mm: fix misuse of debug_kmap_atomic
[linux-2.6.git] / arch / x86 / mm / fault.c
bloba03b7279efa018850def9042339fec4af4249042
1 /*
2 * Copyright (C) 1995 Linus Torvalds
3 * Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
4 * Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
5 */
6 #include <linux/interrupt.h>
7 #include <linux/mmiotrace.h>
8 #include <linux/bootmem.h>
9 #include <linux/compiler.h>
10 #include <linux/highmem.h>
11 #include <linux/kprobes.h>
12 #include <linux/uaccess.h>
13 #include <linux/vmalloc.h>
14 #include <linux/vt_kern.h>
15 #include <linux/signal.h>
16 #include <linux/kernel.h>
17 #include <linux/ptrace.h>
18 #include <linux/string.h>
19 #include <linux/module.h>
20 #include <linux/kdebug.h>
21 #include <linux/errno.h>
22 #include <linux/magic.h>
23 #include <linux/sched.h>
24 #include <linux/types.h>
25 #include <linux/init.h>
26 #include <linux/mman.h>
27 #include <linux/tty.h>
28 #include <linux/smp.h>
29 #include <linux/mm.h>
31 #include <asm-generic/sections.h>
33 #include <asm/tlbflush.h>
34 #include <asm/pgalloc.h>
35 #include <asm/segment.h>
36 #include <asm/system.h>
37 #include <asm/proto.h>
38 #include <asm/traps.h>
39 #include <asm/desc.h>
42 * Page fault error code bits:
44 * bit 0 == 0: no page found 1: protection fault
45 * bit 1 == 0: read access 1: write access
46 * bit 2 == 0: kernel-mode access 1: user-mode access
47 * bit 3 == 1: use of reserved bit detected
48 * bit 4 == 1: fault was an instruction fetch
50 enum x86_pf_error_code {
52 PF_PROT = 1 << 0,
53 PF_WRITE = 1 << 1,
54 PF_USER = 1 << 2,
55 PF_RSVD = 1 << 3,
56 PF_INSTR = 1 << 4,
60 * Returns 0 if mmiotrace is disabled, or if the fault is not
61 * handled by mmiotrace:
63 static inline int kmmio_fault(struct pt_regs *regs, unsigned long addr)
65 if (unlikely(is_kmmio_active()))
66 if (kmmio_handler(regs, addr) == 1)
67 return -1;
68 return 0;
71 static inline int notify_page_fault(struct pt_regs *regs)
73 int ret = 0;
75 /* kprobe_running() needs smp_processor_id() */
76 if (kprobes_built_in() && !user_mode_vm(regs)) {
77 preempt_disable();
78 if (kprobe_running() && kprobe_fault_handler(regs, 14))
79 ret = 1;
80 preempt_enable();
83 return ret;
87 * Prefetch quirks:
89 * 32-bit mode:
91 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
92 * Check that here and ignore it.
94 * 64-bit mode:
96 * Sometimes the CPU reports invalid exceptions on prefetch.
97 * Check that here and ignore it.
99 * Opcode checker based on code by Richard Brunner.
101 static inline int
102 check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
103 unsigned char opcode, int *prefetch)
105 unsigned char instr_hi = opcode & 0xf0;
106 unsigned char instr_lo = opcode & 0x0f;
108 switch (instr_hi) {
109 case 0x20:
110 case 0x30:
112 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
113 * In X86_64 long mode, the CPU will signal invalid
114 * opcode if some of these prefixes are present so
115 * X86_64 will never get here anyway
117 return ((instr_lo & 7) == 0x6);
118 #ifdef CONFIG_X86_64
119 case 0x40:
121 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
122 * Need to figure out under what instruction mode the
123 * instruction was issued. Could check the LDT for lm,
124 * but for now it's good enough to assume that long
125 * mode only uses well known segments or kernel.
127 return (!user_mode(regs)) || (regs->cs == __USER_CS);
128 #endif
129 case 0x60:
130 /* 0x64 thru 0x67 are valid prefixes in all modes. */
131 return (instr_lo & 0xC) == 0x4;
132 case 0xF0:
133 /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
134 return !instr_lo || (instr_lo>>1) == 1;
135 case 0x00:
136 /* Prefetch instruction is 0x0F0D or 0x0F18 */
137 if (probe_kernel_address(instr, opcode))
138 return 0;
140 *prefetch = (instr_lo == 0xF) &&
141 (opcode == 0x0D || opcode == 0x18);
142 return 0;
143 default:
144 return 0;
148 static int
149 is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
151 unsigned char *max_instr;
152 unsigned char *instr;
153 int prefetch = 0;
156 * If it was a exec (instruction fetch) fault on NX page, then
157 * do not ignore the fault:
159 if (error_code & PF_INSTR)
160 return 0;
162 instr = (void *)convert_ip_to_linear(current, regs);
163 max_instr = instr + 15;
165 if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE)
166 return 0;
168 while (instr < max_instr) {
169 unsigned char opcode;
171 if (probe_kernel_address(instr, opcode))
172 break;
174 instr++;
176 if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
177 break;
179 return prefetch;
182 static void
183 force_sig_info_fault(int si_signo, int si_code, unsigned long address,
184 struct task_struct *tsk)
186 siginfo_t info;
188 info.si_signo = si_signo;
189 info.si_errno = 0;
190 info.si_code = si_code;
191 info.si_addr = (void __user *)address;
193 force_sig_info(si_signo, &info, tsk);
196 DEFINE_SPINLOCK(pgd_lock);
197 LIST_HEAD(pgd_list);
199 #ifdef CONFIG_X86_32
200 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
202 unsigned index = pgd_index(address);
203 pgd_t *pgd_k;
204 pud_t *pud, *pud_k;
205 pmd_t *pmd, *pmd_k;
207 pgd += index;
208 pgd_k = init_mm.pgd + index;
210 if (!pgd_present(*pgd_k))
211 return NULL;
214 * set_pgd(pgd, *pgd_k); here would be useless on PAE
215 * and redundant with the set_pmd() on non-PAE. As would
216 * set_pud.
218 pud = pud_offset(pgd, address);
219 pud_k = pud_offset(pgd_k, address);
220 if (!pud_present(*pud_k))
221 return NULL;
223 pmd = pmd_offset(pud, address);
224 pmd_k = pmd_offset(pud_k, address);
225 if (!pmd_present(*pmd_k))
226 return NULL;
228 if (!pmd_present(*pmd)) {
229 set_pmd(pmd, *pmd_k);
230 arch_flush_lazy_mmu_mode();
231 } else {
232 BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
235 return pmd_k;
238 void vmalloc_sync_all(void)
240 unsigned long address;
242 if (SHARED_KERNEL_PMD)
243 return;
245 for (address = VMALLOC_START & PMD_MASK;
246 address >= TASK_SIZE && address < FIXADDR_TOP;
247 address += PMD_SIZE) {
249 unsigned long flags;
250 struct page *page;
252 spin_lock_irqsave(&pgd_lock, flags);
253 list_for_each_entry(page, &pgd_list, lru) {
254 if (!vmalloc_sync_one(page_address(page), address))
255 break;
257 spin_unlock_irqrestore(&pgd_lock, flags);
262 * 32-bit:
264 * Handle a fault on the vmalloc or module mapping area
266 static noinline int vmalloc_fault(unsigned long address)
268 unsigned long pgd_paddr;
269 pmd_t *pmd_k;
270 pte_t *pte_k;
272 /* Make sure we are in vmalloc area: */
273 if (!(address >= VMALLOC_START && address < VMALLOC_END))
274 return -1;
277 * Synchronize this task's top level page-table
278 * with the 'reference' page table.
280 * Do _not_ use "current" here. We might be inside
281 * an interrupt in the middle of a task switch..
283 pgd_paddr = read_cr3();
284 pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
285 if (!pmd_k)
286 return -1;
288 pte_k = pte_offset_kernel(pmd_k, address);
289 if (!pte_present(*pte_k))
290 return -1;
292 return 0;
296 * Did it hit the DOS screen memory VA from vm86 mode?
298 static inline void
299 check_v8086_mode(struct pt_regs *regs, unsigned long address,
300 struct task_struct *tsk)
302 unsigned long bit;
304 if (!v8086_mode(regs))
305 return;
307 bit = (address - 0xA0000) >> PAGE_SHIFT;
308 if (bit < 32)
309 tsk->thread.screen_bitmap |= 1 << bit;
312 static void dump_pagetable(unsigned long address)
314 __typeof__(pte_val(__pte(0))) page;
316 page = read_cr3();
317 page = ((__typeof__(page) *) __va(page))[address >> PGDIR_SHIFT];
319 #ifdef CONFIG_X86_PAE
320 printk("*pdpt = %016Lx ", page);
321 if ((page >> PAGE_SHIFT) < max_low_pfn
322 && page & _PAGE_PRESENT) {
323 page &= PAGE_MASK;
324 page = ((__typeof__(page) *) __va(page))[(address >> PMD_SHIFT)
325 & (PTRS_PER_PMD - 1)];
326 printk(KERN_CONT "*pde = %016Lx ", page);
327 page &= ~_PAGE_NX;
329 #else
330 printk("*pde = %08lx ", page);
331 #endif
334 * We must not directly access the pte in the highpte
335 * case if the page table is located in highmem.
336 * And let's rather not kmap-atomic the pte, just in case
337 * it's allocated already:
339 if ((page >> PAGE_SHIFT) < max_low_pfn
340 && (page & _PAGE_PRESENT)
341 && !(page & _PAGE_PSE)) {
343 page &= PAGE_MASK;
344 page = ((__typeof__(page) *) __va(page))[(address >> PAGE_SHIFT)
345 & (PTRS_PER_PTE - 1)];
346 printk("*pte = %0*Lx ", sizeof(page)*2, (u64)page);
349 printk("\n");
352 #else /* CONFIG_X86_64: */
354 void vmalloc_sync_all(void)
356 unsigned long address;
358 for (address = VMALLOC_START & PGDIR_MASK; address <= VMALLOC_END;
359 address += PGDIR_SIZE) {
361 const pgd_t *pgd_ref = pgd_offset_k(address);
362 unsigned long flags;
363 struct page *page;
365 if (pgd_none(*pgd_ref))
366 continue;
368 spin_lock_irqsave(&pgd_lock, flags);
369 list_for_each_entry(page, &pgd_list, lru) {
370 pgd_t *pgd;
371 pgd = (pgd_t *)page_address(page) + pgd_index(address);
372 if (pgd_none(*pgd))
373 set_pgd(pgd, *pgd_ref);
374 else
375 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
377 spin_unlock_irqrestore(&pgd_lock, flags);
382 * 64-bit:
384 * Handle a fault on the vmalloc area
386 * This assumes no large pages in there.
388 static noinline int vmalloc_fault(unsigned long address)
390 pgd_t *pgd, *pgd_ref;
391 pud_t *pud, *pud_ref;
392 pmd_t *pmd, *pmd_ref;
393 pte_t *pte, *pte_ref;
395 /* Make sure we are in vmalloc area: */
396 if (!(address >= VMALLOC_START && address < VMALLOC_END))
397 return -1;
400 * Copy kernel mappings over when needed. This can also
401 * happen within a race in page table update. In the later
402 * case just flush:
404 pgd = pgd_offset(current->active_mm, address);
405 pgd_ref = pgd_offset_k(address);
406 if (pgd_none(*pgd_ref))
407 return -1;
409 if (pgd_none(*pgd))
410 set_pgd(pgd, *pgd_ref);
411 else
412 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
415 * Below here mismatches are bugs because these lower tables
416 * are shared:
419 pud = pud_offset(pgd, address);
420 pud_ref = pud_offset(pgd_ref, address);
421 if (pud_none(*pud_ref))
422 return -1;
424 if (pud_none(*pud) || pud_page_vaddr(*pud) != pud_page_vaddr(*pud_ref))
425 BUG();
427 pmd = pmd_offset(pud, address);
428 pmd_ref = pmd_offset(pud_ref, address);
429 if (pmd_none(*pmd_ref))
430 return -1;
432 if (pmd_none(*pmd) || pmd_page(*pmd) != pmd_page(*pmd_ref))
433 BUG();
435 pte_ref = pte_offset_kernel(pmd_ref, address);
436 if (!pte_present(*pte_ref))
437 return -1;
439 pte = pte_offset_kernel(pmd, address);
442 * Don't use pte_page here, because the mappings can point
443 * outside mem_map, and the NUMA hash lookup cannot handle
444 * that:
446 if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
447 BUG();
449 return 0;
452 static const char errata93_warning[] =
453 KERN_ERR "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
454 KERN_ERR "******* Working around it, but it may cause SEGVs or burn power.\n"
455 KERN_ERR "******* Please consider a BIOS update.\n"
456 KERN_ERR "******* Disabling USB legacy in the BIOS may also help.\n";
459 * No vm86 mode in 64-bit mode:
461 static inline void
462 check_v8086_mode(struct pt_regs *regs, unsigned long address,
463 struct task_struct *tsk)
467 static int bad_address(void *p)
469 unsigned long dummy;
471 return probe_kernel_address((unsigned long *)p, dummy);
474 static void dump_pagetable(unsigned long address)
476 pgd_t *pgd;
477 pud_t *pud;
478 pmd_t *pmd;
479 pte_t *pte;
481 pgd = (pgd_t *)read_cr3();
483 pgd = __va((unsigned long)pgd & PHYSICAL_PAGE_MASK);
485 pgd += pgd_index(address);
486 if (bad_address(pgd))
487 goto bad;
489 printk("PGD %lx ", pgd_val(*pgd));
491 if (!pgd_present(*pgd))
492 goto out;
494 pud = pud_offset(pgd, address);
495 if (bad_address(pud))
496 goto bad;
498 printk("PUD %lx ", pud_val(*pud));
499 if (!pud_present(*pud) || pud_large(*pud))
500 goto out;
502 pmd = pmd_offset(pud, address);
503 if (bad_address(pmd))
504 goto bad;
506 printk("PMD %lx ", pmd_val(*pmd));
507 if (!pmd_present(*pmd) || pmd_large(*pmd))
508 goto out;
510 pte = pte_offset_kernel(pmd, address);
511 if (bad_address(pte))
512 goto bad;
514 printk("PTE %lx", pte_val(*pte));
515 out:
516 printk("\n");
517 return;
518 bad:
519 printk("BAD\n");
522 #endif /* CONFIG_X86_64 */
525 * Workaround for K8 erratum #93 & buggy BIOS.
527 * BIOS SMM functions are required to use a specific workaround
528 * to avoid corruption of the 64bit RIP register on C stepping K8.
530 * A lot of BIOS that didn't get tested properly miss this.
532 * The OS sees this as a page fault with the upper 32bits of RIP cleared.
533 * Try to work around it here.
535 * Note we only handle faults in kernel here.
536 * Does nothing on 32-bit.
538 static int is_errata93(struct pt_regs *regs, unsigned long address)
540 #ifdef CONFIG_X86_64
541 static int once;
543 if (address != regs->ip)
544 return 0;
546 if ((address >> 32) != 0)
547 return 0;
549 address |= 0xffffffffUL << 32;
550 if ((address >= (u64)_stext && address <= (u64)_etext) ||
551 (address >= MODULES_VADDR && address <= MODULES_END)) {
552 if (!once) {
553 printk(errata93_warning);
554 once = 1;
556 regs->ip = address;
557 return 1;
559 #endif
560 return 0;
564 * Work around K8 erratum #100 K8 in compat mode occasionally jumps
565 * to illegal addresses >4GB.
567 * We catch this in the page fault handler because these addresses
568 * are not reachable. Just detect this case and return. Any code
569 * segment in LDT is compatibility mode.
571 static int is_errata100(struct pt_regs *regs, unsigned long address)
573 #ifdef CONFIG_X86_64
574 if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
575 return 1;
576 #endif
577 return 0;
580 static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
582 #ifdef CONFIG_X86_F00F_BUG
583 unsigned long nr;
586 * Pentium F0 0F C7 C8 bug workaround:
588 if (boot_cpu_data.f00f_bug) {
589 nr = (address - idt_descr.address) >> 3;
591 if (nr == 6) {
592 do_invalid_op(regs, 0);
593 return 1;
596 #endif
597 return 0;
600 static const char nx_warning[] = KERN_CRIT
601 "kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n";
603 static void
604 show_fault_oops(struct pt_regs *regs, unsigned long error_code,
605 unsigned long address)
607 if (!oops_may_print())
608 return;
610 if (error_code & PF_INSTR) {
611 unsigned int level;
613 pte_t *pte = lookup_address(address, &level);
615 if (pte && pte_present(*pte) && !pte_exec(*pte))
616 printk(nx_warning, current_uid());
619 printk(KERN_ALERT "BUG: unable to handle kernel ");
620 if (address < PAGE_SIZE)
621 printk(KERN_CONT "NULL pointer dereference");
622 else
623 printk(KERN_CONT "paging request");
625 printk(KERN_CONT " at %p\n", (void *) address);
626 printk(KERN_ALERT "IP:");
627 printk_address(regs->ip, 1);
629 dump_pagetable(address);
632 static noinline void
633 pgtable_bad(struct pt_regs *regs, unsigned long error_code,
634 unsigned long address)
636 struct task_struct *tsk;
637 unsigned long flags;
638 int sig;
640 flags = oops_begin();
641 tsk = current;
642 sig = SIGKILL;
644 printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
645 tsk->comm, address);
646 dump_pagetable(address);
648 tsk->thread.cr2 = address;
649 tsk->thread.trap_no = 14;
650 tsk->thread.error_code = error_code;
652 if (__die("Bad pagetable", regs, error_code))
653 sig = 0;
655 oops_end(flags, regs, sig);
658 static noinline void
659 no_context(struct pt_regs *regs, unsigned long error_code,
660 unsigned long address)
662 struct task_struct *tsk = current;
663 unsigned long *stackend;
664 unsigned long flags;
665 int sig;
667 /* Are we prepared to handle this kernel fault? */
668 if (fixup_exception(regs))
669 return;
672 * 32-bit:
674 * Valid to do another page fault here, because if this fault
675 * had been triggered by is_prefetch fixup_exception would have
676 * handled it.
678 * 64-bit:
680 * Hall of shame of CPU/BIOS bugs.
682 if (is_prefetch(regs, error_code, address))
683 return;
685 if (is_errata93(regs, address))
686 return;
689 * Oops. The kernel tried to access some bad page. We'll have to
690 * terminate things with extreme prejudice:
692 flags = oops_begin();
694 show_fault_oops(regs, error_code, address);
696 stackend = end_of_stack(tsk);
697 if (*stackend != STACK_END_MAGIC)
698 printk(KERN_ALERT "Thread overran stack, or stack corrupted\n");
700 tsk->thread.cr2 = address;
701 tsk->thread.trap_no = 14;
702 tsk->thread.error_code = error_code;
704 sig = SIGKILL;
705 if (__die("Oops", regs, error_code))
706 sig = 0;
708 /* Executive summary in case the body of the oops scrolled away */
709 printk(KERN_EMERG "CR2: %016lx\n", address);
711 oops_end(flags, regs, sig);
715 * Print out info about fatal segfaults, if the show_unhandled_signals
716 * sysctl is set:
718 static inline void
719 show_signal_msg(struct pt_regs *regs, unsigned long error_code,
720 unsigned long address, struct task_struct *tsk)
722 if (!unhandled_signal(tsk, SIGSEGV))
723 return;
725 if (!printk_ratelimit())
726 return;
728 printk(KERN_CONT "%s%s[%d]: segfault at %lx ip %p sp %p error %lx",
729 task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
730 tsk->comm, task_pid_nr(tsk), address,
731 (void *)regs->ip, (void *)regs->sp, error_code);
733 print_vma_addr(KERN_CONT " in ", regs->ip);
735 printk(KERN_CONT "\n");
738 static void
739 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
740 unsigned long address, int si_code)
742 struct task_struct *tsk = current;
744 /* User mode accesses just cause a SIGSEGV */
745 if (error_code & PF_USER) {
747 * It's possible to have interrupts off here:
749 local_irq_enable();
752 * Valid to do another page fault here because this one came
753 * from user space:
755 if (is_prefetch(regs, error_code, address))
756 return;
758 if (is_errata100(regs, address))
759 return;
761 if (unlikely(show_unhandled_signals))
762 show_signal_msg(regs, error_code, address, tsk);
764 /* Kernel addresses are always protection faults: */
765 tsk->thread.cr2 = address;
766 tsk->thread.error_code = error_code | (address >= TASK_SIZE);
767 tsk->thread.trap_no = 14;
769 force_sig_info_fault(SIGSEGV, si_code, address, tsk);
771 return;
774 if (is_f00f_bug(regs, address))
775 return;
777 no_context(regs, error_code, address);
780 static noinline void
781 bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
782 unsigned long address)
784 __bad_area_nosemaphore(regs, error_code, address, SEGV_MAPERR);
787 static void
788 __bad_area(struct pt_regs *regs, unsigned long error_code,
789 unsigned long address, int si_code)
791 struct mm_struct *mm = current->mm;
794 * Something tried to access memory that isn't in our memory map..
795 * Fix it, but check if it's kernel or user first..
797 up_read(&mm->mmap_sem);
799 __bad_area_nosemaphore(regs, error_code, address, si_code);
802 static noinline void
803 bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
805 __bad_area(regs, error_code, address, SEGV_MAPERR);
808 static noinline void
809 bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
810 unsigned long address)
812 __bad_area(regs, error_code, address, SEGV_ACCERR);
815 /* TODO: fixup for "mm-invoke-oom-killer-from-page-fault.patch" */
816 static void
817 out_of_memory(struct pt_regs *regs, unsigned long error_code,
818 unsigned long address)
821 * We ran out of memory, call the OOM killer, and return the userspace
822 * (which will retry the fault, or kill us if we got oom-killed):
824 up_read(&current->mm->mmap_sem);
826 pagefault_out_of_memory();
829 static void
830 do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address)
832 struct task_struct *tsk = current;
833 struct mm_struct *mm = tsk->mm;
835 up_read(&mm->mmap_sem);
837 /* Kernel mode? Handle exceptions or die: */
838 if (!(error_code & PF_USER))
839 no_context(regs, error_code, address);
841 /* User-space => ok to do another page fault: */
842 if (is_prefetch(regs, error_code, address))
843 return;
845 tsk->thread.cr2 = address;
846 tsk->thread.error_code = error_code;
847 tsk->thread.trap_no = 14;
849 force_sig_info_fault(SIGBUS, BUS_ADRERR, address, tsk);
852 static noinline void
853 mm_fault_error(struct pt_regs *regs, unsigned long error_code,
854 unsigned long address, unsigned int fault)
856 if (fault & VM_FAULT_OOM) {
857 out_of_memory(regs, error_code, address);
858 } else {
859 if (fault & VM_FAULT_SIGBUS)
860 do_sigbus(regs, error_code, address);
861 else
862 BUG();
866 static int spurious_fault_check(unsigned long error_code, pte_t *pte)
868 if ((error_code & PF_WRITE) && !pte_write(*pte))
869 return 0;
871 if ((error_code & PF_INSTR) && !pte_exec(*pte))
872 return 0;
874 return 1;
878 * Handle a spurious fault caused by a stale TLB entry.
880 * This allows us to lazily refresh the TLB when increasing the
881 * permissions of a kernel page (RO -> RW or NX -> X). Doing it
882 * eagerly is very expensive since that implies doing a full
883 * cross-processor TLB flush, even if no stale TLB entries exist
884 * on other processors.
886 * There are no security implications to leaving a stale TLB when
887 * increasing the permissions on a page.
889 static noinline int
890 spurious_fault(unsigned long error_code, unsigned long address)
892 pgd_t *pgd;
893 pud_t *pud;
894 pmd_t *pmd;
895 pte_t *pte;
896 int ret;
898 /* Reserved-bit violation or user access to kernel space? */
899 if (error_code & (PF_USER | PF_RSVD))
900 return 0;
902 pgd = init_mm.pgd + pgd_index(address);
903 if (!pgd_present(*pgd))
904 return 0;
906 pud = pud_offset(pgd, address);
907 if (!pud_present(*pud))
908 return 0;
910 if (pud_large(*pud))
911 return spurious_fault_check(error_code, (pte_t *) pud);
913 pmd = pmd_offset(pud, address);
914 if (!pmd_present(*pmd))
915 return 0;
917 if (pmd_large(*pmd))
918 return spurious_fault_check(error_code, (pte_t *) pmd);
920 pte = pte_offset_kernel(pmd, address);
921 if (!pte_present(*pte))
922 return 0;
924 ret = spurious_fault_check(error_code, pte);
925 if (!ret)
926 return 0;
929 * Make sure we have permissions in PMD.
930 * If not, then there's a bug in the page tables:
932 ret = spurious_fault_check(error_code, (pte_t *) pmd);
933 WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
935 return ret;
938 int show_unhandled_signals = 1;
940 static inline int
941 access_error(unsigned long error_code, int write, struct vm_area_struct *vma)
943 if (write) {
944 /* write, present and write, not present: */
945 if (unlikely(!(vma->vm_flags & VM_WRITE)))
946 return 1;
947 return 0;
950 /* read, present: */
951 if (unlikely(error_code & PF_PROT))
952 return 1;
954 /* read, not present: */
955 if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
956 return 1;
958 return 0;
961 static int fault_in_kernel_space(unsigned long address)
963 return address >= TASK_SIZE_MAX;
967 * This routine handles page faults. It determines the address,
968 * and the problem, and then passes it off to one of the appropriate
969 * routines.
971 dotraplinkage void __kprobes
972 do_page_fault(struct pt_regs *regs, unsigned long error_code)
974 struct vm_area_struct *vma;
975 struct task_struct *tsk;
976 unsigned long address;
977 struct mm_struct *mm;
978 int write;
979 int fault;
981 tsk = current;
982 mm = tsk->mm;
984 prefetchw(&mm->mmap_sem);
986 /* Get the faulting address: */
987 address = read_cr2();
989 if (unlikely(kmmio_fault(regs, address)))
990 return;
993 * We fault-in kernel-space virtual memory on-demand. The
994 * 'reference' page table is init_mm.pgd.
996 * NOTE! We MUST NOT take any locks for this case. We may
997 * be in an interrupt or a critical region, and should
998 * only copy the information from the master page table,
999 * nothing more.
1001 * This verifies that the fault happens in kernel space
1002 * (error_code & 4) == 0, and that the fault was not a
1003 * protection error (error_code & 9) == 0.
1005 if (unlikely(fault_in_kernel_space(address))) {
1006 if (!(error_code & (PF_RSVD|PF_USER|PF_PROT)) &&
1007 vmalloc_fault(address) >= 0)
1008 return;
1010 /* Can handle a stale RO->RW TLB: */
1011 if (spurious_fault(error_code, address))
1012 return;
1014 /* kprobes don't want to hook the spurious faults: */
1015 if (notify_page_fault(regs))
1016 return;
1018 * Don't take the mm semaphore here. If we fixup a prefetch
1019 * fault we could otherwise deadlock:
1021 bad_area_nosemaphore(regs, error_code, address);
1023 return;
1026 /* kprobes don't want to hook the spurious faults: */
1027 if (unlikely(notify_page_fault(regs)))
1028 return;
1030 * It's safe to allow irq's after cr2 has been saved and the
1031 * vmalloc fault has been handled.
1033 * User-mode registers count as a user access even for any
1034 * potential system fault or CPU buglet:
1036 if (user_mode_vm(regs)) {
1037 local_irq_enable();
1038 error_code |= PF_USER;
1039 } else {
1040 if (regs->flags & X86_EFLAGS_IF)
1041 local_irq_enable();
1044 if (unlikely(error_code & PF_RSVD))
1045 pgtable_bad(regs, error_code, address);
1048 * If we're in an interrupt, have no user context or are running
1049 * in an atomic region then we must not take the fault:
1051 if (unlikely(in_atomic() || !mm)) {
1052 bad_area_nosemaphore(regs, error_code, address);
1053 return;
1057 * When running in the kernel we expect faults to occur only to
1058 * addresses in user space. All other faults represent errors in
1059 * the kernel and should generate an OOPS. Unfortunately, in the
1060 * case of an erroneous fault occurring in a code path which already
1061 * holds mmap_sem we will deadlock attempting to validate the fault
1062 * against the address space. Luckily the kernel only validly
1063 * references user space from well defined areas of code, which are
1064 * listed in the exceptions table.
1066 * As the vast majority of faults will be valid we will only perform
1067 * the source reference check when there is a possibility of a
1068 * deadlock. Attempt to lock the address space, if we cannot we then
1069 * validate the source. If this is invalid we can skip the address
1070 * space check, thus avoiding the deadlock:
1072 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
1073 if ((error_code & PF_USER) == 0 &&
1074 !search_exception_tables(regs->ip)) {
1075 bad_area_nosemaphore(regs, error_code, address);
1076 return;
1078 down_read(&mm->mmap_sem);
1079 } else {
1081 * The above down_read_trylock() might have succeeded in
1082 * which case we'll have missed the might_sleep() from
1083 * down_read():
1085 might_sleep();
1088 vma = find_vma(mm, address);
1089 if (unlikely(!vma)) {
1090 bad_area(regs, error_code, address);
1091 return;
1093 if (likely(vma->vm_start <= address))
1094 goto good_area;
1095 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
1096 bad_area(regs, error_code, address);
1097 return;
1099 if (error_code & PF_USER) {
1101 * Accessing the stack below %sp is always a bug.
1102 * The large cushion allows instructions like enter
1103 * and pusha to work. ("enter $65535, $31" pushes
1104 * 32 pointers and then decrements %sp by 65535.)
1106 if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) {
1107 bad_area(regs, error_code, address);
1108 return;
1111 if (unlikely(expand_stack(vma, address))) {
1112 bad_area(regs, error_code, address);
1113 return;
1117 * Ok, we have a good vm_area for this memory access, so
1118 * we can handle it..
1120 good_area:
1121 write = error_code & PF_WRITE;
1123 if (unlikely(access_error(error_code, write, vma))) {
1124 bad_area_access_error(regs, error_code, address);
1125 return;
1129 * If for any reason at all we couldn't handle the fault,
1130 * make sure we exit gracefully rather than endlessly redo
1131 * the fault:
1133 fault = handle_mm_fault(mm, vma, address, write);
1135 if (unlikely(fault & VM_FAULT_ERROR)) {
1136 mm_fault_error(regs, error_code, address, fault);
1137 return;
1140 if (fault & VM_FAULT_MAJOR)
1141 tsk->maj_flt++;
1142 else
1143 tsk->min_flt++;
1145 check_v8086_mode(regs, address, tsk);
1147 up_read(&mm->mmap_sem);