2 * linux/mm/compaction.c
4 * Memory compaction for the reduction of external fragmentation. Note that
5 * this heavily depends upon page migration to do all the real heavy
8 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
10 #include <linux/swap.h>
11 #include <linux/migrate.h>
12 #include <linux/compaction.h>
13 #include <linux/mm_inline.h>
14 #include <linux/backing-dev.h>
15 #include <linux/sysctl.h>
16 #include <linux/sysfs.h>
17 #include <linux/balloon_compaction.h>
18 #include <linux/page-isolation.h>
21 #ifdef CONFIG_COMPACTION
22 static inline void count_compact_event(enum vm_event_item item
)
27 static inline void count_compact_events(enum vm_event_item item
, long delta
)
29 count_vm_events(item
, delta
);
32 #define count_compact_event(item) do { } while (0)
33 #define count_compact_events(item, delta) do { } while (0)
36 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/compaction.h>
41 static unsigned long release_freepages(struct list_head
*freelist
)
43 struct page
*page
, *next
;
44 unsigned long count
= 0;
46 list_for_each_entry_safe(page
, next
, freelist
, lru
) {
55 static void map_pages(struct list_head
*list
)
59 list_for_each_entry(page
, list
, lru
) {
60 arch_alloc_page(page
, 0);
61 kernel_map_pages(page
, 1, 1);
65 static inline bool migrate_async_suitable(int migratetype
)
67 return is_migrate_cma(migratetype
) || migratetype
== MIGRATE_MOVABLE
;
70 #ifdef CONFIG_COMPACTION
71 /* Returns true if the pageblock should be scanned for pages to isolate. */
72 static inline bool isolation_suitable(struct compact_control
*cc
,
75 if (cc
->ignore_skip_hint
)
78 return !get_pageblock_skip(page
);
82 * This function is called to clear all cached information on pageblocks that
83 * should be skipped for page isolation when the migrate and free page scanner
86 static void __reset_isolation_suitable(struct zone
*zone
)
88 unsigned long start_pfn
= zone
->zone_start_pfn
;
89 unsigned long end_pfn
= zone_end_pfn(zone
);
92 zone
->compact_cached_migrate_pfn
= start_pfn
;
93 zone
->compact_cached_free_pfn
= end_pfn
;
94 zone
->compact_blockskip_flush
= false;
96 /* Walk the zone and mark every pageblock as suitable for isolation */
97 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= pageblock_nr_pages
) {
105 page
= pfn_to_page(pfn
);
106 if (zone
!= page_zone(page
))
109 clear_pageblock_skip(page
);
113 void reset_isolation_suitable(pg_data_t
*pgdat
)
117 for (zoneid
= 0; zoneid
< MAX_NR_ZONES
; zoneid
++) {
118 struct zone
*zone
= &pgdat
->node_zones
[zoneid
];
119 if (!populated_zone(zone
))
122 /* Only flush if a full compaction finished recently */
123 if (zone
->compact_blockskip_flush
)
124 __reset_isolation_suitable(zone
);
129 * If no pages were isolated then mark this pageblock to be skipped in the
130 * future. The information is later cleared by __reset_isolation_suitable().
132 static void update_pageblock_skip(struct compact_control
*cc
,
133 struct page
*page
, unsigned long nr_isolated
,
134 bool migrate_scanner
)
136 struct zone
*zone
= cc
->zone
;
141 unsigned long pfn
= page_to_pfn(page
);
142 set_pageblock_skip(page
);
144 /* Update where compaction should restart */
145 if (migrate_scanner
) {
146 if (!cc
->finished_update_migrate
&&
147 pfn
> zone
->compact_cached_migrate_pfn
)
148 zone
->compact_cached_migrate_pfn
= pfn
;
150 if (!cc
->finished_update_free
&&
151 pfn
< zone
->compact_cached_free_pfn
)
152 zone
->compact_cached_free_pfn
= pfn
;
157 static inline bool isolation_suitable(struct compact_control
*cc
,
163 static void update_pageblock_skip(struct compact_control
*cc
,
164 struct page
*page
, unsigned long nr_isolated
,
165 bool migrate_scanner
)
168 #endif /* CONFIG_COMPACTION */
170 static inline bool should_release_lock(spinlock_t
*lock
)
172 return need_resched() || spin_is_contended(lock
);
176 * Compaction requires the taking of some coarse locks that are potentially
177 * very heavily contended. Check if the process needs to be scheduled or
178 * if the lock is contended. For async compaction, back out in the event
179 * if contention is severe. For sync compaction, schedule.
181 * Returns true if the lock is held.
182 * Returns false if the lock is released and compaction should abort
184 static bool compact_checklock_irqsave(spinlock_t
*lock
, unsigned long *flags
,
185 bool locked
, struct compact_control
*cc
)
187 if (should_release_lock(lock
)) {
189 spin_unlock_irqrestore(lock
, *flags
);
193 /* async aborts if taking too long or contended */
195 cc
->contended
= true;
203 spin_lock_irqsave(lock
, *flags
);
207 static inline bool compact_trylock_irqsave(spinlock_t
*lock
,
208 unsigned long *flags
, struct compact_control
*cc
)
210 return compact_checklock_irqsave(lock
, flags
, false, cc
);
213 /* Returns true if the page is within a block suitable for migration to */
214 static bool suitable_migration_target(struct page
*page
)
216 int migratetype
= get_pageblock_migratetype(page
);
218 /* Don't interfere with memory hot-remove or the min_free_kbytes blocks */
219 if (migratetype
== MIGRATE_RESERVE
)
222 if (is_migrate_isolate(migratetype
))
225 /* If the page is a large free page, then allow migration */
226 if (PageBuddy(page
) && page_order(page
) >= pageblock_order
)
229 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
230 if (migrate_async_suitable(migratetype
))
233 /* Otherwise skip the block */
238 * Isolate free pages onto a private freelist. If @strict is true, will abort
239 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
240 * (even though it may still end up isolating some pages).
242 static unsigned long isolate_freepages_block(struct compact_control
*cc
,
243 unsigned long blockpfn
,
244 unsigned long end_pfn
,
245 struct list_head
*freelist
,
248 int nr_scanned
= 0, total_isolated
= 0;
249 struct page
*cursor
, *valid_page
= NULL
;
250 unsigned long nr_strict_required
= end_pfn
- blockpfn
;
254 cursor
= pfn_to_page(blockpfn
);
256 /* Isolate free pages. */
257 for (; blockpfn
< end_pfn
; blockpfn
++, cursor
++) {
259 struct page
*page
= cursor
;
262 if (!pfn_valid_within(blockpfn
))
266 if (!PageBuddy(page
))
270 * The zone lock must be held to isolate freepages.
271 * Unfortunately this is a very coarse lock and can be
272 * heavily contended if there are parallel allocations
273 * or parallel compactions. For async compaction do not
274 * spin on the lock and we acquire the lock as late as
277 locked
= compact_checklock_irqsave(&cc
->zone
->lock
, &flags
,
282 /* Recheck this is a suitable migration target under lock */
283 if (!strict
&& !suitable_migration_target(page
))
286 /* Recheck this is a buddy page under lock */
287 if (!PageBuddy(page
))
290 /* Found a free page, break it into order-0 pages */
291 isolated
= split_free_page(page
);
292 if (!isolated
&& strict
)
294 total_isolated
+= isolated
;
295 for (i
= 0; i
< isolated
; i
++) {
296 list_add(&page
->lru
, freelist
);
300 /* If a page was split, advance to the end of it */
302 blockpfn
+= isolated
- 1;
303 cursor
+= isolated
- 1;
307 trace_mm_compaction_isolate_freepages(nr_scanned
, total_isolated
);
310 * If strict isolation is requested by CMA then check that all the
311 * pages requested were isolated. If there were any failures, 0 is
312 * returned and CMA will fail.
314 if (strict
&& nr_strict_required
> total_isolated
)
318 spin_unlock_irqrestore(&cc
->zone
->lock
, flags
);
320 /* Update the pageblock-skip if the whole pageblock was scanned */
321 if (blockpfn
== end_pfn
)
322 update_pageblock_skip(cc
, valid_page
, total_isolated
, false);
324 count_compact_events(COMPACTFREE_SCANNED
, nr_scanned
);
326 count_compact_events(COMPACTISOLATED
, total_isolated
);
327 return total_isolated
;
331 * isolate_freepages_range() - isolate free pages.
332 * @start_pfn: The first PFN to start isolating.
333 * @end_pfn: The one-past-last PFN.
335 * Non-free pages, invalid PFNs, or zone boundaries within the
336 * [start_pfn, end_pfn) range are considered errors, cause function to
337 * undo its actions and return zero.
339 * Otherwise, function returns one-past-the-last PFN of isolated page
340 * (which may be greater then end_pfn if end fell in a middle of
344 isolate_freepages_range(struct compact_control
*cc
,
345 unsigned long start_pfn
, unsigned long end_pfn
)
347 unsigned long isolated
, pfn
, block_end_pfn
;
350 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= isolated
) {
351 if (!pfn_valid(pfn
) || cc
->zone
!= page_zone(pfn_to_page(pfn
)))
355 * On subsequent iterations ALIGN() is actually not needed,
356 * but we keep it that we not to complicate the code.
358 block_end_pfn
= ALIGN(pfn
+ 1, pageblock_nr_pages
);
359 block_end_pfn
= min(block_end_pfn
, end_pfn
);
361 isolated
= isolate_freepages_block(cc
, pfn
, block_end_pfn
,
365 * In strict mode, isolate_freepages_block() returns 0 if
366 * there are any holes in the block (ie. invalid PFNs or
373 * If we managed to isolate pages, it is always (1 << n) *
374 * pageblock_nr_pages for some non-negative n. (Max order
375 * page may span two pageblocks).
379 /* split_free_page does not map the pages */
380 map_pages(&freelist
);
383 /* Loop terminated early, cleanup. */
384 release_freepages(&freelist
);
388 /* We don't use freelists for anything. */
392 /* Update the number of anon and file isolated pages in the zone */
393 static void acct_isolated(struct zone
*zone
, bool locked
, struct compact_control
*cc
)
396 unsigned int count
[2] = { 0, };
398 list_for_each_entry(page
, &cc
->migratepages
, lru
)
399 count
[!!page_is_file_cache(page
)]++;
401 /* If locked we can use the interrupt unsafe versions */
403 __mod_zone_page_state(zone
, NR_ISOLATED_ANON
, count
[0]);
404 __mod_zone_page_state(zone
, NR_ISOLATED_FILE
, count
[1]);
406 mod_zone_page_state(zone
, NR_ISOLATED_ANON
, count
[0]);
407 mod_zone_page_state(zone
, NR_ISOLATED_FILE
, count
[1]);
411 /* Similar to reclaim, but different enough that they don't share logic */
412 static bool too_many_isolated(struct zone
*zone
)
414 unsigned long active
, inactive
, isolated
;
416 inactive
= zone_page_state(zone
, NR_INACTIVE_FILE
) +
417 zone_page_state(zone
, NR_INACTIVE_ANON
);
418 active
= zone_page_state(zone
, NR_ACTIVE_FILE
) +
419 zone_page_state(zone
, NR_ACTIVE_ANON
);
420 isolated
= zone_page_state(zone
, NR_ISOLATED_FILE
) +
421 zone_page_state(zone
, NR_ISOLATED_ANON
);
423 return isolated
> (inactive
+ active
) / 2;
427 * isolate_migratepages_range() - isolate all migrate-able pages in range.
428 * @zone: Zone pages are in.
429 * @cc: Compaction control structure.
430 * @low_pfn: The first PFN of the range.
431 * @end_pfn: The one-past-the-last PFN of the range.
432 * @unevictable: true if it allows to isolate unevictable pages
434 * Isolate all pages that can be migrated from the range specified by
435 * [low_pfn, end_pfn). Returns zero if there is a fatal signal
436 * pending), otherwise PFN of the first page that was not scanned
437 * (which may be both less, equal to or more then end_pfn).
439 * Assumes that cc->migratepages is empty and cc->nr_migratepages is
442 * Apart from cc->migratepages and cc->nr_migratetypes this function
443 * does not modify any cc's fields, in particular it does not modify
444 * (or read for that matter) cc->migrate_pfn.
447 isolate_migratepages_range(struct zone
*zone
, struct compact_control
*cc
,
448 unsigned long low_pfn
, unsigned long end_pfn
, bool unevictable
)
450 unsigned long last_pageblock_nr
= 0, pageblock_nr
;
451 unsigned long nr_scanned
= 0, nr_isolated
= 0;
452 struct list_head
*migratelist
= &cc
->migratepages
;
453 isolate_mode_t mode
= 0;
454 struct lruvec
*lruvec
;
457 struct page
*page
= NULL
, *valid_page
= NULL
;
460 * Ensure that there are not too many pages isolated from the LRU
461 * list by either parallel reclaimers or compaction. If there are,
462 * delay for some time until fewer pages are isolated
464 while (unlikely(too_many_isolated(zone
))) {
465 /* async migration should just abort */
469 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
471 if (fatal_signal_pending(current
))
475 /* Time to isolate some pages for migration */
477 for (; low_pfn
< end_pfn
; low_pfn
++) {
478 /* give a chance to irqs before checking need_resched() */
479 if (locked
&& !((low_pfn
+1) % SWAP_CLUSTER_MAX
)) {
480 if (should_release_lock(&zone
->lru_lock
)) {
481 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
487 * migrate_pfn does not necessarily start aligned to a
488 * pageblock. Ensure that pfn_valid is called when moving
489 * into a new MAX_ORDER_NR_PAGES range in case of large
490 * memory holes within the zone
492 if ((low_pfn
& (MAX_ORDER_NR_PAGES
- 1)) == 0) {
493 if (!pfn_valid(low_pfn
)) {
494 low_pfn
+= MAX_ORDER_NR_PAGES
- 1;
499 if (!pfn_valid_within(low_pfn
))
504 * Get the page and ensure the page is within the same zone.
505 * See the comment in isolate_freepages about overlapping
506 * nodes. It is deliberate that the new zone lock is not taken
507 * as memory compaction should not move pages between nodes.
509 page
= pfn_to_page(low_pfn
);
510 if (page_zone(page
) != zone
)
516 /* If isolation recently failed, do not retry */
517 pageblock_nr
= low_pfn
>> pageblock_order
;
518 if (!isolation_suitable(cc
, page
))
526 * For async migration, also only scan in MOVABLE blocks. Async
527 * migration is optimistic to see if the minimum amount of work
528 * satisfies the allocation
530 if (!cc
->sync
&& last_pageblock_nr
!= pageblock_nr
&&
531 !migrate_async_suitable(get_pageblock_migratetype(page
))) {
532 cc
->finished_update_migrate
= true;
537 * Check may be lockless but that's ok as we recheck later.
538 * It's possible to migrate LRU pages and balloon pages
539 * Skip any other type of page
541 if (!PageLRU(page
)) {
542 if (unlikely(balloon_page_movable(page
))) {
543 if (locked
&& balloon_page_isolate(page
)) {
544 /* Successfully isolated */
545 cc
->finished_update_migrate
= true;
546 list_add(&page
->lru
, migratelist
);
547 cc
->nr_migratepages
++;
549 goto check_compact_cluster
;
556 * PageLRU is set. lru_lock normally excludes isolation
557 * splitting and collapsing (collapsing has already happened
558 * if PageLRU is set) but the lock is not necessarily taken
559 * here and it is wasteful to take it just to check transhuge.
560 * Check TransHuge without lock and skip the whole pageblock if
561 * it's either a transhuge or hugetlbfs page, as calling
562 * compound_order() without preventing THP from splitting the
563 * page underneath us may return surprising results.
565 if (PageTransHuge(page
)) {
568 low_pfn
+= (1 << compound_order(page
)) - 1;
572 /* Check if it is ok to still hold the lock */
573 locked
= compact_checklock_irqsave(&zone
->lru_lock
, &flags
,
575 if (!locked
|| fatal_signal_pending(current
))
578 /* Recheck PageLRU and PageTransHuge under lock */
581 if (PageTransHuge(page
)) {
582 low_pfn
+= (1 << compound_order(page
)) - 1;
587 mode
|= ISOLATE_ASYNC_MIGRATE
;
590 mode
|= ISOLATE_UNEVICTABLE
;
592 lruvec
= mem_cgroup_page_lruvec(page
, zone
);
594 /* Try isolate the page */
595 if (__isolate_lru_page(page
, mode
) != 0)
598 VM_BUG_ON(PageTransCompound(page
));
600 /* Successfully isolated */
601 cc
->finished_update_migrate
= true;
602 del_page_from_lru_list(page
, lruvec
, page_lru(page
));
603 list_add(&page
->lru
, migratelist
);
604 cc
->nr_migratepages
++;
607 check_compact_cluster
:
608 /* Avoid isolating too much */
609 if (cc
->nr_migratepages
== COMPACT_CLUSTER_MAX
) {
617 low_pfn
= ALIGN(low_pfn
+ 1, pageblock_nr_pages
) - 1;
618 last_pageblock_nr
= pageblock_nr
;
621 acct_isolated(zone
, locked
, cc
);
624 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
626 /* Update the pageblock-skip if the whole pageblock was scanned */
627 if (low_pfn
== end_pfn
)
628 update_pageblock_skip(cc
, valid_page
, nr_isolated
, true);
630 trace_mm_compaction_isolate_migratepages(nr_scanned
, nr_isolated
);
632 count_compact_events(COMPACTMIGRATE_SCANNED
, nr_scanned
);
634 count_compact_events(COMPACTISOLATED
, nr_isolated
);
639 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
640 #ifdef CONFIG_COMPACTION
642 * Based on information in the current compact_control, find blocks
643 * suitable for isolating free pages from and then isolate them.
645 static void isolate_freepages(struct zone
*zone
,
646 struct compact_control
*cc
)
649 unsigned long high_pfn
, low_pfn
, pfn
, z_end_pfn
, end_pfn
;
650 int nr_freepages
= cc
->nr_freepages
;
651 struct list_head
*freelist
= &cc
->freepages
;
654 * Initialise the free scanner. The starting point is where we last
655 * scanned from (or the end of the zone if starting). The low point
656 * is the end of the pageblock the migration scanner is using.
659 low_pfn
= cc
->migrate_pfn
+ pageblock_nr_pages
;
662 * Take care that if the migration scanner is at the end of the zone
663 * that the free scanner does not accidentally move to the next zone
664 * in the next isolation cycle.
666 high_pfn
= min(low_pfn
, pfn
);
668 z_end_pfn
= zone_end_pfn(zone
);
671 * Isolate free pages until enough are available to migrate the
672 * pages on cc->migratepages. We stop searching if the migrate
673 * and free page scanners meet or enough free pages are isolated.
675 for (; pfn
> low_pfn
&& cc
->nr_migratepages
> nr_freepages
;
676 pfn
-= pageblock_nr_pages
) {
677 unsigned long isolated
;
680 * This can iterate a massively long zone without finding any
681 * suitable migration targets, so periodically check if we need
690 * Check for overlapping nodes/zones. It's possible on some
691 * configurations to have a setup like
693 * i.e. it's possible that all pages within a zones range of
694 * pages do not belong to a single zone.
696 page
= pfn_to_page(pfn
);
697 if (page_zone(page
) != zone
)
700 /* Check the block is suitable for migration */
701 if (!suitable_migration_target(page
))
704 /* If isolation recently failed, do not retry */
705 if (!isolation_suitable(cc
, page
))
708 /* Found a block suitable for isolating free pages from */
712 * As pfn may not start aligned, pfn+pageblock_nr_page
713 * may cross a MAX_ORDER_NR_PAGES boundary and miss
714 * a pfn_valid check. Ensure isolate_freepages_block()
715 * only scans within a pageblock
717 end_pfn
= ALIGN(pfn
+ 1, pageblock_nr_pages
);
718 end_pfn
= min(end_pfn
, z_end_pfn
);
719 isolated
= isolate_freepages_block(cc
, pfn
, end_pfn
,
721 nr_freepages
+= isolated
;
724 * Record the highest PFN we isolated pages from. When next
725 * looking for free pages, the search will restart here as
726 * page migration may have returned some pages to the allocator
729 cc
->finished_update_free
= true;
730 high_pfn
= max(high_pfn
, pfn
);
734 /* split_free_page does not map the pages */
737 cc
->free_pfn
= high_pfn
;
738 cc
->nr_freepages
= nr_freepages
;
742 * This is a migrate-callback that "allocates" freepages by taking pages
743 * from the isolated freelists in the block we are migrating to.
745 static struct page
*compaction_alloc(struct page
*migratepage
,
749 struct compact_control
*cc
= (struct compact_control
*)data
;
750 struct page
*freepage
;
752 /* Isolate free pages if necessary */
753 if (list_empty(&cc
->freepages
)) {
754 isolate_freepages(cc
->zone
, cc
);
756 if (list_empty(&cc
->freepages
))
760 freepage
= list_entry(cc
->freepages
.next
, struct page
, lru
);
761 list_del(&freepage
->lru
);
768 * We cannot control nr_migratepages and nr_freepages fully when migration is
769 * running as migrate_pages() has no knowledge of compact_control. When
770 * migration is complete, we count the number of pages on the lists by hand.
772 static void update_nr_listpages(struct compact_control
*cc
)
774 int nr_migratepages
= 0;
775 int nr_freepages
= 0;
778 list_for_each_entry(page
, &cc
->migratepages
, lru
)
780 list_for_each_entry(page
, &cc
->freepages
, lru
)
783 cc
->nr_migratepages
= nr_migratepages
;
784 cc
->nr_freepages
= nr_freepages
;
787 /* possible outcome of isolate_migratepages */
789 ISOLATE_ABORT
, /* Abort compaction now */
790 ISOLATE_NONE
, /* No pages isolated, continue scanning */
791 ISOLATE_SUCCESS
, /* Pages isolated, migrate */
795 * Isolate all pages that can be migrated from the block pointed to by
796 * the migrate scanner within compact_control.
798 static isolate_migrate_t
isolate_migratepages(struct zone
*zone
,
799 struct compact_control
*cc
)
801 unsigned long low_pfn
, end_pfn
;
803 /* Do not scan outside zone boundaries */
804 low_pfn
= max(cc
->migrate_pfn
, zone
->zone_start_pfn
);
806 /* Only scan within a pageblock boundary */
807 end_pfn
= ALIGN(low_pfn
+ 1, pageblock_nr_pages
);
809 /* Do not cross the free scanner or scan within a memory hole */
810 if (end_pfn
> cc
->free_pfn
|| !pfn_valid(low_pfn
)) {
811 cc
->migrate_pfn
= end_pfn
;
815 /* Perform the isolation */
816 low_pfn
= isolate_migratepages_range(zone
, cc
, low_pfn
, end_pfn
, false);
817 if (!low_pfn
|| cc
->contended
)
818 return ISOLATE_ABORT
;
820 cc
->migrate_pfn
= low_pfn
;
822 return ISOLATE_SUCCESS
;
825 static int compact_finished(struct zone
*zone
,
826 struct compact_control
*cc
)
829 unsigned long watermark
;
831 if (fatal_signal_pending(current
))
832 return COMPACT_PARTIAL
;
834 /* Compaction run completes if the migrate and free scanner meet */
835 if (cc
->free_pfn
<= cc
->migrate_pfn
) {
837 * Mark that the PG_migrate_skip information should be cleared
838 * by kswapd when it goes to sleep. kswapd does not set the
839 * flag itself as the decision to be clear should be directly
840 * based on an allocation request.
842 if (!current_is_kswapd())
843 zone
->compact_blockskip_flush
= true;
845 return COMPACT_COMPLETE
;
849 * order == -1 is expected when compacting via
850 * /proc/sys/vm/compact_memory
853 return COMPACT_CONTINUE
;
855 /* Compaction run is not finished if the watermark is not met */
856 watermark
= low_wmark_pages(zone
);
857 watermark
+= (1 << cc
->order
);
859 if (!zone_watermark_ok(zone
, cc
->order
, watermark
, 0, 0))
860 return COMPACT_CONTINUE
;
862 /* Direct compactor: Is a suitable page free? */
863 for (order
= cc
->order
; order
< MAX_ORDER
; order
++) {
864 struct free_area
*area
= &zone
->free_area
[order
];
866 /* Job done if page is free of the right migratetype */
867 if (!list_empty(&area
->free_list
[cc
->migratetype
]))
868 return COMPACT_PARTIAL
;
870 /* Job done if allocation would set block type */
871 if (cc
->order
>= pageblock_order
&& area
->nr_free
)
872 return COMPACT_PARTIAL
;
875 return COMPACT_CONTINUE
;
879 * compaction_suitable: Is this suitable to run compaction on this zone now?
881 * COMPACT_SKIPPED - If there are too few free pages for compaction
882 * COMPACT_PARTIAL - If the allocation would succeed without compaction
883 * COMPACT_CONTINUE - If compaction should run now
885 unsigned long compaction_suitable(struct zone
*zone
, int order
)
888 unsigned long watermark
;
891 * order == -1 is expected when compacting via
892 * /proc/sys/vm/compact_memory
895 return COMPACT_CONTINUE
;
898 * Watermarks for order-0 must be met for compaction. Note the 2UL.
899 * This is because during migration, copies of pages need to be
900 * allocated and for a short time, the footprint is higher
902 watermark
= low_wmark_pages(zone
) + (2UL << order
);
903 if (!zone_watermark_ok(zone
, 0, watermark
, 0, 0))
904 return COMPACT_SKIPPED
;
907 * fragmentation index determines if allocation failures are due to
908 * low memory or external fragmentation
910 * index of -1000 implies allocations might succeed depending on
912 * index towards 0 implies failure is due to lack of memory
913 * index towards 1000 implies failure is due to fragmentation
915 * Only compact if a failure would be due to fragmentation.
917 fragindex
= fragmentation_index(zone
, order
);
918 if (fragindex
>= 0 && fragindex
<= sysctl_extfrag_threshold
)
919 return COMPACT_SKIPPED
;
921 if (fragindex
== -1000 && zone_watermark_ok(zone
, order
, watermark
,
923 return COMPACT_PARTIAL
;
925 return COMPACT_CONTINUE
;
928 static int compact_zone(struct zone
*zone
, struct compact_control
*cc
)
931 unsigned long start_pfn
= zone
->zone_start_pfn
;
932 unsigned long end_pfn
= zone_end_pfn(zone
);
934 ret
= compaction_suitable(zone
, cc
->order
);
936 case COMPACT_PARTIAL
:
937 case COMPACT_SKIPPED
:
938 /* Compaction is likely to fail */
940 case COMPACT_CONTINUE
:
941 /* Fall through to compaction */
946 * Setup to move all movable pages to the end of the zone. Used cached
947 * information on where the scanners should start but check that it
948 * is initialised by ensuring the values are within zone boundaries.
950 cc
->migrate_pfn
= zone
->compact_cached_migrate_pfn
;
951 cc
->free_pfn
= zone
->compact_cached_free_pfn
;
952 if (cc
->free_pfn
< start_pfn
|| cc
->free_pfn
> end_pfn
) {
953 cc
->free_pfn
= end_pfn
& ~(pageblock_nr_pages
-1);
954 zone
->compact_cached_free_pfn
= cc
->free_pfn
;
956 if (cc
->migrate_pfn
< start_pfn
|| cc
->migrate_pfn
> end_pfn
) {
957 cc
->migrate_pfn
= start_pfn
;
958 zone
->compact_cached_migrate_pfn
= cc
->migrate_pfn
;
962 * Clear pageblock skip if there were failures recently and compaction
963 * is about to be retried after being deferred. kswapd does not do
964 * this reset as it'll reset the cached information when going to sleep.
966 if (compaction_restarting(zone
, cc
->order
) && !current_is_kswapd())
967 __reset_isolation_suitable(zone
);
969 migrate_prep_local();
971 while ((ret
= compact_finished(zone
, cc
)) == COMPACT_CONTINUE
) {
972 unsigned long nr_migrate
, nr_remaining
;
975 switch (isolate_migratepages(zone
, cc
)) {
977 ret
= COMPACT_PARTIAL
;
978 putback_movable_pages(&cc
->migratepages
);
979 cc
->nr_migratepages
= 0;
983 case ISOLATE_SUCCESS
:
987 nr_migrate
= cc
->nr_migratepages
;
988 err
= migrate_pages(&cc
->migratepages
, compaction_alloc
,
990 cc
->sync
? MIGRATE_SYNC_LIGHT
: MIGRATE_ASYNC
,
992 update_nr_listpages(cc
);
993 nr_remaining
= cc
->nr_migratepages
;
995 trace_mm_compaction_migratepages(nr_migrate
- nr_remaining
,
998 /* Release isolated pages not migrated */
1000 putback_movable_pages(&cc
->migratepages
);
1001 cc
->nr_migratepages
= 0;
1002 if (err
== -ENOMEM
) {
1003 ret
= COMPACT_PARTIAL
;
1010 /* Release free pages and check accounting */
1011 cc
->nr_freepages
-= release_freepages(&cc
->freepages
);
1012 VM_BUG_ON(cc
->nr_freepages
!= 0);
1017 static unsigned long compact_zone_order(struct zone
*zone
,
1018 int order
, gfp_t gfp_mask
,
1019 bool sync
, bool *contended
)
1022 struct compact_control cc
= {
1024 .nr_migratepages
= 0,
1026 .migratetype
= allocflags_to_migratetype(gfp_mask
),
1030 INIT_LIST_HEAD(&cc
.freepages
);
1031 INIT_LIST_HEAD(&cc
.migratepages
);
1033 ret
= compact_zone(zone
, &cc
);
1035 VM_BUG_ON(!list_empty(&cc
.freepages
));
1036 VM_BUG_ON(!list_empty(&cc
.migratepages
));
1038 *contended
= cc
.contended
;
1042 int sysctl_extfrag_threshold
= 500;
1045 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
1046 * @zonelist: The zonelist used for the current allocation
1047 * @order: The order of the current allocation
1048 * @gfp_mask: The GFP mask of the current allocation
1049 * @nodemask: The allowed nodes to allocate from
1050 * @sync: Whether migration is synchronous or not
1051 * @contended: Return value that is true if compaction was aborted due to lock contention
1052 * @page: Optionally capture a free page of the requested order during compaction
1054 * This is the main entry point for direct page compaction.
1056 unsigned long try_to_compact_pages(struct zonelist
*zonelist
,
1057 int order
, gfp_t gfp_mask
, nodemask_t
*nodemask
,
1058 bool sync
, bool *contended
)
1060 enum zone_type high_zoneidx
= gfp_zone(gfp_mask
);
1061 int may_enter_fs
= gfp_mask
& __GFP_FS
;
1062 int may_perform_io
= gfp_mask
& __GFP_IO
;
1065 int rc
= COMPACT_SKIPPED
;
1066 int alloc_flags
= 0;
1068 /* Check if the GFP flags allow compaction */
1069 if (!order
|| !may_enter_fs
|| !may_perform_io
)
1072 count_compact_event(COMPACTSTALL
);
1075 if (allocflags_to_migratetype(gfp_mask
) == MIGRATE_MOVABLE
)
1076 alloc_flags
|= ALLOC_CMA
;
1078 /* Compact each zone in the list */
1079 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
, high_zoneidx
,
1083 status
= compact_zone_order(zone
, order
, gfp_mask
, sync
,
1085 rc
= max(status
, rc
);
1087 /* If a normal allocation would succeed, stop compacting */
1088 if (zone_watermark_ok(zone
, order
, low_wmark_pages(zone
), 0,
1097 /* Compact all zones within a node */
1098 static void __compact_pgdat(pg_data_t
*pgdat
, struct compact_control
*cc
)
1103 for (zoneid
= 0; zoneid
< MAX_NR_ZONES
; zoneid
++) {
1105 zone
= &pgdat
->node_zones
[zoneid
];
1106 if (!populated_zone(zone
))
1109 cc
->nr_freepages
= 0;
1110 cc
->nr_migratepages
= 0;
1112 INIT_LIST_HEAD(&cc
->freepages
);
1113 INIT_LIST_HEAD(&cc
->migratepages
);
1115 if (cc
->order
== -1 || !compaction_deferred(zone
, cc
->order
))
1116 compact_zone(zone
, cc
);
1118 if (cc
->order
> 0) {
1119 int ok
= zone_watermark_ok(zone
, cc
->order
,
1120 low_wmark_pages(zone
), 0, 0);
1121 if (ok
&& cc
->order
>= zone
->compact_order_failed
)
1122 zone
->compact_order_failed
= cc
->order
+ 1;
1123 /* Currently async compaction is never deferred. */
1124 else if (!ok
&& cc
->sync
)
1125 defer_compaction(zone
, cc
->order
);
1128 VM_BUG_ON(!list_empty(&cc
->freepages
));
1129 VM_BUG_ON(!list_empty(&cc
->migratepages
));
1133 void compact_pgdat(pg_data_t
*pgdat
, int order
)
1135 struct compact_control cc
= {
1143 __compact_pgdat(pgdat
, &cc
);
1146 static void compact_node(int nid
)
1148 struct compact_control cc
= {
1153 __compact_pgdat(NODE_DATA(nid
), &cc
);
1156 /* Compact all nodes in the system */
1157 static void compact_nodes(void)
1161 /* Flush pending updates to the LRU lists */
1162 lru_add_drain_all();
1164 for_each_online_node(nid
)
1168 /* The written value is actually unused, all memory is compacted */
1169 int sysctl_compact_memory
;
1171 /* This is the entry point for compacting all nodes via /proc/sys/vm */
1172 int sysctl_compaction_handler(struct ctl_table
*table
, int write
,
1173 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
1181 int sysctl_extfrag_handler(struct ctl_table
*table
, int write
,
1182 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
1184 proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
1189 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1190 ssize_t
sysfs_compact_node(struct device
*dev
,
1191 struct device_attribute
*attr
,
1192 const char *buf
, size_t count
)
1196 if (nid
>= 0 && nid
< nr_node_ids
&& node_online(nid
)) {
1197 /* Flush pending updates to the LRU lists */
1198 lru_add_drain_all();
1205 static DEVICE_ATTR(compact
, S_IWUSR
, NULL
, sysfs_compact_node
);
1207 int compaction_register_node(struct node
*node
)
1209 return device_create_file(&node
->dev
, &dev_attr_compact
);
1212 void compaction_unregister_node(struct node
*node
)
1214 return device_remove_file(&node
->dev
, &dev_attr_compact
);
1216 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
1218 #endif /* CONFIG_COMPACTION */