2 * linux/arch/x86_64/mm/init.c
4 * Copyright (C) 1995 Linus Torvalds
5 * Copyright (C) 2000 Pavel Machek <pavel@suse.cz>
6 * Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
9 #include <linux/signal.h>
10 #include <linux/sched.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/string.h>
14 #include <linux/types.h>
15 #include <linux/ptrace.h>
16 #include <linux/mman.h>
18 #include <linux/swap.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/initrd.h>
22 #include <linux/pagemap.h>
23 #include <linux/bootmem.h>
24 #include <linux/proc_fs.h>
25 #include <linux/pci.h>
26 #include <linux/pfn.h>
27 #include <linux/poison.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/module.h>
30 #include <linux/memory_hotplug.h>
31 #include <linux/nmi.h>
33 #include <asm/processor.h>
34 #include <asm/bios_ebda.h>
35 #include <asm/system.h>
36 #include <asm/uaccess.h>
37 #include <asm/pgtable.h>
38 #include <asm/pgalloc.h>
40 #include <asm/fixmap.h>
44 #include <asm/mmu_context.h>
45 #include <asm/proto.h>
47 #include <asm/sections.h>
48 #include <asm/kdebug.h>
50 #include <asm/cacheflush.h>
54 * end_pfn only includes RAM, while max_pfn_mapped includes all e820 entries.
55 * The direct mapping extends to max_pfn_mapped, so that we can directly access
56 * apertures, ACPI and other tables without having to play with fixmaps.
58 unsigned long max_low_pfn_mapped
;
59 unsigned long max_pfn_mapped
;
61 static unsigned long dma_reserve __initdata
;
63 DEFINE_PER_CPU(struct mmu_gather
, mmu_gathers
);
65 static int __init
parse_direct_gbpages_off(char *arg
)
70 early_param("nogbpages", parse_direct_gbpages_off
);
72 static int __init
parse_direct_gbpages_on(char *arg
)
77 early_param("gbpages", parse_direct_gbpages_on
);
80 * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
81 * physical space so we can cache the place of the first one and move
82 * around without checking the pgd every time.
85 pteval_t __supported_pte_mask __read_mostly
= ~_PAGE_IOMAP
;
86 EXPORT_SYMBOL_GPL(__supported_pte_mask
);
88 static int disable_nx __cpuinitdata
;
92 * Control non-executable mappings for 64-bit processes.
97 static int __init
nonx_setup(char *str
)
101 if (!strncmp(str
, "on", 2)) {
102 __supported_pte_mask
|= _PAGE_NX
;
104 } else if (!strncmp(str
, "off", 3)) {
106 __supported_pte_mask
&= ~_PAGE_NX
;
110 early_param("noexec", nonx_setup
);
112 void __cpuinit
check_efer(void)
116 rdmsrl(MSR_EFER
, efer
);
117 if (!(efer
& EFER_NX
) || disable_nx
)
118 __supported_pte_mask
&= ~_PAGE_NX
;
121 int force_personality32
;
125 * Control non executable heap for 32bit processes.
126 * To control the stack too use noexec=off
128 * on PROT_READ does not imply PROT_EXEC for 32-bit processes (default)
129 * off PROT_READ implies PROT_EXEC
131 static int __init
nonx32_setup(char *str
)
133 if (!strcmp(str
, "on"))
134 force_personality32
&= ~READ_IMPLIES_EXEC
;
135 else if (!strcmp(str
, "off"))
136 force_personality32
|= READ_IMPLIES_EXEC
;
139 __setup("noexec32=", nonx32_setup
);
142 * NOTE: This function is marked __ref because it calls __init function
143 * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
145 static __ref
void *spp_getpage(void)
150 ptr
= (void *) get_zeroed_page(GFP_ATOMIC
);
152 ptr
= alloc_bootmem_pages(PAGE_SIZE
);
154 if (!ptr
|| ((unsigned long)ptr
& ~PAGE_MASK
)) {
155 panic("set_pte_phys: cannot allocate page data %s\n",
156 after_bootmem
? "after bootmem" : "");
159 pr_debug("spp_getpage %p\n", ptr
);
164 static pud_t
*fill_pud(pgd_t
*pgd
, unsigned long vaddr
)
166 if (pgd_none(*pgd
)) {
167 pud_t
*pud
= (pud_t
*)spp_getpage();
168 pgd_populate(&init_mm
, pgd
, pud
);
169 if (pud
!= pud_offset(pgd
, 0))
170 printk(KERN_ERR
"PAGETABLE BUG #00! %p <-> %p\n",
171 pud
, pud_offset(pgd
, 0));
173 return pud_offset(pgd
, vaddr
);
176 static pmd_t
*fill_pmd(pud_t
*pud
, unsigned long vaddr
)
178 if (pud_none(*pud
)) {
179 pmd_t
*pmd
= (pmd_t
*) spp_getpage();
180 pud_populate(&init_mm
, pud
, pmd
);
181 if (pmd
!= pmd_offset(pud
, 0))
182 printk(KERN_ERR
"PAGETABLE BUG #01! %p <-> %p\n",
183 pmd
, pmd_offset(pud
, 0));
185 return pmd_offset(pud
, vaddr
);
188 static pte_t
*fill_pte(pmd_t
*pmd
, unsigned long vaddr
)
190 if (pmd_none(*pmd
)) {
191 pte_t
*pte
= (pte_t
*) spp_getpage();
192 pmd_populate_kernel(&init_mm
, pmd
, pte
);
193 if (pte
!= pte_offset_kernel(pmd
, 0))
194 printk(KERN_ERR
"PAGETABLE BUG #02!\n");
196 return pte_offset_kernel(pmd
, vaddr
);
199 void set_pte_vaddr_pud(pud_t
*pud_page
, unsigned long vaddr
, pte_t new_pte
)
205 pud
= pud_page
+ pud_index(vaddr
);
206 pmd
= fill_pmd(pud
, vaddr
);
207 pte
= fill_pte(pmd
, vaddr
);
209 set_pte(pte
, new_pte
);
212 * It's enough to flush this one mapping.
213 * (PGE mappings get flushed as well)
215 __flush_tlb_one(vaddr
);
218 void set_pte_vaddr(unsigned long vaddr
, pte_t pteval
)
223 pr_debug("set_pte_vaddr %lx to %lx\n", vaddr
, native_pte_val(pteval
));
225 pgd
= pgd_offset_k(vaddr
);
226 if (pgd_none(*pgd
)) {
228 "PGD FIXMAP MISSING, it should be setup in head.S!\n");
231 pud_page
= (pud_t
*)pgd_page_vaddr(*pgd
);
232 set_pte_vaddr_pud(pud_page
, vaddr
, pteval
);
235 pmd_t
* __init
populate_extra_pmd(unsigned long vaddr
)
240 pgd
= pgd_offset_k(vaddr
);
241 pud
= fill_pud(pgd
, vaddr
);
242 return fill_pmd(pud
, vaddr
);
245 pte_t
* __init
populate_extra_pte(unsigned long vaddr
)
249 pmd
= populate_extra_pmd(vaddr
);
250 return fill_pte(pmd
, vaddr
);
254 * Create large page table mappings for a range of physical addresses.
256 static void __init
__init_extra_mapping(unsigned long phys
, unsigned long size
,
263 BUG_ON((phys
& ~PMD_MASK
) || (size
& ~PMD_MASK
));
264 for (; size
; phys
+= PMD_SIZE
, size
-= PMD_SIZE
) {
265 pgd
= pgd_offset_k((unsigned long)__va(phys
));
266 if (pgd_none(*pgd
)) {
267 pud
= (pud_t
*) spp_getpage();
268 set_pgd(pgd
, __pgd(__pa(pud
) | _KERNPG_TABLE
|
271 pud
= pud_offset(pgd
, (unsigned long)__va(phys
));
272 if (pud_none(*pud
)) {
273 pmd
= (pmd_t
*) spp_getpage();
274 set_pud(pud
, __pud(__pa(pmd
) | _KERNPG_TABLE
|
277 pmd
= pmd_offset(pud
, phys
);
278 BUG_ON(!pmd_none(*pmd
));
279 set_pmd(pmd
, __pmd(phys
| pgprot_val(prot
)));
283 void __init
init_extra_mapping_wb(unsigned long phys
, unsigned long size
)
285 __init_extra_mapping(phys
, size
, PAGE_KERNEL_LARGE
);
288 void __init
init_extra_mapping_uc(unsigned long phys
, unsigned long size
)
290 __init_extra_mapping(phys
, size
, PAGE_KERNEL_LARGE_NOCACHE
);
294 * The head.S code sets up the kernel high mapping:
296 * from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
298 * phys_addr holds the negative offset to the kernel, which is added
299 * to the compile time generated pmds. This results in invalid pmds up
300 * to the point where we hit the physaddr 0 mapping.
302 * We limit the mappings to the region from _text to _end. _end is
303 * rounded up to the 2MB boundary. This catches the invalid pmds as
304 * well, as they are located before _text:
306 void __init
cleanup_highmap(void)
308 unsigned long vaddr
= __START_KERNEL_map
;
309 unsigned long end
= roundup((unsigned long)_end
, PMD_SIZE
) - 1;
310 pmd_t
*pmd
= level2_kernel_pgt
;
311 pmd_t
*last_pmd
= pmd
+ PTRS_PER_PMD
;
313 for (; pmd
< last_pmd
; pmd
++, vaddr
+= PMD_SIZE
) {
316 if (vaddr
< (unsigned long) _text
|| vaddr
> end
)
317 set_pmd(pmd
, __pmd(0));
321 static __ref
void *alloc_low_page(unsigned long *phys
)
323 unsigned long pfn
= e820_table_end
++;
327 adr
= (void *)get_zeroed_page(GFP_ATOMIC
);
333 if (pfn
>= e820_table_top
)
334 panic("alloc_low_page: ran out of memory");
336 adr
= early_memremap(pfn
* PAGE_SIZE
, PAGE_SIZE
);
337 memset(adr
, 0, PAGE_SIZE
);
338 *phys
= pfn
* PAGE_SIZE
;
342 static __ref
void unmap_low_page(void *adr
)
347 early_iounmap(adr
, PAGE_SIZE
);
350 static unsigned long __meminit
351 phys_pte_init(pte_t
*pte_page
, unsigned long addr
, unsigned long end
,
355 unsigned long last_map_addr
= end
;
358 pte_t
*pte
= pte_page
+ pte_index(addr
);
360 for(i
= pte_index(addr
); i
< PTRS_PER_PTE
; i
++, addr
+= PAGE_SIZE
, pte
++) {
363 if (!after_bootmem
) {
364 for(; i
< PTRS_PER_PTE
; i
++, pte
++)
365 set_pte(pte
, __pte(0));
371 * We will re-use the existing mapping.
372 * Xen for example has some special requirements, like mapping
373 * pagetable pages as RO. So assume someone who pre-setup
374 * these mappings are more intelligent.
382 printk(" pte=%p addr=%lx pte=%016lx\n",
383 pte
, addr
, pfn_pte(addr
>> PAGE_SHIFT
, PAGE_KERNEL
).pte
);
385 set_pte(pte
, pfn_pte(addr
>> PAGE_SHIFT
, prot
));
386 last_map_addr
= (addr
& PAGE_MASK
) + PAGE_SIZE
;
389 update_page_count(PG_LEVEL_4K
, pages
);
391 return last_map_addr
;
394 static unsigned long __meminit
395 phys_pte_update(pmd_t
*pmd
, unsigned long address
, unsigned long end
,
398 pte_t
*pte
= (pte_t
*)pmd_page_vaddr(*pmd
);
400 return phys_pte_init(pte
, address
, end
, prot
);
403 static unsigned long __meminit
404 phys_pmd_init(pmd_t
*pmd_page
, unsigned long address
, unsigned long end
,
405 unsigned long page_size_mask
, pgprot_t prot
)
407 unsigned long pages
= 0;
408 unsigned long last_map_addr
= end
;
410 int i
= pmd_index(address
);
412 for (; i
< PTRS_PER_PMD
; i
++, address
+= PMD_SIZE
) {
413 unsigned long pte_phys
;
414 pmd_t
*pmd
= pmd_page
+ pmd_index(address
);
416 pgprot_t new_prot
= prot
;
418 if (address
>= end
) {
419 if (!after_bootmem
) {
420 for (; i
< PTRS_PER_PMD
; i
++, pmd
++)
421 set_pmd(pmd
, __pmd(0));
427 if (!pmd_large(*pmd
)) {
428 spin_lock(&init_mm
.page_table_lock
);
429 last_map_addr
= phys_pte_update(pmd
, address
,
431 spin_unlock(&init_mm
.page_table_lock
);
435 * If we are ok with PG_LEVEL_2M mapping, then we will
436 * use the existing mapping,
438 * Otherwise, we will split the large page mapping but
439 * use the same existing protection bits except for
440 * large page, so that we don't violate Intel's TLB
441 * Application note (317080) which says, while changing
442 * the page sizes, new and old translations should
443 * not differ with respect to page frame and
446 if (page_size_mask
& (1 << PG_LEVEL_2M
)) {
450 new_prot
= pte_pgprot(pte_clrhuge(*(pte_t
*)pmd
));
453 if (page_size_mask
& (1<<PG_LEVEL_2M
)) {
455 spin_lock(&init_mm
.page_table_lock
);
456 set_pte((pte_t
*)pmd
,
457 pfn_pte(address
>> PAGE_SHIFT
,
458 __pgprot(pgprot_val(prot
) | _PAGE_PSE
)));
459 spin_unlock(&init_mm
.page_table_lock
);
460 last_map_addr
= (address
& PMD_MASK
) + PMD_SIZE
;
464 pte
= alloc_low_page(&pte_phys
);
465 last_map_addr
= phys_pte_init(pte
, address
, end
, new_prot
);
468 spin_lock(&init_mm
.page_table_lock
);
469 pmd_populate_kernel(&init_mm
, pmd
, __va(pte_phys
));
470 spin_unlock(&init_mm
.page_table_lock
);
472 update_page_count(PG_LEVEL_2M
, pages
);
473 return last_map_addr
;
476 static unsigned long __meminit
477 phys_pmd_update(pud_t
*pud
, unsigned long address
, unsigned long end
,
478 unsigned long page_size_mask
, pgprot_t prot
)
480 pmd_t
*pmd
= pmd_offset(pud
, 0);
481 unsigned long last_map_addr
;
483 last_map_addr
= phys_pmd_init(pmd
, address
, end
, page_size_mask
, prot
);
485 return last_map_addr
;
488 static unsigned long __meminit
489 phys_pud_init(pud_t
*pud_page
, unsigned long addr
, unsigned long end
,
490 unsigned long page_size_mask
)
492 unsigned long pages
= 0;
493 unsigned long last_map_addr
= end
;
494 int i
= pud_index(addr
);
496 for (; i
< PTRS_PER_PUD
; i
++, addr
= (addr
& PUD_MASK
) + PUD_SIZE
) {
497 unsigned long pmd_phys
;
498 pud_t
*pud
= pud_page
+ pud_index(addr
);
500 pgprot_t prot
= PAGE_KERNEL
;
505 if (!after_bootmem
&&
506 !e820_any_mapped(addr
, addr
+PUD_SIZE
, 0)) {
507 set_pud(pud
, __pud(0));
512 if (!pud_large(*pud
)) {
513 last_map_addr
= phys_pmd_update(pud
, addr
, end
,
514 page_size_mask
, prot
);
518 * If we are ok with PG_LEVEL_1G mapping, then we will
519 * use the existing mapping.
521 * Otherwise, we will split the gbpage mapping but use
522 * the same existing protection bits except for large
523 * page, so that we don't violate Intel's TLB
524 * Application note (317080) which says, while changing
525 * the page sizes, new and old translations should
526 * not differ with respect to page frame and
529 if (page_size_mask
& (1 << PG_LEVEL_1G
)) {
533 prot
= pte_pgprot(pte_clrhuge(*(pte_t
*)pud
));
536 if (page_size_mask
& (1<<PG_LEVEL_1G
)) {
538 spin_lock(&init_mm
.page_table_lock
);
539 set_pte((pte_t
*)pud
,
540 pfn_pte(addr
>> PAGE_SHIFT
, PAGE_KERNEL_LARGE
));
541 spin_unlock(&init_mm
.page_table_lock
);
542 last_map_addr
= (addr
& PUD_MASK
) + PUD_SIZE
;
546 pmd
= alloc_low_page(&pmd_phys
);
547 last_map_addr
= phys_pmd_init(pmd
, addr
, end
, page_size_mask
,
551 spin_lock(&init_mm
.page_table_lock
);
552 pud_populate(&init_mm
, pud
, __va(pmd_phys
));
553 spin_unlock(&init_mm
.page_table_lock
);
557 update_page_count(PG_LEVEL_1G
, pages
);
559 return last_map_addr
;
562 static unsigned long __meminit
563 phys_pud_update(pgd_t
*pgd
, unsigned long addr
, unsigned long end
,
564 unsigned long page_size_mask
)
568 pud
= (pud_t
*)pgd_page_vaddr(*pgd
);
570 return phys_pud_init(pud
, addr
, end
, page_size_mask
);
574 kernel_physical_mapping_init(unsigned long start
,
576 unsigned long page_size_mask
)
579 unsigned long next
, last_map_addr
= end
;
581 start
= (unsigned long)__va(start
);
582 end
= (unsigned long)__va(end
);
584 for (; start
< end
; start
= next
) {
585 pgd_t
*pgd
= pgd_offset_k(start
);
586 unsigned long pud_phys
;
589 next
= (start
+ PGDIR_SIZE
) & PGDIR_MASK
;
594 last_map_addr
= phys_pud_update(pgd
, __pa(start
),
595 __pa(end
), page_size_mask
);
599 pud
= alloc_low_page(&pud_phys
);
600 last_map_addr
= phys_pud_init(pud
, __pa(start
), __pa(next
),
604 spin_lock(&init_mm
.page_table_lock
);
605 pgd_populate(&init_mm
, pgd
, __va(pud_phys
));
606 spin_unlock(&init_mm
.page_table_lock
);
610 return last_map_addr
;
614 void __init
initmem_init(unsigned long start_pfn
, unsigned long end_pfn
)
616 unsigned long bootmap_size
, bootmap
;
618 bootmap_size
= bootmem_bootmap_pages(end_pfn
)<<PAGE_SHIFT
;
619 bootmap
= find_e820_area(0, end_pfn
<<PAGE_SHIFT
, bootmap_size
,
622 panic("Cannot find bootmem map of size %ld\n", bootmap_size
);
623 /* don't touch min_low_pfn */
624 bootmap_size
= init_bootmem_node(NODE_DATA(0), bootmap
>> PAGE_SHIFT
,
626 e820_register_active_regions(0, start_pfn
, end_pfn
);
627 free_bootmem_with_active_regions(0, end_pfn
);
628 early_res_to_bootmem(0, end_pfn
<<PAGE_SHIFT
);
629 reserve_bootmem(bootmap
, bootmap_size
, BOOTMEM_DEFAULT
);
632 void __init
paging_init(void)
634 unsigned long max_zone_pfns
[MAX_NR_ZONES
];
636 memset(max_zone_pfns
, 0, sizeof(max_zone_pfns
));
637 max_zone_pfns
[ZONE_DMA
] = MAX_DMA_PFN
;
638 max_zone_pfns
[ZONE_DMA32
] = MAX_DMA32_PFN
;
639 max_zone_pfns
[ZONE_NORMAL
] = max_pfn
;
641 memory_present(0, 0, max_pfn
);
643 free_area_init_nodes(max_zone_pfns
);
648 * Memory hotplug specific functions
650 #ifdef CONFIG_MEMORY_HOTPLUG
652 * Memory is added always to NORMAL zone. This means you will never get
653 * additional DMA/DMA32 memory.
655 int arch_add_memory(int nid
, u64 start
, u64 size
)
657 struct pglist_data
*pgdat
= NODE_DATA(nid
);
658 struct zone
*zone
= pgdat
->node_zones
+ ZONE_NORMAL
;
659 unsigned long last_mapped_pfn
, start_pfn
= start
>> PAGE_SHIFT
;
660 unsigned long nr_pages
= size
>> PAGE_SHIFT
;
663 last_mapped_pfn
= init_memory_mapping(start
, start
+ size
);
664 if (last_mapped_pfn
> max_pfn_mapped
)
665 max_pfn_mapped
= last_mapped_pfn
;
667 ret
= __add_pages(nid
, zone
, start_pfn
, nr_pages
);
672 EXPORT_SYMBOL_GPL(arch_add_memory
);
674 #if !defined(CONFIG_ACPI_NUMA) && defined(CONFIG_NUMA)
675 int memory_add_physaddr_to_nid(u64 start
)
679 EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid
);
682 #endif /* CONFIG_MEMORY_HOTPLUG */
684 static struct kcore_list kcore_mem
, kcore_vmalloc
, kcore_kernel
,
685 kcore_modules
, kcore_vsyscall
;
687 void __init
mem_init(void)
689 long codesize
, reservedpages
, datasize
, initsize
;
690 unsigned long absent_pages
;
694 /* clear_bss() already clear the empty_zero_page */
698 /* this will put all low memory onto the freelists */
700 totalram_pages
= numa_free_all_bootmem();
702 totalram_pages
= free_all_bootmem();
705 absent_pages
= absent_pages_in_range(0, max_pfn
);
706 reservedpages
= max_pfn
- totalram_pages
- absent_pages
;
709 codesize
= (unsigned long) &_etext
- (unsigned long) &_text
;
710 datasize
= (unsigned long) &_edata
- (unsigned long) &_etext
;
711 initsize
= (unsigned long) &__init_end
- (unsigned long) &__init_begin
;
713 /* Register memory areas for /proc/kcore */
714 kclist_add(&kcore_mem
, __va(0), max_low_pfn
<< PAGE_SHIFT
);
715 kclist_add(&kcore_vmalloc
, (void *)VMALLOC_START
,
716 VMALLOC_END
-VMALLOC_START
);
717 kclist_add(&kcore_kernel
, &_stext
, _end
- _stext
);
718 kclist_add(&kcore_modules
, (void *)MODULES_VADDR
, MODULES_LEN
);
719 kclist_add(&kcore_vsyscall
, (void *)VSYSCALL_START
,
720 VSYSCALL_END
- VSYSCALL_START
);
722 printk(KERN_INFO
"Memory: %luk/%luk available (%ldk kernel code, "
723 "%ldk absent, %ldk reserved, %ldk data, %ldk init)\n",
724 (unsigned long) nr_free_pages() << (PAGE_SHIFT
-10),
725 max_pfn
<< (PAGE_SHIFT
-10),
727 absent_pages
<< (PAGE_SHIFT
-10),
728 reservedpages
<< (PAGE_SHIFT
-10),
733 #ifdef CONFIG_DEBUG_RODATA
734 const int rodata_test_data
= 0xC3;
735 EXPORT_SYMBOL_GPL(rodata_test_data
);
737 void mark_rodata_ro(void)
739 unsigned long start
= PFN_ALIGN(_stext
), end
= PFN_ALIGN(__end_rodata
);
740 unsigned long rodata_start
=
741 ((unsigned long)__start_rodata
+ PAGE_SIZE
- 1) & PAGE_MASK
;
743 #ifdef CONFIG_DYNAMIC_FTRACE
744 /* Dynamic tracing modifies the kernel text section */
745 start
= rodata_start
;
748 printk(KERN_INFO
"Write protecting the kernel read-only data: %luk\n",
749 (end
- start
) >> 10);
750 set_memory_ro(start
, (end
- start
) >> PAGE_SHIFT
);
753 * The rodata section (but not the kernel text!) should also be
756 set_memory_nx(rodata_start
, (end
- rodata_start
) >> PAGE_SHIFT
);
760 #ifdef CONFIG_CPA_DEBUG
761 printk(KERN_INFO
"Testing CPA: undo %lx-%lx\n", start
, end
);
762 set_memory_rw(start
, (end
-start
) >> PAGE_SHIFT
);
764 printk(KERN_INFO
"Testing CPA: again\n");
765 set_memory_ro(start
, (end
-start
) >> PAGE_SHIFT
);
771 int __init
reserve_bootmem_generic(unsigned long phys
, unsigned long len
,
778 unsigned long pfn
= phys
>> PAGE_SHIFT
;
780 if (pfn
>= max_pfn
) {
782 * This can happen with kdump kernels when accessing
785 if (pfn
< max_pfn_mapped
)
788 printk(KERN_ERR
"reserve_bootmem: illegal reserve %lx %lu\n",
793 /* Should check here against the e820 map to avoid double free */
795 nid
= phys_to_nid(phys
);
796 next_nid
= phys_to_nid(phys
+ len
- 1);
798 ret
= reserve_bootmem_node(NODE_DATA(nid
), phys
, len
, flags
);
800 ret
= reserve_bootmem(phys
, len
, flags
);
806 reserve_bootmem(phys
, len
, BOOTMEM_DEFAULT
);
809 if (phys
+len
<= MAX_DMA_PFN
*PAGE_SIZE
) {
810 dma_reserve
+= len
/ PAGE_SIZE
;
811 set_dma_reserve(dma_reserve
);
817 int kern_addr_valid(unsigned long addr
)
819 unsigned long above
= ((long)addr
) >> __VIRTUAL_MASK_SHIFT
;
825 if (above
!= 0 && above
!= -1UL)
828 pgd
= pgd_offset_k(addr
);
832 pud
= pud_offset(pgd
, addr
);
836 pmd
= pmd_offset(pud
, addr
);
841 return pfn_valid(pmd_pfn(*pmd
));
843 pte
= pte_offset_kernel(pmd
, addr
);
847 return pfn_valid(pte_pfn(*pte
));
851 * A pseudo VMA to allow ptrace access for the vsyscall page. This only
852 * covers the 64bit vsyscall page now. 32bit has a real VMA now and does
853 * not need special handling anymore:
855 static struct vm_area_struct gate_vma
= {
856 .vm_start
= VSYSCALL_START
,
857 .vm_end
= VSYSCALL_START
+ (VSYSCALL_MAPPED_PAGES
* PAGE_SIZE
),
858 .vm_page_prot
= PAGE_READONLY_EXEC
,
859 .vm_flags
= VM_READ
| VM_EXEC
862 struct vm_area_struct
*get_gate_vma(struct task_struct
*tsk
)
864 #ifdef CONFIG_IA32_EMULATION
865 if (test_tsk_thread_flag(tsk
, TIF_IA32
))
871 int in_gate_area(struct task_struct
*task
, unsigned long addr
)
873 struct vm_area_struct
*vma
= get_gate_vma(task
);
878 return (addr
>= vma
->vm_start
) && (addr
< vma
->vm_end
);
882 * Use this when you have no reliable task/vma, typically from interrupt
883 * context. It is less reliable than using the task's vma and may give
886 int in_gate_area_no_task(unsigned long addr
)
888 return (addr
>= VSYSCALL_START
) && (addr
< VSYSCALL_END
);
891 const char *arch_vma_name(struct vm_area_struct
*vma
)
893 if (vma
->vm_mm
&& vma
->vm_start
== (long)vma
->vm_mm
->context
.vdso
)
895 if (vma
== &gate_vma
)
900 #ifdef CONFIG_SPARSEMEM_VMEMMAP
902 * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
904 static long __meminitdata addr_start
, addr_end
;
905 static void __meminitdata
*p_start
, *p_end
;
906 static int __meminitdata node_start
;
909 vmemmap_populate(struct page
*start_page
, unsigned long size
, int node
)
911 unsigned long addr
= (unsigned long)start_page
;
912 unsigned long end
= (unsigned long)(start_page
+ size
);
918 for (; addr
< end
; addr
= next
) {
921 pgd
= vmemmap_pgd_populate(addr
, node
);
925 pud
= vmemmap_pud_populate(pgd
, addr
, node
);
930 next
= (addr
+ PAGE_SIZE
) & PAGE_MASK
;
931 pmd
= vmemmap_pmd_populate(pud
, addr
, node
);
936 p
= vmemmap_pte_populate(pmd
, addr
, node
);
941 addr_end
= addr
+ PAGE_SIZE
;
942 p_end
= p
+ PAGE_SIZE
;
944 next
= pmd_addr_end(addr
, end
);
946 pmd
= pmd_offset(pud
, addr
);
947 if (pmd_none(*pmd
)) {
950 p
= vmemmap_alloc_block(PMD_SIZE
, node
);
954 entry
= pfn_pte(__pa(p
) >> PAGE_SHIFT
,
956 set_pmd(pmd
, __pmd(pte_val(entry
)));
958 /* check to see if we have contiguous blocks */
959 if (p_end
!= p
|| node_start
!= node
) {
961 printk(KERN_DEBUG
" [%lx-%lx] PMD -> [%p-%p] on node %d\n",
962 addr_start
, addr_end
-1, p_start
, p_end
-1, node_start
);
968 addr_end
= addr
+ PMD_SIZE
;
969 p_end
= p
+ PMD_SIZE
;
971 vmemmap_verify((pte_t
*)pmd
, node
, addr
, next
);
978 void __meminit
vmemmap_populate_print_last(void)
981 printk(KERN_DEBUG
" [%lx-%lx] PMD -> [%p-%p] on node %d\n",
982 addr_start
, addr_end
-1, p_start
, p_end
-1, node_start
);