Remove all #inclusions of asm/system.h
[linux-2.6.git] / drivers / staging / panel / panel.c
blob6183573f112f3487ac0caf0add169c521115f4b5
1 /*
2 * Front panel driver for Linux
3 * Copyright (C) 2000-2008, Willy Tarreau <w@1wt.eu>
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License
7 * as published by the Free Software Foundation; either version
8 * 2 of the License, or (at your option) any later version.
10 * This code drives an LCD module (/dev/lcd), and a keypad (/dev/keypad)
11 * connected to a parallel printer port.
13 * The LCD module may either be an HD44780-like 8-bit parallel LCD, or a 1-bit
14 * serial module compatible with Samsung's KS0074. The pins may be connected in
15 * any combination, everything is programmable.
17 * The keypad consists in a matrix of push buttons connecting input pins to
18 * data output pins or to the ground. The combinations have to be hard-coded
19 * in the driver, though several profiles exist and adding new ones is easy.
21 * Several profiles are provided for commonly found LCD+keypad modules on the
22 * market, such as those found in Nexcom's appliances.
24 * FIXME:
25 * - the initialization/deinitialization process is very dirty and should
26 * be rewritten. It may even be buggy.
28 * TODO:
29 * - document 24 keys keyboard (3 rows of 8 cols, 32 diodes + 2 inputs)
30 * - make the LCD a part of a virtual screen of Vx*Vy
31 * - make the inputs list smp-safe
32 * - change the keyboard to a double mapping : signals -> key_id -> values
33 * so that applications can change values without knowing signals
37 #include <linux/module.h>
39 #include <linux/types.h>
40 #include <linux/errno.h>
41 #include <linux/signal.h>
42 #include <linux/sched.h>
43 #include <linux/spinlock.h>
44 #include <linux/interrupt.h>
45 #include <linux/miscdevice.h>
46 #include <linux/slab.h>
47 #include <linux/ioport.h>
48 #include <linux/fcntl.h>
49 #include <linux/init.h>
50 #include <linux/delay.h>
51 #include <linux/kernel.h>
52 #include <linux/ctype.h>
53 #include <linux/parport.h>
54 #include <linux/list.h>
55 #include <linux/notifier.h>
56 #include <linux/reboot.h>
57 #include <generated/utsrelease.h>
59 #include <linux/io.h>
60 #include <linux/uaccess.h>
62 #define LCD_MINOR 156
63 #define KEYPAD_MINOR 185
65 #define PANEL_VERSION "0.9.5"
67 #define LCD_MAXBYTES 256 /* max burst write */
69 #define KEYPAD_BUFFER 64
71 /* poll the keyboard this every second */
72 #define INPUT_POLL_TIME (HZ/50)
73 /* a key starts to repeat after this times INPUT_POLL_TIME */
74 #define KEYPAD_REP_START (10)
75 /* a key repeats this times INPUT_POLL_TIME */
76 #define KEYPAD_REP_DELAY (2)
78 /* keep the light on this times INPUT_POLL_TIME for each flash */
79 #define FLASH_LIGHT_TEMPO (200)
81 /* converts an r_str() input to an active high, bits string : 000BAOSE */
82 #define PNL_PINPUT(a) ((((unsigned char)(a)) ^ 0x7F) >> 3)
84 #define PNL_PBUSY 0x80 /* inverted input, active low */
85 #define PNL_PACK 0x40 /* direct input, active low */
86 #define PNL_POUTPA 0x20 /* direct input, active high */
87 #define PNL_PSELECD 0x10 /* direct input, active high */
88 #define PNL_PERRORP 0x08 /* direct input, active low */
90 #define PNL_PBIDIR 0x20 /* bi-directional ports */
91 /* high to read data in or-ed with data out */
92 #define PNL_PINTEN 0x10
93 #define PNL_PSELECP 0x08 /* inverted output, active low */
94 #define PNL_PINITP 0x04 /* direct output, active low */
95 #define PNL_PAUTOLF 0x02 /* inverted output, active low */
96 #define PNL_PSTROBE 0x01 /* inverted output */
98 #define PNL_PD0 0x01
99 #define PNL_PD1 0x02
100 #define PNL_PD2 0x04
101 #define PNL_PD3 0x08
102 #define PNL_PD4 0x10
103 #define PNL_PD5 0x20
104 #define PNL_PD6 0x40
105 #define PNL_PD7 0x80
107 #define PIN_NONE 0
108 #define PIN_STROBE 1
109 #define PIN_D0 2
110 #define PIN_D1 3
111 #define PIN_D2 4
112 #define PIN_D3 5
113 #define PIN_D4 6
114 #define PIN_D5 7
115 #define PIN_D6 8
116 #define PIN_D7 9
117 #define PIN_AUTOLF 14
118 #define PIN_INITP 16
119 #define PIN_SELECP 17
120 #define PIN_NOT_SET 127
122 #define LCD_FLAG_S 0x0001
123 #define LCD_FLAG_ID 0x0002
124 #define LCD_FLAG_B 0x0004 /* blink on */
125 #define LCD_FLAG_C 0x0008 /* cursor on */
126 #define LCD_FLAG_D 0x0010 /* display on */
127 #define LCD_FLAG_F 0x0020 /* large font mode */
128 #define LCD_FLAG_N 0x0040 /* 2-rows mode */
129 #define LCD_FLAG_L 0x0080 /* backlight enabled */
131 #define LCD_ESCAPE_LEN 24 /* max chars for LCD escape command */
132 #define LCD_ESCAPE_CHAR 27 /* use char 27 for escape command */
134 /* macros to simplify use of the parallel port */
135 #define r_ctr(x) (parport_read_control((x)->port))
136 #define r_dtr(x) (parport_read_data((x)->port))
137 #define r_str(x) (parport_read_status((x)->port))
138 #define w_ctr(x, y) do { parport_write_control((x)->port, (y)); } while (0)
139 #define w_dtr(x, y) do { parport_write_data((x)->port, (y)); } while (0)
141 /* this defines which bits are to be used and which ones to be ignored */
142 /* logical or of the output bits involved in the scan matrix */
143 static __u8 scan_mask_o;
144 /* logical or of the input bits involved in the scan matrix */
145 static __u8 scan_mask_i;
147 typedef __u64 pmask_t;
149 enum input_type {
150 INPUT_TYPE_STD,
151 INPUT_TYPE_KBD,
154 enum input_state {
155 INPUT_ST_LOW,
156 INPUT_ST_RISING,
157 INPUT_ST_HIGH,
158 INPUT_ST_FALLING,
161 struct logical_input {
162 struct list_head list;
163 pmask_t mask;
164 pmask_t value;
165 enum input_type type;
166 enum input_state state;
167 __u8 rise_time, fall_time;
168 __u8 rise_timer, fall_timer, high_timer;
170 union {
171 struct { /* valid when type == INPUT_TYPE_STD */
172 void (*press_fct) (int);
173 void (*release_fct) (int);
174 int press_data;
175 int release_data;
176 } std;
177 struct { /* valid when type == INPUT_TYPE_KBD */
178 /* strings can be non null-terminated */
179 char press_str[sizeof(void *) + sizeof(int)];
180 char repeat_str[sizeof(void *) + sizeof(int)];
181 char release_str[sizeof(void *) + sizeof(int)];
182 } kbd;
183 } u;
186 LIST_HEAD(logical_inputs); /* list of all defined logical inputs */
188 /* physical contacts history
189 * Physical contacts are a 45 bits string of 9 groups of 5 bits each.
190 * The 8 lower groups correspond to output bits 0 to 7, and the 9th group
191 * corresponds to the ground.
192 * Within each group, bits are stored in the same order as read on the port :
193 * BAPSE (busy=4, ack=3, paper empty=2, select=1, error=0).
194 * So, each __u64 (or pmask_t) is represented like this :
195 * 0000000000000000000BAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSE
196 * <-----unused------><gnd><d07><d06><d05><d04><d03><d02><d01><d00>
199 /* what has just been read from the I/O ports */
200 static pmask_t phys_read;
201 /* previous phys_read */
202 static pmask_t phys_read_prev;
203 /* stabilized phys_read (phys_read|phys_read_prev) */
204 static pmask_t phys_curr;
205 /* previous phys_curr */
206 static pmask_t phys_prev;
207 /* 0 means that at least one logical signal needs be computed */
208 static char inputs_stable;
210 /* these variables are specific to the keypad */
211 static char keypad_buffer[KEYPAD_BUFFER];
212 static int keypad_buflen;
213 static int keypad_start;
214 static char keypressed;
215 static wait_queue_head_t keypad_read_wait;
217 /* lcd-specific variables */
219 /* contains the LCD config state */
220 static unsigned long int lcd_flags;
221 /* contains the LCD X offset */
222 static unsigned long int lcd_addr_x;
223 /* contains the LCD Y offset */
224 static unsigned long int lcd_addr_y;
225 /* current escape sequence, 0 terminated */
226 static char lcd_escape[LCD_ESCAPE_LEN + 1];
227 /* not in escape state. >=0 = escape cmd len */
228 static int lcd_escape_len = -1;
231 * Bit masks to convert LCD signals to parallel port outputs.
232 * _d_ are values for data port, _c_ are for control port.
233 * [0] = signal OFF, [1] = signal ON, [2] = mask
235 #define BIT_CLR 0
236 #define BIT_SET 1
237 #define BIT_MSK 2
238 #define BIT_STATES 3
240 * one entry for each bit on the LCD
242 #define LCD_BIT_E 0
243 #define LCD_BIT_RS 1
244 #define LCD_BIT_RW 2
245 #define LCD_BIT_BL 3
246 #define LCD_BIT_CL 4
247 #define LCD_BIT_DA 5
248 #define LCD_BITS 6
251 * each bit can be either connected to a DATA or CTRL port
253 #define LCD_PORT_C 0
254 #define LCD_PORT_D 1
255 #define LCD_PORTS 2
257 static unsigned char lcd_bits[LCD_PORTS][LCD_BITS][BIT_STATES];
260 * LCD protocols
262 #define LCD_PROTO_PARALLEL 0
263 #define LCD_PROTO_SERIAL 1
264 #define LCD_PROTO_TI_DA8XX_LCD 2
267 * LCD character sets
269 #define LCD_CHARSET_NORMAL 0
270 #define LCD_CHARSET_KS0074 1
273 * LCD types
275 #define LCD_TYPE_NONE 0
276 #define LCD_TYPE_OLD 1
277 #define LCD_TYPE_KS0074 2
278 #define LCD_TYPE_HANTRONIX 3
279 #define LCD_TYPE_NEXCOM 4
280 #define LCD_TYPE_CUSTOM 5
283 * keypad types
285 #define KEYPAD_TYPE_NONE 0
286 #define KEYPAD_TYPE_OLD 1
287 #define KEYPAD_TYPE_NEW 2
288 #define KEYPAD_TYPE_NEXCOM 3
291 * panel profiles
293 #define PANEL_PROFILE_CUSTOM 0
294 #define PANEL_PROFILE_OLD 1
295 #define PANEL_PROFILE_NEW 2
296 #define PANEL_PROFILE_HANTRONIX 3
297 #define PANEL_PROFILE_NEXCOM 4
298 #define PANEL_PROFILE_LARGE 5
301 * Construct custom config from the kernel's configuration
303 #define DEFAULT_PROFILE PANEL_PROFILE_LARGE
304 #define DEFAULT_PARPORT 0
305 #define DEFAULT_LCD LCD_TYPE_OLD
306 #define DEFAULT_KEYPAD KEYPAD_TYPE_OLD
307 #define DEFAULT_LCD_WIDTH 40
308 #define DEFAULT_LCD_BWIDTH 40
309 #define DEFAULT_LCD_HWIDTH 64
310 #define DEFAULT_LCD_HEIGHT 2
311 #define DEFAULT_LCD_PROTO LCD_PROTO_PARALLEL
313 #define DEFAULT_LCD_PIN_E PIN_AUTOLF
314 #define DEFAULT_LCD_PIN_RS PIN_SELECP
315 #define DEFAULT_LCD_PIN_RW PIN_INITP
316 #define DEFAULT_LCD_PIN_SCL PIN_STROBE
317 #define DEFAULT_LCD_PIN_SDA PIN_D0
318 #define DEFAULT_LCD_PIN_BL PIN_NOT_SET
319 #define DEFAULT_LCD_CHARSET LCD_CHARSET_NORMAL
321 #ifdef CONFIG_PANEL_PROFILE
322 #undef DEFAULT_PROFILE
323 #define DEFAULT_PROFILE CONFIG_PANEL_PROFILE
324 #endif
326 #ifdef CONFIG_PANEL_PARPORT
327 #undef DEFAULT_PARPORT
328 #define DEFAULT_PARPORT CONFIG_PANEL_PARPORT
329 #endif
331 #if DEFAULT_PROFILE == 0 /* custom */
332 #ifdef CONFIG_PANEL_KEYPAD
333 #undef DEFAULT_KEYPAD
334 #define DEFAULT_KEYPAD CONFIG_PANEL_KEYPAD
335 #endif
337 #ifdef CONFIG_PANEL_LCD
338 #undef DEFAULT_LCD
339 #define DEFAULT_LCD CONFIG_PANEL_LCD
340 #endif
342 #ifdef CONFIG_PANEL_LCD_WIDTH
343 #undef DEFAULT_LCD_WIDTH
344 #define DEFAULT_LCD_WIDTH CONFIG_PANEL_LCD_WIDTH
345 #endif
347 #ifdef CONFIG_PANEL_LCD_BWIDTH
348 #undef DEFAULT_LCD_BWIDTH
349 #define DEFAULT_LCD_BWIDTH CONFIG_PANEL_LCD_BWIDTH
350 #endif
352 #ifdef CONFIG_PANEL_LCD_HWIDTH
353 #undef DEFAULT_LCD_HWIDTH
354 #define DEFAULT_LCD_HWIDTH CONFIG_PANEL_LCD_HWIDTH
355 #endif
357 #ifdef CONFIG_PANEL_LCD_HEIGHT
358 #undef DEFAULT_LCD_HEIGHT
359 #define DEFAULT_LCD_HEIGHT CONFIG_PANEL_LCD_HEIGHT
360 #endif
362 #ifdef CONFIG_PANEL_LCD_PROTO
363 #undef DEFAULT_LCD_PROTO
364 #define DEFAULT_LCD_PROTO CONFIG_PANEL_LCD_PROTO
365 #endif
367 #ifdef CONFIG_PANEL_LCD_PIN_E
368 #undef DEFAULT_LCD_PIN_E
369 #define DEFAULT_LCD_PIN_E CONFIG_PANEL_LCD_PIN_E
370 #endif
372 #ifdef CONFIG_PANEL_LCD_PIN_RS
373 #undef DEFAULT_LCD_PIN_RS
374 #define DEFAULT_LCD_PIN_RS CONFIG_PANEL_LCD_PIN_RS
375 #endif
377 #ifdef CONFIG_PANEL_LCD_PIN_RW
378 #undef DEFAULT_LCD_PIN_RW
379 #define DEFAULT_LCD_PIN_RW CONFIG_PANEL_LCD_PIN_RW
380 #endif
382 #ifdef CONFIG_PANEL_LCD_PIN_SCL
383 #undef DEFAULT_LCD_PIN_SCL
384 #define DEFAULT_LCD_PIN_SCL CONFIG_PANEL_LCD_PIN_SCL
385 #endif
387 #ifdef CONFIG_PANEL_LCD_PIN_SDA
388 #undef DEFAULT_LCD_PIN_SDA
389 #define DEFAULT_LCD_PIN_SDA CONFIG_PANEL_LCD_PIN_SDA
390 #endif
392 #ifdef CONFIG_PANEL_LCD_PIN_BL
393 #undef DEFAULT_LCD_PIN_BL
394 #define DEFAULT_LCD_PIN_BL CONFIG_PANEL_LCD_PIN_BL
395 #endif
397 #ifdef CONFIG_PANEL_LCD_CHARSET
398 #undef DEFAULT_LCD_CHARSET
399 #define DEFAULT_LCD_CHARSET CONFIG_PANEL_LCD_CHARSET
400 #endif
402 #endif /* DEFAULT_PROFILE == 0 */
404 /* global variables */
405 static int keypad_open_cnt; /* #times opened */
406 static int lcd_open_cnt; /* #times opened */
407 static struct pardevice *pprt;
409 static int lcd_initialized;
410 static int keypad_initialized;
412 static int light_tempo;
414 static char lcd_must_clear;
415 static char lcd_left_shift;
416 static char init_in_progress;
418 static void (*lcd_write_cmd) (int);
419 static void (*lcd_write_data) (int);
420 static void (*lcd_clear_fast) (void);
422 static DEFINE_SPINLOCK(pprt_lock);
423 static struct timer_list scan_timer;
425 MODULE_DESCRIPTION("Generic parallel port LCD/Keypad driver");
427 static int parport = -1;
428 module_param(parport, int, 0000);
429 MODULE_PARM_DESC(parport, "Parallel port index (0=lpt1, 1=lpt2, ...)");
431 static int lcd_height = -1;
432 module_param(lcd_height, int, 0000);
433 MODULE_PARM_DESC(lcd_height, "Number of lines on the LCD");
435 static int lcd_width = -1;
436 module_param(lcd_width, int, 0000);
437 MODULE_PARM_DESC(lcd_width, "Number of columns on the LCD");
439 static int lcd_bwidth = -1; /* internal buffer width (usually 40) */
440 module_param(lcd_bwidth, int, 0000);
441 MODULE_PARM_DESC(lcd_bwidth, "Internal LCD line width (40)");
443 static int lcd_hwidth = -1; /* hardware buffer width (usually 64) */
444 module_param(lcd_hwidth, int, 0000);
445 MODULE_PARM_DESC(lcd_hwidth, "LCD line hardware address (64)");
447 static int lcd_enabled = -1;
448 module_param(lcd_enabled, int, 0000);
449 MODULE_PARM_DESC(lcd_enabled, "Deprecated option, use lcd_type instead");
451 static int keypad_enabled = -1;
452 module_param(keypad_enabled, int, 0000);
453 MODULE_PARM_DESC(keypad_enabled, "Deprecated option, use keypad_type instead");
455 static int lcd_type = -1;
456 module_param(lcd_type, int, 0000);
457 MODULE_PARM_DESC(lcd_type,
458 "LCD type: 0=none, 1=old //, 2=serial ks0074, "
459 "3=hantronix //, 4=nexcom //, 5=compiled-in");
461 static int lcd_proto = -1;
462 module_param(lcd_proto, int, 0000);
463 MODULE_PARM_DESC(lcd_proto,
464 "LCD communication: 0=parallel (//), 1=serial,"
465 "2=TI LCD Interface");
467 static int lcd_charset = -1;
468 module_param(lcd_charset, int, 0000);
469 MODULE_PARM_DESC(lcd_charset, "LCD character set: 0=standard, 1=KS0074");
471 static int keypad_type = -1;
472 module_param(keypad_type, int, 0000);
473 MODULE_PARM_DESC(keypad_type,
474 "Keypad type: 0=none, 1=old 6 keys, 2=new 6+1 keys, "
475 "3=nexcom 4 keys");
477 static int profile = DEFAULT_PROFILE;
478 module_param(profile, int, 0000);
479 MODULE_PARM_DESC(profile,
480 "1=16x2 old kp; 2=serial 16x2, new kp; 3=16x2 hantronix; "
481 "4=16x2 nexcom; default=40x2, old kp");
484 * These are the parallel port pins the LCD control signals are connected to.
485 * Set this to 0 if the signal is not used. Set it to its opposite value
486 * (negative) if the signal is negated. -MAXINT is used to indicate that the
487 * pin has not been explicitly specified.
489 * WARNING! no check will be performed about collisions with keypad !
492 static int lcd_e_pin = PIN_NOT_SET;
493 module_param(lcd_e_pin, int, 0000);
494 MODULE_PARM_DESC(lcd_e_pin,
495 "# of the // port pin connected to LCD 'E' signal, "
496 "with polarity (-17..17)");
498 static int lcd_rs_pin = PIN_NOT_SET;
499 module_param(lcd_rs_pin, int, 0000);
500 MODULE_PARM_DESC(lcd_rs_pin,
501 "# of the // port pin connected to LCD 'RS' signal, "
502 "with polarity (-17..17)");
504 static int lcd_rw_pin = PIN_NOT_SET;
505 module_param(lcd_rw_pin, int, 0000);
506 MODULE_PARM_DESC(lcd_rw_pin,
507 "# of the // port pin connected to LCD 'RW' signal, "
508 "with polarity (-17..17)");
510 static int lcd_bl_pin = PIN_NOT_SET;
511 module_param(lcd_bl_pin, int, 0000);
512 MODULE_PARM_DESC(lcd_bl_pin,
513 "# of the // port pin connected to LCD backlight, "
514 "with polarity (-17..17)");
516 static int lcd_da_pin = PIN_NOT_SET;
517 module_param(lcd_da_pin, int, 0000);
518 MODULE_PARM_DESC(lcd_da_pin,
519 "# of the // port pin connected to serial LCD 'SDA' "
520 "signal, with polarity (-17..17)");
522 static int lcd_cl_pin = PIN_NOT_SET;
523 module_param(lcd_cl_pin, int, 0000);
524 MODULE_PARM_DESC(lcd_cl_pin,
525 "# of the // port pin connected to serial LCD 'SCL' "
526 "signal, with polarity (-17..17)");
528 static unsigned char *lcd_char_conv;
530 /* for some LCD drivers (ks0074) we need a charset conversion table. */
531 static unsigned char lcd_char_conv_ks0074[256] = {
532 /* 0|8 1|9 2|A 3|B 4|C 5|D 6|E 7|F */
533 /* 0x00 */ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
534 /* 0x08 */ 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
535 /* 0x10 */ 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
536 /* 0x18 */ 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
537 /* 0x20 */ 0x20, 0x21, 0x22, 0x23, 0xa2, 0x25, 0x26, 0x27,
538 /* 0x28 */ 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f,
539 /* 0x30 */ 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37,
540 /* 0x38 */ 0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f,
541 /* 0x40 */ 0xa0, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47,
542 /* 0x48 */ 0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f,
543 /* 0x50 */ 0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57,
544 /* 0x58 */ 0x58, 0x59, 0x5a, 0xfa, 0xfb, 0xfc, 0x1d, 0xc4,
545 /* 0x60 */ 0x96, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67,
546 /* 0x68 */ 0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f,
547 /* 0x70 */ 0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77,
548 /* 0x78 */ 0x78, 0x79, 0x7a, 0xfd, 0xfe, 0xff, 0xce, 0x20,
549 /* 0x80 */ 0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
550 /* 0x88 */ 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f,
551 /* 0x90 */ 0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97,
552 /* 0x98 */ 0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f,
553 /* 0xA0 */ 0x20, 0x40, 0xb1, 0xa1, 0x24, 0xa3, 0xfe, 0x5f,
554 /* 0xA8 */ 0x22, 0xc8, 0x61, 0x14, 0x97, 0x2d, 0xad, 0x96,
555 /* 0xB0 */ 0x80, 0x8c, 0x82, 0x83, 0x27, 0x8f, 0x86, 0xdd,
556 /* 0xB8 */ 0x2c, 0x81, 0x6f, 0x15, 0x8b, 0x8a, 0x84, 0x60,
557 /* 0xC0 */ 0xe2, 0xe2, 0xe2, 0x5b, 0x5b, 0xae, 0xbc, 0xa9,
558 /* 0xC8 */ 0xc5, 0xbf, 0xc6, 0xf1, 0xe3, 0xe3, 0xe3, 0xe3,
559 /* 0xD0 */ 0x44, 0x5d, 0xa8, 0xe4, 0xec, 0xec, 0x5c, 0x78,
560 /* 0xD8 */ 0xab, 0xa6, 0xe5, 0x5e, 0x5e, 0xe6, 0xaa, 0xbe,
561 /* 0xE0 */ 0x7f, 0xe7, 0xaf, 0x7b, 0x7b, 0xaf, 0xbd, 0xc8,
562 /* 0xE8 */ 0xa4, 0xa5, 0xc7, 0xf6, 0xa7, 0xe8, 0x69, 0x69,
563 /* 0xF0 */ 0xed, 0x7d, 0xa8, 0xe4, 0xec, 0x5c, 0x5c, 0x25,
564 /* 0xF8 */ 0xac, 0xa6, 0xea, 0xef, 0x7e, 0xeb, 0xb2, 0x79,
567 char old_keypad_profile[][4][9] = {
568 {"S0", "Left\n", "Left\n", ""},
569 {"S1", "Down\n", "Down\n", ""},
570 {"S2", "Up\n", "Up\n", ""},
571 {"S3", "Right\n", "Right\n", ""},
572 {"S4", "Esc\n", "Esc\n", ""},
573 {"S5", "Ret\n", "Ret\n", ""},
574 {"", "", "", ""}
577 /* signals, press, repeat, release */
578 char new_keypad_profile[][4][9] = {
579 {"S0", "Left\n", "Left\n", ""},
580 {"S1", "Down\n", "Down\n", ""},
581 {"S2", "Up\n", "Up\n", ""},
582 {"S3", "Right\n", "Right\n", ""},
583 {"S4s5", "", "Esc\n", "Esc\n"},
584 {"s4S5", "", "Ret\n", "Ret\n"},
585 {"S4S5", "Help\n", "", ""},
586 /* add new signals above this line */
587 {"", "", "", ""}
590 /* signals, press, repeat, release */
591 char nexcom_keypad_profile[][4][9] = {
592 {"a-p-e-", "Down\n", "Down\n", ""},
593 {"a-p-E-", "Ret\n", "Ret\n", ""},
594 {"a-P-E-", "Esc\n", "Esc\n", ""},
595 {"a-P-e-", "Up\n", "Up\n", ""},
596 /* add new signals above this line */
597 {"", "", "", ""}
600 static char (*keypad_profile)[4][9] = old_keypad_profile;
602 /* FIXME: this should be converted to a bit array containing signals states */
603 static struct {
604 unsigned char e; /* parallel LCD E (data latch on falling edge) */
605 unsigned char rs; /* parallel LCD RS (0 = cmd, 1 = data) */
606 unsigned char rw; /* parallel LCD R/W (0 = W, 1 = R) */
607 unsigned char bl; /* parallel LCD backlight (0 = off, 1 = on) */
608 unsigned char cl; /* serial LCD clock (latch on rising edge) */
609 unsigned char da; /* serial LCD data */
610 } bits;
612 static void init_scan_timer(void);
614 /* sets data port bits according to current signals values */
615 static int set_data_bits(void)
617 int val, bit;
619 val = r_dtr(pprt);
620 for (bit = 0; bit < LCD_BITS; bit++)
621 val &= lcd_bits[LCD_PORT_D][bit][BIT_MSK];
623 val |= lcd_bits[LCD_PORT_D][LCD_BIT_E][bits.e]
624 | lcd_bits[LCD_PORT_D][LCD_BIT_RS][bits.rs]
625 | lcd_bits[LCD_PORT_D][LCD_BIT_RW][bits.rw]
626 | lcd_bits[LCD_PORT_D][LCD_BIT_BL][bits.bl]
627 | lcd_bits[LCD_PORT_D][LCD_BIT_CL][bits.cl]
628 | lcd_bits[LCD_PORT_D][LCD_BIT_DA][bits.da];
630 w_dtr(pprt, val);
631 return val;
634 /* sets ctrl port bits according to current signals values */
635 static int set_ctrl_bits(void)
637 int val, bit;
639 val = r_ctr(pprt);
640 for (bit = 0; bit < LCD_BITS; bit++)
641 val &= lcd_bits[LCD_PORT_C][bit][BIT_MSK];
643 val |= lcd_bits[LCD_PORT_C][LCD_BIT_E][bits.e]
644 | lcd_bits[LCD_PORT_C][LCD_BIT_RS][bits.rs]
645 | lcd_bits[LCD_PORT_C][LCD_BIT_RW][bits.rw]
646 | lcd_bits[LCD_PORT_C][LCD_BIT_BL][bits.bl]
647 | lcd_bits[LCD_PORT_C][LCD_BIT_CL][bits.cl]
648 | lcd_bits[LCD_PORT_C][LCD_BIT_DA][bits.da];
650 w_ctr(pprt, val);
651 return val;
654 /* sets ctrl & data port bits according to current signals values */
655 static void panel_set_bits(void)
657 set_data_bits();
658 set_ctrl_bits();
662 * Converts a parallel port pin (from -25 to 25) to data and control ports
663 * masks, and data and control port bits. The signal will be considered
664 * unconnected if it's on pin 0 or an invalid pin (<-25 or >25).
666 * Result will be used this way :
667 * out(dport, in(dport) & d_val[2] | d_val[signal_state])
668 * out(cport, in(cport) & c_val[2] | c_val[signal_state])
670 void pin_to_bits(int pin, unsigned char *d_val, unsigned char *c_val)
672 int d_bit, c_bit, inv;
674 d_val[0] = c_val[0] = d_val[1] = c_val[1] = 0;
675 d_val[2] = c_val[2] = 0xFF;
677 if (pin == 0)
678 return;
680 inv = (pin < 0);
681 if (inv)
682 pin = -pin;
684 d_bit = c_bit = 0;
686 switch (pin) {
687 case PIN_STROBE: /* strobe, inverted */
688 c_bit = PNL_PSTROBE;
689 inv = !inv;
690 break;
691 case PIN_D0...PIN_D7: /* D0 - D7 = 2 - 9 */
692 d_bit = 1 << (pin - 2);
693 break;
694 case PIN_AUTOLF: /* autofeed, inverted */
695 c_bit = PNL_PAUTOLF;
696 inv = !inv;
697 break;
698 case PIN_INITP: /* init, direct */
699 c_bit = PNL_PINITP;
700 break;
701 case PIN_SELECP: /* select_in, inverted */
702 c_bit = PNL_PSELECP;
703 inv = !inv;
704 break;
705 default: /* unknown pin, ignore */
706 break;
709 if (c_bit) {
710 c_val[2] &= ~c_bit;
711 c_val[!inv] = c_bit;
712 } else if (d_bit) {
713 d_val[2] &= ~d_bit;
714 d_val[!inv] = d_bit;
718 /* sleeps that many milliseconds with a reschedule */
719 static void long_sleep(int ms)
722 if (in_interrupt())
723 mdelay(ms);
724 else {
725 current->state = TASK_INTERRUPTIBLE;
726 schedule_timeout((ms * HZ + 999) / 1000);
730 /* send a serial byte to the LCD panel. The caller is responsible for locking
731 if needed. */
732 static void lcd_send_serial(int byte)
734 int bit;
736 /* the data bit is set on D0, and the clock on STROBE.
737 * LCD reads D0 on STROBE's rising edge. */
738 for (bit = 0; bit < 8; bit++) {
739 bits.cl = BIT_CLR; /* CLK low */
740 panel_set_bits();
741 bits.da = byte & 1;
742 panel_set_bits();
743 udelay(2); /* maintain the data during 2 us before CLK up */
744 bits.cl = BIT_SET; /* CLK high */
745 panel_set_bits();
746 udelay(1); /* maintain the strobe during 1 us */
747 byte >>= 1;
751 /* turn the backlight on or off */
752 static void lcd_backlight(int on)
754 if (lcd_bl_pin == PIN_NONE)
755 return;
757 /* The backlight is activated by seting the AUTOFEED line to +5V */
758 spin_lock(&pprt_lock);
759 bits.bl = on;
760 panel_set_bits();
761 spin_unlock(&pprt_lock);
764 /* send a command to the LCD panel in serial mode */
765 static void lcd_write_cmd_s(int cmd)
767 spin_lock(&pprt_lock);
768 lcd_send_serial(0x1F); /* R/W=W, RS=0 */
769 lcd_send_serial(cmd & 0x0F);
770 lcd_send_serial((cmd >> 4) & 0x0F);
771 udelay(40); /* the shortest command takes at least 40 us */
772 spin_unlock(&pprt_lock);
775 /* send data to the LCD panel in serial mode */
776 static void lcd_write_data_s(int data)
778 spin_lock(&pprt_lock);
779 lcd_send_serial(0x5F); /* R/W=W, RS=1 */
780 lcd_send_serial(data & 0x0F);
781 lcd_send_serial((data >> 4) & 0x0F);
782 udelay(40); /* the shortest data takes at least 40 us */
783 spin_unlock(&pprt_lock);
786 /* send a command to the LCD panel in 8 bits parallel mode */
787 static void lcd_write_cmd_p8(int cmd)
789 spin_lock(&pprt_lock);
790 /* present the data to the data port */
791 w_dtr(pprt, cmd);
792 udelay(20); /* maintain the data during 20 us before the strobe */
794 bits.e = BIT_SET;
795 bits.rs = BIT_CLR;
796 bits.rw = BIT_CLR;
797 set_ctrl_bits();
799 udelay(40); /* maintain the strobe during 40 us */
801 bits.e = BIT_CLR;
802 set_ctrl_bits();
804 udelay(120); /* the shortest command takes at least 120 us */
805 spin_unlock(&pprt_lock);
808 /* send data to the LCD panel in 8 bits parallel mode */
809 static void lcd_write_data_p8(int data)
811 spin_lock(&pprt_lock);
812 /* present the data to the data port */
813 w_dtr(pprt, data);
814 udelay(20); /* maintain the data during 20 us before the strobe */
816 bits.e = BIT_SET;
817 bits.rs = BIT_SET;
818 bits.rw = BIT_CLR;
819 set_ctrl_bits();
821 udelay(40); /* maintain the strobe during 40 us */
823 bits.e = BIT_CLR;
824 set_ctrl_bits();
826 udelay(45); /* the shortest data takes at least 45 us */
827 spin_unlock(&pprt_lock);
830 /* send a command to the TI LCD panel */
831 static void lcd_write_cmd_tilcd(int cmd)
833 spin_lock(&pprt_lock);
834 /* present the data to the control port */
835 w_ctr(pprt, cmd);
836 udelay(60);
837 spin_unlock(&pprt_lock);
840 /* send data to the TI LCD panel */
841 static void lcd_write_data_tilcd(int data)
843 spin_lock(&pprt_lock);
844 /* present the data to the data port */
845 w_dtr(pprt, data);
846 udelay(60);
847 spin_unlock(&pprt_lock);
850 static void lcd_gotoxy(void)
852 lcd_write_cmd(0x80 /* set DDRAM address */
853 | (lcd_addr_y ? lcd_hwidth : 0)
854 /* we force the cursor to stay at the end of the
855 line if it wants to go farther */
856 | ((lcd_addr_x < lcd_bwidth) ? lcd_addr_x &
857 (lcd_hwidth - 1) : lcd_bwidth - 1));
860 static void lcd_print(char c)
862 if (lcd_addr_x < lcd_bwidth) {
863 if (lcd_char_conv != NULL)
864 c = lcd_char_conv[(unsigned char)c];
865 lcd_write_data(c);
866 lcd_addr_x++;
868 /* prevents the cursor from wrapping onto the next line */
869 if (lcd_addr_x == lcd_bwidth)
870 lcd_gotoxy();
873 /* fills the display with spaces and resets X/Y */
874 static void lcd_clear_fast_s(void)
876 int pos;
877 lcd_addr_x = lcd_addr_y = 0;
878 lcd_gotoxy();
880 spin_lock(&pprt_lock);
881 for (pos = 0; pos < lcd_height * lcd_hwidth; pos++) {
882 lcd_send_serial(0x5F); /* R/W=W, RS=1 */
883 lcd_send_serial(' ' & 0x0F);
884 lcd_send_serial((' ' >> 4) & 0x0F);
885 udelay(40); /* the shortest data takes at least 40 us */
887 spin_unlock(&pprt_lock);
889 lcd_addr_x = lcd_addr_y = 0;
890 lcd_gotoxy();
893 /* fills the display with spaces and resets X/Y */
894 static void lcd_clear_fast_p8(void)
896 int pos;
897 lcd_addr_x = lcd_addr_y = 0;
898 lcd_gotoxy();
900 spin_lock(&pprt_lock);
901 for (pos = 0; pos < lcd_height * lcd_hwidth; pos++) {
902 /* present the data to the data port */
903 w_dtr(pprt, ' ');
905 /* maintain the data during 20 us before the strobe */
906 udelay(20);
908 bits.e = BIT_SET;
909 bits.rs = BIT_SET;
910 bits.rw = BIT_CLR;
911 set_ctrl_bits();
913 /* maintain the strobe during 40 us */
914 udelay(40);
916 bits.e = BIT_CLR;
917 set_ctrl_bits();
919 /* the shortest data takes at least 45 us */
920 udelay(45);
922 spin_unlock(&pprt_lock);
924 lcd_addr_x = lcd_addr_y = 0;
925 lcd_gotoxy();
928 /* fills the display with spaces and resets X/Y */
929 static void lcd_clear_fast_tilcd(void)
931 int pos;
932 lcd_addr_x = lcd_addr_y = 0;
933 lcd_gotoxy();
935 spin_lock(&pprt_lock);
936 for (pos = 0; pos < lcd_height * lcd_hwidth; pos++) {
937 /* present the data to the data port */
938 w_dtr(pprt, ' ');
939 udelay(60);
942 spin_unlock(&pprt_lock);
944 lcd_addr_x = lcd_addr_y = 0;
945 lcd_gotoxy();
948 /* clears the display and resets X/Y */
949 static void lcd_clear_display(void)
951 lcd_write_cmd(0x01); /* clear display */
952 lcd_addr_x = lcd_addr_y = 0;
953 /* we must wait a few milliseconds (15) */
954 long_sleep(15);
957 static void lcd_init_display(void)
960 lcd_flags = ((lcd_height > 1) ? LCD_FLAG_N : 0)
961 | LCD_FLAG_D | LCD_FLAG_C | LCD_FLAG_B;
963 long_sleep(20); /* wait 20 ms after power-up for the paranoid */
965 lcd_write_cmd(0x30); /* 8bits, 1 line, small fonts */
966 long_sleep(10);
967 lcd_write_cmd(0x30); /* 8bits, 1 line, small fonts */
968 long_sleep(10);
969 lcd_write_cmd(0x30); /* 8bits, 1 line, small fonts */
970 long_sleep(10);
972 lcd_write_cmd(0x30 /* set font height and lines number */
973 | ((lcd_flags & LCD_FLAG_F) ? 4 : 0)
974 | ((lcd_flags & LCD_FLAG_N) ? 8 : 0)
976 long_sleep(10);
978 lcd_write_cmd(0x08); /* display off, cursor off, blink off */
979 long_sleep(10);
981 lcd_write_cmd(0x08 /* set display mode */
982 | ((lcd_flags & LCD_FLAG_D) ? 4 : 0)
983 | ((lcd_flags & LCD_FLAG_C) ? 2 : 0)
984 | ((lcd_flags & LCD_FLAG_B) ? 1 : 0)
987 lcd_backlight((lcd_flags & LCD_FLAG_L) ? 1 : 0);
989 long_sleep(10);
991 /* entry mode set : increment, cursor shifting */
992 lcd_write_cmd(0x06);
994 lcd_clear_display();
998 * These are the file operation function for user access to /dev/lcd
999 * This function can also be called from inside the kernel, by
1000 * setting file and ppos to NULL.
1004 static inline int handle_lcd_special_code(void)
1006 /* LCD special codes */
1008 int processed = 0;
1010 char *esc = lcd_escape + 2;
1011 int oldflags = lcd_flags;
1013 /* check for display mode flags */
1014 switch (*esc) {
1015 case 'D': /* Display ON */
1016 lcd_flags |= LCD_FLAG_D;
1017 processed = 1;
1018 break;
1019 case 'd': /* Display OFF */
1020 lcd_flags &= ~LCD_FLAG_D;
1021 processed = 1;
1022 break;
1023 case 'C': /* Cursor ON */
1024 lcd_flags |= LCD_FLAG_C;
1025 processed = 1;
1026 break;
1027 case 'c': /* Cursor OFF */
1028 lcd_flags &= ~LCD_FLAG_C;
1029 processed = 1;
1030 break;
1031 case 'B': /* Blink ON */
1032 lcd_flags |= LCD_FLAG_B;
1033 processed = 1;
1034 break;
1035 case 'b': /* Blink OFF */
1036 lcd_flags &= ~LCD_FLAG_B;
1037 processed = 1;
1038 break;
1039 case '+': /* Back light ON */
1040 lcd_flags |= LCD_FLAG_L;
1041 processed = 1;
1042 break;
1043 case '-': /* Back light OFF */
1044 lcd_flags &= ~LCD_FLAG_L;
1045 processed = 1;
1046 break;
1047 case '*':
1048 /* flash back light using the keypad timer */
1049 if (scan_timer.function != NULL) {
1050 if (light_tempo == 0 && ((lcd_flags & LCD_FLAG_L) == 0))
1051 lcd_backlight(1);
1052 light_tempo = FLASH_LIGHT_TEMPO;
1054 processed = 1;
1055 break;
1056 case 'f': /* Small Font */
1057 lcd_flags &= ~LCD_FLAG_F;
1058 processed = 1;
1059 break;
1060 case 'F': /* Large Font */
1061 lcd_flags |= LCD_FLAG_F;
1062 processed = 1;
1063 break;
1064 case 'n': /* One Line */
1065 lcd_flags &= ~LCD_FLAG_N;
1066 processed = 1;
1067 break;
1068 case 'N': /* Two Lines */
1069 lcd_flags |= LCD_FLAG_N;
1070 break;
1071 case 'l': /* Shift Cursor Left */
1072 if (lcd_addr_x > 0) {
1073 /* back one char if not at end of line */
1074 if (lcd_addr_x < lcd_bwidth)
1075 lcd_write_cmd(0x10);
1076 lcd_addr_x--;
1078 processed = 1;
1079 break;
1080 case 'r': /* shift cursor right */
1081 if (lcd_addr_x < lcd_width) {
1082 /* allow the cursor to pass the end of the line */
1083 if (lcd_addr_x <
1084 (lcd_bwidth - 1))
1085 lcd_write_cmd(0x14);
1086 lcd_addr_x++;
1088 processed = 1;
1089 break;
1090 case 'L': /* shift display left */
1091 lcd_left_shift++;
1092 lcd_write_cmd(0x18);
1093 processed = 1;
1094 break;
1095 case 'R': /* shift display right */
1096 lcd_left_shift--;
1097 lcd_write_cmd(0x1C);
1098 processed = 1;
1099 break;
1100 case 'k': { /* kill end of line */
1101 int x;
1102 for (x = lcd_addr_x; x < lcd_bwidth; x++)
1103 lcd_write_data(' ');
1105 /* restore cursor position */
1106 lcd_gotoxy();
1107 processed = 1;
1108 break;
1110 case 'I': /* reinitialize display */
1111 lcd_init_display();
1112 lcd_left_shift = 0;
1113 processed = 1;
1114 break;
1115 case 'G': {
1116 /* Generator : LGcxxxxx...xx; must have <c> between '0'
1117 * and '7', representing the numerical ASCII code of the
1118 * redefined character, and <xx...xx> a sequence of 16
1119 * hex digits representing 8 bytes for each character.
1120 * Most LCDs will only use 5 lower bits of the 7 first
1121 * bytes.
1124 unsigned char cgbytes[8];
1125 unsigned char cgaddr;
1126 int cgoffset;
1127 int shift;
1128 char value;
1129 int addr;
1131 if (strchr(esc, ';') == NULL)
1132 break;
1134 esc++;
1136 cgaddr = *(esc++) - '0';
1137 if (cgaddr > 7) {
1138 processed = 1;
1139 break;
1142 cgoffset = 0;
1143 shift = 0;
1144 value = 0;
1145 while (*esc && cgoffset < 8) {
1146 shift ^= 4;
1147 if (*esc >= '0' && *esc <= '9')
1148 value |= (*esc - '0') << shift;
1149 else if (*esc >= 'A' && *esc <= 'Z')
1150 value |= (*esc - 'A' + 10) << shift;
1151 else if (*esc >= 'a' && *esc <= 'z')
1152 value |= (*esc - 'a' + 10) << shift;
1153 else {
1154 esc++;
1155 continue;
1158 if (shift == 0) {
1159 cgbytes[cgoffset++] = value;
1160 value = 0;
1163 esc++;
1166 lcd_write_cmd(0x40 | (cgaddr * 8));
1167 for (addr = 0; addr < cgoffset; addr++)
1168 lcd_write_data(cgbytes[addr]);
1170 /* ensures that we stop writing to CGRAM */
1171 lcd_gotoxy();
1172 processed = 1;
1173 break;
1175 case 'x': /* gotoxy : LxXXX[yYYY]; */
1176 case 'y': /* gotoxy : LyYYY[xXXX]; */
1177 if (strchr(esc, ';') == NULL)
1178 break;
1180 while (*esc) {
1181 if (*esc == 'x') {
1182 esc++;
1183 if (kstrtoul(esc, 10, &lcd_addr_x) < 0)
1184 break;
1185 } else if (*esc == 'y') {
1186 esc++;
1187 if (kstrtoul(esc, 10, &lcd_addr_y) < 0)
1188 break;
1189 } else
1190 break;
1193 lcd_gotoxy();
1194 processed = 1;
1195 break;
1198 /* Check wether one flag was changed */
1199 if (oldflags != lcd_flags) {
1200 /* check whether one of B,C,D flags were changed */
1201 if ((oldflags ^ lcd_flags) &
1202 (LCD_FLAG_B | LCD_FLAG_C | LCD_FLAG_D))
1203 /* set display mode */
1204 lcd_write_cmd(0x08
1205 | ((lcd_flags & LCD_FLAG_D) ? 4 : 0)
1206 | ((lcd_flags & LCD_FLAG_C) ? 2 : 0)
1207 | ((lcd_flags & LCD_FLAG_B) ? 1 : 0));
1208 /* check whether one of F,N flags was changed */
1209 else if ((oldflags ^ lcd_flags) & (LCD_FLAG_F | LCD_FLAG_N))
1210 lcd_write_cmd(0x30
1211 | ((lcd_flags & LCD_FLAG_F) ? 4 : 0)
1212 | ((lcd_flags & LCD_FLAG_N) ? 8 : 0));
1213 /* check wether L flag was changed */
1214 else if ((oldflags ^ lcd_flags) & (LCD_FLAG_L)) {
1215 if (lcd_flags & (LCD_FLAG_L))
1216 lcd_backlight(1);
1217 else if (light_tempo == 0)
1218 /* switch off the light only when the tempo
1219 lighting is gone */
1220 lcd_backlight(0);
1224 return processed;
1227 static ssize_t lcd_write(struct file *file,
1228 const char *buf, size_t count, loff_t *ppos)
1230 const char *tmp = buf;
1231 char c;
1233 for (; count-- > 0; (ppos ? (*ppos)++ : 0), ++tmp) {
1234 if (!in_interrupt() && (((count + 1) & 0x1f) == 0))
1235 /* let's be a little nice with other processes
1236 that need some CPU */
1237 schedule();
1239 if (ppos == NULL && file == NULL)
1240 /* let's not use get_user() from the kernel ! */
1241 c = *tmp;
1242 else if (get_user(c, tmp))
1243 return -EFAULT;
1245 /* first, we'll test if we're in escape mode */
1246 if ((c != '\n') && lcd_escape_len >= 0) {
1247 /* yes, let's add this char to the buffer */
1248 lcd_escape[lcd_escape_len++] = c;
1249 lcd_escape[lcd_escape_len] = 0;
1250 } else {
1251 /* aborts any previous escape sequence */
1252 lcd_escape_len = -1;
1254 switch (c) {
1255 case LCD_ESCAPE_CHAR:
1256 /* start of an escape sequence */
1257 lcd_escape_len = 0;
1258 lcd_escape[lcd_escape_len] = 0;
1259 break;
1260 case '\b':
1261 /* go back one char and clear it */
1262 if (lcd_addr_x > 0) {
1263 /* check if we're not at the
1264 end of the line */
1265 if (lcd_addr_x < lcd_bwidth)
1266 /* back one char */
1267 lcd_write_cmd(0x10);
1268 lcd_addr_x--;
1270 /* replace with a space */
1271 lcd_write_data(' ');
1272 /* back one char again */
1273 lcd_write_cmd(0x10);
1274 break;
1275 case '\014':
1276 /* quickly clear the display */
1277 lcd_clear_fast();
1278 break;
1279 case '\n':
1280 /* flush the remainder of the current line and
1281 go to the beginning of the next line */
1282 for (; lcd_addr_x < lcd_bwidth; lcd_addr_x++)
1283 lcd_write_data(' ');
1284 lcd_addr_x = 0;
1285 lcd_addr_y = (lcd_addr_y + 1) % lcd_height;
1286 lcd_gotoxy();
1287 break;
1288 case '\r':
1289 /* go to the beginning of the same line */
1290 lcd_addr_x = 0;
1291 lcd_gotoxy();
1292 break;
1293 case '\t':
1294 /* print a space instead of the tab */
1295 lcd_print(' ');
1296 break;
1297 default:
1298 /* simply print this char */
1299 lcd_print(c);
1300 break;
1304 /* now we'll see if we're in an escape mode and if the current
1305 escape sequence can be understood. */
1306 if (lcd_escape_len >= 2) {
1307 int processed = 0;
1309 if (!strcmp(lcd_escape, "[2J")) {
1310 /* clear the display */
1311 lcd_clear_fast();
1312 processed = 1;
1313 } else if (!strcmp(lcd_escape, "[H")) {
1314 /* cursor to home */
1315 lcd_addr_x = lcd_addr_y = 0;
1316 lcd_gotoxy();
1317 processed = 1;
1319 /* codes starting with ^[[L */
1320 else if ((lcd_escape_len >= 3) &&
1321 (lcd_escape[0] == '[') &&
1322 (lcd_escape[1] == 'L')) {
1323 processed = handle_lcd_special_code();
1326 /* LCD special escape codes */
1327 /* flush the escape sequence if it's been processed
1328 or if it is getting too long. */
1329 if (processed || (lcd_escape_len >= LCD_ESCAPE_LEN))
1330 lcd_escape_len = -1;
1331 } /* escape codes */
1334 return tmp - buf;
1337 static int lcd_open(struct inode *inode, struct file *file)
1339 if (lcd_open_cnt)
1340 return -EBUSY; /* open only once at a time */
1342 if (file->f_mode & FMODE_READ) /* device is write-only */
1343 return -EPERM;
1345 if (lcd_must_clear) {
1346 lcd_clear_display();
1347 lcd_must_clear = 0;
1349 lcd_open_cnt++;
1350 return nonseekable_open(inode, file);
1353 static int lcd_release(struct inode *inode, struct file *file)
1355 lcd_open_cnt--;
1356 return 0;
1359 static const struct file_operations lcd_fops = {
1360 .write = lcd_write,
1361 .open = lcd_open,
1362 .release = lcd_release,
1363 .llseek = no_llseek,
1366 static struct miscdevice lcd_dev = {
1367 LCD_MINOR,
1368 "lcd",
1369 &lcd_fops
1372 /* public function usable from the kernel for any purpose */
1373 void panel_lcd_print(char *s)
1375 if (lcd_enabled && lcd_initialized)
1376 lcd_write(NULL, s, strlen(s), NULL);
1379 /* initialize the LCD driver */
1380 void lcd_init(void)
1382 switch (lcd_type) {
1383 case LCD_TYPE_OLD:
1384 /* parallel mode, 8 bits */
1385 if (lcd_proto < 0)
1386 lcd_proto = LCD_PROTO_PARALLEL;
1387 if (lcd_charset < 0)
1388 lcd_charset = LCD_CHARSET_NORMAL;
1389 if (lcd_e_pin == PIN_NOT_SET)
1390 lcd_e_pin = PIN_STROBE;
1391 if (lcd_rs_pin == PIN_NOT_SET)
1392 lcd_rs_pin = PIN_AUTOLF;
1394 if (lcd_width < 0)
1395 lcd_width = 40;
1396 if (lcd_bwidth < 0)
1397 lcd_bwidth = 40;
1398 if (lcd_hwidth < 0)
1399 lcd_hwidth = 64;
1400 if (lcd_height < 0)
1401 lcd_height = 2;
1402 break;
1403 case LCD_TYPE_KS0074:
1404 /* serial mode, ks0074 */
1405 if (lcd_proto < 0)
1406 lcd_proto = LCD_PROTO_SERIAL;
1407 if (lcd_charset < 0)
1408 lcd_charset = LCD_CHARSET_KS0074;
1409 if (lcd_bl_pin == PIN_NOT_SET)
1410 lcd_bl_pin = PIN_AUTOLF;
1411 if (lcd_cl_pin == PIN_NOT_SET)
1412 lcd_cl_pin = PIN_STROBE;
1413 if (lcd_da_pin == PIN_NOT_SET)
1414 lcd_da_pin = PIN_D0;
1416 if (lcd_width < 0)
1417 lcd_width = 16;
1418 if (lcd_bwidth < 0)
1419 lcd_bwidth = 40;
1420 if (lcd_hwidth < 0)
1421 lcd_hwidth = 16;
1422 if (lcd_height < 0)
1423 lcd_height = 2;
1424 break;
1425 case LCD_TYPE_NEXCOM:
1426 /* parallel mode, 8 bits, generic */
1427 if (lcd_proto < 0)
1428 lcd_proto = LCD_PROTO_PARALLEL;
1429 if (lcd_charset < 0)
1430 lcd_charset = LCD_CHARSET_NORMAL;
1431 if (lcd_e_pin == PIN_NOT_SET)
1432 lcd_e_pin = PIN_AUTOLF;
1433 if (lcd_rs_pin == PIN_NOT_SET)
1434 lcd_rs_pin = PIN_SELECP;
1435 if (lcd_rw_pin == PIN_NOT_SET)
1436 lcd_rw_pin = PIN_INITP;
1438 if (lcd_width < 0)
1439 lcd_width = 16;
1440 if (lcd_bwidth < 0)
1441 lcd_bwidth = 40;
1442 if (lcd_hwidth < 0)
1443 lcd_hwidth = 64;
1444 if (lcd_height < 0)
1445 lcd_height = 2;
1446 break;
1447 case LCD_TYPE_CUSTOM:
1448 /* customer-defined */
1449 if (lcd_proto < 0)
1450 lcd_proto = DEFAULT_LCD_PROTO;
1451 if (lcd_charset < 0)
1452 lcd_charset = DEFAULT_LCD_CHARSET;
1453 /* default geometry will be set later */
1454 break;
1455 case LCD_TYPE_HANTRONIX:
1456 /* parallel mode, 8 bits, hantronix-like */
1457 default:
1458 if (lcd_proto < 0)
1459 lcd_proto = LCD_PROTO_PARALLEL;
1460 if (lcd_charset < 0)
1461 lcd_charset = LCD_CHARSET_NORMAL;
1462 if (lcd_e_pin == PIN_NOT_SET)
1463 lcd_e_pin = PIN_STROBE;
1464 if (lcd_rs_pin == PIN_NOT_SET)
1465 lcd_rs_pin = PIN_SELECP;
1467 if (lcd_width < 0)
1468 lcd_width = 16;
1469 if (lcd_bwidth < 0)
1470 lcd_bwidth = 40;
1471 if (lcd_hwidth < 0)
1472 lcd_hwidth = 64;
1473 if (lcd_height < 0)
1474 lcd_height = 2;
1475 break;
1478 /* this is used to catch wrong and default values */
1479 if (lcd_width <= 0)
1480 lcd_width = DEFAULT_LCD_WIDTH;
1481 if (lcd_bwidth <= 0)
1482 lcd_bwidth = DEFAULT_LCD_BWIDTH;
1483 if (lcd_hwidth <= 0)
1484 lcd_hwidth = DEFAULT_LCD_HWIDTH;
1485 if (lcd_height <= 0)
1486 lcd_height = DEFAULT_LCD_HEIGHT;
1488 if (lcd_proto == LCD_PROTO_SERIAL) { /* SERIAL */
1489 lcd_write_cmd = lcd_write_cmd_s;
1490 lcd_write_data = lcd_write_data_s;
1491 lcd_clear_fast = lcd_clear_fast_s;
1493 if (lcd_cl_pin == PIN_NOT_SET)
1494 lcd_cl_pin = DEFAULT_LCD_PIN_SCL;
1495 if (lcd_da_pin == PIN_NOT_SET)
1496 lcd_da_pin = DEFAULT_LCD_PIN_SDA;
1498 } else if (lcd_proto == LCD_PROTO_PARALLEL) { /* PARALLEL */
1499 lcd_write_cmd = lcd_write_cmd_p8;
1500 lcd_write_data = lcd_write_data_p8;
1501 lcd_clear_fast = lcd_clear_fast_p8;
1503 if (lcd_e_pin == PIN_NOT_SET)
1504 lcd_e_pin = DEFAULT_LCD_PIN_E;
1505 if (lcd_rs_pin == PIN_NOT_SET)
1506 lcd_rs_pin = DEFAULT_LCD_PIN_RS;
1507 if (lcd_rw_pin == PIN_NOT_SET)
1508 lcd_rw_pin = DEFAULT_LCD_PIN_RW;
1509 } else {
1510 lcd_write_cmd = lcd_write_cmd_tilcd;
1511 lcd_write_data = lcd_write_data_tilcd;
1512 lcd_clear_fast = lcd_clear_fast_tilcd;
1515 if (lcd_bl_pin == PIN_NOT_SET)
1516 lcd_bl_pin = DEFAULT_LCD_PIN_BL;
1518 if (lcd_e_pin == PIN_NOT_SET)
1519 lcd_e_pin = PIN_NONE;
1520 if (lcd_rs_pin == PIN_NOT_SET)
1521 lcd_rs_pin = PIN_NONE;
1522 if (lcd_rw_pin == PIN_NOT_SET)
1523 lcd_rw_pin = PIN_NONE;
1524 if (lcd_bl_pin == PIN_NOT_SET)
1525 lcd_bl_pin = PIN_NONE;
1526 if (lcd_cl_pin == PIN_NOT_SET)
1527 lcd_cl_pin = PIN_NONE;
1528 if (lcd_da_pin == PIN_NOT_SET)
1529 lcd_da_pin = PIN_NONE;
1531 if (lcd_charset < 0)
1532 lcd_charset = DEFAULT_LCD_CHARSET;
1534 if (lcd_charset == LCD_CHARSET_KS0074)
1535 lcd_char_conv = lcd_char_conv_ks0074;
1536 else
1537 lcd_char_conv = NULL;
1539 if (lcd_bl_pin != PIN_NONE)
1540 init_scan_timer();
1542 pin_to_bits(lcd_e_pin, lcd_bits[LCD_PORT_D][LCD_BIT_E],
1543 lcd_bits[LCD_PORT_C][LCD_BIT_E]);
1544 pin_to_bits(lcd_rs_pin, lcd_bits[LCD_PORT_D][LCD_BIT_RS],
1545 lcd_bits[LCD_PORT_C][LCD_BIT_RS]);
1546 pin_to_bits(lcd_rw_pin, lcd_bits[LCD_PORT_D][LCD_BIT_RW],
1547 lcd_bits[LCD_PORT_C][LCD_BIT_RW]);
1548 pin_to_bits(lcd_bl_pin, lcd_bits[LCD_PORT_D][LCD_BIT_BL],
1549 lcd_bits[LCD_PORT_C][LCD_BIT_BL]);
1550 pin_to_bits(lcd_cl_pin, lcd_bits[LCD_PORT_D][LCD_BIT_CL],
1551 lcd_bits[LCD_PORT_C][LCD_BIT_CL]);
1552 pin_to_bits(lcd_da_pin, lcd_bits[LCD_PORT_D][LCD_BIT_DA],
1553 lcd_bits[LCD_PORT_C][LCD_BIT_DA]);
1555 /* before this line, we must NOT send anything to the display.
1556 * Since lcd_init_display() needs to write data, we have to
1557 * enable mark the LCD initialized just before. */
1558 lcd_initialized = 1;
1559 lcd_init_display();
1561 /* display a short message */
1562 #ifdef CONFIG_PANEL_CHANGE_MESSAGE
1563 #ifdef CONFIG_PANEL_BOOT_MESSAGE
1564 panel_lcd_print("\x1b[Lc\x1b[Lb\x1b[L*" CONFIG_PANEL_BOOT_MESSAGE);
1565 #endif
1566 #else
1567 panel_lcd_print("\x1b[Lc\x1b[Lb\x1b[L*Linux-" UTS_RELEASE "\nPanel-"
1568 PANEL_VERSION);
1569 #endif
1570 lcd_addr_x = lcd_addr_y = 0;
1571 /* clear the display on the next device opening */
1572 lcd_must_clear = 1;
1573 lcd_gotoxy();
1577 * These are the file operation function for user access to /dev/keypad
1580 static ssize_t keypad_read(struct file *file,
1581 char *buf, size_t count, loff_t *ppos)
1584 unsigned i = *ppos;
1585 char *tmp = buf;
1587 if (keypad_buflen == 0) {
1588 if (file->f_flags & O_NONBLOCK)
1589 return -EAGAIN;
1591 interruptible_sleep_on(&keypad_read_wait);
1592 if (signal_pending(current))
1593 return -EINTR;
1596 for (; count-- > 0 && (keypad_buflen > 0);
1597 ++i, ++tmp, --keypad_buflen) {
1598 put_user(keypad_buffer[keypad_start], tmp);
1599 keypad_start = (keypad_start + 1) % KEYPAD_BUFFER;
1601 *ppos = i;
1603 return tmp - buf;
1606 static int keypad_open(struct inode *inode, struct file *file)
1609 if (keypad_open_cnt)
1610 return -EBUSY; /* open only once at a time */
1612 if (file->f_mode & FMODE_WRITE) /* device is read-only */
1613 return -EPERM;
1615 keypad_buflen = 0; /* flush the buffer on opening */
1616 keypad_open_cnt++;
1617 return 0;
1620 static int keypad_release(struct inode *inode, struct file *file)
1622 keypad_open_cnt--;
1623 return 0;
1626 static const struct file_operations keypad_fops = {
1627 .read = keypad_read, /* read */
1628 .open = keypad_open, /* open */
1629 .release = keypad_release, /* close */
1630 .llseek = default_llseek,
1633 static struct miscdevice keypad_dev = {
1634 KEYPAD_MINOR,
1635 "keypad",
1636 &keypad_fops
1639 static void keypad_send_key(char *string, int max_len)
1641 if (init_in_progress)
1642 return;
1644 /* send the key to the device only if a process is attached to it. */
1645 if (keypad_open_cnt > 0) {
1646 while (max_len-- && keypad_buflen < KEYPAD_BUFFER && *string) {
1647 keypad_buffer[(keypad_start + keypad_buflen++) %
1648 KEYPAD_BUFFER] = *string++;
1650 wake_up_interruptible(&keypad_read_wait);
1654 /* this function scans all the bits involving at least one logical signal,
1655 * and puts the results in the bitfield "phys_read" (one bit per established
1656 * contact), and sets "phys_read_prev" to "phys_read".
1658 * Note: to debounce input signals, we will only consider as switched a signal
1659 * which is stable across 2 measures. Signals which are different between two
1660 * reads will be kept as they previously were in their logical form (phys_prev).
1661 * A signal which has just switched will have a 1 in
1662 * (phys_read ^ phys_read_prev).
1664 static void phys_scan_contacts(void)
1666 int bit, bitval;
1667 char oldval;
1668 char bitmask;
1669 char gndmask;
1671 phys_prev = phys_curr;
1672 phys_read_prev = phys_read;
1673 phys_read = 0; /* flush all signals */
1675 /* keep track of old value, with all outputs disabled */
1676 oldval = r_dtr(pprt) | scan_mask_o;
1677 /* activate all keyboard outputs (active low) */
1678 w_dtr(pprt, oldval & ~scan_mask_o);
1680 /* will have a 1 for each bit set to gnd */
1681 bitmask = PNL_PINPUT(r_str(pprt)) & scan_mask_i;
1682 /* disable all matrix signals */
1683 w_dtr(pprt, oldval);
1685 /* now that all outputs are cleared, the only active input bits are
1686 * directly connected to the ground
1689 /* 1 for each grounded input */
1690 gndmask = PNL_PINPUT(r_str(pprt)) & scan_mask_i;
1692 /* grounded inputs are signals 40-44 */
1693 phys_read |= (pmask_t) gndmask << 40;
1695 if (bitmask != gndmask) {
1696 /* since clearing the outputs changed some inputs, we know
1697 * that some input signals are currently tied to some outputs.
1698 * So we'll scan them.
1700 for (bit = 0; bit < 8; bit++) {
1701 bitval = 1 << bit;
1703 if (!(scan_mask_o & bitval)) /* skip unused bits */
1704 continue;
1706 w_dtr(pprt, oldval & ~bitval); /* enable this output */
1707 bitmask = PNL_PINPUT(r_str(pprt)) & ~gndmask;
1708 phys_read |= (pmask_t) bitmask << (5 * bit);
1710 w_dtr(pprt, oldval); /* disable all outputs */
1712 /* this is easy: use old bits when they are flapping,
1713 * use new ones when stable */
1714 phys_curr = (phys_prev & (phys_read ^ phys_read_prev)) |
1715 (phys_read & ~(phys_read ^ phys_read_prev));
1718 static inline int input_state_high(struct logical_input *input)
1720 #if 0
1721 /* FIXME:
1722 * this is an invalid test. It tries to catch
1723 * transitions from single-key to multiple-key, but
1724 * doesn't take into account the contacts polarity.
1725 * The only solution to the problem is to parse keys
1726 * from the most complex to the simplest combinations,
1727 * and mark them as 'caught' once a combination
1728 * matches, then unmatch it for all other ones.
1731 /* try to catch dangerous transitions cases :
1732 * someone adds a bit, so this signal was a false
1733 * positive resulting from a transition. We should
1734 * invalidate the signal immediately and not call the
1735 * release function.
1736 * eg: 0 -(press A)-> A -(press B)-> AB : don't match A's release.
1738 if (((phys_prev & input->mask) == input->value)
1739 && ((phys_curr & input->mask) > input->value)) {
1740 input->state = INPUT_ST_LOW; /* invalidate */
1741 return 1;
1743 #endif
1745 if ((phys_curr & input->mask) == input->value) {
1746 if ((input->type == INPUT_TYPE_STD) &&
1747 (input->high_timer == 0)) {
1748 input->high_timer++;
1749 if (input->u.std.press_fct != NULL)
1750 input->u.std.press_fct(input->u.std.press_data);
1751 } else if (input->type == INPUT_TYPE_KBD) {
1752 /* will turn on the light */
1753 keypressed = 1;
1755 if (input->high_timer == 0) {
1756 char *press_str = input->u.kbd.press_str;
1757 if (press_str[0])
1758 keypad_send_key(press_str,
1759 sizeof(press_str));
1762 if (input->u.kbd.repeat_str[0]) {
1763 char *repeat_str = input->u.kbd.repeat_str;
1764 if (input->high_timer >= KEYPAD_REP_START) {
1765 input->high_timer -= KEYPAD_REP_DELAY;
1766 keypad_send_key(repeat_str,
1767 sizeof(repeat_str));
1769 /* we will need to come back here soon */
1770 inputs_stable = 0;
1773 if (input->high_timer < 255)
1774 input->high_timer++;
1776 return 1;
1777 } else {
1778 /* else signal falling down. Let's fall through. */
1779 input->state = INPUT_ST_FALLING;
1780 input->fall_timer = 0;
1782 return 0;
1785 static inline void input_state_falling(struct logical_input *input)
1787 #if 0
1788 /* FIXME !!! same comment as in input_state_high */
1789 if (((phys_prev & input->mask) == input->value)
1790 && ((phys_curr & input->mask) > input->value)) {
1791 input->state = INPUT_ST_LOW; /* invalidate */
1792 return;
1794 #endif
1796 if ((phys_curr & input->mask) == input->value) {
1797 if (input->type == INPUT_TYPE_KBD) {
1798 /* will turn on the light */
1799 keypressed = 1;
1801 if (input->u.kbd.repeat_str[0]) {
1802 char *repeat_str = input->u.kbd.repeat_str;
1803 if (input->high_timer >= KEYPAD_REP_START)
1804 input->high_timer -= KEYPAD_REP_DELAY;
1805 keypad_send_key(repeat_str,
1806 sizeof(repeat_str));
1807 /* we will need to come back here soon */
1808 inputs_stable = 0;
1811 if (input->high_timer < 255)
1812 input->high_timer++;
1814 input->state = INPUT_ST_HIGH;
1815 } else if (input->fall_timer >= input->fall_time) {
1816 /* call release event */
1817 if (input->type == INPUT_TYPE_STD) {
1818 void (*release_fct)(int) = input->u.std.release_fct;
1819 if (release_fct != NULL)
1820 release_fct(input->u.std.release_data);
1821 } else if (input->type == INPUT_TYPE_KBD) {
1822 char *release_str = input->u.kbd.release_str;
1823 if (release_str[0])
1824 keypad_send_key(release_str,
1825 sizeof(release_str));
1828 input->state = INPUT_ST_LOW;
1829 } else {
1830 input->fall_timer++;
1831 inputs_stable = 0;
1835 static void panel_process_inputs(void)
1837 struct list_head *item;
1838 struct logical_input *input;
1840 #if 0
1841 printk(KERN_DEBUG
1842 "entering panel_process_inputs with pp=%016Lx & pc=%016Lx\n",
1843 phys_prev, phys_curr);
1844 #endif
1846 keypressed = 0;
1847 inputs_stable = 1;
1848 list_for_each(item, &logical_inputs) {
1849 input = list_entry(item, struct logical_input, list);
1851 switch (input->state) {
1852 case INPUT_ST_LOW:
1853 if ((phys_curr & input->mask) != input->value)
1854 break;
1855 /* if all needed ones were already set previously,
1856 * this means that this logical signal has been
1857 * activated by the releasing of another combined
1858 * signal, so we don't want to match.
1859 * eg: AB -(release B)-> A -(release A)-> 0 :
1860 * don't match A.
1862 if ((phys_prev & input->mask) == input->value)
1863 break;
1864 input->rise_timer = 0;
1865 input->state = INPUT_ST_RISING;
1866 /* no break here, fall through */
1867 case INPUT_ST_RISING:
1868 if ((phys_curr & input->mask) != input->value) {
1869 input->state = INPUT_ST_LOW;
1870 break;
1872 if (input->rise_timer < input->rise_time) {
1873 inputs_stable = 0;
1874 input->rise_timer++;
1875 break;
1877 input->high_timer = 0;
1878 input->state = INPUT_ST_HIGH;
1879 /* no break here, fall through */
1880 case INPUT_ST_HIGH:
1881 if (input_state_high(input))
1882 break;
1883 /* no break here, fall through */
1884 case INPUT_ST_FALLING:
1885 input_state_falling(input);
1890 static void panel_scan_timer(void)
1892 if (keypad_enabled && keypad_initialized) {
1893 if (spin_trylock(&pprt_lock)) {
1894 phys_scan_contacts();
1896 /* no need for the parport anymore */
1897 spin_unlock(&pprt_lock);
1900 if (!inputs_stable || phys_curr != phys_prev)
1901 panel_process_inputs();
1904 if (lcd_enabled && lcd_initialized) {
1905 if (keypressed) {
1906 if (light_tempo == 0 && ((lcd_flags & LCD_FLAG_L) == 0))
1907 lcd_backlight(1);
1908 light_tempo = FLASH_LIGHT_TEMPO;
1909 } else if (light_tempo > 0) {
1910 light_tempo--;
1911 if (light_tempo == 0 && ((lcd_flags & LCD_FLAG_L) == 0))
1912 lcd_backlight(0);
1916 mod_timer(&scan_timer, jiffies + INPUT_POLL_TIME);
1919 static void init_scan_timer(void)
1921 if (scan_timer.function != NULL)
1922 return; /* already started */
1924 init_timer(&scan_timer);
1925 scan_timer.expires = jiffies + INPUT_POLL_TIME;
1926 scan_timer.data = 0;
1927 scan_timer.function = (void *)&panel_scan_timer;
1928 add_timer(&scan_timer);
1931 /* converts a name of the form "({BbAaPpSsEe}{01234567-})*" to a series of bits.
1932 * if <omask> or <imask> are non-null, they will be or'ed with the bits
1933 * corresponding to out and in bits respectively.
1934 * returns 1 if ok, 0 if error (in which case, nothing is written).
1936 static int input_name2mask(char *name, pmask_t *mask, pmask_t *value,
1937 char *imask, char *omask)
1939 static char sigtab[10] = "EeSsPpAaBb";
1940 char im, om;
1941 pmask_t m, v;
1943 om = im = m = v = 0ULL;
1944 while (*name) {
1945 int in, out, bit, neg;
1946 for (in = 0; (in < sizeof(sigtab)) &&
1947 (sigtab[in] != *name); in++)
1949 if (in >= sizeof(sigtab))
1950 return 0; /* input name not found */
1951 neg = (in & 1); /* odd (lower) names are negated */
1952 in >>= 1;
1953 im |= (1 << in);
1955 name++;
1956 if (isdigit(*name)) {
1957 out = *name - '0';
1958 om |= (1 << out);
1959 } else if (*name == '-')
1960 out = 8;
1961 else
1962 return 0; /* unknown bit name */
1964 bit = (out * 5) + in;
1966 m |= 1ULL << bit;
1967 if (!neg)
1968 v |= 1ULL << bit;
1969 name++;
1971 *mask = m;
1972 *value = v;
1973 if (imask)
1974 *imask |= im;
1975 if (omask)
1976 *omask |= om;
1977 return 1;
1980 /* tries to bind a key to the signal name <name>. The key will send the
1981 * strings <press>, <repeat>, <release> for these respective events.
1982 * Returns the pointer to the new key if ok, NULL if the key could not be bound.
1984 static struct logical_input *panel_bind_key(char *name, char *press,
1985 char *repeat, char *release)
1987 struct logical_input *key;
1989 key = kzalloc(sizeof(struct logical_input), GFP_KERNEL);
1990 if (!key) {
1991 printk(KERN_ERR "panel: not enough memory\n");
1992 return NULL;
1994 if (!input_name2mask(name, &key->mask, &key->value, &scan_mask_i,
1995 &scan_mask_o)) {
1996 kfree(key);
1997 return NULL;
2000 key->type = INPUT_TYPE_KBD;
2001 key->state = INPUT_ST_LOW;
2002 key->rise_time = 1;
2003 key->fall_time = 1;
2005 #if 0
2006 printk(KERN_DEBUG "bind: <%s> : m=%016Lx v=%016Lx\n", name, key->mask,
2007 key->value);
2008 #endif
2009 strncpy(key->u.kbd.press_str, press, sizeof(key->u.kbd.press_str));
2010 strncpy(key->u.kbd.repeat_str, repeat, sizeof(key->u.kbd.repeat_str));
2011 strncpy(key->u.kbd.release_str, release,
2012 sizeof(key->u.kbd.release_str));
2013 list_add(&key->list, &logical_inputs);
2014 return key;
2017 #if 0
2018 /* tries to bind a callback function to the signal name <name>. The function
2019 * <press_fct> will be called with the <press_data> arg when the signal is
2020 * activated, and so on for <release_fct>/<release_data>
2021 * Returns the pointer to the new signal if ok, NULL if the signal could not
2022 * be bound.
2024 static struct logical_input *panel_bind_callback(char *name,
2025 void (*press_fct) (int),
2026 int press_data,
2027 void (*release_fct) (int),
2028 int release_data)
2030 struct logical_input *callback;
2032 callback = kmalloc(sizeof(struct logical_input), GFP_KERNEL);
2033 if (!callback) {
2034 printk(KERN_ERR "panel: not enough memory\n");
2035 return NULL;
2037 memset(callback, 0, sizeof(struct logical_input));
2038 if (!input_name2mask(name, &callback->mask, &callback->value,
2039 &scan_mask_i, &scan_mask_o))
2040 return NULL;
2042 callback->type = INPUT_TYPE_STD;
2043 callback->state = INPUT_ST_LOW;
2044 callback->rise_time = 1;
2045 callback->fall_time = 1;
2046 callback->u.std.press_fct = press_fct;
2047 callback->u.std.press_data = press_data;
2048 callback->u.std.release_fct = release_fct;
2049 callback->u.std.release_data = release_data;
2050 list_add(&callback->list, &logical_inputs);
2051 return callback;
2053 #endif
2055 static void keypad_init(void)
2057 int keynum;
2058 init_waitqueue_head(&keypad_read_wait);
2059 keypad_buflen = 0; /* flushes any eventual noisy keystroke */
2061 /* Let's create all known keys */
2063 for (keynum = 0; keypad_profile[keynum][0][0]; keynum++) {
2064 panel_bind_key(keypad_profile[keynum][0],
2065 keypad_profile[keynum][1],
2066 keypad_profile[keynum][2],
2067 keypad_profile[keynum][3]);
2070 init_scan_timer();
2071 keypad_initialized = 1;
2074 /**************************************************/
2075 /* device initialization */
2076 /**************************************************/
2078 static int panel_notify_sys(struct notifier_block *this, unsigned long code,
2079 void *unused)
2081 if (lcd_enabled && lcd_initialized) {
2082 switch (code) {
2083 case SYS_DOWN:
2084 panel_lcd_print
2085 ("\x0cReloading\nSystem...\x1b[Lc\x1b[Lb\x1b[L+");
2086 break;
2087 case SYS_HALT:
2088 panel_lcd_print
2089 ("\x0cSystem Halted.\x1b[Lc\x1b[Lb\x1b[L+");
2090 break;
2091 case SYS_POWER_OFF:
2092 panel_lcd_print("\x0cPower off.\x1b[Lc\x1b[Lb\x1b[L+");
2093 break;
2094 default:
2095 break;
2098 return NOTIFY_DONE;
2101 static struct notifier_block panel_notifier = {
2102 panel_notify_sys,
2103 NULL,
2107 static void panel_attach(struct parport *port)
2109 if (port->number != parport)
2110 return;
2112 if (pprt) {
2113 printk(KERN_ERR
2114 "panel_attach(): port->number=%d parport=%d, "
2115 "already registered !\n",
2116 port->number, parport);
2117 return;
2120 pprt = parport_register_device(port, "panel", NULL, NULL, /* pf, kf */
2121 NULL,
2122 /*PARPORT_DEV_EXCL */
2123 0, (void *)&pprt);
2124 if (pprt == NULL) {
2125 pr_err("panel_attach(): port->number=%d parport=%d, "
2126 "parport_register_device() failed\n",
2127 port->number, parport);
2128 return;
2131 if (parport_claim(pprt)) {
2132 printk(KERN_ERR
2133 "Panel: could not claim access to parport%d. "
2134 "Aborting.\n", parport);
2135 goto err_unreg_device;
2138 /* must init LCD first, just in case an IRQ from the keypad is
2139 * generated at keypad init
2141 if (lcd_enabled) {
2142 lcd_init();
2143 if (misc_register(&lcd_dev))
2144 goto err_unreg_device;
2147 if (keypad_enabled) {
2148 keypad_init();
2149 if (misc_register(&keypad_dev))
2150 goto err_lcd_unreg;
2152 return;
2154 err_lcd_unreg:
2155 if (lcd_enabled)
2156 misc_deregister(&lcd_dev);
2157 err_unreg_device:
2158 parport_unregister_device(pprt);
2159 pprt = NULL;
2162 static void panel_detach(struct parport *port)
2164 if (port->number != parport)
2165 return;
2167 if (!pprt) {
2168 printk(KERN_ERR
2169 "panel_detach(): port->number=%d parport=%d, "
2170 "nothing to unregister.\n",
2171 port->number, parport);
2172 return;
2175 if (keypad_enabled && keypad_initialized) {
2176 misc_deregister(&keypad_dev);
2177 keypad_initialized = 0;
2180 if (lcd_enabled && lcd_initialized) {
2181 misc_deregister(&lcd_dev);
2182 lcd_initialized = 0;
2185 parport_release(pprt);
2186 parport_unregister_device(pprt);
2187 pprt = NULL;
2190 static struct parport_driver panel_driver = {
2191 .name = "panel",
2192 .attach = panel_attach,
2193 .detach = panel_detach,
2196 /* init function */
2197 int panel_init(void)
2199 /* for backwards compatibility */
2200 if (keypad_type < 0)
2201 keypad_type = keypad_enabled;
2203 if (lcd_type < 0)
2204 lcd_type = lcd_enabled;
2206 if (parport < 0)
2207 parport = DEFAULT_PARPORT;
2209 /* take care of an eventual profile */
2210 switch (profile) {
2211 case PANEL_PROFILE_CUSTOM:
2212 /* custom profile */
2213 if (keypad_type < 0)
2214 keypad_type = DEFAULT_KEYPAD;
2215 if (lcd_type < 0)
2216 lcd_type = DEFAULT_LCD;
2217 break;
2218 case PANEL_PROFILE_OLD:
2219 /* 8 bits, 2*16, old keypad */
2220 if (keypad_type < 0)
2221 keypad_type = KEYPAD_TYPE_OLD;
2222 if (lcd_type < 0)
2223 lcd_type = LCD_TYPE_OLD;
2224 if (lcd_width < 0)
2225 lcd_width = 16;
2226 if (lcd_hwidth < 0)
2227 lcd_hwidth = 16;
2228 break;
2229 case PANEL_PROFILE_NEW:
2230 /* serial, 2*16, new keypad */
2231 if (keypad_type < 0)
2232 keypad_type = KEYPAD_TYPE_NEW;
2233 if (lcd_type < 0)
2234 lcd_type = LCD_TYPE_KS0074;
2235 break;
2236 case PANEL_PROFILE_HANTRONIX:
2237 /* 8 bits, 2*16 hantronix-like, no keypad */
2238 if (keypad_type < 0)
2239 keypad_type = KEYPAD_TYPE_NONE;
2240 if (lcd_type < 0)
2241 lcd_type = LCD_TYPE_HANTRONIX;
2242 break;
2243 case PANEL_PROFILE_NEXCOM:
2244 /* generic 8 bits, 2*16, nexcom keypad, eg. Nexcom. */
2245 if (keypad_type < 0)
2246 keypad_type = KEYPAD_TYPE_NEXCOM;
2247 if (lcd_type < 0)
2248 lcd_type = LCD_TYPE_NEXCOM;
2249 break;
2250 case PANEL_PROFILE_LARGE:
2251 /* 8 bits, 2*40, old keypad */
2252 if (keypad_type < 0)
2253 keypad_type = KEYPAD_TYPE_OLD;
2254 if (lcd_type < 0)
2255 lcd_type = LCD_TYPE_OLD;
2256 break;
2259 lcd_enabled = (lcd_type > 0);
2260 keypad_enabled = (keypad_type > 0);
2262 switch (keypad_type) {
2263 case KEYPAD_TYPE_OLD:
2264 keypad_profile = old_keypad_profile;
2265 break;
2266 case KEYPAD_TYPE_NEW:
2267 keypad_profile = new_keypad_profile;
2268 break;
2269 case KEYPAD_TYPE_NEXCOM:
2270 keypad_profile = nexcom_keypad_profile;
2271 break;
2272 default:
2273 keypad_profile = NULL;
2274 break;
2277 /* tells various subsystems about the fact that we are initializing */
2278 init_in_progress = 1;
2280 if (parport_register_driver(&panel_driver)) {
2281 printk(KERN_ERR
2282 "Panel: could not register with parport. Aborting.\n");
2283 return -EIO;
2286 if (!lcd_enabled && !keypad_enabled) {
2287 /* no device enabled, let's release the parport */
2288 if (pprt) {
2289 parport_release(pprt);
2290 parport_unregister_device(pprt);
2291 pprt = NULL;
2293 parport_unregister_driver(&panel_driver);
2294 printk(KERN_ERR "Panel driver version " PANEL_VERSION
2295 " disabled.\n");
2296 return -ENODEV;
2299 register_reboot_notifier(&panel_notifier);
2301 if (pprt)
2302 printk(KERN_INFO "Panel driver version " PANEL_VERSION
2303 " registered on parport%d (io=0x%lx).\n", parport,
2304 pprt->port->base);
2305 else
2306 printk(KERN_INFO "Panel driver version " PANEL_VERSION
2307 " not yet registered\n");
2308 /* tells various subsystems about the fact that initialization
2309 is finished */
2310 init_in_progress = 0;
2311 return 0;
2314 static int __init panel_init_module(void)
2316 return panel_init();
2319 static void __exit panel_cleanup_module(void)
2321 unregister_reboot_notifier(&panel_notifier);
2323 if (scan_timer.function != NULL)
2324 del_timer(&scan_timer);
2326 if (pprt != NULL) {
2327 if (keypad_enabled) {
2328 misc_deregister(&keypad_dev);
2329 keypad_initialized = 0;
2332 if (lcd_enabled) {
2333 panel_lcd_print("\x0cLCD driver " PANEL_VERSION
2334 "\nunloaded.\x1b[Lc\x1b[Lb\x1b[L-");
2335 misc_deregister(&lcd_dev);
2336 lcd_initialized = 0;
2339 /* TODO: free all input signals */
2340 parport_release(pprt);
2341 parport_unregister_device(pprt);
2342 pprt = NULL;
2344 parport_unregister_driver(&panel_driver);
2347 module_init(panel_init_module);
2348 module_exit(panel_cleanup_module);
2349 MODULE_AUTHOR("Willy Tarreau");
2350 MODULE_LICENSE("GPL");
2353 * Local variables:
2354 * c-indent-level: 4
2355 * tab-width: 8
2356 * End: