3 * 10/100/1000 Base-T Ethernet Driver for the ET1301 and ET131x series MACs
5 * Copyright © 2005 Agere Systems Inc.
9 * Copyright (c) 2011 Mark Einon <mark.einon@gmail.com>
11 *------------------------------------------------------------------------------
15 * This software is provided subject to the following terms and conditions,
16 * which you should read carefully before using the software. Using this
17 * software indicates your acceptance of these terms and conditions. If you do
18 * not agree with these terms and conditions, do not use the software.
20 * Copyright © 2005 Agere Systems Inc.
21 * All rights reserved.
23 * Redistribution and use in source or binary forms, with or without
24 * modifications, are permitted provided that the following conditions are met:
26 * . Redistributions of source code must retain the above copyright notice, this
27 * list of conditions and the following Disclaimer as comments in the code as
28 * well as in the documentation and/or other materials provided with the
31 * . Redistributions in binary form must reproduce the above copyright notice,
32 * this list of conditions and the following Disclaimer in the documentation
33 * and/or other materials provided with the distribution.
35 * . Neither the name of Agere Systems Inc. nor the names of the contributors
36 * may be used to endorse or promote products derived from this software
37 * without specific prior written permission.
41 * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
42 * INCLUDING, BUT NOT LIMITED TO, INFRINGEMENT AND THE IMPLIED WARRANTIES OF
43 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. ANY
44 * USE, MODIFICATION OR DISTRIBUTION OF THIS SOFTWARE IS SOLELY AT THE USERS OWN
45 * RISK. IN NO EVENT SHALL AGERE SYSTEMS INC. OR CONTRIBUTORS BE LIABLE FOR ANY
46 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
47 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
48 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
49 * ON ANY THEORY OF LIABILITY, INCLUDING, BUT NOT LIMITED TO, CONTRACT, STRICT
50 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
51 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
56 #include <linux/pci.h>
57 #include <linux/init.h>
58 #include <linux/module.h>
59 #include <linux/types.h>
60 #include <linux/kernel.h>
62 #include <linux/sched.h>
63 #include <linux/ptrace.h>
64 #include <linux/slab.h>
65 #include <linux/ctype.h>
66 #include <linux/string.h>
67 #include <linux/timer.h>
68 #include <linux/interrupt.h>
70 #include <linux/delay.h>
71 #include <linux/bitops.h>
74 #include <linux/netdevice.h>
75 #include <linux/etherdevice.h>
76 #include <linux/skbuff.h>
77 #include <linux/if_arp.h>
78 #include <linux/ioport.h>
79 #include <linux/crc32.h>
80 #include <linux/random.h>
81 #include <linux/phy.h>
85 MODULE_AUTHOR("Victor Soriano <vjsoriano@agere.com>");
86 MODULE_AUTHOR("Mark Einon <mark.einon@gmail.com>");
87 MODULE_LICENSE("Dual BSD/GPL");
88 MODULE_DESCRIPTION("10/100/1000 Base-T Ethernet Driver "
89 "for the ET1310 by Agere Systems");
92 #define MAX_NUM_REGISTER_POLLS 1000
93 #define MAX_NUM_WRITE_RETRIES 2
96 #define COUNTER_WRAP_16_BIT 0x10000
97 #define COUNTER_WRAP_12_BIT 0x1000
100 #define INTERNAL_MEM_SIZE 0x400 /* 1024 of internal memory */
101 #define INTERNAL_MEM_RX_OFFSET 0x1FF /* 50% Tx, 50% Rx */
105 * For interrupts, normal running is:
106 * rxdma_xfr_done, phy_interrupt, mac_stat_interrupt,
107 * watchdog_interrupt & txdma_xfer_done
109 * In both cases, when flow control is enabled for either Tx or bi-direction,
110 * we additional enable rx_fbr0_low and rx_fbr1_low, so we know when the
111 * buffer rings are running low.
113 #define INT_MASK_DISABLE 0xffffffff
115 /* NOTE: Masking out MAC_STAT Interrupt for now...
116 * #define INT_MASK_ENABLE 0xfff6bf17
117 * #define INT_MASK_ENABLE_NO_FLOW 0xfff6bfd7
119 #define INT_MASK_ENABLE 0xfffebf17
120 #define INT_MASK_ENABLE_NO_FLOW 0xfffebfd7
122 /* General defines */
123 /* Packet and header sizes */
124 #define NIC_MIN_PACKET_SIZE 60
126 /* Multicast list size */
127 #define NIC_MAX_MCAST_LIST 128
129 /* Supported Filters */
130 #define ET131X_PACKET_TYPE_DIRECTED 0x0001
131 #define ET131X_PACKET_TYPE_MULTICAST 0x0002
132 #define ET131X_PACKET_TYPE_BROADCAST 0x0004
133 #define ET131X_PACKET_TYPE_PROMISCUOUS 0x0008
134 #define ET131X_PACKET_TYPE_ALL_MULTICAST 0x0010
137 #define ET131X_TX_TIMEOUT (1 * HZ)
138 #define NIC_SEND_HANG_THRESHOLD 0
141 #define fMP_DEST_MULTI 0x00000001
142 #define fMP_DEST_BROAD 0x00000002
144 /* MP_ADAPTER flags */
145 #define fMP_ADAPTER_RECV_LOOKASIDE 0x00000004
146 #define fMP_ADAPTER_INTERRUPT_IN_USE 0x00000008
148 /* MP_SHARED flags */
149 #define fMP_ADAPTER_LOWER_POWER 0x00200000
151 #define fMP_ADAPTER_NON_RECOVER_ERROR 0x00800000
152 #define fMP_ADAPTER_HARDWARE_ERROR 0x04000000
154 #define fMP_ADAPTER_FAIL_SEND_MASK 0x3ff00000
156 /* Some offsets in PCI config space that are actually used. */
157 #define ET1310_PCI_MAC_ADDRESS 0xA4
158 #define ET1310_PCI_EEPROM_STATUS 0xB2
159 #define ET1310_PCI_ACK_NACK 0xC0
160 #define ET1310_PCI_REPLAY 0xC2
161 #define ET1310_PCI_L0L1LATENCY 0xCF
163 /* PCI Product IDs */
164 #define ET131X_PCI_DEVICE_ID_GIG 0xED00 /* ET1310 1000 Base-T 8 */
165 #define ET131X_PCI_DEVICE_ID_FAST 0xED01 /* ET1310 100 Base-T */
167 /* Define order of magnitude converter */
168 #define NANO_IN_A_MICRO 1000
170 #define PARM_RX_NUM_BUFS_DEF 4
171 #define PARM_RX_TIME_INT_DEF 10
172 #define PARM_RX_MEM_END_DEF 0x2bc
173 #define PARM_TX_TIME_INT_DEF 40
174 #define PARM_TX_NUM_BUFS_DEF 4
175 #define PARM_DMA_CACHE_DEF 0
179 #define FBR_CHUNKS 32
180 #define MAX_DESC_PER_RING_RX 1024
182 /* number of RFDs - default and min */
184 #define RFD_LOW_WATER_MARK 40
185 #define NIC_DEFAULT_NUM_RFD 1024
188 #define RFD_LOW_WATER_MARK 20
189 #define NIC_DEFAULT_NUM_RFD 256
193 #define NIC_MIN_NUM_RFD 64
194 #define NUM_PACKETS_HANDLED 256
196 #define ALCATEL_MULTICAST_PKT 0x01000000
197 #define ALCATEL_BROADCAST_PKT 0x02000000
199 /* typedefs for Free Buffer Descriptors */
203 u32 word2
; /* Bits 10-31 reserved, 0-9 descriptor */
206 /* Packet Status Ring Descriptors
210 * top 16 bits are from the Alcatel Status Word as enumerated in
211 * PE-MCXMAC Data Sheet IPD DS54 0210-1 (also IPD-DS80 0205-2)
214 * 1: ipa IP checksum assist
215 * 2: ipp IP checksum pass
216 * 3: tcpa TCP checksum assist
217 * 4: tcpp TCP checksum pass
219 * 6: rxmac_error RXMAC Error Indicator
220 * 7: drop Drop packet
221 * 8: ft Frame Truncated
225 * 16: asw_prev_pkt_dropped e.g. IFG too small on previous
226 * 17: asw_RX_DV_event short receive event detected
227 * 18: asw_false_carrier_event bad carrier since last good packet
228 * 19: asw_code_err one or more nibbles signalled as errors
229 * 20: asw_CRC_err CRC error
230 * 21: asw_len_chk_err frame length field incorrect
231 * 22: asw_too_long frame length > 1518 bytes
232 * 23: asw_OK valid CRC + no code error
233 * 24: asw_multicast has a multicast address
234 * 25: asw_broadcast has a broadcast address
235 * 26: asw_dribble_nibble spurious bits after EOP
236 * 27: asw_control_frame is a control frame
237 * 28: asw_pause_frame is a pause frame
238 * 29: asw_unsupported_op unsupported OP code
239 * 30: asw_VLAN_tag VLAN tag detected
240 * 31: asw_long_evt Rx long event
243 * 0-15: length length in bytes
244 * 16-25: bi Buffer Index
245 * 26-27: ri Ring Index
249 struct pkt_stat_desc
{
254 /* Typedefs for the RX DMA status word */
257 * rx status word 0 holds part of the status bits of the Rx DMA engine
258 * that get copied out to memory by the ET-1310. Word 0 is a 32 bit word
259 * which contains the Free Buffer ring 0 and 1 available offset.
261 * bit 0-9 FBR1 offset
262 * bit 10 Wrap flag for FBR1
263 * bit 16-25 FBR0 offset
264 * bit 26 Wrap flag for FBR0
268 * RXSTAT_WORD1_t structure holds part of the status bits of the Rx DMA engine
269 * that get copied out to memory by the ET-1310. Word 3 is a 32 bit word
270 * which contains the Packet Status Ring available offset.
273 * bit 16-27 PSRoffset
279 * struct rx_status_block is a structure representing the status of the Rx
280 * DMA engine it sits in free memory, and is pointed to by 0x101c / 0x1020
282 struct rx_status_block
{
288 * Structure for look-up table holding free buffer ring pointers, addresses
292 void *virt
[MAX_DESC_PER_RING_RX
];
293 void *buffer1
[MAX_DESC_PER_RING_RX
];
294 void *buffer2
[MAX_DESC_PER_RING_RX
];
295 u32 bus_high
[MAX_DESC_PER_RING_RX
];
296 u32 bus_low
[MAX_DESC_PER_RING_RX
];
298 dma_addr_t ring_physaddr
;
299 void *mem_virtaddrs
[MAX_DESC_PER_RING_RX
/ FBR_CHUNKS
];
300 dma_addr_t mem_physaddrs
[MAX_DESC_PER_RING_RX
/ FBR_CHUNKS
];
309 * struct rx_ring is the sructure representing the adaptor's local
310 * reference(s) to the rings
312 ******************************************************************************
313 * IMPORTANT NOTE :- fbr_lookup *fbr[NUM_FBRS] uses index 0 to refer to FBR1
314 * and index 1 to refer to FRB0
315 ******************************************************************************
318 struct fbr_lookup
*fbr
[NUM_FBRS
];
319 void *ps_ring_virtaddr
;
320 dma_addr_t ps_ring_physaddr
;
324 struct rx_status_block
*rx_status_block
;
325 dma_addr_t rx_status_bus
;
328 struct list_head recv_list
;
333 bool unfinished_receives
;
335 /* lookaside lists */
336 struct kmem_cache
*recv_lookaside
;
341 * word 2 of the control bits in the Tx Descriptor ring for the ET-1310
343 * 0-15: length of packet
346 * 29-31: VLAN priority
348 * word 3 of the control bits in the Tx Descriptor ring for the ET-1310
350 * 0: last packet in the sequence
351 * 1: first packet in the sequence
352 * 2: interrupt the processor when this pkt sent
353 * 3: Control word - no packet data
354 * 4: Issue half-duplex backpressure : XON/XOFF
355 * 5: send pause frame
356 * 6: Tx frame has error
360 * 10: Packet is a Huge packet
361 * 11: append VLAN tag
362 * 12: IP checksum assist
363 * 13: TCP checksum assist
364 * 14: UDP checksum assist
367 /* struct tx_desc represents each descriptor on the ring */
371 u32 len_vlan
; /* control words how to xmit the */
372 u32 flags
; /* data (detailed above) */
376 * The status of the Tx DMA engine it sits in free memory, and is pointed to
377 * by 0x101c / 0x1020. This is a DMA10 type
380 /* TCB (Transmit Control Block: Host Side) */
382 struct tcb
*next
; /* Next entry in ring */
383 u32 flags
; /* Our flags for the packet */
384 u32 count
; /* Used to spot stuck/lost packets */
385 u32 stale
; /* Used to spot stuck/lost packets */
386 struct sk_buff
*skb
; /* Network skb we are tied to */
387 u32 index
; /* Ring indexes */
391 /* Structure representing our local reference(s) to the ring */
393 /* TCB (Transmit Control Block) memory and lists */
394 struct tcb
*tcb_ring
;
396 /* List of TCBs that are ready to be used */
397 struct tcb
*tcb_qhead
;
398 struct tcb
*tcb_qtail
;
400 /* list of TCBs that are currently being sent. NOTE that access to all
401 * three of these (including used) are controlled via the
402 * TCBSendQLock. This lock should be secured prior to incementing /
403 * decrementing used, or any queue manipulation on send_head /
406 struct tcb
*send_head
;
407 struct tcb
*send_tail
;
410 /* The actual descriptor ring */
411 struct tx_desc
*tx_desc_ring
;
412 dma_addr_t tx_desc_ring_pa
;
414 /* send_idx indicates where we last wrote to in the descriptor ring. */
417 /* The location of the write-back status block */
419 dma_addr_t tx_status_pa
;
421 /* Packets since the last IRQ: used for interrupt coalescing */
426 * Do not change these values: if changed, then change also in respective
427 * TXdma and Rxdma engines
429 #define NUM_DESC_PER_RING_TX 512 /* TX Do not change these values */
433 * These values are all superseded by registry entries to facilitate tuning.
434 * Once the desired performance has been achieved, the optimal registry values
435 * should be re-populated to these #defines:
437 #define TX_ERROR_PERIOD 1000
439 #define LO_MARK_PERCENT_FOR_PSR 15
440 #define LO_MARK_PERCENT_FOR_RX 15
442 /* RFD (Receive Frame Descriptor) */
444 struct list_head list_node
;
446 u32 len
; /* total size of receive frame */
453 #define FLOW_TXONLY 1
454 #define FLOW_RXONLY 2
457 /* Struct to define some device statistics */
461 * NOTE: atomic_t types are only guaranteed to store 24-bits; if we
462 * MUST have 32, then we'll need another way to perform atomic
465 u32 unicast_pkts_rcvd
;
466 atomic_t unicast_pkts_xmtd
;
467 u32 multicast_pkts_rcvd
;
468 atomic_t multicast_pkts_xmtd
;
469 u32 broadcast_pkts_rcvd
;
470 atomic_t broadcast_pkts_xmtd
;
471 u32 rcvd_pkts_dropped
;
477 u32 tx_excessive_collisions
;
478 u32 tx_first_collisions
;
479 u32 tx_late_collisions
;
489 u32 rx_code_violations
;
492 u32 synchronous_iterations
;
493 u32 interrupt_status
;
496 /* The private adapter structure */
497 struct et131x_adapter
{
498 struct net_device
*netdev
;
499 struct pci_dev
*pdev
;
500 struct mii_bus
*mii_bus
;
501 struct phy_device
*phydev
;
502 struct work_struct task
;
504 /* Flags that indicate current state of the adapter */
507 /* local link state, to determine if a state change has occurred */
511 u8 rom_addr
[ETH_ALEN
];
519 spinlock_t tcb_send_qlock
;
520 spinlock_t tcb_ready_qlock
;
521 spinlock_t send_hw_lock
;
524 spinlock_t rcv_pend_lock
;
529 /* Packet Filter and look ahead size */
533 u32 multicast_addr_count
;
534 u8 multicast_list
[NIC_MAX_MCAST_LIST
][ETH_ALEN
];
536 /* Pointer to the device's PCI register space */
537 struct address_map __iomem
*regs
;
539 /* Registry parameters */
540 u8 wanted_flow
; /* Flow we want for 802.3x flow control */
541 u32 registry_jumbo_packet
; /* Max supported ethernet packet size */
543 /* Derived from the registry: */
544 u8 flowcontrol
; /* flow control validated by the far-end */
546 /* Minimize init-time */
547 struct timer_list error_timer
;
549 /* variable putting the phy into coma mode when boot up with no cable
550 * plugged in after 5 seconds
554 /* Next two used to save power information at power down. This
555 * information will be used during power up to set up parts of Power
556 * Management in JAGCore
561 /* Tx Memory Variables */
562 struct tx_ring tx_ring
;
564 /* Rx Memory Variables */
565 struct rx_ring rx_ring
;
568 struct ce_stats stats
;
570 struct net_device_stats net_stats
;
573 static int eeprom_wait_ready(struct pci_dev
*pdev
, u32
*status
)
579 * 1. Check LBCIF Status Register for bits 6 & 3:2 all equal to 0 and
580 * bits 7,1:0 both equal to 1, at least once after reset.
581 * Subsequent operations need only to check that bits 1:0 are equal
582 * to 1 prior to starting a single byte read/write
585 for (i
= 0; i
< MAX_NUM_REGISTER_POLLS
; i
++) {
586 /* Read registers grouped in DWORD1 */
587 if (pci_read_config_dword(pdev
, LBCIF_DWORD1_GROUP
, ®
))
590 /* I2C idle and Phy Queue Avail both true */
591 if ((reg
& 0x3000) == 0x3000) {
602 * eeprom_write - Write a byte to the ET1310's EEPROM
603 * @adapter: pointer to our private adapter structure
604 * @addr: the address to write
605 * @data: the value to write
607 * Returns 1 for a successful write.
609 static int eeprom_write(struct et131x_adapter
*adapter
, u32 addr
, u8 data
)
611 struct pci_dev
*pdev
= adapter
->pdev
;
621 * For an EEPROM, an I2C single byte write is defined as a START
622 * condition followed by the device address, EEPROM address, one byte
623 * of data and a STOP condition. The STOP condition will trigger the
624 * EEPROM's internally timed write cycle to the nonvolatile memory.
625 * All inputs are disabled during this write cycle and the EEPROM will
626 * not respond to any access until the internal write is complete.
629 err
= eeprom_wait_ready(pdev
, NULL
);
634 * 2. Write to the LBCIF Control Register: bit 7=1, bit 6=1, bit 3=0,
635 * and bits 1:0 both =0. Bit 5 should be set according to the
636 * type of EEPROM being accessed (1=two byte addressing, 0=one
639 if (pci_write_config_byte(pdev
, LBCIF_CONTROL_REGISTER
,
640 LBCIF_CONTROL_LBCIF_ENABLE
| LBCIF_CONTROL_I2C_WRITE
))
645 /* Prepare EEPROM address for Step 3 */
647 for (retries
= 0; retries
< MAX_NUM_WRITE_RETRIES
; retries
++) {
648 /* Write the address to the LBCIF Address Register */
649 if (pci_write_config_dword(pdev
, LBCIF_ADDRESS_REGISTER
, addr
))
652 * Write the data to the LBCIF Data Register (the I2C write
655 if (pci_write_config_byte(pdev
, LBCIF_DATA_REGISTER
, data
))
658 * Monitor bit 1:0 of the LBCIF Status Register. When bits
659 * 1:0 are both equal to 1, the I2C write has completed and the
660 * internal write cycle of the EEPROM is about to start.
661 * (bits 1:0 = 01 is a legal state while waiting from both
662 * equal to 1, but bits 1:0 = 10 is invalid and implies that
663 * something is broken).
665 err
= eeprom_wait_ready(pdev
, &status
);
670 * Check bit 3 of the LBCIF Status Register. If equal to 1,
671 * an error has occurred.Don't break here if we are revision
672 * 1, this is so we do a blind write for load bug.
674 if ((status
& LBCIF_STATUS_GENERAL_ERROR
)
675 && adapter
->pdev
->revision
== 0)
679 * Check bit 2 of the LBCIF Status Register. If equal to 1 an
680 * ACK error has occurred on the address phase of the write.
681 * This could be due to an actual hardware failure or the
682 * EEPROM may still be in its internal write cycle from a
683 * previous write. This write operation was ignored and must be
686 if (status
& LBCIF_STATUS_ACK_ERROR
) {
688 * This could be due to an actual hardware failure
689 * or the EEPROM may still be in its internal write
690 * cycle from a previous write. This write operation
691 * was ignored and must be repeated later.
702 * Set bit 6 of the LBCIF Control Register = 0.
707 if (pci_write_config_byte(pdev
, LBCIF_CONTROL_REGISTER
,
708 LBCIF_CONTROL_LBCIF_ENABLE
))
711 /* Do read until internal ACK_ERROR goes away meaning write
715 pci_write_config_dword(pdev
,
716 LBCIF_ADDRESS_REGISTER
,
719 pci_read_config_dword(pdev
,
720 LBCIF_DATA_REGISTER
, &val
);
721 } while ((val
& 0x00010000) == 0);
722 } while (val
& 0x00040000);
724 if ((val
& 0xFF00) != 0xC000 || index
== 10000)
728 return writeok
? 0 : -EIO
;
732 * eeprom_read - Read a byte from the ET1310's EEPROM
733 * @adapter: pointer to our private adapter structure
734 * @addr: the address from which to read
735 * @pdata: a pointer to a byte in which to store the value of the read
736 * @eeprom_id: the ID of the EEPROM
737 * @addrmode: how the EEPROM is to be accessed
739 * Returns 1 for a successful read
741 static int eeprom_read(struct et131x_adapter
*adapter
, u32 addr
, u8
*pdata
)
743 struct pci_dev
*pdev
= adapter
->pdev
;
748 * A single byte read is similar to the single byte write, with the
749 * exception of the data flow:
752 err
= eeprom_wait_ready(pdev
, NULL
);
756 * Write to the LBCIF Control Register: bit 7=1, bit 6=0, bit 3=0,
757 * and bits 1:0 both =0. Bit 5 should be set according to the type
758 * of EEPROM being accessed (1=two byte addressing, 0=one byte
761 if (pci_write_config_byte(pdev
, LBCIF_CONTROL_REGISTER
,
762 LBCIF_CONTROL_LBCIF_ENABLE
))
765 * Write the address to the LBCIF Address Register (I2C read will
768 if (pci_write_config_dword(pdev
, LBCIF_ADDRESS_REGISTER
, addr
))
771 * Monitor bit 0 of the LBCIF Status Register. When = 1, I2C read
772 * is complete. (if bit 1 =1 and bit 0 stays = 0, a hardware failure
775 err
= eeprom_wait_ready(pdev
, &status
);
779 * Regardless of error status, read data byte from LBCIF Data
784 * Check bit 2 of the LBCIF Status Register. If = 1,
785 * then an error has occurred.
787 return (status
& LBCIF_STATUS_ACK_ERROR
) ? -EIO
: 0;
790 static int et131x_init_eeprom(struct et131x_adapter
*adapter
)
792 struct pci_dev
*pdev
= adapter
->pdev
;
795 /* We first need to check the EEPROM Status code located at offset
796 * 0xB2 of config space
798 pci_read_config_byte(pdev
, ET1310_PCI_EEPROM_STATUS
,
801 /* THIS IS A WORKAROUND:
802 * I need to call this function twice to get my card in a
803 * LG M1 Express Dual running. I tried also a msleep before this
804 * function, because I thought there could be some time condidions
805 * but it didn't work. Call the whole function twice also work.
807 if (pci_read_config_byte(pdev
, ET1310_PCI_EEPROM_STATUS
, &eestatus
)) {
809 "Could not read PCI config space for EEPROM Status\n");
813 /* Determine if the error(s) we care about are present. If they are
814 * present we need to fail.
816 if (eestatus
& 0x4C) {
817 int write_failed
= 0;
818 if (pdev
->revision
== 0x01) {
820 static const u8 eedata
[4] = { 0xFE, 0x13, 0x10, 0xFF };
822 /* Re-write the first 4 bytes if we have an eeprom
823 * present and the revision id is 1, this fixes the
824 * corruption seen with 1310 B Silicon
826 for (i
= 0; i
< 3; i
++)
827 if (eeprom_write(adapter
, i
, eedata
[i
]) < 0)
830 if (pdev
->revision
!= 0x01 || write_failed
) {
832 "Fatal EEPROM Status Error - 0x%04x\n", eestatus
);
834 /* This error could mean that there was an error
835 * reading the eeprom or that the eeprom doesn't exist.
836 * We will treat each case the same and not try to
837 * gather additional information that normally would
838 * come from the eeprom, like MAC Address
840 adapter
->has_eeprom
= 0;
844 adapter
->has_eeprom
= 1;
846 /* Read the EEPROM for information regarding LED behavior. Refer to
847 * ET1310_phy.c, et131x_xcvr_init(), for its use.
849 eeprom_read(adapter
, 0x70, &adapter
->eeprom_data
[0]);
850 eeprom_read(adapter
, 0x71, &adapter
->eeprom_data
[1]);
852 if (adapter
->eeprom_data
[0] != 0xcd)
853 /* Disable all optional features */
854 adapter
->eeprom_data
[1] = 0x00;
860 * et131x_rx_dma_enable - re-start of Rx_DMA on the ET1310.
861 * @adapter: pointer to our adapter structure
863 static void et131x_rx_dma_enable(struct et131x_adapter
*adapter
)
865 /* Setup the receive dma configuration register for normal operation */
866 u32 csr
= 0x2000; /* FBR1 enable */
868 if (adapter
->rx_ring
.fbr
[0]->buffsize
== 4096)
870 else if (adapter
->rx_ring
.fbr
[0]->buffsize
== 8192)
872 else if (adapter
->rx_ring
.fbr
[0]->buffsize
== 16384)
875 csr
|= 0x0400; /* FBR0 enable */
876 if (adapter
->rx_ring
.fbr
[1]->buffsize
== 256)
878 else if (adapter
->rx_ring
.fbr
[1]->buffsize
== 512)
880 else if (adapter
->rx_ring
.fbr
[1]->buffsize
== 1024)
883 writel(csr
, &adapter
->regs
->rxdma
.csr
);
885 csr
= readl(&adapter
->regs
->rxdma
.csr
);
886 if ((csr
& 0x00020000) != 0) {
888 csr
= readl(&adapter
->regs
->rxdma
.csr
);
889 if ((csr
& 0x00020000) != 0) {
890 dev_err(&adapter
->pdev
->dev
,
891 "RX Dma failed to exit halt state. CSR 0x%08x\n",
898 * et131x_rx_dma_disable - Stop of Rx_DMA on the ET1310
899 * @adapter: pointer to our adapter structure
901 static void et131x_rx_dma_disable(struct et131x_adapter
*adapter
)
904 /* Setup the receive dma configuration register */
905 writel(0x00002001, &adapter
->regs
->rxdma
.csr
);
906 csr
= readl(&adapter
->regs
->rxdma
.csr
);
907 if ((csr
& 0x00020000) == 0) { /* Check halt status (bit 17) */
909 csr
= readl(&adapter
->regs
->rxdma
.csr
);
910 if ((csr
& 0x00020000) == 0)
911 dev_err(&adapter
->pdev
->dev
,
912 "RX Dma failed to enter halt state. CSR 0x%08x\n",
918 * et131x_tx_dma_enable - re-start of Tx_DMA on the ET1310.
919 * @adapter: pointer to our adapter structure
921 * Mainly used after a return to the D0 (full-power) state from a lower state.
923 static void et131x_tx_dma_enable(struct et131x_adapter
*adapter
)
925 /* Setup the transmit dma configuration register for normal
928 writel(ET_TXDMA_SNGL_EPKT
|(PARM_DMA_CACHE_DEF
<< ET_TXDMA_CACHE_SHIFT
),
929 &adapter
->regs
->txdma
.csr
);
932 static inline void add_10bit(u32
*v
, int n
)
934 *v
= INDEX10(*v
+ n
) | (*v
& ET_DMA10_WRAP
);
937 static inline void add_12bit(u32
*v
, int n
)
939 *v
= INDEX12(*v
+ n
) | (*v
& ET_DMA12_WRAP
);
943 * et1310_config_mac_regs1 - Initialize the first part of MAC regs
944 * @adapter: pointer to our adapter structure
946 static void et1310_config_mac_regs1(struct et131x_adapter
*adapter
)
948 struct mac_regs __iomem
*macregs
= &adapter
->regs
->mac
;
953 /* First we need to reset everything. Write to MAC configuration
954 * register 1 to perform reset.
956 writel(0xC00F0000, ¯egs
->cfg1
);
958 /* Next lets configure the MAC Inter-packet gap register */
959 ipg
= 0x38005860; /* IPG1 0x38 IPG2 0x58 B2B 0x60 */
960 ipg
|= 0x50 << 8; /* ifg enforce 0x50 */
961 writel(ipg
, ¯egs
->ipg
);
963 /* Next lets configure the MAC Half Duplex register */
964 /* BEB trunc 0xA, Ex Defer, Rexmit 0xF Coll 0x37 */
965 writel(0x00A1F037, ¯egs
->hfdp
);
967 /* Next lets configure the MAC Interface Control register */
968 writel(0, ¯egs
->if_ctrl
);
970 /* Let's move on to setting up the mii management configuration */
971 writel(0x07, ¯egs
->mii_mgmt_cfg
); /* Clock reset 0x7 */
973 /* Next lets configure the MAC Station Address register. These
974 * values are read from the EEPROM during initialization and stored
975 * in the adapter structure. We write what is stored in the adapter
976 * structure to the MAC Station Address registers high and low. This
977 * station address is used for generating and checking pause control
980 station2
= (adapter
->addr
[1] << ET_MAC_STATION_ADDR2_OC2_SHIFT
) |
981 (adapter
->addr
[0] << ET_MAC_STATION_ADDR2_OC1_SHIFT
);
982 station1
= (adapter
->addr
[5] << ET_MAC_STATION_ADDR1_OC6_SHIFT
) |
983 (adapter
->addr
[4] << ET_MAC_STATION_ADDR1_OC5_SHIFT
) |
984 (adapter
->addr
[3] << ET_MAC_STATION_ADDR1_OC4_SHIFT
) |
986 writel(station1
, ¯egs
->station_addr_1
);
987 writel(station2
, ¯egs
->station_addr_2
);
989 /* Max ethernet packet in bytes that will be passed by the mac without
990 * being truncated. Allow the MAC to pass 4 more than our max packet
991 * size. This is 4 for the Ethernet CRC.
993 * Packets larger than (registry_jumbo_packet) that do not contain a
994 * VLAN ID will be dropped by the Rx function.
996 writel(adapter
->registry_jumbo_packet
+ 4, ¯egs
->max_fm_len
);
998 /* clear out MAC config reset */
999 writel(0, ¯egs
->cfg1
);
1003 * et1310_config_mac_regs2 - Initialize the second part of MAC regs
1004 * @adapter: pointer to our adapter structure
1006 static void et1310_config_mac_regs2(struct et131x_adapter
*adapter
)
1009 struct mac_regs __iomem
*mac
= &adapter
->regs
->mac
;
1010 struct phy_device
*phydev
= adapter
->phydev
;
1016 ctl
= readl(&adapter
->regs
->txmac
.ctl
);
1017 cfg1
= readl(&mac
->cfg1
);
1018 cfg2
= readl(&mac
->cfg2
);
1019 ifctrl
= readl(&mac
->if_ctrl
);
1021 /* Set up the if mode bits */
1023 if (phydev
&& phydev
->speed
== SPEED_1000
) {
1026 ifctrl
&= ~(1 << 24);
1029 ifctrl
|= (1 << 24);
1032 /* We need to enable Rx/Tx */
1033 cfg1
|= CFG1_RX_ENABLE
| CFG1_TX_ENABLE
| CFG1_TX_FLOW
;
1034 /* Initialize loop back to off */
1035 cfg1
&= ~(CFG1_LOOPBACK
| CFG1_RX_FLOW
);
1036 if (adapter
->flowcontrol
== FLOW_RXONLY
||
1037 adapter
->flowcontrol
== FLOW_BOTH
)
1038 cfg1
|= CFG1_RX_FLOW
;
1039 writel(cfg1
, &mac
->cfg1
);
1041 /* Now we need to initialize the MAC Configuration 2 register */
1042 /* preamble 7, check length, huge frame off, pad crc, crc enable
1047 /* Turn on duplex if needed */
1048 if (phydev
&& phydev
->duplex
== DUPLEX_FULL
)
1051 ifctrl
&= ~(1 << 26);
1052 if (phydev
&& phydev
->duplex
== DUPLEX_HALF
)
1053 ifctrl
|= (1<<26); /* Enable ghd */
1055 writel(ifctrl
, &mac
->if_ctrl
);
1056 writel(cfg2
, &mac
->cfg2
);
1061 cfg1
= readl(&mac
->cfg1
);
1062 } while ((cfg1
& CFG1_WAIT
) != CFG1_WAIT
&& delay
< 100);
1065 dev_warn(&adapter
->pdev
->dev
,
1066 "Syncd bits did not respond correctly cfg1 word 0x%08x\n",
1071 ctl
|= 0x09; /* TX mac enable, FC disable */
1072 writel(ctl
, &adapter
->regs
->txmac
.ctl
);
1074 /* Ready to start the RXDMA/TXDMA engine */
1075 if (adapter
->flags
& fMP_ADAPTER_LOWER_POWER
) {
1076 et131x_rx_dma_enable(adapter
);
1077 et131x_tx_dma_enable(adapter
);
1082 * et1310_in_phy_coma - check if the device is in phy coma
1083 * @adapter: pointer to our adapter structure
1085 * Returns 0 if the device is not in phy coma, 1 if it is in phy coma
1087 static int et1310_in_phy_coma(struct et131x_adapter
*adapter
)
1091 pmcsr
= readl(&adapter
->regs
->global
.pm_csr
);
1093 return ET_PM_PHY_SW_COMA
& pmcsr
? 1 : 0;
1096 static void et1310_setup_device_for_multicast(struct et131x_adapter
*adapter
)
1098 struct rxmac_regs __iomem
*rxmac
= &adapter
->regs
->rxmac
;
1105 /* If ET131X_PACKET_TYPE_MULTICAST is specified, then we provision
1106 * the multi-cast LIST. If it is NOT specified, (and "ALL" is not
1107 * specified) then we should pass NO multi-cast addresses to the
1110 if (adapter
->packet_filter
& ET131X_PACKET_TYPE_MULTICAST
) {
1113 /* Loop through our multicast array and set up the device */
1114 for (i
= 0; i
< adapter
->multicast_addr_count
; i
++) {
1117 result
= ether_crc(6, adapter
->multicast_list
[i
]);
1119 result
= (result
& 0x3F800000) >> 23;
1122 hash1
|= (1 << result
);
1123 } else if ((31 < result
) && (result
< 64)) {
1125 hash2
|= (1 << result
);
1126 } else if ((63 < result
) && (result
< 96)) {
1128 hash3
|= (1 << result
);
1131 hash4
|= (1 << result
);
1136 /* Write out the new hash to the device */
1137 pm_csr
= readl(&adapter
->regs
->global
.pm_csr
);
1138 if (!et1310_in_phy_coma(adapter
)) {
1139 writel(hash1
, &rxmac
->multi_hash1
);
1140 writel(hash2
, &rxmac
->multi_hash2
);
1141 writel(hash3
, &rxmac
->multi_hash3
);
1142 writel(hash4
, &rxmac
->multi_hash4
);
1146 static void et1310_setup_device_for_unicast(struct et131x_adapter
*adapter
)
1148 struct rxmac_regs __iomem
*rxmac
= &adapter
->regs
->rxmac
;
1154 /* Set up unicast packet filter reg 3 to be the first two octets of
1155 * the MAC address for both address
1157 * Set up unicast packet filter reg 2 to be the octets 2 - 5 of the
1158 * MAC address for second address
1160 * Set up unicast packet filter reg 3 to be the octets 2 - 5 of the
1161 * MAC address for first address
1163 uni_pf3
= (adapter
->addr
[0] << ET_UNI_PF_ADDR2_1_SHIFT
) |
1164 (adapter
->addr
[1] << ET_UNI_PF_ADDR2_2_SHIFT
) |
1165 (adapter
->addr
[0] << ET_UNI_PF_ADDR1_1_SHIFT
) |
1168 uni_pf2
= (adapter
->addr
[2] << ET_UNI_PF_ADDR2_3_SHIFT
) |
1169 (adapter
->addr
[3] << ET_UNI_PF_ADDR2_4_SHIFT
) |
1170 (adapter
->addr
[4] << ET_UNI_PF_ADDR2_5_SHIFT
) |
1173 uni_pf1
= (adapter
->addr
[2] << ET_UNI_PF_ADDR1_3_SHIFT
) |
1174 (adapter
->addr
[3] << ET_UNI_PF_ADDR1_4_SHIFT
) |
1175 (adapter
->addr
[4] << ET_UNI_PF_ADDR1_5_SHIFT
) |
1178 pm_csr
= readl(&adapter
->regs
->global
.pm_csr
);
1179 if (!et1310_in_phy_coma(adapter
)) {
1180 writel(uni_pf1
, &rxmac
->uni_pf_addr1
);
1181 writel(uni_pf2
, &rxmac
->uni_pf_addr2
);
1182 writel(uni_pf3
, &rxmac
->uni_pf_addr3
);
1186 static void et1310_config_rxmac_regs(struct et131x_adapter
*adapter
)
1188 struct rxmac_regs __iomem
*rxmac
= &adapter
->regs
->rxmac
;
1189 struct phy_device
*phydev
= adapter
->phydev
;
1194 /* Disable the MAC while it is being configured (also disable WOL) */
1195 writel(0x8, &rxmac
->ctrl
);
1197 /* Initialize WOL to disabled. */
1198 writel(0, &rxmac
->crc0
);
1199 writel(0, &rxmac
->crc12
);
1200 writel(0, &rxmac
->crc34
);
1202 /* We need to set the WOL mask0 - mask4 next. We initialize it to
1203 * its default Values of 0x00000000 because there are not WOL masks
1206 writel(0, &rxmac
->mask0_word0
);
1207 writel(0, &rxmac
->mask0_word1
);
1208 writel(0, &rxmac
->mask0_word2
);
1209 writel(0, &rxmac
->mask0_word3
);
1211 writel(0, &rxmac
->mask1_word0
);
1212 writel(0, &rxmac
->mask1_word1
);
1213 writel(0, &rxmac
->mask1_word2
);
1214 writel(0, &rxmac
->mask1_word3
);
1216 writel(0, &rxmac
->mask2_word0
);
1217 writel(0, &rxmac
->mask2_word1
);
1218 writel(0, &rxmac
->mask2_word2
);
1219 writel(0, &rxmac
->mask2_word3
);
1221 writel(0, &rxmac
->mask3_word0
);
1222 writel(0, &rxmac
->mask3_word1
);
1223 writel(0, &rxmac
->mask3_word2
);
1224 writel(0, &rxmac
->mask3_word3
);
1226 writel(0, &rxmac
->mask4_word0
);
1227 writel(0, &rxmac
->mask4_word1
);
1228 writel(0, &rxmac
->mask4_word2
);
1229 writel(0, &rxmac
->mask4_word3
);
1231 /* Lets setup the WOL Source Address */
1232 sa_lo
= (adapter
->addr
[2] << ET_WOL_LO_SA3_SHIFT
) |
1233 (adapter
->addr
[3] << ET_WOL_LO_SA4_SHIFT
) |
1234 (adapter
->addr
[4] << ET_WOL_LO_SA5_SHIFT
) |
1236 writel(sa_lo
, &rxmac
->sa_lo
);
1238 sa_hi
= (u32
) (adapter
->addr
[0] << ET_WOL_HI_SA1_SHIFT
) |
1240 writel(sa_hi
, &rxmac
->sa_hi
);
1242 /* Disable all Packet Filtering */
1243 writel(0, &rxmac
->pf_ctrl
);
1245 /* Let's initialize the Unicast Packet filtering address */
1246 if (adapter
->packet_filter
& ET131X_PACKET_TYPE_DIRECTED
) {
1247 et1310_setup_device_for_unicast(adapter
);
1248 pf_ctrl
|= 4; /* Unicast filter */
1250 writel(0, &rxmac
->uni_pf_addr1
);
1251 writel(0, &rxmac
->uni_pf_addr2
);
1252 writel(0, &rxmac
->uni_pf_addr3
);
1255 /* Let's initialize the Multicast hash */
1256 if (!(adapter
->packet_filter
& ET131X_PACKET_TYPE_ALL_MULTICAST
)) {
1257 pf_ctrl
|= 2; /* Multicast filter */
1258 et1310_setup_device_for_multicast(adapter
);
1261 /* Runt packet filtering. Didn't work in version A silicon. */
1262 pf_ctrl
|= (NIC_MIN_PACKET_SIZE
+ 4) << 16;
1263 pf_ctrl
|= 8; /* Fragment filter */
1265 if (adapter
->registry_jumbo_packet
> 8192)
1266 /* In order to transmit jumbo packets greater than 8k, the
1267 * FIFO between RxMAC and RxDMA needs to be reduced in size
1268 * to (16k - Jumbo packet size). In order to implement this,
1269 * we must use "cut through" mode in the RxMAC, which chops
1270 * packets down into segments which are (max_size * 16). In
1271 * this case we selected 256 bytes, since this is the size of
1272 * the PCI-Express TLP's that the 1310 uses.
1274 * seg_en on, fc_en off, size 0x10
1276 writel(0x41, &rxmac
->mcif_ctrl_max_seg
);
1278 writel(0, &rxmac
->mcif_ctrl_max_seg
);
1280 /* Initialize the MCIF water marks */
1281 writel(0, &rxmac
->mcif_water_mark
);
1283 /* Initialize the MIF control */
1284 writel(0, &rxmac
->mif_ctrl
);
1286 /* Initialize the Space Available Register */
1287 writel(0, &rxmac
->space_avail
);
1289 /* Initialize the the mif_ctrl register
1290 * bit 3: Receive code error. One or more nibbles were signaled as
1291 * errors during the reception of the packet. Clear this
1292 * bit in Gigabit, set it in 100Mbit. This was derived
1293 * experimentally at UNH.
1294 * bit 4: Receive CRC error. The packet's CRC did not match the
1295 * internally generated CRC.
1296 * bit 5: Receive length check error. Indicates that frame length
1297 * field value in the packet does not match the actual data
1298 * byte length and is not a type field.
1299 * bit 16: Receive frame truncated.
1300 * bit 17: Drop packet enable
1302 if (phydev
&& phydev
->speed
== SPEED_100
)
1303 writel(0x30038, &rxmac
->mif_ctrl
);
1305 writel(0x30030, &rxmac
->mif_ctrl
);
1307 /* Finally we initialize RxMac to be enabled & WOL disabled. Packet
1308 * filter is always enabled since it is where the runt packets are
1309 * supposed to be dropped. For version A silicon, runt packet
1310 * dropping doesn't work, so it is disabled in the pf_ctrl register,
1311 * but we still leave the packet filter on.
1313 writel(pf_ctrl
, &rxmac
->pf_ctrl
);
1314 writel(0x9, &rxmac
->ctrl
);
1317 static void et1310_config_txmac_regs(struct et131x_adapter
*adapter
)
1319 struct txmac_regs __iomem
*txmac
= &adapter
->regs
->txmac
;
1321 /* We need to update the Control Frame Parameters
1322 * cfpt - control frame pause timer set to 64 (0x40)
1323 * cfep - control frame extended pause timer set to 0x0
1325 if (adapter
->flowcontrol
== FLOW_NONE
)
1326 writel(0, &txmac
->cf_param
);
1328 writel(0x40, &txmac
->cf_param
);
1331 static void et1310_config_macstat_regs(struct et131x_adapter
*adapter
)
1333 struct macstat_regs __iomem
*macstat
=
1334 &adapter
->regs
->macstat
;
1336 /* Next we need to initialize all the macstat registers to zero on
1339 writel(0, &macstat
->txrx_0_64_byte_frames
);
1340 writel(0, &macstat
->txrx_65_127_byte_frames
);
1341 writel(0, &macstat
->txrx_128_255_byte_frames
);
1342 writel(0, &macstat
->txrx_256_511_byte_frames
);
1343 writel(0, &macstat
->txrx_512_1023_byte_frames
);
1344 writel(0, &macstat
->txrx_1024_1518_byte_frames
);
1345 writel(0, &macstat
->txrx_1519_1522_gvln_frames
);
1347 writel(0, &macstat
->rx_bytes
);
1348 writel(0, &macstat
->rx_packets
);
1349 writel(0, &macstat
->rx_fcs_errs
);
1350 writel(0, &macstat
->rx_multicast_packets
);
1351 writel(0, &macstat
->rx_broadcast_packets
);
1352 writel(0, &macstat
->rx_control_frames
);
1353 writel(0, &macstat
->rx_pause_frames
);
1354 writel(0, &macstat
->rx_unknown_opcodes
);
1355 writel(0, &macstat
->rx_align_errs
);
1356 writel(0, &macstat
->rx_frame_len_errs
);
1357 writel(0, &macstat
->rx_code_errs
);
1358 writel(0, &macstat
->rx_carrier_sense_errs
);
1359 writel(0, &macstat
->rx_undersize_packets
);
1360 writel(0, &macstat
->rx_oversize_packets
);
1361 writel(0, &macstat
->rx_fragment_packets
);
1362 writel(0, &macstat
->rx_jabbers
);
1363 writel(0, &macstat
->rx_drops
);
1365 writel(0, &macstat
->tx_bytes
);
1366 writel(0, &macstat
->tx_packets
);
1367 writel(0, &macstat
->tx_multicast_packets
);
1368 writel(0, &macstat
->tx_broadcast_packets
);
1369 writel(0, &macstat
->tx_pause_frames
);
1370 writel(0, &macstat
->tx_deferred
);
1371 writel(0, &macstat
->tx_excessive_deferred
);
1372 writel(0, &macstat
->tx_single_collisions
);
1373 writel(0, &macstat
->tx_multiple_collisions
);
1374 writel(0, &macstat
->tx_late_collisions
);
1375 writel(0, &macstat
->tx_excessive_collisions
);
1376 writel(0, &macstat
->tx_total_collisions
);
1377 writel(0, &macstat
->tx_pause_honored_frames
);
1378 writel(0, &macstat
->tx_drops
);
1379 writel(0, &macstat
->tx_jabbers
);
1380 writel(0, &macstat
->tx_fcs_errs
);
1381 writel(0, &macstat
->tx_control_frames
);
1382 writel(0, &macstat
->tx_oversize_frames
);
1383 writel(0, &macstat
->tx_undersize_frames
);
1384 writel(0, &macstat
->tx_fragments
);
1385 writel(0, &macstat
->carry_reg1
);
1386 writel(0, &macstat
->carry_reg2
);
1388 /* Unmask any counters that we want to track the overflow of.
1389 * Initially this will be all counters. It may become clear later
1390 * that we do not need to track all counters.
1392 writel(0xFFFFBE32, &macstat
->carry_reg1_mask
);
1393 writel(0xFFFE7E8B, &macstat
->carry_reg2_mask
);
1397 * et131x_phy_mii_read - Read from the PHY through the MII Interface on the MAC
1398 * @adapter: pointer to our private adapter structure
1399 * @addr: the address of the transceiver
1400 * @reg: the register to read
1401 * @value: pointer to a 16-bit value in which the value will be stored
1403 * Returns 0 on success, errno on failure (as defined in errno.h)
1405 static int et131x_phy_mii_read(struct et131x_adapter
*adapter
, u8 addr
,
1408 struct mac_regs __iomem
*mac
= &adapter
->regs
->mac
;
1415 /* Save a local copy of the registers we are dealing with so we can
1418 mii_addr
= readl(&mac
->mii_mgmt_addr
);
1419 mii_cmd
= readl(&mac
->mii_mgmt_cmd
);
1421 /* Stop the current operation */
1422 writel(0, &mac
->mii_mgmt_cmd
);
1424 /* Set up the register we need to read from on the correct PHY */
1425 writel(MII_ADDR(addr
, reg
), &mac
->mii_mgmt_addr
);
1427 writel(0x1, &mac
->mii_mgmt_cmd
);
1432 mii_indicator
= readl(&mac
->mii_mgmt_indicator
);
1433 } while ((mii_indicator
& MGMT_WAIT
) && delay
< 50);
1435 /* If we hit the max delay, we could not read the register */
1437 dev_warn(&adapter
->pdev
->dev
,
1438 "reg 0x%08x could not be read\n", reg
);
1439 dev_warn(&adapter
->pdev
->dev
, "status is 0x%08x\n",
1445 /* If we hit here we were able to read the register and we need to
1446 * return the value to the caller */
1447 *value
= readl(&mac
->mii_mgmt_stat
) & 0xFFFF;
1449 /* Stop the read operation */
1450 writel(0, &mac
->mii_mgmt_cmd
);
1452 /* set the registers we touched back to the state at which we entered
1455 writel(mii_addr
, &mac
->mii_mgmt_addr
);
1456 writel(mii_cmd
, &mac
->mii_mgmt_cmd
);
1461 static int et131x_mii_read(struct et131x_adapter
*adapter
, u8 reg
, u16
*value
)
1463 struct phy_device
*phydev
= adapter
->phydev
;
1468 return et131x_phy_mii_read(adapter
, phydev
->addr
, reg
, value
);
1472 * et131x_mii_write - Write to a PHY register through the MII interface of the MAC
1473 * @adapter: pointer to our private adapter structure
1474 * @reg: the register to read
1475 * @value: 16-bit value to write
1477 * FIXME: one caller in netdev still
1479 * Return 0 on success, errno on failure (as defined in errno.h)
1481 static int et131x_mii_write(struct et131x_adapter
*adapter
, u8 reg
, u16 value
)
1483 struct mac_regs __iomem
*mac
= &adapter
->regs
->mac
;
1484 struct phy_device
*phydev
= adapter
->phydev
;
1495 addr
= phydev
->addr
;
1497 /* Save a local copy of the registers we are dealing with so we can
1500 mii_addr
= readl(&mac
->mii_mgmt_addr
);
1501 mii_cmd
= readl(&mac
->mii_mgmt_cmd
);
1503 /* Stop the current operation */
1504 writel(0, &mac
->mii_mgmt_cmd
);
1506 /* Set up the register we need to write to on the correct PHY */
1507 writel(MII_ADDR(addr
, reg
), &mac
->mii_mgmt_addr
);
1509 /* Add the value to write to the registers to the mac */
1510 writel(value
, &mac
->mii_mgmt_ctrl
);
1515 mii_indicator
= readl(&mac
->mii_mgmt_indicator
);
1516 } while ((mii_indicator
& MGMT_BUSY
) && delay
< 100);
1518 /* If we hit the max delay, we could not write the register */
1522 dev_warn(&adapter
->pdev
->dev
,
1523 "reg 0x%08x could not be written", reg
);
1524 dev_warn(&adapter
->pdev
->dev
, "status is 0x%08x\n",
1526 dev_warn(&adapter
->pdev
->dev
, "command is 0x%08x\n",
1527 readl(&mac
->mii_mgmt_cmd
));
1529 et131x_mii_read(adapter
, reg
, &tmp
);
1533 /* Stop the write operation */
1534 writel(0, &mac
->mii_mgmt_cmd
);
1537 * set the registers we touched back to the state at which we entered
1540 writel(mii_addr
, &mac
->mii_mgmt_addr
);
1541 writel(mii_cmd
, &mac
->mii_mgmt_cmd
);
1546 /* Still used from _mac for BIT_READ */
1547 static void et1310_phy_access_mii_bit(struct et131x_adapter
*adapter
,
1548 u16 action
, u16 regnum
, u16 bitnum
,
1552 u16 mask
= 0x0001 << bitnum
;
1554 /* Read the requested register */
1555 et131x_mii_read(adapter
, regnum
, ®
);
1558 case TRUEPHY_BIT_READ
:
1559 *value
= (reg
& mask
) >> bitnum
;
1562 case TRUEPHY_BIT_SET
:
1563 et131x_mii_write(adapter
, regnum
, reg
| mask
);
1566 case TRUEPHY_BIT_CLEAR
:
1567 et131x_mii_write(adapter
, regnum
, reg
& ~mask
);
1575 static void et1310_config_flow_control(struct et131x_adapter
*adapter
)
1577 struct phy_device
*phydev
= adapter
->phydev
;
1579 if (phydev
->duplex
== DUPLEX_HALF
) {
1580 adapter
->flowcontrol
= FLOW_NONE
;
1582 char remote_pause
, remote_async_pause
;
1584 et1310_phy_access_mii_bit(adapter
,
1585 TRUEPHY_BIT_READ
, 5, 10, &remote_pause
);
1586 et1310_phy_access_mii_bit(adapter
,
1587 TRUEPHY_BIT_READ
, 5, 11,
1588 &remote_async_pause
);
1590 if ((remote_pause
== TRUEPHY_BIT_SET
) &&
1591 (remote_async_pause
== TRUEPHY_BIT_SET
)) {
1592 adapter
->flowcontrol
= adapter
->wanted_flow
;
1593 } else if ((remote_pause
== TRUEPHY_BIT_SET
) &&
1594 (remote_async_pause
== TRUEPHY_BIT_CLEAR
)) {
1595 if (adapter
->wanted_flow
== FLOW_BOTH
)
1596 adapter
->flowcontrol
= FLOW_BOTH
;
1598 adapter
->flowcontrol
= FLOW_NONE
;
1599 } else if ((remote_pause
== TRUEPHY_BIT_CLEAR
) &&
1600 (remote_async_pause
== TRUEPHY_BIT_CLEAR
)) {
1601 adapter
->flowcontrol
= FLOW_NONE
;
1602 } else {/* if (remote_pause == TRUEPHY_CLEAR_BIT &&
1603 remote_async_pause == TRUEPHY_SET_BIT) */
1604 if (adapter
->wanted_flow
== FLOW_BOTH
)
1605 adapter
->flowcontrol
= FLOW_RXONLY
;
1607 adapter
->flowcontrol
= FLOW_NONE
;
1613 * et1310_update_macstat_host_counters - Update the local copy of the statistics
1614 * @adapter: pointer to the adapter structure
1616 static void et1310_update_macstat_host_counters(struct et131x_adapter
*adapter
)
1618 struct ce_stats
*stats
= &adapter
->stats
;
1619 struct macstat_regs __iomem
*macstat
=
1620 &adapter
->regs
->macstat
;
1622 stats
->tx_collisions
+= readl(&macstat
->tx_total_collisions
);
1623 stats
->tx_first_collisions
+= readl(&macstat
->tx_single_collisions
);
1624 stats
->tx_deferred
+= readl(&macstat
->tx_deferred
);
1625 stats
->tx_excessive_collisions
+=
1626 readl(&macstat
->tx_multiple_collisions
);
1627 stats
->tx_late_collisions
+= readl(&macstat
->tx_late_collisions
);
1628 stats
->tx_underflows
+= readl(&macstat
->tx_undersize_frames
);
1629 stats
->tx_max_pkt_errs
+= readl(&macstat
->tx_oversize_frames
);
1631 stats
->rx_align_errs
+= readl(&macstat
->rx_align_errs
);
1632 stats
->rx_crc_errs
+= readl(&macstat
->rx_code_errs
);
1633 stats
->rcvd_pkts_dropped
+= readl(&macstat
->rx_drops
);
1634 stats
->rx_overflows
+= readl(&macstat
->rx_oversize_packets
);
1635 stats
->rx_code_violations
+= readl(&macstat
->rx_fcs_errs
);
1636 stats
->rx_length_errs
+= readl(&macstat
->rx_frame_len_errs
);
1637 stats
->rx_other_errs
+= readl(&macstat
->rx_fragment_packets
);
1641 * et1310_handle_macstat_interrupt
1642 * @adapter: pointer to the adapter structure
1644 * One of the MACSTAT counters has wrapped. Update the local copy of
1645 * the statistics held in the adapter structure, checking the "wrap"
1646 * bit for each counter.
1648 static void et1310_handle_macstat_interrupt(struct et131x_adapter
*adapter
)
1653 /* Read the interrupt bits from the register(s). These are Clear On
1656 carry_reg1
= readl(&adapter
->regs
->macstat
.carry_reg1
);
1657 carry_reg2
= readl(&adapter
->regs
->macstat
.carry_reg2
);
1659 writel(carry_reg1
, &adapter
->regs
->macstat
.carry_reg1
);
1660 writel(carry_reg2
, &adapter
->regs
->macstat
.carry_reg2
);
1662 /* We need to do update the host copy of all the MAC_STAT counters.
1663 * For each counter, check it's overflow bit. If the overflow bit is
1664 * set, then increment the host version of the count by one complete
1665 * revolution of the counter. This routine is called when the counter
1666 * block indicates that one of the counters has wrapped.
1668 if (carry_reg1
& (1 << 14))
1669 adapter
->stats
.rx_code_violations
+= COUNTER_WRAP_16_BIT
;
1670 if (carry_reg1
& (1 << 8))
1671 adapter
->stats
.rx_align_errs
+= COUNTER_WRAP_12_BIT
;
1672 if (carry_reg1
& (1 << 7))
1673 adapter
->stats
.rx_length_errs
+= COUNTER_WRAP_16_BIT
;
1674 if (carry_reg1
& (1 << 2))
1675 adapter
->stats
.rx_other_errs
+= COUNTER_WRAP_16_BIT
;
1676 if (carry_reg1
& (1 << 6))
1677 adapter
->stats
.rx_crc_errs
+= COUNTER_WRAP_16_BIT
;
1678 if (carry_reg1
& (1 << 3))
1679 adapter
->stats
.rx_overflows
+= COUNTER_WRAP_16_BIT
;
1680 if (carry_reg1
& (1 << 0))
1681 adapter
->stats
.rcvd_pkts_dropped
+= COUNTER_WRAP_16_BIT
;
1682 if (carry_reg2
& (1 << 16))
1683 adapter
->stats
.tx_max_pkt_errs
+= COUNTER_WRAP_12_BIT
;
1684 if (carry_reg2
& (1 << 15))
1685 adapter
->stats
.tx_underflows
+= COUNTER_WRAP_12_BIT
;
1686 if (carry_reg2
& (1 << 6))
1687 adapter
->stats
.tx_first_collisions
+= COUNTER_WRAP_12_BIT
;
1688 if (carry_reg2
& (1 << 8))
1689 adapter
->stats
.tx_deferred
+= COUNTER_WRAP_12_BIT
;
1690 if (carry_reg2
& (1 << 5))
1691 adapter
->stats
.tx_excessive_collisions
+= COUNTER_WRAP_12_BIT
;
1692 if (carry_reg2
& (1 << 4))
1693 adapter
->stats
.tx_late_collisions
+= COUNTER_WRAP_12_BIT
;
1694 if (carry_reg2
& (1 << 2))
1695 adapter
->stats
.tx_collisions
+= COUNTER_WRAP_12_BIT
;
1698 static int et131x_mdio_read(struct mii_bus
*bus
, int phy_addr
, int reg
)
1700 struct net_device
*netdev
= bus
->priv
;
1701 struct et131x_adapter
*adapter
= netdev_priv(netdev
);
1705 ret
= et131x_phy_mii_read(adapter
, phy_addr
, reg
, &value
);
1713 static int et131x_mdio_write(struct mii_bus
*bus
, int phy_addr
, int reg
, u16 value
)
1715 struct net_device
*netdev
= bus
->priv
;
1716 struct et131x_adapter
*adapter
= netdev_priv(netdev
);
1718 return et131x_mii_write(adapter
, reg
, value
);
1721 static int et131x_mdio_reset(struct mii_bus
*bus
)
1723 struct net_device
*netdev
= bus
->priv
;
1724 struct et131x_adapter
*adapter
= netdev_priv(netdev
);
1726 et131x_mii_write(adapter
, MII_BMCR
, BMCR_RESET
);
1732 * et1310_phy_power_down - PHY power control
1733 * @adapter: device to control
1734 * @down: true for off/false for back on
1736 * one hundred, ten, one thousand megs
1737 * How would you like to have your LAN accessed
1738 * Can't you see that this code processed
1739 * Phy power, phy power..
1741 static void et1310_phy_power_down(struct et131x_adapter
*adapter
, bool down
)
1745 et131x_mii_read(adapter
, MII_BMCR
, &data
);
1746 data
&= ~BMCR_PDOWN
;
1749 et131x_mii_write(adapter
, MII_BMCR
, data
);
1753 * et131x_xcvr_init - Init the phy if we are setting it into force mode
1754 * @adapter: pointer to our private adapter structure
1757 static void et131x_xcvr_init(struct et131x_adapter
*adapter
)
1763 et131x_mii_read(adapter
, PHY_INTERRUPT_STATUS
, &isr
);
1764 et131x_mii_read(adapter
, PHY_INTERRUPT_MASK
, &imr
);
1766 /* Set the link status interrupt only. Bad behavior when link status
1767 * and auto neg are set, we run into a nested interrupt problem
1769 imr
|= (ET_PHY_INT_MASK_AUTONEGSTAT
&
1770 ET_PHY_INT_MASK_LINKSTAT
&
1771 ET_PHY_INT_MASK_ENABLE
);
1773 et131x_mii_write(adapter
, PHY_INTERRUPT_MASK
, imr
);
1775 /* Set the LED behavior such that LED 1 indicates speed (off =
1776 * 10Mbits, blink = 100Mbits, on = 1000Mbits) and LED 2 indicates
1777 * link and activity (on for link, blink off for activity).
1779 * NOTE: Some customizations have been added here for specific
1780 * vendors; The LED behavior is now determined by vendor data in the
1781 * EEPROM. However, the above description is the default.
1783 if ((adapter
->eeprom_data
[1] & 0x4) == 0) {
1784 et131x_mii_read(adapter
, PHY_LED_2
, &lcr2
);
1786 lcr2
&= (ET_LED2_LED_100TX
& ET_LED2_LED_1000T
);
1787 lcr2
|= (LED_VAL_LINKON_ACTIVE
<< LED_LINK_SHIFT
);
1789 if ((adapter
->eeprom_data
[1] & 0x8) == 0)
1790 lcr2
|= (LED_VAL_1000BT_100BTX
<< LED_TXRX_SHIFT
);
1792 lcr2
|= (LED_VAL_LINKON
<< LED_TXRX_SHIFT
);
1794 et131x_mii_write(adapter
, PHY_LED_2
, lcr2
);
1799 * et131x_configure_global_regs - configure JAGCore global regs
1800 * @adapter: pointer to our adapter structure
1802 * Used to configure the global registers on the JAGCore
1804 static void et131x_configure_global_regs(struct et131x_adapter
*adapter
)
1806 struct global_regs __iomem
*regs
= &adapter
->regs
->global
;
1808 writel(0, ®s
->rxq_start_addr
);
1809 writel(INTERNAL_MEM_SIZE
- 1, ®s
->txq_end_addr
);
1811 if (adapter
->registry_jumbo_packet
< 2048) {
1812 /* Tx / RxDMA and Tx/Rx MAC interfaces have a 1k word
1813 * block of RAM that the driver can split between Tx
1814 * and Rx as it desires. Our default is to split it
1817 writel(PARM_RX_MEM_END_DEF
, ®s
->rxq_end_addr
);
1818 writel(PARM_RX_MEM_END_DEF
+ 1, ®s
->txq_start_addr
);
1819 } else if (adapter
->registry_jumbo_packet
< 8192) {
1820 /* For jumbo packets > 2k but < 8k, split 50-50. */
1821 writel(INTERNAL_MEM_RX_OFFSET
, ®s
->rxq_end_addr
);
1822 writel(INTERNAL_MEM_RX_OFFSET
+ 1, ®s
->txq_start_addr
);
1824 /* 9216 is the only packet size greater than 8k that
1825 * is available. The Tx buffer has to be big enough
1826 * for one whole packet on the Tx side. We'll make
1827 * the Tx 9408, and give the rest to Rx
1829 writel(0x01b3, ®s
->rxq_end_addr
);
1830 writel(0x01b4, ®s
->txq_start_addr
);
1833 /* Initialize the loopback register. Disable all loopbacks. */
1834 writel(0, ®s
->loopback
);
1837 writel(0, ®s
->msi_config
);
1839 /* By default, disable the watchdog timer. It will be enabled when
1840 * a packet is queued.
1842 writel(0, ®s
->watchdog_timer
);
1846 * et131x_config_rx_dma_regs - Start of Rx_DMA init sequence
1847 * @adapter: pointer to our adapter structure
1849 static void et131x_config_rx_dma_regs(struct et131x_adapter
*adapter
)
1851 struct rxdma_regs __iomem
*rx_dma
= &adapter
->regs
->rxdma
;
1852 struct rx_ring
*rx_local
= &adapter
->rx_ring
;
1853 struct fbr_desc
*fbr_entry
;
1856 unsigned long flags
;
1858 /* Halt RXDMA to perform the reconfigure. */
1859 et131x_rx_dma_disable(adapter
);
1861 /* Load the completion writeback physical address
1863 * NOTE : dma_alloc_coherent(), used above to alloc DMA regions,
1864 * ALWAYS returns SAC (32-bit) addresses. If DAC (64-bit) addresses
1865 * are ever returned, make sure the high part is retrieved here
1866 * before storing the adjusted address.
1868 writel((u32
) ((u64
)rx_local
->rx_status_bus
>> 32),
1869 &rx_dma
->dma_wb_base_hi
);
1870 writel((u32
) rx_local
->rx_status_bus
, &rx_dma
->dma_wb_base_lo
);
1872 memset(rx_local
->rx_status_block
, 0, sizeof(struct rx_status_block
));
1874 /* Set the address and parameters of the packet status ring into the
1877 writel((u32
) ((u64
)rx_local
->ps_ring_physaddr
>> 32),
1878 &rx_dma
->psr_base_hi
);
1879 writel((u32
) rx_local
->ps_ring_physaddr
, &rx_dma
->psr_base_lo
);
1880 writel(rx_local
->psr_num_entries
- 1, &rx_dma
->psr_num_des
);
1881 writel(0, &rx_dma
->psr_full_offset
);
1883 psr_num_des
= readl(&rx_dma
->psr_num_des
) & 0xFFF;
1884 writel((psr_num_des
* LO_MARK_PERCENT_FOR_PSR
) / 100,
1885 &rx_dma
->psr_min_des
);
1887 spin_lock_irqsave(&adapter
->rcv_lock
, flags
);
1889 /* These local variables track the PSR in the adapter structure */
1890 rx_local
->local_psr_full
= 0;
1892 /* Now's the best time to initialize FBR1 contents */
1893 fbr_entry
= (struct fbr_desc
*) rx_local
->fbr
[0]->ring_virtaddr
;
1894 for (entry
= 0; entry
< rx_local
->fbr
[0]->num_entries
; entry
++) {
1895 fbr_entry
->addr_hi
= rx_local
->fbr
[0]->bus_high
[entry
];
1896 fbr_entry
->addr_lo
= rx_local
->fbr
[0]->bus_low
[entry
];
1897 fbr_entry
->word2
= entry
;
1901 /* Set the address and parameters of Free buffer ring 1 (and 0 if
1902 * required) into the 1310's registers
1904 writel((u32
) (rx_local
->fbr
[0]->real_physaddr
>> 32),
1905 &rx_dma
->fbr1_base_hi
);
1906 writel((u32
) rx_local
->fbr
[0]->real_physaddr
, &rx_dma
->fbr1_base_lo
);
1907 writel(rx_local
->fbr
[0]->num_entries
- 1, &rx_dma
->fbr1_num_des
);
1908 writel(ET_DMA10_WRAP
, &rx_dma
->fbr1_full_offset
);
1910 /* This variable tracks the free buffer ring 1 full position, so it
1911 * has to match the above.
1913 rx_local
->fbr
[0]->local_full
= ET_DMA10_WRAP
;
1915 ((rx_local
->fbr
[0]->num_entries
* LO_MARK_PERCENT_FOR_RX
) / 100) - 1,
1916 &rx_dma
->fbr1_min_des
);
1919 /* Now's the best time to initialize FBR0 contents */
1920 fbr_entry
= (struct fbr_desc
*) rx_local
->fbr
[1]->ring_virtaddr
;
1921 for (entry
= 0; entry
< rx_local
->fbr
[1]->num_entries
; entry
++) {
1922 fbr_entry
->addr_hi
= rx_local
->fbr
[1]->bus_high
[entry
];
1923 fbr_entry
->addr_lo
= rx_local
->fbr
[1]->bus_low
[entry
];
1924 fbr_entry
->word2
= entry
;
1928 writel((u32
) (rx_local
->fbr
[1]->real_physaddr
>> 32),
1929 &rx_dma
->fbr0_base_hi
);
1930 writel((u32
) rx_local
->fbr
[1]->real_physaddr
, &rx_dma
->fbr0_base_lo
);
1931 writel(rx_local
->fbr
[1]->num_entries
- 1, &rx_dma
->fbr0_num_des
);
1932 writel(ET_DMA10_WRAP
, &rx_dma
->fbr0_full_offset
);
1934 /* This variable tracks the free buffer ring 0 full position, so it
1935 * has to match the above.
1937 rx_local
->fbr
[1]->local_full
= ET_DMA10_WRAP
;
1939 ((rx_local
->fbr
[1]->num_entries
* LO_MARK_PERCENT_FOR_RX
) / 100) - 1,
1940 &rx_dma
->fbr0_min_des
);
1943 /* Program the number of packets we will receive before generating an
1945 * For version B silicon, this value gets updated once autoneg is
1948 writel(PARM_RX_NUM_BUFS_DEF
, &rx_dma
->num_pkt_done
);
1950 /* The "time_done" is not working correctly to coalesce interrupts
1951 * after a given time period, but rather is giving us an interrupt
1952 * regardless of whether we have received packets.
1953 * This value gets updated once autoneg is complete.
1955 writel(PARM_RX_TIME_INT_DEF
, &rx_dma
->max_pkt_time
);
1957 spin_unlock_irqrestore(&adapter
->rcv_lock
, flags
);
1961 * et131x_config_tx_dma_regs - Set up the tx dma section of the JAGCore.
1962 * @adapter: pointer to our private adapter structure
1964 * Configure the transmit engine with the ring buffers we have created
1965 * and prepare it for use.
1967 static void et131x_config_tx_dma_regs(struct et131x_adapter
*adapter
)
1969 struct txdma_regs __iomem
*txdma
= &adapter
->regs
->txdma
;
1971 /* Load the hardware with the start of the transmit descriptor ring. */
1972 writel((u32
) ((u64
)adapter
->tx_ring
.tx_desc_ring_pa
>> 32),
1973 &txdma
->pr_base_hi
);
1974 writel((u32
) adapter
->tx_ring
.tx_desc_ring_pa
,
1975 &txdma
->pr_base_lo
);
1977 /* Initialise the transmit DMA engine */
1978 writel(NUM_DESC_PER_RING_TX
- 1, &txdma
->pr_num_des
);
1980 /* Load the completion writeback physical address */
1981 writel((u32
)((u64
)adapter
->tx_ring
.tx_status_pa
>> 32),
1982 &txdma
->dma_wb_base_hi
);
1983 writel((u32
)adapter
->tx_ring
.tx_status_pa
, &txdma
->dma_wb_base_lo
);
1985 *adapter
->tx_ring
.tx_status
= 0;
1987 writel(0, &txdma
->service_request
);
1988 adapter
->tx_ring
.send_idx
= 0;
1992 * et131x_adapter_setup - Set the adapter up as per cassini+ documentation
1993 * @adapter: pointer to our private adapter structure
1995 * Returns 0 on success, errno on failure (as defined in errno.h)
1997 static void et131x_adapter_setup(struct et131x_adapter
*adapter
)
1999 /* Configure the JAGCore */
2000 et131x_configure_global_regs(adapter
);
2002 et1310_config_mac_regs1(adapter
);
2004 /* Configure the MMC registers */
2005 /* All we need to do is initialize the Memory Control Register */
2006 writel(ET_MMC_ENABLE
, &adapter
->regs
->mmc
.mmc_ctrl
);
2008 et1310_config_rxmac_regs(adapter
);
2009 et1310_config_txmac_regs(adapter
);
2011 et131x_config_rx_dma_regs(adapter
);
2012 et131x_config_tx_dma_regs(adapter
);
2014 et1310_config_macstat_regs(adapter
);
2016 et1310_phy_power_down(adapter
, 0);
2017 et131x_xcvr_init(adapter
);
2021 * et131x_soft_reset - Issue a soft reset to the hardware, complete for ET1310
2022 * @adapter: pointer to our private adapter structure
2024 static void et131x_soft_reset(struct et131x_adapter
*adapter
)
2026 /* Disable MAC Core */
2027 writel(0xc00f0000, &adapter
->regs
->mac
.cfg1
);
2029 /* Set everything to a reset value */
2030 writel(0x7F, &adapter
->regs
->global
.sw_reset
);
2031 writel(0x000f0000, &adapter
->regs
->mac
.cfg1
);
2032 writel(0x00000000, &adapter
->regs
->mac
.cfg1
);
2036 * et131x_enable_interrupts - enable interrupt
2037 * @adapter: et131x device
2039 * Enable the appropriate interrupts on the ET131x according to our
2042 static void et131x_enable_interrupts(struct et131x_adapter
*adapter
)
2046 /* Enable all global interrupts */
2047 if (adapter
->flowcontrol
== FLOW_TXONLY
||
2048 adapter
->flowcontrol
== FLOW_BOTH
)
2049 mask
= INT_MASK_ENABLE
;
2051 mask
= INT_MASK_ENABLE_NO_FLOW
;
2053 writel(mask
, &adapter
->regs
->global
.int_mask
);
2057 * et131x_disable_interrupts - interrupt disable
2058 * @adapter: et131x device
2060 * Block all interrupts from the et131x device at the device itself
2062 static void et131x_disable_interrupts(struct et131x_adapter
*adapter
)
2064 /* Disable all global interrupts */
2065 writel(INT_MASK_DISABLE
, &adapter
->regs
->global
.int_mask
);
2069 * et131x_tx_dma_disable - Stop of Tx_DMA on the ET1310
2070 * @adapter: pointer to our adapter structure
2072 static void et131x_tx_dma_disable(struct et131x_adapter
*adapter
)
2074 /* Setup the tramsmit dma configuration register */
2075 writel(ET_TXDMA_CSR_HALT
|ET_TXDMA_SNGL_EPKT
,
2076 &adapter
->regs
->txdma
.csr
);
2080 * et131x_enable_txrx - Enable tx/rx queues
2081 * @netdev: device to be enabled
2083 static void et131x_enable_txrx(struct net_device
*netdev
)
2085 struct et131x_adapter
*adapter
= netdev_priv(netdev
);
2087 /* Enable the Tx and Rx DMA engines (if not already enabled) */
2088 et131x_rx_dma_enable(adapter
);
2089 et131x_tx_dma_enable(adapter
);
2091 /* Enable device interrupts */
2092 if (adapter
->flags
& fMP_ADAPTER_INTERRUPT_IN_USE
)
2093 et131x_enable_interrupts(adapter
);
2095 /* We're ready to move some data, so start the queue */
2096 netif_start_queue(netdev
);
2100 * et131x_disable_txrx - Disable tx/rx queues
2101 * @netdev: device to be disabled
2103 static void et131x_disable_txrx(struct net_device
*netdev
)
2105 struct et131x_adapter
*adapter
= netdev_priv(netdev
);
2107 /* First thing is to stop the queue */
2108 netif_stop_queue(netdev
);
2110 /* Stop the Tx and Rx DMA engines */
2111 et131x_rx_dma_disable(adapter
);
2112 et131x_tx_dma_disable(adapter
);
2114 /* Disable device interrupts */
2115 et131x_disable_interrupts(adapter
);
2119 * et131x_init_send - Initialize send data structures
2120 * @adapter: pointer to our private adapter structure
2122 static void et131x_init_send(struct et131x_adapter
*adapter
)
2126 struct tx_ring
*tx_ring
;
2128 /* Setup some convenience pointers */
2129 tx_ring
= &adapter
->tx_ring
;
2130 tcb
= adapter
->tx_ring
.tcb_ring
;
2132 tx_ring
->tcb_qhead
= tcb
;
2134 memset(tcb
, 0, sizeof(struct tcb
) * NUM_TCB
);
2136 /* Go through and set up each TCB */
2137 for (ct
= 0; ct
++ < NUM_TCB
; tcb
++)
2138 /* Set the link pointer in HW TCB to the next TCB in the
2141 tcb
->next
= tcb
+ 1;
2143 /* Set the tail pointer */
2145 tx_ring
->tcb_qtail
= tcb
;
2147 /* Curr send queue should now be empty */
2148 tx_ring
->send_head
= NULL
;
2149 tx_ring
->send_tail
= NULL
;
2153 * et1310_enable_phy_coma - called when network cable is unplugged
2154 * @adapter: pointer to our adapter structure
2156 * driver receive an phy status change interrupt while in D0 and check that
2157 * phy_status is down.
2159 * -- gate off JAGCore;
2160 * -- set gigE PHY in Coma mode
2161 * -- wake on phy_interrupt; Perform software reset JAGCore,
2162 * re-initialize jagcore and gigE PHY
2164 * Add D0-ASPM-PhyLinkDown Support:
2165 * -- while in D0, when there is a phy_interrupt indicating phy link
2166 * down status, call the MPSetPhyComa routine to enter this active
2167 * state power saving mode
2168 * -- while in D0-ASPM-PhyLinkDown mode, when there is a phy_interrupt
2169 * indicating linkup status, call the MPDisablePhyComa routine to
2170 * restore JAGCore and gigE PHY
2172 static void et1310_enable_phy_coma(struct et131x_adapter
*adapter
)
2174 unsigned long flags
;
2177 pmcsr
= readl(&adapter
->regs
->global
.pm_csr
);
2179 /* Save the GbE PHY speed and duplex modes. Need to restore this
2180 * when cable is plugged back in
2183 * TODO - when PM is re-enabled, check if we need to
2184 * perform a similar task as this -
2185 * adapter->pdown_speed = adapter->ai_force_speed;
2186 * adapter->pdown_duplex = adapter->ai_force_duplex;
2189 /* Stop sending packets. */
2190 spin_lock_irqsave(&adapter
->send_hw_lock
, flags
);
2191 adapter
->flags
|= fMP_ADAPTER_LOWER_POWER
;
2192 spin_unlock_irqrestore(&adapter
->send_hw_lock
, flags
);
2194 /* Wait for outstanding Receive packets */
2196 et131x_disable_txrx(adapter
->netdev
);
2198 /* Gate off JAGCore 3 clock domains */
2199 pmcsr
&= ~ET_PMCSR_INIT
;
2200 writel(pmcsr
, &adapter
->regs
->global
.pm_csr
);
2202 /* Program gigE PHY in to Coma mode */
2203 pmcsr
|= ET_PM_PHY_SW_COMA
;
2204 writel(pmcsr
, &adapter
->regs
->global
.pm_csr
);
2208 * et1310_disable_phy_coma - Disable the Phy Coma Mode
2209 * @adapter: pointer to our adapter structure
2211 static void et1310_disable_phy_coma(struct et131x_adapter
*adapter
)
2215 pmcsr
= readl(&adapter
->regs
->global
.pm_csr
);
2217 /* Disable phy_sw_coma register and re-enable JAGCore clocks */
2218 pmcsr
|= ET_PMCSR_INIT
;
2219 pmcsr
&= ~ET_PM_PHY_SW_COMA
;
2220 writel(pmcsr
, &adapter
->regs
->global
.pm_csr
);
2222 /* Restore the GbE PHY speed and duplex modes;
2223 * Reset JAGCore; re-configure and initialize JAGCore and gigE PHY
2225 /* TODO - when PM is re-enabled, check if we need to
2226 * perform a similar task as this -
2227 * adapter->ai_force_speed = adapter->pdown_speed;
2228 * adapter->ai_force_duplex = adapter->pdown_duplex;
2231 /* Re-initialize the send structures */
2232 et131x_init_send(adapter
);
2234 /* Bring the device back to the state it was during init prior to
2235 * autonegotiation being complete. This way, when we get the auto-neg
2236 * complete interrupt, we can complete init by calling ConfigMacREGS2.
2238 et131x_soft_reset(adapter
);
2240 /* setup et1310 as per the documentation ?? */
2241 et131x_adapter_setup(adapter
);
2243 /* Allow Tx to restart */
2244 adapter
->flags
&= ~fMP_ADAPTER_LOWER_POWER
;
2246 et131x_enable_txrx(adapter
->netdev
);
2249 static inline u32
bump_free_buff_ring(u32
*free_buff_ring
, u32 limit
)
2251 u32 tmp_free_buff_ring
= *free_buff_ring
;
2252 tmp_free_buff_ring
++;
2253 /* This works for all cases where limit < 1024. The 1023 case
2254 works because 1023++ is 1024 which means the if condition is not
2255 taken but the carry of the bit into the wrap bit toggles the wrap
2257 if ((tmp_free_buff_ring
& ET_DMA10_MASK
) > limit
) {
2258 tmp_free_buff_ring
&= ~ET_DMA10_MASK
;
2259 tmp_free_buff_ring
^= ET_DMA10_WRAP
;
2261 /* For the 1023 case */
2262 tmp_free_buff_ring
&= (ET_DMA10_MASK
|ET_DMA10_WRAP
);
2263 *free_buff_ring
= tmp_free_buff_ring
;
2264 return tmp_free_buff_ring
;
2268 * et131x_align_allocated_memory - Align allocated memory on a given boundary
2269 * @adapter: pointer to our adapter structure
2270 * @phys_addr: pointer to Physical address
2271 * @offset: pointer to the offset variable
2272 * @mask: correct mask
2274 static void et131x_align_allocated_memory(struct et131x_adapter
*adapter
,
2275 u64
*phys_addr
, u64
*offset
,
2278 u64 new_addr
= *phys_addr
& ~mask
;
2282 if (new_addr
!= *phys_addr
) {
2283 /* Move to next aligned block */
2284 new_addr
+= mask
+ 1;
2285 /* Return offset for adjusting virt addr */
2286 *offset
= new_addr
- *phys_addr
;
2287 /* Return new physical address */
2288 *phys_addr
= new_addr
;
2293 * et131x_rx_dma_memory_alloc
2294 * @adapter: pointer to our private adapter structure
2296 * Returns 0 on success and errno on failure (as defined in errno.h)
2298 * Allocates Free buffer ring 1 for sure, free buffer ring 0 if required,
2299 * and the Packet Status Ring.
2301 static int et131x_rx_dma_memory_alloc(struct et131x_adapter
*adapter
)
2305 u32 pktstat_ringsize
, fbr_chunksize
;
2306 struct rx_ring
*rx_ring
;
2308 /* Setup some convenience pointers */
2309 rx_ring
= &adapter
->rx_ring
;
2311 /* Alloc memory for the lookup table */
2313 rx_ring
->fbr
[1] = kmalloc(sizeof(struct fbr_lookup
), GFP_KERNEL
);
2315 rx_ring
->fbr
[0] = kmalloc(sizeof(struct fbr_lookup
), GFP_KERNEL
);
2317 /* The first thing we will do is configure the sizes of the buffer
2318 * rings. These will change based on jumbo packet support. Larger
2319 * jumbo packets increases the size of each entry in FBR0, and the
2320 * number of entries in FBR0, while at the same time decreasing the
2321 * number of entries in FBR1.
2323 * FBR1 holds "large" frames, FBR0 holds "small" frames. If FBR1
2324 * entries are huge in order to accommodate a "jumbo" frame, then it
2325 * will have less entries. Conversely, FBR1 will now be relied upon
2326 * to carry more "normal" frames, thus it's entry size also increases
2327 * and the number of entries goes up too (since it now carries
2328 * "small" + "regular" packets.
2330 * In this scheme, we try to maintain 512 entries between the two
2331 * rings. Also, FBR1 remains a constant size - when it's size doubles
2332 * the number of entries halves. FBR0 increases in size, however.
2335 if (adapter
->registry_jumbo_packet
< 2048) {
2337 rx_ring
->fbr
[1]->buffsize
= 256;
2338 rx_ring
->fbr
[1]->num_entries
= 512;
2340 rx_ring
->fbr
[0]->buffsize
= 2048;
2341 rx_ring
->fbr
[0]->num_entries
= 512;
2342 } else if (adapter
->registry_jumbo_packet
< 4096) {
2344 rx_ring
->fbr
[1]->buffsize
= 512;
2345 rx_ring
->fbr
[1]->num_entries
= 1024;
2347 rx_ring
->fbr
[0]->buffsize
= 4096;
2348 rx_ring
->fbr
[0]->num_entries
= 512;
2351 rx_ring
->fbr
[1]->buffsize
= 1024;
2352 rx_ring
->fbr
[1]->num_entries
= 768;
2354 rx_ring
->fbr
[0]->buffsize
= 16384;
2355 rx_ring
->fbr
[0]->num_entries
= 128;
2359 adapter
->rx_ring
.psr_num_entries
=
2360 adapter
->rx_ring
.fbr
[1]->num_entries
+
2361 adapter
->rx_ring
.fbr
[0]->num_entries
;
2363 adapter
->rx_ring
.psr_num_entries
= adapter
->rx_ring
.fbr
[0]->num_entries
;
2366 /* Allocate an area of memory for Free Buffer Ring 1 */
2367 bufsize
= (sizeof(struct fbr_desc
) * rx_ring
->fbr
[0]->num_entries
) +
2369 rx_ring
->fbr
[0]->ring_virtaddr
= dma_alloc_coherent(&adapter
->pdev
->dev
,
2371 &rx_ring
->fbr
[0]->ring_physaddr
,
2373 if (!rx_ring
->fbr
[0]->ring_virtaddr
) {
2374 dev_err(&adapter
->pdev
->dev
,
2375 "Cannot alloc memory for Free Buffer Ring 1\n");
2379 /* Save physical address
2381 * NOTE: dma_alloc_coherent(), used above to alloc DMA regions,
2382 * ALWAYS returns SAC (32-bit) addresses. If DAC (64-bit) addresses
2383 * are ever returned, make sure the high part is retrieved here
2384 * before storing the adjusted address.
2386 rx_ring
->fbr
[0]->real_physaddr
= rx_ring
->fbr
[0]->ring_physaddr
;
2388 /* Align Free Buffer Ring 1 on a 4K boundary */
2389 et131x_align_allocated_memory(adapter
,
2390 &rx_ring
->fbr
[0]->real_physaddr
,
2391 &rx_ring
->fbr
[0]->offset
, 0x0FFF);
2393 rx_ring
->fbr
[0]->ring_virtaddr
=
2394 (void *)((u8
*) rx_ring
->fbr
[0]->ring_virtaddr
+
2395 rx_ring
->fbr
[0]->offset
);
2398 /* Allocate an area of memory for Free Buffer Ring 0 */
2399 bufsize
= (sizeof(struct fbr_desc
) * rx_ring
->fbr
[1]->num_entries
) +
2401 rx_ring
->fbr
[1]->ring_virtaddr
= dma_alloc_coherent(&adapter
->pdev
->dev
,
2403 &rx_ring
->fbr
[1]->ring_physaddr
,
2405 if (!rx_ring
->fbr
[1]->ring_virtaddr
) {
2406 dev_err(&adapter
->pdev
->dev
,
2407 "Cannot alloc memory for Free Buffer Ring 0\n");
2411 /* Save physical address
2413 * NOTE: dma_alloc_coherent(), used above to alloc DMA regions,
2414 * ALWAYS returns SAC (32-bit) addresses. If DAC (64-bit) addresses
2415 * are ever returned, make sure the high part is retrieved here before
2416 * storing the adjusted address.
2418 rx_ring
->fbr
[1]->real_physaddr
= rx_ring
->fbr
[1]->ring_physaddr
;
2420 /* Align Free Buffer Ring 0 on a 4K boundary */
2421 et131x_align_allocated_memory(adapter
,
2422 &rx_ring
->fbr
[1]->real_physaddr
,
2423 &rx_ring
->fbr
[1]->offset
, 0x0FFF);
2425 rx_ring
->fbr
[1]->ring_virtaddr
=
2426 (void *)((u8
*) rx_ring
->fbr
[1]->ring_virtaddr
+
2427 rx_ring
->fbr
[1]->offset
);
2429 for (i
= 0; i
< (rx_ring
->fbr
[0]->num_entries
/ FBR_CHUNKS
); i
++) {
2430 u64 fbr1_tmp_physaddr
;
2434 /* This code allocates an area of memory big enough for N
2435 * free buffers + (buffer_size - 1) so that the buffers can
2436 * be aligned on 4k boundaries. If each buffer were aligned
2437 * to a buffer_size boundary, the effect would be to double
2438 * the size of FBR0. By allocating N buffers at once, we
2439 * reduce this overhead.
2441 if (rx_ring
->fbr
[0]->buffsize
> 4096)
2444 fbr1_align
= rx_ring
->fbr
[0]->buffsize
;
2447 (FBR_CHUNKS
* rx_ring
->fbr
[0]->buffsize
) + fbr1_align
- 1;
2448 rx_ring
->fbr
[0]->mem_virtaddrs
[i
] =
2449 dma_alloc_coherent(&adapter
->pdev
->dev
, fbr_chunksize
,
2450 &rx_ring
->fbr
[0]->mem_physaddrs
[i
],
2453 if (!rx_ring
->fbr
[0]->mem_virtaddrs
[i
]) {
2454 dev_err(&adapter
->pdev
->dev
,
2455 "Could not alloc memory\n");
2459 /* See NOTE in "Save Physical Address" comment above */
2460 fbr1_tmp_physaddr
= rx_ring
->fbr
[0]->mem_physaddrs
[i
];
2462 et131x_align_allocated_memory(adapter
,
2464 &fbr1_offset
, (fbr1_align
- 1));
2466 for (j
= 0; j
< FBR_CHUNKS
; j
++) {
2467 u32 index
= (i
* FBR_CHUNKS
) + j
;
2469 /* Save the Virtual address of this index for quick
2472 rx_ring
->fbr
[0]->virt
[index
] =
2473 (u8
*) rx_ring
->fbr
[0]->mem_virtaddrs
[i
] +
2474 (j
* rx_ring
->fbr
[0]->buffsize
) + fbr1_offset
;
2476 /* now store the physical address in the descriptor
2477 * so the device can access it
2479 rx_ring
->fbr
[0]->bus_high
[index
] =
2480 (u32
) (fbr1_tmp_physaddr
>> 32);
2481 rx_ring
->fbr
[0]->bus_low
[index
] =
2482 (u32
) fbr1_tmp_physaddr
;
2484 fbr1_tmp_physaddr
+= rx_ring
->fbr
[0]->buffsize
;
2486 rx_ring
->fbr
[0]->buffer1
[index
] =
2487 rx_ring
->fbr
[0]->virt
[index
];
2488 rx_ring
->fbr
[0]->buffer2
[index
] =
2489 rx_ring
->fbr
[0]->virt
[index
] - 4;
2494 /* Same for FBR0 (if in use) */
2495 for (i
= 0; i
< (rx_ring
->fbr
[1]->num_entries
/ FBR_CHUNKS
); i
++) {
2496 u64 fbr0_tmp_physaddr
;
2500 ((FBR_CHUNKS
+ 1) * rx_ring
->fbr
[1]->buffsize
) - 1;
2501 rx_ring
->fbr
[1]->mem_virtaddrs
[i
] =
2502 dma_alloc_coherent(&adapter
->pdev
->dev
, fbr_chunksize
,
2503 &rx_ring
->fbr
[1]->mem_physaddrs
[i
],
2506 if (!rx_ring
->fbr
[1]->mem_virtaddrs
[i
]) {
2507 dev_err(&adapter
->pdev
->dev
,
2508 "Could not alloc memory\n");
2512 /* See NOTE in "Save Physical Address" comment above */
2513 fbr0_tmp_physaddr
= rx_ring
->fbr
[1]->mem_physaddrs
[i
];
2515 et131x_align_allocated_memory(adapter
,
2518 rx_ring
->fbr
[1]->buffsize
- 1);
2520 for (j
= 0; j
< FBR_CHUNKS
; j
++) {
2521 u32 index
= (i
* FBR_CHUNKS
) + j
;
2523 rx_ring
->fbr
[1]->virt
[index
] =
2524 (u8
*) rx_ring
->fbr
[1]->mem_virtaddrs
[i
] +
2525 (j
* rx_ring
->fbr
[1]->buffsize
) + fbr0_offset
;
2527 rx_ring
->fbr
[1]->bus_high
[index
] =
2528 (u32
) (fbr0_tmp_physaddr
>> 32);
2529 rx_ring
->fbr
[1]->bus_low
[index
] =
2530 (u32
) fbr0_tmp_physaddr
;
2532 fbr0_tmp_physaddr
+= rx_ring
->fbr
[1]->buffsize
;
2534 rx_ring
->fbr
[1]->buffer1
[index
] =
2535 rx_ring
->fbr
[1]->virt
[index
];
2536 rx_ring
->fbr
[1]->buffer2
[index
] =
2537 rx_ring
->fbr
[1]->virt
[index
] - 4;
2542 /* Allocate an area of memory for FIFO of Packet Status ring entries */
2544 sizeof(struct pkt_stat_desc
) * adapter
->rx_ring
.psr_num_entries
;
2546 rx_ring
->ps_ring_virtaddr
= dma_alloc_coherent(&adapter
->pdev
->dev
,
2548 &rx_ring
->ps_ring_physaddr
,
2551 if (!rx_ring
->ps_ring_virtaddr
) {
2552 dev_err(&adapter
->pdev
->dev
,
2553 "Cannot alloc memory for Packet Status Ring\n");
2556 printk(KERN_INFO
"Packet Status Ring %lx\n",
2557 (unsigned long) rx_ring
->ps_ring_physaddr
);
2560 * NOTE : dma_alloc_coherent(), used above to alloc DMA regions,
2561 * ALWAYS returns SAC (32-bit) addresses. If DAC (64-bit) addresses
2562 * are ever returned, make sure the high part is retrieved here before
2563 * storing the adjusted address.
2566 /* Allocate an area of memory for writeback of status information */
2567 rx_ring
->rx_status_block
= dma_alloc_coherent(&adapter
->pdev
->dev
,
2568 sizeof(struct rx_status_block
),
2569 &rx_ring
->rx_status_bus
,
2571 if (!rx_ring
->rx_status_block
) {
2572 dev_err(&adapter
->pdev
->dev
,
2573 "Cannot alloc memory for Status Block\n");
2576 rx_ring
->num_rfd
= NIC_DEFAULT_NUM_RFD
;
2577 printk(KERN_INFO
"PRS %lx\n", (unsigned long)rx_ring
->rx_status_bus
);
2580 * kmem_cache_create initializes a lookaside list. After successful
2581 * creation, nonpaged fixed-size blocks can be allocated from and
2582 * freed to the lookaside list.
2583 * RFDs will be allocated from this pool.
2585 rx_ring
->recv_lookaside
= kmem_cache_create(adapter
->netdev
->name
,
2592 adapter
->flags
|= fMP_ADAPTER_RECV_LOOKASIDE
;
2594 /* The RFDs are going to be put on lists later on, so initialize the
2597 INIT_LIST_HEAD(&rx_ring
->recv_list
);
2602 * et131x_rx_dma_memory_free - Free all memory allocated within this module.
2603 * @adapter: pointer to our private adapter structure
2605 static void et131x_rx_dma_memory_free(struct et131x_adapter
*adapter
)
2609 u32 pktstat_ringsize
;
2611 struct rx_ring
*rx_ring
;
2613 /* Setup some convenience pointers */
2614 rx_ring
= &adapter
->rx_ring
;
2616 /* Free RFDs and associated packet descriptors */
2617 WARN_ON(rx_ring
->num_ready_recv
!= rx_ring
->num_rfd
);
2619 while (!list_empty(&rx_ring
->recv_list
)) {
2620 rfd
= (struct rfd
*) list_entry(rx_ring
->recv_list
.next
,
2621 struct rfd
, list_node
);
2623 list_del(&rfd
->list_node
);
2625 kmem_cache_free(adapter
->rx_ring
.recv_lookaside
, rfd
);
2628 /* Free Free Buffer Ring 1 */
2629 if (rx_ring
->fbr
[0]->ring_virtaddr
) {
2630 /* First the packet memory */
2631 for (index
= 0; index
<
2632 (rx_ring
->fbr
[0]->num_entries
/ FBR_CHUNKS
); index
++) {
2633 if (rx_ring
->fbr
[0]->mem_virtaddrs
[index
]) {
2636 if (rx_ring
->fbr
[0]->buffsize
> 4096)
2639 fbr1_align
= rx_ring
->fbr
[0]->buffsize
;
2642 (rx_ring
->fbr
[0]->buffsize
* FBR_CHUNKS
) +
2645 dma_free_coherent(&adapter
->pdev
->dev
,
2647 rx_ring
->fbr
[0]->mem_virtaddrs
[index
],
2648 rx_ring
->fbr
[0]->mem_physaddrs
[index
]);
2650 rx_ring
->fbr
[0]->mem_virtaddrs
[index
] = NULL
;
2654 /* Now the FIFO itself */
2655 rx_ring
->fbr
[0]->ring_virtaddr
= (void *)((u8
*)
2656 rx_ring
->fbr
[0]->ring_virtaddr
- rx_ring
->fbr
[0]->offset
);
2659 (sizeof(struct fbr_desc
) * rx_ring
->fbr
[0]->num_entries
) +
2662 dma_free_coherent(&adapter
->pdev
->dev
, bufsize
,
2663 rx_ring
->fbr
[0]->ring_virtaddr
,
2664 rx_ring
->fbr
[0]->ring_physaddr
);
2666 rx_ring
->fbr
[0]->ring_virtaddr
= NULL
;
2670 /* Now the same for Free Buffer Ring 0 */
2671 if (rx_ring
->fbr
[1]->ring_virtaddr
) {
2672 /* First the packet memory */
2673 for (index
= 0; index
<
2674 (rx_ring
->fbr
[1]->num_entries
/ FBR_CHUNKS
); index
++) {
2675 if (rx_ring
->fbr
[1]->mem_virtaddrs
[index
]) {
2677 (rx_ring
->fbr
[1]->buffsize
*
2678 (FBR_CHUNKS
+ 1)) - 1;
2680 dma_free_coherent(&adapter
->pdev
->dev
,
2682 rx_ring
->fbr
[1]->mem_virtaddrs
[index
],
2683 rx_ring
->fbr
[1]->mem_physaddrs
[index
]);
2685 rx_ring
->fbr
[1]->mem_virtaddrs
[index
] = NULL
;
2689 /* Now the FIFO itself */
2690 rx_ring
->fbr
[1]->ring_virtaddr
= (void *)((u8
*)
2691 rx_ring
->fbr
[1]->ring_virtaddr
- rx_ring
->fbr
[1]->offset
);
2694 (sizeof(struct fbr_desc
) * rx_ring
->fbr
[1]->num_entries
) +
2697 dma_free_coherent(&adapter
->pdev
->dev
,
2699 rx_ring
->fbr
[1]->ring_virtaddr
,
2700 rx_ring
->fbr
[1]->ring_physaddr
);
2702 rx_ring
->fbr
[1]->ring_virtaddr
= NULL
;
2706 /* Free Packet Status Ring */
2707 if (rx_ring
->ps_ring_virtaddr
) {
2709 sizeof(struct pkt_stat_desc
) *
2710 adapter
->rx_ring
.psr_num_entries
;
2712 dma_free_coherent(&adapter
->pdev
->dev
, pktstat_ringsize
,
2713 rx_ring
->ps_ring_virtaddr
,
2714 rx_ring
->ps_ring_physaddr
);
2716 rx_ring
->ps_ring_virtaddr
= NULL
;
2719 /* Free area of memory for the writeback of status information */
2720 if (rx_ring
->rx_status_block
) {
2721 dma_free_coherent(&adapter
->pdev
->dev
,
2722 sizeof(struct rx_status_block
),
2723 rx_ring
->rx_status_block
, rx_ring
->rx_status_bus
);
2724 rx_ring
->rx_status_block
= NULL
;
2727 /* Destroy the lookaside (RFD) pool */
2728 if (adapter
->flags
& fMP_ADAPTER_RECV_LOOKASIDE
) {
2729 kmem_cache_destroy(rx_ring
->recv_lookaside
);
2730 adapter
->flags
&= ~fMP_ADAPTER_RECV_LOOKASIDE
;
2733 /* Free the FBR Lookup Table */
2735 kfree(rx_ring
->fbr
[1]);
2738 kfree(rx_ring
->fbr
[0]);
2740 /* Reset Counters */
2741 rx_ring
->num_ready_recv
= 0;
2745 * et131x_init_recv - Initialize receive data structures.
2746 * @adapter: pointer to our private adapter structure
2748 * Returns 0 on success and errno on failure (as defined in errno.h)
2750 static int et131x_init_recv(struct et131x_adapter
*adapter
)
2752 int status
= -ENOMEM
;
2753 struct rfd
*rfd
= NULL
;
2756 struct rx_ring
*rx_ring
;
2758 /* Setup some convenience pointers */
2759 rx_ring
= &adapter
->rx_ring
;
2761 /* Setup each RFD */
2762 for (rfdct
= 0; rfdct
< rx_ring
->num_rfd
; rfdct
++) {
2763 rfd
= kmem_cache_alloc(rx_ring
->recv_lookaside
,
2764 GFP_ATOMIC
| GFP_DMA
);
2767 dev_err(&adapter
->pdev
->dev
,
2768 "Couldn't alloc RFD out of kmem_cache\n");
2775 /* Add this RFD to the recv_list */
2776 list_add_tail(&rfd
->list_node
, &rx_ring
->recv_list
);
2778 /* Increment both the available RFD's, and the total RFD's. */
2779 rx_ring
->num_ready_recv
++;
2783 if (numrfd
> NIC_MIN_NUM_RFD
)
2786 rx_ring
->num_rfd
= numrfd
;
2789 kmem_cache_free(rx_ring
->recv_lookaside
, rfd
);
2790 dev_err(&adapter
->pdev
->dev
,
2791 "Allocation problems in et131x_init_recv\n");
2797 * et131x_set_rx_dma_timer - Set the heartbeat timer according to line rate.
2798 * @adapter: pointer to our adapter structure
2800 static void et131x_set_rx_dma_timer(struct et131x_adapter
*adapter
)
2802 struct phy_device
*phydev
= adapter
->phydev
;
2807 /* For version B silicon, we do not use the RxDMA timer for 10 and 100
2808 * Mbits/s line rates. We do not enable and RxDMA interrupt coalescing.
2810 if ((phydev
->speed
== SPEED_100
) || (phydev
->speed
== SPEED_10
)) {
2811 writel(0, &adapter
->regs
->rxdma
.max_pkt_time
);
2812 writel(1, &adapter
->regs
->rxdma
.num_pkt_done
);
2817 * NICReturnRFD - Recycle a RFD and put it back onto the receive list
2818 * @adapter: pointer to our adapter
2819 * @rfd: pointer to the RFD
2821 static void nic_return_rfd(struct et131x_adapter
*adapter
, struct rfd
*rfd
)
2823 struct rx_ring
*rx_local
= &adapter
->rx_ring
;
2824 struct rxdma_regs __iomem
*rx_dma
= &adapter
->regs
->rxdma
;
2825 u16 buff_index
= rfd
->bufferindex
;
2826 u8 ring_index
= rfd
->ringindex
;
2827 unsigned long flags
;
2829 /* We don't use any of the OOB data besides status. Otherwise, we
2830 * need to clean up OOB data
2834 (ring_index
== 0 && buff_index
< rx_local
->fbr
[1]->num_entries
) ||
2836 (ring_index
== 1 && buff_index
< rx_local
->fbr
[0]->num_entries
)) {
2837 spin_lock_irqsave(&adapter
->fbr_lock
, flags
);
2839 if (ring_index
== 1) {
2840 struct fbr_desc
*next
= (struct fbr_desc
*)
2841 (rx_local
->fbr
[0]->ring_virtaddr
) +
2842 INDEX10(rx_local
->fbr
[0]->local_full
);
2844 /* Handle the Free Buffer Ring advancement here. Write
2845 * the PA / Buffer Index for the returned buffer into
2846 * the oldest (next to be freed)FBR entry
2848 next
->addr_hi
= rx_local
->fbr
[0]->bus_high
[buff_index
];
2849 next
->addr_lo
= rx_local
->fbr
[0]->bus_low
[buff_index
];
2850 next
->word2
= buff_index
;
2852 writel(bump_free_buff_ring(
2853 &rx_local
->fbr
[0]->local_full
,
2854 rx_local
->fbr
[0]->num_entries
- 1),
2855 &rx_dma
->fbr1_full_offset
);
2859 struct fbr_desc
*next
= (struct fbr_desc
*)
2860 rx_local
->fbr
[1]->ring_virtaddr
+
2861 INDEX10(rx_local
->fbr
[1]->local_full
);
2863 /* Handle the Free Buffer Ring advancement here. Write
2864 * the PA / Buffer Index for the returned buffer into
2865 * the oldest (next to be freed) FBR entry
2867 next
->addr_hi
= rx_local
->fbr
[1]->bus_high
[buff_index
];
2868 next
->addr_lo
= rx_local
->fbr
[1]->bus_low
[buff_index
];
2869 next
->word2
= buff_index
;
2871 writel(bump_free_buff_ring(
2872 &rx_local
->fbr
[1]->local_full
,
2873 rx_local
->fbr
[1]->num_entries
- 1),
2874 &rx_dma
->fbr0_full_offset
);
2877 spin_unlock_irqrestore(&adapter
->fbr_lock
, flags
);
2879 dev_err(&adapter
->pdev
->dev
,
2880 "%s illegal Buffer Index returned\n", __func__
);
2883 /* The processing on this RFD is done, so put it back on the tail of
2886 spin_lock_irqsave(&adapter
->rcv_lock
, flags
);
2887 list_add_tail(&rfd
->list_node
, &rx_local
->recv_list
);
2888 rx_local
->num_ready_recv
++;
2889 spin_unlock_irqrestore(&adapter
->rcv_lock
, flags
);
2891 WARN_ON(rx_local
->num_ready_recv
> rx_local
->num_rfd
);
2895 * nic_rx_pkts - Checks the hardware for available packets
2896 * @adapter: pointer to our adapter
2898 * Returns rfd, a pointer to our MPRFD.
2900 * Checks the hardware for available packets, using completion ring
2901 * If packets are available, it gets an RFD from the recv_list, attaches
2902 * the packet to it, puts the RFD in the RecvPendList, and also returns
2903 * the pointer to the RFD.
2905 static struct rfd
*nic_rx_pkts(struct et131x_adapter
*adapter
)
2907 struct rx_ring
*rx_local
= &adapter
->rx_ring
;
2908 struct rx_status_block
*status
;
2909 struct pkt_stat_desc
*psr
;
2913 unsigned long flags
;
2914 struct list_head
*element
;
2921 /* RX Status block is written by the DMA engine prior to every
2922 * interrupt. It contains the next to be used entry in the Packet
2923 * Status Ring, and also the two Free Buffer rings.
2925 status
= rx_local
->rx_status_block
;
2926 word1
= status
->word1
>> 16; /* Get the useful bits */
2928 /* Check the PSR and wrap bits do not match */
2929 if ((word1
& 0x1FFF) == (rx_local
->local_psr_full
& 0x1FFF))
2930 /* Looks like this ring is not updated yet */
2933 /* The packet status ring indicates that data is available. */
2934 psr
= (struct pkt_stat_desc
*) (rx_local
->ps_ring_virtaddr
) +
2935 (rx_local
->local_psr_full
& 0xFFF);
2937 /* Grab any information that is required once the PSR is
2938 * advanced, since we can no longer rely on the memory being
2941 len
= psr
->word1
& 0xFFFF;
2942 ring_index
= (psr
->word1
>> 26) & 0x03;
2943 buff_index
= (psr
->word1
>> 16) & 0x3FF;
2946 /* Indicate that we have used this PSR entry. */
2948 add_12bit(&rx_local
->local_psr_full
, 1);
2950 (rx_local
->local_psr_full
& 0xFFF) > rx_local
->psr_num_entries
- 1) {
2951 /* Clear psr full and toggle the wrap bit */
2952 rx_local
->local_psr_full
&= ~0xFFF;
2953 rx_local
->local_psr_full
^= 0x1000;
2956 writel(rx_local
->local_psr_full
,
2957 &adapter
->regs
->rxdma
.psr_full_offset
);
2960 if (ring_index
!= 1)
2965 if (ring_index
> 1 ||
2967 buff_index
> rx_local
->fbr
[1]->num_entries
- 1) ||
2969 buff_index
> rx_local
->fbr
[0]->num_entries
- 1))
2971 if (ring_index
!= 1 || buff_index
> rx_local
->fbr
[0]->num_entries
- 1)
2974 /* Illegal buffer or ring index cannot be used by S/W*/
2975 dev_err(&adapter
->pdev
->dev
,
2976 "NICRxPkts PSR Entry %d indicates "
2977 "length of %d and/or bad bi(%d)\n",
2978 rx_local
->local_psr_full
& 0xFFF,
2983 /* Get and fill the RFD. */
2984 spin_lock_irqsave(&adapter
->rcv_lock
, flags
);
2987 element
= rx_local
->recv_list
.next
;
2988 rfd
= (struct rfd
*) list_entry(element
, struct rfd
, list_node
);
2991 spin_unlock_irqrestore(&adapter
->rcv_lock
, flags
);
2995 list_del(&rfd
->list_node
);
2996 rx_local
->num_ready_recv
--;
2998 spin_unlock_irqrestore(&adapter
->rcv_lock
, flags
);
3000 rfd
->bufferindex
= buff_index
;
3001 rfd
->ringindex
= ring_index
;
3003 /* In V1 silicon, there is a bug which screws up filtering of
3004 * runt packets. Therefore runt packet filtering is disabled
3005 * in the MAC and the packets are dropped here. They are
3006 * also counted here.
3008 if (len
< (NIC_MIN_PACKET_SIZE
+ 4)) {
3009 adapter
->stats
.rx_other_errs
++;
3014 /* Determine if this is a multicast packet coming in */
3015 if ((word0
& ALCATEL_MULTICAST_PKT
) &&
3016 !(word0
& ALCATEL_BROADCAST_PKT
)) {
3017 /* Promiscuous mode and Multicast mode are
3018 * not mutually exclusive as was first
3019 * thought. I guess Promiscuous is just
3020 * considered a super-set of the other
3021 * filters. Generally filter is 0x2b when in
3024 if ((adapter
->packet_filter
&
3025 ET131X_PACKET_TYPE_MULTICAST
)
3026 && !(adapter
->packet_filter
&
3027 ET131X_PACKET_TYPE_PROMISCUOUS
)
3028 && !(adapter
->packet_filter
&
3029 ET131X_PACKET_TYPE_ALL_MULTICAST
)) {
3031 * Note - ring_index for fbr[] array is reversed
3034 buf
= rx_local
->fbr
[(ring_index
== 0 ? 1 : 0)]->
3037 /* Loop through our list to see if the
3038 * destination address of this packet
3039 * matches one in our list.
3041 for (i
= 0; i
< adapter
->multicast_addr_count
;
3044 adapter
->multicast_list
[i
][0]
3046 adapter
->multicast_list
[i
][1]
3048 adapter
->multicast_list
[i
][2]
3050 adapter
->multicast_list
[i
][3]
3052 adapter
->multicast_list
[i
][4]
3054 adapter
->multicast_list
[i
][5]) {
3059 /* If our index is equal to the number
3060 * of Multicast address we have, then
3061 * this means we did not find this
3062 * packet's matching address in our
3063 * list. Set the len to zero,
3064 * so we free our RFD when we return
3065 * from this function.
3067 if (i
== adapter
->multicast_addr_count
)
3072 adapter
->stats
.multicast_pkts_rcvd
++;
3073 } else if (word0
& ALCATEL_BROADCAST_PKT
)
3074 adapter
->stats
.broadcast_pkts_rcvd
++;
3076 /* Not sure what this counter measures in
3077 * promiscuous mode. Perhaps we should check
3078 * the MAC address to see if it is directed
3079 * to us in promiscuous mode.
3081 adapter
->stats
.unicast_pkts_rcvd
++;
3085 struct sk_buff
*skb
= NULL
;
3087 /*rfd->len = len - 4; */
3090 skb
= dev_alloc_skb(rfd
->len
+ 2);
3092 dev_err(&adapter
->pdev
->dev
,
3093 "Couldn't alloc an SKB for Rx\n");
3097 adapter
->net_stats
.rx_bytes
+= rfd
->len
;
3100 * Note - ring_index for fbr[] array is reversed,
3103 memcpy(skb_put(skb
, rfd
->len
),
3104 rx_local
->fbr
[(ring_index
== 0 ? 1 : 0)]->virt
[buff_index
],
3107 skb
->dev
= adapter
->netdev
;
3108 skb
->protocol
= eth_type_trans(skb
, adapter
->netdev
);
3109 skb
->ip_summed
= CHECKSUM_NONE
;
3116 nic_return_rfd(adapter
, rfd
);
3121 * et131x_handle_recv_interrupt - Interrupt handler for receive processing
3122 * @adapter: pointer to our adapter
3124 * Assumption, Rcv spinlock has been acquired.
3126 static void et131x_handle_recv_interrupt(struct et131x_adapter
*adapter
)
3128 struct rfd
*rfd
= NULL
;
3132 /* Process up to available RFD's */
3133 while (count
< NUM_PACKETS_HANDLED
) {
3134 if (list_empty(&adapter
->rx_ring
.recv_list
)) {
3135 WARN_ON(adapter
->rx_ring
.num_ready_recv
!= 0);
3140 rfd
= nic_rx_pkts(adapter
);
3145 /* Do not receive any packets until a filter has been set.
3146 * Do not receive any packets until we have link.
3147 * If length is zero, return the RFD in order to advance the
3150 if (!adapter
->packet_filter
||
3151 !netif_carrier_ok(adapter
->netdev
) ||
3155 /* Increment the number of packets we received */
3156 adapter
->net_stats
.rx_packets
++;
3158 /* Set the status on the packet, either resources or success */
3159 if (adapter
->rx_ring
.num_ready_recv
< RFD_LOW_WATER_MARK
) {
3160 dev_warn(&adapter
->pdev
->dev
,
3161 "RFD's are running out\n");
3166 if (count
== NUM_PACKETS_HANDLED
|| !done
) {
3167 adapter
->rx_ring
.unfinished_receives
= true;
3168 writel(PARM_TX_TIME_INT_DEF
* NANO_IN_A_MICRO
,
3169 &adapter
->regs
->global
.watchdog_timer
);
3171 /* Watchdog timer will disable itself if appropriate. */
3172 adapter
->rx_ring
.unfinished_receives
= false;
3176 * et131x_tx_dma_memory_alloc
3177 * @adapter: pointer to our private adapter structure
3179 * Returns 0 on success and errno on failure (as defined in errno.h).
3181 * Allocates memory that will be visible both to the device and to the CPU.
3182 * The OS will pass us packets, pointers to which we will insert in the Tx
3183 * Descriptor queue. The device will read this queue to find the packets in
3184 * memory. The device will update the "status" in memory each time it xmits a
3187 static int et131x_tx_dma_memory_alloc(struct et131x_adapter
*adapter
)
3190 struct tx_ring
*tx_ring
= &adapter
->tx_ring
;
3192 /* Allocate memory for the TCB's (Transmit Control Block) */
3193 adapter
->tx_ring
.tcb_ring
=
3194 kcalloc(NUM_TCB
, sizeof(struct tcb
), GFP_ATOMIC
| GFP_DMA
);
3195 if (!adapter
->tx_ring
.tcb_ring
) {
3196 dev_err(&adapter
->pdev
->dev
, "Cannot alloc memory for TCBs\n");
3200 /* Allocate enough memory for the Tx descriptor ring, and allocate
3201 * some extra so that the ring can be aligned on a 4k boundary.
3203 desc_size
= (sizeof(struct tx_desc
) * NUM_DESC_PER_RING_TX
) + 4096 - 1;
3204 tx_ring
->tx_desc_ring
=
3205 (struct tx_desc
*) dma_alloc_coherent(&adapter
->pdev
->dev
,
3207 &tx_ring
->tx_desc_ring_pa
,
3209 if (!adapter
->tx_ring
.tx_desc_ring
) {
3210 dev_err(&adapter
->pdev
->dev
,
3211 "Cannot alloc memory for Tx Ring\n");
3215 /* Save physical address
3217 * NOTE: dma_alloc_coherent(), used above to alloc DMA regions,
3218 * ALWAYS returns SAC (32-bit) addresses. If DAC (64-bit) addresses
3219 * are ever returned, make sure the high part is retrieved here before
3220 * storing the adjusted address.
3222 /* Allocate memory for the Tx status block */
3223 tx_ring
->tx_status
= dma_alloc_coherent(&adapter
->pdev
->dev
,
3225 &tx_ring
->tx_status_pa
,
3227 if (!adapter
->tx_ring
.tx_status_pa
) {
3228 dev_err(&adapter
->pdev
->dev
,
3229 "Cannot alloc memory for Tx status block\n");
3236 * et131x_tx_dma_memory_free - Free all memory allocated within this module
3237 * @adapter: pointer to our private adapter structure
3239 * Returns 0 on success and errno on failure (as defined in errno.h).
3241 static void et131x_tx_dma_memory_free(struct et131x_adapter
*adapter
)
3245 if (adapter
->tx_ring
.tx_desc_ring
) {
3246 /* Free memory relating to Tx rings here */
3247 desc_size
= (sizeof(struct tx_desc
) * NUM_DESC_PER_RING_TX
)
3249 dma_free_coherent(&adapter
->pdev
->dev
,
3251 adapter
->tx_ring
.tx_desc_ring
,
3252 adapter
->tx_ring
.tx_desc_ring_pa
);
3253 adapter
->tx_ring
.tx_desc_ring
= NULL
;
3256 /* Free memory for the Tx status block */
3257 if (adapter
->tx_ring
.tx_status
) {
3258 dma_free_coherent(&adapter
->pdev
->dev
,
3260 adapter
->tx_ring
.tx_status
,
3261 adapter
->tx_ring
.tx_status_pa
);
3263 adapter
->tx_ring
.tx_status
= NULL
;
3265 /* Free the memory for the tcb structures */
3266 kfree(adapter
->tx_ring
.tcb_ring
);
3270 * nic_send_packet - NIC specific send handler for version B silicon.
3271 * @adapter: pointer to our adapter
3272 * @tcb: pointer to struct tcb
3274 * Returns 0 or errno.
3276 static int nic_send_packet(struct et131x_adapter
*adapter
, struct tcb
*tcb
)
3279 struct tx_desc desc
[24]; /* 24 x 16 byte */
3281 u32 thiscopy
, remainder
;
3282 struct sk_buff
*skb
= tcb
->skb
;
3283 u32 nr_frags
= skb_shinfo(skb
)->nr_frags
+ 1;
3284 struct skb_frag_struct
*frags
= &skb_shinfo(skb
)->frags
[0];
3285 unsigned long flags
;
3286 struct phy_device
*phydev
= adapter
->phydev
;
3288 /* Part of the optimizations of this send routine restrict us to
3289 * sending 24 fragments at a pass. In practice we should never see
3290 * more than 5 fragments.
3292 * NOTE: The older version of this function (below) can handle any
3293 * number of fragments. If needed, we can call this function,
3294 * although it is less efficient.
3299 memset(desc
, 0, sizeof(struct tx_desc
) * (nr_frags
+ 1));
3301 for (i
= 0; i
< nr_frags
; i
++) {
3302 /* If there is something in this element, lets get a
3303 * descriptor from the ring and get the necessary data
3306 /* If the fragments are smaller than a standard MTU,
3307 * then map them to a single descriptor in the Tx
3308 * Desc ring. However, if they're larger, as is
3309 * possible with support for jumbo packets, then
3310 * split them each across 2 descriptors.
3312 * This will work until we determine why the hardware
3313 * doesn't seem to like large fragments.
3315 if ((skb
->len
- skb
->data_len
) <= 1514) {
3316 desc
[frag
].addr_hi
= 0;
3317 /* Low 16bits are length, high is vlan and
3318 unused currently so zero */
3319 desc
[frag
].len_vlan
=
3320 skb
->len
- skb
->data_len
;
3322 /* NOTE: Here, the dma_addr_t returned from
3323 * dma_map_single() is implicitly cast as a
3324 * u32. Although dma_addr_t can be
3325 * 64-bit, the address returned by
3326 * dma_map_single() is always 32-bit
3327 * addressable (as defined by the pci/dma
3330 desc
[frag
++].addr_lo
=
3331 dma_map_single(&adapter
->pdev
->dev
,
3337 desc
[frag
].addr_hi
= 0;
3338 desc
[frag
].len_vlan
=
3339 (skb
->len
- skb
->data_len
) / 2;
3341 /* NOTE: Here, the dma_addr_t returned from
3342 * dma_map_single() is implicitly cast as a
3343 * u32. Although dma_addr_t can be
3344 * 64-bit, the address returned by
3345 * dma_map_single() is always 32-bit
3346 * addressable (as defined by the pci/dma
3349 desc
[frag
++].addr_lo
=
3350 dma_map_single(&adapter
->pdev
->dev
,
3353 skb
->data_len
) / 2),
3355 desc
[frag
].addr_hi
= 0;
3357 desc
[frag
].len_vlan
=
3358 (skb
->len
- skb
->data_len
) / 2;
3360 /* NOTE: Here, the dma_addr_t returned from
3361 * dma_map_single() is implicitly cast as a
3362 * u32. Although dma_addr_t can be
3363 * 64-bit, the address returned by
3364 * dma_map_single() is always 32-bit
3365 * addressable (as defined by the pci/dma
3368 desc
[frag
++].addr_lo
=
3369 dma_map_single(&adapter
->pdev
->dev
,
3372 skb
->data_len
) / 2),
3374 skb
->data_len
) / 2),
3378 desc
[frag
].addr_hi
= 0;
3379 desc
[frag
].len_vlan
=
3382 /* NOTE: Here, the dma_addr_t returned from
3383 * dma_map_page() is implicitly cast as a u32.
3384 * Although dma_addr_t can be 64-bit, the address
3385 * returned by dma_map_page() is always 32-bit
3386 * addressable (as defined by the pci/dma subsystem)
3388 desc
[frag
++].addr_lo
= skb_frag_dma_map(
3389 &adapter
->pdev
->dev
,
3397 if (phydev
&& phydev
->speed
== SPEED_1000
) {
3398 if (++adapter
->tx_ring
.since_irq
== PARM_TX_NUM_BUFS_DEF
) {
3399 /* Last element & Interrupt flag */
3400 desc
[frag
- 1].flags
= 0x5;
3401 adapter
->tx_ring
.since_irq
= 0;
3402 } else { /* Last element */
3403 desc
[frag
- 1].flags
= 0x1;
3406 desc
[frag
- 1].flags
= 0x5;
3408 desc
[0].flags
|= 2; /* First element flag */
3410 tcb
->index_start
= adapter
->tx_ring
.send_idx
;
3413 spin_lock_irqsave(&adapter
->send_hw_lock
, flags
);
3415 thiscopy
= NUM_DESC_PER_RING_TX
-
3416 INDEX10(adapter
->tx_ring
.send_idx
);
3418 if (thiscopy
>= frag
) {
3422 remainder
= frag
- thiscopy
;
3425 memcpy(adapter
->tx_ring
.tx_desc_ring
+
3426 INDEX10(adapter
->tx_ring
.send_idx
), desc
,
3427 sizeof(struct tx_desc
) * thiscopy
);
3429 add_10bit(&adapter
->tx_ring
.send_idx
, thiscopy
);
3431 if (INDEX10(adapter
->tx_ring
.send_idx
) == 0 ||
3432 INDEX10(adapter
->tx_ring
.send_idx
) == NUM_DESC_PER_RING_TX
) {
3433 adapter
->tx_ring
.send_idx
&= ~ET_DMA10_MASK
;
3434 adapter
->tx_ring
.send_idx
^= ET_DMA10_WRAP
;
3438 memcpy(adapter
->tx_ring
.tx_desc_ring
,
3440 sizeof(struct tx_desc
) * remainder
);
3442 add_10bit(&adapter
->tx_ring
.send_idx
, remainder
);
3445 if (INDEX10(adapter
->tx_ring
.send_idx
) == 0) {
3446 if (adapter
->tx_ring
.send_idx
)
3447 tcb
->index
= NUM_DESC_PER_RING_TX
- 1;
3449 tcb
->index
= ET_DMA10_WRAP
|(NUM_DESC_PER_RING_TX
- 1);
3451 tcb
->index
= adapter
->tx_ring
.send_idx
- 1;
3453 spin_lock(&adapter
->tcb_send_qlock
);
3455 if (adapter
->tx_ring
.send_tail
)
3456 adapter
->tx_ring
.send_tail
->next
= tcb
;
3458 adapter
->tx_ring
.send_head
= tcb
;
3460 adapter
->tx_ring
.send_tail
= tcb
;
3462 WARN_ON(tcb
->next
!= NULL
);
3464 adapter
->tx_ring
.used
++;
3466 spin_unlock(&adapter
->tcb_send_qlock
);
3468 /* Write the new write pointer back to the device. */
3469 writel(adapter
->tx_ring
.send_idx
,
3470 &adapter
->regs
->txdma
.service_request
);
3472 /* For Gig only, we use Tx Interrupt coalescing. Enable the software
3473 * timer to wake us up if this packet isn't followed by N more.
3475 if (phydev
&& phydev
->speed
== SPEED_1000
) {
3476 writel(PARM_TX_TIME_INT_DEF
* NANO_IN_A_MICRO
,
3477 &adapter
->regs
->global
.watchdog_timer
);
3479 spin_unlock_irqrestore(&adapter
->send_hw_lock
, flags
);
3485 * send_packet - Do the work to send a packet
3486 * @skb: the packet(s) to send
3487 * @adapter: a pointer to the device's private adapter structure
3489 * Return 0 in almost all cases; non-zero value in extreme hard failure only.
3491 * Assumption: Send spinlock has been acquired
3493 static int send_packet(struct sk_buff
*skb
, struct et131x_adapter
*adapter
)
3496 struct tcb
*tcb
= NULL
;
3498 unsigned long flags
;
3500 /* All packets must have at least a MAC address and a protocol type */
3501 if (skb
->len
< ETH_HLEN
)
3504 /* Get a TCB for this packet */
3505 spin_lock_irqsave(&adapter
->tcb_ready_qlock
, flags
);
3507 tcb
= adapter
->tx_ring
.tcb_qhead
;
3510 spin_unlock_irqrestore(&adapter
->tcb_ready_qlock
, flags
);
3514 adapter
->tx_ring
.tcb_qhead
= tcb
->next
;
3516 if (adapter
->tx_ring
.tcb_qhead
== NULL
)
3517 adapter
->tx_ring
.tcb_qtail
= NULL
;
3519 spin_unlock_irqrestore(&adapter
->tcb_ready_qlock
, flags
);
3523 if (skb
->data
!= NULL
&& skb
->len
- skb
->data_len
>= 6) {
3524 shbufva
= (u16
*) skb
->data
;
3526 if ((shbufva
[0] == 0xffff) &&
3527 (shbufva
[1] == 0xffff) && (shbufva
[2] == 0xffff)) {
3528 tcb
->flags
|= fMP_DEST_BROAD
;
3529 } else if ((shbufva
[0] & 0x3) == 0x0001) {
3530 tcb
->flags
|= fMP_DEST_MULTI
;
3536 /* Call the NIC specific send handler. */
3537 status
= nic_send_packet(adapter
, tcb
);
3540 spin_lock_irqsave(&adapter
->tcb_ready_qlock
, flags
);
3542 if (adapter
->tx_ring
.tcb_qtail
)
3543 adapter
->tx_ring
.tcb_qtail
->next
= tcb
;
3545 /* Apparently ready Q is empty. */
3546 adapter
->tx_ring
.tcb_qhead
= tcb
;
3548 adapter
->tx_ring
.tcb_qtail
= tcb
;
3549 spin_unlock_irqrestore(&adapter
->tcb_ready_qlock
, flags
);
3552 WARN_ON(adapter
->tx_ring
.used
> NUM_TCB
);
3557 * et131x_send_packets - This function is called by the OS to send packets
3558 * @skb: the packet(s) to send
3559 * @netdev:device on which to TX the above packet(s)
3561 * Return 0 in almost all cases; non-zero value in extreme hard failure only
3563 static int et131x_send_packets(struct sk_buff
*skb
, struct net_device
*netdev
)
3566 struct et131x_adapter
*adapter
= netdev_priv(netdev
);
3568 /* Send these packets
3570 * NOTE: The Linux Tx entry point is only given one packet at a time
3571 * to Tx, so the PacketCount and it's array used makes no sense here
3574 /* TCB is not available */
3575 if (adapter
->tx_ring
.used
>= NUM_TCB
) {
3576 /* NOTE: If there's an error on send, no need to queue the
3577 * packet under Linux; if we just send an error up to the
3578 * netif layer, it will resend the skb to us.
3582 /* We need to see if the link is up; if it's not, make the
3583 * netif layer think we're good and drop the packet
3585 if ((adapter
->flags
& fMP_ADAPTER_FAIL_SEND_MASK
) ||
3586 !netif_carrier_ok(netdev
)) {
3587 dev_kfree_skb_any(skb
);
3590 adapter
->net_stats
.tx_dropped
++;
3592 status
= send_packet(skb
, adapter
);
3593 if (status
!= 0 && status
!= -ENOMEM
) {
3594 /* On any other error, make netif think we're
3595 * OK and drop the packet
3597 dev_kfree_skb_any(skb
);
3599 adapter
->net_stats
.tx_dropped
++;
3607 * free_send_packet - Recycle a struct tcb
3608 * @adapter: pointer to our adapter
3609 * @tcb: pointer to struct tcb
3611 * Complete the packet if necessary
3612 * Assumption - Send spinlock has been acquired
3614 static inline void free_send_packet(struct et131x_adapter
*adapter
,
3617 unsigned long flags
;
3618 struct tx_desc
*desc
= NULL
;
3619 struct net_device_stats
*stats
= &adapter
->net_stats
;
3621 if (tcb
->flags
& fMP_DEST_BROAD
)
3622 atomic_inc(&adapter
->stats
.broadcast_pkts_xmtd
);
3623 else if (tcb
->flags
& fMP_DEST_MULTI
)
3624 atomic_inc(&adapter
->stats
.multicast_pkts_xmtd
);
3626 atomic_inc(&adapter
->stats
.unicast_pkts_xmtd
);
3629 stats
->tx_bytes
+= tcb
->skb
->len
;
3631 /* Iterate through the TX descriptors on the ring
3632 * corresponding to this packet and umap the fragments
3636 desc
= (struct tx_desc
*)
3637 (adapter
->tx_ring
.tx_desc_ring
+
3638 INDEX10(tcb
->index_start
));
3640 dma_unmap_single(&adapter
->pdev
->dev
,
3642 desc
->len_vlan
, DMA_TO_DEVICE
);
3644 add_10bit(&tcb
->index_start
, 1);
3645 if (INDEX10(tcb
->index_start
) >=
3646 NUM_DESC_PER_RING_TX
) {
3647 tcb
->index_start
&= ~ET_DMA10_MASK
;
3648 tcb
->index_start
^= ET_DMA10_WRAP
;
3650 } while (desc
!= (adapter
->tx_ring
.tx_desc_ring
+
3651 INDEX10(tcb
->index
)));
3653 dev_kfree_skb_any(tcb
->skb
);
3656 memset(tcb
, 0, sizeof(struct tcb
));
3658 /* Add the TCB to the Ready Q */
3659 spin_lock_irqsave(&adapter
->tcb_ready_qlock
, flags
);
3661 adapter
->net_stats
.tx_packets
++;
3663 if (adapter
->tx_ring
.tcb_qtail
)
3664 adapter
->tx_ring
.tcb_qtail
->next
= tcb
;
3666 /* Apparently ready Q is empty. */
3667 adapter
->tx_ring
.tcb_qhead
= tcb
;
3669 adapter
->tx_ring
.tcb_qtail
= tcb
;
3671 spin_unlock_irqrestore(&adapter
->tcb_ready_qlock
, flags
);
3672 WARN_ON(adapter
->tx_ring
.used
< 0);
3676 * et131x_free_busy_send_packets - Free and complete the stopped active sends
3677 * @adapter: pointer to our adapter
3679 * Assumption - Send spinlock has been acquired
3681 static void et131x_free_busy_send_packets(struct et131x_adapter
*adapter
)
3684 unsigned long flags
;
3687 /* Any packets being sent? Check the first TCB on the send list */
3688 spin_lock_irqsave(&adapter
->tcb_send_qlock
, flags
);
3690 tcb
= adapter
->tx_ring
.send_head
;
3692 while (tcb
!= NULL
&& freed
< NUM_TCB
) {
3693 struct tcb
*next
= tcb
->next
;
3695 adapter
->tx_ring
.send_head
= next
;
3698 adapter
->tx_ring
.send_tail
= NULL
;
3700 adapter
->tx_ring
.used
--;
3702 spin_unlock_irqrestore(&adapter
->tcb_send_qlock
, flags
);
3705 free_send_packet(adapter
, tcb
);
3707 spin_lock_irqsave(&adapter
->tcb_send_qlock
, flags
);
3709 tcb
= adapter
->tx_ring
.send_head
;
3712 WARN_ON(freed
== NUM_TCB
);
3714 spin_unlock_irqrestore(&adapter
->tcb_send_qlock
, flags
);
3716 adapter
->tx_ring
.used
= 0;
3720 * et131x_handle_send_interrupt - Interrupt handler for sending processing
3721 * @adapter: pointer to our adapter
3723 * Re-claim the send resources, complete sends and get more to send from
3724 * the send wait queue.
3726 * Assumption - Send spinlock has been acquired
3728 static void et131x_handle_send_interrupt(struct et131x_adapter
*adapter
)
3730 unsigned long flags
;
3735 serviced
= readl(&adapter
->regs
->txdma
.new_service_complete
);
3736 index
= INDEX10(serviced
);
3738 /* Has the ring wrapped? Process any descriptors that do not have
3739 * the same "wrap" indicator as the current completion indicator
3741 spin_lock_irqsave(&adapter
->tcb_send_qlock
, flags
);
3743 tcb
= adapter
->tx_ring
.send_head
;
3746 ((serviced
^ tcb
->index
) & ET_DMA10_WRAP
) &&
3747 index
< INDEX10(tcb
->index
)) {
3748 adapter
->tx_ring
.used
--;
3749 adapter
->tx_ring
.send_head
= tcb
->next
;
3750 if (tcb
->next
== NULL
)
3751 adapter
->tx_ring
.send_tail
= NULL
;
3753 spin_unlock_irqrestore(&adapter
->tcb_send_qlock
, flags
);
3754 free_send_packet(adapter
, tcb
);
3755 spin_lock_irqsave(&adapter
->tcb_send_qlock
, flags
);
3757 /* Goto the next packet */
3758 tcb
= adapter
->tx_ring
.send_head
;
3761 !((serviced
^ tcb
->index
) & ET_DMA10_WRAP
)
3762 && index
> (tcb
->index
& ET_DMA10_MASK
)) {
3763 adapter
->tx_ring
.used
--;
3764 adapter
->tx_ring
.send_head
= tcb
->next
;
3765 if (tcb
->next
== NULL
)
3766 adapter
->tx_ring
.send_tail
= NULL
;
3768 spin_unlock_irqrestore(&adapter
->tcb_send_qlock
, flags
);
3769 free_send_packet(adapter
, tcb
);
3770 spin_lock_irqsave(&adapter
->tcb_send_qlock
, flags
);
3772 /* Goto the next packet */
3773 tcb
= adapter
->tx_ring
.send_head
;
3776 /* Wake up the queue when we hit a low-water mark */
3777 if (adapter
->tx_ring
.used
<= NUM_TCB
/ 3)
3778 netif_wake_queue(adapter
->netdev
);
3780 spin_unlock_irqrestore(&adapter
->tcb_send_qlock
, flags
);
3783 static int et131x_get_settings(struct net_device
*netdev
,
3784 struct ethtool_cmd
*cmd
)
3786 struct et131x_adapter
*adapter
= netdev_priv(netdev
);
3788 return phy_ethtool_gset(adapter
->phydev
, cmd
);
3791 static int et131x_set_settings(struct net_device
*netdev
,
3792 struct ethtool_cmd
*cmd
)
3794 struct et131x_adapter
*adapter
= netdev_priv(netdev
);
3796 return phy_ethtool_sset(adapter
->phydev
, cmd
);
3799 static int et131x_get_regs_len(struct net_device
*netdev
)
3801 #define ET131X_REGS_LEN 256
3802 return ET131X_REGS_LEN
* sizeof(u32
);
3805 static void et131x_get_regs(struct net_device
*netdev
,
3806 struct ethtool_regs
*regs
, void *regs_data
)
3808 struct et131x_adapter
*adapter
= netdev_priv(netdev
);
3809 struct address_map __iomem
*aregs
= adapter
->regs
;
3810 u32
*regs_buff
= regs_data
;
3813 memset(regs_data
, 0, et131x_get_regs_len(netdev
));
3815 regs
->version
= (1 << 24) | (adapter
->pdev
->revision
<< 16) |
3816 adapter
->pdev
->device
;
3819 et131x_mii_read(adapter
, MII_BMCR
, (u16
*)®s_buff
[num
++]);
3820 et131x_mii_read(adapter
, MII_BMSR
, (u16
*)®s_buff
[num
++]);
3821 et131x_mii_read(adapter
, MII_PHYSID1
, (u16
*)®s_buff
[num
++]);
3822 et131x_mii_read(adapter
, MII_PHYSID2
, (u16
*)®s_buff
[num
++]);
3823 et131x_mii_read(adapter
, MII_ADVERTISE
, (u16
*)®s_buff
[num
++]);
3824 et131x_mii_read(adapter
, MII_LPA
, (u16
*)®s_buff
[num
++]);
3825 et131x_mii_read(adapter
, MII_EXPANSION
, (u16
*)®s_buff
[num
++]);
3826 /* Autoneg next page transmit reg */
3827 et131x_mii_read(adapter
, 0x07, (u16
*)®s_buff
[num
++]);
3828 /* Link partner next page reg */
3829 et131x_mii_read(adapter
, 0x08, (u16
*)®s_buff
[num
++]);
3830 et131x_mii_read(adapter
, MII_CTRL1000
, (u16
*)®s_buff
[num
++]);
3831 et131x_mii_read(adapter
, MII_STAT1000
, (u16
*)®s_buff
[num
++]);
3832 et131x_mii_read(adapter
, MII_ESTATUS
, (u16
*)®s_buff
[num
++]);
3833 et131x_mii_read(adapter
, PHY_INDEX_REG
, (u16
*)®s_buff
[num
++]);
3834 et131x_mii_read(adapter
, PHY_DATA_REG
, (u16
*)®s_buff
[num
++]);
3835 et131x_mii_read(adapter
, PHY_MPHY_CONTROL_REG
,
3836 (u16
*)®s_buff
[num
++]);
3837 et131x_mii_read(adapter
, PHY_LOOPBACK_CONTROL
,
3838 (u16
*)®s_buff
[num
++]);
3839 et131x_mii_read(adapter
, PHY_LOOPBACK_CONTROL
+1,
3840 (u16
*)®s_buff
[num
++]);
3841 et131x_mii_read(adapter
, PHY_REGISTER_MGMT_CONTROL
,
3842 (u16
*)®s_buff
[num
++]);
3843 et131x_mii_read(adapter
, PHY_CONFIG
, (u16
*)®s_buff
[num
++]);
3844 et131x_mii_read(adapter
, PHY_PHY_CONTROL
, (u16
*)®s_buff
[num
++]);
3845 et131x_mii_read(adapter
, PHY_INTERRUPT_MASK
, (u16
*)®s_buff
[num
++]);
3846 et131x_mii_read(adapter
, PHY_INTERRUPT_STATUS
,
3847 (u16
*)®s_buff
[num
++]);
3848 et131x_mii_read(adapter
, PHY_PHY_STATUS
, (u16
*)®s_buff
[num
++]);
3849 et131x_mii_read(adapter
, PHY_LED_1
, (u16
*)®s_buff
[num
++]);
3850 et131x_mii_read(adapter
, PHY_LED_2
, (u16
*)®s_buff
[num
++]);
3853 regs_buff
[num
++] = readl(&aregs
->global
.txq_start_addr
);
3854 regs_buff
[num
++] = readl(&aregs
->global
.txq_end_addr
);
3855 regs_buff
[num
++] = readl(&aregs
->global
.rxq_start_addr
);
3856 regs_buff
[num
++] = readl(&aregs
->global
.rxq_end_addr
);
3857 regs_buff
[num
++] = readl(&aregs
->global
.pm_csr
);
3858 regs_buff
[num
++] = adapter
->stats
.interrupt_status
;
3859 regs_buff
[num
++] = readl(&aregs
->global
.int_mask
);
3860 regs_buff
[num
++] = readl(&aregs
->global
.int_alias_clr_en
);
3861 regs_buff
[num
++] = readl(&aregs
->global
.int_status_alias
);
3862 regs_buff
[num
++] = readl(&aregs
->global
.sw_reset
);
3863 regs_buff
[num
++] = readl(&aregs
->global
.slv_timer
);
3864 regs_buff
[num
++] = readl(&aregs
->global
.msi_config
);
3865 regs_buff
[num
++] = readl(&aregs
->global
.loopback
);
3866 regs_buff
[num
++] = readl(&aregs
->global
.watchdog_timer
);
3869 regs_buff
[num
++] = readl(&aregs
->txdma
.csr
);
3870 regs_buff
[num
++] = readl(&aregs
->txdma
.pr_base_hi
);
3871 regs_buff
[num
++] = readl(&aregs
->txdma
.pr_base_lo
);
3872 regs_buff
[num
++] = readl(&aregs
->txdma
.pr_num_des
);
3873 regs_buff
[num
++] = readl(&aregs
->txdma
.txq_wr_addr
);
3874 regs_buff
[num
++] = readl(&aregs
->txdma
.txq_wr_addr_ext
);
3875 regs_buff
[num
++] = readl(&aregs
->txdma
.txq_rd_addr
);
3876 regs_buff
[num
++] = readl(&aregs
->txdma
.dma_wb_base_hi
);
3877 regs_buff
[num
++] = readl(&aregs
->txdma
.dma_wb_base_lo
);
3878 regs_buff
[num
++] = readl(&aregs
->txdma
.service_request
);
3879 regs_buff
[num
++] = readl(&aregs
->txdma
.service_complete
);
3880 regs_buff
[num
++] = readl(&aregs
->txdma
.cache_rd_index
);
3881 regs_buff
[num
++] = readl(&aregs
->txdma
.cache_wr_index
);
3882 regs_buff
[num
++] = readl(&aregs
->txdma
.tx_dma_error
);
3883 regs_buff
[num
++] = readl(&aregs
->txdma
.desc_abort_cnt
);
3884 regs_buff
[num
++] = readl(&aregs
->txdma
.payload_abort_cnt
);
3885 regs_buff
[num
++] = readl(&aregs
->txdma
.writeback_abort_cnt
);
3886 regs_buff
[num
++] = readl(&aregs
->txdma
.desc_timeout_cnt
);
3887 regs_buff
[num
++] = readl(&aregs
->txdma
.payload_timeout_cnt
);
3888 regs_buff
[num
++] = readl(&aregs
->txdma
.writeback_timeout_cnt
);
3889 regs_buff
[num
++] = readl(&aregs
->txdma
.desc_error_cnt
);
3890 regs_buff
[num
++] = readl(&aregs
->txdma
.payload_error_cnt
);
3891 regs_buff
[num
++] = readl(&aregs
->txdma
.writeback_error_cnt
);
3892 regs_buff
[num
++] = readl(&aregs
->txdma
.dropped_tlp_cnt
);
3893 regs_buff
[num
++] = readl(&aregs
->txdma
.new_service_complete
);
3894 regs_buff
[num
++] = readl(&aregs
->txdma
.ethernet_packet_cnt
);
3897 regs_buff
[num
++] = readl(&aregs
->rxdma
.csr
);
3898 regs_buff
[num
++] = readl(&aregs
->rxdma
.dma_wb_base_hi
);
3899 regs_buff
[num
++] = readl(&aregs
->rxdma
.dma_wb_base_lo
);
3900 regs_buff
[num
++] = readl(&aregs
->rxdma
.num_pkt_done
);
3901 regs_buff
[num
++] = readl(&aregs
->rxdma
.max_pkt_time
);
3902 regs_buff
[num
++] = readl(&aregs
->rxdma
.rxq_rd_addr
);
3903 regs_buff
[num
++] = readl(&aregs
->rxdma
.rxq_rd_addr_ext
);
3904 regs_buff
[num
++] = readl(&aregs
->rxdma
.rxq_wr_addr
);
3905 regs_buff
[num
++] = readl(&aregs
->rxdma
.psr_base_hi
);
3906 regs_buff
[num
++] = readl(&aregs
->rxdma
.psr_base_lo
);
3907 regs_buff
[num
++] = readl(&aregs
->rxdma
.psr_num_des
);
3908 regs_buff
[num
++] = readl(&aregs
->rxdma
.psr_avail_offset
);
3909 regs_buff
[num
++] = readl(&aregs
->rxdma
.psr_full_offset
);
3910 regs_buff
[num
++] = readl(&aregs
->rxdma
.psr_access_index
);
3911 regs_buff
[num
++] = readl(&aregs
->rxdma
.psr_min_des
);
3912 regs_buff
[num
++] = readl(&aregs
->rxdma
.fbr0_base_lo
);
3913 regs_buff
[num
++] = readl(&aregs
->rxdma
.fbr0_base_hi
);
3914 regs_buff
[num
++] = readl(&aregs
->rxdma
.fbr0_num_des
);
3915 regs_buff
[num
++] = readl(&aregs
->rxdma
.fbr0_avail_offset
);
3916 regs_buff
[num
++] = readl(&aregs
->rxdma
.fbr0_full_offset
);
3917 regs_buff
[num
++] = readl(&aregs
->rxdma
.fbr0_rd_index
);
3918 regs_buff
[num
++] = readl(&aregs
->rxdma
.fbr0_min_des
);
3919 regs_buff
[num
++] = readl(&aregs
->rxdma
.fbr1_base_lo
);
3920 regs_buff
[num
++] = readl(&aregs
->rxdma
.fbr1_base_hi
);
3921 regs_buff
[num
++] = readl(&aregs
->rxdma
.fbr1_num_des
);
3922 regs_buff
[num
++] = readl(&aregs
->rxdma
.fbr1_avail_offset
);
3923 regs_buff
[num
++] = readl(&aregs
->rxdma
.fbr1_full_offset
);
3924 regs_buff
[num
++] = readl(&aregs
->rxdma
.fbr1_rd_index
);
3925 regs_buff
[num
++] = readl(&aregs
->rxdma
.fbr1_min_des
);
3928 #define ET131X_DRVINFO_LEN 32 /* value from ethtool.h */
3929 static void et131x_get_drvinfo(struct net_device
*netdev
,
3930 struct ethtool_drvinfo
*info
)
3932 struct et131x_adapter
*adapter
= netdev_priv(netdev
);
3934 strncpy(info
->driver
, DRIVER_NAME
, ET131X_DRVINFO_LEN
);
3935 strncpy(info
->version
, DRIVER_VERSION
, ET131X_DRVINFO_LEN
);
3936 strncpy(info
->bus_info
, pci_name(adapter
->pdev
), ET131X_DRVINFO_LEN
);
3939 static struct ethtool_ops et131x_ethtool_ops
= {
3940 .get_settings
= et131x_get_settings
,
3941 .set_settings
= et131x_set_settings
,
3942 .get_drvinfo
= et131x_get_drvinfo
,
3943 .get_regs_len
= et131x_get_regs_len
,
3944 .get_regs
= et131x_get_regs
,
3945 .get_link
= ethtool_op_get_link
,
3948 static void et131x_set_ethtool_ops(struct net_device
*netdev
)
3950 SET_ETHTOOL_OPS(netdev
, &et131x_ethtool_ops
);
3954 * et131x_hwaddr_init - set up the MAC Address on the ET1310
3955 * @adapter: pointer to our private adapter structure
3957 static void et131x_hwaddr_init(struct et131x_adapter
*adapter
)
3959 /* If have our default mac from init and no mac address from
3960 * EEPROM then we need to generate the last octet and set it on the
3963 if (adapter
->rom_addr
[0] == 0x00 &&
3964 adapter
->rom_addr
[1] == 0x00 &&
3965 adapter
->rom_addr
[2] == 0x00 &&
3966 adapter
->rom_addr
[3] == 0x00 &&
3967 adapter
->rom_addr
[4] == 0x00 &&
3968 adapter
->rom_addr
[5] == 0x00) {
3970 * We need to randomly generate the last octet so we
3971 * decrease our chances of setting the mac address to
3972 * same as another one of our cards in the system
3974 get_random_bytes(&adapter
->addr
[5], 1);
3976 * We have the default value in the register we are
3977 * working with so we need to copy the current
3978 * address into the permanent address
3980 memcpy(adapter
->rom_addr
,
3981 adapter
->addr
, ETH_ALEN
);
3983 /* We do not have an override address, so set the
3984 * current address to the permanent address and add
3987 memcpy(adapter
->addr
,
3988 adapter
->rom_addr
, ETH_ALEN
);
3993 * et131x_pci_init - initial PCI setup
3994 * @adapter: pointer to our private adapter structure
3995 * @pdev: our PCI device
3997 * Perform the initial setup of PCI registers and if possible initialise
3998 * the MAC address. At this point the I/O registers have yet to be mapped
4000 static int et131x_pci_init(struct et131x_adapter
*adapter
,
4001 struct pci_dev
*pdev
)
4003 int cap
= pci_pcie_cap(pdev
);
4008 rc
= et131x_init_eeprom(adapter
);
4013 dev_err(&pdev
->dev
, "Missing PCIe capabilities\n");
4017 /* Let's set up the PORT LOGIC Register. First we need to know what
4018 * the max_payload_size is
4020 if (pci_read_config_word(pdev
, cap
+ PCI_EXP_DEVCAP
, &max_payload
)) {
4022 "Could not read PCI config space for Max Payload Size\n");
4026 /* Program the Ack/Nak latency and replay timers */
4027 max_payload
&= 0x07;
4029 if (max_payload
< 2) {
4030 static const u16 acknak
[2] = { 0x76, 0xD0 };
4031 static const u16 replay
[2] = { 0x1E0, 0x2ED };
4033 if (pci_write_config_word(pdev
, ET1310_PCI_ACK_NACK
,
4034 acknak
[max_payload
])) {
4036 "Could not write PCI config space for ACK/NAK\n");
4039 if (pci_write_config_word(pdev
, ET1310_PCI_REPLAY
,
4040 replay
[max_payload
])) {
4042 "Could not write PCI config space for Replay Timer\n");
4047 /* l0s and l1 latency timers. We are using default values.
4048 * Representing 001 for L0s and 010 for L1
4050 if (pci_write_config_byte(pdev
, ET1310_PCI_L0L1LATENCY
, 0x11)) {
4052 "Could not write PCI config space for Latency Timers\n");
4056 /* Change the max read size to 2k */
4057 if (pci_read_config_word(pdev
, cap
+ PCI_EXP_DEVCTL
, &ctl
)) {
4059 "Could not read PCI config space for Max read size\n");
4063 ctl
= (ctl
& ~PCI_EXP_DEVCTL_READRQ
) | ( 0x04 << 12);
4065 if (pci_write_config_word(pdev
, cap
+ PCI_EXP_DEVCTL
, ctl
)) {
4067 "Could not write PCI config space for Max read size\n");
4071 /* Get MAC address from config space if an eeprom exists, otherwise
4072 * the MAC address there will not be valid
4074 if (!adapter
->has_eeprom
) {
4075 et131x_hwaddr_init(adapter
);
4079 for (i
= 0; i
< ETH_ALEN
; i
++) {
4080 if (pci_read_config_byte(pdev
, ET1310_PCI_MAC_ADDRESS
+ i
,
4081 adapter
->rom_addr
+ i
)) {
4082 dev_err(&pdev
->dev
, "Could not read PCI config space for MAC address\n");
4086 memcpy(adapter
->addr
, adapter
->rom_addr
, ETH_ALEN
);
4095 * et131x_error_timer_handler
4096 * @data: timer-specific variable; here a pointer to our adapter structure
4098 * The routine called when the error timer expires, to track the number of
4101 static void et131x_error_timer_handler(unsigned long data
)
4103 struct et131x_adapter
*adapter
= (struct et131x_adapter
*) data
;
4104 struct phy_device
*phydev
= adapter
->phydev
;
4106 if (et1310_in_phy_coma(adapter
)) {
4107 /* Bring the device immediately out of coma, to
4108 * prevent it from sleeping indefinitely, this
4109 * mechanism could be improved! */
4110 et1310_disable_phy_coma(adapter
);
4111 adapter
->boot_coma
= 20;
4113 et1310_update_macstat_host_counters(adapter
);
4116 if (!phydev
->link
&& adapter
->boot_coma
< 11)
4117 adapter
->boot_coma
++;
4119 if (adapter
->boot_coma
== 10) {
4120 if (!phydev
->link
) {
4121 if (!et1310_in_phy_coma(adapter
)) {
4122 /* NOTE - This was originally a 'sync with
4123 * interrupt'. How to do that under Linux?
4125 et131x_enable_interrupts(adapter
);
4126 et1310_enable_phy_coma(adapter
);
4131 /* This is a periodic timer, so reschedule */
4132 mod_timer(&adapter
->error_timer
, jiffies
+
4133 TX_ERROR_PERIOD
* HZ
/ 1000);
4137 * et131x_adapter_memory_alloc
4138 * @adapter: pointer to our private adapter structure
4140 * Returns 0 on success, errno on failure (as defined in errno.h).
4142 * Allocate all the memory blocks for send, receive and others.
4144 static int et131x_adapter_memory_alloc(struct et131x_adapter
*adapter
)
4148 /* Allocate memory for the Tx Ring */
4149 status
= et131x_tx_dma_memory_alloc(adapter
);
4151 dev_err(&adapter
->pdev
->dev
,
4152 "et131x_tx_dma_memory_alloc FAILED\n");
4155 /* Receive buffer memory allocation */
4156 status
= et131x_rx_dma_memory_alloc(adapter
);
4158 dev_err(&adapter
->pdev
->dev
,
4159 "et131x_rx_dma_memory_alloc FAILED\n");
4160 et131x_tx_dma_memory_free(adapter
);
4164 /* Init receive data structures */
4165 status
= et131x_init_recv(adapter
);
4167 dev_err(&adapter
->pdev
->dev
,
4168 "et131x_init_recv FAILED\n");
4169 et131x_tx_dma_memory_free(adapter
);
4170 et131x_rx_dma_memory_free(adapter
);
4176 * et131x_adapter_memory_free - Free all memory allocated for use by Tx & Rx
4177 * @adapter: pointer to our private adapter structure
4179 static void et131x_adapter_memory_free(struct et131x_adapter
*adapter
)
4181 /* Free DMA memory */
4182 et131x_tx_dma_memory_free(adapter
);
4183 et131x_rx_dma_memory_free(adapter
);
4186 static void et131x_adjust_link(struct net_device
*netdev
)
4188 struct et131x_adapter
*adapter
= netdev_priv(netdev
);
4189 struct phy_device
*phydev
= adapter
->phydev
;
4191 if (netif_carrier_ok(netdev
)) {
4192 adapter
->boot_coma
= 20;
4194 if (phydev
&& phydev
->speed
== SPEED_10
) {
4196 * NOTE - Is there a way to query this without
4198 * && TRU_QueryCoreType(adapter->hTruePhy, 0)==
4199 * EMI_TRUEPHY_A13O) {
4203 et131x_mii_read(adapter
, PHY_MPHY_CONTROL_REG
,
4205 et131x_mii_write(adapter
, PHY_MPHY_CONTROL_REG
,
4207 et131x_mii_write(adapter
, PHY_INDEX_REG
,
4208 register18
| 0x8402);
4209 et131x_mii_write(adapter
, PHY_DATA_REG
,
4211 et131x_mii_write(adapter
, PHY_MPHY_CONTROL_REG
,
4215 et1310_config_flow_control(adapter
);
4217 if (phydev
&& phydev
->speed
== SPEED_1000
&&
4218 adapter
->registry_jumbo_packet
> 2048) {
4221 et131x_mii_read(adapter
, PHY_CONFIG
, ®
);
4222 reg
&= ~ET_PHY_CONFIG_TX_FIFO_DEPTH
;
4223 reg
|= ET_PHY_CONFIG_FIFO_DEPTH_32
;
4224 et131x_mii_write(adapter
, PHY_CONFIG
, reg
);
4227 et131x_set_rx_dma_timer(adapter
);
4228 et1310_config_mac_regs2(adapter
);
4231 if (phydev
&& phydev
->link
!= adapter
->link
) {
4233 * Check to see if we are in coma mode and if
4234 * so, disable it because we will not be able
4235 * to read PHY values until we are out.
4237 if (et1310_in_phy_coma(adapter
))
4238 et1310_disable_phy_coma(adapter
);
4241 adapter
->boot_coma
= 20;
4243 dev_warn(&adapter
->pdev
->dev
,
4244 "Link down - cable problem ?\n");
4245 adapter
->boot_coma
= 0;
4247 if (phydev
->speed
== SPEED_10
) {
4248 /* NOTE - Is there a way to query this without
4250 * && TRU_QueryCoreType(adapter->hTruePhy, 0) ==
4255 et131x_mii_read(adapter
, PHY_MPHY_CONTROL_REG
,
4257 et131x_mii_write(adapter
, PHY_MPHY_CONTROL_REG
,
4259 et131x_mii_write(adapter
, PHY_INDEX_REG
,
4260 register18
| 0x8402);
4261 et131x_mii_write(adapter
, PHY_DATA_REG
,
4263 et131x_mii_write(adapter
, PHY_MPHY_CONTROL_REG
,
4267 /* Free the packets being actively sent & stopped */
4268 et131x_free_busy_send_packets(adapter
);
4270 /* Re-initialize the send structures */
4271 et131x_init_send(adapter
);
4274 * Bring the device back to the state it was during
4275 * init prior to autonegotiation being complete. This
4276 * way, when we get the auto-neg complete interrupt,
4277 * we can complete init by calling config_mac_regs2.
4279 et131x_soft_reset(adapter
);
4281 /* Setup ET1310 as per the documentation */
4282 et131x_adapter_setup(adapter
);
4284 /* perform reset of tx/rx */
4285 et131x_disable_txrx(netdev
);
4286 et131x_enable_txrx(netdev
);
4289 adapter
->link
= phydev
->link
;
4291 phy_print_status(phydev
);
4295 static int et131x_mii_probe(struct net_device
*netdev
)
4297 struct et131x_adapter
*adapter
= netdev_priv(netdev
);
4298 struct phy_device
*phydev
= NULL
;
4300 phydev
= phy_find_first(adapter
->mii_bus
);
4302 dev_err(&adapter
->pdev
->dev
, "no PHY found\n");
4306 phydev
= phy_connect(netdev
, dev_name(&phydev
->dev
),
4307 &et131x_adjust_link
, 0, PHY_INTERFACE_MODE_MII
);
4309 if (IS_ERR(phydev
)) {
4310 dev_err(&adapter
->pdev
->dev
, "Could not attach to PHY\n");
4311 return PTR_ERR(phydev
);
4314 phydev
->supported
&= (SUPPORTED_10baseT_Half
4315 | SUPPORTED_10baseT_Full
4316 | SUPPORTED_100baseT_Half
4317 | SUPPORTED_100baseT_Full
4322 if (adapter
->pdev
->device
!= ET131X_PCI_DEVICE_ID_FAST
)
4323 phydev
->supported
|= SUPPORTED_1000baseT_Full
;
4325 phydev
->advertising
= phydev
->supported
;
4326 adapter
->phydev
= phydev
;
4328 dev_info(&adapter
->pdev
->dev
, "attached PHY driver [%s] "
4329 "(mii_bus:phy_addr=%s)\n",
4330 phydev
->drv
->name
, dev_name(&phydev
->dev
));
4336 * et131x_adapter_init
4337 * @adapter: pointer to the private adapter struct
4338 * @pdev: pointer to the PCI device
4340 * Initialize the data structures for the et131x_adapter object and link
4341 * them together with the platform provided device structures.
4343 static struct et131x_adapter
*et131x_adapter_init(struct net_device
*netdev
,
4344 struct pci_dev
*pdev
)
4346 static const u8 default_mac
[] = { 0x00, 0x05, 0x3d, 0x00, 0x02, 0x00 };
4348 struct et131x_adapter
*adapter
;
4350 /* Allocate private adapter struct and copy in relevant information */
4351 adapter
= netdev_priv(netdev
);
4352 adapter
->pdev
= pci_dev_get(pdev
);
4353 adapter
->netdev
= netdev
;
4355 /* Initialize spinlocks here */
4356 spin_lock_init(&adapter
->lock
);
4357 spin_lock_init(&adapter
->tcb_send_qlock
);
4358 spin_lock_init(&adapter
->tcb_ready_qlock
);
4359 spin_lock_init(&adapter
->send_hw_lock
);
4360 spin_lock_init(&adapter
->rcv_lock
);
4361 spin_lock_init(&adapter
->rcv_pend_lock
);
4362 spin_lock_init(&adapter
->fbr_lock
);
4363 spin_lock_init(&adapter
->phy_lock
);
4365 adapter
->registry_jumbo_packet
= 1514; /* 1514-9216 */
4367 /* Set the MAC address to a default */
4368 memcpy(adapter
->addr
, default_mac
, ETH_ALEN
);
4375 * @pdev: a pointer to the device's pci_dev structure
4377 * Registered in the pci_driver structure, this function is called when the
4378 * PCI subsystem detects that a PCI device which matches the information
4379 * contained in the pci_device_id table has been removed.
4381 static void __devexit
et131x_pci_remove(struct pci_dev
*pdev
)
4383 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4384 struct et131x_adapter
*adapter
= netdev_priv(netdev
);
4386 unregister_netdev(netdev
);
4387 phy_disconnect(adapter
->phydev
);
4388 mdiobus_unregister(adapter
->mii_bus
);
4389 kfree(adapter
->mii_bus
->irq
);
4390 mdiobus_free(adapter
->mii_bus
);
4392 et131x_adapter_memory_free(adapter
);
4393 iounmap(adapter
->regs
);
4396 free_netdev(netdev
);
4397 pci_release_regions(pdev
);
4398 pci_disable_device(pdev
);
4402 * et131x_up - Bring up a device for use.
4403 * @netdev: device to be opened
4405 static void et131x_up(struct net_device
*netdev
)
4407 struct et131x_adapter
*adapter
= netdev_priv(netdev
);
4409 et131x_enable_txrx(netdev
);
4410 phy_start(adapter
->phydev
);
4414 * et131x_down - Bring down the device
4415 * @netdev: device to be brought down
4417 static void et131x_down(struct net_device
*netdev
)
4419 struct et131x_adapter
*adapter
= netdev_priv(netdev
);
4421 /* Save the timestamp for the TX watchdog, prevent a timeout */
4422 netdev
->trans_start
= jiffies
;
4424 phy_stop(adapter
->phydev
);
4425 et131x_disable_txrx(netdev
);
4428 #ifdef CONFIG_PM_SLEEP
4429 static int et131x_suspend(struct device
*dev
)
4431 struct pci_dev
*pdev
= to_pci_dev(dev
);
4432 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4434 if (netif_running(netdev
)) {
4435 netif_device_detach(netdev
);
4436 et131x_down(netdev
);
4437 pci_save_state(pdev
);
4443 static int et131x_resume(struct device
*dev
)
4445 struct pci_dev
*pdev
= to_pci_dev(dev
);
4446 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4448 if (netif_running(netdev
)) {
4449 pci_restore_state(pdev
);
4451 netif_device_attach(netdev
);
4457 static SIMPLE_DEV_PM_OPS(et131x_pm_ops
, et131x_suspend
, et131x_resume
);
4458 #define ET131X_PM_OPS (&et131x_pm_ops)
4460 #define ET131X_PM_OPS NULL
4464 * et131x_isr - The Interrupt Service Routine for the driver.
4465 * @irq: the IRQ on which the interrupt was received.
4466 * @dev_id: device-specific info (here a pointer to a net_device struct)
4468 * Returns a value indicating if the interrupt was handled.
4470 irqreturn_t
et131x_isr(int irq
, void *dev_id
)
4472 bool handled
= true;
4473 struct net_device
*netdev
= (struct net_device
*)dev_id
;
4474 struct et131x_adapter
*adapter
= NULL
;
4477 if (!netif_device_present(netdev
)) {
4482 adapter
= netdev_priv(netdev
);
4484 /* If the adapter is in low power state, then it should not
4485 * recognize any interrupt
4488 /* Disable Device Interrupts */
4489 et131x_disable_interrupts(adapter
);
4491 /* Get a copy of the value in the interrupt status register
4492 * so we can process the interrupting section
4494 status
= readl(&adapter
->regs
->global
.int_status
);
4496 if (adapter
->flowcontrol
== FLOW_TXONLY
||
4497 adapter
->flowcontrol
== FLOW_BOTH
) {
4498 status
&= ~INT_MASK_ENABLE
;
4500 status
&= ~INT_MASK_ENABLE_NO_FLOW
;
4503 /* Make sure this is our interrupt */
4506 et131x_enable_interrupts(adapter
);
4510 /* This is our interrupt, so process accordingly */
4512 if (status
& ET_INTR_WATCHDOG
) {
4513 struct tcb
*tcb
= adapter
->tx_ring
.send_head
;
4516 if (++tcb
->stale
> 1)
4517 status
|= ET_INTR_TXDMA_ISR
;
4519 if (adapter
->rx_ring
.unfinished_receives
)
4520 status
|= ET_INTR_RXDMA_XFR_DONE
;
4521 else if (tcb
== NULL
)
4522 writel(0, &adapter
->regs
->global
.watchdog_timer
);
4524 status
&= ~ET_INTR_WATCHDOG
;
4528 /* This interrupt has in some way been "handled" by
4529 * the ISR. Either it was a spurious Rx interrupt, or
4530 * it was a Tx interrupt that has been filtered by
4533 et131x_enable_interrupts(adapter
);
4537 /* We need to save the interrupt status value for use in our
4538 * DPC. We will clear the software copy of that in that
4541 adapter
->stats
.interrupt_status
= status
;
4543 /* Schedule the ISR handler as a bottom-half task in the
4544 * kernel's tq_immediate queue, and mark the queue for
4547 schedule_work(&adapter
->task
);
4549 return IRQ_RETVAL(handled
);
4553 * et131x_isr_handler - The ISR handler
4554 * @p_adapter, a pointer to the device's private adapter structure
4556 * scheduled to run in a deferred context by the ISR. This is where the ISR's
4557 * work actually gets done.
4559 static void et131x_isr_handler(struct work_struct
*work
)
4561 struct et131x_adapter
*adapter
=
4562 container_of(work
, struct et131x_adapter
, task
);
4563 u32 status
= adapter
->stats
.interrupt_status
;
4564 struct address_map __iomem
*iomem
= adapter
->regs
;
4567 * These first two are by far the most common. Once handled, we clear
4568 * their two bits in the status word. If the word is now zero, we
4571 /* Handle all the completed Transmit interrupts */
4572 if (status
& ET_INTR_TXDMA_ISR
)
4573 et131x_handle_send_interrupt(adapter
);
4575 /* Handle all the completed Receives interrupts */
4576 if (status
& ET_INTR_RXDMA_XFR_DONE
)
4577 et131x_handle_recv_interrupt(adapter
);
4579 status
&= 0xffffffd7;
4582 /* Handle the TXDMA Error interrupt */
4583 if (status
& ET_INTR_TXDMA_ERR
) {
4586 /* Following read also clears the register (COR) */
4587 txdma_err
= readl(&iomem
->txdma
.tx_dma_error
);
4589 dev_warn(&adapter
->pdev
->dev
,
4590 "TXDMA_ERR interrupt, error = %d\n",
4594 /* Handle Free Buffer Ring 0 and 1 Low interrupt */
4596 (ET_INTR_RXDMA_FB_R0_LOW
| ET_INTR_RXDMA_FB_R1_LOW
)) {
4598 * This indicates the number of unused buffers in
4599 * RXDMA free buffer ring 0 is <= the limit you
4600 * programmed. Free buffer resources need to be
4601 * returned. Free buffers are consumed as packets
4602 * are passed from the network to the host. The host
4603 * becomes aware of the packets from the contents of
4604 * the packet status ring. This ring is queried when
4605 * the packet done interrupt occurs. Packets are then
4606 * passed to the OS. When the OS is done with the
4607 * packets the resources can be returned to the
4608 * ET1310 for re-use. This interrupt is one method of
4609 * returning resources.
4612 /* If the user has flow control on, then we will
4613 * send a pause packet, otherwise just exit
4615 if (adapter
->flowcontrol
== FLOW_TXONLY
||
4616 adapter
->flowcontrol
== FLOW_BOTH
) {
4619 /* Tell the device to send a pause packet via
4620 * the back pressure register (bp req and
4623 pm_csr
= readl(&iomem
->global
.pm_csr
);
4624 if (!et1310_in_phy_coma(adapter
))
4625 writel(3, &iomem
->txmac
.bp_ctrl
);
4629 /* Handle Packet Status Ring Low Interrupt */
4630 if (status
& ET_INTR_RXDMA_STAT_LOW
) {
4633 * Same idea as with the two Free Buffer Rings.
4634 * Packets going from the network to the host each
4635 * consume a free buffer resource and a packet status
4636 * resource. These resoures are passed to the OS.
4637 * When the OS is done with the resources, they need
4638 * to be returned to the ET1310. This is one method
4639 * of returning the resources.
4643 /* Handle RXDMA Error Interrupt */
4644 if (status
& ET_INTR_RXDMA_ERR
) {
4646 * The rxdma_error interrupt is sent when a time-out
4647 * on a request issued by the JAGCore has occurred or
4648 * a completion is returned with an un-successful
4649 * status. In both cases the request is considered
4650 * complete. The JAGCore will automatically re-try the
4651 * request in question. Normally information on events
4652 * like these are sent to the host using the "Advanced
4653 * Error Reporting" capability. This interrupt is
4654 * another way of getting similar information. The
4655 * only thing required is to clear the interrupt by
4656 * reading the ISR in the global resources. The
4657 * JAGCore will do a re-try on the request. Normally
4658 * you should never see this interrupt. If you start
4659 * to see this interrupt occurring frequently then
4660 * something bad has occurred. A reset might be the
4665 dev_warn(&adapter
->pdev
->dev
,
4666 "RxDMA_ERR interrupt, error %x\n",
4667 readl(&iomem
->txmac
.tx_test
));
4670 /* Handle the Wake on LAN Event */
4671 if (status
& ET_INTR_WOL
) {
4673 * This is a secondary interrupt for wake on LAN.
4674 * The driver should never see this, if it does,
4675 * something serious is wrong. We will TRAP the
4676 * message when we are in DBG mode, otherwise we
4679 dev_err(&adapter
->pdev
->dev
, "WAKE_ON_LAN interrupt\n");
4682 /* Let's move on to the TxMac */
4683 if (status
& ET_INTR_TXMAC
) {
4684 u32 err
= readl(&iomem
->txmac
.err
);
4687 * When any of the errors occur and TXMAC generates
4688 * an interrupt to report these errors, it usually
4689 * means that TXMAC has detected an error in the data
4690 * stream retrieved from the on-chip Tx Q. All of
4691 * these errors are catastrophic and TXMAC won't be
4692 * able to recover data when these errors occur. In
4693 * a nutshell, the whole Tx path will have to be reset
4694 * and re-configured afterwards.
4696 dev_warn(&adapter
->pdev
->dev
,
4697 "TXMAC interrupt, error 0x%08x\n",
4700 /* If we are debugging, we want to see this error,
4701 * otherwise we just want the device to be reset and
4706 /* Handle RXMAC Interrupt */
4707 if (status
& ET_INTR_RXMAC
) {
4709 * These interrupts are catastrophic to the device,
4710 * what we need to do is disable the interrupts and
4711 * set the flag to cause us to reset so we can solve
4714 /* MP_SET_FLAG( adapter,
4715 fMP_ADAPTER_HARDWARE_ERROR); */
4717 dev_warn(&adapter
->pdev
->dev
,
4718 "RXMAC interrupt, error 0x%08x. Requesting reset\n",
4719 readl(&iomem
->rxmac
.err_reg
));
4721 dev_warn(&adapter
->pdev
->dev
,
4722 "Enable 0x%08x, Diag 0x%08x\n",
4723 readl(&iomem
->rxmac
.ctrl
),
4724 readl(&iomem
->rxmac
.rxq_diag
));
4727 * If we are debugging, we want to see this error,
4728 * otherwise we just want the device to be reset and
4733 /* Handle MAC_STAT Interrupt */
4734 if (status
& ET_INTR_MAC_STAT
) {
4736 * This means at least one of the un-masked counters
4737 * in the MAC_STAT block has rolled over. Use this
4738 * to maintain the top, software managed bits of the
4741 et1310_handle_macstat_interrupt(adapter
);
4744 /* Handle SLV Timeout Interrupt */
4745 if (status
& ET_INTR_SLV_TIMEOUT
) {
4747 * This means a timeout has occurred on a read or
4748 * write request to one of the JAGCore registers. The
4749 * Global Resources block has terminated the request
4750 * and on a read request, returned a "fake" value.
4751 * The most likely reasons are: Bad Address or the
4752 * addressed module is in a power-down state and
4757 et131x_enable_interrupts(adapter
);
4761 * et131x_stats - Return the current device statistics.
4762 * @netdev: device whose stats are being queried
4764 * Returns 0 on success, errno on failure (as defined in errno.h)
4766 static struct net_device_stats
*et131x_stats(struct net_device
*netdev
)
4768 struct et131x_adapter
*adapter
= netdev_priv(netdev
);
4769 struct net_device_stats
*stats
= &adapter
->net_stats
;
4770 struct ce_stats
*devstat
= &adapter
->stats
;
4772 stats
->rx_errors
= devstat
->rx_length_errs
+
4773 devstat
->rx_align_errs
+
4774 devstat
->rx_crc_errs
+
4775 devstat
->rx_code_violations
+
4776 devstat
->rx_other_errs
;
4777 stats
->tx_errors
= devstat
->tx_max_pkt_errs
;
4778 stats
->multicast
= devstat
->multicast_pkts_rcvd
;
4779 stats
->collisions
= devstat
->tx_collisions
;
4781 stats
->rx_length_errors
= devstat
->rx_length_errs
;
4782 stats
->rx_over_errors
= devstat
->rx_overflows
;
4783 stats
->rx_crc_errors
= devstat
->rx_crc_errs
;
4785 /* NOTE: These stats don't have corresponding values in CE_STATS,
4786 * so we're going to have to update these directly from within the
4789 /* stats->rx_bytes = 20; devstat->; */
4790 /* stats->tx_bytes = 20; devstat->; */
4791 /* stats->rx_dropped = devstat->; */
4792 /* stats->tx_dropped = devstat->; */
4794 /* NOTE: Not used, can't find analogous statistics */
4795 /* stats->rx_frame_errors = devstat->; */
4796 /* stats->rx_fifo_errors = devstat->; */
4797 /* stats->rx_missed_errors = devstat->; */
4799 /* stats->tx_aborted_errors = devstat->; */
4800 /* stats->tx_carrier_errors = devstat->; */
4801 /* stats->tx_fifo_errors = devstat->; */
4802 /* stats->tx_heartbeat_errors = devstat->; */
4803 /* stats->tx_window_errors = devstat->; */
4808 * et131x_open - Open the device for use.
4809 * @netdev: device to be opened
4811 * Returns 0 on success, errno on failure (as defined in errno.h)
4813 static int et131x_open(struct net_device
*netdev
)
4815 struct et131x_adapter
*adapter
= netdev_priv(netdev
);
4816 struct pci_dev
*pdev
= adapter
->pdev
;
4817 unsigned int irq
= pdev
->irq
;
4820 /* Start the timer to track NIC errors */
4821 init_timer(&adapter
->error_timer
);
4822 adapter
->error_timer
.expires
= jiffies
+ TX_ERROR_PERIOD
* HZ
/ 1000;
4823 adapter
->error_timer
.function
= et131x_error_timer_handler
;
4824 adapter
->error_timer
.data
= (unsigned long)adapter
;
4825 add_timer(&adapter
->error_timer
);
4827 result
= request_irq(irq
, et131x_isr
, IRQF_SHARED
, netdev
->name
, netdev
);
4829 dev_err(&pdev
->dev
, "could not register IRQ %d\n", irq
);
4833 adapter
->flags
|= fMP_ADAPTER_INTERRUPT_IN_USE
;
4841 * et131x_close - Close the device
4842 * @netdev: device to be closed
4844 * Returns 0 on success, errno on failure (as defined in errno.h)
4846 static int et131x_close(struct net_device
*netdev
)
4848 struct et131x_adapter
*adapter
= netdev_priv(netdev
);
4850 et131x_down(netdev
);
4852 adapter
->flags
&= ~fMP_ADAPTER_INTERRUPT_IN_USE
;
4853 free_irq(adapter
->pdev
->irq
, netdev
);
4855 /* Stop the error timer */
4856 return del_timer_sync(&adapter
->error_timer
);
4860 * et131x_ioctl - The I/O Control handler for the driver
4861 * @netdev: device on which the control request is being made
4862 * @reqbuf: a pointer to the IOCTL request buffer
4863 * @cmd: the IOCTL command code
4865 * Returns 0 on success, errno on failure (as defined in errno.h)
4867 static int et131x_ioctl(struct net_device
*netdev
, struct ifreq
*reqbuf
,
4870 struct et131x_adapter
*adapter
= netdev_priv(netdev
);
4872 if (!adapter
->phydev
)
4875 return phy_mii_ioctl(adapter
->phydev
, reqbuf
, cmd
);
4879 * et131x_set_packet_filter - Configures the Rx Packet filtering on the device
4880 * @adapter: pointer to our private adapter structure
4882 * FIXME: lot of dups with MAC code
4884 * Returns 0 on success, errno on failure
4886 static int et131x_set_packet_filter(struct et131x_adapter
*adapter
)
4888 int filter
= adapter
->packet_filter
;
4893 ctrl
= readl(&adapter
->regs
->rxmac
.ctrl
);
4894 pf_ctrl
= readl(&adapter
->regs
->rxmac
.pf_ctrl
);
4896 /* Default to disabled packet filtering. Enable it in the individual
4897 * case statements that require the device to filter something
4901 /* Set us to be in promiscuous mode so we receive everything, this
4902 * is also true when we get a packet filter of 0
4904 if ((filter
& ET131X_PACKET_TYPE_PROMISCUOUS
) || filter
== 0)
4905 pf_ctrl
&= ~7; /* Clear filter bits */
4908 * Set us up with Multicast packet filtering. Three cases are
4909 * possible - (1) we have a multi-cast list, (2) we receive ALL
4910 * multicast entries or (3) we receive none.
4912 if (filter
& ET131X_PACKET_TYPE_ALL_MULTICAST
)
4913 pf_ctrl
&= ~2; /* Multicast filter bit */
4915 et1310_setup_device_for_multicast(adapter
);
4920 /* Set us up with Unicast packet filtering */
4921 if (filter
& ET131X_PACKET_TYPE_DIRECTED
) {
4922 et1310_setup_device_for_unicast(adapter
);
4927 /* Set us up with Broadcast packet filtering */
4928 if (filter
& ET131X_PACKET_TYPE_BROADCAST
) {
4929 pf_ctrl
|= 1; /* Broadcast filter bit */
4934 /* Setup the receive mac configuration registers - Packet
4935 * Filter control + the enable / disable for packet filter
4936 * in the control reg.
4938 writel(pf_ctrl
, &adapter
->regs
->rxmac
.pf_ctrl
);
4939 writel(ctrl
, &adapter
->regs
->rxmac
.ctrl
);
4945 * et131x_multicast - The handler to configure multicasting on the interface
4946 * @netdev: a pointer to a net_device struct representing the device
4948 static void et131x_multicast(struct net_device
*netdev
)
4950 struct et131x_adapter
*adapter
= netdev_priv(netdev
);
4952 unsigned long flags
;
4953 struct netdev_hw_addr
*ha
;
4956 spin_lock_irqsave(&adapter
->lock
, flags
);
4958 /* Before we modify the platform-independent filter flags, store them
4959 * locally. This allows us to determine if anything's changed and if
4960 * we even need to bother the hardware
4962 packet_filter
= adapter
->packet_filter
;
4964 /* Clear the 'multicast' flag locally; because we only have a single
4965 * flag to check multicast, and multiple multicast addresses can be
4966 * set, this is the easiest way to determine if more than one
4967 * multicast address is being set.
4969 packet_filter
&= ~ET131X_PACKET_TYPE_MULTICAST
;
4971 /* Check the net_device flags and set the device independent flags
4975 if (netdev
->flags
& IFF_PROMISC
)
4976 adapter
->packet_filter
|= ET131X_PACKET_TYPE_PROMISCUOUS
;
4978 adapter
->packet_filter
&= ~ET131X_PACKET_TYPE_PROMISCUOUS
;
4980 if (netdev
->flags
& IFF_ALLMULTI
)
4981 adapter
->packet_filter
|= ET131X_PACKET_TYPE_ALL_MULTICAST
;
4983 if (netdev_mc_count(netdev
) > NIC_MAX_MCAST_LIST
)
4984 adapter
->packet_filter
|= ET131X_PACKET_TYPE_ALL_MULTICAST
;
4986 if (netdev_mc_count(netdev
) < 1) {
4987 adapter
->packet_filter
&= ~ET131X_PACKET_TYPE_ALL_MULTICAST
;
4988 adapter
->packet_filter
&= ~ET131X_PACKET_TYPE_MULTICAST
;
4990 adapter
->packet_filter
|= ET131X_PACKET_TYPE_MULTICAST
;
4992 /* Set values in the private adapter struct */
4994 netdev_for_each_mc_addr(ha
, netdev
) {
4995 if (i
== NIC_MAX_MCAST_LIST
)
4997 memcpy(adapter
->multicast_list
[i
++], ha
->addr
, ETH_ALEN
);
4999 adapter
->multicast_addr_count
= i
;
5001 /* Are the new flags different from the previous ones? If not, then no
5002 * action is required
5004 * NOTE - This block will always update the multicast_list with the
5005 * hardware, even if the addresses aren't the same.
5007 if (packet_filter
!= adapter
->packet_filter
) {
5008 /* Call the device's filter function */
5009 et131x_set_packet_filter(adapter
);
5011 spin_unlock_irqrestore(&adapter
->lock
, flags
);
5015 * et131x_tx - The handler to tx a packet on the device
5016 * @skb: data to be Tx'd
5017 * @netdev: device on which data is to be Tx'd
5019 * Returns 0 on success, errno on failure (as defined in errno.h)
5021 static int et131x_tx(struct sk_buff
*skb
, struct net_device
*netdev
)
5024 struct et131x_adapter
*adapter
= netdev_priv(netdev
);
5026 /* stop the queue if it's getting full */
5027 if (adapter
->tx_ring
.used
>= NUM_TCB
- 1 &&
5028 !netif_queue_stopped(netdev
))
5029 netif_stop_queue(netdev
);
5031 /* Save the timestamp for the TX timeout watchdog */
5032 netdev
->trans_start
= jiffies
;
5034 /* Call the device-specific data Tx routine */
5035 status
= et131x_send_packets(skb
, netdev
);
5037 /* Check status and manage the netif queue if necessary */
5039 if (status
== -ENOMEM
)
5040 status
= NETDEV_TX_BUSY
;
5042 status
= NETDEV_TX_OK
;
5048 * et131x_tx_timeout - Timeout handler
5049 * @netdev: a pointer to a net_device struct representing the device
5051 * The handler called when a Tx request times out. The timeout period is
5052 * specified by the 'tx_timeo" element in the net_device structure (see
5053 * et131x_alloc_device() to see how this value is set).
5055 static void et131x_tx_timeout(struct net_device
*netdev
)
5057 struct et131x_adapter
*adapter
= netdev_priv(netdev
);
5059 unsigned long flags
;
5061 /* If the device is closed, ignore the timeout */
5062 if (~(adapter
->flags
& fMP_ADAPTER_INTERRUPT_IN_USE
))
5065 /* Any nonrecoverable hardware error?
5066 * Checks adapter->flags for any failure in phy reading
5068 if (adapter
->flags
& fMP_ADAPTER_NON_RECOVER_ERROR
)
5071 /* Hardware failure? */
5072 if (adapter
->flags
& fMP_ADAPTER_HARDWARE_ERROR
) {
5073 dev_err(&adapter
->pdev
->dev
, "hardware error - reset\n");
5077 /* Is send stuck? */
5078 spin_lock_irqsave(&adapter
->tcb_send_qlock
, flags
);
5080 tcb
= adapter
->tx_ring
.send_head
;
5085 if (tcb
->count
> NIC_SEND_HANG_THRESHOLD
) {
5086 spin_unlock_irqrestore(&adapter
->tcb_send_qlock
,
5089 dev_warn(&adapter
->pdev
->dev
,
5090 "Send stuck - reset. tcb->WrIndex %x, flags 0x%08x\n",
5094 adapter
->net_stats
.tx_errors
++;
5096 /* perform reset of tx/rx */
5097 et131x_disable_txrx(netdev
);
5098 et131x_enable_txrx(netdev
);
5103 spin_unlock_irqrestore(&adapter
->tcb_send_qlock
, flags
);
5107 * et131x_change_mtu - The handler called to change the MTU for the device
5108 * @netdev: device whose MTU is to be changed
5109 * @new_mtu: the desired MTU
5111 * Returns 0 on success, errno on failure (as defined in errno.h)
5113 static int et131x_change_mtu(struct net_device
*netdev
, int new_mtu
)
5116 struct et131x_adapter
*adapter
= netdev_priv(netdev
);
5118 /* Make sure the requested MTU is valid */
5119 if (new_mtu
< 64 || new_mtu
> 9216)
5122 et131x_disable_txrx(netdev
);
5123 et131x_handle_send_interrupt(adapter
);
5124 et131x_handle_recv_interrupt(adapter
);
5126 /* Set the new MTU */
5127 netdev
->mtu
= new_mtu
;
5129 /* Free Rx DMA memory */
5130 et131x_adapter_memory_free(adapter
);
5132 /* Set the config parameter for Jumbo Packet support */
5133 adapter
->registry_jumbo_packet
= new_mtu
+ 14;
5134 et131x_soft_reset(adapter
);
5136 /* Alloc and init Rx DMA memory */
5137 result
= et131x_adapter_memory_alloc(adapter
);
5139 dev_warn(&adapter
->pdev
->dev
,
5140 "Change MTU failed; couldn't re-alloc DMA memory\n");
5144 et131x_init_send(adapter
);
5146 et131x_hwaddr_init(adapter
);
5147 memcpy(netdev
->dev_addr
, adapter
->addr
, ETH_ALEN
);
5149 /* Init the device with the new settings */
5150 et131x_adapter_setup(adapter
);
5152 et131x_enable_txrx(netdev
);
5158 * et131x_set_mac_addr - handler to change the MAC address for the device
5159 * @netdev: device whose MAC is to be changed
5160 * @new_mac: the desired MAC address
5162 * Returns 0 on success, errno on failure (as defined in errno.h)
5164 * IMPLEMENTED BY : blux http://berndlux.de 22.01.2007 21:14
5166 static int et131x_set_mac_addr(struct net_device
*netdev
, void *new_mac
)
5169 struct et131x_adapter
*adapter
= netdev_priv(netdev
);
5170 struct sockaddr
*address
= new_mac
;
5174 if (adapter
== NULL
)
5177 /* Make sure the requested MAC is valid */
5178 if (!is_valid_ether_addr(address
->sa_data
))
5179 return -EADDRNOTAVAIL
;
5181 et131x_disable_txrx(netdev
);
5182 et131x_handle_send_interrupt(adapter
);
5183 et131x_handle_recv_interrupt(adapter
);
5185 /* Set the new MAC */
5186 /* netdev->set_mac_address = &new_mac; */
5188 memcpy(netdev
->dev_addr
, address
->sa_data
, netdev
->addr_len
);
5190 printk(KERN_INFO
"%s: Setting MAC address to %pM\n",
5191 netdev
->name
, netdev
->dev_addr
);
5193 /* Free Rx DMA memory */
5194 et131x_adapter_memory_free(adapter
);
5196 et131x_soft_reset(adapter
);
5198 /* Alloc and init Rx DMA memory */
5199 result
= et131x_adapter_memory_alloc(adapter
);
5201 dev_err(&adapter
->pdev
->dev
,
5202 "Change MAC failed; couldn't re-alloc DMA memory\n");
5206 et131x_init_send(adapter
);
5208 et131x_hwaddr_init(adapter
);
5210 /* Init the device with the new settings */
5211 et131x_adapter_setup(adapter
);
5213 et131x_enable_txrx(netdev
);
5218 static const struct net_device_ops et131x_netdev_ops
= {
5219 .ndo_open
= et131x_open
,
5220 .ndo_stop
= et131x_close
,
5221 .ndo_start_xmit
= et131x_tx
,
5222 .ndo_set_rx_mode
= et131x_multicast
,
5223 .ndo_tx_timeout
= et131x_tx_timeout
,
5224 .ndo_change_mtu
= et131x_change_mtu
,
5225 .ndo_set_mac_address
= et131x_set_mac_addr
,
5226 .ndo_validate_addr
= eth_validate_addr
,
5227 .ndo_get_stats
= et131x_stats
,
5228 .ndo_do_ioctl
= et131x_ioctl
,
5232 * et131x_pci_setup - Perform device initialization
5233 * @pdev: a pointer to the device's pci_dev structure
5234 * @ent: this device's entry in the pci_device_id table
5236 * Returns 0 on success, errno on failure (as defined in errno.h)
5238 * Registered in the pci_driver structure, this function is called when the
5239 * PCI subsystem finds a new PCI device which matches the information
5240 * contained in the pci_device_id table. This routine is the equivalent to
5241 * a device insertion routine.
5243 static int __devinit
et131x_pci_setup(struct pci_dev
*pdev
,
5244 const struct pci_device_id
*ent
)
5246 struct net_device
*netdev
;
5247 struct et131x_adapter
*adapter
;
5251 rc
= pci_enable_device(pdev
);
5253 dev_err(&pdev
->dev
, "pci_enable_device() failed\n");
5257 /* Perform some basic PCI checks */
5258 if (!(pci_resource_flags(pdev
, 0) & IORESOURCE_MEM
)) {
5259 dev_err(&pdev
->dev
, "Can't find PCI device's base address\n");
5264 rc
= pci_request_regions(pdev
, DRIVER_NAME
);
5266 dev_err(&pdev
->dev
, "Can't get PCI resources\n");
5270 pci_set_master(pdev
);
5272 /* Check the DMA addressing support of this device */
5273 if (!dma_set_mask(&pdev
->dev
, DMA_BIT_MASK(64))) {
5274 rc
= dma_set_coherent_mask(&pdev
->dev
, DMA_BIT_MASK(64));
5277 "Unable to obtain 64 bit DMA for consistent allocations\n");
5278 goto err_release_res
;
5280 } else if (!dma_set_mask(&pdev
->dev
, DMA_BIT_MASK(32))) {
5281 rc
= dma_set_coherent_mask(&pdev
->dev
, DMA_BIT_MASK(32));
5284 "Unable to obtain 32 bit DMA for consistent allocations\n");
5285 goto err_release_res
;
5288 dev_err(&pdev
->dev
, "No usable DMA addressing method\n");
5290 goto err_release_res
;
5293 /* Allocate netdev and private adapter structs */
5294 netdev
= alloc_etherdev(sizeof(struct et131x_adapter
));
5296 dev_err(&pdev
->dev
, "Couldn't alloc netdev struct\n");
5298 goto err_release_res
;
5301 netdev
->watchdog_timeo
= ET131X_TX_TIMEOUT
;
5302 netdev
->netdev_ops
= &et131x_netdev_ops
;
5304 SET_NETDEV_DEV(netdev
, &pdev
->dev
);
5305 et131x_set_ethtool_ops(netdev
);
5307 adapter
= et131x_adapter_init(netdev
, pdev
);
5309 rc
= et131x_pci_init(adapter
, pdev
);
5313 /* Map the bus-relative registers to system virtual memory */
5314 adapter
->regs
= pci_ioremap_bar(pdev
, 0);
5315 if (!adapter
->regs
) {
5316 dev_err(&pdev
->dev
, "Cannot map device registers\n");
5321 /* If Phy COMA mode was enabled when we went down, disable it here. */
5322 writel(ET_PMCSR_INIT
, &adapter
->regs
->global
.pm_csr
);
5324 /* Issue a global reset to the et1310 */
5325 et131x_soft_reset(adapter
);
5327 /* Disable all interrupts (paranoid) */
5328 et131x_disable_interrupts(adapter
);
5330 /* Allocate DMA memory */
5331 rc
= et131x_adapter_memory_alloc(adapter
);
5333 dev_err(&pdev
->dev
, "Could not alloc adapater memory (DMA)\n");
5337 /* Init send data structures */
5338 et131x_init_send(adapter
);
5340 /* Set up the task structure for the ISR's deferred handler */
5341 INIT_WORK(&adapter
->task
, et131x_isr_handler
);
5343 /* Copy address into the net_device struct */
5344 memcpy(netdev
->dev_addr
, adapter
->addr
, ETH_ALEN
);
5346 /* Init variable for counting how long we do not have link status */
5347 adapter
->boot_coma
= 0;
5348 et1310_disable_phy_coma(adapter
);
5352 /* Setup the mii_bus struct */
5353 adapter
->mii_bus
= mdiobus_alloc();
5354 if (!adapter
->mii_bus
) {
5355 dev_err(&pdev
->dev
, "Alloc of mii_bus struct failed\n");
5359 adapter
->mii_bus
->name
= "et131x_eth_mii";
5360 snprintf(adapter
->mii_bus
->id
, MII_BUS_ID_SIZE
, "%x",
5361 (adapter
->pdev
->bus
->number
<< 8) | adapter
->pdev
->devfn
);
5362 adapter
->mii_bus
->priv
= netdev
;
5363 adapter
->mii_bus
->read
= et131x_mdio_read
;
5364 adapter
->mii_bus
->write
= et131x_mdio_write
;
5365 adapter
->mii_bus
->reset
= et131x_mdio_reset
;
5366 adapter
->mii_bus
->irq
= kmalloc(sizeof(int)*PHY_MAX_ADDR
, GFP_KERNEL
);
5367 if (!adapter
->mii_bus
->irq
) {
5368 dev_err(&pdev
->dev
, "mii_bus irq allocation failed\n");
5372 for (ii
= 0; ii
< PHY_MAX_ADDR
; ii
++)
5373 adapter
->mii_bus
->irq
[ii
] = PHY_POLL
;
5375 rc
= mdiobus_register(adapter
->mii_bus
);
5377 dev_err(&pdev
->dev
, "failed to register MII bus\n");
5378 goto err_mdio_free_irq
;
5381 rc
= et131x_mii_probe(netdev
);
5383 dev_err(&pdev
->dev
, "failed to probe MII bus\n");
5384 goto err_mdio_unregister
;
5387 /* Setup et1310 as per the documentation */
5388 et131x_adapter_setup(adapter
);
5390 /* We can enable interrupts now
5392 * NOTE - Because registration of interrupt handler is done in the
5393 * device's open(), defer enabling device interrupts to that
5397 /* Register the net_device struct with the Linux network layer */
5398 rc
= register_netdev(netdev
);
5400 dev_err(&pdev
->dev
, "register_netdev() failed\n");
5401 goto err_phy_disconnect
;
5404 /* Register the net_device struct with the PCI subsystem. Save a copy
5405 * of the PCI config space for this device now that the device has
5406 * been initialized, just in case it needs to be quickly restored.
5408 pci_set_drvdata(pdev
, netdev
);
5413 phy_disconnect(adapter
->phydev
);
5414 err_mdio_unregister
:
5415 mdiobus_unregister(adapter
->mii_bus
);
5417 kfree(adapter
->mii_bus
->irq
);
5419 mdiobus_free(adapter
->mii_bus
);
5421 et131x_adapter_memory_free(adapter
);
5423 iounmap(adapter
->regs
);
5426 free_netdev(netdev
);
5428 pci_release_regions(pdev
);
5430 pci_disable_device(pdev
);
5434 static DEFINE_PCI_DEVICE_TABLE(et131x_pci_table
) = {
5435 { PCI_VDEVICE(ATT
, ET131X_PCI_DEVICE_ID_GIG
), 0UL},
5436 { PCI_VDEVICE(ATT
, ET131X_PCI_DEVICE_ID_FAST
), 0UL},
5439 MODULE_DEVICE_TABLE(pci
, et131x_pci_table
);
5441 static struct pci_driver et131x_driver
= {
5442 .name
= DRIVER_NAME
,
5443 .id_table
= et131x_pci_table
,
5444 .probe
= et131x_pci_setup
,
5445 .remove
= __devexit_p(et131x_pci_remove
),
5446 .driver
.pm
= ET131X_PM_OPS
,
5450 * et131x_init_module - The "main" entry point called on driver initialization
5452 * Returns 0 on success, errno on failure (as defined in errno.h)
5454 static int __init
et131x_init_module(void)
5456 return pci_register_driver(&et131x_driver
);
5460 * et131x_cleanup_module - The entry point called on driver cleanup
5462 static void __exit
et131x_cleanup_module(void)
5464 pci_unregister_driver(&et131x_driver
);
5467 module_init(et131x_init_module
);
5468 module_exit(et131x_cleanup_module
);