2 * Primary bucket allocation code
4 * Copyright 2012 Google, Inc.
6 * Allocation in bcache is done in terms of buckets:
8 * Each bucket has associated an 8 bit gen; this gen corresponds to the gen in
9 * btree pointers - they must match for the pointer to be considered valid.
11 * Thus (assuming a bucket has no dirty data or metadata in it) we can reuse a
12 * bucket simply by incrementing its gen.
14 * The gens (along with the priorities; it's really the gens are important but
15 * the code is named as if it's the priorities) are written in an arbitrary list
16 * of buckets on disk, with a pointer to them in the journal header.
18 * When we invalidate a bucket, we have to write its new gen to disk and wait
19 * for that write to complete before we use it - otherwise after a crash we
20 * could have pointers that appeared to be good but pointed to data that had
23 * Since the gens and priorities are all stored contiguously on disk, we can
24 * batch this up: We fill up the free_inc list with freshly invalidated buckets,
25 * call prio_write(), and when prio_write() finishes we pull buckets off the
26 * free_inc list and optionally discard them.
28 * free_inc isn't the only freelist - if it was, we'd often to sleep while
29 * priorities and gens were being written before we could allocate. c->free is a
30 * smaller freelist, and buckets on that list are always ready to be used.
32 * If we've got discards enabled, that happens when a bucket moves from the
33 * free_inc list to the free list.
35 * There is another freelist, because sometimes we have buckets that we know
36 * have nothing pointing into them - these we can reuse without waiting for
37 * priorities to be rewritten. These come from freed btree nodes and buckets
38 * that garbage collection discovered no longer had valid keys pointing into
39 * them (because they were overwritten). That's the unused list - buckets on the
40 * unused list move to the free list, optionally being discarded in the process.
42 * It's also important to ensure that gens don't wrap around - with respect to
43 * either the oldest gen in the btree or the gen on disk. This is quite
44 * difficult to do in practice, but we explicitly guard against it anyways - if
45 * a bucket is in danger of wrapping around we simply skip invalidating it that
46 * time around, and we garbage collect or rewrite the priorities sooner than we
47 * would have otherwise.
49 * bch_bucket_alloc() allocates a single bucket from a specific cache.
51 * bch_bucket_alloc_set() allocates one or more buckets from different caches
54 * free_some_buckets() drives all the processes described above. It's called
55 * from bch_bucket_alloc() and a few other places that need to make sure free
58 * invalidate_buckets_(lru|fifo)() find buckets that are available to be
59 * invalidated, and then invalidate them and stick them on the free_inc list -
60 * in either lru or fifo order.
66 #include <linux/blkdev.h>
67 #include <linux/freezer.h>
68 #include <linux/kthread.h>
69 #include <linux/random.h>
70 #include <trace/events/bcache.h>
72 /* Bucket heap / gen */
74 uint8_t bch_inc_gen(struct cache
*ca
, struct bucket
*b
)
76 uint8_t ret
= ++b
->gen
;
78 ca
->set
->need_gc
= max(ca
->set
->need_gc
, bucket_gc_gen(b
));
79 WARN_ON_ONCE(ca
->set
->need_gc
> BUCKET_GC_GEN_MAX
);
81 if (CACHE_SYNC(&ca
->set
->sb
)) {
82 ca
->need_save_prio
= max(ca
->need_save_prio
,
84 WARN_ON_ONCE(ca
->need_save_prio
> BUCKET_DISK_GEN_MAX
);
90 void bch_rescale_priorities(struct cache_set
*c
, int sectors
)
94 unsigned next
= c
->nbuckets
* c
->sb
.bucket_size
/ 1024;
98 atomic_sub(sectors
, &c
->rescale
);
101 r
= atomic_read(&c
->rescale
);
105 } while (atomic_cmpxchg(&c
->rescale
, r
, r
+ next
) != r
);
107 mutex_lock(&c
->bucket_lock
);
109 c
->min_prio
= USHRT_MAX
;
111 for_each_cache(ca
, c
, i
)
112 for_each_bucket(b
, ca
)
114 b
->prio
!= BTREE_PRIO
&&
115 !atomic_read(&b
->pin
)) {
117 c
->min_prio
= min(c
->min_prio
, b
->prio
);
120 mutex_unlock(&c
->bucket_lock
);
125 static inline bool can_inc_bucket_gen(struct bucket
*b
)
127 return bucket_gc_gen(b
) < BUCKET_GC_GEN_MAX
&&
128 bucket_disk_gen(b
) < BUCKET_DISK_GEN_MAX
;
131 bool bch_bucket_add_unused(struct cache
*ca
, struct bucket
*b
)
133 BUG_ON(GC_MARK(b
) || GC_SECTORS_USED(b
));
135 if (fifo_used(&ca
->free
) > ca
->watermark
[WATERMARK_MOVINGGC
] &&
136 CACHE_REPLACEMENT(&ca
->sb
) == CACHE_REPLACEMENT_FIFO
)
141 if (can_inc_bucket_gen(b
) &&
142 fifo_push(&ca
->unused
, b
- ca
->buckets
)) {
150 static bool can_invalidate_bucket(struct cache
*ca
, struct bucket
*b
)
152 return GC_MARK(b
) == GC_MARK_RECLAIMABLE
&&
153 !atomic_read(&b
->pin
) &&
154 can_inc_bucket_gen(b
);
157 static void invalidate_one_bucket(struct cache
*ca
, struct bucket
*b
)
160 b
->prio
= INITIAL_PRIO
;
162 fifo_push(&ca
->free_inc
, b
- ca
->buckets
);
165 #define bucket_prio(b) \
166 (((unsigned) (b->prio - ca->set->min_prio)) * GC_SECTORS_USED(b))
168 #define bucket_max_cmp(l, r) (bucket_prio(l) < bucket_prio(r))
169 #define bucket_min_cmp(l, r) (bucket_prio(l) > bucket_prio(r))
171 static void invalidate_buckets_lru(struct cache
*ca
)
178 for_each_bucket(b
, ca
) {
180 * If we fill up the unused list, if we then return before
181 * adding anything to the free_inc list we'll skip writing
182 * prios/gens and just go back to allocating from the unused
185 if (fifo_full(&ca
->unused
))
188 if (!can_invalidate_bucket(ca
, b
))
191 if (!GC_SECTORS_USED(b
) &&
192 bch_bucket_add_unused(ca
, b
))
195 if (!heap_full(&ca
->heap
))
196 heap_add(&ca
->heap
, b
, bucket_max_cmp
);
197 else if (bucket_max_cmp(b
, heap_peek(&ca
->heap
))) {
198 ca
->heap
.data
[0] = b
;
199 heap_sift(&ca
->heap
, 0, bucket_max_cmp
);
203 for (i
= ca
->heap
.used
/ 2 - 1; i
>= 0; --i
)
204 heap_sift(&ca
->heap
, i
, bucket_min_cmp
);
206 while (!fifo_full(&ca
->free_inc
)) {
207 if (!heap_pop(&ca
->heap
, b
, bucket_min_cmp
)) {
209 * We don't want to be calling invalidate_buckets()
210 * multiple times when it can't do anything
212 ca
->invalidate_needs_gc
= 1;
217 invalidate_one_bucket(ca
, b
);
221 static void invalidate_buckets_fifo(struct cache
*ca
)
226 while (!fifo_full(&ca
->free_inc
)) {
227 if (ca
->fifo_last_bucket
< ca
->sb
.first_bucket
||
228 ca
->fifo_last_bucket
>= ca
->sb
.nbuckets
)
229 ca
->fifo_last_bucket
= ca
->sb
.first_bucket
;
231 b
= ca
->buckets
+ ca
->fifo_last_bucket
++;
233 if (can_invalidate_bucket(ca
, b
))
234 invalidate_one_bucket(ca
, b
);
236 if (++checked
>= ca
->sb
.nbuckets
) {
237 ca
->invalidate_needs_gc
= 1;
244 static void invalidate_buckets_random(struct cache
*ca
)
249 while (!fifo_full(&ca
->free_inc
)) {
251 get_random_bytes(&n
, sizeof(n
));
253 n
%= (size_t) (ca
->sb
.nbuckets
- ca
->sb
.first_bucket
);
254 n
+= ca
->sb
.first_bucket
;
258 if (can_invalidate_bucket(ca
, b
))
259 invalidate_one_bucket(ca
, b
);
261 if (++checked
>= ca
->sb
.nbuckets
/ 2) {
262 ca
->invalidate_needs_gc
= 1;
269 static void invalidate_buckets(struct cache
*ca
)
271 if (ca
->invalidate_needs_gc
)
274 switch (CACHE_REPLACEMENT(&ca
->sb
)) {
275 case CACHE_REPLACEMENT_LRU
:
276 invalidate_buckets_lru(ca
);
278 case CACHE_REPLACEMENT_FIFO
:
279 invalidate_buckets_fifo(ca
);
281 case CACHE_REPLACEMENT_RANDOM
:
282 invalidate_buckets_random(ca
);
286 trace_bcache_alloc_invalidate(ca
);
289 #define allocator_wait(ca, cond) \
292 set_current_state(TASK_INTERRUPTIBLE); \
296 mutex_unlock(&(ca)->set->bucket_lock); \
297 if (kthread_should_stop()) \
302 mutex_lock(&(ca)->set->bucket_lock); \
304 __set_current_state(TASK_RUNNING); \
307 static int bch_allocator_thread(void *arg
)
309 struct cache
*ca
= arg
;
311 mutex_lock(&ca
->set
->bucket_lock
);
315 * First, we pull buckets off of the unused and free_inc lists,
316 * possibly issue discards to them, then we add the bucket to
322 if ((!atomic_read(&ca
->set
->prio_blocked
) ||
323 !CACHE_SYNC(&ca
->set
->sb
)) &&
324 !fifo_empty(&ca
->unused
))
325 fifo_pop(&ca
->unused
, bucket
);
326 else if (!fifo_empty(&ca
->free_inc
))
327 fifo_pop(&ca
->free_inc
, bucket
);
332 mutex_unlock(&ca
->set
->bucket_lock
);
333 blkdev_issue_discard(ca
->bdev
,
334 bucket_to_sector(ca
->set
, bucket
),
335 ca
->sb
.block_size
, GFP_KERNEL
, 0);
336 mutex_lock(&ca
->set
->bucket_lock
);
339 allocator_wait(ca
, !fifo_full(&ca
->free
));
341 fifo_push(&ca
->free
, bucket
);
342 wake_up(&ca
->set
->bucket_wait
);
346 * We've run out of free buckets, we need to find some buckets
347 * we can invalidate. First, invalidate them in memory and add
348 * them to the free_inc list:
351 allocator_wait(ca
, ca
->set
->gc_mark_valid
&&
352 (ca
->need_save_prio
> 64 ||
353 !ca
->invalidate_needs_gc
));
354 invalidate_buckets(ca
);
357 * Now, we write their new gens to disk so we can start writing
360 allocator_wait(ca
, !atomic_read(&ca
->set
->prio_blocked
));
361 if (CACHE_SYNC(&ca
->set
->sb
) &&
362 (!fifo_empty(&ca
->free_inc
) ||
363 ca
->need_save_prio
> 64))
368 long bch_bucket_alloc(struct cache
*ca
, unsigned watermark
, bool wait
)
375 if (fifo_used(&ca
->free
) > ca
->watermark
[watermark
]) {
376 fifo_pop(&ca
->free
, r
);
384 if (fifo_used(&ca
->free
) > ca
->watermark
[watermark
]) {
385 fifo_pop(&ca
->free
, r
);
389 prepare_to_wait(&ca
->set
->bucket_wait
, &w
,
390 TASK_UNINTERRUPTIBLE
);
392 mutex_unlock(&ca
->set
->bucket_lock
);
394 mutex_lock(&ca
->set
->bucket_lock
);
397 finish_wait(&ca
->set
->bucket_wait
, &w
);
399 wake_up_process(ca
->alloc_thread
);
401 if (expensive_debug_checks(ca
->set
)) {
405 for (iter
= 0; iter
< prio_buckets(ca
) * 2; iter
++)
406 BUG_ON(ca
->prio_buckets
[iter
] == (uint64_t) r
);
408 fifo_for_each(i
, &ca
->free
, iter
)
410 fifo_for_each(i
, &ca
->free_inc
, iter
)
412 fifo_for_each(i
, &ca
->unused
, iter
)
418 BUG_ON(atomic_read(&b
->pin
) != 1);
420 SET_GC_SECTORS_USED(b
, ca
->sb
.bucket_size
);
422 if (watermark
<= WATERMARK_METADATA
) {
423 SET_GC_MARK(b
, GC_MARK_METADATA
);
424 b
->prio
= BTREE_PRIO
;
426 SET_GC_MARK(b
, GC_MARK_RECLAIMABLE
);
427 b
->prio
= INITIAL_PRIO
;
433 void bch_bucket_free(struct cache_set
*c
, struct bkey
*k
)
437 for (i
= 0; i
< KEY_PTRS(k
); i
++) {
438 struct bucket
*b
= PTR_BUCKET(c
, k
, i
);
440 SET_GC_MARK(b
, GC_MARK_RECLAIMABLE
);
441 SET_GC_SECTORS_USED(b
, 0);
442 bch_bucket_add_unused(PTR_CACHE(c
, k
, i
), b
);
446 int __bch_bucket_alloc_set(struct cache_set
*c
, unsigned watermark
,
447 struct bkey
*k
, int n
, bool wait
)
451 lockdep_assert_held(&c
->bucket_lock
);
452 BUG_ON(!n
|| n
> c
->caches_loaded
|| n
> 8);
456 /* sort by free space/prio of oldest data in caches */
458 for (i
= 0; i
< n
; i
++) {
459 struct cache
*ca
= c
->cache_by_alloc
[i
];
460 long b
= bch_bucket_alloc(ca
, watermark
, wait
);
465 k
->ptr
[i
] = PTR(ca
->buckets
[b
].gen
,
466 bucket_to_sector(c
, b
),
469 SET_KEY_PTRS(k
, i
+ 1);
474 bch_bucket_free(c
, k
);
479 int bch_bucket_alloc_set(struct cache_set
*c
, unsigned watermark
,
480 struct bkey
*k
, int n
, bool wait
)
483 mutex_lock(&c
->bucket_lock
);
484 ret
= __bch_bucket_alloc_set(c
, watermark
, k
, n
, wait
);
485 mutex_unlock(&c
->bucket_lock
);
489 /* Sector allocator */
492 struct list_head list
;
493 unsigned last_write_point
;
494 unsigned sectors_free
;
499 * We keep multiple buckets open for writes, and try to segregate different
500 * write streams for better cache utilization: first we look for a bucket where
501 * the last write to it was sequential with the current write, and failing that
502 * we look for a bucket that was last used by the same task.
504 * The ideas is if you've got multiple tasks pulling data into the cache at the
505 * same time, you'll get better cache utilization if you try to segregate their
506 * data and preserve locality.
508 * For example, say you've starting Firefox at the same time you're copying a
509 * bunch of files. Firefox will likely end up being fairly hot and stay in the
510 * cache awhile, but the data you copied might not be; if you wrote all that
511 * data to the same buckets it'd get invalidated at the same time.
513 * Both of those tasks will be doing fairly random IO so we can't rely on
514 * detecting sequential IO to segregate their data, but going off of the task
515 * should be a sane heuristic.
517 static struct open_bucket
*pick_data_bucket(struct cache_set
*c
,
518 const struct bkey
*search
,
519 unsigned write_point
,
522 struct open_bucket
*ret
, *ret_task
= NULL
;
524 list_for_each_entry_reverse(ret
, &c
->data_buckets
, list
)
525 if (!bkey_cmp(&ret
->key
, search
))
527 else if (ret
->last_write_point
== write_point
)
530 ret
= ret_task
?: list_first_entry(&c
->data_buckets
,
531 struct open_bucket
, list
);
533 if (!ret
->sectors_free
&& KEY_PTRS(alloc
)) {
534 ret
->sectors_free
= c
->sb
.bucket_size
;
535 bkey_copy(&ret
->key
, alloc
);
539 if (!ret
->sectors_free
)
546 * Allocates some space in the cache to write to, and k to point to the newly
547 * allocated space, and updates KEY_SIZE(k) and KEY_OFFSET(k) (to point to the
548 * end of the newly allocated space).
550 * May allocate fewer sectors than @sectors, KEY_SIZE(k) indicates how many
551 * sectors were actually allocated.
553 * If s->writeback is true, will not fail.
555 bool bch_alloc_sectors(struct cache_set
*c
, struct bkey
*k
, unsigned sectors
,
556 unsigned write_point
, unsigned write_prio
, bool wait
)
558 struct open_bucket
*b
;
559 BKEY_PADDED(key
) alloc
;
563 * We might have to allocate a new bucket, which we can't do with a
564 * spinlock held. So if we have to allocate, we drop the lock, allocate
565 * and then retry. KEY_PTRS() indicates whether alloc points to
566 * allocated bucket(s).
569 bkey_init(&alloc
.key
);
570 spin_lock(&c
->data_bucket_lock
);
572 while (!(b
= pick_data_bucket(c
, k
, write_point
, &alloc
.key
))) {
573 unsigned watermark
= write_prio
577 spin_unlock(&c
->data_bucket_lock
);
579 if (bch_bucket_alloc_set(c
, watermark
, &alloc
.key
, 1, wait
))
582 spin_lock(&c
->data_bucket_lock
);
586 * If we had to allocate, we might race and not need to allocate the
587 * second time we call find_data_bucket(). If we allocated a bucket but
588 * didn't use it, drop the refcount bch_bucket_alloc_set() took:
590 if (KEY_PTRS(&alloc
.key
))
591 bkey_put(c
, &alloc
.key
);
593 for (i
= 0; i
< KEY_PTRS(&b
->key
); i
++)
594 EBUG_ON(ptr_stale(c
, &b
->key
, i
));
596 /* Set up the pointer to the space we're allocating: */
598 for (i
= 0; i
< KEY_PTRS(&b
->key
); i
++)
599 k
->ptr
[i
] = b
->key
.ptr
[i
];
601 sectors
= min(sectors
, b
->sectors_free
);
603 SET_KEY_OFFSET(k
, KEY_OFFSET(k
) + sectors
);
604 SET_KEY_SIZE(k
, sectors
);
605 SET_KEY_PTRS(k
, KEY_PTRS(&b
->key
));
608 * Move b to the end of the lru, and keep track of what this bucket was
611 list_move_tail(&b
->list
, &c
->data_buckets
);
612 bkey_copy_key(&b
->key
, k
);
613 b
->last_write_point
= write_point
;
615 b
->sectors_free
-= sectors
;
617 for (i
= 0; i
< KEY_PTRS(&b
->key
); i
++) {
618 SET_PTR_OFFSET(&b
->key
, i
, PTR_OFFSET(&b
->key
, i
) + sectors
);
620 atomic_long_add(sectors
,
621 &PTR_CACHE(c
, &b
->key
, i
)->sectors_written
);
624 if (b
->sectors_free
< c
->sb
.block_size
)
628 * k takes refcounts on the buckets it points to until it's inserted
629 * into the btree, but if we're done with this bucket we just transfer
630 * get_data_bucket()'s refcount.
633 for (i
= 0; i
< KEY_PTRS(&b
->key
); i
++)
634 atomic_inc(&PTR_BUCKET(c
, &b
->key
, i
)->pin
);
636 spin_unlock(&c
->data_bucket_lock
);
642 void bch_open_buckets_free(struct cache_set
*c
)
644 struct open_bucket
*b
;
646 while (!list_empty(&c
->data_buckets
)) {
647 b
= list_first_entry(&c
->data_buckets
,
648 struct open_bucket
, list
);
654 int bch_open_buckets_alloc(struct cache_set
*c
)
658 spin_lock_init(&c
->data_bucket_lock
);
660 for (i
= 0; i
< 6; i
++) {
661 struct open_bucket
*b
= kzalloc(sizeof(*b
), GFP_KERNEL
);
665 list_add(&b
->list
, &c
->data_buckets
);
671 int bch_cache_allocator_start(struct cache
*ca
)
673 struct task_struct
*k
= kthread_run(bch_allocator_thread
,
674 ca
, "bcache_allocator");
678 ca
->alloc_thread
= k
;
682 int bch_cache_allocator_init(struct cache
*ca
)
686 * Prio/gen writes first
687 * Then 8 for btree allocations
688 * Then half for the moving garbage collector
691 ca
->watermark
[WATERMARK_PRIO
] = 0;
693 ca
->watermark
[WATERMARK_METADATA
] = prio_buckets(ca
);
695 ca
->watermark
[WATERMARK_MOVINGGC
] = 8 +
696 ca
->watermark
[WATERMARK_METADATA
];
698 ca
->watermark
[WATERMARK_NONE
] = ca
->free
.size
/ 2 +
699 ca
->watermark
[WATERMARK_MOVINGGC
];