Merge tag 'gpio-v3.13-3' of git://git.kernel.org/pub/scm/linux/kernel/git/linusw...
[linux-2.6.git] / drivers / usb / host / xhci-ring.c
blob1e2f3f4958436fb120b81d41632ad7e7c76fb5b5
1 /*
2 * xHCI host controller driver
4 * Copyright (C) 2008 Intel Corp.
6 * Author: Sarah Sharp
7 * Some code borrowed from the Linux EHCI driver.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 * for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24 * Ring initialization rules:
25 * 1. Each segment is initialized to zero, except for link TRBs.
26 * 2. Ring cycle state = 0. This represents Producer Cycle State (PCS) or
27 * Consumer Cycle State (CCS), depending on ring function.
28 * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment.
30 * Ring behavior rules:
31 * 1. A ring is empty if enqueue == dequeue. This means there will always be at
32 * least one free TRB in the ring. This is useful if you want to turn that
33 * into a link TRB and expand the ring.
34 * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a
35 * link TRB, then load the pointer with the address in the link TRB. If the
36 * link TRB had its toggle bit set, you may need to update the ring cycle
37 * state (see cycle bit rules). You may have to do this multiple times
38 * until you reach a non-link TRB.
39 * 3. A ring is full if enqueue++ (for the definition of increment above)
40 * equals the dequeue pointer.
42 * Cycle bit rules:
43 * 1. When a consumer increments a dequeue pointer and encounters a toggle bit
44 * in a link TRB, it must toggle the ring cycle state.
45 * 2. When a producer increments an enqueue pointer and encounters a toggle bit
46 * in a link TRB, it must toggle the ring cycle state.
48 * Producer rules:
49 * 1. Check if ring is full before you enqueue.
50 * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing.
51 * Update enqueue pointer between each write (which may update the ring
52 * cycle state).
53 * 3. Notify consumer. If SW is producer, it rings the doorbell for command
54 * and endpoint rings. If HC is the producer for the event ring,
55 * and it generates an interrupt according to interrupt modulation rules.
57 * Consumer rules:
58 * 1. Check if TRB belongs to you. If the cycle bit == your ring cycle state,
59 * the TRB is owned by the consumer.
60 * 2. Update dequeue pointer (which may update the ring cycle state) and
61 * continue processing TRBs until you reach a TRB which is not owned by you.
62 * 3. Notify the producer. SW is the consumer for the event ring, and it
63 * updates event ring dequeue pointer. HC is the consumer for the command and
64 * endpoint rings; it generates events on the event ring for these.
67 #include <linux/scatterlist.h>
68 #include <linux/slab.h>
69 #include "xhci.h"
70 #include "xhci-trace.h"
72 static int handle_cmd_in_cmd_wait_list(struct xhci_hcd *xhci,
73 struct xhci_virt_device *virt_dev,
74 struct xhci_event_cmd *event);
77 * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA
78 * address of the TRB.
80 dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg,
81 union xhci_trb *trb)
83 unsigned long segment_offset;
85 if (!seg || !trb || trb < seg->trbs)
86 return 0;
87 /* offset in TRBs */
88 segment_offset = trb - seg->trbs;
89 if (segment_offset > TRBS_PER_SEGMENT)
90 return 0;
91 return seg->dma + (segment_offset * sizeof(*trb));
94 /* Does this link TRB point to the first segment in a ring,
95 * or was the previous TRB the last TRB on the last segment in the ERST?
97 static bool last_trb_on_last_seg(struct xhci_hcd *xhci, struct xhci_ring *ring,
98 struct xhci_segment *seg, union xhci_trb *trb)
100 if (ring == xhci->event_ring)
101 return (trb == &seg->trbs[TRBS_PER_SEGMENT]) &&
102 (seg->next == xhci->event_ring->first_seg);
103 else
104 return le32_to_cpu(trb->link.control) & LINK_TOGGLE;
107 /* Is this TRB a link TRB or was the last TRB the last TRB in this event ring
108 * segment? I.e. would the updated event TRB pointer step off the end of the
109 * event seg?
111 static int last_trb(struct xhci_hcd *xhci, struct xhci_ring *ring,
112 struct xhci_segment *seg, union xhci_trb *trb)
114 if (ring == xhci->event_ring)
115 return trb == &seg->trbs[TRBS_PER_SEGMENT];
116 else
117 return TRB_TYPE_LINK_LE32(trb->link.control);
120 static int enqueue_is_link_trb(struct xhci_ring *ring)
122 struct xhci_link_trb *link = &ring->enqueue->link;
123 return TRB_TYPE_LINK_LE32(link->control);
126 union xhci_trb *xhci_find_next_enqueue(struct xhci_ring *ring)
128 /* Enqueue pointer can be left pointing to the link TRB,
129 * we must handle that
131 if (TRB_TYPE_LINK_LE32(ring->enqueue->link.control))
132 return ring->enq_seg->next->trbs;
133 return ring->enqueue;
136 /* Updates trb to point to the next TRB in the ring, and updates seg if the next
137 * TRB is in a new segment. This does not skip over link TRBs, and it does not
138 * effect the ring dequeue or enqueue pointers.
140 static void next_trb(struct xhci_hcd *xhci,
141 struct xhci_ring *ring,
142 struct xhci_segment **seg,
143 union xhci_trb **trb)
145 if (last_trb(xhci, ring, *seg, *trb)) {
146 *seg = (*seg)->next;
147 *trb = ((*seg)->trbs);
148 } else {
149 (*trb)++;
154 * See Cycle bit rules. SW is the consumer for the event ring only.
155 * Don't make a ring full of link TRBs. That would be dumb and this would loop.
157 static void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring)
159 unsigned long long addr;
161 ring->deq_updates++;
164 * If this is not event ring, and the dequeue pointer
165 * is not on a link TRB, there is one more usable TRB
167 if (ring->type != TYPE_EVENT &&
168 !last_trb(xhci, ring, ring->deq_seg, ring->dequeue))
169 ring->num_trbs_free++;
171 do {
173 * Update the dequeue pointer further if that was a link TRB or
174 * we're at the end of an event ring segment (which doesn't have
175 * link TRBS)
177 if (last_trb(xhci, ring, ring->deq_seg, ring->dequeue)) {
178 if (ring->type == TYPE_EVENT &&
179 last_trb_on_last_seg(xhci, ring,
180 ring->deq_seg, ring->dequeue)) {
181 ring->cycle_state ^= 1;
183 ring->deq_seg = ring->deq_seg->next;
184 ring->dequeue = ring->deq_seg->trbs;
185 } else {
186 ring->dequeue++;
188 } while (last_trb(xhci, ring, ring->deq_seg, ring->dequeue));
190 addr = (unsigned long long) xhci_trb_virt_to_dma(ring->deq_seg, ring->dequeue);
194 * See Cycle bit rules. SW is the consumer for the event ring only.
195 * Don't make a ring full of link TRBs. That would be dumb and this would loop.
197 * If we've just enqueued a TRB that is in the middle of a TD (meaning the
198 * chain bit is set), then set the chain bit in all the following link TRBs.
199 * If we've enqueued the last TRB in a TD, make sure the following link TRBs
200 * have their chain bit cleared (so that each Link TRB is a separate TD).
202 * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit
203 * set, but other sections talk about dealing with the chain bit set. This was
204 * fixed in the 0.96 specification errata, but we have to assume that all 0.95
205 * xHCI hardware can't handle the chain bit being cleared on a link TRB.
207 * @more_trbs_coming: Will you enqueue more TRBs before calling
208 * prepare_transfer()?
210 static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring,
211 bool more_trbs_coming)
213 u32 chain;
214 union xhci_trb *next;
215 unsigned long long addr;
217 chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN;
218 /* If this is not event ring, there is one less usable TRB */
219 if (ring->type != TYPE_EVENT &&
220 !last_trb(xhci, ring, ring->enq_seg, ring->enqueue))
221 ring->num_trbs_free--;
222 next = ++(ring->enqueue);
224 ring->enq_updates++;
225 /* Update the dequeue pointer further if that was a link TRB or we're at
226 * the end of an event ring segment (which doesn't have link TRBS)
228 while (last_trb(xhci, ring, ring->enq_seg, next)) {
229 if (ring->type != TYPE_EVENT) {
231 * If the caller doesn't plan on enqueueing more
232 * TDs before ringing the doorbell, then we
233 * don't want to give the link TRB to the
234 * hardware just yet. We'll give the link TRB
235 * back in prepare_ring() just before we enqueue
236 * the TD at the top of the ring.
238 if (!chain && !more_trbs_coming)
239 break;
241 /* If we're not dealing with 0.95 hardware or
242 * isoc rings on AMD 0.96 host,
243 * carry over the chain bit of the previous TRB
244 * (which may mean the chain bit is cleared).
246 if (!(ring->type == TYPE_ISOC &&
247 (xhci->quirks & XHCI_AMD_0x96_HOST))
248 && !xhci_link_trb_quirk(xhci)) {
249 next->link.control &=
250 cpu_to_le32(~TRB_CHAIN);
251 next->link.control |=
252 cpu_to_le32(chain);
254 /* Give this link TRB to the hardware */
255 wmb();
256 next->link.control ^= cpu_to_le32(TRB_CYCLE);
258 /* Toggle the cycle bit after the last ring segment. */
259 if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) {
260 ring->cycle_state = (ring->cycle_state ? 0 : 1);
263 ring->enq_seg = ring->enq_seg->next;
264 ring->enqueue = ring->enq_seg->trbs;
265 next = ring->enqueue;
267 addr = (unsigned long long) xhci_trb_virt_to_dma(ring->enq_seg, ring->enqueue);
271 * Check to see if there's room to enqueue num_trbs on the ring and make sure
272 * enqueue pointer will not advance into dequeue segment. See rules above.
274 static inline int room_on_ring(struct xhci_hcd *xhci, struct xhci_ring *ring,
275 unsigned int num_trbs)
277 int num_trbs_in_deq_seg;
279 if (ring->num_trbs_free < num_trbs)
280 return 0;
282 if (ring->type != TYPE_COMMAND && ring->type != TYPE_EVENT) {
283 num_trbs_in_deq_seg = ring->dequeue - ring->deq_seg->trbs;
284 if (ring->num_trbs_free < num_trbs + num_trbs_in_deq_seg)
285 return 0;
288 return 1;
291 /* Ring the host controller doorbell after placing a command on the ring */
292 void xhci_ring_cmd_db(struct xhci_hcd *xhci)
294 if (!(xhci->cmd_ring_state & CMD_RING_STATE_RUNNING))
295 return;
297 xhci_dbg(xhci, "// Ding dong!\n");
298 xhci_writel(xhci, DB_VALUE_HOST, &xhci->dba->doorbell[0]);
299 /* Flush PCI posted writes */
300 xhci_readl(xhci, &xhci->dba->doorbell[0]);
303 static int xhci_abort_cmd_ring(struct xhci_hcd *xhci)
305 u64 temp_64;
306 int ret;
308 xhci_dbg(xhci, "Abort command ring\n");
310 if (!(xhci->cmd_ring_state & CMD_RING_STATE_RUNNING)) {
311 xhci_dbg(xhci, "The command ring isn't running, "
312 "Have the command ring been stopped?\n");
313 return 0;
316 temp_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
317 if (!(temp_64 & CMD_RING_RUNNING)) {
318 xhci_dbg(xhci, "Command ring had been stopped\n");
319 return 0;
321 xhci->cmd_ring_state = CMD_RING_STATE_ABORTED;
322 xhci_write_64(xhci, temp_64 | CMD_RING_ABORT,
323 &xhci->op_regs->cmd_ring);
325 /* Section 4.6.1.2 of xHCI 1.0 spec says software should
326 * time the completion od all xHCI commands, including
327 * the Command Abort operation. If software doesn't see
328 * CRR negated in a timely manner (e.g. longer than 5
329 * seconds), then it should assume that the there are
330 * larger problems with the xHC and assert HCRST.
332 ret = xhci_handshake(xhci, &xhci->op_regs->cmd_ring,
333 CMD_RING_RUNNING, 0, 5 * 1000 * 1000);
334 if (ret < 0) {
335 xhci_err(xhci, "Stopped the command ring failed, "
336 "maybe the host is dead\n");
337 xhci->xhc_state |= XHCI_STATE_DYING;
338 xhci_quiesce(xhci);
339 xhci_halt(xhci);
340 return -ESHUTDOWN;
343 return 0;
346 static int xhci_queue_cd(struct xhci_hcd *xhci,
347 struct xhci_command *command,
348 union xhci_trb *cmd_trb)
350 struct xhci_cd *cd;
351 cd = kzalloc(sizeof(struct xhci_cd), GFP_ATOMIC);
352 if (!cd)
353 return -ENOMEM;
354 INIT_LIST_HEAD(&cd->cancel_cmd_list);
356 cd->command = command;
357 cd->cmd_trb = cmd_trb;
358 list_add_tail(&cd->cancel_cmd_list, &xhci->cancel_cmd_list);
360 return 0;
364 * Cancel the command which has issue.
366 * Some commands may hang due to waiting for acknowledgement from
367 * usb device. It is outside of the xHC's ability to control and
368 * will cause the command ring is blocked. When it occurs software
369 * should intervene to recover the command ring.
370 * See Section 4.6.1.1 and 4.6.1.2
372 int xhci_cancel_cmd(struct xhci_hcd *xhci, struct xhci_command *command,
373 union xhci_trb *cmd_trb)
375 int retval = 0;
376 unsigned long flags;
378 spin_lock_irqsave(&xhci->lock, flags);
380 if (xhci->xhc_state & XHCI_STATE_DYING) {
381 xhci_warn(xhci, "Abort the command ring,"
382 " but the xHCI is dead.\n");
383 retval = -ESHUTDOWN;
384 goto fail;
387 /* queue the cmd desriptor to cancel_cmd_list */
388 retval = xhci_queue_cd(xhci, command, cmd_trb);
389 if (retval) {
390 xhci_warn(xhci, "Queuing command descriptor failed.\n");
391 goto fail;
394 /* abort command ring */
395 retval = xhci_abort_cmd_ring(xhci);
396 if (retval) {
397 xhci_err(xhci, "Abort command ring failed\n");
398 if (unlikely(retval == -ESHUTDOWN)) {
399 spin_unlock_irqrestore(&xhci->lock, flags);
400 usb_hc_died(xhci_to_hcd(xhci)->primary_hcd);
401 xhci_dbg(xhci, "xHCI host controller is dead.\n");
402 return retval;
406 fail:
407 spin_unlock_irqrestore(&xhci->lock, flags);
408 return retval;
411 void xhci_ring_ep_doorbell(struct xhci_hcd *xhci,
412 unsigned int slot_id,
413 unsigned int ep_index,
414 unsigned int stream_id)
416 __le32 __iomem *db_addr = &xhci->dba->doorbell[slot_id];
417 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
418 unsigned int ep_state = ep->ep_state;
420 /* Don't ring the doorbell for this endpoint if there are pending
421 * cancellations because we don't want to interrupt processing.
422 * We don't want to restart any stream rings if there's a set dequeue
423 * pointer command pending because the device can choose to start any
424 * stream once the endpoint is on the HW schedule.
425 * FIXME - check all the stream rings for pending cancellations.
427 if ((ep_state & EP_HALT_PENDING) || (ep_state & SET_DEQ_PENDING) ||
428 (ep_state & EP_HALTED))
429 return;
430 xhci_writel(xhci, DB_VALUE(ep_index, stream_id), db_addr);
431 /* The CPU has better things to do at this point than wait for a
432 * write-posting flush. It'll get there soon enough.
436 /* Ring the doorbell for any rings with pending URBs */
437 static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci,
438 unsigned int slot_id,
439 unsigned int ep_index)
441 unsigned int stream_id;
442 struct xhci_virt_ep *ep;
444 ep = &xhci->devs[slot_id]->eps[ep_index];
446 /* A ring has pending URBs if its TD list is not empty */
447 if (!(ep->ep_state & EP_HAS_STREAMS)) {
448 if (ep->ring && !(list_empty(&ep->ring->td_list)))
449 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0);
450 return;
453 for (stream_id = 1; stream_id < ep->stream_info->num_streams;
454 stream_id++) {
455 struct xhci_stream_info *stream_info = ep->stream_info;
456 if (!list_empty(&stream_info->stream_rings[stream_id]->td_list))
457 xhci_ring_ep_doorbell(xhci, slot_id, ep_index,
458 stream_id);
463 * Find the segment that trb is in. Start searching in start_seg.
464 * If we must move past a segment that has a link TRB with a toggle cycle state
465 * bit set, then we will toggle the value pointed at by cycle_state.
467 static struct xhci_segment *find_trb_seg(
468 struct xhci_segment *start_seg,
469 union xhci_trb *trb, int *cycle_state)
471 struct xhci_segment *cur_seg = start_seg;
472 struct xhci_generic_trb *generic_trb;
474 while (cur_seg->trbs > trb ||
475 &cur_seg->trbs[TRBS_PER_SEGMENT - 1] < trb) {
476 generic_trb = &cur_seg->trbs[TRBS_PER_SEGMENT - 1].generic;
477 if (generic_trb->field[3] & cpu_to_le32(LINK_TOGGLE))
478 *cycle_state ^= 0x1;
479 cur_seg = cur_seg->next;
480 if (cur_seg == start_seg)
481 /* Looped over the entire list. Oops! */
482 return NULL;
484 return cur_seg;
488 static struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci,
489 unsigned int slot_id, unsigned int ep_index,
490 unsigned int stream_id)
492 struct xhci_virt_ep *ep;
494 ep = &xhci->devs[slot_id]->eps[ep_index];
495 /* Common case: no streams */
496 if (!(ep->ep_state & EP_HAS_STREAMS))
497 return ep->ring;
499 if (stream_id == 0) {
500 xhci_warn(xhci,
501 "WARN: Slot ID %u, ep index %u has streams, "
502 "but URB has no stream ID.\n",
503 slot_id, ep_index);
504 return NULL;
507 if (stream_id < ep->stream_info->num_streams)
508 return ep->stream_info->stream_rings[stream_id];
510 xhci_warn(xhci,
511 "WARN: Slot ID %u, ep index %u has "
512 "stream IDs 1 to %u allocated, "
513 "but stream ID %u is requested.\n",
514 slot_id, ep_index,
515 ep->stream_info->num_streams - 1,
516 stream_id);
517 return NULL;
520 /* Get the right ring for the given URB.
521 * If the endpoint supports streams, boundary check the URB's stream ID.
522 * If the endpoint doesn't support streams, return the singular endpoint ring.
524 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
525 struct urb *urb)
527 return xhci_triad_to_transfer_ring(xhci, urb->dev->slot_id,
528 xhci_get_endpoint_index(&urb->ep->desc), urb->stream_id);
532 * Move the xHC's endpoint ring dequeue pointer past cur_td.
533 * Record the new state of the xHC's endpoint ring dequeue segment,
534 * dequeue pointer, and new consumer cycle state in state.
535 * Update our internal representation of the ring's dequeue pointer.
537 * We do this in three jumps:
538 * - First we update our new ring state to be the same as when the xHC stopped.
539 * - Then we traverse the ring to find the segment that contains
540 * the last TRB in the TD. We toggle the xHC's new cycle state when we pass
541 * any link TRBs with the toggle cycle bit set.
542 * - Finally we move the dequeue state one TRB further, toggling the cycle bit
543 * if we've moved it past a link TRB with the toggle cycle bit set.
545 * Some of the uses of xhci_generic_trb are grotty, but if they're done
546 * with correct __le32 accesses they should work fine. Only users of this are
547 * in here.
549 void xhci_find_new_dequeue_state(struct xhci_hcd *xhci,
550 unsigned int slot_id, unsigned int ep_index,
551 unsigned int stream_id, struct xhci_td *cur_td,
552 struct xhci_dequeue_state *state)
554 struct xhci_virt_device *dev = xhci->devs[slot_id];
555 struct xhci_ring *ep_ring;
556 struct xhci_generic_trb *trb;
557 struct xhci_ep_ctx *ep_ctx;
558 dma_addr_t addr;
560 ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id,
561 ep_index, stream_id);
562 if (!ep_ring) {
563 xhci_warn(xhci, "WARN can't find new dequeue state "
564 "for invalid stream ID %u.\n",
565 stream_id);
566 return;
568 state->new_cycle_state = 0;
569 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
570 "Finding segment containing stopped TRB.");
571 state->new_deq_seg = find_trb_seg(cur_td->start_seg,
572 dev->eps[ep_index].stopped_trb,
573 &state->new_cycle_state);
574 if (!state->new_deq_seg) {
575 WARN_ON(1);
576 return;
579 /* Dig out the cycle state saved by the xHC during the stop ep cmd */
580 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
581 "Finding endpoint context");
582 ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index);
583 state->new_cycle_state = 0x1 & le64_to_cpu(ep_ctx->deq);
585 state->new_deq_ptr = cur_td->last_trb;
586 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
587 "Finding segment containing last TRB in TD.");
588 state->new_deq_seg = find_trb_seg(state->new_deq_seg,
589 state->new_deq_ptr,
590 &state->new_cycle_state);
591 if (!state->new_deq_seg) {
592 WARN_ON(1);
593 return;
596 trb = &state->new_deq_ptr->generic;
597 if (TRB_TYPE_LINK_LE32(trb->field[3]) &&
598 (trb->field[3] & cpu_to_le32(LINK_TOGGLE)))
599 state->new_cycle_state ^= 0x1;
600 next_trb(xhci, ep_ring, &state->new_deq_seg, &state->new_deq_ptr);
603 * If there is only one segment in a ring, find_trb_seg()'s while loop
604 * will not run, and it will return before it has a chance to see if it
605 * needs to toggle the cycle bit. It can't tell if the stalled transfer
606 * ended just before the link TRB on a one-segment ring, or if the TD
607 * wrapped around the top of the ring, because it doesn't have the TD in
608 * question. Look for the one-segment case where stalled TRB's address
609 * is greater than the new dequeue pointer address.
611 if (ep_ring->first_seg == ep_ring->first_seg->next &&
612 state->new_deq_ptr < dev->eps[ep_index].stopped_trb)
613 state->new_cycle_state ^= 0x1;
614 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
615 "Cycle state = 0x%x", state->new_cycle_state);
617 /* Don't update the ring cycle state for the producer (us). */
618 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
619 "New dequeue segment = %p (virtual)",
620 state->new_deq_seg);
621 addr = xhci_trb_virt_to_dma(state->new_deq_seg, state->new_deq_ptr);
622 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
623 "New dequeue pointer = 0x%llx (DMA)",
624 (unsigned long long) addr);
627 /* flip_cycle means flip the cycle bit of all but the first and last TRB.
628 * (The last TRB actually points to the ring enqueue pointer, which is not part
629 * of this TD.) This is used to remove partially enqueued isoc TDs from a ring.
631 static void td_to_noop(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
632 struct xhci_td *cur_td, bool flip_cycle)
634 struct xhci_segment *cur_seg;
635 union xhci_trb *cur_trb;
637 for (cur_seg = cur_td->start_seg, cur_trb = cur_td->first_trb;
638 true;
639 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) {
640 if (TRB_TYPE_LINK_LE32(cur_trb->generic.field[3])) {
641 /* Unchain any chained Link TRBs, but
642 * leave the pointers intact.
644 cur_trb->generic.field[3] &= cpu_to_le32(~TRB_CHAIN);
645 /* Flip the cycle bit (link TRBs can't be the first
646 * or last TRB).
648 if (flip_cycle)
649 cur_trb->generic.field[3] ^=
650 cpu_to_le32(TRB_CYCLE);
651 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
652 "Cancel (unchain) link TRB");
653 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
654 "Address = %p (0x%llx dma); "
655 "in seg %p (0x%llx dma)",
656 cur_trb,
657 (unsigned long long)xhci_trb_virt_to_dma(cur_seg, cur_trb),
658 cur_seg,
659 (unsigned long long)cur_seg->dma);
660 } else {
661 cur_trb->generic.field[0] = 0;
662 cur_trb->generic.field[1] = 0;
663 cur_trb->generic.field[2] = 0;
664 /* Preserve only the cycle bit of this TRB */
665 cur_trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE);
666 /* Flip the cycle bit except on the first or last TRB */
667 if (flip_cycle && cur_trb != cur_td->first_trb &&
668 cur_trb != cur_td->last_trb)
669 cur_trb->generic.field[3] ^=
670 cpu_to_le32(TRB_CYCLE);
671 cur_trb->generic.field[3] |= cpu_to_le32(
672 TRB_TYPE(TRB_TR_NOOP));
673 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
674 "TRB to noop at offset 0x%llx",
675 (unsigned long long)
676 xhci_trb_virt_to_dma(cur_seg, cur_trb));
678 if (cur_trb == cur_td->last_trb)
679 break;
683 static int queue_set_tr_deq(struct xhci_hcd *xhci, int slot_id,
684 unsigned int ep_index, unsigned int stream_id,
685 struct xhci_segment *deq_seg,
686 union xhci_trb *deq_ptr, u32 cycle_state);
688 void xhci_queue_new_dequeue_state(struct xhci_hcd *xhci,
689 unsigned int slot_id, unsigned int ep_index,
690 unsigned int stream_id,
691 struct xhci_dequeue_state *deq_state)
693 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
695 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
696 "Set TR Deq Ptr cmd, new deq seg = %p (0x%llx dma), "
697 "new deq ptr = %p (0x%llx dma), new cycle = %u",
698 deq_state->new_deq_seg,
699 (unsigned long long)deq_state->new_deq_seg->dma,
700 deq_state->new_deq_ptr,
701 (unsigned long long)xhci_trb_virt_to_dma(deq_state->new_deq_seg, deq_state->new_deq_ptr),
702 deq_state->new_cycle_state);
703 queue_set_tr_deq(xhci, slot_id, ep_index, stream_id,
704 deq_state->new_deq_seg,
705 deq_state->new_deq_ptr,
706 (u32) deq_state->new_cycle_state);
707 /* Stop the TD queueing code from ringing the doorbell until
708 * this command completes. The HC won't set the dequeue pointer
709 * if the ring is running, and ringing the doorbell starts the
710 * ring running.
712 ep->ep_state |= SET_DEQ_PENDING;
715 static void xhci_stop_watchdog_timer_in_irq(struct xhci_hcd *xhci,
716 struct xhci_virt_ep *ep)
718 ep->ep_state &= ~EP_HALT_PENDING;
719 /* Can't del_timer_sync in interrupt, so we attempt to cancel. If the
720 * timer is running on another CPU, we don't decrement stop_cmds_pending
721 * (since we didn't successfully stop the watchdog timer).
723 if (del_timer(&ep->stop_cmd_timer))
724 ep->stop_cmds_pending--;
727 /* Must be called with xhci->lock held in interrupt context */
728 static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci,
729 struct xhci_td *cur_td, int status)
731 struct usb_hcd *hcd;
732 struct urb *urb;
733 struct urb_priv *urb_priv;
735 urb = cur_td->urb;
736 urb_priv = urb->hcpriv;
737 urb_priv->td_cnt++;
738 hcd = bus_to_hcd(urb->dev->bus);
740 /* Only giveback urb when this is the last td in urb */
741 if (urb_priv->td_cnt == urb_priv->length) {
742 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
743 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--;
744 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) {
745 if (xhci->quirks & XHCI_AMD_PLL_FIX)
746 usb_amd_quirk_pll_enable();
749 usb_hcd_unlink_urb_from_ep(hcd, urb);
751 spin_unlock(&xhci->lock);
752 usb_hcd_giveback_urb(hcd, urb, status);
753 xhci_urb_free_priv(xhci, urb_priv);
754 spin_lock(&xhci->lock);
759 * When we get a command completion for a Stop Endpoint Command, we need to
760 * unlink any cancelled TDs from the ring. There are two ways to do that:
762 * 1. If the HW was in the middle of processing the TD that needs to be
763 * cancelled, then we must move the ring's dequeue pointer past the last TRB
764 * in the TD with a Set Dequeue Pointer Command.
765 * 2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain
766 * bit cleared) so that the HW will skip over them.
768 static void xhci_handle_cmd_stop_ep(struct xhci_hcd *xhci, int slot_id,
769 union xhci_trb *trb, struct xhci_event_cmd *event)
771 unsigned int ep_index;
772 struct xhci_virt_device *virt_dev;
773 struct xhci_ring *ep_ring;
774 struct xhci_virt_ep *ep;
775 struct list_head *entry;
776 struct xhci_td *cur_td = NULL;
777 struct xhci_td *last_unlinked_td;
779 struct xhci_dequeue_state deq_state;
781 if (unlikely(TRB_TO_SUSPEND_PORT(le32_to_cpu(trb->generic.field[3])))) {
782 virt_dev = xhci->devs[slot_id];
783 if (virt_dev)
784 handle_cmd_in_cmd_wait_list(xhci, virt_dev,
785 event);
786 else
787 xhci_warn(xhci, "Stop endpoint command "
788 "completion for disabled slot %u\n",
789 slot_id);
790 return;
793 memset(&deq_state, 0, sizeof(deq_state));
794 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
795 ep = &xhci->devs[slot_id]->eps[ep_index];
797 if (list_empty(&ep->cancelled_td_list)) {
798 xhci_stop_watchdog_timer_in_irq(xhci, ep);
799 ep->stopped_td = NULL;
800 ep->stopped_trb = NULL;
801 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
802 return;
805 /* Fix up the ep ring first, so HW stops executing cancelled TDs.
806 * We have the xHCI lock, so nothing can modify this list until we drop
807 * it. We're also in the event handler, so we can't get re-interrupted
808 * if another Stop Endpoint command completes
810 list_for_each(entry, &ep->cancelled_td_list) {
811 cur_td = list_entry(entry, struct xhci_td, cancelled_td_list);
812 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
813 "Removing canceled TD starting at 0x%llx (dma).",
814 (unsigned long long)xhci_trb_virt_to_dma(
815 cur_td->start_seg, cur_td->first_trb));
816 ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb);
817 if (!ep_ring) {
818 /* This shouldn't happen unless a driver is mucking
819 * with the stream ID after submission. This will
820 * leave the TD on the hardware ring, and the hardware
821 * will try to execute it, and may access a buffer
822 * that has already been freed. In the best case, the
823 * hardware will execute it, and the event handler will
824 * ignore the completion event for that TD, since it was
825 * removed from the td_list for that endpoint. In
826 * short, don't muck with the stream ID after
827 * submission.
829 xhci_warn(xhci, "WARN Cancelled URB %p "
830 "has invalid stream ID %u.\n",
831 cur_td->urb,
832 cur_td->urb->stream_id);
833 goto remove_finished_td;
836 * If we stopped on the TD we need to cancel, then we have to
837 * move the xHC endpoint ring dequeue pointer past this TD.
839 if (cur_td == ep->stopped_td)
840 xhci_find_new_dequeue_state(xhci, slot_id, ep_index,
841 cur_td->urb->stream_id,
842 cur_td, &deq_state);
843 else
844 td_to_noop(xhci, ep_ring, cur_td, false);
845 remove_finished_td:
847 * The event handler won't see a completion for this TD anymore,
848 * so remove it from the endpoint ring's TD list. Keep it in
849 * the cancelled TD list for URB completion later.
851 list_del_init(&cur_td->td_list);
853 last_unlinked_td = cur_td;
854 xhci_stop_watchdog_timer_in_irq(xhci, ep);
856 /* If necessary, queue a Set Transfer Ring Dequeue Pointer command */
857 if (deq_state.new_deq_ptr && deq_state.new_deq_seg) {
858 xhci_queue_new_dequeue_state(xhci,
859 slot_id, ep_index,
860 ep->stopped_td->urb->stream_id,
861 &deq_state);
862 xhci_ring_cmd_db(xhci);
863 } else {
864 /* Otherwise ring the doorbell(s) to restart queued transfers */
865 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
868 /* Clear stopped_td and stopped_trb if endpoint is not halted */
869 if (!(ep->ep_state & EP_HALTED)) {
870 ep->stopped_td = NULL;
871 ep->stopped_trb = NULL;
875 * Drop the lock and complete the URBs in the cancelled TD list.
876 * New TDs to be cancelled might be added to the end of the list before
877 * we can complete all the URBs for the TDs we already unlinked.
878 * So stop when we've completed the URB for the last TD we unlinked.
880 do {
881 cur_td = list_entry(ep->cancelled_td_list.next,
882 struct xhci_td, cancelled_td_list);
883 list_del_init(&cur_td->cancelled_td_list);
885 /* Clean up the cancelled URB */
886 /* Doesn't matter what we pass for status, since the core will
887 * just overwrite it (because the URB has been unlinked).
889 xhci_giveback_urb_in_irq(xhci, cur_td, 0);
891 /* Stop processing the cancelled list if the watchdog timer is
892 * running.
894 if (xhci->xhc_state & XHCI_STATE_DYING)
895 return;
896 } while (cur_td != last_unlinked_td);
898 /* Return to the event handler with xhci->lock re-acquired */
901 /* Watchdog timer function for when a stop endpoint command fails to complete.
902 * In this case, we assume the host controller is broken or dying or dead. The
903 * host may still be completing some other events, so we have to be careful to
904 * let the event ring handler and the URB dequeueing/enqueueing functions know
905 * through xhci->state.
907 * The timer may also fire if the host takes a very long time to respond to the
908 * command, and the stop endpoint command completion handler cannot delete the
909 * timer before the timer function is called. Another endpoint cancellation may
910 * sneak in before the timer function can grab the lock, and that may queue
911 * another stop endpoint command and add the timer back. So we cannot use a
912 * simple flag to say whether there is a pending stop endpoint command for a
913 * particular endpoint.
915 * Instead we use a combination of that flag and a counter for the number of
916 * pending stop endpoint commands. If the timer is the tail end of the last
917 * stop endpoint command, and the endpoint's command is still pending, we assume
918 * the host is dying.
920 void xhci_stop_endpoint_command_watchdog(unsigned long arg)
922 struct xhci_hcd *xhci;
923 struct xhci_virt_ep *ep;
924 struct xhci_virt_ep *temp_ep;
925 struct xhci_ring *ring;
926 struct xhci_td *cur_td;
927 int ret, i, j;
928 unsigned long flags;
930 ep = (struct xhci_virt_ep *) arg;
931 xhci = ep->xhci;
933 spin_lock_irqsave(&xhci->lock, flags);
935 ep->stop_cmds_pending--;
936 if (xhci->xhc_state & XHCI_STATE_DYING) {
937 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
938 "Stop EP timer ran, but another timer marked "
939 "xHCI as DYING, exiting.");
940 spin_unlock_irqrestore(&xhci->lock, flags);
941 return;
943 if (!(ep->stop_cmds_pending == 0 && (ep->ep_state & EP_HALT_PENDING))) {
944 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
945 "Stop EP timer ran, but no command pending, "
946 "exiting.");
947 spin_unlock_irqrestore(&xhci->lock, flags);
948 return;
951 xhci_warn(xhci, "xHCI host not responding to stop endpoint command.\n");
952 xhci_warn(xhci, "Assuming host is dying, halting host.\n");
953 /* Oops, HC is dead or dying or at least not responding to the stop
954 * endpoint command.
956 xhci->xhc_state |= XHCI_STATE_DYING;
957 /* Disable interrupts from the host controller and start halting it */
958 xhci_quiesce(xhci);
959 spin_unlock_irqrestore(&xhci->lock, flags);
961 ret = xhci_halt(xhci);
963 spin_lock_irqsave(&xhci->lock, flags);
964 if (ret < 0) {
965 /* This is bad; the host is not responding to commands and it's
966 * not allowing itself to be halted. At least interrupts are
967 * disabled. If we call usb_hc_died(), it will attempt to
968 * disconnect all device drivers under this host. Those
969 * disconnect() methods will wait for all URBs to be unlinked,
970 * so we must complete them.
972 xhci_warn(xhci, "Non-responsive xHCI host is not halting.\n");
973 xhci_warn(xhci, "Completing active URBs anyway.\n");
974 /* We could turn all TDs on the rings to no-ops. This won't
975 * help if the host has cached part of the ring, and is slow if
976 * we want to preserve the cycle bit. Skip it and hope the host
977 * doesn't touch the memory.
980 for (i = 0; i < MAX_HC_SLOTS; i++) {
981 if (!xhci->devs[i])
982 continue;
983 for (j = 0; j < 31; j++) {
984 temp_ep = &xhci->devs[i]->eps[j];
985 ring = temp_ep->ring;
986 if (!ring)
987 continue;
988 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
989 "Killing URBs for slot ID %u, "
990 "ep index %u", i, j);
991 while (!list_empty(&ring->td_list)) {
992 cur_td = list_first_entry(&ring->td_list,
993 struct xhci_td,
994 td_list);
995 list_del_init(&cur_td->td_list);
996 if (!list_empty(&cur_td->cancelled_td_list))
997 list_del_init(&cur_td->cancelled_td_list);
998 xhci_giveback_urb_in_irq(xhci, cur_td,
999 -ESHUTDOWN);
1001 while (!list_empty(&temp_ep->cancelled_td_list)) {
1002 cur_td = list_first_entry(
1003 &temp_ep->cancelled_td_list,
1004 struct xhci_td,
1005 cancelled_td_list);
1006 list_del_init(&cur_td->cancelled_td_list);
1007 xhci_giveback_urb_in_irq(xhci, cur_td,
1008 -ESHUTDOWN);
1012 spin_unlock_irqrestore(&xhci->lock, flags);
1013 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1014 "Calling usb_hc_died()");
1015 usb_hc_died(xhci_to_hcd(xhci)->primary_hcd);
1016 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1017 "xHCI host controller is dead.");
1021 static void update_ring_for_set_deq_completion(struct xhci_hcd *xhci,
1022 struct xhci_virt_device *dev,
1023 struct xhci_ring *ep_ring,
1024 unsigned int ep_index)
1026 union xhci_trb *dequeue_temp;
1027 int num_trbs_free_temp;
1028 bool revert = false;
1030 num_trbs_free_temp = ep_ring->num_trbs_free;
1031 dequeue_temp = ep_ring->dequeue;
1033 /* If we get two back-to-back stalls, and the first stalled transfer
1034 * ends just before a link TRB, the dequeue pointer will be left on
1035 * the link TRB by the code in the while loop. So we have to update
1036 * the dequeue pointer one segment further, or we'll jump off
1037 * the segment into la-la-land.
1039 if (last_trb(xhci, ep_ring, ep_ring->deq_seg, ep_ring->dequeue)) {
1040 ep_ring->deq_seg = ep_ring->deq_seg->next;
1041 ep_ring->dequeue = ep_ring->deq_seg->trbs;
1044 while (ep_ring->dequeue != dev->eps[ep_index].queued_deq_ptr) {
1045 /* We have more usable TRBs */
1046 ep_ring->num_trbs_free++;
1047 ep_ring->dequeue++;
1048 if (last_trb(xhci, ep_ring, ep_ring->deq_seg,
1049 ep_ring->dequeue)) {
1050 if (ep_ring->dequeue ==
1051 dev->eps[ep_index].queued_deq_ptr)
1052 break;
1053 ep_ring->deq_seg = ep_ring->deq_seg->next;
1054 ep_ring->dequeue = ep_ring->deq_seg->trbs;
1056 if (ep_ring->dequeue == dequeue_temp) {
1057 revert = true;
1058 break;
1062 if (revert) {
1063 xhci_dbg(xhci, "Unable to find new dequeue pointer\n");
1064 ep_ring->num_trbs_free = num_trbs_free_temp;
1069 * When we get a completion for a Set Transfer Ring Dequeue Pointer command,
1070 * we need to clear the set deq pending flag in the endpoint ring state, so that
1071 * the TD queueing code can ring the doorbell again. We also need to ring the
1072 * endpoint doorbell to restart the ring, but only if there aren't more
1073 * cancellations pending.
1075 static void xhci_handle_cmd_set_deq(struct xhci_hcd *xhci, int slot_id,
1076 union xhci_trb *trb, u32 cmd_comp_code)
1078 unsigned int ep_index;
1079 unsigned int stream_id;
1080 struct xhci_ring *ep_ring;
1081 struct xhci_virt_device *dev;
1082 struct xhci_ep_ctx *ep_ctx;
1083 struct xhci_slot_ctx *slot_ctx;
1085 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
1086 stream_id = TRB_TO_STREAM_ID(le32_to_cpu(trb->generic.field[2]));
1087 dev = xhci->devs[slot_id];
1089 ep_ring = xhci_stream_id_to_ring(dev, ep_index, stream_id);
1090 if (!ep_ring) {
1091 xhci_warn(xhci, "WARN Set TR deq ptr command for "
1092 "freed stream ID %u\n",
1093 stream_id);
1094 /* XXX: Harmless??? */
1095 dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING;
1096 return;
1099 ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index);
1100 slot_ctx = xhci_get_slot_ctx(xhci, dev->out_ctx);
1102 if (cmd_comp_code != COMP_SUCCESS) {
1103 unsigned int ep_state;
1104 unsigned int slot_state;
1106 switch (cmd_comp_code) {
1107 case COMP_TRB_ERR:
1108 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because "
1109 "of stream ID configuration\n");
1110 break;
1111 case COMP_CTX_STATE:
1112 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due "
1113 "to incorrect slot or ep state.\n");
1114 ep_state = le32_to_cpu(ep_ctx->ep_info);
1115 ep_state &= EP_STATE_MASK;
1116 slot_state = le32_to_cpu(slot_ctx->dev_state);
1117 slot_state = GET_SLOT_STATE(slot_state);
1118 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1119 "Slot state = %u, EP state = %u",
1120 slot_state, ep_state);
1121 break;
1122 case COMP_EBADSLT:
1123 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because "
1124 "slot %u was not enabled.\n", slot_id);
1125 break;
1126 default:
1127 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown "
1128 "completion code of %u.\n",
1129 cmd_comp_code);
1130 break;
1132 /* OK what do we do now? The endpoint state is hosed, and we
1133 * should never get to this point if the synchronization between
1134 * queueing, and endpoint state are correct. This might happen
1135 * if the device gets disconnected after we've finished
1136 * cancelling URBs, which might not be an error...
1138 } else {
1139 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1140 "Successful Set TR Deq Ptr cmd, deq = @%08llx",
1141 le64_to_cpu(ep_ctx->deq));
1142 if (xhci_trb_virt_to_dma(dev->eps[ep_index].queued_deq_seg,
1143 dev->eps[ep_index].queued_deq_ptr) ==
1144 (le64_to_cpu(ep_ctx->deq) & ~(EP_CTX_CYCLE_MASK))) {
1145 /* Update the ring's dequeue segment and dequeue pointer
1146 * to reflect the new position.
1148 update_ring_for_set_deq_completion(xhci, dev,
1149 ep_ring, ep_index);
1150 } else {
1151 xhci_warn(xhci, "Mismatch between completed Set TR Deq "
1152 "Ptr command & xHCI internal state.\n");
1153 xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n",
1154 dev->eps[ep_index].queued_deq_seg,
1155 dev->eps[ep_index].queued_deq_ptr);
1159 dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING;
1160 dev->eps[ep_index].queued_deq_seg = NULL;
1161 dev->eps[ep_index].queued_deq_ptr = NULL;
1162 /* Restart any rings with pending URBs */
1163 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1166 static void xhci_handle_cmd_reset_ep(struct xhci_hcd *xhci, int slot_id,
1167 union xhci_trb *trb, u32 cmd_comp_code)
1169 unsigned int ep_index;
1171 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
1172 /* This command will only fail if the endpoint wasn't halted,
1173 * but we don't care.
1175 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
1176 "Ignoring reset ep completion code of %u", cmd_comp_code);
1178 /* HW with the reset endpoint quirk needs to have a configure endpoint
1179 * command complete before the endpoint can be used. Queue that here
1180 * because the HW can't handle two commands being queued in a row.
1182 if (xhci->quirks & XHCI_RESET_EP_QUIRK) {
1183 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1184 "Queueing configure endpoint command");
1185 xhci_queue_configure_endpoint(xhci,
1186 xhci->devs[slot_id]->in_ctx->dma, slot_id,
1187 false);
1188 xhci_ring_cmd_db(xhci);
1189 } else {
1190 /* Clear our internal halted state and restart the ring(s) */
1191 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_HALTED;
1192 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1196 /* Complete the command and detele it from the devcie's command queue.
1198 static void xhci_complete_cmd_in_cmd_wait_list(struct xhci_hcd *xhci,
1199 struct xhci_command *command, u32 status)
1201 command->status = status;
1202 list_del(&command->cmd_list);
1203 if (command->completion)
1204 complete(command->completion);
1205 else
1206 xhci_free_command(xhci, command);
1210 /* Check to see if a command in the device's command queue matches this one.
1211 * Signal the completion or free the command, and return 1. Return 0 if the
1212 * completed command isn't at the head of the command list.
1214 static int handle_cmd_in_cmd_wait_list(struct xhci_hcd *xhci,
1215 struct xhci_virt_device *virt_dev,
1216 struct xhci_event_cmd *event)
1218 struct xhci_command *command;
1220 if (list_empty(&virt_dev->cmd_list))
1221 return 0;
1223 command = list_entry(virt_dev->cmd_list.next,
1224 struct xhci_command, cmd_list);
1225 if (xhci->cmd_ring->dequeue != command->command_trb)
1226 return 0;
1228 xhci_complete_cmd_in_cmd_wait_list(xhci, command,
1229 GET_COMP_CODE(le32_to_cpu(event->status)));
1230 return 1;
1234 * Finding the command trb need to be cancelled and modifying it to
1235 * NO OP command. And if the command is in device's command wait
1236 * list, finishing and freeing it.
1238 * If we can't find the command trb, we think it had already been
1239 * executed.
1241 static void xhci_cmd_to_noop(struct xhci_hcd *xhci, struct xhci_cd *cur_cd)
1243 struct xhci_segment *cur_seg;
1244 union xhci_trb *cmd_trb;
1245 u32 cycle_state;
1247 if (xhci->cmd_ring->dequeue == xhci->cmd_ring->enqueue)
1248 return;
1250 /* find the current segment of command ring */
1251 cur_seg = find_trb_seg(xhci->cmd_ring->first_seg,
1252 xhci->cmd_ring->dequeue, &cycle_state);
1254 if (!cur_seg) {
1255 xhci_warn(xhci, "Command ring mismatch, dequeue = %p %llx (dma)\n",
1256 xhci->cmd_ring->dequeue,
1257 (unsigned long long)
1258 xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
1259 xhci->cmd_ring->dequeue));
1260 xhci_debug_ring(xhci, xhci->cmd_ring);
1261 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
1262 return;
1265 /* find the command trb matched by cd from command ring */
1266 for (cmd_trb = xhci->cmd_ring->dequeue;
1267 cmd_trb != xhci->cmd_ring->enqueue;
1268 next_trb(xhci, xhci->cmd_ring, &cur_seg, &cmd_trb)) {
1269 /* If the trb is link trb, continue */
1270 if (TRB_TYPE_LINK_LE32(cmd_trb->generic.field[3]))
1271 continue;
1273 if (cur_cd->cmd_trb == cmd_trb) {
1275 /* If the command in device's command list, we should
1276 * finish it and free the command structure.
1278 if (cur_cd->command)
1279 xhci_complete_cmd_in_cmd_wait_list(xhci,
1280 cur_cd->command, COMP_CMD_STOP);
1282 /* get cycle state from the origin command trb */
1283 cycle_state = le32_to_cpu(cmd_trb->generic.field[3])
1284 & TRB_CYCLE;
1286 /* modify the command trb to NO OP command */
1287 cmd_trb->generic.field[0] = 0;
1288 cmd_trb->generic.field[1] = 0;
1289 cmd_trb->generic.field[2] = 0;
1290 cmd_trb->generic.field[3] = cpu_to_le32(
1291 TRB_TYPE(TRB_CMD_NOOP) | cycle_state);
1292 break;
1297 static void xhci_cancel_cmd_in_cd_list(struct xhci_hcd *xhci)
1299 struct xhci_cd *cur_cd, *next_cd;
1301 if (list_empty(&xhci->cancel_cmd_list))
1302 return;
1304 list_for_each_entry_safe(cur_cd, next_cd,
1305 &xhci->cancel_cmd_list, cancel_cmd_list) {
1306 xhci_cmd_to_noop(xhci, cur_cd);
1307 list_del(&cur_cd->cancel_cmd_list);
1308 kfree(cur_cd);
1313 * traversing the cancel_cmd_list. If the command descriptor according
1314 * to cmd_trb is found, the function free it and return 1, otherwise
1315 * return 0.
1317 static int xhci_search_cmd_trb_in_cd_list(struct xhci_hcd *xhci,
1318 union xhci_trb *cmd_trb)
1320 struct xhci_cd *cur_cd, *next_cd;
1322 if (list_empty(&xhci->cancel_cmd_list))
1323 return 0;
1325 list_for_each_entry_safe(cur_cd, next_cd,
1326 &xhci->cancel_cmd_list, cancel_cmd_list) {
1327 if (cur_cd->cmd_trb == cmd_trb) {
1328 if (cur_cd->command)
1329 xhci_complete_cmd_in_cmd_wait_list(xhci,
1330 cur_cd->command, COMP_CMD_STOP);
1331 list_del(&cur_cd->cancel_cmd_list);
1332 kfree(cur_cd);
1333 return 1;
1337 return 0;
1341 * If the cmd_trb_comp_code is COMP_CMD_ABORT, we just check whether the
1342 * trb pointed by the command ring dequeue pointer is the trb we want to
1343 * cancel or not. And if the cmd_trb_comp_code is COMP_CMD_STOP, we will
1344 * traverse the cancel_cmd_list to trun the all of the commands according
1345 * to command descriptor to NO-OP trb.
1347 static int handle_stopped_cmd_ring(struct xhci_hcd *xhci,
1348 int cmd_trb_comp_code)
1350 int cur_trb_is_good = 0;
1352 /* Searching the cmd trb pointed by the command ring dequeue
1353 * pointer in command descriptor list. If it is found, free it.
1355 cur_trb_is_good = xhci_search_cmd_trb_in_cd_list(xhci,
1356 xhci->cmd_ring->dequeue);
1358 if (cmd_trb_comp_code == COMP_CMD_ABORT)
1359 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
1360 else if (cmd_trb_comp_code == COMP_CMD_STOP) {
1361 /* traversing the cancel_cmd_list and canceling
1362 * the command according to command descriptor
1364 xhci_cancel_cmd_in_cd_list(xhci);
1366 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
1368 * ring command ring doorbell again to restart the
1369 * command ring
1371 if (xhci->cmd_ring->dequeue != xhci->cmd_ring->enqueue)
1372 xhci_ring_cmd_db(xhci);
1374 return cur_trb_is_good;
1377 static void xhci_handle_cmd_enable_slot(struct xhci_hcd *xhci, int slot_id,
1378 u32 cmd_comp_code)
1380 if (cmd_comp_code == COMP_SUCCESS)
1381 xhci->slot_id = slot_id;
1382 else
1383 xhci->slot_id = 0;
1384 complete(&xhci->addr_dev);
1387 static void xhci_handle_cmd_disable_slot(struct xhci_hcd *xhci, int slot_id)
1389 struct xhci_virt_device *virt_dev;
1391 virt_dev = xhci->devs[slot_id];
1392 if (!virt_dev)
1393 return;
1394 if (xhci->quirks & XHCI_EP_LIMIT_QUIRK)
1395 /* Delete default control endpoint resources */
1396 xhci_free_device_endpoint_resources(xhci, virt_dev, true);
1397 xhci_free_virt_device(xhci, slot_id);
1400 static void xhci_handle_cmd_config_ep(struct xhci_hcd *xhci, int slot_id,
1401 struct xhci_event_cmd *event, u32 cmd_comp_code)
1403 struct xhci_virt_device *virt_dev;
1404 struct xhci_input_control_ctx *ctrl_ctx;
1405 unsigned int ep_index;
1406 unsigned int ep_state;
1407 u32 add_flags, drop_flags;
1409 virt_dev = xhci->devs[slot_id];
1410 if (handle_cmd_in_cmd_wait_list(xhci, virt_dev, event))
1411 return;
1413 * Configure endpoint commands can come from the USB core
1414 * configuration or alt setting changes, or because the HW
1415 * needed an extra configure endpoint command after a reset
1416 * endpoint command or streams were being configured.
1417 * If the command was for a halted endpoint, the xHCI driver
1418 * is not waiting on the configure endpoint command.
1420 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1421 if (!ctrl_ctx) {
1422 xhci_warn(xhci, "Could not get input context, bad type.\n");
1423 return;
1426 add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1427 drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1428 /* Input ctx add_flags are the endpoint index plus one */
1429 ep_index = xhci_last_valid_endpoint(add_flags) - 1;
1431 /* A usb_set_interface() call directly after clearing a halted
1432 * condition may race on this quirky hardware. Not worth
1433 * worrying about, since this is prototype hardware. Not sure
1434 * if this will work for streams, but streams support was
1435 * untested on this prototype.
1437 if (xhci->quirks & XHCI_RESET_EP_QUIRK &&
1438 ep_index != (unsigned int) -1 &&
1439 add_flags - SLOT_FLAG == drop_flags) {
1440 ep_state = virt_dev->eps[ep_index].ep_state;
1441 if (!(ep_state & EP_HALTED))
1442 goto bandwidth_change;
1443 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1444 "Completed config ep cmd - "
1445 "last ep index = %d, state = %d",
1446 ep_index, ep_state);
1447 /* Clear internal halted state and restart ring(s) */
1448 virt_dev->eps[ep_index].ep_state &= ~EP_HALTED;
1449 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1450 return;
1452 bandwidth_change:
1453 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1454 "Completed config ep cmd");
1455 virt_dev->cmd_status = cmd_comp_code;
1456 complete(&virt_dev->cmd_completion);
1457 return;
1460 static void xhci_handle_cmd_eval_ctx(struct xhci_hcd *xhci, int slot_id,
1461 struct xhci_event_cmd *event, u32 cmd_comp_code)
1463 struct xhci_virt_device *virt_dev;
1465 virt_dev = xhci->devs[slot_id];
1466 if (handle_cmd_in_cmd_wait_list(xhci, virt_dev, event))
1467 return;
1468 virt_dev->cmd_status = cmd_comp_code;
1469 complete(&virt_dev->cmd_completion);
1472 static void xhci_handle_cmd_addr_dev(struct xhci_hcd *xhci, int slot_id,
1473 u32 cmd_comp_code)
1475 xhci->devs[slot_id]->cmd_status = cmd_comp_code;
1476 complete(&xhci->addr_dev);
1479 static void xhci_handle_cmd_reset_dev(struct xhci_hcd *xhci, int slot_id,
1480 struct xhci_event_cmd *event)
1482 struct xhci_virt_device *virt_dev;
1484 xhci_dbg(xhci, "Completed reset device command.\n");
1485 virt_dev = xhci->devs[slot_id];
1486 if (virt_dev)
1487 handle_cmd_in_cmd_wait_list(xhci, virt_dev, event);
1488 else
1489 xhci_warn(xhci, "Reset device command completion "
1490 "for disabled slot %u\n", slot_id);
1493 static void xhci_handle_cmd_nec_get_fw(struct xhci_hcd *xhci,
1494 struct xhci_event_cmd *event)
1496 if (!(xhci->quirks & XHCI_NEC_HOST)) {
1497 xhci->error_bitmask |= 1 << 6;
1498 return;
1500 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1501 "NEC firmware version %2x.%02x",
1502 NEC_FW_MAJOR(le32_to_cpu(event->status)),
1503 NEC_FW_MINOR(le32_to_cpu(event->status)));
1506 static void handle_cmd_completion(struct xhci_hcd *xhci,
1507 struct xhci_event_cmd *event)
1509 int slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1510 u64 cmd_dma;
1511 dma_addr_t cmd_dequeue_dma;
1512 u32 cmd_comp_code;
1513 union xhci_trb *cmd_trb;
1514 u32 cmd_type;
1516 cmd_dma = le64_to_cpu(event->cmd_trb);
1517 cmd_trb = xhci->cmd_ring->dequeue;
1518 cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
1519 cmd_trb);
1520 /* Is the command ring deq ptr out of sync with the deq seg ptr? */
1521 if (cmd_dequeue_dma == 0) {
1522 xhci->error_bitmask |= 1 << 4;
1523 return;
1525 /* Does the DMA address match our internal dequeue pointer address? */
1526 if (cmd_dma != (u64) cmd_dequeue_dma) {
1527 xhci->error_bitmask |= 1 << 5;
1528 return;
1531 trace_xhci_cmd_completion(cmd_trb, (struct xhci_generic_trb *) event);
1533 cmd_comp_code = GET_COMP_CODE(le32_to_cpu(event->status));
1534 if (cmd_comp_code == COMP_CMD_ABORT || cmd_comp_code == COMP_CMD_STOP) {
1535 /* If the return value is 0, we think the trb pointed by
1536 * command ring dequeue pointer is a good trb. The good
1537 * trb means we don't want to cancel the trb, but it have
1538 * been stopped by host. So we should handle it normally.
1539 * Otherwise, driver should invoke inc_deq() and return.
1541 if (handle_stopped_cmd_ring(xhci, cmd_comp_code)) {
1542 inc_deq(xhci, xhci->cmd_ring);
1543 return;
1545 /* There is no command to handle if we get a stop event when the
1546 * command ring is empty, event->cmd_trb points to the next
1547 * unset command
1549 if (xhci->cmd_ring->dequeue == xhci->cmd_ring->enqueue)
1550 return;
1553 cmd_type = TRB_FIELD_TO_TYPE(le32_to_cpu(cmd_trb->generic.field[3]));
1554 switch (cmd_type) {
1555 case TRB_ENABLE_SLOT:
1556 xhci_handle_cmd_enable_slot(xhci, slot_id, cmd_comp_code);
1557 break;
1558 case TRB_DISABLE_SLOT:
1559 xhci_handle_cmd_disable_slot(xhci, slot_id);
1560 break;
1561 case TRB_CONFIG_EP:
1562 xhci_handle_cmd_config_ep(xhci, slot_id, event, cmd_comp_code);
1563 break;
1564 case TRB_EVAL_CONTEXT:
1565 xhci_handle_cmd_eval_ctx(xhci, slot_id, event, cmd_comp_code);
1566 break;
1567 case TRB_ADDR_DEV:
1568 xhci_handle_cmd_addr_dev(xhci, slot_id, cmd_comp_code);
1569 break;
1570 case TRB_STOP_RING:
1571 WARN_ON(slot_id != TRB_TO_SLOT_ID(
1572 le32_to_cpu(cmd_trb->generic.field[3])));
1573 xhci_handle_cmd_stop_ep(xhci, slot_id, cmd_trb, event);
1574 break;
1575 case TRB_SET_DEQ:
1576 WARN_ON(slot_id != TRB_TO_SLOT_ID(
1577 le32_to_cpu(cmd_trb->generic.field[3])));
1578 xhci_handle_cmd_set_deq(xhci, slot_id, cmd_trb, cmd_comp_code);
1579 break;
1580 case TRB_CMD_NOOP:
1581 break;
1582 case TRB_RESET_EP:
1583 WARN_ON(slot_id != TRB_TO_SLOT_ID(
1584 le32_to_cpu(cmd_trb->generic.field[3])));
1585 xhci_handle_cmd_reset_ep(xhci, slot_id, cmd_trb, cmd_comp_code);
1586 break;
1587 case TRB_RESET_DEV:
1588 WARN_ON(slot_id != TRB_TO_SLOT_ID(
1589 le32_to_cpu(cmd_trb->generic.field[3])));
1590 xhci_handle_cmd_reset_dev(xhci, slot_id, event);
1591 break;
1592 case TRB_NEC_GET_FW:
1593 xhci_handle_cmd_nec_get_fw(xhci, event);
1594 break;
1595 default:
1596 /* Skip over unknown commands on the event ring */
1597 xhci->error_bitmask |= 1 << 6;
1598 break;
1600 inc_deq(xhci, xhci->cmd_ring);
1603 static void handle_vendor_event(struct xhci_hcd *xhci,
1604 union xhci_trb *event)
1606 u32 trb_type;
1608 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->generic.field[3]));
1609 xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type);
1610 if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST))
1611 handle_cmd_completion(xhci, &event->event_cmd);
1614 /* @port_id: the one-based port ID from the hardware (indexed from array of all
1615 * port registers -- USB 3.0 and USB 2.0).
1617 * Returns a zero-based port number, which is suitable for indexing into each of
1618 * the split roothubs' port arrays and bus state arrays.
1619 * Add one to it in order to call xhci_find_slot_id_by_port.
1621 static unsigned int find_faked_portnum_from_hw_portnum(struct usb_hcd *hcd,
1622 struct xhci_hcd *xhci, u32 port_id)
1624 unsigned int i;
1625 unsigned int num_similar_speed_ports = 0;
1627 /* port_id from the hardware is 1-based, but port_array[], usb3_ports[],
1628 * and usb2_ports are 0-based indexes. Count the number of similar
1629 * speed ports, up to 1 port before this port.
1631 for (i = 0; i < (port_id - 1); i++) {
1632 u8 port_speed = xhci->port_array[i];
1635 * Skip ports that don't have known speeds, or have duplicate
1636 * Extended Capabilities port speed entries.
1638 if (port_speed == 0 || port_speed == DUPLICATE_ENTRY)
1639 continue;
1642 * USB 3.0 ports are always under a USB 3.0 hub. USB 2.0 and
1643 * 1.1 ports are under the USB 2.0 hub. If the port speed
1644 * matches the device speed, it's a similar speed port.
1646 if ((port_speed == 0x03) == (hcd->speed == HCD_USB3))
1647 num_similar_speed_ports++;
1649 return num_similar_speed_ports;
1652 static void handle_device_notification(struct xhci_hcd *xhci,
1653 union xhci_trb *event)
1655 u32 slot_id;
1656 struct usb_device *udev;
1658 slot_id = TRB_TO_SLOT_ID(event->generic.field[3]);
1659 if (!xhci->devs[slot_id]) {
1660 xhci_warn(xhci, "Device Notification event for "
1661 "unused slot %u\n", slot_id);
1662 return;
1665 xhci_dbg(xhci, "Device Wake Notification event for slot ID %u\n",
1666 slot_id);
1667 udev = xhci->devs[slot_id]->udev;
1668 if (udev && udev->parent)
1669 usb_wakeup_notification(udev->parent, udev->portnum);
1672 static void handle_port_status(struct xhci_hcd *xhci,
1673 union xhci_trb *event)
1675 struct usb_hcd *hcd;
1676 u32 port_id;
1677 u32 temp, temp1;
1678 int max_ports;
1679 int slot_id;
1680 unsigned int faked_port_index;
1681 u8 major_revision;
1682 struct xhci_bus_state *bus_state;
1683 __le32 __iomem **port_array;
1684 bool bogus_port_status = false;
1686 /* Port status change events always have a successful completion code */
1687 if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS) {
1688 xhci_warn(xhci, "WARN: xHC returned failed port status event\n");
1689 xhci->error_bitmask |= 1 << 8;
1691 port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0]));
1692 xhci_dbg(xhci, "Port Status Change Event for port %d\n", port_id);
1694 max_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1695 if ((port_id <= 0) || (port_id > max_ports)) {
1696 xhci_warn(xhci, "Invalid port id %d\n", port_id);
1697 inc_deq(xhci, xhci->event_ring);
1698 return;
1701 /* Figure out which usb_hcd this port is attached to:
1702 * is it a USB 3.0 port or a USB 2.0/1.1 port?
1704 major_revision = xhci->port_array[port_id - 1];
1706 /* Find the right roothub. */
1707 hcd = xhci_to_hcd(xhci);
1708 if ((major_revision == 0x03) != (hcd->speed == HCD_USB3))
1709 hcd = xhci->shared_hcd;
1711 if (major_revision == 0) {
1712 xhci_warn(xhci, "Event for port %u not in "
1713 "Extended Capabilities, ignoring.\n",
1714 port_id);
1715 bogus_port_status = true;
1716 goto cleanup;
1718 if (major_revision == DUPLICATE_ENTRY) {
1719 xhci_warn(xhci, "Event for port %u duplicated in"
1720 "Extended Capabilities, ignoring.\n",
1721 port_id);
1722 bogus_port_status = true;
1723 goto cleanup;
1727 * Hardware port IDs reported by a Port Status Change Event include USB
1728 * 3.0 and USB 2.0 ports. We want to check if the port has reported a
1729 * resume event, but we first need to translate the hardware port ID
1730 * into the index into the ports on the correct split roothub, and the
1731 * correct bus_state structure.
1733 bus_state = &xhci->bus_state[hcd_index(hcd)];
1734 if (hcd->speed == HCD_USB3)
1735 port_array = xhci->usb3_ports;
1736 else
1737 port_array = xhci->usb2_ports;
1738 /* Find the faked port hub number */
1739 faked_port_index = find_faked_portnum_from_hw_portnum(hcd, xhci,
1740 port_id);
1742 temp = xhci_readl(xhci, port_array[faked_port_index]);
1743 if (hcd->state == HC_STATE_SUSPENDED) {
1744 xhci_dbg(xhci, "resume root hub\n");
1745 usb_hcd_resume_root_hub(hcd);
1748 if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_RESUME) {
1749 xhci_dbg(xhci, "port resume event for port %d\n", port_id);
1751 temp1 = xhci_readl(xhci, &xhci->op_regs->command);
1752 if (!(temp1 & CMD_RUN)) {
1753 xhci_warn(xhci, "xHC is not running.\n");
1754 goto cleanup;
1757 if (DEV_SUPERSPEED(temp)) {
1758 xhci_dbg(xhci, "remote wake SS port %d\n", port_id);
1759 /* Set a flag to say the port signaled remote wakeup,
1760 * so we can tell the difference between the end of
1761 * device and host initiated resume.
1763 bus_state->port_remote_wakeup |= 1 << faked_port_index;
1764 xhci_test_and_clear_bit(xhci, port_array,
1765 faked_port_index, PORT_PLC);
1766 xhci_set_link_state(xhci, port_array, faked_port_index,
1767 XDEV_U0);
1768 /* Need to wait until the next link state change
1769 * indicates the device is actually in U0.
1771 bogus_port_status = true;
1772 goto cleanup;
1773 } else {
1774 xhci_dbg(xhci, "resume HS port %d\n", port_id);
1775 bus_state->resume_done[faked_port_index] = jiffies +
1776 msecs_to_jiffies(20);
1777 set_bit(faked_port_index, &bus_state->resuming_ports);
1778 mod_timer(&hcd->rh_timer,
1779 bus_state->resume_done[faked_port_index]);
1780 /* Do the rest in GetPortStatus */
1784 if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_U0 &&
1785 DEV_SUPERSPEED(temp)) {
1786 xhci_dbg(xhci, "resume SS port %d finished\n", port_id);
1787 /* We've just brought the device into U0 through either the
1788 * Resume state after a device remote wakeup, or through the
1789 * U3Exit state after a host-initiated resume. If it's a device
1790 * initiated remote wake, don't pass up the link state change,
1791 * so the roothub behavior is consistent with external
1792 * USB 3.0 hub behavior.
1794 slot_id = xhci_find_slot_id_by_port(hcd, xhci,
1795 faked_port_index + 1);
1796 if (slot_id && xhci->devs[slot_id])
1797 xhci_ring_device(xhci, slot_id);
1798 if (bus_state->port_remote_wakeup & (1 << faked_port_index)) {
1799 bus_state->port_remote_wakeup &=
1800 ~(1 << faked_port_index);
1801 xhci_test_and_clear_bit(xhci, port_array,
1802 faked_port_index, PORT_PLC);
1803 usb_wakeup_notification(hcd->self.root_hub,
1804 faked_port_index + 1);
1805 bogus_port_status = true;
1806 goto cleanup;
1811 * Check to see if xhci-hub.c is waiting on RExit to U0 transition (or
1812 * RExit to a disconnect state). If so, let the the driver know it's
1813 * out of the RExit state.
1815 if (!DEV_SUPERSPEED(temp) &&
1816 test_and_clear_bit(faked_port_index,
1817 &bus_state->rexit_ports)) {
1818 complete(&bus_state->rexit_done[faked_port_index]);
1819 bogus_port_status = true;
1820 goto cleanup;
1823 if (hcd->speed != HCD_USB3)
1824 xhci_test_and_clear_bit(xhci, port_array, faked_port_index,
1825 PORT_PLC);
1827 cleanup:
1828 /* Update event ring dequeue pointer before dropping the lock */
1829 inc_deq(xhci, xhci->event_ring);
1831 /* Don't make the USB core poll the roothub if we got a bad port status
1832 * change event. Besides, at that point we can't tell which roothub
1833 * (USB 2.0 or USB 3.0) to kick.
1835 if (bogus_port_status)
1836 return;
1839 * xHCI port-status-change events occur when the "or" of all the
1840 * status-change bits in the portsc register changes from 0 to 1.
1841 * New status changes won't cause an event if any other change
1842 * bits are still set. When an event occurs, switch over to
1843 * polling to avoid losing status changes.
1845 xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1846 set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1847 spin_unlock(&xhci->lock);
1848 /* Pass this up to the core */
1849 usb_hcd_poll_rh_status(hcd);
1850 spin_lock(&xhci->lock);
1854 * This TD is defined by the TRBs starting at start_trb in start_seg and ending
1855 * at end_trb, which may be in another segment. If the suspect DMA address is a
1856 * TRB in this TD, this function returns that TRB's segment. Otherwise it
1857 * returns 0.
1859 struct xhci_segment *trb_in_td(struct xhci_segment *start_seg,
1860 union xhci_trb *start_trb,
1861 union xhci_trb *end_trb,
1862 dma_addr_t suspect_dma)
1864 dma_addr_t start_dma;
1865 dma_addr_t end_seg_dma;
1866 dma_addr_t end_trb_dma;
1867 struct xhci_segment *cur_seg;
1869 start_dma = xhci_trb_virt_to_dma(start_seg, start_trb);
1870 cur_seg = start_seg;
1872 do {
1873 if (start_dma == 0)
1874 return NULL;
1875 /* We may get an event for a Link TRB in the middle of a TD */
1876 end_seg_dma = xhci_trb_virt_to_dma(cur_seg,
1877 &cur_seg->trbs[TRBS_PER_SEGMENT - 1]);
1878 /* If the end TRB isn't in this segment, this is set to 0 */
1879 end_trb_dma = xhci_trb_virt_to_dma(cur_seg, end_trb);
1881 if (end_trb_dma > 0) {
1882 /* The end TRB is in this segment, so suspect should be here */
1883 if (start_dma <= end_trb_dma) {
1884 if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma)
1885 return cur_seg;
1886 } else {
1887 /* Case for one segment with
1888 * a TD wrapped around to the top
1890 if ((suspect_dma >= start_dma &&
1891 suspect_dma <= end_seg_dma) ||
1892 (suspect_dma >= cur_seg->dma &&
1893 suspect_dma <= end_trb_dma))
1894 return cur_seg;
1896 return NULL;
1897 } else {
1898 /* Might still be somewhere in this segment */
1899 if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma)
1900 return cur_seg;
1902 cur_seg = cur_seg->next;
1903 start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]);
1904 } while (cur_seg != start_seg);
1906 return NULL;
1909 static void xhci_cleanup_halted_endpoint(struct xhci_hcd *xhci,
1910 unsigned int slot_id, unsigned int ep_index,
1911 unsigned int stream_id,
1912 struct xhci_td *td, union xhci_trb *event_trb)
1914 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
1915 ep->ep_state |= EP_HALTED;
1916 ep->stopped_td = td;
1917 ep->stopped_trb = event_trb;
1918 ep->stopped_stream = stream_id;
1920 xhci_queue_reset_ep(xhci, slot_id, ep_index);
1921 xhci_cleanup_stalled_ring(xhci, td->urb->dev, ep_index);
1923 ep->stopped_td = NULL;
1924 ep->stopped_trb = NULL;
1925 ep->stopped_stream = 0;
1927 xhci_ring_cmd_db(xhci);
1930 /* Check if an error has halted the endpoint ring. The class driver will
1931 * cleanup the halt for a non-default control endpoint if we indicate a stall.
1932 * However, a babble and other errors also halt the endpoint ring, and the class
1933 * driver won't clear the halt in that case, so we need to issue a Set Transfer
1934 * Ring Dequeue Pointer command manually.
1936 static int xhci_requires_manual_halt_cleanup(struct xhci_hcd *xhci,
1937 struct xhci_ep_ctx *ep_ctx,
1938 unsigned int trb_comp_code)
1940 /* TRB completion codes that may require a manual halt cleanup */
1941 if (trb_comp_code == COMP_TX_ERR ||
1942 trb_comp_code == COMP_BABBLE ||
1943 trb_comp_code == COMP_SPLIT_ERR)
1944 /* The 0.96 spec says a babbling control endpoint
1945 * is not halted. The 0.96 spec says it is. Some HW
1946 * claims to be 0.95 compliant, but it halts the control
1947 * endpoint anyway. Check if a babble halted the
1948 * endpoint.
1950 if ((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1951 cpu_to_le32(EP_STATE_HALTED))
1952 return 1;
1954 return 0;
1957 int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code)
1959 if (trb_comp_code >= 224 && trb_comp_code <= 255) {
1960 /* Vendor defined "informational" completion code,
1961 * treat as not-an-error.
1963 xhci_dbg(xhci, "Vendor defined info completion code %u\n",
1964 trb_comp_code);
1965 xhci_dbg(xhci, "Treating code as success.\n");
1966 return 1;
1968 return 0;
1972 * Finish the td processing, remove the td from td list;
1973 * Return 1 if the urb can be given back.
1975 static int finish_td(struct xhci_hcd *xhci, struct xhci_td *td,
1976 union xhci_trb *event_trb, struct xhci_transfer_event *event,
1977 struct xhci_virt_ep *ep, int *status, bool skip)
1979 struct xhci_virt_device *xdev;
1980 struct xhci_ring *ep_ring;
1981 unsigned int slot_id;
1982 int ep_index;
1983 struct urb *urb = NULL;
1984 struct xhci_ep_ctx *ep_ctx;
1985 int ret = 0;
1986 struct urb_priv *urb_priv;
1987 u32 trb_comp_code;
1989 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1990 xdev = xhci->devs[slot_id];
1991 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
1992 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1993 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
1994 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1996 if (skip)
1997 goto td_cleanup;
1999 if (trb_comp_code == COMP_STOP_INVAL ||
2000 trb_comp_code == COMP_STOP) {
2001 /* The Endpoint Stop Command completion will take care of any
2002 * stopped TDs. A stopped TD may be restarted, so don't update
2003 * the ring dequeue pointer or take this TD off any lists yet.
2005 ep->stopped_td = td;
2006 ep->stopped_trb = event_trb;
2007 return 0;
2008 } else {
2009 if (trb_comp_code == COMP_STALL) {
2010 /* The transfer is completed from the driver's
2011 * perspective, but we need to issue a set dequeue
2012 * command for this stalled endpoint to move the dequeue
2013 * pointer past the TD. We can't do that here because
2014 * the halt condition must be cleared first. Let the
2015 * USB class driver clear the stall later.
2017 ep->stopped_td = td;
2018 ep->stopped_trb = event_trb;
2019 ep->stopped_stream = ep_ring->stream_id;
2020 } else if (xhci_requires_manual_halt_cleanup(xhci,
2021 ep_ctx, trb_comp_code)) {
2022 /* Other types of errors halt the endpoint, but the
2023 * class driver doesn't call usb_reset_endpoint() unless
2024 * the error is -EPIPE. Clear the halted status in the
2025 * xHCI hardware manually.
2027 xhci_cleanup_halted_endpoint(xhci,
2028 slot_id, ep_index, ep_ring->stream_id,
2029 td, event_trb);
2030 } else {
2031 /* Update ring dequeue pointer */
2032 while (ep_ring->dequeue != td->last_trb)
2033 inc_deq(xhci, ep_ring);
2034 inc_deq(xhci, ep_ring);
2037 td_cleanup:
2038 /* Clean up the endpoint's TD list */
2039 urb = td->urb;
2040 urb_priv = urb->hcpriv;
2042 /* Do one last check of the actual transfer length.
2043 * If the host controller said we transferred more data than
2044 * the buffer length, urb->actual_length will be a very big
2045 * number (since it's unsigned). Play it safe and say we didn't
2046 * transfer anything.
2048 if (urb->actual_length > urb->transfer_buffer_length) {
2049 xhci_warn(xhci, "URB transfer length is wrong, "
2050 "xHC issue? req. len = %u, "
2051 "act. len = %u\n",
2052 urb->transfer_buffer_length,
2053 urb->actual_length);
2054 urb->actual_length = 0;
2055 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
2056 *status = -EREMOTEIO;
2057 else
2058 *status = 0;
2060 list_del_init(&td->td_list);
2061 /* Was this TD slated to be cancelled but completed anyway? */
2062 if (!list_empty(&td->cancelled_td_list))
2063 list_del_init(&td->cancelled_td_list);
2065 urb_priv->td_cnt++;
2066 /* Giveback the urb when all the tds are completed */
2067 if (urb_priv->td_cnt == urb_priv->length) {
2068 ret = 1;
2069 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
2070 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--;
2071 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs
2072 == 0) {
2073 if (xhci->quirks & XHCI_AMD_PLL_FIX)
2074 usb_amd_quirk_pll_enable();
2080 return ret;
2084 * Process control tds, update urb status and actual_length.
2086 static int process_ctrl_td(struct xhci_hcd *xhci, struct xhci_td *td,
2087 union xhci_trb *event_trb, struct xhci_transfer_event *event,
2088 struct xhci_virt_ep *ep, int *status)
2090 struct xhci_virt_device *xdev;
2091 struct xhci_ring *ep_ring;
2092 unsigned int slot_id;
2093 int ep_index;
2094 struct xhci_ep_ctx *ep_ctx;
2095 u32 trb_comp_code;
2097 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
2098 xdev = xhci->devs[slot_id];
2099 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
2100 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2101 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
2102 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2104 switch (trb_comp_code) {
2105 case COMP_SUCCESS:
2106 if (event_trb == ep_ring->dequeue) {
2107 xhci_warn(xhci, "WARN: Success on ctrl setup TRB "
2108 "without IOC set??\n");
2109 *status = -ESHUTDOWN;
2110 } else if (event_trb != td->last_trb) {
2111 xhci_warn(xhci, "WARN: Success on ctrl data TRB "
2112 "without IOC set??\n");
2113 *status = -ESHUTDOWN;
2114 } else {
2115 *status = 0;
2117 break;
2118 case COMP_SHORT_TX:
2119 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
2120 *status = -EREMOTEIO;
2121 else
2122 *status = 0;
2123 break;
2124 case COMP_STOP_INVAL:
2125 case COMP_STOP:
2126 return finish_td(xhci, td, event_trb, event, ep, status, false);
2127 default:
2128 if (!xhci_requires_manual_halt_cleanup(xhci,
2129 ep_ctx, trb_comp_code))
2130 break;
2131 xhci_dbg(xhci, "TRB error code %u, "
2132 "halted endpoint index = %u\n",
2133 trb_comp_code, ep_index);
2134 /* else fall through */
2135 case COMP_STALL:
2136 /* Did we transfer part of the data (middle) phase? */
2137 if (event_trb != ep_ring->dequeue &&
2138 event_trb != td->last_trb)
2139 td->urb->actual_length =
2140 td->urb->transfer_buffer_length -
2141 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2142 else
2143 td->urb->actual_length = 0;
2145 xhci_cleanup_halted_endpoint(xhci,
2146 slot_id, ep_index, 0, td, event_trb);
2147 return finish_td(xhci, td, event_trb, event, ep, status, true);
2150 * Did we transfer any data, despite the errors that might have
2151 * happened? I.e. did we get past the setup stage?
2153 if (event_trb != ep_ring->dequeue) {
2154 /* The event was for the status stage */
2155 if (event_trb == td->last_trb) {
2156 if (td->urb->actual_length != 0) {
2157 /* Don't overwrite a previously set error code
2159 if ((*status == -EINPROGRESS || *status == 0) &&
2160 (td->urb->transfer_flags
2161 & URB_SHORT_NOT_OK))
2162 /* Did we already see a short data
2163 * stage? */
2164 *status = -EREMOTEIO;
2165 } else {
2166 td->urb->actual_length =
2167 td->urb->transfer_buffer_length;
2169 } else {
2170 /* Maybe the event was for the data stage? */
2171 td->urb->actual_length =
2172 td->urb->transfer_buffer_length -
2173 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2174 xhci_dbg(xhci, "Waiting for status "
2175 "stage event\n");
2176 return 0;
2180 return finish_td(xhci, td, event_trb, event, ep, status, false);
2184 * Process isochronous tds, update urb packet status and actual_length.
2186 static int process_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td,
2187 union xhci_trb *event_trb, struct xhci_transfer_event *event,
2188 struct xhci_virt_ep *ep, int *status)
2190 struct xhci_ring *ep_ring;
2191 struct urb_priv *urb_priv;
2192 int idx;
2193 int len = 0;
2194 union xhci_trb *cur_trb;
2195 struct xhci_segment *cur_seg;
2196 struct usb_iso_packet_descriptor *frame;
2197 u32 trb_comp_code;
2198 bool skip_td = false;
2200 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2201 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2202 urb_priv = td->urb->hcpriv;
2203 idx = urb_priv->td_cnt;
2204 frame = &td->urb->iso_frame_desc[idx];
2206 /* handle completion code */
2207 switch (trb_comp_code) {
2208 case COMP_SUCCESS:
2209 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) == 0) {
2210 frame->status = 0;
2211 break;
2213 if ((xhci->quirks & XHCI_TRUST_TX_LENGTH))
2214 trb_comp_code = COMP_SHORT_TX;
2215 case COMP_SHORT_TX:
2216 frame->status = td->urb->transfer_flags & URB_SHORT_NOT_OK ?
2217 -EREMOTEIO : 0;
2218 break;
2219 case COMP_BW_OVER:
2220 frame->status = -ECOMM;
2221 skip_td = true;
2222 break;
2223 case COMP_BUFF_OVER:
2224 case COMP_BABBLE:
2225 frame->status = -EOVERFLOW;
2226 skip_td = true;
2227 break;
2228 case COMP_DEV_ERR:
2229 case COMP_STALL:
2230 case COMP_TX_ERR:
2231 frame->status = -EPROTO;
2232 skip_td = true;
2233 break;
2234 case COMP_STOP:
2235 case COMP_STOP_INVAL:
2236 break;
2237 default:
2238 frame->status = -1;
2239 break;
2242 if (trb_comp_code == COMP_SUCCESS || skip_td) {
2243 frame->actual_length = frame->length;
2244 td->urb->actual_length += frame->length;
2245 } else {
2246 for (cur_trb = ep_ring->dequeue,
2247 cur_seg = ep_ring->deq_seg; cur_trb != event_trb;
2248 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) {
2249 if (!TRB_TYPE_NOOP_LE32(cur_trb->generic.field[3]) &&
2250 !TRB_TYPE_LINK_LE32(cur_trb->generic.field[3]))
2251 len += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2]));
2253 len += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])) -
2254 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2256 if (trb_comp_code != COMP_STOP_INVAL) {
2257 frame->actual_length = len;
2258 td->urb->actual_length += len;
2262 return finish_td(xhci, td, event_trb, event, ep, status, false);
2265 static int skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td,
2266 struct xhci_transfer_event *event,
2267 struct xhci_virt_ep *ep, int *status)
2269 struct xhci_ring *ep_ring;
2270 struct urb_priv *urb_priv;
2271 struct usb_iso_packet_descriptor *frame;
2272 int idx;
2274 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2275 urb_priv = td->urb->hcpriv;
2276 idx = urb_priv->td_cnt;
2277 frame = &td->urb->iso_frame_desc[idx];
2279 /* The transfer is partly done. */
2280 frame->status = -EXDEV;
2282 /* calc actual length */
2283 frame->actual_length = 0;
2285 /* Update ring dequeue pointer */
2286 while (ep_ring->dequeue != td->last_trb)
2287 inc_deq(xhci, ep_ring);
2288 inc_deq(xhci, ep_ring);
2290 return finish_td(xhci, td, NULL, event, ep, status, true);
2294 * Process bulk and interrupt tds, update urb status and actual_length.
2296 static int process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_td *td,
2297 union xhci_trb *event_trb, struct xhci_transfer_event *event,
2298 struct xhci_virt_ep *ep, int *status)
2300 struct xhci_ring *ep_ring;
2301 union xhci_trb *cur_trb;
2302 struct xhci_segment *cur_seg;
2303 u32 trb_comp_code;
2305 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2306 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2308 switch (trb_comp_code) {
2309 case COMP_SUCCESS:
2310 /* Double check that the HW transferred everything. */
2311 if (event_trb != td->last_trb ||
2312 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) != 0) {
2313 xhci_warn(xhci, "WARN Successful completion "
2314 "on short TX\n");
2315 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
2316 *status = -EREMOTEIO;
2317 else
2318 *status = 0;
2319 if ((xhci->quirks & XHCI_TRUST_TX_LENGTH))
2320 trb_comp_code = COMP_SHORT_TX;
2321 } else {
2322 *status = 0;
2324 break;
2325 case COMP_SHORT_TX:
2326 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
2327 *status = -EREMOTEIO;
2328 else
2329 *status = 0;
2330 break;
2331 default:
2332 /* Others already handled above */
2333 break;
2335 if (trb_comp_code == COMP_SHORT_TX)
2336 xhci_dbg(xhci, "ep %#x - asked for %d bytes, "
2337 "%d bytes untransferred\n",
2338 td->urb->ep->desc.bEndpointAddress,
2339 td->urb->transfer_buffer_length,
2340 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)));
2341 /* Fast path - was this the last TRB in the TD for this URB? */
2342 if (event_trb == td->last_trb) {
2343 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) != 0) {
2344 td->urb->actual_length =
2345 td->urb->transfer_buffer_length -
2346 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2347 if (td->urb->transfer_buffer_length <
2348 td->urb->actual_length) {
2349 xhci_warn(xhci, "HC gave bad length "
2350 "of %d bytes left\n",
2351 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)));
2352 td->urb->actual_length = 0;
2353 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
2354 *status = -EREMOTEIO;
2355 else
2356 *status = 0;
2358 /* Don't overwrite a previously set error code */
2359 if (*status == -EINPROGRESS) {
2360 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
2361 *status = -EREMOTEIO;
2362 else
2363 *status = 0;
2365 } else {
2366 td->urb->actual_length =
2367 td->urb->transfer_buffer_length;
2368 /* Ignore a short packet completion if the
2369 * untransferred length was zero.
2371 if (*status == -EREMOTEIO)
2372 *status = 0;
2374 } else {
2375 /* Slow path - walk the list, starting from the dequeue
2376 * pointer, to get the actual length transferred.
2378 td->urb->actual_length = 0;
2379 for (cur_trb = ep_ring->dequeue, cur_seg = ep_ring->deq_seg;
2380 cur_trb != event_trb;
2381 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) {
2382 if (!TRB_TYPE_NOOP_LE32(cur_trb->generic.field[3]) &&
2383 !TRB_TYPE_LINK_LE32(cur_trb->generic.field[3]))
2384 td->urb->actual_length +=
2385 TRB_LEN(le32_to_cpu(cur_trb->generic.field[2]));
2387 /* If the ring didn't stop on a Link or No-op TRB, add
2388 * in the actual bytes transferred from the Normal TRB
2390 if (trb_comp_code != COMP_STOP_INVAL)
2391 td->urb->actual_length +=
2392 TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])) -
2393 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2396 return finish_td(xhci, td, event_trb, event, ep, status, false);
2400 * If this function returns an error condition, it means it got a Transfer
2401 * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address.
2402 * At this point, the host controller is probably hosed and should be reset.
2404 static int handle_tx_event(struct xhci_hcd *xhci,
2405 struct xhci_transfer_event *event)
2406 __releases(&xhci->lock)
2407 __acquires(&xhci->lock)
2409 struct xhci_virt_device *xdev;
2410 struct xhci_virt_ep *ep;
2411 struct xhci_ring *ep_ring;
2412 unsigned int slot_id;
2413 int ep_index;
2414 struct xhci_td *td = NULL;
2415 dma_addr_t event_dma;
2416 struct xhci_segment *event_seg;
2417 union xhci_trb *event_trb;
2418 struct urb *urb = NULL;
2419 int status = -EINPROGRESS;
2420 struct urb_priv *urb_priv;
2421 struct xhci_ep_ctx *ep_ctx;
2422 struct list_head *tmp;
2423 u32 trb_comp_code;
2424 int ret = 0;
2425 int td_num = 0;
2427 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
2428 xdev = xhci->devs[slot_id];
2429 if (!xdev) {
2430 xhci_err(xhci, "ERROR Transfer event pointed to bad slot\n");
2431 xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n",
2432 (unsigned long long) xhci_trb_virt_to_dma(
2433 xhci->event_ring->deq_seg,
2434 xhci->event_ring->dequeue),
2435 lower_32_bits(le64_to_cpu(event->buffer)),
2436 upper_32_bits(le64_to_cpu(event->buffer)),
2437 le32_to_cpu(event->transfer_len),
2438 le32_to_cpu(event->flags));
2439 xhci_dbg(xhci, "Event ring:\n");
2440 xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
2441 return -ENODEV;
2444 /* Endpoint ID is 1 based, our index is zero based */
2445 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
2446 ep = &xdev->eps[ep_index];
2447 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2448 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
2449 if (!ep_ring ||
2450 (le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK) ==
2451 EP_STATE_DISABLED) {
2452 xhci_err(xhci, "ERROR Transfer event for disabled endpoint "
2453 "or incorrect stream ring\n");
2454 xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n",
2455 (unsigned long long) xhci_trb_virt_to_dma(
2456 xhci->event_ring->deq_seg,
2457 xhci->event_ring->dequeue),
2458 lower_32_bits(le64_to_cpu(event->buffer)),
2459 upper_32_bits(le64_to_cpu(event->buffer)),
2460 le32_to_cpu(event->transfer_len),
2461 le32_to_cpu(event->flags));
2462 xhci_dbg(xhci, "Event ring:\n");
2463 xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
2464 return -ENODEV;
2467 /* Count current td numbers if ep->skip is set */
2468 if (ep->skip) {
2469 list_for_each(tmp, &ep_ring->td_list)
2470 td_num++;
2473 event_dma = le64_to_cpu(event->buffer);
2474 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2475 /* Look for common error cases */
2476 switch (trb_comp_code) {
2477 /* Skip codes that require special handling depending on
2478 * transfer type
2480 case COMP_SUCCESS:
2481 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) == 0)
2482 break;
2483 if (xhci->quirks & XHCI_TRUST_TX_LENGTH)
2484 trb_comp_code = COMP_SHORT_TX;
2485 else
2486 xhci_warn_ratelimited(xhci,
2487 "WARN Successful completion on short TX: needs XHCI_TRUST_TX_LENGTH quirk?\n");
2488 case COMP_SHORT_TX:
2489 break;
2490 case COMP_STOP:
2491 xhci_dbg(xhci, "Stopped on Transfer TRB\n");
2492 break;
2493 case COMP_STOP_INVAL:
2494 xhci_dbg(xhci, "Stopped on No-op or Link TRB\n");
2495 break;
2496 case COMP_STALL:
2497 xhci_dbg(xhci, "Stalled endpoint\n");
2498 ep->ep_state |= EP_HALTED;
2499 status = -EPIPE;
2500 break;
2501 case COMP_TRB_ERR:
2502 xhci_warn(xhci, "WARN: TRB error on endpoint\n");
2503 status = -EILSEQ;
2504 break;
2505 case COMP_SPLIT_ERR:
2506 case COMP_TX_ERR:
2507 xhci_dbg(xhci, "Transfer error on endpoint\n");
2508 status = -EPROTO;
2509 break;
2510 case COMP_BABBLE:
2511 xhci_dbg(xhci, "Babble error on endpoint\n");
2512 status = -EOVERFLOW;
2513 break;
2514 case COMP_DB_ERR:
2515 xhci_warn(xhci, "WARN: HC couldn't access mem fast enough\n");
2516 status = -ENOSR;
2517 break;
2518 case COMP_BW_OVER:
2519 xhci_warn(xhci, "WARN: bandwidth overrun event on endpoint\n");
2520 break;
2521 case COMP_BUFF_OVER:
2522 xhci_warn(xhci, "WARN: buffer overrun event on endpoint\n");
2523 break;
2524 case COMP_UNDERRUN:
2526 * When the Isoch ring is empty, the xHC will generate
2527 * a Ring Overrun Event for IN Isoch endpoint or Ring
2528 * Underrun Event for OUT Isoch endpoint.
2530 xhci_dbg(xhci, "underrun event on endpoint\n");
2531 if (!list_empty(&ep_ring->td_list))
2532 xhci_dbg(xhci, "Underrun Event for slot %d ep %d "
2533 "still with TDs queued?\n",
2534 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2535 ep_index);
2536 goto cleanup;
2537 case COMP_OVERRUN:
2538 xhci_dbg(xhci, "overrun event on endpoint\n");
2539 if (!list_empty(&ep_ring->td_list))
2540 xhci_dbg(xhci, "Overrun Event for slot %d ep %d "
2541 "still with TDs queued?\n",
2542 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2543 ep_index);
2544 goto cleanup;
2545 case COMP_DEV_ERR:
2546 xhci_warn(xhci, "WARN: detect an incompatible device");
2547 status = -EPROTO;
2548 break;
2549 case COMP_MISSED_INT:
2551 * When encounter missed service error, one or more isoc tds
2552 * may be missed by xHC.
2553 * Set skip flag of the ep_ring; Complete the missed tds as
2554 * short transfer when process the ep_ring next time.
2556 ep->skip = true;
2557 xhci_dbg(xhci, "Miss service interval error, set skip flag\n");
2558 goto cleanup;
2559 default:
2560 if (xhci_is_vendor_info_code(xhci, trb_comp_code)) {
2561 status = 0;
2562 break;
2564 xhci_warn(xhci, "ERROR Unknown event condition, HC probably "
2565 "busted\n");
2566 goto cleanup;
2569 do {
2570 /* This TRB should be in the TD at the head of this ring's
2571 * TD list.
2573 if (list_empty(&ep_ring->td_list)) {
2575 * A stopped endpoint may generate an extra completion
2576 * event if the device was suspended. Don't print
2577 * warnings.
2579 if (!(trb_comp_code == COMP_STOP ||
2580 trb_comp_code == COMP_STOP_INVAL)) {
2581 xhci_warn(xhci, "WARN Event TRB for slot %d ep %d with no TDs queued?\n",
2582 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2583 ep_index);
2584 xhci_dbg(xhci, "Event TRB with TRB type ID %u\n",
2585 (le32_to_cpu(event->flags) &
2586 TRB_TYPE_BITMASK)>>10);
2587 xhci_print_trb_offsets(xhci, (union xhci_trb *) event);
2589 if (ep->skip) {
2590 ep->skip = false;
2591 xhci_dbg(xhci, "td_list is empty while skip "
2592 "flag set. Clear skip flag.\n");
2594 ret = 0;
2595 goto cleanup;
2598 /* We've skipped all the TDs on the ep ring when ep->skip set */
2599 if (ep->skip && td_num == 0) {
2600 ep->skip = false;
2601 xhci_dbg(xhci, "All tds on the ep_ring skipped. "
2602 "Clear skip flag.\n");
2603 ret = 0;
2604 goto cleanup;
2607 td = list_entry(ep_ring->td_list.next, struct xhci_td, td_list);
2608 if (ep->skip)
2609 td_num--;
2611 /* Is this a TRB in the currently executing TD? */
2612 event_seg = trb_in_td(ep_ring->deq_seg, ep_ring->dequeue,
2613 td->last_trb, event_dma);
2616 * Skip the Force Stopped Event. The event_trb(event_dma) of FSE
2617 * is not in the current TD pointed by ep_ring->dequeue because
2618 * that the hardware dequeue pointer still at the previous TRB
2619 * of the current TD. The previous TRB maybe a Link TD or the
2620 * last TRB of the previous TD. The command completion handle
2621 * will take care the rest.
2623 if (!event_seg && trb_comp_code == COMP_STOP_INVAL) {
2624 ret = 0;
2625 goto cleanup;
2628 if (!event_seg) {
2629 if (!ep->skip ||
2630 !usb_endpoint_xfer_isoc(&td->urb->ep->desc)) {
2631 /* Some host controllers give a spurious
2632 * successful event after a short transfer.
2633 * Ignore it.
2635 if ((xhci->quirks & XHCI_SPURIOUS_SUCCESS) &&
2636 ep_ring->last_td_was_short) {
2637 ep_ring->last_td_was_short = false;
2638 ret = 0;
2639 goto cleanup;
2641 /* HC is busted, give up! */
2642 xhci_err(xhci,
2643 "ERROR Transfer event TRB DMA ptr not "
2644 "part of current TD\n");
2645 return -ESHUTDOWN;
2648 ret = skip_isoc_td(xhci, td, event, ep, &status);
2649 goto cleanup;
2651 if (trb_comp_code == COMP_SHORT_TX)
2652 ep_ring->last_td_was_short = true;
2653 else
2654 ep_ring->last_td_was_short = false;
2656 if (ep->skip) {
2657 xhci_dbg(xhci, "Found td. Clear skip flag.\n");
2658 ep->skip = false;
2661 event_trb = &event_seg->trbs[(event_dma - event_seg->dma) /
2662 sizeof(*event_trb)];
2664 * No-op TRB should not trigger interrupts.
2665 * If event_trb is a no-op TRB, it means the
2666 * corresponding TD has been cancelled. Just ignore
2667 * the TD.
2669 if (TRB_TYPE_NOOP_LE32(event_trb->generic.field[3])) {
2670 xhci_dbg(xhci,
2671 "event_trb is a no-op TRB. Skip it\n");
2672 goto cleanup;
2675 /* Now update the urb's actual_length and give back to
2676 * the core
2678 if (usb_endpoint_xfer_control(&td->urb->ep->desc))
2679 ret = process_ctrl_td(xhci, td, event_trb, event, ep,
2680 &status);
2681 else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc))
2682 ret = process_isoc_td(xhci, td, event_trb, event, ep,
2683 &status);
2684 else
2685 ret = process_bulk_intr_td(xhci, td, event_trb, event,
2686 ep, &status);
2688 cleanup:
2690 * Do not update event ring dequeue pointer if ep->skip is set.
2691 * Will roll back to continue process missed tds.
2693 if (trb_comp_code == COMP_MISSED_INT || !ep->skip) {
2694 inc_deq(xhci, xhci->event_ring);
2697 if (ret) {
2698 urb = td->urb;
2699 urb_priv = urb->hcpriv;
2700 /* Leave the TD around for the reset endpoint function
2701 * to use(but only if it's not a control endpoint,
2702 * since we already queued the Set TR dequeue pointer
2703 * command for stalled control endpoints).
2705 if (usb_endpoint_xfer_control(&urb->ep->desc) ||
2706 (trb_comp_code != COMP_STALL &&
2707 trb_comp_code != COMP_BABBLE))
2708 xhci_urb_free_priv(xhci, urb_priv);
2709 else
2710 kfree(urb_priv);
2712 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb);
2713 if ((urb->actual_length != urb->transfer_buffer_length &&
2714 (urb->transfer_flags &
2715 URB_SHORT_NOT_OK)) ||
2716 (status != 0 &&
2717 !usb_endpoint_xfer_isoc(&urb->ep->desc)))
2718 xhci_dbg(xhci, "Giveback URB %p, len = %d, "
2719 "expected = %d, status = %d\n",
2720 urb, urb->actual_length,
2721 urb->transfer_buffer_length,
2722 status);
2723 spin_unlock(&xhci->lock);
2724 /* EHCI, UHCI, and OHCI always unconditionally set the
2725 * urb->status of an isochronous endpoint to 0.
2727 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
2728 status = 0;
2729 usb_hcd_giveback_urb(bus_to_hcd(urb->dev->bus), urb, status);
2730 spin_lock(&xhci->lock);
2734 * If ep->skip is set, it means there are missed tds on the
2735 * endpoint ring need to take care of.
2736 * Process them as short transfer until reach the td pointed by
2737 * the event.
2739 } while (ep->skip && trb_comp_code != COMP_MISSED_INT);
2741 return 0;
2745 * This function handles all OS-owned events on the event ring. It may drop
2746 * xhci->lock between event processing (e.g. to pass up port status changes).
2747 * Returns >0 for "possibly more events to process" (caller should call again),
2748 * otherwise 0 if done. In future, <0 returns should indicate error code.
2750 static int xhci_handle_event(struct xhci_hcd *xhci)
2752 union xhci_trb *event;
2753 int update_ptrs = 1;
2754 int ret;
2756 if (!xhci->event_ring || !xhci->event_ring->dequeue) {
2757 xhci->error_bitmask |= 1 << 1;
2758 return 0;
2761 event = xhci->event_ring->dequeue;
2762 /* Does the HC or OS own the TRB? */
2763 if ((le32_to_cpu(event->event_cmd.flags) & TRB_CYCLE) !=
2764 xhci->event_ring->cycle_state) {
2765 xhci->error_bitmask |= 1 << 2;
2766 return 0;
2770 * Barrier between reading the TRB_CYCLE (valid) flag above and any
2771 * speculative reads of the event's flags/data below.
2773 rmb();
2774 /* FIXME: Handle more event types. */
2775 switch ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK)) {
2776 case TRB_TYPE(TRB_COMPLETION):
2777 handle_cmd_completion(xhci, &event->event_cmd);
2778 break;
2779 case TRB_TYPE(TRB_PORT_STATUS):
2780 handle_port_status(xhci, event);
2781 update_ptrs = 0;
2782 break;
2783 case TRB_TYPE(TRB_TRANSFER):
2784 ret = handle_tx_event(xhci, &event->trans_event);
2785 if (ret < 0)
2786 xhci->error_bitmask |= 1 << 9;
2787 else
2788 update_ptrs = 0;
2789 break;
2790 case TRB_TYPE(TRB_DEV_NOTE):
2791 handle_device_notification(xhci, event);
2792 break;
2793 default:
2794 if ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) >=
2795 TRB_TYPE(48))
2796 handle_vendor_event(xhci, event);
2797 else
2798 xhci->error_bitmask |= 1 << 3;
2800 /* Any of the above functions may drop and re-acquire the lock, so check
2801 * to make sure a watchdog timer didn't mark the host as non-responsive.
2803 if (xhci->xhc_state & XHCI_STATE_DYING) {
2804 xhci_dbg(xhci, "xHCI host dying, returning from "
2805 "event handler.\n");
2806 return 0;
2809 if (update_ptrs)
2810 /* Update SW event ring dequeue pointer */
2811 inc_deq(xhci, xhci->event_ring);
2813 /* Are there more items on the event ring? Caller will call us again to
2814 * check.
2816 return 1;
2820 * xHCI spec says we can get an interrupt, and if the HC has an error condition,
2821 * we might get bad data out of the event ring. Section 4.10.2.7 has a list of
2822 * indicators of an event TRB error, but we check the status *first* to be safe.
2824 irqreturn_t xhci_irq(struct usb_hcd *hcd)
2826 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2827 u32 status;
2828 u64 temp_64;
2829 union xhci_trb *event_ring_deq;
2830 dma_addr_t deq;
2832 spin_lock(&xhci->lock);
2833 /* Check if the xHC generated the interrupt, or the irq is shared */
2834 status = xhci_readl(xhci, &xhci->op_regs->status);
2835 if (status == 0xffffffff)
2836 goto hw_died;
2838 if (!(status & STS_EINT)) {
2839 spin_unlock(&xhci->lock);
2840 return IRQ_NONE;
2842 if (status & STS_FATAL) {
2843 xhci_warn(xhci, "WARNING: Host System Error\n");
2844 xhci_halt(xhci);
2845 hw_died:
2846 spin_unlock(&xhci->lock);
2847 return -ESHUTDOWN;
2851 * Clear the op reg interrupt status first,
2852 * so we can receive interrupts from other MSI-X interrupters.
2853 * Write 1 to clear the interrupt status.
2855 status |= STS_EINT;
2856 xhci_writel(xhci, status, &xhci->op_regs->status);
2857 /* FIXME when MSI-X is supported and there are multiple vectors */
2858 /* Clear the MSI-X event interrupt status */
2860 if (hcd->irq) {
2861 u32 irq_pending;
2862 /* Acknowledge the PCI interrupt */
2863 irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending);
2864 irq_pending |= IMAN_IP;
2865 xhci_writel(xhci, irq_pending, &xhci->ir_set->irq_pending);
2868 if (xhci->xhc_state & XHCI_STATE_DYING) {
2869 xhci_dbg(xhci, "xHCI dying, ignoring interrupt. "
2870 "Shouldn't IRQs be disabled?\n");
2871 /* Clear the event handler busy flag (RW1C);
2872 * the event ring should be empty.
2874 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2875 xhci_write_64(xhci, temp_64 | ERST_EHB,
2876 &xhci->ir_set->erst_dequeue);
2877 spin_unlock(&xhci->lock);
2879 return IRQ_HANDLED;
2882 event_ring_deq = xhci->event_ring->dequeue;
2883 /* FIXME this should be a delayed service routine
2884 * that clears the EHB.
2886 while (xhci_handle_event(xhci) > 0) {}
2888 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2889 /* If necessary, update the HW's version of the event ring deq ptr. */
2890 if (event_ring_deq != xhci->event_ring->dequeue) {
2891 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2892 xhci->event_ring->dequeue);
2893 if (deq == 0)
2894 xhci_warn(xhci, "WARN something wrong with SW event "
2895 "ring dequeue ptr.\n");
2896 /* Update HC event ring dequeue pointer */
2897 temp_64 &= ERST_PTR_MASK;
2898 temp_64 |= ((u64) deq & (u64) ~ERST_PTR_MASK);
2901 /* Clear the event handler busy flag (RW1C); event ring is empty. */
2902 temp_64 |= ERST_EHB;
2903 xhci_write_64(xhci, temp_64, &xhci->ir_set->erst_dequeue);
2905 spin_unlock(&xhci->lock);
2907 return IRQ_HANDLED;
2910 irqreturn_t xhci_msi_irq(int irq, void *hcd)
2912 return xhci_irq(hcd);
2915 /**** Endpoint Ring Operations ****/
2918 * Generic function for queueing a TRB on a ring.
2919 * The caller must have checked to make sure there's room on the ring.
2921 * @more_trbs_coming: Will you enqueue more TRBs before calling
2922 * prepare_transfer()?
2924 static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring,
2925 bool more_trbs_coming,
2926 u32 field1, u32 field2, u32 field3, u32 field4)
2928 struct xhci_generic_trb *trb;
2930 trb = &ring->enqueue->generic;
2931 trb->field[0] = cpu_to_le32(field1);
2932 trb->field[1] = cpu_to_le32(field2);
2933 trb->field[2] = cpu_to_le32(field3);
2934 trb->field[3] = cpu_to_le32(field4);
2935 inc_enq(xhci, ring, more_trbs_coming);
2939 * Does various checks on the endpoint ring, and makes it ready to queue num_trbs.
2940 * FIXME allocate segments if the ring is full.
2942 static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
2943 u32 ep_state, unsigned int num_trbs, gfp_t mem_flags)
2945 unsigned int num_trbs_needed;
2947 /* Make sure the endpoint has been added to xHC schedule */
2948 switch (ep_state) {
2949 case EP_STATE_DISABLED:
2951 * USB core changed config/interfaces without notifying us,
2952 * or hardware is reporting the wrong state.
2954 xhci_warn(xhci, "WARN urb submitted to disabled ep\n");
2955 return -ENOENT;
2956 case EP_STATE_ERROR:
2957 xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n");
2958 /* FIXME event handling code for error needs to clear it */
2959 /* XXX not sure if this should be -ENOENT or not */
2960 return -EINVAL;
2961 case EP_STATE_HALTED:
2962 xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n");
2963 case EP_STATE_STOPPED:
2964 case EP_STATE_RUNNING:
2965 break;
2966 default:
2967 xhci_err(xhci, "ERROR unknown endpoint state for ep\n");
2969 * FIXME issue Configure Endpoint command to try to get the HC
2970 * back into a known state.
2972 return -EINVAL;
2975 while (1) {
2976 if (room_on_ring(xhci, ep_ring, num_trbs))
2977 break;
2979 if (ep_ring == xhci->cmd_ring) {
2980 xhci_err(xhci, "Do not support expand command ring\n");
2981 return -ENOMEM;
2984 xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
2985 "ERROR no room on ep ring, try ring expansion");
2986 num_trbs_needed = num_trbs - ep_ring->num_trbs_free;
2987 if (xhci_ring_expansion(xhci, ep_ring, num_trbs_needed,
2988 mem_flags)) {
2989 xhci_err(xhci, "Ring expansion failed\n");
2990 return -ENOMEM;
2994 if (enqueue_is_link_trb(ep_ring)) {
2995 struct xhci_ring *ring = ep_ring;
2996 union xhci_trb *next;
2998 next = ring->enqueue;
3000 while (last_trb(xhci, ring, ring->enq_seg, next)) {
3001 /* If we're not dealing with 0.95 hardware or isoc rings
3002 * on AMD 0.96 host, clear the chain bit.
3004 if (!xhci_link_trb_quirk(xhci) &&
3005 !(ring->type == TYPE_ISOC &&
3006 (xhci->quirks & XHCI_AMD_0x96_HOST)))
3007 next->link.control &= cpu_to_le32(~TRB_CHAIN);
3008 else
3009 next->link.control |= cpu_to_le32(TRB_CHAIN);
3011 wmb();
3012 next->link.control ^= cpu_to_le32(TRB_CYCLE);
3014 /* Toggle the cycle bit after the last ring segment. */
3015 if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) {
3016 ring->cycle_state = (ring->cycle_state ? 0 : 1);
3018 ring->enq_seg = ring->enq_seg->next;
3019 ring->enqueue = ring->enq_seg->trbs;
3020 next = ring->enqueue;
3024 return 0;
3027 static int prepare_transfer(struct xhci_hcd *xhci,
3028 struct xhci_virt_device *xdev,
3029 unsigned int ep_index,
3030 unsigned int stream_id,
3031 unsigned int num_trbs,
3032 struct urb *urb,
3033 unsigned int td_index,
3034 gfp_t mem_flags)
3036 int ret;
3037 struct urb_priv *urb_priv;
3038 struct xhci_td *td;
3039 struct xhci_ring *ep_ring;
3040 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
3042 ep_ring = xhci_stream_id_to_ring(xdev, ep_index, stream_id);
3043 if (!ep_ring) {
3044 xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n",
3045 stream_id);
3046 return -EINVAL;
3049 ret = prepare_ring(xhci, ep_ring,
3050 le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK,
3051 num_trbs, mem_flags);
3052 if (ret)
3053 return ret;
3055 urb_priv = urb->hcpriv;
3056 td = urb_priv->td[td_index];
3058 INIT_LIST_HEAD(&td->td_list);
3059 INIT_LIST_HEAD(&td->cancelled_td_list);
3061 if (td_index == 0) {
3062 ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb);
3063 if (unlikely(ret))
3064 return ret;
3067 td->urb = urb;
3068 /* Add this TD to the tail of the endpoint ring's TD list */
3069 list_add_tail(&td->td_list, &ep_ring->td_list);
3070 td->start_seg = ep_ring->enq_seg;
3071 td->first_trb = ep_ring->enqueue;
3073 urb_priv->td[td_index] = td;
3075 return 0;
3078 static unsigned int count_sg_trbs_needed(struct xhci_hcd *xhci, struct urb *urb)
3080 int num_sgs, num_trbs, running_total, temp, i;
3081 struct scatterlist *sg;
3083 sg = NULL;
3084 num_sgs = urb->num_mapped_sgs;
3085 temp = urb->transfer_buffer_length;
3087 num_trbs = 0;
3088 for_each_sg(urb->sg, sg, num_sgs, i) {
3089 unsigned int len = sg_dma_len(sg);
3091 /* Scatter gather list entries may cross 64KB boundaries */
3092 running_total = TRB_MAX_BUFF_SIZE -
3093 (sg_dma_address(sg) & (TRB_MAX_BUFF_SIZE - 1));
3094 running_total &= TRB_MAX_BUFF_SIZE - 1;
3095 if (running_total != 0)
3096 num_trbs++;
3098 /* How many more 64KB chunks to transfer, how many more TRBs? */
3099 while (running_total < sg_dma_len(sg) && running_total < temp) {
3100 num_trbs++;
3101 running_total += TRB_MAX_BUFF_SIZE;
3103 len = min_t(int, len, temp);
3104 temp -= len;
3105 if (temp == 0)
3106 break;
3108 return num_trbs;
3111 static void check_trb_math(struct urb *urb, int num_trbs, int running_total)
3113 if (num_trbs != 0)
3114 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated number of "
3115 "TRBs, %d left\n", __func__,
3116 urb->ep->desc.bEndpointAddress, num_trbs);
3117 if (running_total != urb->transfer_buffer_length)
3118 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, "
3119 "queued %#x (%d), asked for %#x (%d)\n",
3120 __func__,
3121 urb->ep->desc.bEndpointAddress,
3122 running_total, running_total,
3123 urb->transfer_buffer_length,
3124 urb->transfer_buffer_length);
3127 static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id,
3128 unsigned int ep_index, unsigned int stream_id, int start_cycle,
3129 struct xhci_generic_trb *start_trb)
3132 * Pass all the TRBs to the hardware at once and make sure this write
3133 * isn't reordered.
3135 wmb();
3136 if (start_cycle)
3137 start_trb->field[3] |= cpu_to_le32(start_cycle);
3138 else
3139 start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE);
3140 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id);
3144 * xHCI uses normal TRBs for both bulk and interrupt. When the interrupt
3145 * endpoint is to be serviced, the xHC will consume (at most) one TD. A TD
3146 * (comprised of sg list entries) can take several service intervals to
3147 * transmit.
3149 int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3150 struct urb *urb, int slot_id, unsigned int ep_index)
3152 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci,
3153 xhci->devs[slot_id]->out_ctx, ep_index);
3154 int xhci_interval;
3155 int ep_interval;
3157 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info));
3158 ep_interval = urb->interval;
3159 /* Convert to microframes */
3160 if (urb->dev->speed == USB_SPEED_LOW ||
3161 urb->dev->speed == USB_SPEED_FULL)
3162 ep_interval *= 8;
3163 /* FIXME change this to a warning and a suggestion to use the new API
3164 * to set the polling interval (once the API is added).
3166 if (xhci_interval != ep_interval) {
3167 dev_dbg_ratelimited(&urb->dev->dev,
3168 "Driver uses different interval (%d microframe%s) than xHCI (%d microframe%s)\n",
3169 ep_interval, ep_interval == 1 ? "" : "s",
3170 xhci_interval, xhci_interval == 1 ? "" : "s");
3171 urb->interval = xhci_interval;
3172 /* Convert back to frames for LS/FS devices */
3173 if (urb->dev->speed == USB_SPEED_LOW ||
3174 urb->dev->speed == USB_SPEED_FULL)
3175 urb->interval /= 8;
3177 return xhci_queue_bulk_tx(xhci, mem_flags, urb, slot_id, ep_index);
3181 * The TD size is the number of bytes remaining in the TD (including this TRB),
3182 * right shifted by 10.
3183 * It must fit in bits 21:17, so it can't be bigger than 31.
3185 static u32 xhci_td_remainder(unsigned int remainder)
3187 u32 max = (1 << (21 - 17 + 1)) - 1;
3189 if ((remainder >> 10) >= max)
3190 return max << 17;
3191 else
3192 return (remainder >> 10) << 17;
3196 * For xHCI 1.0 host controllers, TD size is the number of max packet sized
3197 * packets remaining in the TD (*not* including this TRB).
3199 * Total TD packet count = total_packet_count =
3200 * DIV_ROUND_UP(TD size in bytes / wMaxPacketSize)
3202 * Packets transferred up to and including this TRB = packets_transferred =
3203 * rounddown(total bytes transferred including this TRB / wMaxPacketSize)
3205 * TD size = total_packet_count - packets_transferred
3207 * It must fit in bits 21:17, so it can't be bigger than 31.
3208 * The last TRB in a TD must have the TD size set to zero.
3210 static u32 xhci_v1_0_td_remainder(int running_total, int trb_buff_len,
3211 unsigned int total_packet_count, struct urb *urb,
3212 unsigned int num_trbs_left)
3214 int packets_transferred;
3216 /* One TRB with a zero-length data packet. */
3217 if (num_trbs_left == 0 || (running_total == 0 && trb_buff_len == 0))
3218 return 0;
3220 /* All the TRB queueing functions don't count the current TRB in
3221 * running_total.
3223 packets_transferred = (running_total + trb_buff_len) /
3224 GET_MAX_PACKET(usb_endpoint_maxp(&urb->ep->desc));
3226 if ((total_packet_count - packets_transferred) > 31)
3227 return 31 << 17;
3228 return (total_packet_count - packets_transferred) << 17;
3231 static int queue_bulk_sg_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3232 struct urb *urb, int slot_id, unsigned int ep_index)
3234 struct xhci_ring *ep_ring;
3235 unsigned int num_trbs;
3236 struct urb_priv *urb_priv;
3237 struct xhci_td *td;
3238 struct scatterlist *sg;
3239 int num_sgs;
3240 int trb_buff_len, this_sg_len, running_total;
3241 unsigned int total_packet_count;
3242 bool first_trb;
3243 u64 addr;
3244 bool more_trbs_coming;
3246 struct xhci_generic_trb *start_trb;
3247 int start_cycle;
3249 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
3250 if (!ep_ring)
3251 return -EINVAL;
3253 num_trbs = count_sg_trbs_needed(xhci, urb);
3254 num_sgs = urb->num_mapped_sgs;
3255 total_packet_count = DIV_ROUND_UP(urb->transfer_buffer_length,
3256 usb_endpoint_maxp(&urb->ep->desc));
3258 trb_buff_len = prepare_transfer(xhci, xhci->devs[slot_id],
3259 ep_index, urb->stream_id,
3260 num_trbs, urb, 0, mem_flags);
3261 if (trb_buff_len < 0)
3262 return trb_buff_len;
3264 urb_priv = urb->hcpriv;
3265 td = urb_priv->td[0];
3268 * Don't give the first TRB to the hardware (by toggling the cycle bit)
3269 * until we've finished creating all the other TRBs. The ring's cycle
3270 * state may change as we enqueue the other TRBs, so save it too.
3272 start_trb = &ep_ring->enqueue->generic;
3273 start_cycle = ep_ring->cycle_state;
3275 running_total = 0;
3277 * How much data is in the first TRB?
3279 * There are three forces at work for TRB buffer pointers and lengths:
3280 * 1. We don't want to walk off the end of this sg-list entry buffer.
3281 * 2. The transfer length that the driver requested may be smaller than
3282 * the amount of memory allocated for this scatter-gather list.
3283 * 3. TRBs buffers can't cross 64KB boundaries.
3285 sg = urb->sg;
3286 addr = (u64) sg_dma_address(sg);
3287 this_sg_len = sg_dma_len(sg);
3288 trb_buff_len = TRB_MAX_BUFF_SIZE - (addr & (TRB_MAX_BUFF_SIZE - 1));
3289 trb_buff_len = min_t(int, trb_buff_len, this_sg_len);
3290 if (trb_buff_len > urb->transfer_buffer_length)
3291 trb_buff_len = urb->transfer_buffer_length;
3293 first_trb = true;
3294 /* Queue the first TRB, even if it's zero-length */
3295 do {
3296 u32 field = 0;
3297 u32 length_field = 0;
3298 u32 remainder = 0;
3300 /* Don't change the cycle bit of the first TRB until later */
3301 if (first_trb) {
3302 first_trb = false;
3303 if (start_cycle == 0)
3304 field |= 0x1;
3305 } else
3306 field |= ep_ring->cycle_state;
3308 /* Chain all the TRBs together; clear the chain bit in the last
3309 * TRB to indicate it's the last TRB in the chain.
3311 if (num_trbs > 1) {
3312 field |= TRB_CHAIN;
3313 } else {
3314 /* FIXME - add check for ZERO_PACKET flag before this */
3315 td->last_trb = ep_ring->enqueue;
3316 field |= TRB_IOC;
3319 /* Only set interrupt on short packet for IN endpoints */
3320 if (usb_urb_dir_in(urb))
3321 field |= TRB_ISP;
3323 if (TRB_MAX_BUFF_SIZE -
3324 (addr & (TRB_MAX_BUFF_SIZE - 1)) < trb_buff_len) {
3325 xhci_warn(xhci, "WARN: sg dma xfer crosses 64KB boundaries!\n");
3326 xhci_dbg(xhci, "Next boundary at %#x, end dma = %#x\n",
3327 (unsigned int) (addr + TRB_MAX_BUFF_SIZE) & ~(TRB_MAX_BUFF_SIZE - 1),
3328 (unsigned int) addr + trb_buff_len);
3331 /* Set the TRB length, TD size, and interrupter fields. */
3332 if (xhci->hci_version < 0x100) {
3333 remainder = xhci_td_remainder(
3334 urb->transfer_buffer_length -
3335 running_total);
3336 } else {
3337 remainder = xhci_v1_0_td_remainder(running_total,
3338 trb_buff_len, total_packet_count, urb,
3339 num_trbs - 1);
3341 length_field = TRB_LEN(trb_buff_len) |
3342 remainder |
3343 TRB_INTR_TARGET(0);
3345 if (num_trbs > 1)
3346 more_trbs_coming = true;
3347 else
3348 more_trbs_coming = false;
3349 queue_trb(xhci, ep_ring, more_trbs_coming,
3350 lower_32_bits(addr),
3351 upper_32_bits(addr),
3352 length_field,
3353 field | TRB_TYPE(TRB_NORMAL));
3354 --num_trbs;
3355 running_total += trb_buff_len;
3357 /* Calculate length for next transfer --
3358 * Are we done queueing all the TRBs for this sg entry?
3360 this_sg_len -= trb_buff_len;
3361 if (this_sg_len == 0) {
3362 --num_sgs;
3363 if (num_sgs == 0)
3364 break;
3365 sg = sg_next(sg);
3366 addr = (u64) sg_dma_address(sg);
3367 this_sg_len = sg_dma_len(sg);
3368 } else {
3369 addr += trb_buff_len;
3372 trb_buff_len = TRB_MAX_BUFF_SIZE -
3373 (addr & (TRB_MAX_BUFF_SIZE - 1));
3374 trb_buff_len = min_t(int, trb_buff_len, this_sg_len);
3375 if (running_total + trb_buff_len > urb->transfer_buffer_length)
3376 trb_buff_len =
3377 urb->transfer_buffer_length - running_total;
3378 } while (running_total < urb->transfer_buffer_length);
3380 check_trb_math(urb, num_trbs, running_total);
3381 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
3382 start_cycle, start_trb);
3383 return 0;
3386 /* This is very similar to what ehci-q.c qtd_fill() does */
3387 int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3388 struct urb *urb, int slot_id, unsigned int ep_index)
3390 struct xhci_ring *ep_ring;
3391 struct urb_priv *urb_priv;
3392 struct xhci_td *td;
3393 int num_trbs;
3394 struct xhci_generic_trb *start_trb;
3395 bool first_trb;
3396 bool more_trbs_coming;
3397 int start_cycle;
3398 u32 field, length_field;
3400 int running_total, trb_buff_len, ret;
3401 unsigned int total_packet_count;
3402 u64 addr;
3404 if (urb->num_sgs)
3405 return queue_bulk_sg_tx(xhci, mem_flags, urb, slot_id, ep_index);
3407 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
3408 if (!ep_ring)
3409 return -EINVAL;
3411 num_trbs = 0;
3412 /* How much data is (potentially) left before the 64KB boundary? */
3413 running_total = TRB_MAX_BUFF_SIZE -
3414 (urb->transfer_dma & (TRB_MAX_BUFF_SIZE - 1));
3415 running_total &= TRB_MAX_BUFF_SIZE - 1;
3417 /* If there's some data on this 64KB chunk, or we have to send a
3418 * zero-length transfer, we need at least one TRB
3420 if (running_total != 0 || urb->transfer_buffer_length == 0)
3421 num_trbs++;
3422 /* How many more 64KB chunks to transfer, how many more TRBs? */
3423 while (running_total < urb->transfer_buffer_length) {
3424 num_trbs++;
3425 running_total += TRB_MAX_BUFF_SIZE;
3427 /* FIXME: this doesn't deal with URB_ZERO_PACKET - need one more */
3429 ret = prepare_transfer(xhci, xhci->devs[slot_id],
3430 ep_index, urb->stream_id,
3431 num_trbs, urb, 0, mem_flags);
3432 if (ret < 0)
3433 return ret;
3435 urb_priv = urb->hcpriv;
3436 td = urb_priv->td[0];
3439 * Don't give the first TRB to the hardware (by toggling the cycle bit)
3440 * until we've finished creating all the other TRBs. The ring's cycle
3441 * state may change as we enqueue the other TRBs, so save it too.
3443 start_trb = &ep_ring->enqueue->generic;
3444 start_cycle = ep_ring->cycle_state;
3446 running_total = 0;
3447 total_packet_count = DIV_ROUND_UP(urb->transfer_buffer_length,
3448 usb_endpoint_maxp(&urb->ep->desc));
3449 /* How much data is in the first TRB? */
3450 addr = (u64) urb->transfer_dma;
3451 trb_buff_len = TRB_MAX_BUFF_SIZE -
3452 (urb->transfer_dma & (TRB_MAX_BUFF_SIZE - 1));
3453 if (trb_buff_len > urb->transfer_buffer_length)
3454 trb_buff_len = urb->transfer_buffer_length;
3456 first_trb = true;
3458 /* Queue the first TRB, even if it's zero-length */
3459 do {
3460 u32 remainder = 0;
3461 field = 0;
3463 /* Don't change the cycle bit of the first TRB until later */
3464 if (first_trb) {
3465 first_trb = false;
3466 if (start_cycle == 0)
3467 field |= 0x1;
3468 } else
3469 field |= ep_ring->cycle_state;
3471 /* Chain all the TRBs together; clear the chain bit in the last
3472 * TRB to indicate it's the last TRB in the chain.
3474 if (num_trbs > 1) {
3475 field |= TRB_CHAIN;
3476 } else {
3477 /* FIXME - add check for ZERO_PACKET flag before this */
3478 td->last_trb = ep_ring->enqueue;
3479 field |= TRB_IOC;
3482 /* Only set interrupt on short packet for IN endpoints */
3483 if (usb_urb_dir_in(urb))
3484 field |= TRB_ISP;
3486 /* Set the TRB length, TD size, and interrupter fields. */
3487 if (xhci->hci_version < 0x100) {
3488 remainder = xhci_td_remainder(
3489 urb->transfer_buffer_length -
3490 running_total);
3491 } else {
3492 remainder = xhci_v1_0_td_remainder(running_total,
3493 trb_buff_len, total_packet_count, urb,
3494 num_trbs - 1);
3496 length_field = TRB_LEN(trb_buff_len) |
3497 remainder |
3498 TRB_INTR_TARGET(0);
3500 if (num_trbs > 1)
3501 more_trbs_coming = true;
3502 else
3503 more_trbs_coming = false;
3504 queue_trb(xhci, ep_ring, more_trbs_coming,
3505 lower_32_bits(addr),
3506 upper_32_bits(addr),
3507 length_field,
3508 field | TRB_TYPE(TRB_NORMAL));
3509 --num_trbs;
3510 running_total += trb_buff_len;
3512 /* Calculate length for next transfer */
3513 addr += trb_buff_len;
3514 trb_buff_len = urb->transfer_buffer_length - running_total;
3515 if (trb_buff_len > TRB_MAX_BUFF_SIZE)
3516 trb_buff_len = TRB_MAX_BUFF_SIZE;
3517 } while (running_total < urb->transfer_buffer_length);
3519 check_trb_math(urb, num_trbs, running_total);
3520 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
3521 start_cycle, start_trb);
3522 return 0;
3525 /* Caller must have locked xhci->lock */
3526 int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3527 struct urb *urb, int slot_id, unsigned int ep_index)
3529 struct xhci_ring *ep_ring;
3530 int num_trbs;
3531 int ret;
3532 struct usb_ctrlrequest *setup;
3533 struct xhci_generic_trb *start_trb;
3534 int start_cycle;
3535 u32 field, length_field;
3536 struct urb_priv *urb_priv;
3537 struct xhci_td *td;
3539 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
3540 if (!ep_ring)
3541 return -EINVAL;
3544 * Need to copy setup packet into setup TRB, so we can't use the setup
3545 * DMA address.
3547 if (!urb->setup_packet)
3548 return -EINVAL;
3550 /* 1 TRB for setup, 1 for status */
3551 num_trbs = 2;
3553 * Don't need to check if we need additional event data and normal TRBs,
3554 * since data in control transfers will never get bigger than 16MB
3555 * XXX: can we get a buffer that crosses 64KB boundaries?
3557 if (urb->transfer_buffer_length > 0)
3558 num_trbs++;
3559 ret = prepare_transfer(xhci, xhci->devs[slot_id],
3560 ep_index, urb->stream_id,
3561 num_trbs, urb, 0, mem_flags);
3562 if (ret < 0)
3563 return ret;
3565 urb_priv = urb->hcpriv;
3566 td = urb_priv->td[0];
3569 * Don't give the first TRB to the hardware (by toggling the cycle bit)
3570 * until we've finished creating all the other TRBs. The ring's cycle
3571 * state may change as we enqueue the other TRBs, so save it too.
3573 start_trb = &ep_ring->enqueue->generic;
3574 start_cycle = ep_ring->cycle_state;
3576 /* Queue setup TRB - see section 6.4.1.2.1 */
3577 /* FIXME better way to translate setup_packet into two u32 fields? */
3578 setup = (struct usb_ctrlrequest *) urb->setup_packet;
3579 field = 0;
3580 field |= TRB_IDT | TRB_TYPE(TRB_SETUP);
3581 if (start_cycle == 0)
3582 field |= 0x1;
3584 /* xHCI 1.0 6.4.1.2.1: Transfer Type field */
3585 if (xhci->hci_version == 0x100) {
3586 if (urb->transfer_buffer_length > 0) {
3587 if (setup->bRequestType & USB_DIR_IN)
3588 field |= TRB_TX_TYPE(TRB_DATA_IN);
3589 else
3590 field |= TRB_TX_TYPE(TRB_DATA_OUT);
3594 queue_trb(xhci, ep_ring, true,
3595 setup->bRequestType | setup->bRequest << 8 | le16_to_cpu(setup->wValue) << 16,
3596 le16_to_cpu(setup->wIndex) | le16_to_cpu(setup->wLength) << 16,
3597 TRB_LEN(8) | TRB_INTR_TARGET(0),
3598 /* Immediate data in pointer */
3599 field);
3601 /* If there's data, queue data TRBs */
3602 /* Only set interrupt on short packet for IN endpoints */
3603 if (usb_urb_dir_in(urb))
3604 field = TRB_ISP | TRB_TYPE(TRB_DATA);
3605 else
3606 field = TRB_TYPE(TRB_DATA);
3608 length_field = TRB_LEN(urb->transfer_buffer_length) |
3609 xhci_td_remainder(urb->transfer_buffer_length) |
3610 TRB_INTR_TARGET(0);
3611 if (urb->transfer_buffer_length > 0) {
3612 if (setup->bRequestType & USB_DIR_IN)
3613 field |= TRB_DIR_IN;
3614 queue_trb(xhci, ep_ring, true,
3615 lower_32_bits(urb->transfer_dma),
3616 upper_32_bits(urb->transfer_dma),
3617 length_field,
3618 field | ep_ring->cycle_state);
3621 /* Save the DMA address of the last TRB in the TD */
3622 td->last_trb = ep_ring->enqueue;
3624 /* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */
3625 /* If the device sent data, the status stage is an OUT transfer */
3626 if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN)
3627 field = 0;
3628 else
3629 field = TRB_DIR_IN;
3630 queue_trb(xhci, ep_ring, false,
3633 TRB_INTR_TARGET(0),
3634 /* Event on completion */
3635 field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state);
3637 giveback_first_trb(xhci, slot_id, ep_index, 0,
3638 start_cycle, start_trb);
3639 return 0;
3642 static int count_isoc_trbs_needed(struct xhci_hcd *xhci,
3643 struct urb *urb, int i)
3645 int num_trbs = 0;
3646 u64 addr, td_len;
3648 addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset);
3649 td_len = urb->iso_frame_desc[i].length;
3651 num_trbs = DIV_ROUND_UP(td_len + (addr & (TRB_MAX_BUFF_SIZE - 1)),
3652 TRB_MAX_BUFF_SIZE);
3653 if (num_trbs == 0)
3654 num_trbs++;
3656 return num_trbs;
3660 * The transfer burst count field of the isochronous TRB defines the number of
3661 * bursts that are required to move all packets in this TD. Only SuperSpeed
3662 * devices can burst up to bMaxBurst number of packets per service interval.
3663 * This field is zero based, meaning a value of zero in the field means one
3664 * burst. Basically, for everything but SuperSpeed devices, this field will be
3665 * zero. Only xHCI 1.0 host controllers support this field.
3667 static unsigned int xhci_get_burst_count(struct xhci_hcd *xhci,
3668 struct usb_device *udev,
3669 struct urb *urb, unsigned int total_packet_count)
3671 unsigned int max_burst;
3673 if (xhci->hci_version < 0x100 || udev->speed != USB_SPEED_SUPER)
3674 return 0;
3676 max_burst = urb->ep->ss_ep_comp.bMaxBurst;
3677 return roundup(total_packet_count, max_burst + 1) - 1;
3681 * Returns the number of packets in the last "burst" of packets. This field is
3682 * valid for all speeds of devices. USB 2.0 devices can only do one "burst", so
3683 * the last burst packet count is equal to the total number of packets in the
3684 * TD. SuperSpeed endpoints can have up to 3 bursts. All but the last burst
3685 * must contain (bMaxBurst + 1) number of packets, but the last burst can
3686 * contain 1 to (bMaxBurst + 1) packets.
3688 static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd *xhci,
3689 struct usb_device *udev,
3690 struct urb *urb, unsigned int total_packet_count)
3692 unsigned int max_burst;
3693 unsigned int residue;
3695 if (xhci->hci_version < 0x100)
3696 return 0;
3698 switch (udev->speed) {
3699 case USB_SPEED_SUPER:
3700 /* bMaxBurst is zero based: 0 means 1 packet per burst */
3701 max_burst = urb->ep->ss_ep_comp.bMaxBurst;
3702 residue = total_packet_count % (max_burst + 1);
3703 /* If residue is zero, the last burst contains (max_burst + 1)
3704 * number of packets, but the TLBPC field is zero-based.
3706 if (residue == 0)
3707 return max_burst;
3708 return residue - 1;
3709 default:
3710 if (total_packet_count == 0)
3711 return 0;
3712 return total_packet_count - 1;
3716 /* This is for isoc transfer */
3717 static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3718 struct urb *urb, int slot_id, unsigned int ep_index)
3720 struct xhci_ring *ep_ring;
3721 struct urb_priv *urb_priv;
3722 struct xhci_td *td;
3723 int num_tds, trbs_per_td;
3724 struct xhci_generic_trb *start_trb;
3725 bool first_trb;
3726 int start_cycle;
3727 u32 field, length_field;
3728 int running_total, trb_buff_len, td_len, td_remain_len, ret;
3729 u64 start_addr, addr;
3730 int i, j;
3731 bool more_trbs_coming;
3733 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring;
3735 num_tds = urb->number_of_packets;
3736 if (num_tds < 1) {
3737 xhci_dbg(xhci, "Isoc URB with zero packets?\n");
3738 return -EINVAL;
3741 start_addr = (u64) urb->transfer_dma;
3742 start_trb = &ep_ring->enqueue->generic;
3743 start_cycle = ep_ring->cycle_state;
3745 urb_priv = urb->hcpriv;
3746 /* Queue the first TRB, even if it's zero-length */
3747 for (i = 0; i < num_tds; i++) {
3748 unsigned int total_packet_count;
3749 unsigned int burst_count;
3750 unsigned int residue;
3752 first_trb = true;
3753 running_total = 0;
3754 addr = start_addr + urb->iso_frame_desc[i].offset;
3755 td_len = urb->iso_frame_desc[i].length;
3756 td_remain_len = td_len;
3757 total_packet_count = DIV_ROUND_UP(td_len,
3758 GET_MAX_PACKET(
3759 usb_endpoint_maxp(&urb->ep->desc)));
3760 /* A zero-length transfer still involves at least one packet. */
3761 if (total_packet_count == 0)
3762 total_packet_count++;
3763 burst_count = xhci_get_burst_count(xhci, urb->dev, urb,
3764 total_packet_count);
3765 residue = xhci_get_last_burst_packet_count(xhci,
3766 urb->dev, urb, total_packet_count);
3768 trbs_per_td = count_isoc_trbs_needed(xhci, urb, i);
3770 ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index,
3771 urb->stream_id, trbs_per_td, urb, i, mem_flags);
3772 if (ret < 0) {
3773 if (i == 0)
3774 return ret;
3775 goto cleanup;
3778 td = urb_priv->td[i];
3779 for (j = 0; j < trbs_per_td; j++) {
3780 u32 remainder = 0;
3781 field = 0;
3783 if (first_trb) {
3784 field = TRB_TBC(burst_count) |
3785 TRB_TLBPC(residue);
3786 /* Queue the isoc TRB */
3787 field |= TRB_TYPE(TRB_ISOC);
3788 /* Assume URB_ISO_ASAP is set */
3789 field |= TRB_SIA;
3790 if (i == 0) {
3791 if (start_cycle == 0)
3792 field |= 0x1;
3793 } else
3794 field |= ep_ring->cycle_state;
3795 first_trb = false;
3796 } else {
3797 /* Queue other normal TRBs */
3798 field |= TRB_TYPE(TRB_NORMAL);
3799 field |= ep_ring->cycle_state;
3802 /* Only set interrupt on short packet for IN EPs */
3803 if (usb_urb_dir_in(urb))
3804 field |= TRB_ISP;
3806 /* Chain all the TRBs together; clear the chain bit in
3807 * the last TRB to indicate it's the last TRB in the
3808 * chain.
3810 if (j < trbs_per_td - 1) {
3811 field |= TRB_CHAIN;
3812 more_trbs_coming = true;
3813 } else {
3814 td->last_trb = ep_ring->enqueue;
3815 field |= TRB_IOC;
3816 if (xhci->hci_version == 0x100 &&
3817 !(xhci->quirks &
3818 XHCI_AVOID_BEI)) {
3819 /* Set BEI bit except for the last td */
3820 if (i < num_tds - 1)
3821 field |= TRB_BEI;
3823 more_trbs_coming = false;
3826 /* Calculate TRB length */
3827 trb_buff_len = TRB_MAX_BUFF_SIZE -
3828 (addr & ((1 << TRB_MAX_BUFF_SHIFT) - 1));
3829 if (trb_buff_len > td_remain_len)
3830 trb_buff_len = td_remain_len;
3832 /* Set the TRB length, TD size, & interrupter fields. */
3833 if (xhci->hci_version < 0x100) {
3834 remainder = xhci_td_remainder(
3835 td_len - running_total);
3836 } else {
3837 remainder = xhci_v1_0_td_remainder(
3838 running_total, trb_buff_len,
3839 total_packet_count, urb,
3840 (trbs_per_td - j - 1));
3842 length_field = TRB_LEN(trb_buff_len) |
3843 remainder |
3844 TRB_INTR_TARGET(0);
3846 queue_trb(xhci, ep_ring, more_trbs_coming,
3847 lower_32_bits(addr),
3848 upper_32_bits(addr),
3849 length_field,
3850 field);
3851 running_total += trb_buff_len;
3853 addr += trb_buff_len;
3854 td_remain_len -= trb_buff_len;
3857 /* Check TD length */
3858 if (running_total != td_len) {
3859 xhci_err(xhci, "ISOC TD length unmatch\n");
3860 ret = -EINVAL;
3861 goto cleanup;
3865 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) {
3866 if (xhci->quirks & XHCI_AMD_PLL_FIX)
3867 usb_amd_quirk_pll_disable();
3869 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++;
3871 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
3872 start_cycle, start_trb);
3873 return 0;
3874 cleanup:
3875 /* Clean up a partially enqueued isoc transfer. */
3877 for (i--; i >= 0; i--)
3878 list_del_init(&urb_priv->td[i]->td_list);
3880 /* Use the first TD as a temporary variable to turn the TDs we've queued
3881 * into No-ops with a software-owned cycle bit. That way the hardware
3882 * won't accidentally start executing bogus TDs when we partially
3883 * overwrite them. td->first_trb and td->start_seg are already set.
3885 urb_priv->td[0]->last_trb = ep_ring->enqueue;
3886 /* Every TRB except the first & last will have its cycle bit flipped. */
3887 td_to_noop(xhci, ep_ring, urb_priv->td[0], true);
3889 /* Reset the ring enqueue back to the first TRB and its cycle bit. */
3890 ep_ring->enqueue = urb_priv->td[0]->first_trb;
3891 ep_ring->enq_seg = urb_priv->td[0]->start_seg;
3892 ep_ring->cycle_state = start_cycle;
3893 ep_ring->num_trbs_free = ep_ring->num_trbs_free_temp;
3894 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb);
3895 return ret;
3899 * Check transfer ring to guarantee there is enough room for the urb.
3900 * Update ISO URB start_frame and interval.
3901 * Update interval as xhci_queue_intr_tx does. Just use xhci frame_index to
3902 * update the urb->start_frame by now.
3903 * Always assume URB_ISO_ASAP set, and NEVER use urb->start_frame as input.
3905 int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags,
3906 struct urb *urb, int slot_id, unsigned int ep_index)
3908 struct xhci_virt_device *xdev;
3909 struct xhci_ring *ep_ring;
3910 struct xhci_ep_ctx *ep_ctx;
3911 int start_frame;
3912 int xhci_interval;
3913 int ep_interval;
3914 int num_tds, num_trbs, i;
3915 int ret;
3917 xdev = xhci->devs[slot_id];
3918 ep_ring = xdev->eps[ep_index].ring;
3919 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
3921 num_trbs = 0;
3922 num_tds = urb->number_of_packets;
3923 for (i = 0; i < num_tds; i++)
3924 num_trbs += count_isoc_trbs_needed(xhci, urb, i);
3926 /* Check the ring to guarantee there is enough room for the whole urb.
3927 * Do not insert any td of the urb to the ring if the check failed.
3929 ret = prepare_ring(xhci, ep_ring, le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK,
3930 num_trbs, mem_flags);
3931 if (ret)
3932 return ret;
3934 start_frame = xhci_readl(xhci, &xhci->run_regs->microframe_index);
3935 start_frame &= 0x3fff;
3937 urb->start_frame = start_frame;
3938 if (urb->dev->speed == USB_SPEED_LOW ||
3939 urb->dev->speed == USB_SPEED_FULL)
3940 urb->start_frame >>= 3;
3942 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info));
3943 ep_interval = urb->interval;
3944 /* Convert to microframes */
3945 if (urb->dev->speed == USB_SPEED_LOW ||
3946 urb->dev->speed == USB_SPEED_FULL)
3947 ep_interval *= 8;
3948 /* FIXME change this to a warning and a suggestion to use the new API
3949 * to set the polling interval (once the API is added).
3951 if (xhci_interval != ep_interval) {
3952 dev_dbg_ratelimited(&urb->dev->dev,
3953 "Driver uses different interval (%d microframe%s) than xHCI (%d microframe%s)\n",
3954 ep_interval, ep_interval == 1 ? "" : "s",
3955 xhci_interval, xhci_interval == 1 ? "" : "s");
3956 urb->interval = xhci_interval;
3957 /* Convert back to frames for LS/FS devices */
3958 if (urb->dev->speed == USB_SPEED_LOW ||
3959 urb->dev->speed == USB_SPEED_FULL)
3960 urb->interval /= 8;
3962 ep_ring->num_trbs_free_temp = ep_ring->num_trbs_free;
3964 return xhci_queue_isoc_tx(xhci, mem_flags, urb, slot_id, ep_index);
3967 /**** Command Ring Operations ****/
3969 /* Generic function for queueing a command TRB on the command ring.
3970 * Check to make sure there's room on the command ring for one command TRB.
3971 * Also check that there's room reserved for commands that must not fail.
3972 * If this is a command that must not fail, meaning command_must_succeed = TRUE,
3973 * then only check for the number of reserved spots.
3974 * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB
3975 * because the command event handler may want to resubmit a failed command.
3977 static int queue_command(struct xhci_hcd *xhci, u32 field1, u32 field2,
3978 u32 field3, u32 field4, bool command_must_succeed)
3980 int reserved_trbs = xhci->cmd_ring_reserved_trbs;
3981 int ret;
3983 if (!command_must_succeed)
3984 reserved_trbs++;
3986 ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING,
3987 reserved_trbs, GFP_ATOMIC);
3988 if (ret < 0) {
3989 xhci_err(xhci, "ERR: No room for command on command ring\n");
3990 if (command_must_succeed)
3991 xhci_err(xhci, "ERR: Reserved TRB counting for "
3992 "unfailable commands failed.\n");
3993 return ret;
3995 queue_trb(xhci, xhci->cmd_ring, false, field1, field2, field3,
3996 field4 | xhci->cmd_ring->cycle_state);
3997 return 0;
4000 /* Queue a slot enable or disable request on the command ring */
4001 int xhci_queue_slot_control(struct xhci_hcd *xhci, u32 trb_type, u32 slot_id)
4003 return queue_command(xhci, 0, 0, 0,
4004 TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false);
4007 /* Queue an address device command TRB */
4008 int xhci_queue_address_device(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr,
4009 u32 slot_id)
4011 return queue_command(xhci, lower_32_bits(in_ctx_ptr),
4012 upper_32_bits(in_ctx_ptr), 0,
4013 TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id),
4014 false);
4017 int xhci_queue_vendor_command(struct xhci_hcd *xhci,
4018 u32 field1, u32 field2, u32 field3, u32 field4)
4020 return queue_command(xhci, field1, field2, field3, field4, false);
4023 /* Queue a reset device command TRB */
4024 int xhci_queue_reset_device(struct xhci_hcd *xhci, u32 slot_id)
4026 return queue_command(xhci, 0, 0, 0,
4027 TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id),
4028 false);
4031 /* Queue a configure endpoint command TRB */
4032 int xhci_queue_configure_endpoint(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr,
4033 u32 slot_id, bool command_must_succeed)
4035 return queue_command(xhci, lower_32_bits(in_ctx_ptr),
4036 upper_32_bits(in_ctx_ptr), 0,
4037 TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id),
4038 command_must_succeed);
4041 /* Queue an evaluate context command TRB */
4042 int xhci_queue_evaluate_context(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr,
4043 u32 slot_id, bool command_must_succeed)
4045 return queue_command(xhci, lower_32_bits(in_ctx_ptr),
4046 upper_32_bits(in_ctx_ptr), 0,
4047 TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id),
4048 command_must_succeed);
4052 * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop
4053 * activity on an endpoint that is about to be suspended.
4055 int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, int slot_id,
4056 unsigned int ep_index, int suspend)
4058 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
4059 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
4060 u32 type = TRB_TYPE(TRB_STOP_RING);
4061 u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend);
4063 return queue_command(xhci, 0, 0, 0,
4064 trb_slot_id | trb_ep_index | type | trb_suspend, false);
4067 /* Set Transfer Ring Dequeue Pointer command.
4068 * This should not be used for endpoints that have streams enabled.
4070 static int queue_set_tr_deq(struct xhci_hcd *xhci, int slot_id,
4071 unsigned int ep_index, unsigned int stream_id,
4072 struct xhci_segment *deq_seg,
4073 union xhci_trb *deq_ptr, u32 cycle_state)
4075 dma_addr_t addr;
4076 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
4077 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
4078 u32 trb_stream_id = STREAM_ID_FOR_TRB(stream_id);
4079 u32 type = TRB_TYPE(TRB_SET_DEQ);
4080 struct xhci_virt_ep *ep;
4082 addr = xhci_trb_virt_to_dma(deq_seg, deq_ptr);
4083 if (addr == 0) {
4084 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n");
4085 xhci_warn(xhci, "WARN deq seg = %p, deq pt = %p\n",
4086 deq_seg, deq_ptr);
4087 return 0;
4089 ep = &xhci->devs[slot_id]->eps[ep_index];
4090 if ((ep->ep_state & SET_DEQ_PENDING)) {
4091 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n");
4092 xhci_warn(xhci, "A Set TR Deq Ptr command is pending.\n");
4093 return 0;
4095 ep->queued_deq_seg = deq_seg;
4096 ep->queued_deq_ptr = deq_ptr;
4097 return queue_command(xhci, lower_32_bits(addr) | cycle_state,
4098 upper_32_bits(addr), trb_stream_id,
4099 trb_slot_id | trb_ep_index | type, false);
4102 int xhci_queue_reset_ep(struct xhci_hcd *xhci, int slot_id,
4103 unsigned int ep_index)
4105 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
4106 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
4107 u32 type = TRB_TYPE(TRB_RESET_EP);
4109 return queue_command(xhci, 0, 0, 0, trb_slot_id | trb_ep_index | type,
4110 false);