1 /****************************************************************************
2 * Driver for Solarflare network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2006-2013 Solarflare Communications Inc.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
14 #include <linux/net_tstamp.h>
15 #include <linux/i2c-algo-bit.h>
16 #include "net_driver.h"
21 EFX_REV_FALCON_A0
= 0,
22 EFX_REV_FALCON_A1
= 1,
23 EFX_REV_FALCON_B0
= 2,
28 static inline int efx_nic_rev(struct efx_nic
*efx
)
30 return efx
->type
->revision
;
33 u32
efx_farch_fpga_ver(struct efx_nic
*efx
);
35 /* NIC has two interlinked PCI functions for the same port. */
36 static inline bool efx_nic_is_dual_func(struct efx_nic
*efx
)
38 return efx_nic_rev(efx
) < EFX_REV_FALCON_B0
;
41 /* Read the current event from the event queue */
42 static inline efx_qword_t
*efx_event(struct efx_channel
*channel
,
45 return ((efx_qword_t
*) (channel
->eventq
.buf
.addr
)) +
46 (index
& channel
->eventq_mask
);
49 /* See if an event is present
51 * We check both the high and low dword of the event for all ones. We
52 * wrote all ones when we cleared the event, and no valid event can
53 * have all ones in either its high or low dwords. This approach is
54 * robust against reordering.
56 * Note that using a single 64-bit comparison is incorrect; even
57 * though the CPU read will be atomic, the DMA write may not be.
59 static inline int efx_event_present(efx_qword_t
*event
)
61 return !(EFX_DWORD_IS_ALL_ONES(event
->dword
[0]) |
62 EFX_DWORD_IS_ALL_ONES(event
->dword
[1]));
65 /* Returns a pointer to the specified transmit descriptor in the TX
66 * descriptor queue belonging to the specified channel.
68 static inline efx_qword_t
*
69 efx_tx_desc(struct efx_tx_queue
*tx_queue
, unsigned int index
)
71 return ((efx_qword_t
*) (tx_queue
->txd
.buf
.addr
)) + index
;
74 /* Report whether the NIC considers this TX queue empty, given the
75 * write_count used for the last doorbell push. May return false
78 static inline bool __efx_nic_tx_is_empty(struct efx_tx_queue
*tx_queue
,
79 unsigned int write_count
)
81 unsigned int empty_read_count
= ACCESS_ONCE(tx_queue
->empty_read_count
);
83 if (empty_read_count
== 0)
86 return ((empty_read_count
^ write_count
) & ~EFX_EMPTY_COUNT_VALID
) == 0;
89 static inline bool efx_nic_tx_is_empty(struct efx_tx_queue
*tx_queue
)
91 return __efx_nic_tx_is_empty(tx_queue
, tx_queue
->write_count
);
94 /* Decide whether to push a TX descriptor to the NIC vs merely writing
95 * the doorbell. This can reduce latency when we are adding a single
96 * descriptor to an empty queue, but is otherwise pointless. Further,
97 * Falcon and Siena have hardware bugs (SF bug 33851) that may be
98 * triggered if we don't check this.
100 static inline bool efx_nic_may_push_tx_desc(struct efx_tx_queue
*tx_queue
,
101 unsigned int write_count
)
103 bool was_empty
= __efx_nic_tx_is_empty(tx_queue
, write_count
);
105 tx_queue
->empty_read_count
= 0;
106 return was_empty
&& tx_queue
->write_count
- write_count
== 1;
109 /* Returns a pointer to the specified descriptor in the RX descriptor queue */
110 static inline efx_qword_t
*
111 efx_rx_desc(struct efx_rx_queue
*rx_queue
, unsigned int index
)
113 return ((efx_qword_t
*) (rx_queue
->rxd
.buf
.addr
)) + index
;
118 PHY_TYPE_TXC43128
= 1,
119 PHY_TYPE_88E1111
= 2,
120 PHY_TYPE_SFX7101
= 3,
121 PHY_TYPE_QT2022C2
= 4,
123 PHY_TYPE_SFT9001A
= 8,
124 PHY_TYPE_QT2025C
= 9,
125 PHY_TYPE_SFT9001B
= 10,
128 #define FALCON_XMAC_LOOPBACKS \
129 ((1 << LOOPBACK_XGMII) | \
130 (1 << LOOPBACK_XGXS) | \
131 (1 << LOOPBACK_XAUI))
133 /* Alignment of PCIe DMA boundaries (4KB) */
134 #define EFX_PAGE_SIZE 4096
135 /* Size and alignment of buffer table entries (same) */
136 #define EFX_BUF_SIZE EFX_PAGE_SIZE
139 * struct falcon_board_type - board operations and type information
140 * @id: Board type id, as found in NVRAM
141 * @init: Allocate resources and initialise peripheral hardware
142 * @init_phy: Do board-specific PHY initialisation
143 * @fini: Shut down hardware and free resources
144 * @set_id_led: Set state of identifying LED or revert to automatic function
145 * @monitor: Board-specific health check function
147 struct falcon_board_type
{
149 int (*init
) (struct efx_nic
*nic
);
150 void (*init_phy
) (struct efx_nic
*efx
);
151 void (*fini
) (struct efx_nic
*nic
);
152 void (*set_id_led
) (struct efx_nic
*efx
, enum efx_led_mode mode
);
153 int (*monitor
) (struct efx_nic
*nic
);
157 * struct falcon_board - board information
158 * @type: Type of board
159 * @major: Major rev. ('A', 'B' ...)
160 * @minor: Minor rev. (0, 1, ...)
161 * @i2c_adap: I2C adapter for on-board peripherals
162 * @i2c_data: Data for bit-banging algorithm
163 * @hwmon_client: I2C client for hardware monitor
164 * @ioexp_client: I2C client for power/port control
166 struct falcon_board
{
167 const struct falcon_board_type
*type
;
170 struct i2c_adapter i2c_adap
;
171 struct i2c_algo_bit_data i2c_data
;
172 struct i2c_client
*hwmon_client
, *ioexp_client
;
176 * struct falcon_spi_device - a Falcon SPI (Serial Peripheral Interface) device
177 * @device_id: Controller's id for the device
178 * @size: Size (in bytes)
179 * @addr_len: Number of address bytes in read/write commands
180 * @munge_address: Flag whether addresses should be munged.
181 * Some devices with 9-bit addresses (e.g. AT25040A EEPROM)
182 * use bit 3 of the command byte as address bit A8, rather
183 * than having a two-byte address. If this flag is set, then
184 * commands should be munged in this way.
185 * @erase_command: Erase command (or 0 if sector erase not needed).
186 * @erase_size: Erase sector size (in bytes)
187 * Erase commands affect sectors with this size and alignment.
188 * This must be a power of two.
189 * @block_size: Write block size (in bytes).
190 * Write commands are limited to blocks with this size and alignment.
192 struct falcon_spi_device
{
195 unsigned int addr_len
;
196 unsigned int munge_address
:1;
198 unsigned int erase_size
;
199 unsigned int block_size
;
202 static inline bool falcon_spi_present(const struct falcon_spi_device
*spi
)
204 return spi
->size
!= 0;
208 FALCON_STAT_tx_bytes
,
209 FALCON_STAT_tx_packets
,
210 FALCON_STAT_tx_pause
,
211 FALCON_STAT_tx_control
,
212 FALCON_STAT_tx_unicast
,
213 FALCON_STAT_tx_multicast
,
214 FALCON_STAT_tx_broadcast
,
217 FALCON_STAT_tx_65_to_127
,
218 FALCON_STAT_tx_128_to_255
,
219 FALCON_STAT_tx_256_to_511
,
220 FALCON_STAT_tx_512_to_1023
,
221 FALCON_STAT_tx_1024_to_15xx
,
222 FALCON_STAT_tx_15xx_to_jumbo
,
223 FALCON_STAT_tx_gtjumbo
,
224 FALCON_STAT_tx_non_tcpudp
,
225 FALCON_STAT_tx_mac_src_error
,
226 FALCON_STAT_tx_ip_src_error
,
227 FALCON_STAT_rx_bytes
,
228 FALCON_STAT_rx_good_bytes
,
229 FALCON_STAT_rx_bad_bytes
,
230 FALCON_STAT_rx_packets
,
233 FALCON_STAT_rx_pause
,
234 FALCON_STAT_rx_control
,
235 FALCON_STAT_rx_unicast
,
236 FALCON_STAT_rx_multicast
,
237 FALCON_STAT_rx_broadcast
,
240 FALCON_STAT_rx_65_to_127
,
241 FALCON_STAT_rx_128_to_255
,
242 FALCON_STAT_rx_256_to_511
,
243 FALCON_STAT_rx_512_to_1023
,
244 FALCON_STAT_rx_1024_to_15xx
,
245 FALCON_STAT_rx_15xx_to_jumbo
,
246 FALCON_STAT_rx_gtjumbo
,
247 FALCON_STAT_rx_bad_lt64
,
248 FALCON_STAT_rx_bad_gtjumbo
,
249 FALCON_STAT_rx_overflow
,
250 FALCON_STAT_rx_symbol_error
,
251 FALCON_STAT_rx_align_error
,
252 FALCON_STAT_rx_length_error
,
253 FALCON_STAT_rx_internal_error
,
254 FALCON_STAT_rx_nodesc_drop_cnt
,
259 * struct falcon_nic_data - Falcon NIC state
260 * @pci_dev2: Secondary function of Falcon A
261 * @board: Board state and functions
262 * @stats: Hardware statistics
263 * @stats_disable_count: Nest count for disabling statistics fetches
264 * @stats_pending: Is there a pending DMA of MAC statistics.
265 * @stats_timer: A timer for regularly fetching MAC statistics.
266 * @spi_flash: SPI flash device
267 * @spi_eeprom: SPI EEPROM device
268 * @spi_lock: SPI bus lock
269 * @mdio_lock: MDIO bus lock
270 * @xmac_poll_required: XMAC link state needs polling
272 struct falcon_nic_data
{
273 struct pci_dev
*pci_dev2
;
274 struct falcon_board board
;
275 u64 stats
[FALCON_STAT_COUNT
];
276 unsigned int stats_disable_count
;
278 struct timer_list stats_timer
;
279 struct falcon_spi_device spi_flash
;
280 struct falcon_spi_device spi_eeprom
;
281 struct mutex spi_lock
;
282 struct mutex mdio_lock
;
283 bool xmac_poll_required
;
286 static inline struct falcon_board
*falcon_board(struct efx_nic
*efx
)
288 struct falcon_nic_data
*data
= efx
->nic_data
;
294 SIENA_STAT_tx_good_bytes
,
295 SIENA_STAT_tx_bad_bytes
,
296 SIENA_STAT_tx_packets
,
299 SIENA_STAT_tx_control
,
300 SIENA_STAT_tx_unicast
,
301 SIENA_STAT_tx_multicast
,
302 SIENA_STAT_tx_broadcast
,
305 SIENA_STAT_tx_65_to_127
,
306 SIENA_STAT_tx_128_to_255
,
307 SIENA_STAT_tx_256_to_511
,
308 SIENA_STAT_tx_512_to_1023
,
309 SIENA_STAT_tx_1024_to_15xx
,
310 SIENA_STAT_tx_15xx_to_jumbo
,
311 SIENA_STAT_tx_gtjumbo
,
312 SIENA_STAT_tx_collision
,
313 SIENA_STAT_tx_single_collision
,
314 SIENA_STAT_tx_multiple_collision
,
315 SIENA_STAT_tx_excessive_collision
,
316 SIENA_STAT_tx_deferred
,
317 SIENA_STAT_tx_late_collision
,
318 SIENA_STAT_tx_excessive_deferred
,
319 SIENA_STAT_tx_non_tcpudp
,
320 SIENA_STAT_tx_mac_src_error
,
321 SIENA_STAT_tx_ip_src_error
,
323 SIENA_STAT_rx_good_bytes
,
324 SIENA_STAT_rx_bad_bytes
,
325 SIENA_STAT_rx_packets
,
329 SIENA_STAT_rx_control
,
330 SIENA_STAT_rx_unicast
,
331 SIENA_STAT_rx_multicast
,
332 SIENA_STAT_rx_broadcast
,
335 SIENA_STAT_rx_65_to_127
,
336 SIENA_STAT_rx_128_to_255
,
337 SIENA_STAT_rx_256_to_511
,
338 SIENA_STAT_rx_512_to_1023
,
339 SIENA_STAT_rx_1024_to_15xx
,
340 SIENA_STAT_rx_15xx_to_jumbo
,
341 SIENA_STAT_rx_gtjumbo
,
342 SIENA_STAT_rx_bad_gtjumbo
,
343 SIENA_STAT_rx_overflow
,
344 SIENA_STAT_rx_false_carrier
,
345 SIENA_STAT_rx_symbol_error
,
346 SIENA_STAT_rx_align_error
,
347 SIENA_STAT_rx_length_error
,
348 SIENA_STAT_rx_internal_error
,
349 SIENA_STAT_rx_nodesc_drop_cnt
,
354 * struct siena_nic_data - Siena NIC state
355 * @wol_filter_id: Wake-on-LAN packet filter id
356 * @stats: Hardware statistics
358 struct siena_nic_data
{
360 u64 stats
[SIENA_STAT_COUNT
];
365 EF10_STAT_tx_packets
,
367 EF10_STAT_tx_control
,
368 EF10_STAT_tx_unicast
,
369 EF10_STAT_tx_multicast
,
370 EF10_STAT_tx_broadcast
,
373 EF10_STAT_tx_65_to_127
,
374 EF10_STAT_tx_128_to_255
,
375 EF10_STAT_tx_256_to_511
,
376 EF10_STAT_tx_512_to_1023
,
377 EF10_STAT_tx_1024_to_15xx
,
378 EF10_STAT_tx_15xx_to_jumbo
,
380 EF10_STAT_rx_bytes_minus_good_bytes
,
381 EF10_STAT_rx_good_bytes
,
382 EF10_STAT_rx_bad_bytes
,
383 EF10_STAT_rx_packets
,
387 EF10_STAT_rx_control
,
388 EF10_STAT_rx_unicast
,
389 EF10_STAT_rx_multicast
,
390 EF10_STAT_rx_broadcast
,
393 EF10_STAT_rx_65_to_127
,
394 EF10_STAT_rx_128_to_255
,
395 EF10_STAT_rx_256_to_511
,
396 EF10_STAT_rx_512_to_1023
,
397 EF10_STAT_rx_1024_to_15xx
,
398 EF10_STAT_rx_15xx_to_jumbo
,
399 EF10_STAT_rx_gtjumbo
,
400 EF10_STAT_rx_bad_gtjumbo
,
401 EF10_STAT_rx_overflow
,
402 EF10_STAT_rx_align_error
,
403 EF10_STAT_rx_length_error
,
404 EF10_STAT_rx_nodesc_drops
,
405 EF10_STAT_rx_pm_trunc_bb_overflow
,
406 EF10_STAT_rx_pm_discard_bb_overflow
,
407 EF10_STAT_rx_pm_trunc_vfifo_full
,
408 EF10_STAT_rx_pm_discard_vfifo_full
,
409 EF10_STAT_rx_pm_trunc_qbb
,
410 EF10_STAT_rx_pm_discard_qbb
,
411 EF10_STAT_rx_pm_discard_mapping
,
412 EF10_STAT_rx_dp_q_disabled_packets
,
413 EF10_STAT_rx_dp_di_dropped_packets
,
414 EF10_STAT_rx_dp_streaming_packets
,
415 EF10_STAT_rx_dp_emerg_fetch
,
416 EF10_STAT_rx_dp_emerg_wait
,
420 /* Maximum number of TX PIO buffers we may allocate to a function.
421 * This matches the total number of buffers on each SFC9100-family
424 #define EF10_TX_PIOBUF_COUNT 16
427 * struct efx_ef10_nic_data - EF10 architecture NIC state
428 * @mcdi_buf: DMA buffer for MCDI
429 * @warm_boot_count: Last seen MC warm boot count
430 * @vi_base: Absolute index of first VI in this function
431 * @n_allocated_vis: Number of VIs allocated to this function
432 * @must_realloc_vis: Flag: VIs have yet to be reallocated after MC reboot
433 * @must_restore_filters: Flag: filters have yet to be restored after MC reboot
434 * @n_piobufs: Number of PIO buffers allocated to this function
435 * @wc_membase: Base address of write-combining mapping of the memory BAR
436 * @pio_write_base: Base address for writing PIO buffers
437 * @pio_write_vi_base: Relative VI number for @pio_write_base
438 * @piobuf_handle: Handle of each PIO buffer allocated
439 * @must_restore_piobufs: Flag: PIO buffers have yet to be restored after MC
441 * @rx_rss_context: Firmware handle for our RSS context
442 * @stats: Hardware statistics
443 * @workaround_35388: Flag: firmware supports workaround for bug 35388
444 * @must_check_datapath_caps: Flag: @datapath_caps needs to be revalidated
446 * @datapath_caps: Capabilities of datapath firmware (FLAGS1 field of
447 * %MC_CMD_GET_CAPABILITIES response)
449 struct efx_ef10_nic_data
{
450 struct efx_buffer mcdi_buf
;
452 unsigned int vi_base
;
453 unsigned int n_allocated_vis
;
454 bool must_realloc_vis
;
455 bool must_restore_filters
;
456 unsigned int n_piobufs
;
457 void __iomem
*wc_membase
, *pio_write_base
;
458 unsigned int pio_write_vi_base
;
459 unsigned int piobuf_handle
[EF10_TX_PIOBUF_COUNT
];
460 bool must_restore_piobufs
;
462 u64 stats
[EF10_STAT_COUNT
];
463 bool workaround_35388
;
464 bool must_check_datapath_caps
;
469 * On the SFC9000 family each port is associated with 1 PCI physical
470 * function (PF) handled by sfc and a configurable number of virtual
471 * functions (VFs) that may be handled by some other driver, often in
472 * a VM guest. The queue pointer registers are mapped in both PF and
473 * VF BARs such that an 8K region provides access to a single RX, TX
474 * and event queue (collectively a Virtual Interface, VI or VNIC).
476 * The PF has access to all 1024 VIs while VFs are mapped to VIs
477 * according to VI_BASE and VI_SCALE: VF i has access to VIs numbered
478 * in range [VI_BASE + i << VI_SCALE, VI_BASE + i + 1 << VI_SCALE).
479 * The number of VIs and the VI_SCALE value are configurable but must
480 * be established at boot time by firmware.
483 /* Maximum VI_SCALE parameter supported by Siena */
484 #define EFX_VI_SCALE_MAX 6
485 /* Base VI to use for SR-IOV. Must be aligned to (1 << EFX_VI_SCALE_MAX),
486 * so this is the smallest allowed value. */
487 #define EFX_VI_BASE 128U
488 /* Maximum number of VFs allowed */
489 #define EFX_VF_COUNT_MAX 127
490 /* Limit EVQs on VFs to be only 8k to reduce buffer table reservation */
491 #define EFX_MAX_VF_EVQ_SIZE 8192UL
492 /* The number of buffer table entries reserved for each VI on a VF */
493 #define EFX_VF_BUFTBL_PER_VI \
494 ((EFX_MAX_VF_EVQ_SIZE + 2 * EFX_MAX_DMAQ_SIZE) * \
495 sizeof(efx_qword_t) / EFX_BUF_SIZE)
497 #ifdef CONFIG_SFC_SRIOV
499 static inline bool efx_sriov_wanted(struct efx_nic
*efx
)
501 return efx
->vf_count
!= 0;
503 static inline bool efx_sriov_enabled(struct efx_nic
*efx
)
505 return efx
->vf_init_count
!= 0;
507 static inline unsigned int efx_vf_size(struct efx_nic
*efx
)
509 return 1 << efx
->vi_scale
;
512 int efx_init_sriov(void);
513 void efx_sriov_probe(struct efx_nic
*efx
);
514 int efx_sriov_init(struct efx_nic
*efx
);
515 void efx_sriov_mac_address_changed(struct efx_nic
*efx
);
516 void efx_sriov_tx_flush_done(struct efx_nic
*efx
, efx_qword_t
*event
);
517 void efx_sriov_rx_flush_done(struct efx_nic
*efx
, efx_qword_t
*event
);
518 void efx_sriov_event(struct efx_channel
*channel
, efx_qword_t
*event
);
519 void efx_sriov_desc_fetch_err(struct efx_nic
*efx
, unsigned dmaq
);
520 void efx_sriov_flr(struct efx_nic
*efx
, unsigned flr
);
521 void efx_sriov_reset(struct efx_nic
*efx
);
522 void efx_sriov_fini(struct efx_nic
*efx
);
523 void efx_fini_sriov(void);
527 static inline bool efx_sriov_wanted(struct efx_nic
*efx
) { return false; }
528 static inline bool efx_sriov_enabled(struct efx_nic
*efx
) { return false; }
529 static inline unsigned int efx_vf_size(struct efx_nic
*efx
) { return 0; }
531 static inline int efx_init_sriov(void) { return 0; }
532 static inline void efx_sriov_probe(struct efx_nic
*efx
) {}
533 static inline int efx_sriov_init(struct efx_nic
*efx
) { return -EOPNOTSUPP
; }
534 static inline void efx_sriov_mac_address_changed(struct efx_nic
*efx
) {}
535 static inline void efx_sriov_tx_flush_done(struct efx_nic
*efx
,
536 efx_qword_t
*event
) {}
537 static inline void efx_sriov_rx_flush_done(struct efx_nic
*efx
,
538 efx_qword_t
*event
) {}
539 static inline void efx_sriov_event(struct efx_channel
*channel
,
540 efx_qword_t
*event
) {}
541 static inline void efx_sriov_desc_fetch_err(struct efx_nic
*efx
, unsigned dmaq
) {}
542 static inline void efx_sriov_flr(struct efx_nic
*efx
, unsigned flr
) {}
543 static inline void efx_sriov_reset(struct efx_nic
*efx
) {}
544 static inline void efx_sriov_fini(struct efx_nic
*efx
) {}
545 static inline void efx_fini_sriov(void) {}
549 int efx_sriov_set_vf_mac(struct net_device
*dev
, int vf
, u8
*mac
);
550 int efx_sriov_set_vf_vlan(struct net_device
*dev
, int vf
, u16 vlan
, u8 qos
);
551 int efx_sriov_get_vf_config(struct net_device
*dev
, int vf
,
552 struct ifla_vf_info
*ivf
);
553 int efx_sriov_set_vf_spoofchk(struct net_device
*net_dev
, int vf
,
556 struct ethtool_ts_info
;
557 void efx_ptp_probe(struct efx_nic
*efx
);
558 int efx_ptp_ioctl(struct efx_nic
*efx
, struct ifreq
*ifr
, int cmd
);
559 void efx_ptp_get_ts_info(struct efx_nic
*efx
, struct ethtool_ts_info
*ts_info
);
560 bool efx_ptp_is_ptp_tx(struct efx_nic
*efx
, struct sk_buff
*skb
);
561 int efx_ptp_tx(struct efx_nic
*efx
, struct sk_buff
*skb
);
562 void efx_ptp_event(struct efx_nic
*efx
, efx_qword_t
*ev
);
564 extern const struct efx_nic_type falcon_a1_nic_type
;
565 extern const struct efx_nic_type falcon_b0_nic_type
;
566 extern const struct efx_nic_type siena_a0_nic_type
;
567 extern const struct efx_nic_type efx_hunt_a0_nic_type
;
569 /**************************************************************************
573 **************************************************************************
576 int falcon_probe_board(struct efx_nic
*efx
, u16 revision_info
);
579 static inline int efx_nic_probe_tx(struct efx_tx_queue
*tx_queue
)
581 return tx_queue
->efx
->type
->tx_probe(tx_queue
);
583 static inline void efx_nic_init_tx(struct efx_tx_queue
*tx_queue
)
585 tx_queue
->efx
->type
->tx_init(tx_queue
);
587 static inline void efx_nic_remove_tx(struct efx_tx_queue
*tx_queue
)
589 tx_queue
->efx
->type
->tx_remove(tx_queue
);
591 static inline void efx_nic_push_buffers(struct efx_tx_queue
*tx_queue
)
593 tx_queue
->efx
->type
->tx_write(tx_queue
);
597 static inline int efx_nic_probe_rx(struct efx_rx_queue
*rx_queue
)
599 return rx_queue
->efx
->type
->rx_probe(rx_queue
);
601 static inline void efx_nic_init_rx(struct efx_rx_queue
*rx_queue
)
603 rx_queue
->efx
->type
->rx_init(rx_queue
);
605 static inline void efx_nic_remove_rx(struct efx_rx_queue
*rx_queue
)
607 rx_queue
->efx
->type
->rx_remove(rx_queue
);
609 static inline void efx_nic_notify_rx_desc(struct efx_rx_queue
*rx_queue
)
611 rx_queue
->efx
->type
->rx_write(rx_queue
);
613 static inline void efx_nic_generate_fill_event(struct efx_rx_queue
*rx_queue
)
615 rx_queue
->efx
->type
->rx_defer_refill(rx_queue
);
618 /* Event data path */
619 static inline int efx_nic_probe_eventq(struct efx_channel
*channel
)
621 return channel
->efx
->type
->ev_probe(channel
);
623 static inline int efx_nic_init_eventq(struct efx_channel
*channel
)
625 return channel
->efx
->type
->ev_init(channel
);
627 static inline void efx_nic_fini_eventq(struct efx_channel
*channel
)
629 channel
->efx
->type
->ev_fini(channel
);
631 static inline void efx_nic_remove_eventq(struct efx_channel
*channel
)
633 channel
->efx
->type
->ev_remove(channel
);
636 efx_nic_process_eventq(struct efx_channel
*channel
, int quota
)
638 return channel
->efx
->type
->ev_process(channel
, quota
);
640 static inline void efx_nic_eventq_read_ack(struct efx_channel
*channel
)
642 channel
->efx
->type
->ev_read_ack(channel
);
644 void efx_nic_event_test_start(struct efx_channel
*channel
);
646 /* Falcon/Siena queue operations */
647 int efx_farch_tx_probe(struct efx_tx_queue
*tx_queue
);
648 void efx_farch_tx_init(struct efx_tx_queue
*tx_queue
);
649 void efx_farch_tx_fini(struct efx_tx_queue
*tx_queue
);
650 void efx_farch_tx_remove(struct efx_tx_queue
*tx_queue
);
651 void efx_farch_tx_write(struct efx_tx_queue
*tx_queue
);
652 int efx_farch_rx_probe(struct efx_rx_queue
*rx_queue
);
653 void efx_farch_rx_init(struct efx_rx_queue
*rx_queue
);
654 void efx_farch_rx_fini(struct efx_rx_queue
*rx_queue
);
655 void efx_farch_rx_remove(struct efx_rx_queue
*rx_queue
);
656 void efx_farch_rx_write(struct efx_rx_queue
*rx_queue
);
657 void efx_farch_rx_defer_refill(struct efx_rx_queue
*rx_queue
);
658 int efx_farch_ev_probe(struct efx_channel
*channel
);
659 int efx_farch_ev_init(struct efx_channel
*channel
);
660 void efx_farch_ev_fini(struct efx_channel
*channel
);
661 void efx_farch_ev_remove(struct efx_channel
*channel
);
662 int efx_farch_ev_process(struct efx_channel
*channel
, int quota
);
663 void efx_farch_ev_read_ack(struct efx_channel
*channel
);
664 void efx_farch_ev_test_generate(struct efx_channel
*channel
);
666 /* Falcon/Siena filter operations */
667 int efx_farch_filter_table_probe(struct efx_nic
*efx
);
668 void efx_farch_filter_table_restore(struct efx_nic
*efx
);
669 void efx_farch_filter_table_remove(struct efx_nic
*efx
);
670 void efx_farch_filter_update_rx_scatter(struct efx_nic
*efx
);
671 s32
efx_farch_filter_insert(struct efx_nic
*efx
, struct efx_filter_spec
*spec
,
673 int efx_farch_filter_remove_safe(struct efx_nic
*efx
,
674 enum efx_filter_priority priority
,
676 int efx_farch_filter_get_safe(struct efx_nic
*efx
,
677 enum efx_filter_priority priority
, u32 filter_id
,
678 struct efx_filter_spec
*);
679 void efx_farch_filter_clear_rx(struct efx_nic
*efx
,
680 enum efx_filter_priority priority
);
681 u32
efx_farch_filter_count_rx_used(struct efx_nic
*efx
,
682 enum efx_filter_priority priority
);
683 u32
efx_farch_filter_get_rx_id_limit(struct efx_nic
*efx
);
684 s32
efx_farch_filter_get_rx_ids(struct efx_nic
*efx
,
685 enum efx_filter_priority priority
, u32
*buf
,
687 #ifdef CONFIG_RFS_ACCEL
688 s32
efx_farch_filter_rfs_insert(struct efx_nic
*efx
,
689 struct efx_filter_spec
*spec
);
690 bool efx_farch_filter_rfs_expire_one(struct efx_nic
*efx
, u32 flow_id
,
693 void efx_farch_filter_sync_rx_mode(struct efx_nic
*efx
);
695 bool efx_nic_event_present(struct efx_channel
*channel
);
697 /* Some statistics are computed as A - B where A and B each increase
698 * linearly with some hardware counter(s) and the counters are read
699 * asynchronously. If the counters contributing to B are always read
700 * after those contributing to A, the computed value may be lower than
701 * the true value by some variable amount, and may decrease between
702 * subsequent computations.
704 * We should never allow statistics to decrease or to exceed the true
705 * value. Since the computed value will never be greater than the
706 * true value, we can achieve this by only storing the computed value
709 static inline void efx_update_diff_stat(u64
*stat
, u64 diff
)
711 if ((s64
)(diff
- *stat
) > 0)
716 int efx_nic_init_interrupt(struct efx_nic
*efx
);
717 void efx_nic_irq_test_start(struct efx_nic
*efx
);
718 void efx_nic_fini_interrupt(struct efx_nic
*efx
);
720 /* Falcon/Siena interrupts */
721 void efx_farch_irq_enable_master(struct efx_nic
*efx
);
722 void efx_farch_irq_test_generate(struct efx_nic
*efx
);
723 void efx_farch_irq_disable_master(struct efx_nic
*efx
);
724 irqreturn_t
efx_farch_msi_interrupt(int irq
, void *dev_id
);
725 irqreturn_t
efx_farch_legacy_interrupt(int irq
, void *dev_id
);
726 irqreturn_t
efx_farch_fatal_interrupt(struct efx_nic
*efx
);
728 static inline int efx_nic_event_test_irq_cpu(struct efx_channel
*channel
)
730 return ACCESS_ONCE(channel
->event_test_cpu
);
732 static inline int efx_nic_irq_test_irq_cpu(struct efx_nic
*efx
)
734 return ACCESS_ONCE(efx
->last_irq_cpu
);
737 /* Global Resources */
738 int efx_nic_flush_queues(struct efx_nic
*efx
);
739 void siena_prepare_flush(struct efx_nic
*efx
);
740 int efx_farch_fini_dmaq(struct efx_nic
*efx
);
741 void siena_finish_flush(struct efx_nic
*efx
);
742 void falcon_start_nic_stats(struct efx_nic
*efx
);
743 void falcon_stop_nic_stats(struct efx_nic
*efx
);
744 int falcon_reset_xaui(struct efx_nic
*efx
);
745 void efx_farch_dimension_resources(struct efx_nic
*efx
, unsigned sram_lim_qw
);
746 void efx_farch_init_common(struct efx_nic
*efx
);
747 void efx_ef10_handle_drain_event(struct efx_nic
*efx
);
748 static inline void efx_nic_push_rx_indir_table(struct efx_nic
*efx
)
750 efx
->type
->rx_push_indir_table(efx
);
752 void efx_farch_rx_push_indir_table(struct efx_nic
*efx
);
754 int efx_nic_alloc_buffer(struct efx_nic
*efx
, struct efx_buffer
*buffer
,
755 unsigned int len
, gfp_t gfp_flags
);
756 void efx_nic_free_buffer(struct efx_nic
*efx
, struct efx_buffer
*buffer
);
759 struct efx_farch_register_test
{
763 int efx_farch_test_registers(struct efx_nic
*efx
,
764 const struct efx_farch_register_test
*regs
,
767 size_t efx_nic_get_regs_len(struct efx_nic
*efx
);
768 void efx_nic_get_regs(struct efx_nic
*efx
, void *buf
);
770 size_t efx_nic_describe_stats(const struct efx_hw_stat_desc
*desc
, size_t count
,
771 const unsigned long *mask
, u8
*names
);
772 void efx_nic_update_stats(const struct efx_hw_stat_desc
*desc
, size_t count
,
773 const unsigned long *mask
, u64
*stats
,
774 const void *dma_buf
, bool accumulate
);
776 #define EFX_MAX_FLUSH_TIME 5000
778 void efx_farch_generate_event(struct efx_nic
*efx
, unsigned int evq
,
781 #endif /* EFX_NIC_H */