Merge tag 'gpio-v3.13-3' of git://git.kernel.org/pub/scm/linux/kernel/git/linusw...
[linux-2.6.git] / arch / arm / kernel / perf_event.c
blobbc3f2efa0d86b4ff55d6b19833eae688b111fd27
1 #undef DEBUG
3 /*
4 * ARM performance counter support.
6 * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
7 * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com>
9 * This code is based on the sparc64 perf event code, which is in turn based
10 * on the x86 code. Callchain code is based on the ARM OProfile backtrace
11 * code.
13 #define pr_fmt(fmt) "hw perfevents: " fmt
15 #include <linux/kernel.h>
16 #include <linux/platform_device.h>
17 #include <linux/pm_runtime.h>
18 #include <linux/uaccess.h>
20 #include <asm/irq_regs.h>
21 #include <asm/pmu.h>
22 #include <asm/stacktrace.h>
24 static int
25 armpmu_map_cache_event(const unsigned (*cache_map)
26 [PERF_COUNT_HW_CACHE_MAX]
27 [PERF_COUNT_HW_CACHE_OP_MAX]
28 [PERF_COUNT_HW_CACHE_RESULT_MAX],
29 u64 config)
31 unsigned int cache_type, cache_op, cache_result, ret;
33 cache_type = (config >> 0) & 0xff;
34 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
35 return -EINVAL;
37 cache_op = (config >> 8) & 0xff;
38 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
39 return -EINVAL;
41 cache_result = (config >> 16) & 0xff;
42 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
43 return -EINVAL;
45 ret = (int)(*cache_map)[cache_type][cache_op][cache_result];
47 if (ret == CACHE_OP_UNSUPPORTED)
48 return -ENOENT;
50 return ret;
53 static int
54 armpmu_map_hw_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config)
56 int mapping;
58 if (config >= PERF_COUNT_HW_MAX)
59 return -EINVAL;
61 mapping = (*event_map)[config];
62 return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping;
65 static int
66 armpmu_map_raw_event(u32 raw_event_mask, u64 config)
68 return (int)(config & raw_event_mask);
71 int
72 armpmu_map_event(struct perf_event *event,
73 const unsigned (*event_map)[PERF_COUNT_HW_MAX],
74 const unsigned (*cache_map)
75 [PERF_COUNT_HW_CACHE_MAX]
76 [PERF_COUNT_HW_CACHE_OP_MAX]
77 [PERF_COUNT_HW_CACHE_RESULT_MAX],
78 u32 raw_event_mask)
80 u64 config = event->attr.config;
82 switch (event->attr.type) {
83 case PERF_TYPE_HARDWARE:
84 return armpmu_map_hw_event(event_map, config);
85 case PERF_TYPE_HW_CACHE:
86 return armpmu_map_cache_event(cache_map, config);
87 case PERF_TYPE_RAW:
88 return armpmu_map_raw_event(raw_event_mask, config);
91 return -ENOENT;
94 int armpmu_event_set_period(struct perf_event *event)
96 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
97 struct hw_perf_event *hwc = &event->hw;
98 s64 left = local64_read(&hwc->period_left);
99 s64 period = hwc->sample_period;
100 int ret = 0;
102 /* The period may have been changed by PERF_EVENT_IOC_PERIOD */
103 if (unlikely(period != hwc->last_period))
104 left = period - (hwc->last_period - left);
106 if (unlikely(left <= -period)) {
107 left = period;
108 local64_set(&hwc->period_left, left);
109 hwc->last_period = period;
110 ret = 1;
113 if (unlikely(left <= 0)) {
114 left += period;
115 local64_set(&hwc->period_left, left);
116 hwc->last_period = period;
117 ret = 1;
120 if (left > (s64)armpmu->max_period)
121 left = armpmu->max_period;
123 local64_set(&hwc->prev_count, (u64)-left);
125 armpmu->write_counter(event, (u64)(-left) & 0xffffffff);
127 perf_event_update_userpage(event);
129 return ret;
132 u64 armpmu_event_update(struct perf_event *event)
134 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
135 struct hw_perf_event *hwc = &event->hw;
136 u64 delta, prev_raw_count, new_raw_count;
138 again:
139 prev_raw_count = local64_read(&hwc->prev_count);
140 new_raw_count = armpmu->read_counter(event);
142 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
143 new_raw_count) != prev_raw_count)
144 goto again;
146 delta = (new_raw_count - prev_raw_count) & armpmu->max_period;
148 local64_add(delta, &event->count);
149 local64_sub(delta, &hwc->period_left);
151 return new_raw_count;
154 static void
155 armpmu_read(struct perf_event *event)
157 armpmu_event_update(event);
160 static void
161 armpmu_stop(struct perf_event *event, int flags)
163 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
164 struct hw_perf_event *hwc = &event->hw;
167 * ARM pmu always has to update the counter, so ignore
168 * PERF_EF_UPDATE, see comments in armpmu_start().
170 if (!(hwc->state & PERF_HES_STOPPED)) {
171 armpmu->disable(event);
172 armpmu_event_update(event);
173 hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
177 static void armpmu_start(struct perf_event *event, int flags)
179 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
180 struct hw_perf_event *hwc = &event->hw;
183 * ARM pmu always has to reprogram the period, so ignore
184 * PERF_EF_RELOAD, see the comment below.
186 if (flags & PERF_EF_RELOAD)
187 WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
189 hwc->state = 0;
191 * Set the period again. Some counters can't be stopped, so when we
192 * were stopped we simply disabled the IRQ source and the counter
193 * may have been left counting. If we don't do this step then we may
194 * get an interrupt too soon or *way* too late if the overflow has
195 * happened since disabling.
197 armpmu_event_set_period(event);
198 armpmu->enable(event);
201 static void
202 armpmu_del(struct perf_event *event, int flags)
204 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
205 struct pmu_hw_events *hw_events = armpmu->get_hw_events();
206 struct hw_perf_event *hwc = &event->hw;
207 int idx = hwc->idx;
209 armpmu_stop(event, PERF_EF_UPDATE);
210 hw_events->events[idx] = NULL;
211 clear_bit(idx, hw_events->used_mask);
213 perf_event_update_userpage(event);
216 static int
217 armpmu_add(struct perf_event *event, int flags)
219 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
220 struct pmu_hw_events *hw_events = armpmu->get_hw_events();
221 struct hw_perf_event *hwc = &event->hw;
222 int idx;
223 int err = 0;
225 perf_pmu_disable(event->pmu);
227 /* If we don't have a space for the counter then finish early. */
228 idx = armpmu->get_event_idx(hw_events, event);
229 if (idx < 0) {
230 err = idx;
231 goto out;
235 * If there is an event in the counter we are going to use then make
236 * sure it is disabled.
238 event->hw.idx = idx;
239 armpmu->disable(event);
240 hw_events->events[idx] = event;
242 hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
243 if (flags & PERF_EF_START)
244 armpmu_start(event, PERF_EF_RELOAD);
246 /* Propagate our changes to the userspace mapping. */
247 perf_event_update_userpage(event);
249 out:
250 perf_pmu_enable(event->pmu);
251 return err;
254 static int
255 validate_event(struct pmu_hw_events *hw_events,
256 struct perf_event *event)
258 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
260 if (is_software_event(event))
261 return 1;
263 if (event->state < PERF_EVENT_STATE_OFF)
264 return 1;
266 if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec)
267 return 1;
269 return armpmu->get_event_idx(hw_events, event) >= 0;
272 static int
273 validate_group(struct perf_event *event)
275 struct perf_event *sibling, *leader = event->group_leader;
276 struct pmu_hw_events fake_pmu;
277 DECLARE_BITMAP(fake_used_mask, ARMPMU_MAX_HWEVENTS);
280 * Initialise the fake PMU. We only need to populate the
281 * used_mask for the purposes of validation.
283 memset(fake_used_mask, 0, sizeof(fake_used_mask));
284 fake_pmu.used_mask = fake_used_mask;
286 if (!validate_event(&fake_pmu, leader))
287 return -EINVAL;
289 list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
290 if (!validate_event(&fake_pmu, sibling))
291 return -EINVAL;
294 if (!validate_event(&fake_pmu, event))
295 return -EINVAL;
297 return 0;
300 static irqreturn_t armpmu_dispatch_irq(int irq, void *dev)
302 struct arm_pmu *armpmu = (struct arm_pmu *) dev;
303 struct platform_device *plat_device = armpmu->plat_device;
304 struct arm_pmu_platdata *plat = dev_get_platdata(&plat_device->dev);
306 if (plat && plat->handle_irq)
307 return plat->handle_irq(irq, dev, armpmu->handle_irq);
308 else
309 return armpmu->handle_irq(irq, dev);
312 static void
313 armpmu_release_hardware(struct arm_pmu *armpmu)
315 armpmu->free_irq(armpmu);
316 pm_runtime_put_sync(&armpmu->plat_device->dev);
319 static int
320 armpmu_reserve_hardware(struct arm_pmu *armpmu)
322 int err;
323 struct platform_device *pmu_device = armpmu->plat_device;
325 if (!pmu_device)
326 return -ENODEV;
328 pm_runtime_get_sync(&pmu_device->dev);
329 err = armpmu->request_irq(armpmu, armpmu_dispatch_irq);
330 if (err) {
331 armpmu_release_hardware(armpmu);
332 return err;
335 return 0;
338 static void
339 hw_perf_event_destroy(struct perf_event *event)
341 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
342 atomic_t *active_events = &armpmu->active_events;
343 struct mutex *pmu_reserve_mutex = &armpmu->reserve_mutex;
345 if (atomic_dec_and_mutex_lock(active_events, pmu_reserve_mutex)) {
346 armpmu_release_hardware(armpmu);
347 mutex_unlock(pmu_reserve_mutex);
351 static int
352 event_requires_mode_exclusion(struct perf_event_attr *attr)
354 return attr->exclude_idle || attr->exclude_user ||
355 attr->exclude_kernel || attr->exclude_hv;
358 static int
359 __hw_perf_event_init(struct perf_event *event)
361 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
362 struct hw_perf_event *hwc = &event->hw;
363 int mapping;
365 mapping = armpmu->map_event(event);
367 if (mapping < 0) {
368 pr_debug("event %x:%llx not supported\n", event->attr.type,
369 event->attr.config);
370 return mapping;
374 * We don't assign an index until we actually place the event onto
375 * hardware. Use -1 to signify that we haven't decided where to put it
376 * yet. For SMP systems, each core has it's own PMU so we can't do any
377 * clever allocation or constraints checking at this point.
379 hwc->idx = -1;
380 hwc->config_base = 0;
381 hwc->config = 0;
382 hwc->event_base = 0;
385 * Check whether we need to exclude the counter from certain modes.
387 if ((!armpmu->set_event_filter ||
388 armpmu->set_event_filter(hwc, &event->attr)) &&
389 event_requires_mode_exclusion(&event->attr)) {
390 pr_debug("ARM performance counters do not support "
391 "mode exclusion\n");
392 return -EOPNOTSUPP;
396 * Store the event encoding into the config_base field.
398 hwc->config_base |= (unsigned long)mapping;
400 if (!hwc->sample_period) {
402 * For non-sampling runs, limit the sample_period to half
403 * of the counter width. That way, the new counter value
404 * is far less likely to overtake the previous one unless
405 * you have some serious IRQ latency issues.
407 hwc->sample_period = armpmu->max_period >> 1;
408 hwc->last_period = hwc->sample_period;
409 local64_set(&hwc->period_left, hwc->sample_period);
412 if (event->group_leader != event) {
413 if (validate_group(event) != 0)
414 return -EINVAL;
417 return 0;
420 static int armpmu_event_init(struct perf_event *event)
422 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
423 int err = 0;
424 atomic_t *active_events = &armpmu->active_events;
426 /* does not support taken branch sampling */
427 if (has_branch_stack(event))
428 return -EOPNOTSUPP;
430 if (armpmu->map_event(event) == -ENOENT)
431 return -ENOENT;
433 event->destroy = hw_perf_event_destroy;
435 if (!atomic_inc_not_zero(active_events)) {
436 mutex_lock(&armpmu->reserve_mutex);
437 if (atomic_read(active_events) == 0)
438 err = armpmu_reserve_hardware(armpmu);
440 if (!err)
441 atomic_inc(active_events);
442 mutex_unlock(&armpmu->reserve_mutex);
445 if (err)
446 return err;
448 err = __hw_perf_event_init(event);
449 if (err)
450 hw_perf_event_destroy(event);
452 return err;
455 static void armpmu_enable(struct pmu *pmu)
457 struct arm_pmu *armpmu = to_arm_pmu(pmu);
458 struct pmu_hw_events *hw_events = armpmu->get_hw_events();
459 int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
461 if (enabled)
462 armpmu->start(armpmu);
465 static void armpmu_disable(struct pmu *pmu)
467 struct arm_pmu *armpmu = to_arm_pmu(pmu);
468 armpmu->stop(armpmu);
471 #ifdef CONFIG_PM_RUNTIME
472 static int armpmu_runtime_resume(struct device *dev)
474 struct arm_pmu_platdata *plat = dev_get_platdata(dev);
476 if (plat && plat->runtime_resume)
477 return plat->runtime_resume(dev);
479 return 0;
482 static int armpmu_runtime_suspend(struct device *dev)
484 struct arm_pmu_platdata *plat = dev_get_platdata(dev);
486 if (plat && plat->runtime_suspend)
487 return plat->runtime_suspend(dev);
489 return 0;
491 #endif
493 const struct dev_pm_ops armpmu_dev_pm_ops = {
494 SET_RUNTIME_PM_OPS(armpmu_runtime_suspend, armpmu_runtime_resume, NULL)
497 static void armpmu_init(struct arm_pmu *armpmu)
499 atomic_set(&armpmu->active_events, 0);
500 mutex_init(&armpmu->reserve_mutex);
502 armpmu->pmu = (struct pmu) {
503 .pmu_enable = armpmu_enable,
504 .pmu_disable = armpmu_disable,
505 .event_init = armpmu_event_init,
506 .add = armpmu_add,
507 .del = armpmu_del,
508 .start = armpmu_start,
509 .stop = armpmu_stop,
510 .read = armpmu_read,
514 int armpmu_register(struct arm_pmu *armpmu, int type)
516 armpmu_init(armpmu);
517 pm_runtime_enable(&armpmu->plat_device->dev);
518 pr_info("enabled with %s PMU driver, %d counters available\n",
519 armpmu->name, armpmu->num_events);
520 return perf_pmu_register(&armpmu->pmu, armpmu->name, type);
524 * Callchain handling code.
528 * The registers we're interested in are at the end of the variable
529 * length saved register structure. The fp points at the end of this
530 * structure so the address of this struct is:
531 * (struct frame_tail *)(xxx->fp)-1
533 * This code has been adapted from the ARM OProfile support.
535 struct frame_tail {
536 struct frame_tail __user *fp;
537 unsigned long sp;
538 unsigned long lr;
539 } __attribute__((packed));
542 * Get the return address for a single stackframe and return a pointer to the
543 * next frame tail.
545 static struct frame_tail __user *
546 user_backtrace(struct frame_tail __user *tail,
547 struct perf_callchain_entry *entry)
549 struct frame_tail buftail;
551 /* Also check accessibility of one struct frame_tail beyond */
552 if (!access_ok(VERIFY_READ, tail, sizeof(buftail)))
553 return NULL;
554 if (__copy_from_user_inatomic(&buftail, tail, sizeof(buftail)))
555 return NULL;
557 perf_callchain_store(entry, buftail.lr);
560 * Frame pointers should strictly progress back up the stack
561 * (towards higher addresses).
563 if (tail + 1 >= buftail.fp)
564 return NULL;
566 return buftail.fp - 1;
569 void
570 perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
572 struct frame_tail __user *tail;
574 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
575 /* We don't support guest os callchain now */
576 return;
579 perf_callchain_store(entry, regs->ARM_pc);
580 tail = (struct frame_tail __user *)regs->ARM_fp - 1;
582 while ((entry->nr < PERF_MAX_STACK_DEPTH) &&
583 tail && !((unsigned long)tail & 0x3))
584 tail = user_backtrace(tail, entry);
588 * Gets called by walk_stackframe() for every stackframe. This will be called
589 * whist unwinding the stackframe and is like a subroutine return so we use
590 * the PC.
592 static int
593 callchain_trace(struct stackframe *fr,
594 void *data)
596 struct perf_callchain_entry *entry = data;
597 perf_callchain_store(entry, fr->pc);
598 return 0;
601 void
602 perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
604 struct stackframe fr;
606 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
607 /* We don't support guest os callchain now */
608 return;
611 fr.fp = regs->ARM_fp;
612 fr.sp = regs->ARM_sp;
613 fr.lr = regs->ARM_lr;
614 fr.pc = regs->ARM_pc;
615 walk_stackframe(&fr, callchain_trace, entry);
618 unsigned long perf_instruction_pointer(struct pt_regs *regs)
620 if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
621 return perf_guest_cbs->get_guest_ip();
623 return instruction_pointer(regs);
626 unsigned long perf_misc_flags(struct pt_regs *regs)
628 int misc = 0;
630 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
631 if (perf_guest_cbs->is_user_mode())
632 misc |= PERF_RECORD_MISC_GUEST_USER;
633 else
634 misc |= PERF_RECORD_MISC_GUEST_KERNEL;
635 } else {
636 if (user_mode(regs))
637 misc |= PERF_RECORD_MISC_USER;
638 else
639 misc |= PERF_RECORD_MISC_KERNEL;
642 return misc;