this CPU, so iteration is
6243 * fine.
6245 spin_unlock_irq(&rq->lock);
6246 move_task_off_dead_cpu(dead_cpu, p);
6247 spin_lock_irq(&rq->lock);
6249 put_task_struct(p);
6252 /* release_task() removes task from tasklist, so we won't find dead tasks. */
6253 static void migrate_dead_tasks(unsigned int dead_cpu)
6255 struct rq *rq = cpu_rq(dead_cpu);
6256 struct task_struct *next;
6258 for ( ; ; ) {
6259 if (!rq->nr_running)
6260 break;
6261 update_rq_clock(rq);
6262 next = pick_next_task(rq, rq->curr);
6263 if (!next)
6264 break;
6265 next->sched_class->put_prev_task(rq, next);
6266 migrate_dead(dead_cpu, next);
6270 #endif /* CONFIG_HOTPLUG_CPU */
6272 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6274 static struct ctl_table sd_ctl_dir[] = {
6276 .procname = "sched_domain",
6277 .mode = 0555,
6279 {0, },
6282 static struct ctl_table sd_ctl_root[] = {
6284 .ctl_name = CTL_KERN,
6285 .procname = "kernel",
6286 .mode = 0555,
6287 .child = sd_ctl_dir,
6289 {0, },
6292 static struct ctl_table *sd_alloc_ctl_entry(int n)
6294 struct ctl_table *entry =
6295 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6297 return entry;
6300 static void sd_free_ctl_entry(struct ctl_table **tablep)
6302 struct ctl_table *entry;
6305 * In the intermediate directories, both the child directory and
6306 * procname are dynamically allocated and could fail but the mode
6307 * will always be set. In the lowest directory the names are
6308 * static strings and all have proc handlers.
6310 for (entry = *tablep; entry->mode; entry++) {
6311 if (entry->child)
6312 sd_free_ctl_entry(&entry->child);
6313 if (entry->proc_handler == NULL)
6314 kfree(entry->procname);
6317 kfree(*tablep);
6318 *tablep = NULL;
6321 static void
6322 set_table_entry(struct ctl_table *entry,
6323 const char *procname, void *data, int maxlen,
6324 mode_t mode, proc_handler *proc_handler)
6326 entry->procname = procname;
6327 entry->data = data;
6328 entry->maxlen = maxlen;
6329 entry->mode = mode;
6330 entry->proc_handler = proc_handler;
6333 static struct ctl_table *
6334 sd_alloc_ctl_domain_table(struct sched_domain *sd)
6336 struct ctl_table *table = sd_alloc_ctl_entry(13);
6338 if (table == NULL)
6339 return NULL;
6341 set_table_entry(&table[0], "min_interval", &sd->min_interval,
6342 sizeof(long), 0644, proc_doulongvec_minmax);
6343 set_table_entry(&table[1], "max_interval", &sd->max_interval,
6344 sizeof(long), 0644, proc_doulongvec_minmax);
6345 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6346 sizeof(int), 0644, proc_dointvec_minmax);
6347 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6348 sizeof(int), 0644, proc_dointvec_minmax);
6349 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6350 sizeof(int), 0644, proc_dointvec_minmax);
6351 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6352 sizeof(int), 0644, proc_dointvec_minmax);
6353 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6354 sizeof(int), 0644, proc_dointvec_minmax);
6355 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6356 sizeof(int), 0644, proc_dointvec_minmax);
6357 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6358 sizeof(int), 0644, proc_dointvec_minmax);
6359 set_table_entry(&table[9], "cache_nice_tries",
6360 &sd->cache_nice_tries,
6361 sizeof(int), 0644, proc_dointvec_minmax);
6362 set_table_entry(&table[10], "flags", &sd->flags,
6363 sizeof(int), 0644, proc_dointvec_minmax);
6364 set_table_entry(&table[11], "name", sd->name,
6365 CORENAME_MAX_SIZE, 0444, proc_dostring);
6366 /* &table[12] is terminator */
6368 return table;
6371 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6373 struct ctl_table *entry, *table;
6374 struct sched_domain *sd;
6375 int domain_num = 0, i;
6376 char buf[32];
6378 for_each_domain(cpu, sd)
6379 domain_num++;
6380 entry = table = sd_alloc_ctl_entry(domain_num + 1);
6381 if (table == NULL)
6382 return NULL;
6384 i = 0;
6385 for_each_domain(cpu, sd) {
6386 snprintf(buf, 32, "domain%d", i);
6387 entry->procname = kstrdup(buf, GFP_KERNEL);
6388 entry->mode = 0555;
6389 entry->child = sd_alloc_ctl_domain_table(sd);
6390 entry++;
6391 i++;
6393 return table;
6396 static struct ctl_table_header *sd_sysctl_header;
6397 static void register_sched_domain_sysctl(void)
6399 int i, cpu_num = num_online_cpus();
6400 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6401 char buf[32];
6403 WARN_ON(sd_ctl_dir[0].child);
6404 sd_ctl_dir[0].child = entry;
6406 if (entry == NULL)
6407 return;
6409 for_each_online_cpu(i) {
6410 snprintf(buf, 32, "cpu%d", i);
6411 entry->procname = kstrdup(buf, GFP_KERNEL);
6412 entry->mode = 0555;
6413 entry->child = sd_alloc_ctl_cpu_table(i);
6414 entry++;
6417 WARN_ON(sd_sysctl_header);
6418 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6421 /* may be called multiple times per register */
6422 static void unregister_sched_domain_sysctl(void)
6424 if (sd_sysctl_header)
6425 unregister_sysctl_table(sd_sysctl_header);
6426 sd_sysctl_header = NULL;
6427 if (sd_ctl_dir[0].child)
6428 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6430 #else
6431 static void register_sched_domain_sysctl(void)
6434 static void unregister_sched_domain_sysctl(void)
6437 #endif
6439 static void set_rq_online(struct rq *rq)
6441 if (!rq->online) {
6442 const struct sched_class *class;
6444 cpu_set(rq->cpu, rq->rd->online);
6445 rq->online = 1;
6447 for_each_class(class) {
6448 if (class->rq_online)
6449 class->rq_online(rq);
6454 static void set_rq_offline(struct rq *rq)
6456 if (rq->online) {
6457 const struct sched_class *class;
6459 for_each_class(class) {
6460 if (class->rq_offline)
6461 class->rq_offline(rq);
6464 cpu_clear(rq->cpu, rq->rd->online);
6465 rq->online = 0;
6470 * migration_call - callback that gets triggered when a CPU is added.
6471 * Here we can start up the necessary migration thread for the new CPU.
6473 static int __cpuinit
6474 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
6476 struct task_struct *p;
6477 int cpu = (long)hcpu;
6478 unsigned long flags;
6479 struct rq *rq;
6481 switch (action) {
6483 case CPU_UP_PREPARE:
6484 case CPU_UP_PREPARE_FROZEN:
6485 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
6486 if (IS_ERR(p))
6487 return NOTIFY_BAD;
6488 kthread_bind(p, cpu);
6489 /* Must be high prio: stop_machine expects to yield to it. */
6490 rq = task_rq_lock(p, &flags);
6491 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6492 task_rq_unlock(rq, &flags);
6493 cpu_rq(cpu)->migration_thread = p;
6494 break;
6496 case CPU_ONLINE:
6497 case CPU_ONLINE_FROZEN:
6498 /* Strictly unnecessary, as first user will wake it. */
6499 wake_up_process(cpu_rq(cpu)->migration_thread);
6501 /* Update our root-domain */
6502 rq = cpu_rq(cpu);
6503 spin_lock_irqsave(&rq->lock, flags);
6504 if (rq->rd) {
6505 BUG_ON(!cpu_isset(cpu, rq->rd->span));
6507 set_rq_online(rq);
6509 spin_unlock_irqrestore(&rq->lock, flags);
6510 break;
6512 #ifdef CONFIG_HOTPLUG_CPU
6513 case CPU_UP_CANCELED:
6514 case CPU_UP_CANCELED_FROZEN:
6515 if (!cpu_rq(cpu)->migration_thread)
6516 break;
6517 /* Unbind it from offline cpu so it can run. Fall thru. */
6518 kthread_bind(cpu_rq(cpu)->migration_thread,
6519 any_online_cpu(cpu_online_map));
6520 kthread_stop(cpu_rq(cpu)->migration_thread);
6521 cpu_rq(cpu)->migration_thread = NULL;
6522 break;
6524 case CPU_DEAD:
6525 case CPU_DEAD_FROZEN:
6526 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
6527 migrate_live_tasks(cpu);
6528 rq = cpu_rq(cpu);
6529 kthread_stop(rq->migration_thread);
6530 rq->migration_thread = NULL;
6531 /* Idle task back to normal (off runqueue, low prio) */
6532 spin_lock_irq(&rq->lock);
6533 update_rq_clock(rq);
6534 deactivate_task(rq, rq->idle, 0);
6535 rq->idle->static_prio = MAX_PRIO;
6536 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
6537 rq->idle->sched_class = &idle_sched_class;
6538 migrate_dead_tasks(cpu);
6539 spin_unlock_irq(&rq->lock);
6540 cpuset_unlock();
6541 migrate_nr_uninterruptible(rq);
6542 BUG_ON(rq->nr_running != 0);
6545 * No need to migrate the tasks: it was best-effort if
6546 * they didn't take sched_hotcpu_mutex. Just wake up
6547 * the requestors.
6549 spin_lock_irq(&rq->lock);
6550 while (!list_empty(&rq->migration_queue)) {
6551 struct migration_req *req;
6553 req = list_entry(rq->migration_queue.next,
6554 struct migration_req, list);
6555 list_del_init(&req->list);
6556 complete(&req->done);
6558 spin_unlock_irq(&rq->lock);
6559 break;
6561 case CPU_DYING:
6562 case CPU_DYING_FROZEN:
6563 /* Update our root-domain */
6564 rq = cpu_rq(cpu);
6565 spin_lock_irqsave(&rq->lock, flags);
6566 if (rq->rd) {
6567 BUG_ON(!cpu_isset(cpu, rq->rd->span));
6568 set_rq_offline(rq);
6570 spin_unlock_irqrestore(&rq->lock, flags);
6571 break;
6572 #endif
6574 return NOTIFY_OK;
6577 /* Register at highest priority so that task migration (migrate_all_tasks)
6578 * happens before everything else.
6580 static struct notifier_block __cpuinitdata migration_notifier = {
6581 .notifier_call = migration_call,
6582 .priority = 10
6585 static int __init migration_init(void)
6587 void *cpu = (void *)(long)smp_processor_id();
6588 int err;
6590 /* Start one for the boot CPU: */
6591 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6592 BUG_ON(err == NOTIFY_BAD);
6593 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6594 register_cpu_notifier(&migration_notifier);
6596 return err;
6598 early_initcall(migration_init);
6599 #endif
6601 #ifdef CONFIG_SMP
6603 #ifdef CONFIG_SCHED_DEBUG
6605 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6606 cpumask_t *groupmask)
6608 struct sched_group *group = sd->groups;
6609 char str[256];
6611 cpulist_scnprintf(str, sizeof(str), sd->span);
6612 cpus_clear(*groupmask);
6614 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6616 if (!(sd->flags & SD_LOAD_BALANCE)) {
6617 printk("does not load-balance\n");
6618 if (sd->parent)
6619 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6620 " has parent");
6621 return -1;
6624 printk(KERN_CONT "span %s level %s\n", str, sd->name);
6626 if (!cpu_isset(cpu, sd->span)) {
6627 printk(KERN_ERR "ERROR: domain->span does not contain "
6628 "CPU%d\n", cpu);
6630 if (!cpu_isset(cpu, group->cpumask)) {
6631 printk(KERN_ERR "ERROR: domain->groups does not contain"
6632 " CPU%d\n", cpu);
6635 printk(KERN_DEBUG "%*s groups:", level + 1, "");
6636 do {
6637 if (!group) {
6638 printk("\n");
6639 printk(KERN_ERR "ERROR: group is NULL\n");
6640 break;
6643 if (!group->__cpu_power) {
6644 printk(KERN_CONT "\n");
6645 printk(KERN_ERR "ERROR: domain->cpu_power not "
6646 "set\n");
6647 break;
6650 if (!cpus_weight(group->cpumask)) {
6651 printk(KERN_CONT "\n");
6652 printk(KERN_ERR "ERROR: empty group\n");
6653 break;
6656 if (cpus_intersects(*groupmask, group->cpumask)) {
6657 printk(KERN_CONT "\n");
6658 printk(KERN_ERR "ERROR: repeated CPUs\n");
6659 break;
6662 cpus_or(*groupmask, *groupmask, group->cpumask);
6664 cpulist_scnprintf(str, sizeof(str), group->cpumask);
6665 printk(KERN_CONT " %s", str);
6667 group = group->next;
6668 } while (group != sd->groups);
6669 printk(KERN_CONT "\n");
6671 if (!cpus_equal(sd->span, *groupmask))
6672 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
6674 if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
6675 printk(KERN_ERR "ERROR: parent span is not a superset "
6676 "of domain->span\n");
6677 return 0;
6680 static void sched_domain_debug(struct sched_domain *sd, int cpu)
6682 cpumask_t *groupmask;
6683 int level = 0;
6685 if (!sd) {
6686 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6687 return;
6690 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6692 groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6693 if (!groupmask) {
6694 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6695 return;
6698 for (;;) {
6699 if (sched_domain_debug_one(sd, cpu, level, groupmask))
6700 break;
6701 level++;
6702 sd = sd->parent;
6703 if (!sd)
6704 break;
6706 kfree(groupmask);
6708 #else /* !CONFIG_SCHED_DEBUG */
6709 # define sched_domain_debug(sd, cpu) do { } while (0)
6710 #endif /* CONFIG_SCHED_DEBUG */
6712 static int sd_degenerate(struct sched_domain *sd)
6714 if (cpus_weight(sd->span) == 1)
6715 return 1;
6717 /* Following flags need at least 2 groups */
6718 if (sd->flags & (SD_LOAD_BALANCE |
6719 SD_BALANCE_NEWIDLE |
6720 SD_BALANCE_FORK |
6721 SD_BALANCE_EXEC |
6722 SD_SHARE_CPUPOWER |
6723 SD_SHARE_PKG_RESOURCES)) {
6724 if (sd->groups != sd->groups->next)
6725 return 0;
6728 /* Following flags don't use groups */
6729 if (sd->flags & (SD_WAKE_IDLE |
6730 SD_WAKE_AFFINE |
6731 SD_WAKE_BALANCE))
6732 return 0;
6734 return 1;
6737 static int
6738 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6740 unsigned long cflags = sd->flags, pflags = parent->flags;
6742 if (sd_degenerate(parent))
6743 return 1;
6745 if (!cpus_equal(sd->span, parent->span))
6746 return 0;
6748 /* Does parent contain flags not in child? */
6749 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6750 if (cflags & SD_WAKE_AFFINE)
6751 pflags &= ~SD_WAKE_BALANCE;
6752 /* Flags needing groups don't count if only 1 group in parent */
6753 if (parent->groups == parent->groups->next) {
6754 pflags &= ~(SD_LOAD_BALANCE |
6755 SD_BALANCE_NEWIDLE |
6756 SD_BALANCE_FORK |
6757 SD_BALANCE_EXEC |
6758 SD_SHARE_CPUPOWER |
6759 SD_SHARE_PKG_RESOURCES);
6761 if (~cflags & pflags)
6762 return 0;
6764 return 1;
6767 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6769 unsigned long flags;
6771 spin_lock_irqsave(&rq->lock, flags);
6773 if (rq->rd) {
6774 struct root_domain *old_rd = rq->rd;
6776 if (cpu_isset(rq->cpu, old_rd->online))
6777 set_rq_offline(rq);
6779 cpu_clear(rq->cpu, old_rd->span);
6781 if (atomic_dec_and_test(&old_rd->refcount))
6782 kfree(old_rd);
6785 atomic_inc(&rd->refcount);
6786 rq->rd = rd;
6788 cpu_set(rq->cpu, rd->span);
6789 if (cpu_isset(rq->cpu, cpu_online_map))
6790 set_rq_online(rq);
6792 spin_unlock_irqrestore(&rq->lock, flags);
6795 static void init_rootdomain(struct root_domain *rd)
6797 memset(rd, 0, sizeof(*rd));
6799 cpus_clear(rd->span);
6800 cpus_clear(rd->online);
6802 cpupri_init(&rd->cpupri);
6805 static void init_defrootdomain(void)
6807 init_rootdomain(&def_root_domain);
6808 atomic_set(&def_root_domain.refcount, 1);
6811 static struct root_domain *alloc_rootdomain(void)
6813 struct root_domain *rd;
6815 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6816 if (!rd)
6817 return NULL;
6819 init_rootdomain(rd);
6821 return rd;
6825 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6826 * hold the hotplug lock.
6828 static void
6829 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6831 struct rq *rq = cpu_rq(cpu);
6832 struct sched_domain *tmp;
6834 /* Remove the sched domains which do not contribute to scheduling. */
6835 for (tmp = sd; tmp; tmp = tmp->parent) {
6836 struct sched_domain *parent = tmp->parent;
6837 if (!parent)
6838 break;
6839 if (sd_parent_degenerate(tmp, parent)) {
6840 tmp->parent = parent->parent;
6841 if (parent->parent)
6842 parent->parent->child = tmp;
6846 if (sd && sd_degenerate(sd)) {
6847 sd = sd->parent;
6848 if (sd)
6849 sd->child = NULL;
6852 sched_domain_debug(sd, cpu);
6854 rq_attach_root(rq, rd);
6855 rcu_assign_pointer(rq->sd, sd);
6858 /* cpus with isolated domains */
6859 static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
6861 /* Setup the mask of cpus configured for isolated domains */
6862 static int __init isolated_cpu_setup(char *str)
6864 static int __initdata ints[NR_CPUS];
6865 int i;
6867 str = get_options(str, ARRAY_SIZE(ints), ints);
6868 cpus_clear(cpu_isolated_map);
6869 for (i = 1; i <= ints[0]; i++)
6870 if (ints[i] < NR_CPUS)
6871 cpu_set(ints[i], cpu_isolated_map);
6872 return 1;
6875 __setup("isolcpus=", isolated_cpu_setup);
6878 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6879 * to a function which identifies what group(along with sched group) a CPU
6880 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
6881 * (due to the fact that we keep track of groups covered with a cpumask_t).
6883 * init_sched_build_groups will build a circular linked list of the groups
6884 * covered by the given span, and will set each group's ->cpumask correctly,
6885 * and ->cpu_power to 0.
6887 static void
6888 init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
6889 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
6890 struct sched_group **sg,
6891 cpumask_t *tmpmask),
6892 cpumask_t *covered, cpumask_t *tmpmask)
6894 struct sched_group *first = NULL, *last = NULL;
6895 int i;
6897 cpus_clear(*covered);
6899 for_each_cpu_mask_nr(i, *span) {
6900 struct sched_group *sg;
6901 int group = group_fn(i, cpu_map, &sg, tmpmask);
6902 int j;
6904 if (cpu_isset(i, *covered))
6905 continue;
6907 cpus_clear(sg->cpumask);
6908 sg->__cpu_power = 0;
6910 for_each_cpu_mask_nr(j, *span) {
6911 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
6912 continue;
6914 cpu_set(j, *covered);
6915 cpu_set(j, sg->cpumask);
6917 if (!first)
6918 first = sg;
6919 if (last)
6920 last->next = sg;
6921 last = sg;
6923 last->next = first;
6926 #define SD_NODES_PER_DOMAIN 16
6928 #ifdef CONFIG_NUMA
6931 * find_next_best_node - find the next node to include in a sched_domain
6932 * @node: node whose sched_domain we're building
6933 * @used_nodes: nodes already in the sched_domain
6935 * Find the next node to include in a given scheduling domain. Simply
6936 * finds the closest node not already in the @used_nodes map.
6938 * Should use nodemask_t.
6940 static int find_next_best_node(int node, nodemask_t *used_nodes)
6942 int i, n, val, min_val, best_node = 0;
6944 min_val = INT_MAX;
6946 for (i = 0; i < nr_node_ids; i++) {
6947 /* Start at @node */
6948 n = (node + i) % nr_node_ids;
6950 if (!nr_cpus_node(n))
6951 continue;
6953 /* Skip already used nodes */
6954 if (node_isset(n, *used_nodes))
6955 continue;
6957 /* Simple min distance search */
6958 val = node_distance(node, n);
6960 if (val < min_val) {
6961 min_val = val;
6962 best_node = n;
6966 node_set(best_node, *used_nodes);
6967 return best_node;
6971 * sched_domain_node_span - get a cpumask for a node's sched_domain
6972 * @node: node whose cpumask we're constructing
6973 * @span: resulting cpumask
6975 * Given a node, construct a good cpumask for its sched_domain to span. It
6976 * should be one that prevents unnecessary balancing, but also spreads tasks
6977 * out optimally.
6979 static void sched_domain_node_span(int node, cpumask_t *span)
6981 nodemask_t used_nodes;
6982 node_to_cpumask_ptr(nodemask, node);
6983 int i;
6985 cpus_clear(*span);
6986 nodes_clear(used_nodes);
6988 cpus_or(*span, *span, *nodemask);
6989 node_set(node, used_nodes);
6991 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6992 int next_node = find_next_best_node(node, &used_nodes);
6994 node_to_cpumask_ptr_next(nodemask, next_node);
6995 cpus_or(*span, *span, *nodemask);
6998 #endif /* CONFIG_NUMA */
7000 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
7003 * SMT sched-domains:
7005 #ifdef CONFIG_SCHED_SMT
7006 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
7007 static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
7009 static int
7010 cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7011 cpumask_t *unused)
7013 if (sg)
7014 *sg = &per_cpu(sched_group_cpus, cpu);
7015 return cpu;
7017 #endif /* CONFIG_SCHED_SMT */
7020 * multi-core sched-domains:
7022 #ifdef CONFIG_SCHED_MC
7023 static DEFINE_PER_CPU(struct sched_domain, core_domains);
7024 static DEFINE_PER_CPU(struct sched_group, sched_group_core);
7025 #endif /* CONFIG_SCHED_MC */
7027 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
7028 static int
7029 cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7030 cpumask_t *mask)
7032 int group;
7034 *mask = per_cpu(cpu_sibling_map, cpu);
7035 cpus_and(*mask, *mask, *cpu_map);
7036 group = first_cpu(*mask);
7037 if (sg)
7038 *sg = &per_cpu(sched_group_core, group);
7039 return group;
7041 #elif defined(CONFIG_SCHED_MC)
7042 static int
7043 cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7044 cpumask_t *unused)
7046 if (sg)
7047 *sg = &per_cpu(sched_group_core, cpu);
7048 return cpu;
7050 #endif
7052 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
7053 static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
7055 static int
7056 cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7057 cpumask_t *mask)
7059 int group;
7060 #ifdef CONFIG_SCHED_MC
7061 *mask = cpu_coregroup_map(cpu);
7062 cpus_and(*mask, *mask, *cpu_map);
7063 group = first_cpu(*mask);
7064 #elif defined(CONFIG_SCHED_SMT)
7065 *mask = per_cpu(cpu_sibling_map, cpu);
7066 cpus_and(*mask, *mask, *cpu_map);
7067 group = first_cpu(*mask);
7068 #else
7069 group = cpu;
7070 #endif
7071 if (sg)
7072 *sg = &per_cpu(sched_group_phys, group);
7073 return group;
7076 #ifdef CONFIG_NUMA
7078 * The init_sched_build_groups can't handle what we want to do with node
7079 * groups, so roll our own. Now each node has its own list of groups which
7080 * gets dynamically allocated.
7082 static DEFINE_PER_CPU(struct sched_domain, node_domains);
7083 static struct sched_group ***sched_group_nodes_bycpu;
7085 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
7086 static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
7088 static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
7089 struct sched_group **sg, cpumask_t *nodemask)
7091 int group;
7093 *nodemask = node_to_cpumask(cpu_to_node(cpu));
7094 cpus_and(*nodemask, *nodemask, *cpu_map);
7095 group = first_cpu(*nodemask);
7097 if (sg)
7098 *sg = &per_cpu(sched_group_allnodes, group);
7099 return group;
7102 static void init_numa_sched_groups_power(struct sched_group *group_head)
7104 struct sched_group *sg = group_head;
7105 int j;
7107 if (!sg)
7108 return;
7109 do {
7110 for_each_cpu_mask_nr(j, sg->cpumask) {
7111 struct sched_domain *sd;
7113 sd = &per_cpu(phys_domains, j);
7114 if (j != first_cpu(sd->groups->cpumask)) {
7116 * Only add "power" once for each
7117 * physical package.
7119 continue;
7122 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
7124 sg = sg->next;
7125 } while (sg != group_head);
7127 #endif /* CONFIG_NUMA */
7129 #ifdef CONFIG_NUMA
7130 /* Free memory allocated for various sched_group structures */
7131 static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
7133 int cpu, i;
7135 for_each_cpu_mask_nr(cpu, *cpu_map) {
7136 struct sched_group **sched_group_nodes
7137 = sched_group_nodes_bycpu[cpu];
7139 if (!sched_group_nodes)
7140 continue;
7142 for (i = 0; i < nr_node_ids; i++) {
7143 struct sched_group *oldsg, *sg = sched_group_nodes[i];
7145 *nodemask = node_to_cpumask(i);
7146 cpus_and(*nodemask, *nodemask, *cpu_map);
7147 if (cpus_empty(*nodemask))
7148 continue;
7150 if (sg == NULL)
7151 continue;
7152 sg = sg->next;
7153 next_sg:
7154 oldsg = sg;
7155 sg = sg->next;
7156 kfree(oldsg);
7157 if (oldsg != sched_group_nodes[i])
7158 goto next_sg;
7160 kfree(sched_group_nodes);
7161 sched_group_nodes_bycpu[cpu] = NULL;
7164 #else /* !CONFIG_NUMA */
7165 static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
7168 #endif /* CONFIG_NUMA */
7171 * Initialize sched groups cpu_power.
7173 * cpu_power indicates the capacity of sched group, which is used while
7174 * distributing the load between different sched groups in a sched domain.
7175 * Typically cpu_power for all the groups in a sched domain will be same unless
7176 * there are asymmetries in the topology. If there are asymmetries, group
7177 * having more cpu_power will pickup more load compared to the group having
7178 * less cpu_power.
7180 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
7181 * the maximum number of tasks a group can handle in the presence of other idle
7182 * or lightly loaded groups in the same sched domain.
7184 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7186 struct sched_domain *child;
7187 struct sched_group *group;
7189 WARN_ON(!sd || !sd->groups);
7191 if (cpu != first_cpu(sd->groups->cpumask))
7192 return;
7194 child = sd->child;
7196 sd->groups->__cpu_power = 0;
7199 * For perf policy, if the groups in child domain share resources
7200 * (for example cores sharing some portions of the cache hierarchy
7201 * or SMT), then set this domain groups cpu_power such that each group
7202 * can handle only one task, when there are other idle groups in the
7203 * same sched domain.
7205 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
7206 (child->flags &
7207 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
7208 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
7209 return;
7213 * add cpu_power of each child group to this groups cpu_power
7215 group = child->groups;
7216 do {
7217 sg_inc_cpu_power(sd->groups, group->__cpu_power);
7218 group = group->next;
7219 } while (group != child->groups);
7223 * Initializers for schedule domains
7224 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7227 #ifdef CONFIG_SCHED_DEBUG
7228 # define SD_INIT_NAME(sd, type) sd->name = #type
7229 #else
7230 # define SD_INIT_NAME(sd, type) do { } while (0)
7231 #endif
7233 #define SD_INIT(sd, type) sd_init_##type(sd)
7235 #define SD_INIT_FUNC(type) \
7236 static noinline void sd_init_##type(struct sched_domain *sd) \
7238 memset(sd, 0, sizeof(*sd)); \
7239 *sd = SD_##type##_INIT; \
7240 sd->level = SD_LV_##type; \
7241 SD_INIT_NAME(sd, type); \
7244 SD_INIT_FUNC(CPU)
7245 #ifdef CONFIG_NUMA
7246 SD_INIT_FUNC(ALLNODES)
7247 SD_INIT_FUNC(NODE)
7248 #endif
7249 #ifdef CONFIG_SCHED_SMT
7250 SD_INIT_FUNC(SIBLING)
7251 #endif
7252 #ifdef CONFIG_SCHED_MC
7253 SD_INIT_FUNC(MC)
7254 #endif
7257 * To minimize stack usage kmalloc room for cpumasks and share the
7258 * space as the usage in build_sched_domains() dictates. Used only
7259 * if the amount of space is significant.
7261 struct allmasks {
7262 cpumask_t tmpmask; /* make this one first */
7263 union {
7264 cpumask_t nodemask;
7265 cpumask_t this_sibling_map;
7266 cpumask_t this_core_map;
7268 cpumask_t send_covered;
7270 #ifdef CONFIG_NUMA
7271 cpumask_t domainspan;
7272 cpumask_t covered;
7273 cpumask_t notcovered;
7274 #endif
7277 #if NR_CPUS > 128
7278 #define SCHED_CPUMASK_ALLOC 1
7279 #define SCHED_CPUMASK_FREE(v) kfree(v)
7280 #define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
7281 #else
7282 #define SCHED_CPUMASK_ALLOC 0
7283 #define SCHED_CPUMASK_FREE(v)
7284 #define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
7285 #endif
7287 #define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
7288 ((unsigned long)(a) + offsetof(struct allmasks, v))
7290 static int default_relax_domain_level = -1;
7292 static int __init setup_relax_domain_level(char *str)
7294 unsigned long val;
7296 val = simple_strtoul(str, NULL, 0);
7297 if (val < SD_LV_MAX)
7298 default_relax_domain_level = val;
7300 return 1;
7302 __setup("relax_domain_level=", setup_relax_domain_level);
7304 static void set_domain_attribute(struct sched_domain *sd,
7305 struct sched_domain_attr *attr)
7307 int request;
7309 if (!attr || attr->relax_domain_level < 0) {
7310 if (default_relax_domain_level < 0)
7311 return;
7312 else
7313 request = default_relax_domain_level;
7314 } else
7315 request = attr->relax_domain_level;
7316 if (request < sd->level) {
7317 /* turn off idle balance on this domain */
7318 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
7319 } else {
7320 /* turn on idle balance on this domain */
7321 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
7326 * Build sched domains for a given set of cpus and attach the sched domains
7327 * to the individual cpus
7329 static int __build_sched_domains(const cpumask_t *cpu_map,
7330 struct sched_domain_attr *attr)
7332 int i;
7333 struct root_domain *rd;
7334 SCHED_CPUMASK_DECLARE(allmasks);
7335 cpumask_t *tmpmask;
7336 #ifdef CONFIG_NUMA
7337 struct sched_group **sched_group_nodes = NULL;
7338 int sd_allnodes = 0;
7341 * Allocate the per-node list of sched groups
7343 sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
7344 GFP_KERNEL);
7345 if (!sched_group_nodes) {
7346 printk(KERN_WARNING "Can not alloc sched group node list\n");
7347 return -ENOMEM;
7349 #endif
7351 rd = alloc_rootdomain();
7352 if (!rd) {
7353 printk(KERN_WARNING "Cannot alloc root domain\n");
7354 #ifdef CONFIG_NUMA
7355 kfree(sched_group_nodes);
7356 #endif
7357 return -ENOMEM;
7360 #if SCHED_CPUMASK_ALLOC
7361 /* get space for all scratch cpumask variables */
7362 allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
7363 if (!allmasks) {
7364 printk(KERN_WARNING "Cannot alloc cpumask array\n");
7365 kfree(rd);
7366 #ifdef CONFIG_NUMA
7367 kfree(sched_group_nodes);
7368 #endif
7369 return -ENOMEM;
7371 #endif
7372 tmpmask = (cpumask_t *)allmasks;
7375 #ifdef CONFIG_NUMA
7376 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
7377 #endif
7380 * Set up domains for cpus specified by the cpu_map.
7382 for_each_cpu_mask_nr(i, *cpu_map) {
7383 struct sched_domain *sd = NULL, *p;
7384 SCHED_CPUMASK_VAR(nodemask, allmasks);
7386 *nodemask = node_to_cpumask(cpu_to_node(i));
7387 cpus_and(*nodemask, *nodemask, *cpu_map);
7389 #ifdef CONFIG_NUMA
7390 if (cpus_weight(*cpu_map) >
7391 SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
7392 sd = &per_cpu(allnodes_domains, i);
7393 SD_INIT(sd, ALLNODES);
7394 set_domain_attribute(sd, attr);
7395 sd->span = *cpu_map;
7396 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
7397 p = sd;
7398 sd_allnodes = 1;
7399 } else
7400 p = NULL;
7402 sd = &per_cpu(node_domains, i);
7403 SD_INIT(sd, NODE);
7404 set_domain_attribute(sd, attr);
7405 sched_domain_node_span(cpu_to_node(i), &sd->span);
7406 sd->parent = p;
7407 if (p)
7408 p->child = sd;
7409 cpus_and(sd->span, sd->span, *cpu_map);
7410 #endif
7412 p = sd;
7413 sd = &per_cpu(phys_domains, i);
7414 SD_INIT(sd, CPU);
7415 set_domain_attribute(sd, attr);
7416 sd->span = *nodemask;
7417 sd->parent = p;
7418 if (p)
7419 p->child = sd;
7420 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
7422 #ifdef CONFIG_SCHED_MC
7423 p = sd;
7424 sd = &per_cpu(core_domains, i);
7425 SD_INIT(sd, MC);
7426 set_domain_attribute(sd, attr);
7427 sd->span = cpu_coregroup_map(i);
7428 cpus_and(sd->span, sd->span, *cpu_map);
7429 sd->parent = p;
7430 p->child = sd;
7431 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
7432 #endif
7434 #ifdef CONFIG_SCHED_SMT
7435 p = sd;
7436 sd = &per_cpu(cpu_domains, i);
7437 SD_INIT(sd, SIBLING);
7438 set_domain_attribute(sd, attr);
7439 sd->span = per_cpu(cpu_sibling_map, i);
7440 cpus_and(sd->span, sd->span, *cpu_map);
7441 sd->parent = p;
7442 p->child = sd;
7443 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
7444 #endif
7447 #ifdef CONFIG_SCHED_SMT
7448 /* Set up CPU (sibling) groups */
7449 for_each_cpu_mask_nr(i, *cpu_map) {
7450 SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
7451 SCHED_CPUMASK_VAR(send_covered, allmasks);
7453 *this_sibling_map = per_cpu(cpu_sibling_map, i);
7454 cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
7455 if (i != first_cpu(*this_sibling_map))
7456 continue;
7458 init_sched_build_groups(this_sibling_map, cpu_map,
7459 &cpu_to_cpu_group,
7460 send_covered, tmpmask);
7462 #endif
7464 #ifdef CONFIG_SCHED_MC
7465 /* Set up multi-core groups */
7466 for_each_cpu_mask_nr(i, *cpu_map) {
7467 SCHED_CPUMASK_VAR(this_core_map, allmasks);
7468 SCHED_CPUMASK_VAR(send_covered, allmasks);
7470 *this_core_map = cpu_coregroup_map(i);
7471 cpus_and(*this_core_map, *this_core_map, *cpu_map);
7472 if (i != first_cpu(*this_core_map))
7473 continue;
7475 init_sched_build_groups(this_core_map, cpu_map,
7476 &cpu_to_core_group,
7477 send_covered, tmpmask);
7479 #endif
7481 /* Set up physical groups */
7482 for (i = 0; i < nr_node_ids; i++) {
7483 SCHED_CPUMASK_VAR(nodemask, allmasks);
7484 SCHED_CPUMASK_VAR(send_covered, allmasks);
7486 *nodemask = node_to_cpumask(i);
7487 cpus_and(*nodemask, *nodemask, *cpu_map);
7488 if (cpus_empty(*nodemask))
7489 continue;
7491 init_sched_build_groups(nodemask, cpu_map,
7492 &cpu_to_phys_group,
7493 send_covered, tmpmask);
7496 #ifdef CONFIG_NUMA
7497 /* Set up node groups */
7498 if (sd_allnodes) {
7499 SCHED_CPUMASK_VAR(send_covered, allmasks);
7501 init_sched_build_groups(cpu_map, cpu_map,
7502 &cpu_to_allnodes_group,
7503 send_covered, tmpmask);
7506 for (i = 0; i < nr_node_ids; i++) {
7507 /* Set up node groups */
7508 struct sched_group *sg, *prev;
7509 SCHED_CPUMASK_VAR(nodemask, allmasks);
7510 SCHED_CPUMASK_VAR(domainspan, allmasks);
7511 SCHED_CPUMASK_VAR(covered, allmasks);
7512 int j;
7514 *nodemask = node_to_cpumask(i);
7515 cpus_clear(*covered);
7517 cpus_and(*nodemask, *nodemask, *cpu_map);
7518 if (cpus_empty(*nodemask)) {
7519 sched_group_nodes[i] = NULL;
7520 continue;
7523 sched_domain_node_span(i, domainspan);
7524 cpus_and(*domainspan, *domainspan, *cpu_map);
7526 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
7527 if (!sg) {
7528 printk(KERN_WARNING "Can not alloc domain group for "
7529 "node %d\n", i);
7530 goto error;
7532 sched_group_nodes[i] = sg;
7533 for_each_cpu_mask_nr(j, *nodemask) {
7534 struct sched_domain *sd;
7536 sd = &per_cpu(node_domains, j);
7537 sd->groups = sg;
7539 sg->__cpu_power = 0;
7540 sg->cpumask = *nodemask;
7541 sg->next = sg;
7542 cpus_or(*covered, *covered, *nodemask);
7543 prev = sg;
7545 for (j = 0; j < nr_node_ids; j++) {
7546 SCHED_CPUMASK_VAR(notcovered, allmasks);
7547 int n = (i + j) % nr_node_ids;
7548 node_to_cpumask_ptr(pnodemask, n);
7550 cpus_complement(*notcovered, *covered);
7551 cpus_and(*tmpmask, *notcovered, *cpu_map);
7552 cpus_and(*tmpmask, *tmpmask, *domainspan);
7553 if (cpus_empty(*tmpmask))
7554 break;
7556 cpus_and(*tmpmask, *tmpmask, *pnodemask);
7557 if (cpus_empty(*tmpmask))
7558 continue;
7560 sg = kmalloc_node(sizeof(struct sched_group),
7561 GFP_KERNEL, i);
7562 if (!sg) {
7563 printk(KERN_WARNING
7564 "Can not alloc domain group for node %d\n", j);
7565 goto error;
7567 sg->__cpu_power = 0;
7568 sg->cpumask = *tmpmask;
7569 sg->next = prev->next;
7570 cpus_or(*covered, *covered, *tmpmask);
7571 prev->next = sg;
7572 prev = sg;
7575 #endif
7577 /* Calculate CPU power for physical packages and nodes */
7578 #ifdef CONFIG_SCHED_SMT
7579 for_each_cpu_mask_nr(i, *cpu_map) {
7580 struct sched_domain *sd = &per_cpu(cpu_domains, i);
7582 init_sched_groups_power(i, sd);
7584 #endif
7585 #ifdef CONFIG_SCHED_MC
7586 for_each_cpu_mask_nr(i, *cpu_map) {
7587 struct sched_domain *sd = &per_cpu(core_domains, i);
7589 init_sched_groups_power(i, sd);
7591 #endif
7593 for_each_cpu_mask_nr(i, *cpu_map) {
7594 struct sched_domain *sd = &per_cpu(phys_domains, i);
7596 init_sched_groups_power(i, sd);
7599 #ifdef CONFIG_NUMA
7600 for (i = 0; i < nr_node_ids; i++)
7601 init_numa_sched_groups_power(sched_group_nodes[i]);
7603 if (sd_allnodes) {
7604 struct sched_group *sg;
7606 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
7607 tmpmask);
7608 init_numa_sched_groups_power(sg);
7610 #endif
7612 /* Attach the domains */
7613 for_each_cpu_mask_nr(i, *cpu_map) {
7614 struct sched_domain *sd;
7615 #ifdef CONFIG_SCHED_SMT
7616 sd = &per_cpu(cpu_domains, i);
7617 #elif defined(CONFIG_SCHED_MC)
7618 sd = &per_cpu(core_domains, i);
7619 #else
7620 sd = &per_cpu(phys_domains, i);
7621 #endif
7622 cpu_attach_domain(sd, rd, i);
7625 SCHED_CPUMASK_FREE((void *)allmasks);
7626 return 0;
7628 #ifdef CONFIG_NUMA
7629 error:
7630 free_sched_groups(cpu_map, tmpmask);
7631 SCHED_CPUMASK_FREE((void *)allmasks);
7632 return -ENOMEM;
7633 #endif
7636 static int build_sched_domains(const cpumask_t *cpu_map)
7638 return __build_sched_domains(cpu_map, NULL);
7641 static cpumask_t *doms_cur; /* current sched domains */
7642 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
7643 static struct sched_domain_attr *dattr_cur;
7644 /* attribues of custom domains in 'doms_cur' */
7647 * Special case: If a kmalloc of a doms_cur partition (array of
7648 * cpumask_t) fails, then fallback to a single sched domain,
7649 * as determined by the single cpumask_t fallback_doms.
7651 static cpumask_t fallback_doms;
7653 void __attribute__((weak)) arch_update_cpu_topology(void)
7658 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7659 * For now this just excludes isolated cpus, but could be used to
7660 * exclude other special cases in the future.
7662 static int arch_init_sched_domains(const cpumask_t *cpu_map)
7664 int err;
7666 arch_update_cpu_topology();
7667 ndoms_cur = 1;
7668 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
7669 if (!doms_cur)
7670 doms_cur = &fallback_doms;
7671 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
7672 dattr_cur = NULL;
7673 err = build_sched_domains(doms_cur);
7674 register_sched_domain_sysctl();
7676 return err;
7679 static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
7680 cpumask_t *tmpmask)
7682 free_sched_groups(cpu_map, tmpmask);
7686 * Detach sched domains from a group of cpus specified in cpu_map
7687 * These cpus will now be attached to the NULL domain
7689 static void detach_destroy_domains(const cpumask_t *cpu_map)
7691 cpumask_t tmpmask;
7692 int i;
7694 for_each_cpu_mask_nr(i, *cpu_map)
7695 cpu_attach_domain(NULL, &def_root_domain, i);
7696 synchronize_sched();
7697 arch_destroy_sched_domains(cpu_map, &tmpmask);
7700 /* handle null as "default" */
7701 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7702 struct sched_domain_attr *new, int idx_new)
7704 struct sched_domain_attr tmp;
7706 /* fast path */
7707 if (!new && !cur)
7708 return 1;
7710 tmp = SD_ATTR_INIT;
7711 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7712 new ? (new + idx_new) : &tmp,
7713 sizeof(struct sched_domain_attr));
7717 * Partition sched domains as specified by the 'ndoms_new'
7718 * cpumasks in the array doms_new[] of cpumasks. This compares
7719 * doms_new[] to the current sched domain partitioning, doms_cur[].
7720 * It destroys each deleted domain and builds each new domain.
7722 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
7723 * The masks don't intersect (don't overlap.) We should setup one
7724 * sched domain for each mask. CPUs not in any of the cpumasks will
7725 * not be load balanced. If the same cpumask appears both in the
7726 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7727 * it as it is.
7729 * The passed in 'doms_new' should be kmalloc'd. This routine takes
7730 * ownership of it and will kfree it when done with it. If the caller
7731 * failed the kmalloc call, then it can pass in doms_new == NULL,
7732 * and partition_sched_domains() will fallback to the single partition
7733 * 'fallback_doms', it also forces the domains to be rebuilt.
7735 * If doms_new==NULL it will be replaced with cpu_online_map.
7736 * ndoms_new==0 is a special case for destroying existing domains.
7737 * It will not create the default domain.
7739 * Call with hotplug lock held
7741 void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
7742 struct sched_domain_attr *dattr_new)
7744 int i, j, n;
7746 mutex_lock(&sched_domains_mutex);
7748 /* always unregister in case we don't destroy any domains */
7749 unregister_sched_domain_sysctl();
7751 n = doms_new ? ndoms_new : 0;
7753 /* Destroy deleted domains */
7754 for (i = 0; i < ndoms_cur; i++) {
7755 for (j = 0; j < n; j++) {
7756 if (cpus_equal(doms_cur[i], doms_new[j])
7757 && dattrs_equal(dattr_cur, i, dattr_new, j))
7758 goto match1;
7760 /* no match - a current sched domain not in new doms_new[] */
7761 detach_destroy_domains(doms_cur + i);
7762 match1:
7766 if (doms_new == NULL) {
7767 ndoms_cur = 0;
7768 doms_new = &fallback_doms;
7769 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
7770 dattr_new = NULL;
7773 /* Build new domains */
7774 for (i = 0; i < ndoms_new; i++) {
7775 for (j = 0; j < ndoms_cur; j++) {
7776 if (cpus_equal(doms_new[i], doms_cur[j])
7777 && dattrs_equal(dattr_new, i, dattr_cur, j))
7778 goto match2;
7780 /* no match - add a new doms_new */
7781 __build_sched_domains(doms_new + i,
7782 dattr_new ? dattr_new + i : NULL);
7783 match2:
7787 /* Remember the new sched domains */
7788 if (doms_cur != &fallback_doms)
7789 kfree(doms_cur);
7790 kfree(dattr_cur); /* kfree(NULL) is safe */
7791 doms_cur = doms_new;
7792 dattr_cur = dattr_new;
7793 ndoms_cur = ndoms_new;
7795 register_sched_domain_sysctl();
7797 mutex_unlock(&sched_domains_mutex);
7800 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7801 int arch_reinit_sched_domains(void)
7803 get_online_cpus();
7805 /* Destroy domains first to force the rebuild */
7806 partition_sched_domains(0, NULL, NULL);
7808 rebuild_sched_domains();
7809 put_online_cpus();
7811 return 0;
7814 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7816 int ret;
7818 if (buf[0] != '0' && buf[0] != '1')
7819 return -EINVAL;
7821 if (smt)
7822 sched_smt_power_savings = (buf[0] == '1');
7823 else
7824 sched_mc_power_savings = (buf[0] == '1');
7826 ret = arch_reinit_sched_domains();
7828 return ret ? ret : count;
7831 #ifdef CONFIG_SCHED_MC
7832 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7833 char *page)
7835 return sprintf(page, "%u\n", sched_mc_power_savings);
7837 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7838 const char *buf, size_t count)
7840 return sched_power_savings_store(buf, count, 0);
7842 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7843 sched_mc_power_savings_show,
7844 sched_mc_power_savings_store);
7845 #endif
7847 #ifdef CONFIG_SCHED_SMT
7848 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7849 char *page)
7851 return sprintf(page, "%u\n", sched_smt_power_savings);
7853 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7854 const char *buf, size_t count)
7856 return sched_power_savings_store(buf, count, 1);
7858 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7859 sched_smt_power_savings_show,
7860 sched_smt_power_savings_store);
7861 #endif
7863 int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7865 int err = 0;
7867 #ifdef CONFIG_SCHED_SMT
7868 if (smt_capable())
7869 err = sysfs_create_file(&cls->kset.kobj,
7870 &attr_sched_smt_power_savings.attr);
7871 #endif
7872 #ifdef CONFIG_SCHED_MC
7873 if (!err && mc_capable())
7874 err = sysfs_create_file(&cls->kset.kobj,
7875 &attr_sched_mc_power_savings.attr);
7876 #endif
7877 return err;
7879 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7881 #ifndef CONFIG_CPUSETS
7883 * Add online and remove offline CPUs from the scheduler domains.
7884 * When cpusets are enabled they take over this function.
7886 static int update_sched_domains(struct notifier_block *nfb,
7887 unsigned long action, void *hcpu)
7889 switch (action) {
7890 case CPU_ONLINE:
7891 case CPU_ONLINE_FROZEN:
7892 case CPU_DEAD:
7893 case CPU_DEAD_FROZEN:
7894 partition_sched_domains(1, NULL, NULL);
7895 return NOTIFY_OK;
7897 default:
7898 return NOTIFY_DONE;
7901 #endif
7903 static int update_runtime(struct notifier_block *nfb,
7904 unsigned long action, void *hcpu)
7906 int cpu = (int)(long)hcpu;
7908 switch (action) {
7909 case CPU_DOWN_PREPARE:
7910 case CPU_DOWN_PREPARE_FROZEN:
7911 disable_runtime(cpu_rq(cpu));
7912 return NOTIFY_OK;
7914 case CPU_DOWN_FAILED:
7915 case CPU_DOWN_FAILED_FROZEN:
7916 case CPU_ONLINE:
7917 case CPU_ONLINE_FROZEN:
7918 enable_runtime(cpu_rq(cpu));
7919 return NOTIFY_OK;
7921 default:
7922 return NOTIFY_DONE;
7926 void __init sched_init_smp(void)
7928 cpumask_t non_isolated_cpus;
7930 #if defined(CONFIG_NUMA)
7931 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7932 GFP_KERNEL);
7933 BUG_ON(sched_group_nodes_bycpu == NULL);
7934 #endif
7935 get_online_cpus();
7936 mutex_lock(&sched_domains_mutex);
7937 arch_init_sched_domains(&cpu_online_map);
7938 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
7939 if (cpus_empty(non_isolated_cpus))
7940 cpu_set(smp_processor_id(), non_isolated_cpus);
7941 mutex_unlock(&sched_domains_mutex);
7942 put_online_cpus();
7944 #ifndef CONFIG_CPUSETS
7945 /* XXX: Theoretical race here - CPU may be hotplugged now */
7946 hotcpu_notifier(update_sched_domains, 0);
7947 #endif
7949 /* RT runtime code needs to handle some hotplug events */
7950 hotcpu_notifier(update_runtime, 0);
7952 init_hrtick();
7954 /* Move init over to a non-isolated CPU */
7955 if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
7956 BUG();
7957 sched_init_granularity();
7959 #else
7960 void __init sched_init_smp(void)
7962 sched_init_granularity();
7964 #endif /* CONFIG_SMP */
7966 int in_sched_functions(unsigned long addr)
7968 return in_lock_functions(addr) ||
7969 (addr >= (unsigned long)__sched_text_start
7970 && addr < (unsigned long)__sched_text_end);
7973 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
7975 cfs_rq->tasks_timeline = RB_ROOT;
7976 INIT_LIST_HEAD(&cfs_rq->tasks);
7977 #ifdef CONFIG_FAIR_GROUP_SCHED
7978 cfs_rq->rq = rq;
7979 #endif
7980 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7983 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7985 struct rt_prio_array *array;
7986 int i;
7988 array = &rt_rq->active;
7989 for (i = 0; i < MAX_RT_PRIO; i++) {
7990 INIT_LIST_HEAD(array->queue + i);
7991 __clear_bit(i, array->bitmap);
7993 /* delimiter for bitsearch: */
7994 __set_bit(MAX_RT_PRIO, array->bitmap);
7996 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
7997 rt_rq->highest_prio = MAX_RT_PRIO;
7998 #endif
7999 #ifdef CONFIG_SMP
8000 rt_rq->rt_nr_migratory = 0;
8001 rt_rq->overloaded = 0;
8002 #endif
8004 rt_rq->rt_time = 0;
8005 rt_rq->rt_throttled = 0;
8006 rt_rq->rt_runtime = 0;
8007 spin_lock_init(&rt_rq->rt_runtime_lock);
8009 #ifdef CONFIG_RT_GROUP_SCHED
8010 rt_rq->rt_nr_boosted = 0;
8011 rt_rq->rq = rq;
8012 #endif
8015 #ifdef CONFIG_FAIR_GROUP_SCHED
8016 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8017 struct sched_entity *se, int cpu, int add,
8018 struct sched_entity *parent)
8020 struct rq *rq = cpu_rq(cpu);
8021 tg->cfs_rq[cpu] = cfs_rq;
8022 init_cfs_rq(cfs_rq, rq);
8023 cfs_rq->tg = tg;
8024 if (add)
8025 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
8027 tg->se[cpu] = se;
8028 /* se could be NULL for init_task_group */
8029 if (!se)
8030 return;
8032 if (!parent)
8033 se->cfs_rq = &rq->cfs;
8034 else
8035 se->cfs_rq = parent->my_q;
8037 se->my_q = cfs_rq;
8038 se->load.weight = tg->shares;
8039 se->load.inv_weight = 0;
8040 se->parent = parent;
8042 #endif
8044 #ifdef CONFIG_RT_GROUP_SCHED
8045 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
8046 struct sched_rt_entity *rt_se, int cpu, int add,
8047 struct sched_rt_entity *parent)
8049 struct rq *rq = cpu_rq(cpu);
8051 tg->rt_rq[cpu] = rt_rq;
8052 init_rt_rq(rt_rq, rq);
8053 rt_rq->tg = tg;
8054 rt_rq->rt_se = rt_se;
8055 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
8056 if (add)
8057 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
8059 tg->rt_se[cpu] = rt_se;
8060 if (!rt_se)
8061 return;
8063 if (!parent)
8064 rt_se->rt_rq = &rq->rt;
8065 else
8066 rt_se->rt_rq = parent->my_q;
8068 rt_se->my_q = rt_rq;
8069 rt_se->parent = parent;
8070 INIT_LIST_HEAD(&rt_se->run_list);
8072 #endif
8074 void __init sched_init(void)
8076 int i, j;
8077 unsigned long alloc_size = 0, ptr;
8079 #ifdef CONFIG_FAIR_GROUP_SCHED
8080 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8081 #endif
8082 #ifdef CONFIG_RT_GROUP_SCHED
8083 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8084 #endif
8085 #ifdef CONFIG_USER_SCHED
8086 alloc_size *= 2;
8087 #endif
8089 * As sched_init() is called before page_alloc is setup,
8090 * we use alloc_bootmem().
8092 if (alloc_size) {
8093 ptr = (unsigned long)alloc_bootmem(alloc_size);
8095 #ifdef CONFIG_FAIR_GROUP_SCHED
8096 init_task_group.se = (struct sched_entity **)ptr;
8097 ptr += nr_cpu_ids * sizeof(void **);
8099 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
8100 ptr += nr_cpu_ids * sizeof(void **);
8102 #ifdef CONFIG_USER_SCHED
8103 root_task_group.se = (struct sched_entity **)ptr;
8104 ptr += nr_cpu_ids * sizeof(void **);
8106 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8107 ptr += nr_cpu_ids * sizeof(void **);
8108 #endif /* CONFIG_USER_SCHED */
8109 #endif /* CONFIG_FAIR_GROUP_SCHED */
8110 #ifdef CONFIG_RT_GROUP_SCHED
8111 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
8112 ptr += nr_cpu_ids * sizeof(void **);
8114 init_task_group.rt_rq = (struct rt_rq **)ptr;
8115 ptr += nr_cpu_ids * sizeof(void **);
8117 #ifdef CONFIG_USER_SCHED
8118 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8119 ptr += nr_cpu_ids * sizeof(void **);
8121 root_task_group.rt_rq = (struct rt_rq **)ptr;
8122 ptr += nr_cpu_ids * sizeof(void **);
8123 #endif /* CONFIG_USER_SCHED */
8124 #endif /* CONFIG_RT_GROUP_SCHED */
8127 #ifdef CONFIG_SMP
8128 init_defrootdomain();
8129 #endif
8131 init_rt_bandwidth(&def_rt_bandwidth,
8132 global_rt_period(), global_rt_runtime());
8134 #ifdef CONFIG_RT_GROUP_SCHED
8135 init_rt_bandwidth(&init_task_group.rt_bandwidth,
8136 global_rt_period(), global_rt_runtime());
8137 #ifdef CONFIG_USER_SCHED
8138 init_rt_bandwidth(&root_task_group.rt_bandwidth,
8139 global_rt_period(), RUNTIME_INF);
8140 #endif /* CONFIG_USER_SCHED */
8141 #endif /* CONFIG_RT_GROUP_SCHED */
8143 #ifdef CONFIG_GROUP_SCHED
8144 list_add(&init_task_group.list, &task_groups);
8145 INIT_LIST_HEAD(&init_task_group.children);
8147 #ifdef CONFIG_USER_SCHED
8148 INIT_LIST_HEAD(&root_task_group.children);
8149 init_task_group.parent = &root_task_group;
8150 list_add(&init_task_group.siblings, &root_task_group.children);
8151 #endif /* CONFIG_USER_SCHED */
8152 #endif /* CONFIG_GROUP_SCHED */
8154 for_each_possible_cpu(i) {
8155 struct rq *rq;
8157 rq = cpu_rq(i);
8158 spin_lock_init(&rq->lock);
8159 rq->nr_running = 0;
8160 init_cfs_rq(&rq->cfs, rq);
8161 init_rt_rq(&rq->rt, rq);
8162 #ifdef CONFIG_FAIR_GROUP_SCHED
8163 init_task_group.shares = init_task_group_load;
8164 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
8165 #ifdef CONFIG_CGROUP_SCHED
8167 * How much cpu bandwidth does init_task_group get?
8169 * In case of task-groups formed thr' the cgroup filesystem, it
8170 * gets 100% of the cpu resources in the system. This overall
8171 * system cpu resource is divided among the tasks of
8172 * init_task_group and its child task-groups in a fair manner,
8173 * based on each entity's (task or task-group's) weight
8174 * (se->load.weight).
8176 * In other words, if init_task_group has 10 tasks of weight
8177 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8178 * then A0's share of the cpu resource is:
8180 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8182 * We achieve this by letting init_task_group's tasks sit
8183 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
8185 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
8186 #elif defined CONFIG_USER_SCHED
8187 root_task_group.shares = NICE_0_LOAD;
8188 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
8190 * In case of task-groups formed thr' the user id of tasks,
8191 * init_task_group represents tasks belonging to root user.
8192 * Hence it forms a sibling of all subsequent groups formed.
8193 * In this case, init_task_group gets only a fraction of overall
8194 * system cpu resource, based on the weight assigned to root
8195 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
8196 * by letting tasks of init_task_group sit in a separate cfs_rq
8197 * (init_cfs_rq) and having one entity represent this group of
8198 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
8200 init_tg_cfs_entry(&init_task_group,
8201 &per_cpu(init_cfs_rq, i),
8202 &per_cpu(init_sched_entity, i), i, 1,
8203 root_task_group.se[i]);
8205 #endif
8206 #endif /* CONFIG_FAIR_GROUP_SCHED */
8208 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8209 #ifdef CONFIG_RT_GROUP_SCHED
8210 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
8211 #ifdef CONFIG_CGROUP_SCHED
8212 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
8213 #elif defined CONFIG_USER_SCHED
8214 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
8215 init_tg_rt_entry(&init_task_group,
8216 &per_cpu(init_rt_rq, i),
8217 &per_cpu(init_sched_rt_entity, i), i, 1,
8218 root_task_group.rt_se[i]);
8219 #endif
8220 #endif
8222 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8223 rq->cpu_load[j] = 0;
8224 #ifdef CONFIG_SMP
8225 rq->sd = NULL;
8226 rq->rd = NULL;
8227 rq->active_balance = 0;
8228 rq->next_balance = jiffies;
8229 rq->push_cpu = 0;
8230 rq->cpu = i;
8231 rq->online = 0;
8232 rq->migration_thread = NULL;
8233 INIT_LIST_HEAD(&rq->migration_queue);
8234 rq_attach_root(rq, &def_root_domain);
8235 #endif
8236 init_rq_hrtick(rq);
8237 atomic_set(&rq->nr_iowait, 0);
8240 set_load_weight(&init_task);
8242 #ifdef CONFIG_PREEMPT_NOTIFIERS
8243 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8244 #endif
8246 #ifdef CONFIG_SMP
8247 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8248 #endif
8250 #ifdef CONFIG_RT_MUTEXES
8251 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
8252 #endif
8255 * The boot idle thread does lazy MMU switching as well:
8257 atomic_inc(&init_mm.mm_count);
8258 enter_lazy_tlb(&init_mm, current);
8261 * Make us the idle thread. Technically, schedule() should not be
8262 * called from this thread, however somewhere below it might be,
8263 * but because we are the idle thread, we just pick up running again
8264 * when this runqueue becomes "idle".
8266 init_idle(current, smp_processor_id());
8268 * During early bootup we pretend to be a normal task:
8270 current->sched_class = &fair_sched_class;
8272 scheduler_running = 1;
8275 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8276 void __might_sleep(char *file, int line)
8278 #ifdef in_atomic
8279 static unsigned long prev_jiffy; /* ratelimiting */
8281 if ((!in_atomic() && !irqs_disabled()) ||
8282 system_state != SYSTEM_RUNNING || oops_in_progress)
8283 return;
8284 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8285 return;
8286 prev_jiffy = jiffies;
8288 printk(KERN_ERR
8289 "BUG: sleeping function called from invalid context at %s:%d\n",
8290 file, line);
8291 printk(KERN_ERR
8292 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8293 in_atomic(), irqs_disabled(),
8294 current->pid, current->comm);
8296 debug_show_held_locks(current);
8297 if (irqs_disabled())
8298 print_irqtrace_events(current);
8299 dump_stack();
8300 #endif
8302 EXPORT_SYMBOL(__might_sleep);
8303 #endif
8305 #ifdef CONFIG_MAGIC_SYSRQ
8306 static void normalize_task(struct rq *rq, struct task_struct *p)
8308 int on_rq;
8310 update_rq_clock(rq);
8311 on_rq = p->se.on_rq;
8312 if (on_rq)
8313 deactivate_task(rq, p, 0);
8314 __setscheduler(rq, p, SCHED_NORMAL, 0);
8315 if (on_rq) {
8316 activate_task(rq, p, 0);
8317 resched_task(rq->curr);
8321 void normalize_rt_tasks(void)
8323 struct task_struct *g, *p;
8324 unsigned long flags;
8325 struct rq *rq;
8327 read_lock_irqsave(&tasklist_lock, flags);
8328 do_each_thread(g, p) {
8330 * Only normalize user tasks:
8332 if (!p->mm)
8333 continue;
8335 p->se.exec_start = 0;
8336 #ifdef CONFIG_SCHEDSTATS
8337 p->se.wait_start = 0;
8338 p->se.sleep_start = 0;
8339 p->se.block_start = 0;
8340 #endif
8342 if (!rt_task(p)) {
8344 * Renice negative nice level userspace
8345 * tasks back to 0:
8347 if (TASK_NICE(p) < 0 && p->mm)
8348 set_user_nice(p, 0);
8349 continue;
8352 spin_lock(&p->pi_lock);
8353 rq = __task_rq_lock(p);
8355 normalize_task(rq, p);
8357 __task_rq_unlock(rq);
8358 spin_unlock(&p->pi_lock);
8359 } while_each_thread(g, p);
8361 read_unlock_irqrestore(&tasklist_lock, flags);
8364 #endif /* CONFIG_MAGIC_SYSRQ */
8366 #ifdef CONFIG_IA64
8368 * These functions are only useful for the IA64 MCA handling.
8370 * They can only be called when the whole system has been
8371 * stopped - every CPU needs to be quiescent, and no scheduling
8372 * activity can take place. Using them for anything else would
8373 * be a serious bug, and as a result, they aren't even visible
8374 * under any other configuration.
8378 * curr_task - return the current task for a given cpu.
8379 * @cpu: the processor in question.
8381 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8383 struct task_struct *curr_task(int cpu)
8385 return cpu_curr(cpu);
8389 * set_curr_task - set the current task for a given cpu.
8390 * @cpu: the processor in question.
8391 * @p: the task pointer to set.
8393 * Description: This function must only be used when non-maskable interrupts
8394 * are serviced on a separate stack. It allows the architecture to switch the
8395 * notion of the current task on a cpu in a non-blocking manner. This function
8396 * must be called with all CPU's synchronized, and interrupts disabled, the
8397 * and caller must save the original value of the current task (see
8398 * curr_task() above) and restore that value before reenabling interrupts and
8399 * re-starting the system.
8401 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8403 void set_curr_task(int cpu, struct task_struct *p)
8405 cpu_curr(cpu) = p;
8408 #endif
8410 #ifdef CONFIG_FAIR_GROUP_SCHED
8411 static void free_fair_sched_group(struct task_group *tg)
8413 int i;
8415 for_each_possible_cpu(i) {
8416 if (tg->cfs_rq)
8417 kfree(tg->cfs_rq[i]);
8418 if (tg->se)
8419 kfree(tg->se[i]);
8422 kfree(tg->cfs_rq);
8423 kfree(tg->se);
8426 static
8427 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8429 struct cfs_rq *cfs_rq;
8430 struct sched_entity *se;
8431 struct rq *rq;
8432 int i;
8434 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8435 if (!tg->cfs_rq)
8436 goto err;
8437 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8438 if (!tg->se)
8439 goto err;
8441 tg->shares = NICE_0_LOAD;
8443 for_each_possible_cpu(i) {
8444 rq = cpu_rq(i);
8446 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8447 GFP_KERNEL, cpu_to_node(i));
8448 if (!cfs_rq)
8449 goto err;
8451 se = kzalloc_node(sizeof(struct sched_entity),
8452 GFP_KERNEL, cpu_to_node(i));
8453 if (!se)
8454 goto err;
8456 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
8459 return 1;
8461 err:
8462 return 0;
8465 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8467 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8468 &cpu_rq(cpu)->leaf_cfs_rq_list);
8471 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8473 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8475 #else /* !CONFG_FAIR_GROUP_SCHED */
8476 static inline void free_fair_sched_group(struct task_group *tg)
8480 static inline
8481 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8483 return 1;
8486 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8490 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8493 #endif /* CONFIG_FAIR_GROUP_SCHED */
8495 #ifdef CONFIG_RT_GROUP_SCHED
8496 static void free_rt_sched_group(struct task_group *tg)
8498 int i;
8500 destroy_rt_bandwidth(&tg->rt_bandwidth);
8502 for_each_possible_cpu(i) {
8503 if (tg->rt_rq)
8504 kfree(tg->rt_rq[i]);
8505 if (tg->rt_se)
8506 kfree(tg->rt_se[i]);
8509 kfree(tg->rt_rq);
8510 kfree(tg->rt_se);
8513 static
8514 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8516 struct rt_rq *rt_rq;
8517 struct sched_rt_entity *rt_se;
8518 struct rq *rq;
8519 int i;
8521 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8522 if (!tg->rt_rq)
8523 goto err;
8524 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8525 if (!tg->rt_se)
8526 goto err;
8528 init_rt_bandwidth(&tg->rt_bandwidth,
8529 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8531 for_each_possible_cpu(i) {
8532 rq = cpu_rq(i);
8534 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8535 GFP_KERNEL, cpu_to_node(i));
8536 if (!rt_rq)
8537 goto err;
8539 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8540 GFP_KERNEL, cpu_to_node(i));
8541 if (!rt_se)
8542 goto err;
8544 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
8547 return 1;
8549 err:
8550 return 0;
8553 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8555 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8556 &cpu_rq(cpu)->leaf_rt_rq_list);
8559 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8561 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8563 #else /* !CONFIG_RT_GROUP_SCHED */
8564 static inline void free_rt_sched_group(struct task_group *tg)
8568 static inline
8569 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8571 return 1;
8574 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8578 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8581 #endif /* CONFIG_RT_GROUP_SCHED */
8583 #ifdef CONFIG_GROUP_SCHED
8584 static void free_sched_group(struct task_group *tg)
8586 free_fair_sched_group(tg);
8587 free_rt_sched_group(tg);
8588 kfree(tg);
8591 /* allocate runqueue etc for a new task group */
8592 struct task_group *sched_create_group(struct task_group *parent)
8594 struct task_group *tg;
8595 unsigned long flags;
8596 int i;
8598 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8599 if (!tg)
8600 return ERR_PTR(-ENOMEM);
8602 if (!alloc_fair_sched_group(tg, parent))
8603 goto err;
8605 if (!alloc_rt_sched_group(tg, parent))
8606 goto err;
8608 spin_lock_irqsave(&task_group_lock, flags);
8609 for_each_possible_cpu(i) {
8610 register_fair_sched_group(tg, i);
8611 register_rt_sched_group(tg, i);
8613 list_add_rcu(&tg->list, &task_groups);
8615 WARN_ON(!parent); /* root should already exist */
8617 tg->parent = parent;
8618 INIT_LIST_HEAD(&tg->children);
8619 list_add_rcu(&tg->siblings, &parent->children);
8620 spin_unlock_irqrestore(&task_group_lock, flags);
8622 return tg;
8624 err:
8625 free_sched_group(tg);
8626 return ERR_PTR(-ENOMEM);
8629 /* rcu callback to free various structures associated with a task group */
8630 static void free_sched_group_rcu(struct rcu_head *rhp)
8632 /* now it should be safe to free those cfs_rqs */
8633 free_sched_group(container_of(rhp, struct task_group, rcu));
8636 /* Destroy runqueue etc associated with a task group */
8637 void sched_destroy_group(struct task_group *tg)
8639 unsigned long flags;
8640 int i;
8642 spin_lock_irqsave(&task_group_lock, flags);
8643 for_each_possible_cpu(i) {
8644 unregister_fair_sched_group(tg, i);
8645 unregister_rt_sched_group(tg, i);
8647 list_del_rcu(&tg->list);
8648 list_del_rcu(&tg->siblings);
8649 spin_unlock_irqrestore(&task_group_lock, flags);
8651 /* wait for possible concurrent references to cfs_rqs complete */
8652 call_rcu(&tg->rcu, free_sched_group_rcu);
8655 /* change task's runqueue when it moves between groups.
8656 * The caller of this function should have put the task in its new group
8657 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8658 * reflect its new group.
8660 void sched_move_task(struct task_struct *tsk)
8662 int on_rq, running;
8663 unsigned long flags;
8664 struct rq *rq;
8666 rq = task_rq_lock(tsk, &flags);
8668 update_rq_clock(rq);
8670 running = task_current(rq, tsk);
8671 on_rq = tsk->se.on_rq;
8673 if (on_rq)
8674 dequeue_task(rq, tsk, 0);
8675 if (unlikely(running))
8676 tsk->sched_class->put_prev_task(rq, tsk);
8678 set_task_rq(tsk, task_cpu(tsk));
8680 #ifdef CONFIG_FAIR_GROUP_SCHED
8681 if (tsk->sched_class->moved_group)
8682 tsk->sched_class->moved_group(tsk);
8683 #endif
8685 if (unlikely(running))
8686 tsk->sched_class->set_curr_task(rq);
8687 if (on_rq)
8688 enqueue_task(rq, tsk, 0);
8690 task_rq_unlock(rq, &flags);
8692 #endif /* CONFIG_GROUP_SCHED */
8694 #ifdef CONFIG_FAIR_GROUP_SCHED
8695 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
8697 struct cfs_rq *cfs_rq = se->cfs_rq;
8698 int on_rq;
8700 on_rq = se->on_rq;
8701 if (on_rq)
8702 dequeue_entity(cfs_rq, se, 0);
8704 se->load.weight = shares;
8705 se->load.inv_weight = 0;
8707 if (on_rq)
8708 enqueue_entity(cfs_rq, se, 0);
8711 static void set_se_shares(struct sched_entity *se, unsigned long shares)
8713 struct cfs_rq *cfs_rq = se->cfs_rq;
8714 struct rq *rq = cfs_rq->rq;
8715 unsigned long flags;
8717 spin_lock_irqsave(&rq->lock, flags);
8718 __set_se_shares(se, shares);
8719 spin_unlock_irqrestore(&rq->lock, flags);
8722 static DEFINE_MUTEX(shares_mutex);
8724 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8726 int i;
8727 unsigned long flags;
8730 * We can't change the weight of the root cgroup.
8732 if (!tg->se[0])
8733 return -EINVAL;
8735 if (shares < MIN_SHARES)
8736 shares = MIN_SHARES;
8737 else if (shares > MAX_SHARES)
8738 shares = MAX_SHARES;
8740 mutex_lock(&shares_mutex);
8741 if (tg->shares == shares)
8742 goto done;
8744 spin_lock_irqsave(&task_group_lock, flags);
8745 for_each_possible_cpu(i)
8746 unregister_fair_sched_group(tg, i);
8747 list_del_rcu(&tg->siblings);
8748 spin_unlock_irqrestore(&task_group_lock, flags);
8750 /* wait for any ongoing reference to this group to finish */
8751 synchronize_sched();
8754 * Now we are free to modify the group's share on each cpu
8755 * w/o tripping rebalance_share or load_balance_fair.
8757 tg->shares = shares;
8758 for_each_possible_cpu(i) {
8760 * force a rebalance
8762 cfs_rq_set_shares(tg->cfs_rq[i], 0);
8763 set_se_shares(tg->se[i], shares);
8767 * Enable load balance activity on this group, by inserting it back on
8768 * each cpu's rq->leaf_cfs_rq_list.
8770 spin_lock_irqsave(&task_group_lock, flags);
8771 for_each_possible_cpu(i)
8772 register_fair_sched_group(tg, i);
8773 list_add_rcu(&tg->siblings, &tg->parent->children);
8774 spin_unlock_irqrestore(&task_group_lock, flags);
8775 done:
8776 mutex_unlock(&shares_mutex);
8777 return 0;
8780 unsigned long sched_group_shares(struct task_group *tg)
8782 return tg->shares;
8784 #endif
8786 #ifdef CONFIG_RT_GROUP_SCHED
8788 * Ensure that the real time constraints are schedulable.
8790 static DEFINE_MUTEX(rt_constraints_mutex);
8792 static unsigned long to_ratio(u64 period, u64 runtime)
8794 if (runtime == RUNTIME_INF)
8795 return 1ULL << 20;
8797 return div64_u64(runtime << 20, period);
8800 /* Must be called with tasklist_lock held */
8801 static inline int tg_has_rt_tasks(struct task_group *tg)
8803 struct task_struct *g, *p;
8805 do_each_thread(g, p) {
8806 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8807 return 1;
8808 } while_each_thread(g, p);
8810 return 0;
8813 struct rt_schedulable_data {
8814 struct task_group *tg;
8815 u64 rt_period;
8816 u64 rt_runtime;
8819 static int tg_schedulable(struct task_group *tg, void *data)
8821 struct rt_schedulable_data *d = data;
8822 struct task_group *child;
8823 unsigned long total, sum = 0;
8824 u64 period, runtime;
8826 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8827 runtime = tg->rt_bandwidth.rt_runtime;
8829 if (tg == d->tg) {
8830 period = d->rt_period;
8831 runtime = d->rt_runtime;
8835 * Cannot have more runtime than the period.
8837 if (runtime > period && runtime != RUNTIME_INF)
8838 return -EINVAL;
8841 * Ensure we don't starve existing RT tasks.
8843 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8844 return -EBUSY;
8846 total = to_ratio(period, runtime);
8849 * Nobody can have more than the global setting allows.
8851 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8852 return -EINVAL;
8855 * The sum of our children's runtime should not exceed our own.
8857 list_for_each_entry_rcu(child, &tg->children, siblings) {
8858 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8859 runtime = child->rt_bandwidth.rt_runtime;
8861 if (child == d->tg) {
8862 period = d->rt_period;
8863 runtime = d->rt_runtime;
8866 sum += to_ratio(period, runtime);
8869 if (sum > total)
8870 return -EINVAL;
8872 return 0;
8875 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8877 struct rt_schedulable_data data = {
8878 .tg = tg,
8879 .rt_period = period,
8880 .rt_runtime = runtime,
8883 return walk_tg_tree(tg_schedulable, tg_nop, &data);
8886 static int tg_set_bandwidth(struct task_group *tg,
8887 u64 rt_period, u64 rt_runtime)
8889 int i, err = 0;
8891 mutex_lock(&rt_constraints_mutex);
8892 read_lock(&tasklist_lock);
8893 err = __rt_schedulable(tg, rt_period, rt_runtime);
8894 if (err)
8895 goto unlock;
8897 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8898 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8899 tg->rt_bandwidth.rt_runtime = rt_runtime;
8901 for_each_possible_cpu(i) {
8902 struct rt_rq *rt_rq = tg->rt_rq[i];
8904 spin_lock(&rt_rq->rt_runtime_lock);
8905 rt_rq->rt_runtime = rt_runtime;
8906 spin_unlock(&rt_rq->rt_runtime_lock);
8908 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8909 unlock:
8910 read_unlock(&tasklist_lock);
8911 mutex_unlock(&rt_constraints_mutex);
8913 return err;
8916 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8918 u64 rt_runtime, rt_period;
8920 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8921 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8922 if (rt_runtime_us < 0)
8923 rt_runtime = RUNTIME_INF;
8925 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8928 long sched_group_rt_runtime(struct task_group *tg)
8930 u64 rt_runtime_us;
8932 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
8933 return -1;
8935 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
8936 do_div(rt_runtime_us, NSEC_PER_USEC);
8937 return rt_runtime_us;
8940 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8942 u64 rt_runtime, rt_period;
8944 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8945 rt_runtime = tg->rt_bandwidth.rt_runtime;
8947 if (rt_period == 0)
8948 return -EINVAL;
8950 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8953 long sched_group_rt_period(struct task_group *tg)
8955 u64 rt_period_us;
8957 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8958 do_div(rt_period_us, NSEC_PER_USEC);
8959 return rt_period_us;
8962 static int sched_rt_global_constraints(void)
8964 u64 runtime, period;
8965 int ret = 0;
8967 if (sysctl_sched_rt_period <= 0)
8968 return -EINVAL;
8970 runtime = global_rt_runtime();
8971 period = global_rt_period();
8974 * Sanity check on the sysctl variables.
8976 if (runtime > period && runtime != RUNTIME_INF)
8977 return -EINVAL;
8979 mutex_lock(&rt_constraints_mutex);
8980 read_lock(&tasklist_lock);
8981 ret = __rt_schedulable(NULL, 0, 0);
8982 read_unlock(&tasklist_lock);
8983 mutex_unlock(&rt_constraints_mutex);
8985 return ret;
8987 #else /* !CONFIG_RT_GROUP_SCHED */
8988 static int sched_rt_global_constraints(void)
8990 unsigned long flags;
8991 int i;
8993 if (sysctl_sched_rt_period <= 0)
8994 return -EINVAL;
8996 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8997 for_each_possible_cpu(i) {
8998 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
9000 spin_lock(&rt_rq->rt_runtime_lock);
9001 rt_rq->rt_runtime = global_rt_runtime();
9002 spin_unlock(&rt_rq->rt_runtime_lock);
9004 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
9006 return 0;
9008 #endif /* CONFIG_RT_GROUP_SCHED */
9010 int sched_rt_handler(struct ctl_table *table, int write,
9011 struct file *filp, void __user *buffer, size_t *lenp,
9012 loff_t *ppos)
9014 int ret;
9015 int old_period, old_runtime;
9016 static DEFINE_MUTEX(mutex);
9018 mutex_lock(&mutex);
9019 old_period = sysctl_sched_rt_period;
9020 old_runtime = sysctl_sched_rt_runtime;
9022 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
9024 if (!ret && write) {
9025 ret = sched_rt_global_constraints();
9026 if (ret) {
9027 sysctl_sched_rt_period = old_period;
9028 sysctl_sched_rt_runtime = old_runtime;
9029 } else {
9030 def_rt_bandwidth.rt_runtime = global_rt_runtime();
9031 def_rt_bandwidth.rt_period =
9032 ns_to_ktime(global_rt_period());
9035 mutex_unlock(&mutex);
9037 return ret;
9040 #ifdef CONFIG_CGROUP_SCHED
9042 /* return corresponding task_group object of a cgroup */
9043 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
9045 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
9046 struct task_group, css);
9049 static struct cgroup_subsys_state *
9050 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
9052 struct task_group *tg, *parent;
9054 if (!cgrp->parent) {
9055 /* This is early initialization for the top cgroup */
9056 return &init_task_group.css;
9059 parent = cgroup_tg(cgrp->parent);
9060 tg = sched_create_group(parent);
9061 if (IS_ERR(tg))
9062 return ERR_PTR(-ENOMEM);
9064 return &tg->css;
9067 static void
9068 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9070 struct task_group *tg = cgroup_tg(cgrp);
9072 sched_destroy_group(tg);
9075 static int
9076 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9077 struct task_struct *tsk)
9079 #ifdef CONFIG_RT_GROUP_SCHED
9080 /* Don't accept realtime tasks when there is no way for them to run */
9081 if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
9082 return -EINVAL;
9083 #else
9084 /* We don't support RT-tasks being in separate groups */
9085 if (tsk->sched_class != &fair_sched_class)
9086 return -EINVAL;
9087 #endif
9089 return 0;
9092 static void
9093 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9094 struct cgroup *old_cont, struct task_struct *tsk)
9096 sched_move_task(tsk);
9099 #ifdef CONFIG_FAIR_GROUP_SCHED
9100 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
9101 u64 shareval)
9103 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
9106 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
9108 struct task_group *tg = cgroup_tg(cgrp);
9110 return (u64) tg->shares;
9112 #endif /* CONFIG_FAIR_GROUP_SCHED */
9114 #ifdef CONFIG_RT_GROUP_SCHED
9115 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
9116 s64 val)
9118 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
9121 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
9123 return sched_group_rt_runtime(cgroup_tg(cgrp));
9126 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9127 u64 rt_period_us)
9129 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9132 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9134 return sched_group_rt_period(cgroup_tg(cgrp));
9136 #endif /* CONFIG_RT_GROUP_SCHED */
9138 static struct cftype cpu_files[] = {
9139 #ifdef CONFIG_FAIR_GROUP_SCHED
9141 .name = "shares",
9142 .read_u64 = cpu_shares_read_u64,
9143 .write_u64 = cpu_shares_write_u64,
9145 #endif
9146 #ifdef CONFIG_RT_GROUP_SCHED
9148 .name = "rt_runtime_us",
9149 .read_s64 = cpu_rt_runtime_read,
9150 .write_s64 = cpu_rt_runtime_write,
9153 .name = "rt_period_us",
9154 .read_u64 = cpu_rt_period_read_uint,
9155 .write_u64 = cpu_rt_period_write_uint,
9157 #endif
9160 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9162 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
9165 struct cgroup_subsys cpu_cgroup_subsys = {
9166 .name = "cpu",
9167 .create = cpu_cgroup_create,
9168 .destroy = cpu_cgroup_destroy,
9169 .can_attach = cpu_cgroup_can_attach,
9170 .attach = cpu_cgroup_attach,
9171 .populate = cpu_cgroup_populate,
9172 .subsys_id = cpu_cgroup_subsys_id,
9173 .early_init = 1,
9176 #endif /* CONFIG_CGROUP_SCHED */
9178 #ifdef CONFIG_CGROUP_CPUACCT
9181 * CPU accounting code for task groups.
9183 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9184 * (balbir@in.ibm.com).
9187 /* track cpu usage of a group of tasks */
9188 struct cpuacct {
9189 struct cgroup_subsys_state css;
9190 /* cpuusage holds pointer to a u64-type object on every cpu */
9191 u64 *cpuusage;
9194 struct cgroup_subsys cpuacct_subsys;
9196 /* return cpu accounting group corresponding to this container */
9197 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
9199 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
9200 struct cpuacct, css);
9203 /* return cpu accounting group to which this task belongs */
9204 static inline struct cpuacct *task_ca(struct task_struct *tsk)
9206 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9207 struct cpuacct, css);
9210 /* create a new cpu accounting group */
9211 static struct cgroup_subsys_state *cpuacct_create(
9212 struct cgroup_subsys *ss, struct cgroup *cgrp)
9214 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
9216 if (!ca)
9217 return ERR_PTR(-ENOMEM);
9219 ca->cpuusage = alloc_percpu(u64);
9220 if (!ca->cpuusage) {
9221 kfree(ca);
9222 return ERR_PTR(-ENOMEM);
9225 return &ca->css;
9228 /* destroy an existing cpu accounting group */
9229 static void
9230 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9232 struct cpuacct *ca = cgroup_ca(cgrp);
9234 free_percpu(ca->cpuusage);
9235 kfree(ca);
9238 /* return total cpu usage (in nanoseconds) of a group */
9239 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9241 struct cpuacct *ca = cgroup_ca(cgrp);
9242 u64 totalcpuusage = 0;
9243 int i;
9245 for_each_possible_cpu(i) {
9246 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
9249 * Take rq->lock to make 64-bit addition safe on 32-bit
9250 * platforms.
9252 spin_lock_irq(&cpu_rq(i)->lock);
9253 totalcpuusage += *cpuusage;
9254 spin_unlock_irq(&cpu_rq(i)->lock);
9257 return totalcpuusage;
9260 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9261 u64 reset)
9263 struct cpuacct *ca = cgroup_ca(cgrp);
9264 int err = 0;
9265 int i;
9267 if (reset) {
9268 err = -EINVAL;
9269 goto out;
9272 for_each_possible_cpu(i) {
9273 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
9275 spin_lock_irq(&cpu_rq(i)->lock);
9276 *cpuusage = 0;
9277 spin_unlock_irq(&cpu_rq(i)->lock);
9279 out:
9280 return err;
9283 static struct cftype files[] = {
9285 .name = "usage",
9286 .read_u64 = cpuusage_read,
9287 .write_u64 = cpuusage_write,
9291 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9293 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9297 * charge this task's execution time to its accounting group.
9299 * called with rq->lock held.
9301 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9303 struct cpuacct *ca;
9305 if (!cpuacct_subsys.active)
9306 return;
9308 ca = task_ca(tsk);
9309 if (ca) {
9310 u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
9312 *cpuusage += cputime;
9316 struct cgroup_subsys cpuacct_subsys = {
9317 .name = "cpuacct",
9318 .create = cpuacct_create,
9319 .destroy = cpuacct_destroy,
9320 .populate = cpuacct_populate,
9321 .subsys_id = cpuacct_subsys_id,
9323 #endif /* CONFIG_CGROUP_CPUACCT */