Remove all #inclusions of asm/system.h
[linux-2.6.git] / drivers / staging / et131x / et131x.c
blob886f5650444e917281508d679aed5a32d26d6aa8
1 /*
2 * Agere Systems Inc.
3 * 10/100/1000 Base-T Ethernet Driver for the ET1301 and ET131x series MACs
5 * Copyright © 2005 Agere Systems Inc.
6 * All rights reserved.
7 * http://www.agere.com
9 * Copyright (c) 2011 Mark Einon <mark.einon@gmail.com>
11 *------------------------------------------------------------------------------
13 * SOFTWARE LICENSE
15 * This software is provided subject to the following terms and conditions,
16 * which you should read carefully before using the software. Using this
17 * software indicates your acceptance of these terms and conditions. If you do
18 * not agree with these terms and conditions, do not use the software.
20 * Copyright © 2005 Agere Systems Inc.
21 * All rights reserved.
23 * Redistribution and use in source or binary forms, with or without
24 * modifications, are permitted provided that the following conditions are met:
26 * . Redistributions of source code must retain the above copyright notice, this
27 * list of conditions and the following Disclaimer as comments in the code as
28 * well as in the documentation and/or other materials provided with the
29 * distribution.
31 * . Redistributions in binary form must reproduce the above copyright notice,
32 * this list of conditions and the following Disclaimer in the documentation
33 * and/or other materials provided with the distribution.
35 * . Neither the name of Agere Systems Inc. nor the names of the contributors
36 * may be used to endorse or promote products derived from this software
37 * without specific prior written permission.
39 * Disclaimer
41 * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
42 * INCLUDING, BUT NOT LIMITED TO, INFRINGEMENT AND THE IMPLIED WARRANTIES OF
43 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. ANY
44 * USE, MODIFICATION OR DISTRIBUTION OF THIS SOFTWARE IS SOLELY AT THE USERS OWN
45 * RISK. IN NO EVENT SHALL AGERE SYSTEMS INC. OR CONTRIBUTORS BE LIABLE FOR ANY
46 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
47 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
48 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
49 * ON ANY THEORY OF LIABILITY, INCLUDING, BUT NOT LIMITED TO, CONTRACT, STRICT
50 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
51 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
52 * DAMAGE.
56 #include <linux/pci.h>
57 #include <linux/init.h>
58 #include <linux/module.h>
59 #include <linux/types.h>
60 #include <linux/kernel.h>
62 #include <linux/sched.h>
63 #include <linux/ptrace.h>
64 #include <linux/slab.h>
65 #include <linux/ctype.h>
66 #include <linux/string.h>
67 #include <linux/timer.h>
68 #include <linux/interrupt.h>
69 #include <linux/in.h>
70 #include <linux/delay.h>
71 #include <linux/bitops.h>
72 #include <linux/io.h>
74 #include <linux/netdevice.h>
75 #include <linux/etherdevice.h>
76 #include <linux/skbuff.h>
77 #include <linux/if_arp.h>
78 #include <linux/ioport.h>
79 #include <linux/crc32.h>
80 #include <linux/random.h>
81 #include <linux/phy.h>
83 #include "et131x.h"
85 MODULE_AUTHOR("Victor Soriano <vjsoriano@agere.com>");
86 MODULE_AUTHOR("Mark Einon <mark.einon@gmail.com>");
87 MODULE_LICENSE("Dual BSD/GPL");
88 MODULE_DESCRIPTION("10/100/1000 Base-T Ethernet Driver "
89 "for the ET1310 by Agere Systems");
91 /* EEPROM defines */
92 #define MAX_NUM_REGISTER_POLLS 1000
93 #define MAX_NUM_WRITE_RETRIES 2
95 /* MAC defines */
96 #define COUNTER_WRAP_16_BIT 0x10000
97 #define COUNTER_WRAP_12_BIT 0x1000
99 /* PCI defines */
100 #define INTERNAL_MEM_SIZE 0x400 /* 1024 of internal memory */
101 #define INTERNAL_MEM_RX_OFFSET 0x1FF /* 50% Tx, 50% Rx */
103 /* ISR defines */
105 * For interrupts, normal running is:
106 * rxdma_xfr_done, phy_interrupt, mac_stat_interrupt,
107 * watchdog_interrupt & txdma_xfer_done
109 * In both cases, when flow control is enabled for either Tx or bi-direction,
110 * we additional enable rx_fbr0_low and rx_fbr1_low, so we know when the
111 * buffer rings are running low.
113 #define INT_MASK_DISABLE 0xffffffff
115 /* NOTE: Masking out MAC_STAT Interrupt for now...
116 * #define INT_MASK_ENABLE 0xfff6bf17
117 * #define INT_MASK_ENABLE_NO_FLOW 0xfff6bfd7
119 #define INT_MASK_ENABLE 0xfffebf17
120 #define INT_MASK_ENABLE_NO_FLOW 0xfffebfd7
122 /* General defines */
123 /* Packet and header sizes */
124 #define NIC_MIN_PACKET_SIZE 60
126 /* Multicast list size */
127 #define NIC_MAX_MCAST_LIST 128
129 /* Supported Filters */
130 #define ET131X_PACKET_TYPE_DIRECTED 0x0001
131 #define ET131X_PACKET_TYPE_MULTICAST 0x0002
132 #define ET131X_PACKET_TYPE_BROADCAST 0x0004
133 #define ET131X_PACKET_TYPE_PROMISCUOUS 0x0008
134 #define ET131X_PACKET_TYPE_ALL_MULTICAST 0x0010
136 /* Tx Timeout */
137 #define ET131X_TX_TIMEOUT (1 * HZ)
138 #define NIC_SEND_HANG_THRESHOLD 0
140 /* MP_TCB flags */
141 #define fMP_DEST_MULTI 0x00000001
142 #define fMP_DEST_BROAD 0x00000002
144 /* MP_ADAPTER flags */
145 #define fMP_ADAPTER_RECV_LOOKASIDE 0x00000004
146 #define fMP_ADAPTER_INTERRUPT_IN_USE 0x00000008
148 /* MP_SHARED flags */
149 #define fMP_ADAPTER_LOWER_POWER 0x00200000
151 #define fMP_ADAPTER_NON_RECOVER_ERROR 0x00800000
152 #define fMP_ADAPTER_HARDWARE_ERROR 0x04000000
154 #define fMP_ADAPTER_FAIL_SEND_MASK 0x3ff00000
156 /* Some offsets in PCI config space that are actually used. */
157 #define ET1310_PCI_MAC_ADDRESS 0xA4
158 #define ET1310_PCI_EEPROM_STATUS 0xB2
159 #define ET1310_PCI_ACK_NACK 0xC0
160 #define ET1310_PCI_REPLAY 0xC2
161 #define ET1310_PCI_L0L1LATENCY 0xCF
163 /* PCI Product IDs */
164 #define ET131X_PCI_DEVICE_ID_GIG 0xED00 /* ET1310 1000 Base-T 8 */
165 #define ET131X_PCI_DEVICE_ID_FAST 0xED01 /* ET1310 100 Base-T */
167 /* Define order of magnitude converter */
168 #define NANO_IN_A_MICRO 1000
170 #define PARM_RX_NUM_BUFS_DEF 4
171 #define PARM_RX_TIME_INT_DEF 10
172 #define PARM_RX_MEM_END_DEF 0x2bc
173 #define PARM_TX_TIME_INT_DEF 40
174 #define PARM_TX_NUM_BUFS_DEF 4
175 #define PARM_DMA_CACHE_DEF 0
177 /* RX defines */
178 #define USE_FBR0 1
179 #define FBR_CHUNKS 32
180 #define MAX_DESC_PER_RING_RX 1024
182 /* number of RFDs - default and min */
183 #ifdef USE_FBR0
184 #define RFD_LOW_WATER_MARK 40
185 #define NIC_DEFAULT_NUM_RFD 1024
186 #define NUM_FBRS 2
187 #else
188 #define RFD_LOW_WATER_MARK 20
189 #define NIC_DEFAULT_NUM_RFD 256
190 #define NUM_FBRS 1
191 #endif
193 #define NIC_MIN_NUM_RFD 64
194 #define NUM_PACKETS_HANDLED 256
196 #define ALCATEL_MULTICAST_PKT 0x01000000
197 #define ALCATEL_BROADCAST_PKT 0x02000000
199 /* typedefs for Free Buffer Descriptors */
200 struct fbr_desc {
201 u32 addr_lo;
202 u32 addr_hi;
203 u32 word2; /* Bits 10-31 reserved, 0-9 descriptor */
206 /* Packet Status Ring Descriptors
208 * Word 0:
210 * top 16 bits are from the Alcatel Status Word as enumerated in
211 * PE-MCXMAC Data Sheet IPD DS54 0210-1 (also IPD-DS80 0205-2)
213 * 0: hp hash pass
214 * 1: ipa IP checksum assist
215 * 2: ipp IP checksum pass
216 * 3: tcpa TCP checksum assist
217 * 4: tcpp TCP checksum pass
218 * 5: wol WOL Event
219 * 6: rxmac_error RXMAC Error Indicator
220 * 7: drop Drop packet
221 * 8: ft Frame Truncated
222 * 9: jp Jumbo Packet
223 * 10: vp VLAN Packet
224 * 11-15: unused
225 * 16: asw_prev_pkt_dropped e.g. IFG too small on previous
226 * 17: asw_RX_DV_event short receive event detected
227 * 18: asw_false_carrier_event bad carrier since last good packet
228 * 19: asw_code_err one or more nibbles signalled as errors
229 * 20: asw_CRC_err CRC error
230 * 21: asw_len_chk_err frame length field incorrect
231 * 22: asw_too_long frame length > 1518 bytes
232 * 23: asw_OK valid CRC + no code error
233 * 24: asw_multicast has a multicast address
234 * 25: asw_broadcast has a broadcast address
235 * 26: asw_dribble_nibble spurious bits after EOP
236 * 27: asw_control_frame is a control frame
237 * 28: asw_pause_frame is a pause frame
238 * 29: asw_unsupported_op unsupported OP code
239 * 30: asw_VLAN_tag VLAN tag detected
240 * 31: asw_long_evt Rx long event
242 * Word 1:
243 * 0-15: length length in bytes
244 * 16-25: bi Buffer Index
245 * 26-27: ri Ring Index
246 * 28-31: reserved
249 struct pkt_stat_desc {
250 u32 word0;
251 u32 word1;
254 /* Typedefs for the RX DMA status word */
257 * rx status word 0 holds part of the status bits of the Rx DMA engine
258 * that get copied out to memory by the ET-1310. Word 0 is a 32 bit word
259 * which contains the Free Buffer ring 0 and 1 available offset.
261 * bit 0-9 FBR1 offset
262 * bit 10 Wrap flag for FBR1
263 * bit 16-25 FBR0 offset
264 * bit 26 Wrap flag for FBR0
268 * RXSTAT_WORD1_t structure holds part of the status bits of the Rx DMA engine
269 * that get copied out to memory by the ET-1310. Word 3 is a 32 bit word
270 * which contains the Packet Status Ring available offset.
272 * bit 0-15 reserved
273 * bit 16-27 PSRoffset
274 * bit 28 PSRwrap
275 * bit 29-31 unused
279 * struct rx_status_block is a structure representing the status of the Rx
280 * DMA engine it sits in free memory, and is pointed to by 0x101c / 0x1020
282 struct rx_status_block {
283 u32 word0;
284 u32 word1;
288 * Structure for look-up table holding free buffer ring pointers, addresses
289 * and state.
291 struct fbr_lookup {
292 void *virt[MAX_DESC_PER_RING_RX];
293 void *buffer1[MAX_DESC_PER_RING_RX];
294 void *buffer2[MAX_DESC_PER_RING_RX];
295 u32 bus_high[MAX_DESC_PER_RING_RX];
296 u32 bus_low[MAX_DESC_PER_RING_RX];
297 void *ring_virtaddr;
298 dma_addr_t ring_physaddr;
299 void *mem_virtaddrs[MAX_DESC_PER_RING_RX / FBR_CHUNKS];
300 dma_addr_t mem_physaddrs[MAX_DESC_PER_RING_RX / FBR_CHUNKS];
301 u64 real_physaddr;
302 u64 offset;
303 u32 local_full;
304 u32 num_entries;
305 u32 buffsize;
309 * struct rx_ring is the sructure representing the adaptor's local
310 * reference(s) to the rings
312 ******************************************************************************
313 * IMPORTANT NOTE :- fbr_lookup *fbr[NUM_FBRS] uses index 0 to refer to FBR1
314 * and index 1 to refer to FRB0
315 ******************************************************************************
317 struct rx_ring {
318 struct fbr_lookup *fbr[NUM_FBRS];
319 void *ps_ring_virtaddr;
320 dma_addr_t ps_ring_physaddr;
321 u32 local_psr_full;
322 u32 psr_num_entries;
324 struct rx_status_block *rx_status_block;
325 dma_addr_t rx_status_bus;
327 /* RECV */
328 struct list_head recv_list;
329 u32 num_ready_recv;
331 u32 num_rfd;
333 bool unfinished_receives;
335 /* lookaside lists */
336 struct kmem_cache *recv_lookaside;
339 /* TX defines */
341 * word 2 of the control bits in the Tx Descriptor ring for the ET-1310
343 * 0-15: length of packet
344 * 16-27: VLAN tag
345 * 28: VLAN CFI
346 * 29-31: VLAN priority
348 * word 3 of the control bits in the Tx Descriptor ring for the ET-1310
350 * 0: last packet in the sequence
351 * 1: first packet in the sequence
352 * 2: interrupt the processor when this pkt sent
353 * 3: Control word - no packet data
354 * 4: Issue half-duplex backpressure : XON/XOFF
355 * 5: send pause frame
356 * 6: Tx frame has error
357 * 7: append CRC
358 * 8: MAC override
359 * 9: pad packet
360 * 10: Packet is a Huge packet
361 * 11: append VLAN tag
362 * 12: IP checksum assist
363 * 13: TCP checksum assist
364 * 14: UDP checksum assist
367 /* struct tx_desc represents each descriptor on the ring */
368 struct tx_desc {
369 u32 addr_hi;
370 u32 addr_lo;
371 u32 len_vlan; /* control words how to xmit the */
372 u32 flags; /* data (detailed above) */
376 * The status of the Tx DMA engine it sits in free memory, and is pointed to
377 * by 0x101c / 0x1020. This is a DMA10 type
380 /* TCB (Transmit Control Block: Host Side) */
381 struct tcb {
382 struct tcb *next; /* Next entry in ring */
383 u32 flags; /* Our flags for the packet */
384 u32 count; /* Used to spot stuck/lost packets */
385 u32 stale; /* Used to spot stuck/lost packets */
386 struct sk_buff *skb; /* Network skb we are tied to */
387 u32 index; /* Ring indexes */
388 u32 index_start;
391 /* Structure representing our local reference(s) to the ring */
392 struct tx_ring {
393 /* TCB (Transmit Control Block) memory and lists */
394 struct tcb *tcb_ring;
396 /* List of TCBs that are ready to be used */
397 struct tcb *tcb_qhead;
398 struct tcb *tcb_qtail;
400 /* list of TCBs that are currently being sent. NOTE that access to all
401 * three of these (including used) are controlled via the
402 * TCBSendQLock. This lock should be secured prior to incementing /
403 * decrementing used, or any queue manipulation on send_head /
404 * tail
406 struct tcb *send_head;
407 struct tcb *send_tail;
408 int used;
410 /* The actual descriptor ring */
411 struct tx_desc *tx_desc_ring;
412 dma_addr_t tx_desc_ring_pa;
414 /* send_idx indicates where we last wrote to in the descriptor ring. */
415 u32 send_idx;
417 /* The location of the write-back status block */
418 u32 *tx_status;
419 dma_addr_t tx_status_pa;
421 /* Packets since the last IRQ: used for interrupt coalescing */
422 int since_irq;
426 * Do not change these values: if changed, then change also in respective
427 * TXdma and Rxdma engines
429 #define NUM_DESC_PER_RING_TX 512 /* TX Do not change these values */
430 #define NUM_TCB 64
433 * These values are all superseded by registry entries to facilitate tuning.
434 * Once the desired performance has been achieved, the optimal registry values
435 * should be re-populated to these #defines:
437 #define TX_ERROR_PERIOD 1000
439 #define LO_MARK_PERCENT_FOR_PSR 15
440 #define LO_MARK_PERCENT_FOR_RX 15
442 /* RFD (Receive Frame Descriptor) */
443 struct rfd {
444 struct list_head list_node;
445 struct sk_buff *skb;
446 u32 len; /* total size of receive frame */
447 u16 bufferindex;
448 u8 ringindex;
451 /* Flow Control */
452 #define FLOW_BOTH 0
453 #define FLOW_TXONLY 1
454 #define FLOW_RXONLY 2
455 #define FLOW_NONE 3
457 /* Struct to define some device statistics */
458 struct ce_stats {
459 /* MIB II variables
461 * NOTE: atomic_t types are only guaranteed to store 24-bits; if we
462 * MUST have 32, then we'll need another way to perform atomic
463 * operations
465 u32 unicast_pkts_rcvd;
466 atomic_t unicast_pkts_xmtd;
467 u32 multicast_pkts_rcvd;
468 atomic_t multicast_pkts_xmtd;
469 u32 broadcast_pkts_rcvd;
470 atomic_t broadcast_pkts_xmtd;
471 u32 rcvd_pkts_dropped;
473 /* Tx Statistics. */
474 u32 tx_underflows;
476 u32 tx_collisions;
477 u32 tx_excessive_collisions;
478 u32 tx_first_collisions;
479 u32 tx_late_collisions;
480 u32 tx_max_pkt_errs;
481 u32 tx_deferred;
483 /* Rx Statistics. */
484 u32 rx_overflows;
486 u32 rx_length_errs;
487 u32 rx_align_errs;
488 u32 rx_crc_errs;
489 u32 rx_code_violations;
490 u32 rx_other_errs;
492 u32 synchronous_iterations;
493 u32 interrupt_status;
496 /* The private adapter structure */
497 struct et131x_adapter {
498 struct net_device *netdev;
499 struct pci_dev *pdev;
500 struct mii_bus *mii_bus;
501 struct phy_device *phydev;
502 struct work_struct task;
504 /* Flags that indicate current state of the adapter */
505 u32 flags;
507 /* local link state, to determine if a state change has occurred */
508 int link;
510 /* Configuration */
511 u8 rom_addr[ETH_ALEN];
512 u8 addr[ETH_ALEN];
513 bool has_eeprom;
514 u8 eeprom_data[2];
516 /* Spinlocks */
517 spinlock_t lock;
519 spinlock_t tcb_send_qlock;
520 spinlock_t tcb_ready_qlock;
521 spinlock_t send_hw_lock;
523 spinlock_t rcv_lock;
524 spinlock_t rcv_pend_lock;
525 spinlock_t fbr_lock;
527 spinlock_t phy_lock;
529 /* Packet Filter and look ahead size */
530 u32 packet_filter;
532 /* multicast list */
533 u32 multicast_addr_count;
534 u8 multicast_list[NIC_MAX_MCAST_LIST][ETH_ALEN];
536 /* Pointer to the device's PCI register space */
537 struct address_map __iomem *regs;
539 /* Registry parameters */
540 u8 wanted_flow; /* Flow we want for 802.3x flow control */
541 u32 registry_jumbo_packet; /* Max supported ethernet packet size */
543 /* Derived from the registry: */
544 u8 flowcontrol; /* flow control validated by the far-end */
546 /* Minimize init-time */
547 struct timer_list error_timer;
549 /* variable putting the phy into coma mode when boot up with no cable
550 * plugged in after 5 seconds
552 u8 boot_coma;
554 /* Next two used to save power information at power down. This
555 * information will be used during power up to set up parts of Power
556 * Management in JAGCore
558 u16 pdown_speed;
559 u8 pdown_duplex;
561 /* Tx Memory Variables */
562 struct tx_ring tx_ring;
564 /* Rx Memory Variables */
565 struct rx_ring rx_ring;
567 /* Stats */
568 struct ce_stats stats;
570 struct net_device_stats net_stats;
573 static int eeprom_wait_ready(struct pci_dev *pdev, u32 *status)
575 u32 reg;
576 int i;
579 * 1. Check LBCIF Status Register for bits 6 & 3:2 all equal to 0 and
580 * bits 7,1:0 both equal to 1, at least once after reset.
581 * Subsequent operations need only to check that bits 1:0 are equal
582 * to 1 prior to starting a single byte read/write
585 for (i = 0; i < MAX_NUM_REGISTER_POLLS; i++) {
586 /* Read registers grouped in DWORD1 */
587 if (pci_read_config_dword(pdev, LBCIF_DWORD1_GROUP, &reg))
588 return -EIO;
590 /* I2C idle and Phy Queue Avail both true */
591 if ((reg & 0x3000) == 0x3000) {
592 if (status)
593 *status = reg;
594 return reg & 0xFF;
597 return -ETIMEDOUT;
602 * eeprom_write - Write a byte to the ET1310's EEPROM
603 * @adapter: pointer to our private adapter structure
604 * @addr: the address to write
605 * @data: the value to write
607 * Returns 1 for a successful write.
609 static int eeprom_write(struct et131x_adapter *adapter, u32 addr, u8 data)
611 struct pci_dev *pdev = adapter->pdev;
612 int index = 0;
613 int retries;
614 int err = 0;
615 int i2c_wack = 0;
616 int writeok = 0;
617 u32 status;
618 u32 val = 0;
621 * For an EEPROM, an I2C single byte write is defined as a START
622 * condition followed by the device address, EEPROM address, one byte
623 * of data and a STOP condition. The STOP condition will trigger the
624 * EEPROM's internally timed write cycle to the nonvolatile memory.
625 * All inputs are disabled during this write cycle and the EEPROM will
626 * not respond to any access until the internal write is complete.
629 err = eeprom_wait_ready(pdev, NULL);
630 if (err)
631 return err;
634 * 2. Write to the LBCIF Control Register: bit 7=1, bit 6=1, bit 3=0,
635 * and bits 1:0 both =0. Bit 5 should be set according to the
636 * type of EEPROM being accessed (1=two byte addressing, 0=one
637 * byte addressing).
639 if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER,
640 LBCIF_CONTROL_LBCIF_ENABLE | LBCIF_CONTROL_I2C_WRITE))
641 return -EIO;
643 i2c_wack = 1;
645 /* Prepare EEPROM address for Step 3 */
647 for (retries = 0; retries < MAX_NUM_WRITE_RETRIES; retries++) {
648 /* Write the address to the LBCIF Address Register */
649 if (pci_write_config_dword(pdev, LBCIF_ADDRESS_REGISTER, addr))
650 break;
652 * Write the data to the LBCIF Data Register (the I2C write
653 * will begin).
655 if (pci_write_config_byte(pdev, LBCIF_DATA_REGISTER, data))
656 break;
658 * Monitor bit 1:0 of the LBCIF Status Register. When bits
659 * 1:0 are both equal to 1, the I2C write has completed and the
660 * internal write cycle of the EEPROM is about to start.
661 * (bits 1:0 = 01 is a legal state while waiting from both
662 * equal to 1, but bits 1:0 = 10 is invalid and implies that
663 * something is broken).
665 err = eeprom_wait_ready(pdev, &status);
666 if (err < 0)
667 return 0;
670 * Check bit 3 of the LBCIF Status Register. If equal to 1,
671 * an error has occurred.Don't break here if we are revision
672 * 1, this is so we do a blind write for load bug.
674 if ((status & LBCIF_STATUS_GENERAL_ERROR)
675 && adapter->pdev->revision == 0)
676 break;
679 * Check bit 2 of the LBCIF Status Register. If equal to 1 an
680 * ACK error has occurred on the address phase of the write.
681 * This could be due to an actual hardware failure or the
682 * EEPROM may still be in its internal write cycle from a
683 * previous write. This write operation was ignored and must be
684 *repeated later.
686 if (status & LBCIF_STATUS_ACK_ERROR) {
688 * This could be due to an actual hardware failure
689 * or the EEPROM may still be in its internal write
690 * cycle from a previous write. This write operation
691 * was ignored and must be repeated later.
693 udelay(10);
694 continue;
697 writeok = 1;
698 break;
702 * Set bit 6 of the LBCIF Control Register = 0.
704 udelay(10);
706 while (i2c_wack) {
707 if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER,
708 LBCIF_CONTROL_LBCIF_ENABLE))
709 writeok = 0;
711 /* Do read until internal ACK_ERROR goes away meaning write
712 * completed
714 do {
715 pci_write_config_dword(pdev,
716 LBCIF_ADDRESS_REGISTER,
717 addr);
718 do {
719 pci_read_config_dword(pdev,
720 LBCIF_DATA_REGISTER, &val);
721 } while ((val & 0x00010000) == 0);
722 } while (val & 0x00040000);
724 if ((val & 0xFF00) != 0xC000 || index == 10000)
725 break;
726 index++;
728 return writeok ? 0 : -EIO;
732 * eeprom_read - Read a byte from the ET1310's EEPROM
733 * @adapter: pointer to our private adapter structure
734 * @addr: the address from which to read
735 * @pdata: a pointer to a byte in which to store the value of the read
736 * @eeprom_id: the ID of the EEPROM
737 * @addrmode: how the EEPROM is to be accessed
739 * Returns 1 for a successful read
741 static int eeprom_read(struct et131x_adapter *adapter, u32 addr, u8 *pdata)
743 struct pci_dev *pdev = adapter->pdev;
744 int err;
745 u32 status;
748 * A single byte read is similar to the single byte write, with the
749 * exception of the data flow:
752 err = eeprom_wait_ready(pdev, NULL);
753 if (err)
754 return err;
756 * Write to the LBCIF Control Register: bit 7=1, bit 6=0, bit 3=0,
757 * and bits 1:0 both =0. Bit 5 should be set according to the type
758 * of EEPROM being accessed (1=two byte addressing, 0=one byte
759 * addressing).
761 if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER,
762 LBCIF_CONTROL_LBCIF_ENABLE))
763 return -EIO;
765 * Write the address to the LBCIF Address Register (I2C read will
766 * begin).
768 if (pci_write_config_dword(pdev, LBCIF_ADDRESS_REGISTER, addr))
769 return -EIO;
771 * Monitor bit 0 of the LBCIF Status Register. When = 1, I2C read
772 * is complete. (if bit 1 =1 and bit 0 stays = 0, a hardware failure
773 * has occurred).
775 err = eeprom_wait_ready(pdev, &status);
776 if (err < 0)
777 return err;
779 * Regardless of error status, read data byte from LBCIF Data
780 * Register.
782 *pdata = err;
784 * Check bit 2 of the LBCIF Status Register. If = 1,
785 * then an error has occurred.
787 return (status & LBCIF_STATUS_ACK_ERROR) ? -EIO : 0;
790 static int et131x_init_eeprom(struct et131x_adapter *adapter)
792 struct pci_dev *pdev = adapter->pdev;
793 u8 eestatus;
795 /* We first need to check the EEPROM Status code located at offset
796 * 0xB2 of config space
798 pci_read_config_byte(pdev, ET1310_PCI_EEPROM_STATUS,
799 &eestatus);
801 /* THIS IS A WORKAROUND:
802 * I need to call this function twice to get my card in a
803 * LG M1 Express Dual running. I tried also a msleep before this
804 * function, because I thought there could be some time condidions
805 * but it didn't work. Call the whole function twice also work.
807 if (pci_read_config_byte(pdev, ET1310_PCI_EEPROM_STATUS, &eestatus)) {
808 dev_err(&pdev->dev,
809 "Could not read PCI config space for EEPROM Status\n");
810 return -EIO;
813 /* Determine if the error(s) we care about are present. If they are
814 * present we need to fail.
816 if (eestatus & 0x4C) {
817 int write_failed = 0;
818 if (pdev->revision == 0x01) {
819 int i;
820 static const u8 eedata[4] = { 0xFE, 0x13, 0x10, 0xFF };
822 /* Re-write the first 4 bytes if we have an eeprom
823 * present and the revision id is 1, this fixes the
824 * corruption seen with 1310 B Silicon
826 for (i = 0; i < 3; i++)
827 if (eeprom_write(adapter, i, eedata[i]) < 0)
828 write_failed = 1;
830 if (pdev->revision != 0x01 || write_failed) {
831 dev_err(&pdev->dev,
832 "Fatal EEPROM Status Error - 0x%04x\n", eestatus);
834 /* This error could mean that there was an error
835 * reading the eeprom or that the eeprom doesn't exist.
836 * We will treat each case the same and not try to
837 * gather additional information that normally would
838 * come from the eeprom, like MAC Address
840 adapter->has_eeprom = 0;
841 return -EIO;
844 adapter->has_eeprom = 1;
846 /* Read the EEPROM for information regarding LED behavior. Refer to
847 * ET1310_phy.c, et131x_xcvr_init(), for its use.
849 eeprom_read(adapter, 0x70, &adapter->eeprom_data[0]);
850 eeprom_read(adapter, 0x71, &adapter->eeprom_data[1]);
852 if (adapter->eeprom_data[0] != 0xcd)
853 /* Disable all optional features */
854 adapter->eeprom_data[1] = 0x00;
856 return 0;
860 * et131x_rx_dma_enable - re-start of Rx_DMA on the ET1310.
861 * @adapter: pointer to our adapter structure
863 static void et131x_rx_dma_enable(struct et131x_adapter *adapter)
865 /* Setup the receive dma configuration register for normal operation */
866 u32 csr = 0x2000; /* FBR1 enable */
868 if (adapter->rx_ring.fbr[0]->buffsize == 4096)
869 csr |= 0x0800;
870 else if (adapter->rx_ring.fbr[0]->buffsize == 8192)
871 csr |= 0x1000;
872 else if (adapter->rx_ring.fbr[0]->buffsize == 16384)
873 csr |= 0x1800;
874 #ifdef USE_FBR0
875 csr |= 0x0400; /* FBR0 enable */
876 if (adapter->rx_ring.fbr[1]->buffsize == 256)
877 csr |= 0x0100;
878 else if (adapter->rx_ring.fbr[1]->buffsize == 512)
879 csr |= 0x0200;
880 else if (adapter->rx_ring.fbr[1]->buffsize == 1024)
881 csr |= 0x0300;
882 #endif
883 writel(csr, &adapter->regs->rxdma.csr);
885 csr = readl(&adapter->regs->rxdma.csr);
886 if ((csr & 0x00020000) != 0) {
887 udelay(5);
888 csr = readl(&adapter->regs->rxdma.csr);
889 if ((csr & 0x00020000) != 0) {
890 dev_err(&adapter->pdev->dev,
891 "RX Dma failed to exit halt state. CSR 0x%08x\n",
892 csr);
898 * et131x_rx_dma_disable - Stop of Rx_DMA on the ET1310
899 * @adapter: pointer to our adapter structure
901 static void et131x_rx_dma_disable(struct et131x_adapter *adapter)
903 u32 csr;
904 /* Setup the receive dma configuration register */
905 writel(0x00002001, &adapter->regs->rxdma.csr);
906 csr = readl(&adapter->regs->rxdma.csr);
907 if ((csr & 0x00020000) == 0) { /* Check halt status (bit 17) */
908 udelay(5);
909 csr = readl(&adapter->regs->rxdma.csr);
910 if ((csr & 0x00020000) == 0)
911 dev_err(&adapter->pdev->dev,
912 "RX Dma failed to enter halt state. CSR 0x%08x\n",
913 csr);
918 * et131x_tx_dma_enable - re-start of Tx_DMA on the ET1310.
919 * @adapter: pointer to our adapter structure
921 * Mainly used after a return to the D0 (full-power) state from a lower state.
923 static void et131x_tx_dma_enable(struct et131x_adapter *adapter)
925 /* Setup the transmit dma configuration register for normal
926 * operation
928 writel(ET_TXDMA_SNGL_EPKT|(PARM_DMA_CACHE_DEF << ET_TXDMA_CACHE_SHIFT),
929 &adapter->regs->txdma.csr);
932 static inline void add_10bit(u32 *v, int n)
934 *v = INDEX10(*v + n) | (*v & ET_DMA10_WRAP);
937 static inline void add_12bit(u32 *v, int n)
939 *v = INDEX12(*v + n) | (*v & ET_DMA12_WRAP);
943 * et1310_config_mac_regs1 - Initialize the first part of MAC regs
944 * @adapter: pointer to our adapter structure
946 static void et1310_config_mac_regs1(struct et131x_adapter *adapter)
948 struct mac_regs __iomem *macregs = &adapter->regs->mac;
949 u32 station1;
950 u32 station2;
951 u32 ipg;
953 /* First we need to reset everything. Write to MAC configuration
954 * register 1 to perform reset.
956 writel(0xC00F0000, &macregs->cfg1);
958 /* Next lets configure the MAC Inter-packet gap register */
959 ipg = 0x38005860; /* IPG1 0x38 IPG2 0x58 B2B 0x60 */
960 ipg |= 0x50 << 8; /* ifg enforce 0x50 */
961 writel(ipg, &macregs->ipg);
963 /* Next lets configure the MAC Half Duplex register */
964 /* BEB trunc 0xA, Ex Defer, Rexmit 0xF Coll 0x37 */
965 writel(0x00A1F037, &macregs->hfdp);
967 /* Next lets configure the MAC Interface Control register */
968 writel(0, &macregs->if_ctrl);
970 /* Let's move on to setting up the mii management configuration */
971 writel(0x07, &macregs->mii_mgmt_cfg); /* Clock reset 0x7 */
973 /* Next lets configure the MAC Station Address register. These
974 * values are read from the EEPROM during initialization and stored
975 * in the adapter structure. We write what is stored in the adapter
976 * structure to the MAC Station Address registers high and low. This
977 * station address is used for generating and checking pause control
978 * packets.
980 station2 = (adapter->addr[1] << ET_MAC_STATION_ADDR2_OC2_SHIFT) |
981 (adapter->addr[0] << ET_MAC_STATION_ADDR2_OC1_SHIFT);
982 station1 = (adapter->addr[5] << ET_MAC_STATION_ADDR1_OC6_SHIFT) |
983 (adapter->addr[4] << ET_MAC_STATION_ADDR1_OC5_SHIFT) |
984 (adapter->addr[3] << ET_MAC_STATION_ADDR1_OC4_SHIFT) |
985 adapter->addr[2];
986 writel(station1, &macregs->station_addr_1);
987 writel(station2, &macregs->station_addr_2);
989 /* Max ethernet packet in bytes that will be passed by the mac without
990 * being truncated. Allow the MAC to pass 4 more than our max packet
991 * size. This is 4 for the Ethernet CRC.
993 * Packets larger than (registry_jumbo_packet) that do not contain a
994 * VLAN ID will be dropped by the Rx function.
996 writel(adapter->registry_jumbo_packet + 4, &macregs->max_fm_len);
998 /* clear out MAC config reset */
999 writel(0, &macregs->cfg1);
1003 * et1310_config_mac_regs2 - Initialize the second part of MAC regs
1004 * @adapter: pointer to our adapter structure
1006 static void et1310_config_mac_regs2(struct et131x_adapter *adapter)
1008 int32_t delay = 0;
1009 struct mac_regs __iomem *mac = &adapter->regs->mac;
1010 struct phy_device *phydev = adapter->phydev;
1011 u32 cfg1;
1012 u32 cfg2;
1013 u32 ifctrl;
1014 u32 ctl;
1016 ctl = readl(&adapter->regs->txmac.ctl);
1017 cfg1 = readl(&mac->cfg1);
1018 cfg2 = readl(&mac->cfg2);
1019 ifctrl = readl(&mac->if_ctrl);
1021 /* Set up the if mode bits */
1022 cfg2 &= ~0x300;
1023 if (phydev && phydev->speed == SPEED_1000) {
1024 cfg2 |= 0x200;
1025 /* Phy mode bit */
1026 ifctrl &= ~(1 << 24);
1027 } else {
1028 cfg2 |= 0x100;
1029 ifctrl |= (1 << 24);
1032 /* We need to enable Rx/Tx */
1033 cfg1 |= CFG1_RX_ENABLE | CFG1_TX_ENABLE | CFG1_TX_FLOW;
1034 /* Initialize loop back to off */
1035 cfg1 &= ~(CFG1_LOOPBACK | CFG1_RX_FLOW);
1036 if (adapter->flowcontrol == FLOW_RXONLY ||
1037 adapter->flowcontrol == FLOW_BOTH)
1038 cfg1 |= CFG1_RX_FLOW;
1039 writel(cfg1, &mac->cfg1);
1041 /* Now we need to initialize the MAC Configuration 2 register */
1042 /* preamble 7, check length, huge frame off, pad crc, crc enable
1043 full duplex off */
1044 cfg2 |= 0x7016;
1045 cfg2 &= ~0x0021;
1047 /* Turn on duplex if needed */
1048 if (phydev && phydev->duplex == DUPLEX_FULL)
1049 cfg2 |= 0x01;
1051 ifctrl &= ~(1 << 26);
1052 if (phydev && phydev->duplex == DUPLEX_HALF)
1053 ifctrl |= (1<<26); /* Enable ghd */
1055 writel(ifctrl, &mac->if_ctrl);
1056 writel(cfg2, &mac->cfg2);
1058 do {
1059 udelay(10);
1060 delay++;
1061 cfg1 = readl(&mac->cfg1);
1062 } while ((cfg1 & CFG1_WAIT) != CFG1_WAIT && delay < 100);
1064 if (delay == 100) {
1065 dev_warn(&adapter->pdev->dev,
1066 "Syncd bits did not respond correctly cfg1 word 0x%08x\n",
1067 cfg1);
1070 /* Enable txmac */
1071 ctl |= 0x09; /* TX mac enable, FC disable */
1072 writel(ctl, &adapter->regs->txmac.ctl);
1074 /* Ready to start the RXDMA/TXDMA engine */
1075 if (adapter->flags & fMP_ADAPTER_LOWER_POWER) {
1076 et131x_rx_dma_enable(adapter);
1077 et131x_tx_dma_enable(adapter);
1082 * et1310_in_phy_coma - check if the device is in phy coma
1083 * @adapter: pointer to our adapter structure
1085 * Returns 0 if the device is not in phy coma, 1 if it is in phy coma
1087 static int et1310_in_phy_coma(struct et131x_adapter *adapter)
1089 u32 pmcsr;
1091 pmcsr = readl(&adapter->regs->global.pm_csr);
1093 return ET_PM_PHY_SW_COMA & pmcsr ? 1 : 0;
1096 static void et1310_setup_device_for_multicast(struct et131x_adapter *adapter)
1098 struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac;
1099 u32 hash1 = 0;
1100 u32 hash2 = 0;
1101 u32 hash3 = 0;
1102 u32 hash4 = 0;
1103 u32 pm_csr;
1105 /* If ET131X_PACKET_TYPE_MULTICAST is specified, then we provision
1106 * the multi-cast LIST. If it is NOT specified, (and "ALL" is not
1107 * specified) then we should pass NO multi-cast addresses to the
1108 * driver.
1110 if (adapter->packet_filter & ET131X_PACKET_TYPE_MULTICAST) {
1111 int i;
1113 /* Loop through our multicast array and set up the device */
1114 for (i = 0; i < adapter->multicast_addr_count; i++) {
1115 u32 result;
1117 result = ether_crc(6, adapter->multicast_list[i]);
1119 result = (result & 0x3F800000) >> 23;
1121 if (result < 32) {
1122 hash1 |= (1 << result);
1123 } else if ((31 < result) && (result < 64)) {
1124 result -= 32;
1125 hash2 |= (1 << result);
1126 } else if ((63 < result) && (result < 96)) {
1127 result -= 64;
1128 hash3 |= (1 << result);
1129 } else {
1130 result -= 96;
1131 hash4 |= (1 << result);
1136 /* Write out the new hash to the device */
1137 pm_csr = readl(&adapter->regs->global.pm_csr);
1138 if (!et1310_in_phy_coma(adapter)) {
1139 writel(hash1, &rxmac->multi_hash1);
1140 writel(hash2, &rxmac->multi_hash2);
1141 writel(hash3, &rxmac->multi_hash3);
1142 writel(hash4, &rxmac->multi_hash4);
1146 static void et1310_setup_device_for_unicast(struct et131x_adapter *adapter)
1148 struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac;
1149 u32 uni_pf1;
1150 u32 uni_pf2;
1151 u32 uni_pf3;
1152 u32 pm_csr;
1154 /* Set up unicast packet filter reg 3 to be the first two octets of
1155 * the MAC address for both address
1157 * Set up unicast packet filter reg 2 to be the octets 2 - 5 of the
1158 * MAC address for second address
1160 * Set up unicast packet filter reg 3 to be the octets 2 - 5 of the
1161 * MAC address for first address
1163 uni_pf3 = (adapter->addr[0] << ET_UNI_PF_ADDR2_1_SHIFT) |
1164 (adapter->addr[1] << ET_UNI_PF_ADDR2_2_SHIFT) |
1165 (adapter->addr[0] << ET_UNI_PF_ADDR1_1_SHIFT) |
1166 adapter->addr[1];
1168 uni_pf2 = (adapter->addr[2] << ET_UNI_PF_ADDR2_3_SHIFT) |
1169 (adapter->addr[3] << ET_UNI_PF_ADDR2_4_SHIFT) |
1170 (adapter->addr[4] << ET_UNI_PF_ADDR2_5_SHIFT) |
1171 adapter->addr[5];
1173 uni_pf1 = (adapter->addr[2] << ET_UNI_PF_ADDR1_3_SHIFT) |
1174 (adapter->addr[3] << ET_UNI_PF_ADDR1_4_SHIFT) |
1175 (adapter->addr[4] << ET_UNI_PF_ADDR1_5_SHIFT) |
1176 adapter->addr[5];
1178 pm_csr = readl(&adapter->regs->global.pm_csr);
1179 if (!et1310_in_phy_coma(adapter)) {
1180 writel(uni_pf1, &rxmac->uni_pf_addr1);
1181 writel(uni_pf2, &rxmac->uni_pf_addr2);
1182 writel(uni_pf3, &rxmac->uni_pf_addr3);
1186 static void et1310_config_rxmac_regs(struct et131x_adapter *adapter)
1188 struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac;
1189 struct phy_device *phydev = adapter->phydev;
1190 u32 sa_lo;
1191 u32 sa_hi = 0;
1192 u32 pf_ctrl = 0;
1194 /* Disable the MAC while it is being configured (also disable WOL) */
1195 writel(0x8, &rxmac->ctrl);
1197 /* Initialize WOL to disabled. */
1198 writel(0, &rxmac->crc0);
1199 writel(0, &rxmac->crc12);
1200 writel(0, &rxmac->crc34);
1202 /* We need to set the WOL mask0 - mask4 next. We initialize it to
1203 * its default Values of 0x00000000 because there are not WOL masks
1204 * as of this time.
1206 writel(0, &rxmac->mask0_word0);
1207 writel(0, &rxmac->mask0_word1);
1208 writel(0, &rxmac->mask0_word2);
1209 writel(0, &rxmac->mask0_word3);
1211 writel(0, &rxmac->mask1_word0);
1212 writel(0, &rxmac->mask1_word1);
1213 writel(0, &rxmac->mask1_word2);
1214 writel(0, &rxmac->mask1_word3);
1216 writel(0, &rxmac->mask2_word0);
1217 writel(0, &rxmac->mask2_word1);
1218 writel(0, &rxmac->mask2_word2);
1219 writel(0, &rxmac->mask2_word3);
1221 writel(0, &rxmac->mask3_word0);
1222 writel(0, &rxmac->mask3_word1);
1223 writel(0, &rxmac->mask3_word2);
1224 writel(0, &rxmac->mask3_word3);
1226 writel(0, &rxmac->mask4_word0);
1227 writel(0, &rxmac->mask4_word1);
1228 writel(0, &rxmac->mask4_word2);
1229 writel(0, &rxmac->mask4_word3);
1231 /* Lets setup the WOL Source Address */
1232 sa_lo = (adapter->addr[2] << ET_WOL_LO_SA3_SHIFT) |
1233 (adapter->addr[3] << ET_WOL_LO_SA4_SHIFT) |
1234 (adapter->addr[4] << ET_WOL_LO_SA5_SHIFT) |
1235 adapter->addr[5];
1236 writel(sa_lo, &rxmac->sa_lo);
1238 sa_hi = (u32) (adapter->addr[0] << ET_WOL_HI_SA1_SHIFT) |
1239 adapter->addr[1];
1240 writel(sa_hi, &rxmac->sa_hi);
1242 /* Disable all Packet Filtering */
1243 writel(0, &rxmac->pf_ctrl);
1245 /* Let's initialize the Unicast Packet filtering address */
1246 if (adapter->packet_filter & ET131X_PACKET_TYPE_DIRECTED) {
1247 et1310_setup_device_for_unicast(adapter);
1248 pf_ctrl |= 4; /* Unicast filter */
1249 } else {
1250 writel(0, &rxmac->uni_pf_addr1);
1251 writel(0, &rxmac->uni_pf_addr2);
1252 writel(0, &rxmac->uni_pf_addr3);
1255 /* Let's initialize the Multicast hash */
1256 if (!(adapter->packet_filter & ET131X_PACKET_TYPE_ALL_MULTICAST)) {
1257 pf_ctrl |= 2; /* Multicast filter */
1258 et1310_setup_device_for_multicast(adapter);
1261 /* Runt packet filtering. Didn't work in version A silicon. */
1262 pf_ctrl |= (NIC_MIN_PACKET_SIZE + 4) << 16;
1263 pf_ctrl |= 8; /* Fragment filter */
1265 if (adapter->registry_jumbo_packet > 8192)
1266 /* In order to transmit jumbo packets greater than 8k, the
1267 * FIFO between RxMAC and RxDMA needs to be reduced in size
1268 * to (16k - Jumbo packet size). In order to implement this,
1269 * we must use "cut through" mode in the RxMAC, which chops
1270 * packets down into segments which are (max_size * 16). In
1271 * this case we selected 256 bytes, since this is the size of
1272 * the PCI-Express TLP's that the 1310 uses.
1274 * seg_en on, fc_en off, size 0x10
1276 writel(0x41, &rxmac->mcif_ctrl_max_seg);
1277 else
1278 writel(0, &rxmac->mcif_ctrl_max_seg);
1280 /* Initialize the MCIF water marks */
1281 writel(0, &rxmac->mcif_water_mark);
1283 /* Initialize the MIF control */
1284 writel(0, &rxmac->mif_ctrl);
1286 /* Initialize the Space Available Register */
1287 writel(0, &rxmac->space_avail);
1289 /* Initialize the the mif_ctrl register
1290 * bit 3: Receive code error. One or more nibbles were signaled as
1291 * errors during the reception of the packet. Clear this
1292 * bit in Gigabit, set it in 100Mbit. This was derived
1293 * experimentally at UNH.
1294 * bit 4: Receive CRC error. The packet's CRC did not match the
1295 * internally generated CRC.
1296 * bit 5: Receive length check error. Indicates that frame length
1297 * field value in the packet does not match the actual data
1298 * byte length and is not a type field.
1299 * bit 16: Receive frame truncated.
1300 * bit 17: Drop packet enable
1302 if (phydev && phydev->speed == SPEED_100)
1303 writel(0x30038, &rxmac->mif_ctrl);
1304 else
1305 writel(0x30030, &rxmac->mif_ctrl);
1307 /* Finally we initialize RxMac to be enabled & WOL disabled. Packet
1308 * filter is always enabled since it is where the runt packets are
1309 * supposed to be dropped. For version A silicon, runt packet
1310 * dropping doesn't work, so it is disabled in the pf_ctrl register,
1311 * but we still leave the packet filter on.
1313 writel(pf_ctrl, &rxmac->pf_ctrl);
1314 writel(0x9, &rxmac->ctrl);
1317 static void et1310_config_txmac_regs(struct et131x_adapter *adapter)
1319 struct txmac_regs __iomem *txmac = &adapter->regs->txmac;
1321 /* We need to update the Control Frame Parameters
1322 * cfpt - control frame pause timer set to 64 (0x40)
1323 * cfep - control frame extended pause timer set to 0x0
1325 if (adapter->flowcontrol == FLOW_NONE)
1326 writel(0, &txmac->cf_param);
1327 else
1328 writel(0x40, &txmac->cf_param);
1331 static void et1310_config_macstat_regs(struct et131x_adapter *adapter)
1333 struct macstat_regs __iomem *macstat =
1334 &adapter->regs->macstat;
1336 /* Next we need to initialize all the macstat registers to zero on
1337 * the device.
1339 writel(0, &macstat->txrx_0_64_byte_frames);
1340 writel(0, &macstat->txrx_65_127_byte_frames);
1341 writel(0, &macstat->txrx_128_255_byte_frames);
1342 writel(0, &macstat->txrx_256_511_byte_frames);
1343 writel(0, &macstat->txrx_512_1023_byte_frames);
1344 writel(0, &macstat->txrx_1024_1518_byte_frames);
1345 writel(0, &macstat->txrx_1519_1522_gvln_frames);
1347 writel(0, &macstat->rx_bytes);
1348 writel(0, &macstat->rx_packets);
1349 writel(0, &macstat->rx_fcs_errs);
1350 writel(0, &macstat->rx_multicast_packets);
1351 writel(0, &macstat->rx_broadcast_packets);
1352 writel(0, &macstat->rx_control_frames);
1353 writel(0, &macstat->rx_pause_frames);
1354 writel(0, &macstat->rx_unknown_opcodes);
1355 writel(0, &macstat->rx_align_errs);
1356 writel(0, &macstat->rx_frame_len_errs);
1357 writel(0, &macstat->rx_code_errs);
1358 writel(0, &macstat->rx_carrier_sense_errs);
1359 writel(0, &macstat->rx_undersize_packets);
1360 writel(0, &macstat->rx_oversize_packets);
1361 writel(0, &macstat->rx_fragment_packets);
1362 writel(0, &macstat->rx_jabbers);
1363 writel(0, &macstat->rx_drops);
1365 writel(0, &macstat->tx_bytes);
1366 writel(0, &macstat->tx_packets);
1367 writel(0, &macstat->tx_multicast_packets);
1368 writel(0, &macstat->tx_broadcast_packets);
1369 writel(0, &macstat->tx_pause_frames);
1370 writel(0, &macstat->tx_deferred);
1371 writel(0, &macstat->tx_excessive_deferred);
1372 writel(0, &macstat->tx_single_collisions);
1373 writel(0, &macstat->tx_multiple_collisions);
1374 writel(0, &macstat->tx_late_collisions);
1375 writel(0, &macstat->tx_excessive_collisions);
1376 writel(0, &macstat->tx_total_collisions);
1377 writel(0, &macstat->tx_pause_honored_frames);
1378 writel(0, &macstat->tx_drops);
1379 writel(0, &macstat->tx_jabbers);
1380 writel(0, &macstat->tx_fcs_errs);
1381 writel(0, &macstat->tx_control_frames);
1382 writel(0, &macstat->tx_oversize_frames);
1383 writel(0, &macstat->tx_undersize_frames);
1384 writel(0, &macstat->tx_fragments);
1385 writel(0, &macstat->carry_reg1);
1386 writel(0, &macstat->carry_reg2);
1388 /* Unmask any counters that we want to track the overflow of.
1389 * Initially this will be all counters. It may become clear later
1390 * that we do not need to track all counters.
1392 writel(0xFFFFBE32, &macstat->carry_reg1_mask);
1393 writel(0xFFFE7E8B, &macstat->carry_reg2_mask);
1397 * et131x_phy_mii_read - Read from the PHY through the MII Interface on the MAC
1398 * @adapter: pointer to our private adapter structure
1399 * @addr: the address of the transceiver
1400 * @reg: the register to read
1401 * @value: pointer to a 16-bit value in which the value will be stored
1403 * Returns 0 on success, errno on failure (as defined in errno.h)
1405 static int et131x_phy_mii_read(struct et131x_adapter *adapter, u8 addr,
1406 u8 reg, u16 *value)
1408 struct mac_regs __iomem *mac = &adapter->regs->mac;
1409 int status = 0;
1410 u32 delay = 0;
1411 u32 mii_addr;
1412 u32 mii_cmd;
1413 u32 mii_indicator;
1415 /* Save a local copy of the registers we are dealing with so we can
1416 * set them back
1418 mii_addr = readl(&mac->mii_mgmt_addr);
1419 mii_cmd = readl(&mac->mii_mgmt_cmd);
1421 /* Stop the current operation */
1422 writel(0, &mac->mii_mgmt_cmd);
1424 /* Set up the register we need to read from on the correct PHY */
1425 writel(MII_ADDR(addr, reg), &mac->mii_mgmt_addr);
1427 writel(0x1, &mac->mii_mgmt_cmd);
1429 do {
1430 udelay(50);
1431 delay++;
1432 mii_indicator = readl(&mac->mii_mgmt_indicator);
1433 } while ((mii_indicator & MGMT_WAIT) && delay < 50);
1435 /* If we hit the max delay, we could not read the register */
1436 if (delay == 50) {
1437 dev_warn(&adapter->pdev->dev,
1438 "reg 0x%08x could not be read\n", reg);
1439 dev_warn(&adapter->pdev->dev, "status is 0x%08x\n",
1440 mii_indicator);
1442 status = -EIO;
1445 /* If we hit here we were able to read the register and we need to
1446 * return the value to the caller */
1447 *value = readl(&mac->mii_mgmt_stat) & 0xFFFF;
1449 /* Stop the read operation */
1450 writel(0, &mac->mii_mgmt_cmd);
1452 /* set the registers we touched back to the state at which we entered
1453 * this function
1455 writel(mii_addr, &mac->mii_mgmt_addr);
1456 writel(mii_cmd, &mac->mii_mgmt_cmd);
1458 return status;
1461 static int et131x_mii_read(struct et131x_adapter *adapter, u8 reg, u16 *value)
1463 struct phy_device *phydev = adapter->phydev;
1465 if (!phydev)
1466 return -EIO;
1468 return et131x_phy_mii_read(adapter, phydev->addr, reg, value);
1472 * et131x_mii_write - Write to a PHY register through the MII interface of the MAC
1473 * @adapter: pointer to our private adapter structure
1474 * @reg: the register to read
1475 * @value: 16-bit value to write
1477 * FIXME: one caller in netdev still
1479 * Return 0 on success, errno on failure (as defined in errno.h)
1481 static int et131x_mii_write(struct et131x_adapter *adapter, u8 reg, u16 value)
1483 struct mac_regs __iomem *mac = &adapter->regs->mac;
1484 struct phy_device *phydev = adapter->phydev;
1485 int status = 0;
1486 u8 addr;
1487 u32 delay = 0;
1488 u32 mii_addr;
1489 u32 mii_cmd;
1490 u32 mii_indicator;
1492 if (!phydev)
1493 return -EIO;
1495 addr = phydev->addr;
1497 /* Save a local copy of the registers we are dealing with so we can
1498 * set them back
1500 mii_addr = readl(&mac->mii_mgmt_addr);
1501 mii_cmd = readl(&mac->mii_mgmt_cmd);
1503 /* Stop the current operation */
1504 writel(0, &mac->mii_mgmt_cmd);
1506 /* Set up the register we need to write to on the correct PHY */
1507 writel(MII_ADDR(addr, reg), &mac->mii_mgmt_addr);
1509 /* Add the value to write to the registers to the mac */
1510 writel(value, &mac->mii_mgmt_ctrl);
1512 do {
1513 udelay(50);
1514 delay++;
1515 mii_indicator = readl(&mac->mii_mgmt_indicator);
1516 } while ((mii_indicator & MGMT_BUSY) && delay < 100);
1518 /* If we hit the max delay, we could not write the register */
1519 if (delay == 100) {
1520 u16 tmp;
1522 dev_warn(&adapter->pdev->dev,
1523 "reg 0x%08x could not be written", reg);
1524 dev_warn(&adapter->pdev->dev, "status is 0x%08x\n",
1525 mii_indicator);
1526 dev_warn(&adapter->pdev->dev, "command is 0x%08x\n",
1527 readl(&mac->mii_mgmt_cmd));
1529 et131x_mii_read(adapter, reg, &tmp);
1531 status = -EIO;
1533 /* Stop the write operation */
1534 writel(0, &mac->mii_mgmt_cmd);
1537 * set the registers we touched back to the state at which we entered
1538 * this function
1540 writel(mii_addr, &mac->mii_mgmt_addr);
1541 writel(mii_cmd, &mac->mii_mgmt_cmd);
1543 return status;
1546 /* Still used from _mac for BIT_READ */
1547 static void et1310_phy_access_mii_bit(struct et131x_adapter *adapter,
1548 u16 action, u16 regnum, u16 bitnum,
1549 u8 *value)
1551 u16 reg;
1552 u16 mask = 0x0001 << bitnum;
1554 /* Read the requested register */
1555 et131x_mii_read(adapter, regnum, &reg);
1557 switch (action) {
1558 case TRUEPHY_BIT_READ:
1559 *value = (reg & mask) >> bitnum;
1560 break;
1562 case TRUEPHY_BIT_SET:
1563 et131x_mii_write(adapter, regnum, reg | mask);
1564 break;
1566 case TRUEPHY_BIT_CLEAR:
1567 et131x_mii_write(adapter, regnum, reg & ~mask);
1568 break;
1570 default:
1571 break;
1575 static void et1310_config_flow_control(struct et131x_adapter *adapter)
1577 struct phy_device *phydev = adapter->phydev;
1579 if (phydev->duplex == DUPLEX_HALF) {
1580 adapter->flowcontrol = FLOW_NONE;
1581 } else {
1582 char remote_pause, remote_async_pause;
1584 et1310_phy_access_mii_bit(adapter,
1585 TRUEPHY_BIT_READ, 5, 10, &remote_pause);
1586 et1310_phy_access_mii_bit(adapter,
1587 TRUEPHY_BIT_READ, 5, 11,
1588 &remote_async_pause);
1590 if ((remote_pause == TRUEPHY_BIT_SET) &&
1591 (remote_async_pause == TRUEPHY_BIT_SET)) {
1592 adapter->flowcontrol = adapter->wanted_flow;
1593 } else if ((remote_pause == TRUEPHY_BIT_SET) &&
1594 (remote_async_pause == TRUEPHY_BIT_CLEAR)) {
1595 if (adapter->wanted_flow == FLOW_BOTH)
1596 adapter->flowcontrol = FLOW_BOTH;
1597 else
1598 adapter->flowcontrol = FLOW_NONE;
1599 } else if ((remote_pause == TRUEPHY_BIT_CLEAR) &&
1600 (remote_async_pause == TRUEPHY_BIT_CLEAR)) {
1601 adapter->flowcontrol = FLOW_NONE;
1602 } else {/* if (remote_pause == TRUEPHY_CLEAR_BIT &&
1603 remote_async_pause == TRUEPHY_SET_BIT) */
1604 if (adapter->wanted_flow == FLOW_BOTH)
1605 adapter->flowcontrol = FLOW_RXONLY;
1606 else
1607 adapter->flowcontrol = FLOW_NONE;
1613 * et1310_update_macstat_host_counters - Update the local copy of the statistics
1614 * @adapter: pointer to the adapter structure
1616 static void et1310_update_macstat_host_counters(struct et131x_adapter *adapter)
1618 struct ce_stats *stats = &adapter->stats;
1619 struct macstat_regs __iomem *macstat =
1620 &adapter->regs->macstat;
1622 stats->tx_collisions += readl(&macstat->tx_total_collisions);
1623 stats->tx_first_collisions += readl(&macstat->tx_single_collisions);
1624 stats->tx_deferred += readl(&macstat->tx_deferred);
1625 stats->tx_excessive_collisions +=
1626 readl(&macstat->tx_multiple_collisions);
1627 stats->tx_late_collisions += readl(&macstat->tx_late_collisions);
1628 stats->tx_underflows += readl(&macstat->tx_undersize_frames);
1629 stats->tx_max_pkt_errs += readl(&macstat->tx_oversize_frames);
1631 stats->rx_align_errs += readl(&macstat->rx_align_errs);
1632 stats->rx_crc_errs += readl(&macstat->rx_code_errs);
1633 stats->rcvd_pkts_dropped += readl(&macstat->rx_drops);
1634 stats->rx_overflows += readl(&macstat->rx_oversize_packets);
1635 stats->rx_code_violations += readl(&macstat->rx_fcs_errs);
1636 stats->rx_length_errs += readl(&macstat->rx_frame_len_errs);
1637 stats->rx_other_errs += readl(&macstat->rx_fragment_packets);
1641 * et1310_handle_macstat_interrupt
1642 * @adapter: pointer to the adapter structure
1644 * One of the MACSTAT counters has wrapped. Update the local copy of
1645 * the statistics held in the adapter structure, checking the "wrap"
1646 * bit for each counter.
1648 static void et1310_handle_macstat_interrupt(struct et131x_adapter *adapter)
1650 u32 carry_reg1;
1651 u32 carry_reg2;
1653 /* Read the interrupt bits from the register(s). These are Clear On
1654 * Write.
1656 carry_reg1 = readl(&adapter->regs->macstat.carry_reg1);
1657 carry_reg2 = readl(&adapter->regs->macstat.carry_reg2);
1659 writel(carry_reg1, &adapter->regs->macstat.carry_reg1);
1660 writel(carry_reg2, &adapter->regs->macstat.carry_reg2);
1662 /* We need to do update the host copy of all the MAC_STAT counters.
1663 * For each counter, check it's overflow bit. If the overflow bit is
1664 * set, then increment the host version of the count by one complete
1665 * revolution of the counter. This routine is called when the counter
1666 * block indicates that one of the counters has wrapped.
1668 if (carry_reg1 & (1 << 14))
1669 adapter->stats.rx_code_violations += COUNTER_WRAP_16_BIT;
1670 if (carry_reg1 & (1 << 8))
1671 adapter->stats.rx_align_errs += COUNTER_WRAP_12_BIT;
1672 if (carry_reg1 & (1 << 7))
1673 adapter->stats.rx_length_errs += COUNTER_WRAP_16_BIT;
1674 if (carry_reg1 & (1 << 2))
1675 adapter->stats.rx_other_errs += COUNTER_WRAP_16_BIT;
1676 if (carry_reg1 & (1 << 6))
1677 adapter->stats.rx_crc_errs += COUNTER_WRAP_16_BIT;
1678 if (carry_reg1 & (1 << 3))
1679 adapter->stats.rx_overflows += COUNTER_WRAP_16_BIT;
1680 if (carry_reg1 & (1 << 0))
1681 adapter->stats.rcvd_pkts_dropped += COUNTER_WRAP_16_BIT;
1682 if (carry_reg2 & (1 << 16))
1683 adapter->stats.tx_max_pkt_errs += COUNTER_WRAP_12_BIT;
1684 if (carry_reg2 & (1 << 15))
1685 adapter->stats.tx_underflows += COUNTER_WRAP_12_BIT;
1686 if (carry_reg2 & (1 << 6))
1687 adapter->stats.tx_first_collisions += COUNTER_WRAP_12_BIT;
1688 if (carry_reg2 & (1 << 8))
1689 adapter->stats.tx_deferred += COUNTER_WRAP_12_BIT;
1690 if (carry_reg2 & (1 << 5))
1691 adapter->stats.tx_excessive_collisions += COUNTER_WRAP_12_BIT;
1692 if (carry_reg2 & (1 << 4))
1693 adapter->stats.tx_late_collisions += COUNTER_WRAP_12_BIT;
1694 if (carry_reg2 & (1 << 2))
1695 adapter->stats.tx_collisions += COUNTER_WRAP_12_BIT;
1698 static int et131x_mdio_read(struct mii_bus *bus, int phy_addr, int reg)
1700 struct net_device *netdev = bus->priv;
1701 struct et131x_adapter *adapter = netdev_priv(netdev);
1702 u16 value;
1703 int ret;
1705 ret = et131x_phy_mii_read(adapter, phy_addr, reg, &value);
1707 if (ret < 0)
1708 return ret;
1709 else
1710 return value;
1713 static int et131x_mdio_write(struct mii_bus *bus, int phy_addr, int reg, u16 value)
1715 struct net_device *netdev = bus->priv;
1716 struct et131x_adapter *adapter = netdev_priv(netdev);
1718 return et131x_mii_write(adapter, reg, value);
1721 static int et131x_mdio_reset(struct mii_bus *bus)
1723 struct net_device *netdev = bus->priv;
1724 struct et131x_adapter *adapter = netdev_priv(netdev);
1726 et131x_mii_write(adapter, MII_BMCR, BMCR_RESET);
1728 return 0;
1732 * et1310_phy_power_down - PHY power control
1733 * @adapter: device to control
1734 * @down: true for off/false for back on
1736 * one hundred, ten, one thousand megs
1737 * How would you like to have your LAN accessed
1738 * Can't you see that this code processed
1739 * Phy power, phy power..
1741 static void et1310_phy_power_down(struct et131x_adapter *adapter, bool down)
1743 u16 data;
1745 et131x_mii_read(adapter, MII_BMCR, &data);
1746 data &= ~BMCR_PDOWN;
1747 if (down)
1748 data |= BMCR_PDOWN;
1749 et131x_mii_write(adapter, MII_BMCR, data);
1753 * et131x_xcvr_init - Init the phy if we are setting it into force mode
1754 * @adapter: pointer to our private adapter structure
1757 static void et131x_xcvr_init(struct et131x_adapter *adapter)
1759 u16 imr;
1760 u16 isr;
1761 u16 lcr2;
1763 et131x_mii_read(adapter, PHY_INTERRUPT_STATUS, &isr);
1764 et131x_mii_read(adapter, PHY_INTERRUPT_MASK, &imr);
1766 /* Set the link status interrupt only. Bad behavior when link status
1767 * and auto neg are set, we run into a nested interrupt problem
1769 imr |= (ET_PHY_INT_MASK_AUTONEGSTAT &
1770 ET_PHY_INT_MASK_LINKSTAT &
1771 ET_PHY_INT_MASK_ENABLE);
1773 et131x_mii_write(adapter, PHY_INTERRUPT_MASK, imr);
1775 /* Set the LED behavior such that LED 1 indicates speed (off =
1776 * 10Mbits, blink = 100Mbits, on = 1000Mbits) and LED 2 indicates
1777 * link and activity (on for link, blink off for activity).
1779 * NOTE: Some customizations have been added here for specific
1780 * vendors; The LED behavior is now determined by vendor data in the
1781 * EEPROM. However, the above description is the default.
1783 if ((adapter->eeprom_data[1] & 0x4) == 0) {
1784 et131x_mii_read(adapter, PHY_LED_2, &lcr2);
1786 lcr2 &= (ET_LED2_LED_100TX & ET_LED2_LED_1000T);
1787 lcr2 |= (LED_VAL_LINKON_ACTIVE << LED_LINK_SHIFT);
1789 if ((adapter->eeprom_data[1] & 0x8) == 0)
1790 lcr2 |= (LED_VAL_1000BT_100BTX << LED_TXRX_SHIFT);
1791 else
1792 lcr2 |= (LED_VAL_LINKON << LED_TXRX_SHIFT);
1794 et131x_mii_write(adapter, PHY_LED_2, lcr2);
1799 * et131x_configure_global_regs - configure JAGCore global regs
1800 * @adapter: pointer to our adapter structure
1802 * Used to configure the global registers on the JAGCore
1804 static void et131x_configure_global_regs(struct et131x_adapter *adapter)
1806 struct global_regs __iomem *regs = &adapter->regs->global;
1808 writel(0, &regs->rxq_start_addr);
1809 writel(INTERNAL_MEM_SIZE - 1, &regs->txq_end_addr);
1811 if (adapter->registry_jumbo_packet < 2048) {
1812 /* Tx / RxDMA and Tx/Rx MAC interfaces have a 1k word
1813 * block of RAM that the driver can split between Tx
1814 * and Rx as it desires. Our default is to split it
1815 * 50/50:
1817 writel(PARM_RX_MEM_END_DEF, &regs->rxq_end_addr);
1818 writel(PARM_RX_MEM_END_DEF + 1, &regs->txq_start_addr);
1819 } else if (adapter->registry_jumbo_packet < 8192) {
1820 /* For jumbo packets > 2k but < 8k, split 50-50. */
1821 writel(INTERNAL_MEM_RX_OFFSET, &regs->rxq_end_addr);
1822 writel(INTERNAL_MEM_RX_OFFSET + 1, &regs->txq_start_addr);
1823 } else {
1824 /* 9216 is the only packet size greater than 8k that
1825 * is available. The Tx buffer has to be big enough
1826 * for one whole packet on the Tx side. We'll make
1827 * the Tx 9408, and give the rest to Rx
1829 writel(0x01b3, &regs->rxq_end_addr);
1830 writel(0x01b4, &regs->txq_start_addr);
1833 /* Initialize the loopback register. Disable all loopbacks. */
1834 writel(0, &regs->loopback);
1836 /* MSI Register */
1837 writel(0, &regs->msi_config);
1839 /* By default, disable the watchdog timer. It will be enabled when
1840 * a packet is queued.
1842 writel(0, &regs->watchdog_timer);
1846 * et131x_config_rx_dma_regs - Start of Rx_DMA init sequence
1847 * @adapter: pointer to our adapter structure
1849 static void et131x_config_rx_dma_regs(struct et131x_adapter *adapter)
1851 struct rxdma_regs __iomem *rx_dma = &adapter->regs->rxdma;
1852 struct rx_ring *rx_local = &adapter->rx_ring;
1853 struct fbr_desc *fbr_entry;
1854 u32 entry;
1855 u32 psr_num_des;
1856 unsigned long flags;
1858 /* Halt RXDMA to perform the reconfigure. */
1859 et131x_rx_dma_disable(adapter);
1861 /* Load the completion writeback physical address
1863 * NOTE : dma_alloc_coherent(), used above to alloc DMA regions,
1864 * ALWAYS returns SAC (32-bit) addresses. If DAC (64-bit) addresses
1865 * are ever returned, make sure the high part is retrieved here
1866 * before storing the adjusted address.
1868 writel((u32) ((u64)rx_local->rx_status_bus >> 32),
1869 &rx_dma->dma_wb_base_hi);
1870 writel((u32) rx_local->rx_status_bus, &rx_dma->dma_wb_base_lo);
1872 memset(rx_local->rx_status_block, 0, sizeof(struct rx_status_block));
1874 /* Set the address and parameters of the packet status ring into the
1875 * 1310's registers
1877 writel((u32) ((u64)rx_local->ps_ring_physaddr >> 32),
1878 &rx_dma->psr_base_hi);
1879 writel((u32) rx_local->ps_ring_physaddr, &rx_dma->psr_base_lo);
1880 writel(rx_local->psr_num_entries - 1, &rx_dma->psr_num_des);
1881 writel(0, &rx_dma->psr_full_offset);
1883 psr_num_des = readl(&rx_dma->psr_num_des) & 0xFFF;
1884 writel((psr_num_des * LO_MARK_PERCENT_FOR_PSR) / 100,
1885 &rx_dma->psr_min_des);
1887 spin_lock_irqsave(&adapter->rcv_lock, flags);
1889 /* These local variables track the PSR in the adapter structure */
1890 rx_local->local_psr_full = 0;
1892 /* Now's the best time to initialize FBR1 contents */
1893 fbr_entry = (struct fbr_desc *) rx_local->fbr[0]->ring_virtaddr;
1894 for (entry = 0; entry < rx_local->fbr[0]->num_entries; entry++) {
1895 fbr_entry->addr_hi = rx_local->fbr[0]->bus_high[entry];
1896 fbr_entry->addr_lo = rx_local->fbr[0]->bus_low[entry];
1897 fbr_entry->word2 = entry;
1898 fbr_entry++;
1901 /* Set the address and parameters of Free buffer ring 1 (and 0 if
1902 * required) into the 1310's registers
1904 writel((u32) (rx_local->fbr[0]->real_physaddr >> 32),
1905 &rx_dma->fbr1_base_hi);
1906 writel((u32) rx_local->fbr[0]->real_physaddr, &rx_dma->fbr1_base_lo);
1907 writel(rx_local->fbr[0]->num_entries - 1, &rx_dma->fbr1_num_des);
1908 writel(ET_DMA10_WRAP, &rx_dma->fbr1_full_offset);
1910 /* This variable tracks the free buffer ring 1 full position, so it
1911 * has to match the above.
1913 rx_local->fbr[0]->local_full = ET_DMA10_WRAP;
1914 writel(
1915 ((rx_local->fbr[0]->num_entries * LO_MARK_PERCENT_FOR_RX) / 100) - 1,
1916 &rx_dma->fbr1_min_des);
1918 #ifdef USE_FBR0
1919 /* Now's the best time to initialize FBR0 contents */
1920 fbr_entry = (struct fbr_desc *) rx_local->fbr[1]->ring_virtaddr;
1921 for (entry = 0; entry < rx_local->fbr[1]->num_entries; entry++) {
1922 fbr_entry->addr_hi = rx_local->fbr[1]->bus_high[entry];
1923 fbr_entry->addr_lo = rx_local->fbr[1]->bus_low[entry];
1924 fbr_entry->word2 = entry;
1925 fbr_entry++;
1928 writel((u32) (rx_local->fbr[1]->real_physaddr >> 32),
1929 &rx_dma->fbr0_base_hi);
1930 writel((u32) rx_local->fbr[1]->real_physaddr, &rx_dma->fbr0_base_lo);
1931 writel(rx_local->fbr[1]->num_entries - 1, &rx_dma->fbr0_num_des);
1932 writel(ET_DMA10_WRAP, &rx_dma->fbr0_full_offset);
1934 /* This variable tracks the free buffer ring 0 full position, so it
1935 * has to match the above.
1937 rx_local->fbr[1]->local_full = ET_DMA10_WRAP;
1938 writel(
1939 ((rx_local->fbr[1]->num_entries * LO_MARK_PERCENT_FOR_RX) / 100) - 1,
1940 &rx_dma->fbr0_min_des);
1941 #endif
1943 /* Program the number of packets we will receive before generating an
1944 * interrupt.
1945 * For version B silicon, this value gets updated once autoneg is
1946 *complete.
1948 writel(PARM_RX_NUM_BUFS_DEF, &rx_dma->num_pkt_done);
1950 /* The "time_done" is not working correctly to coalesce interrupts
1951 * after a given time period, but rather is giving us an interrupt
1952 * regardless of whether we have received packets.
1953 * This value gets updated once autoneg is complete.
1955 writel(PARM_RX_TIME_INT_DEF, &rx_dma->max_pkt_time);
1957 spin_unlock_irqrestore(&adapter->rcv_lock, flags);
1961 * et131x_config_tx_dma_regs - Set up the tx dma section of the JAGCore.
1962 * @adapter: pointer to our private adapter structure
1964 * Configure the transmit engine with the ring buffers we have created
1965 * and prepare it for use.
1967 static void et131x_config_tx_dma_regs(struct et131x_adapter *adapter)
1969 struct txdma_regs __iomem *txdma = &adapter->regs->txdma;
1971 /* Load the hardware with the start of the transmit descriptor ring. */
1972 writel((u32) ((u64)adapter->tx_ring.tx_desc_ring_pa >> 32),
1973 &txdma->pr_base_hi);
1974 writel((u32) adapter->tx_ring.tx_desc_ring_pa,
1975 &txdma->pr_base_lo);
1977 /* Initialise the transmit DMA engine */
1978 writel(NUM_DESC_PER_RING_TX - 1, &txdma->pr_num_des);
1980 /* Load the completion writeback physical address */
1981 writel((u32)((u64)adapter->tx_ring.tx_status_pa >> 32),
1982 &txdma->dma_wb_base_hi);
1983 writel((u32)adapter->tx_ring.tx_status_pa, &txdma->dma_wb_base_lo);
1985 *adapter->tx_ring.tx_status = 0;
1987 writel(0, &txdma->service_request);
1988 adapter->tx_ring.send_idx = 0;
1992 * et131x_adapter_setup - Set the adapter up as per cassini+ documentation
1993 * @adapter: pointer to our private adapter structure
1995 * Returns 0 on success, errno on failure (as defined in errno.h)
1997 static void et131x_adapter_setup(struct et131x_adapter *adapter)
1999 /* Configure the JAGCore */
2000 et131x_configure_global_regs(adapter);
2002 et1310_config_mac_regs1(adapter);
2004 /* Configure the MMC registers */
2005 /* All we need to do is initialize the Memory Control Register */
2006 writel(ET_MMC_ENABLE, &adapter->regs->mmc.mmc_ctrl);
2008 et1310_config_rxmac_regs(adapter);
2009 et1310_config_txmac_regs(adapter);
2011 et131x_config_rx_dma_regs(adapter);
2012 et131x_config_tx_dma_regs(adapter);
2014 et1310_config_macstat_regs(adapter);
2016 et1310_phy_power_down(adapter, 0);
2017 et131x_xcvr_init(adapter);
2021 * et131x_soft_reset - Issue a soft reset to the hardware, complete for ET1310
2022 * @adapter: pointer to our private adapter structure
2024 static void et131x_soft_reset(struct et131x_adapter *adapter)
2026 /* Disable MAC Core */
2027 writel(0xc00f0000, &adapter->regs->mac.cfg1);
2029 /* Set everything to a reset value */
2030 writel(0x7F, &adapter->regs->global.sw_reset);
2031 writel(0x000f0000, &adapter->regs->mac.cfg1);
2032 writel(0x00000000, &adapter->regs->mac.cfg1);
2036 * et131x_enable_interrupts - enable interrupt
2037 * @adapter: et131x device
2039 * Enable the appropriate interrupts on the ET131x according to our
2040 * configuration
2042 static void et131x_enable_interrupts(struct et131x_adapter *adapter)
2044 u32 mask;
2046 /* Enable all global interrupts */
2047 if (adapter->flowcontrol == FLOW_TXONLY ||
2048 adapter->flowcontrol == FLOW_BOTH)
2049 mask = INT_MASK_ENABLE;
2050 else
2051 mask = INT_MASK_ENABLE_NO_FLOW;
2053 writel(mask, &adapter->regs->global.int_mask);
2057 * et131x_disable_interrupts - interrupt disable
2058 * @adapter: et131x device
2060 * Block all interrupts from the et131x device at the device itself
2062 static void et131x_disable_interrupts(struct et131x_adapter *adapter)
2064 /* Disable all global interrupts */
2065 writel(INT_MASK_DISABLE, &adapter->regs->global.int_mask);
2069 * et131x_tx_dma_disable - Stop of Tx_DMA on the ET1310
2070 * @adapter: pointer to our adapter structure
2072 static void et131x_tx_dma_disable(struct et131x_adapter *adapter)
2074 /* Setup the tramsmit dma configuration register */
2075 writel(ET_TXDMA_CSR_HALT|ET_TXDMA_SNGL_EPKT,
2076 &adapter->regs->txdma.csr);
2080 * et131x_enable_txrx - Enable tx/rx queues
2081 * @netdev: device to be enabled
2083 static void et131x_enable_txrx(struct net_device *netdev)
2085 struct et131x_adapter *adapter = netdev_priv(netdev);
2087 /* Enable the Tx and Rx DMA engines (if not already enabled) */
2088 et131x_rx_dma_enable(adapter);
2089 et131x_tx_dma_enable(adapter);
2091 /* Enable device interrupts */
2092 if (adapter->flags & fMP_ADAPTER_INTERRUPT_IN_USE)
2093 et131x_enable_interrupts(adapter);
2095 /* We're ready to move some data, so start the queue */
2096 netif_start_queue(netdev);
2100 * et131x_disable_txrx - Disable tx/rx queues
2101 * @netdev: device to be disabled
2103 static void et131x_disable_txrx(struct net_device *netdev)
2105 struct et131x_adapter *adapter = netdev_priv(netdev);
2107 /* First thing is to stop the queue */
2108 netif_stop_queue(netdev);
2110 /* Stop the Tx and Rx DMA engines */
2111 et131x_rx_dma_disable(adapter);
2112 et131x_tx_dma_disable(adapter);
2114 /* Disable device interrupts */
2115 et131x_disable_interrupts(adapter);
2119 * et131x_init_send - Initialize send data structures
2120 * @adapter: pointer to our private adapter structure
2122 static void et131x_init_send(struct et131x_adapter *adapter)
2124 struct tcb *tcb;
2125 u32 ct;
2126 struct tx_ring *tx_ring;
2128 /* Setup some convenience pointers */
2129 tx_ring = &adapter->tx_ring;
2130 tcb = adapter->tx_ring.tcb_ring;
2132 tx_ring->tcb_qhead = tcb;
2134 memset(tcb, 0, sizeof(struct tcb) * NUM_TCB);
2136 /* Go through and set up each TCB */
2137 for (ct = 0; ct++ < NUM_TCB; tcb++)
2138 /* Set the link pointer in HW TCB to the next TCB in the
2139 * chain
2141 tcb->next = tcb + 1;
2143 /* Set the tail pointer */
2144 tcb--;
2145 tx_ring->tcb_qtail = tcb;
2146 tcb->next = NULL;
2147 /* Curr send queue should now be empty */
2148 tx_ring->send_head = NULL;
2149 tx_ring->send_tail = NULL;
2153 * et1310_enable_phy_coma - called when network cable is unplugged
2154 * @adapter: pointer to our adapter structure
2156 * driver receive an phy status change interrupt while in D0 and check that
2157 * phy_status is down.
2159 * -- gate off JAGCore;
2160 * -- set gigE PHY in Coma mode
2161 * -- wake on phy_interrupt; Perform software reset JAGCore,
2162 * re-initialize jagcore and gigE PHY
2164 * Add D0-ASPM-PhyLinkDown Support:
2165 * -- while in D0, when there is a phy_interrupt indicating phy link
2166 * down status, call the MPSetPhyComa routine to enter this active
2167 * state power saving mode
2168 * -- while in D0-ASPM-PhyLinkDown mode, when there is a phy_interrupt
2169 * indicating linkup status, call the MPDisablePhyComa routine to
2170 * restore JAGCore and gigE PHY
2172 static void et1310_enable_phy_coma(struct et131x_adapter *adapter)
2174 unsigned long flags;
2175 u32 pmcsr;
2177 pmcsr = readl(&adapter->regs->global.pm_csr);
2179 /* Save the GbE PHY speed and duplex modes. Need to restore this
2180 * when cable is plugged back in
2183 * TODO - when PM is re-enabled, check if we need to
2184 * perform a similar task as this -
2185 * adapter->pdown_speed = adapter->ai_force_speed;
2186 * adapter->pdown_duplex = adapter->ai_force_duplex;
2189 /* Stop sending packets. */
2190 spin_lock_irqsave(&adapter->send_hw_lock, flags);
2191 adapter->flags |= fMP_ADAPTER_LOWER_POWER;
2192 spin_unlock_irqrestore(&adapter->send_hw_lock, flags);
2194 /* Wait for outstanding Receive packets */
2196 et131x_disable_txrx(adapter->netdev);
2198 /* Gate off JAGCore 3 clock domains */
2199 pmcsr &= ~ET_PMCSR_INIT;
2200 writel(pmcsr, &adapter->regs->global.pm_csr);
2202 /* Program gigE PHY in to Coma mode */
2203 pmcsr |= ET_PM_PHY_SW_COMA;
2204 writel(pmcsr, &adapter->regs->global.pm_csr);
2208 * et1310_disable_phy_coma - Disable the Phy Coma Mode
2209 * @adapter: pointer to our adapter structure
2211 static void et1310_disable_phy_coma(struct et131x_adapter *adapter)
2213 u32 pmcsr;
2215 pmcsr = readl(&adapter->regs->global.pm_csr);
2217 /* Disable phy_sw_coma register and re-enable JAGCore clocks */
2218 pmcsr |= ET_PMCSR_INIT;
2219 pmcsr &= ~ET_PM_PHY_SW_COMA;
2220 writel(pmcsr, &adapter->regs->global.pm_csr);
2222 /* Restore the GbE PHY speed and duplex modes;
2223 * Reset JAGCore; re-configure and initialize JAGCore and gigE PHY
2225 /* TODO - when PM is re-enabled, check if we need to
2226 * perform a similar task as this -
2227 * adapter->ai_force_speed = adapter->pdown_speed;
2228 * adapter->ai_force_duplex = adapter->pdown_duplex;
2231 /* Re-initialize the send structures */
2232 et131x_init_send(adapter);
2234 /* Bring the device back to the state it was during init prior to
2235 * autonegotiation being complete. This way, when we get the auto-neg
2236 * complete interrupt, we can complete init by calling ConfigMacREGS2.
2238 et131x_soft_reset(adapter);
2240 /* setup et1310 as per the documentation ?? */
2241 et131x_adapter_setup(adapter);
2243 /* Allow Tx to restart */
2244 adapter->flags &= ~fMP_ADAPTER_LOWER_POWER;
2246 et131x_enable_txrx(adapter->netdev);
2249 static inline u32 bump_free_buff_ring(u32 *free_buff_ring, u32 limit)
2251 u32 tmp_free_buff_ring = *free_buff_ring;
2252 tmp_free_buff_ring++;
2253 /* This works for all cases where limit < 1024. The 1023 case
2254 works because 1023++ is 1024 which means the if condition is not
2255 taken but the carry of the bit into the wrap bit toggles the wrap
2256 value correctly */
2257 if ((tmp_free_buff_ring & ET_DMA10_MASK) > limit) {
2258 tmp_free_buff_ring &= ~ET_DMA10_MASK;
2259 tmp_free_buff_ring ^= ET_DMA10_WRAP;
2261 /* For the 1023 case */
2262 tmp_free_buff_ring &= (ET_DMA10_MASK|ET_DMA10_WRAP);
2263 *free_buff_ring = tmp_free_buff_ring;
2264 return tmp_free_buff_ring;
2268 * et131x_align_allocated_memory - Align allocated memory on a given boundary
2269 * @adapter: pointer to our adapter structure
2270 * @phys_addr: pointer to Physical address
2271 * @offset: pointer to the offset variable
2272 * @mask: correct mask
2274 static void et131x_align_allocated_memory(struct et131x_adapter *adapter,
2275 u64 *phys_addr, u64 *offset,
2276 u64 mask)
2278 u64 new_addr = *phys_addr & ~mask;
2280 *offset = 0;
2282 if (new_addr != *phys_addr) {
2283 /* Move to next aligned block */
2284 new_addr += mask + 1;
2285 /* Return offset for adjusting virt addr */
2286 *offset = new_addr - *phys_addr;
2287 /* Return new physical address */
2288 *phys_addr = new_addr;
2293 * et131x_rx_dma_memory_alloc
2294 * @adapter: pointer to our private adapter structure
2296 * Returns 0 on success and errno on failure (as defined in errno.h)
2298 * Allocates Free buffer ring 1 for sure, free buffer ring 0 if required,
2299 * and the Packet Status Ring.
2301 static int et131x_rx_dma_memory_alloc(struct et131x_adapter *adapter)
2303 u32 i, j;
2304 u32 bufsize;
2305 u32 pktstat_ringsize, fbr_chunksize;
2306 struct rx_ring *rx_ring;
2308 /* Setup some convenience pointers */
2309 rx_ring = &adapter->rx_ring;
2311 /* Alloc memory for the lookup table */
2312 #ifdef USE_FBR0
2313 rx_ring->fbr[1] = kmalloc(sizeof(struct fbr_lookup), GFP_KERNEL);
2314 #endif
2315 rx_ring->fbr[0] = kmalloc(sizeof(struct fbr_lookup), GFP_KERNEL);
2317 /* The first thing we will do is configure the sizes of the buffer
2318 * rings. These will change based on jumbo packet support. Larger
2319 * jumbo packets increases the size of each entry in FBR0, and the
2320 * number of entries in FBR0, while at the same time decreasing the
2321 * number of entries in FBR1.
2323 * FBR1 holds "large" frames, FBR0 holds "small" frames. If FBR1
2324 * entries are huge in order to accommodate a "jumbo" frame, then it
2325 * will have less entries. Conversely, FBR1 will now be relied upon
2326 * to carry more "normal" frames, thus it's entry size also increases
2327 * and the number of entries goes up too (since it now carries
2328 * "small" + "regular" packets.
2330 * In this scheme, we try to maintain 512 entries between the two
2331 * rings. Also, FBR1 remains a constant size - when it's size doubles
2332 * the number of entries halves. FBR0 increases in size, however.
2335 if (adapter->registry_jumbo_packet < 2048) {
2336 #ifdef USE_FBR0
2337 rx_ring->fbr[1]->buffsize = 256;
2338 rx_ring->fbr[1]->num_entries = 512;
2339 #endif
2340 rx_ring->fbr[0]->buffsize = 2048;
2341 rx_ring->fbr[0]->num_entries = 512;
2342 } else if (adapter->registry_jumbo_packet < 4096) {
2343 #ifdef USE_FBR0
2344 rx_ring->fbr[1]->buffsize = 512;
2345 rx_ring->fbr[1]->num_entries = 1024;
2346 #endif
2347 rx_ring->fbr[0]->buffsize = 4096;
2348 rx_ring->fbr[0]->num_entries = 512;
2349 } else {
2350 #ifdef USE_FBR0
2351 rx_ring->fbr[1]->buffsize = 1024;
2352 rx_ring->fbr[1]->num_entries = 768;
2353 #endif
2354 rx_ring->fbr[0]->buffsize = 16384;
2355 rx_ring->fbr[0]->num_entries = 128;
2358 #ifdef USE_FBR0
2359 adapter->rx_ring.psr_num_entries =
2360 adapter->rx_ring.fbr[1]->num_entries +
2361 adapter->rx_ring.fbr[0]->num_entries;
2362 #else
2363 adapter->rx_ring.psr_num_entries = adapter->rx_ring.fbr[0]->num_entries;
2364 #endif
2366 /* Allocate an area of memory for Free Buffer Ring 1 */
2367 bufsize = (sizeof(struct fbr_desc) * rx_ring->fbr[0]->num_entries) +
2368 0xfff;
2369 rx_ring->fbr[0]->ring_virtaddr = dma_alloc_coherent(&adapter->pdev->dev,
2370 bufsize,
2371 &rx_ring->fbr[0]->ring_physaddr,
2372 GFP_KERNEL);
2373 if (!rx_ring->fbr[0]->ring_virtaddr) {
2374 dev_err(&adapter->pdev->dev,
2375 "Cannot alloc memory for Free Buffer Ring 1\n");
2376 return -ENOMEM;
2379 /* Save physical address
2381 * NOTE: dma_alloc_coherent(), used above to alloc DMA regions,
2382 * ALWAYS returns SAC (32-bit) addresses. If DAC (64-bit) addresses
2383 * are ever returned, make sure the high part is retrieved here
2384 * before storing the adjusted address.
2386 rx_ring->fbr[0]->real_physaddr = rx_ring->fbr[0]->ring_physaddr;
2388 /* Align Free Buffer Ring 1 on a 4K boundary */
2389 et131x_align_allocated_memory(adapter,
2390 &rx_ring->fbr[0]->real_physaddr,
2391 &rx_ring->fbr[0]->offset, 0x0FFF);
2393 rx_ring->fbr[0]->ring_virtaddr =
2394 (void *)((u8 *) rx_ring->fbr[0]->ring_virtaddr +
2395 rx_ring->fbr[0]->offset);
2397 #ifdef USE_FBR0
2398 /* Allocate an area of memory for Free Buffer Ring 0 */
2399 bufsize = (sizeof(struct fbr_desc) * rx_ring->fbr[1]->num_entries) +
2400 0xfff;
2401 rx_ring->fbr[1]->ring_virtaddr = dma_alloc_coherent(&adapter->pdev->dev,
2402 bufsize,
2403 &rx_ring->fbr[1]->ring_physaddr,
2404 GFP_KERNEL);
2405 if (!rx_ring->fbr[1]->ring_virtaddr) {
2406 dev_err(&adapter->pdev->dev,
2407 "Cannot alloc memory for Free Buffer Ring 0\n");
2408 return -ENOMEM;
2411 /* Save physical address
2413 * NOTE: dma_alloc_coherent(), used above to alloc DMA regions,
2414 * ALWAYS returns SAC (32-bit) addresses. If DAC (64-bit) addresses
2415 * are ever returned, make sure the high part is retrieved here before
2416 * storing the adjusted address.
2418 rx_ring->fbr[1]->real_physaddr = rx_ring->fbr[1]->ring_physaddr;
2420 /* Align Free Buffer Ring 0 on a 4K boundary */
2421 et131x_align_allocated_memory(adapter,
2422 &rx_ring->fbr[1]->real_physaddr,
2423 &rx_ring->fbr[1]->offset, 0x0FFF);
2425 rx_ring->fbr[1]->ring_virtaddr =
2426 (void *)((u8 *) rx_ring->fbr[1]->ring_virtaddr +
2427 rx_ring->fbr[1]->offset);
2428 #endif
2429 for (i = 0; i < (rx_ring->fbr[0]->num_entries / FBR_CHUNKS); i++) {
2430 u64 fbr1_tmp_physaddr;
2431 u64 fbr1_offset;
2432 u32 fbr1_align;
2434 /* This code allocates an area of memory big enough for N
2435 * free buffers + (buffer_size - 1) so that the buffers can
2436 * be aligned on 4k boundaries. If each buffer were aligned
2437 * to a buffer_size boundary, the effect would be to double
2438 * the size of FBR0. By allocating N buffers at once, we
2439 * reduce this overhead.
2441 if (rx_ring->fbr[0]->buffsize > 4096)
2442 fbr1_align = 4096;
2443 else
2444 fbr1_align = rx_ring->fbr[0]->buffsize;
2446 fbr_chunksize =
2447 (FBR_CHUNKS * rx_ring->fbr[0]->buffsize) + fbr1_align - 1;
2448 rx_ring->fbr[0]->mem_virtaddrs[i] =
2449 dma_alloc_coherent(&adapter->pdev->dev, fbr_chunksize,
2450 &rx_ring->fbr[0]->mem_physaddrs[i],
2451 GFP_KERNEL);
2453 if (!rx_ring->fbr[0]->mem_virtaddrs[i]) {
2454 dev_err(&adapter->pdev->dev,
2455 "Could not alloc memory\n");
2456 return -ENOMEM;
2459 /* See NOTE in "Save Physical Address" comment above */
2460 fbr1_tmp_physaddr = rx_ring->fbr[0]->mem_physaddrs[i];
2462 et131x_align_allocated_memory(adapter,
2463 &fbr1_tmp_physaddr,
2464 &fbr1_offset, (fbr1_align - 1));
2466 for (j = 0; j < FBR_CHUNKS; j++) {
2467 u32 index = (i * FBR_CHUNKS) + j;
2469 /* Save the Virtual address of this index for quick
2470 * access later
2472 rx_ring->fbr[0]->virt[index] =
2473 (u8 *) rx_ring->fbr[0]->mem_virtaddrs[i] +
2474 (j * rx_ring->fbr[0]->buffsize) + fbr1_offset;
2476 /* now store the physical address in the descriptor
2477 * so the device can access it
2479 rx_ring->fbr[0]->bus_high[index] =
2480 (u32) (fbr1_tmp_physaddr >> 32);
2481 rx_ring->fbr[0]->bus_low[index] =
2482 (u32) fbr1_tmp_physaddr;
2484 fbr1_tmp_physaddr += rx_ring->fbr[0]->buffsize;
2486 rx_ring->fbr[0]->buffer1[index] =
2487 rx_ring->fbr[0]->virt[index];
2488 rx_ring->fbr[0]->buffer2[index] =
2489 rx_ring->fbr[0]->virt[index] - 4;
2493 #ifdef USE_FBR0
2494 /* Same for FBR0 (if in use) */
2495 for (i = 0; i < (rx_ring->fbr[1]->num_entries / FBR_CHUNKS); i++) {
2496 u64 fbr0_tmp_physaddr;
2497 u64 fbr0_offset;
2499 fbr_chunksize =
2500 ((FBR_CHUNKS + 1) * rx_ring->fbr[1]->buffsize) - 1;
2501 rx_ring->fbr[1]->mem_virtaddrs[i] =
2502 dma_alloc_coherent(&adapter->pdev->dev, fbr_chunksize,
2503 &rx_ring->fbr[1]->mem_physaddrs[i],
2504 GFP_KERNEL);
2506 if (!rx_ring->fbr[1]->mem_virtaddrs[i]) {
2507 dev_err(&adapter->pdev->dev,
2508 "Could not alloc memory\n");
2509 return -ENOMEM;
2512 /* See NOTE in "Save Physical Address" comment above */
2513 fbr0_tmp_physaddr = rx_ring->fbr[1]->mem_physaddrs[i];
2515 et131x_align_allocated_memory(adapter,
2516 &fbr0_tmp_physaddr,
2517 &fbr0_offset,
2518 rx_ring->fbr[1]->buffsize - 1);
2520 for (j = 0; j < FBR_CHUNKS; j++) {
2521 u32 index = (i * FBR_CHUNKS) + j;
2523 rx_ring->fbr[1]->virt[index] =
2524 (u8 *) rx_ring->fbr[1]->mem_virtaddrs[i] +
2525 (j * rx_ring->fbr[1]->buffsize) + fbr0_offset;
2527 rx_ring->fbr[1]->bus_high[index] =
2528 (u32) (fbr0_tmp_physaddr >> 32);
2529 rx_ring->fbr[1]->bus_low[index] =
2530 (u32) fbr0_tmp_physaddr;
2532 fbr0_tmp_physaddr += rx_ring->fbr[1]->buffsize;
2534 rx_ring->fbr[1]->buffer1[index] =
2535 rx_ring->fbr[1]->virt[index];
2536 rx_ring->fbr[1]->buffer2[index] =
2537 rx_ring->fbr[1]->virt[index] - 4;
2540 #endif
2542 /* Allocate an area of memory for FIFO of Packet Status ring entries */
2543 pktstat_ringsize =
2544 sizeof(struct pkt_stat_desc) * adapter->rx_ring.psr_num_entries;
2546 rx_ring->ps_ring_virtaddr = dma_alloc_coherent(&adapter->pdev->dev,
2547 pktstat_ringsize,
2548 &rx_ring->ps_ring_physaddr,
2549 GFP_KERNEL);
2551 if (!rx_ring->ps_ring_virtaddr) {
2552 dev_err(&adapter->pdev->dev,
2553 "Cannot alloc memory for Packet Status Ring\n");
2554 return -ENOMEM;
2556 printk(KERN_INFO "Packet Status Ring %lx\n",
2557 (unsigned long) rx_ring->ps_ring_physaddr);
2560 * NOTE : dma_alloc_coherent(), used above to alloc DMA regions,
2561 * ALWAYS returns SAC (32-bit) addresses. If DAC (64-bit) addresses
2562 * are ever returned, make sure the high part is retrieved here before
2563 * storing the adjusted address.
2566 /* Allocate an area of memory for writeback of status information */
2567 rx_ring->rx_status_block = dma_alloc_coherent(&adapter->pdev->dev,
2568 sizeof(struct rx_status_block),
2569 &rx_ring->rx_status_bus,
2570 GFP_KERNEL);
2571 if (!rx_ring->rx_status_block) {
2572 dev_err(&adapter->pdev->dev,
2573 "Cannot alloc memory for Status Block\n");
2574 return -ENOMEM;
2576 rx_ring->num_rfd = NIC_DEFAULT_NUM_RFD;
2577 printk(KERN_INFO "PRS %lx\n", (unsigned long)rx_ring->rx_status_bus);
2579 /* Recv
2580 * kmem_cache_create initializes a lookaside list. After successful
2581 * creation, nonpaged fixed-size blocks can be allocated from and
2582 * freed to the lookaside list.
2583 * RFDs will be allocated from this pool.
2585 rx_ring->recv_lookaside = kmem_cache_create(adapter->netdev->name,
2586 sizeof(struct rfd),
2588 SLAB_CACHE_DMA |
2589 SLAB_HWCACHE_ALIGN,
2590 NULL);
2592 adapter->flags |= fMP_ADAPTER_RECV_LOOKASIDE;
2594 /* The RFDs are going to be put on lists later on, so initialize the
2595 * lists now.
2597 INIT_LIST_HEAD(&rx_ring->recv_list);
2598 return 0;
2602 * et131x_rx_dma_memory_free - Free all memory allocated within this module.
2603 * @adapter: pointer to our private adapter structure
2605 static void et131x_rx_dma_memory_free(struct et131x_adapter *adapter)
2607 u32 index;
2608 u32 bufsize;
2609 u32 pktstat_ringsize;
2610 struct rfd *rfd;
2611 struct rx_ring *rx_ring;
2613 /* Setup some convenience pointers */
2614 rx_ring = &adapter->rx_ring;
2616 /* Free RFDs and associated packet descriptors */
2617 WARN_ON(rx_ring->num_ready_recv != rx_ring->num_rfd);
2619 while (!list_empty(&rx_ring->recv_list)) {
2620 rfd = (struct rfd *) list_entry(rx_ring->recv_list.next,
2621 struct rfd, list_node);
2623 list_del(&rfd->list_node);
2624 rfd->skb = NULL;
2625 kmem_cache_free(adapter->rx_ring.recv_lookaside, rfd);
2628 /* Free Free Buffer Ring 1 */
2629 if (rx_ring->fbr[0]->ring_virtaddr) {
2630 /* First the packet memory */
2631 for (index = 0; index <
2632 (rx_ring->fbr[0]->num_entries / FBR_CHUNKS); index++) {
2633 if (rx_ring->fbr[0]->mem_virtaddrs[index]) {
2634 u32 fbr1_align;
2636 if (rx_ring->fbr[0]->buffsize > 4096)
2637 fbr1_align = 4096;
2638 else
2639 fbr1_align = rx_ring->fbr[0]->buffsize;
2641 bufsize =
2642 (rx_ring->fbr[0]->buffsize * FBR_CHUNKS) +
2643 fbr1_align - 1;
2645 dma_free_coherent(&adapter->pdev->dev,
2646 bufsize,
2647 rx_ring->fbr[0]->mem_virtaddrs[index],
2648 rx_ring->fbr[0]->mem_physaddrs[index]);
2650 rx_ring->fbr[0]->mem_virtaddrs[index] = NULL;
2654 /* Now the FIFO itself */
2655 rx_ring->fbr[0]->ring_virtaddr = (void *)((u8 *)
2656 rx_ring->fbr[0]->ring_virtaddr - rx_ring->fbr[0]->offset);
2658 bufsize =
2659 (sizeof(struct fbr_desc) * rx_ring->fbr[0]->num_entries) +
2660 0xfff;
2662 dma_free_coherent(&adapter->pdev->dev, bufsize,
2663 rx_ring->fbr[0]->ring_virtaddr,
2664 rx_ring->fbr[0]->ring_physaddr);
2666 rx_ring->fbr[0]->ring_virtaddr = NULL;
2669 #ifdef USE_FBR0
2670 /* Now the same for Free Buffer Ring 0 */
2671 if (rx_ring->fbr[1]->ring_virtaddr) {
2672 /* First the packet memory */
2673 for (index = 0; index <
2674 (rx_ring->fbr[1]->num_entries / FBR_CHUNKS); index++) {
2675 if (rx_ring->fbr[1]->mem_virtaddrs[index]) {
2676 bufsize =
2677 (rx_ring->fbr[1]->buffsize *
2678 (FBR_CHUNKS + 1)) - 1;
2680 dma_free_coherent(&adapter->pdev->dev,
2681 bufsize,
2682 rx_ring->fbr[1]->mem_virtaddrs[index],
2683 rx_ring->fbr[1]->mem_physaddrs[index]);
2685 rx_ring->fbr[1]->mem_virtaddrs[index] = NULL;
2689 /* Now the FIFO itself */
2690 rx_ring->fbr[1]->ring_virtaddr = (void *)((u8 *)
2691 rx_ring->fbr[1]->ring_virtaddr - rx_ring->fbr[1]->offset);
2693 bufsize =
2694 (sizeof(struct fbr_desc) * rx_ring->fbr[1]->num_entries) +
2695 0xfff;
2697 dma_free_coherent(&adapter->pdev->dev,
2698 bufsize,
2699 rx_ring->fbr[1]->ring_virtaddr,
2700 rx_ring->fbr[1]->ring_physaddr);
2702 rx_ring->fbr[1]->ring_virtaddr = NULL;
2704 #endif
2706 /* Free Packet Status Ring */
2707 if (rx_ring->ps_ring_virtaddr) {
2708 pktstat_ringsize =
2709 sizeof(struct pkt_stat_desc) *
2710 adapter->rx_ring.psr_num_entries;
2712 dma_free_coherent(&adapter->pdev->dev, pktstat_ringsize,
2713 rx_ring->ps_ring_virtaddr,
2714 rx_ring->ps_ring_physaddr);
2716 rx_ring->ps_ring_virtaddr = NULL;
2719 /* Free area of memory for the writeback of status information */
2720 if (rx_ring->rx_status_block) {
2721 dma_free_coherent(&adapter->pdev->dev,
2722 sizeof(struct rx_status_block),
2723 rx_ring->rx_status_block, rx_ring->rx_status_bus);
2724 rx_ring->rx_status_block = NULL;
2727 /* Destroy the lookaside (RFD) pool */
2728 if (adapter->flags & fMP_ADAPTER_RECV_LOOKASIDE) {
2729 kmem_cache_destroy(rx_ring->recv_lookaside);
2730 adapter->flags &= ~fMP_ADAPTER_RECV_LOOKASIDE;
2733 /* Free the FBR Lookup Table */
2734 #ifdef USE_FBR0
2735 kfree(rx_ring->fbr[1]);
2736 #endif
2738 kfree(rx_ring->fbr[0]);
2740 /* Reset Counters */
2741 rx_ring->num_ready_recv = 0;
2745 * et131x_init_recv - Initialize receive data structures.
2746 * @adapter: pointer to our private adapter structure
2748 * Returns 0 on success and errno on failure (as defined in errno.h)
2750 static int et131x_init_recv(struct et131x_adapter *adapter)
2752 int status = -ENOMEM;
2753 struct rfd *rfd = NULL;
2754 u32 rfdct;
2755 u32 numrfd = 0;
2756 struct rx_ring *rx_ring;
2758 /* Setup some convenience pointers */
2759 rx_ring = &adapter->rx_ring;
2761 /* Setup each RFD */
2762 for (rfdct = 0; rfdct < rx_ring->num_rfd; rfdct++) {
2763 rfd = kmem_cache_alloc(rx_ring->recv_lookaside,
2764 GFP_ATOMIC | GFP_DMA);
2766 if (!rfd) {
2767 dev_err(&adapter->pdev->dev,
2768 "Couldn't alloc RFD out of kmem_cache\n");
2769 status = -ENOMEM;
2770 continue;
2773 rfd->skb = NULL;
2775 /* Add this RFD to the recv_list */
2776 list_add_tail(&rfd->list_node, &rx_ring->recv_list);
2778 /* Increment both the available RFD's, and the total RFD's. */
2779 rx_ring->num_ready_recv++;
2780 numrfd++;
2783 if (numrfd > NIC_MIN_NUM_RFD)
2784 status = 0;
2786 rx_ring->num_rfd = numrfd;
2788 if (status != 0) {
2789 kmem_cache_free(rx_ring->recv_lookaside, rfd);
2790 dev_err(&adapter->pdev->dev,
2791 "Allocation problems in et131x_init_recv\n");
2793 return status;
2797 * et131x_set_rx_dma_timer - Set the heartbeat timer according to line rate.
2798 * @adapter: pointer to our adapter structure
2800 static void et131x_set_rx_dma_timer(struct et131x_adapter *adapter)
2802 struct phy_device *phydev = adapter->phydev;
2804 if (!phydev)
2805 return;
2807 /* For version B silicon, we do not use the RxDMA timer for 10 and 100
2808 * Mbits/s line rates. We do not enable and RxDMA interrupt coalescing.
2810 if ((phydev->speed == SPEED_100) || (phydev->speed == SPEED_10)) {
2811 writel(0, &adapter->regs->rxdma.max_pkt_time);
2812 writel(1, &adapter->regs->rxdma.num_pkt_done);
2817 * NICReturnRFD - Recycle a RFD and put it back onto the receive list
2818 * @adapter: pointer to our adapter
2819 * @rfd: pointer to the RFD
2821 static void nic_return_rfd(struct et131x_adapter *adapter, struct rfd *rfd)
2823 struct rx_ring *rx_local = &adapter->rx_ring;
2824 struct rxdma_regs __iomem *rx_dma = &adapter->regs->rxdma;
2825 u16 buff_index = rfd->bufferindex;
2826 u8 ring_index = rfd->ringindex;
2827 unsigned long flags;
2829 /* We don't use any of the OOB data besides status. Otherwise, we
2830 * need to clean up OOB data
2832 if (
2833 #ifdef USE_FBR0
2834 (ring_index == 0 && buff_index < rx_local->fbr[1]->num_entries) ||
2835 #endif
2836 (ring_index == 1 && buff_index < rx_local->fbr[0]->num_entries)) {
2837 spin_lock_irqsave(&adapter->fbr_lock, flags);
2839 if (ring_index == 1) {
2840 struct fbr_desc *next = (struct fbr_desc *)
2841 (rx_local->fbr[0]->ring_virtaddr) +
2842 INDEX10(rx_local->fbr[0]->local_full);
2844 /* Handle the Free Buffer Ring advancement here. Write
2845 * the PA / Buffer Index for the returned buffer into
2846 * the oldest (next to be freed)FBR entry
2848 next->addr_hi = rx_local->fbr[0]->bus_high[buff_index];
2849 next->addr_lo = rx_local->fbr[0]->bus_low[buff_index];
2850 next->word2 = buff_index;
2852 writel(bump_free_buff_ring(
2853 &rx_local->fbr[0]->local_full,
2854 rx_local->fbr[0]->num_entries - 1),
2855 &rx_dma->fbr1_full_offset);
2857 #ifdef USE_FBR0
2858 else {
2859 struct fbr_desc *next = (struct fbr_desc *)
2860 rx_local->fbr[1]->ring_virtaddr +
2861 INDEX10(rx_local->fbr[1]->local_full);
2863 /* Handle the Free Buffer Ring advancement here. Write
2864 * the PA / Buffer Index for the returned buffer into
2865 * the oldest (next to be freed) FBR entry
2867 next->addr_hi = rx_local->fbr[1]->bus_high[buff_index];
2868 next->addr_lo = rx_local->fbr[1]->bus_low[buff_index];
2869 next->word2 = buff_index;
2871 writel(bump_free_buff_ring(
2872 &rx_local->fbr[1]->local_full,
2873 rx_local->fbr[1]->num_entries - 1),
2874 &rx_dma->fbr0_full_offset);
2876 #endif
2877 spin_unlock_irqrestore(&adapter->fbr_lock, flags);
2878 } else {
2879 dev_err(&adapter->pdev->dev,
2880 "%s illegal Buffer Index returned\n", __func__);
2883 /* The processing on this RFD is done, so put it back on the tail of
2884 * our list
2886 spin_lock_irqsave(&adapter->rcv_lock, flags);
2887 list_add_tail(&rfd->list_node, &rx_local->recv_list);
2888 rx_local->num_ready_recv++;
2889 spin_unlock_irqrestore(&adapter->rcv_lock, flags);
2891 WARN_ON(rx_local->num_ready_recv > rx_local->num_rfd);
2895 * nic_rx_pkts - Checks the hardware for available packets
2896 * @adapter: pointer to our adapter
2898 * Returns rfd, a pointer to our MPRFD.
2900 * Checks the hardware for available packets, using completion ring
2901 * If packets are available, it gets an RFD from the recv_list, attaches
2902 * the packet to it, puts the RFD in the RecvPendList, and also returns
2903 * the pointer to the RFD.
2905 static struct rfd *nic_rx_pkts(struct et131x_adapter *adapter)
2907 struct rx_ring *rx_local = &adapter->rx_ring;
2908 struct rx_status_block *status;
2909 struct pkt_stat_desc *psr;
2910 struct rfd *rfd;
2911 u32 i;
2912 u8 *buf;
2913 unsigned long flags;
2914 struct list_head *element;
2915 u8 ring_index;
2916 u16 buff_index;
2917 u32 len;
2918 u32 word0;
2919 u32 word1;
2921 /* RX Status block is written by the DMA engine prior to every
2922 * interrupt. It contains the next to be used entry in the Packet
2923 * Status Ring, and also the two Free Buffer rings.
2925 status = rx_local->rx_status_block;
2926 word1 = status->word1 >> 16; /* Get the useful bits */
2928 /* Check the PSR and wrap bits do not match */
2929 if ((word1 & 0x1FFF) == (rx_local->local_psr_full & 0x1FFF))
2930 /* Looks like this ring is not updated yet */
2931 return NULL;
2933 /* The packet status ring indicates that data is available. */
2934 psr = (struct pkt_stat_desc *) (rx_local->ps_ring_virtaddr) +
2935 (rx_local->local_psr_full & 0xFFF);
2937 /* Grab any information that is required once the PSR is
2938 * advanced, since we can no longer rely on the memory being
2939 * accurate
2941 len = psr->word1 & 0xFFFF;
2942 ring_index = (psr->word1 >> 26) & 0x03;
2943 buff_index = (psr->word1 >> 16) & 0x3FF;
2944 word0 = psr->word0;
2946 /* Indicate that we have used this PSR entry. */
2947 /* FIXME wrap 12 */
2948 add_12bit(&rx_local->local_psr_full, 1);
2949 if (
2950 (rx_local->local_psr_full & 0xFFF) > rx_local->psr_num_entries - 1) {
2951 /* Clear psr full and toggle the wrap bit */
2952 rx_local->local_psr_full &= ~0xFFF;
2953 rx_local->local_psr_full ^= 0x1000;
2956 writel(rx_local->local_psr_full,
2957 &adapter->regs->rxdma.psr_full_offset);
2959 #ifndef USE_FBR0
2960 if (ring_index != 1)
2961 return NULL;
2962 #endif
2964 #ifdef USE_FBR0
2965 if (ring_index > 1 ||
2966 (ring_index == 0 &&
2967 buff_index > rx_local->fbr[1]->num_entries - 1) ||
2968 (ring_index == 1 &&
2969 buff_index > rx_local->fbr[0]->num_entries - 1))
2970 #else
2971 if (ring_index != 1 || buff_index > rx_local->fbr[0]->num_entries - 1)
2972 #endif
2974 /* Illegal buffer or ring index cannot be used by S/W*/
2975 dev_err(&adapter->pdev->dev,
2976 "NICRxPkts PSR Entry %d indicates "
2977 "length of %d and/or bad bi(%d)\n",
2978 rx_local->local_psr_full & 0xFFF,
2979 len, buff_index);
2980 return NULL;
2983 /* Get and fill the RFD. */
2984 spin_lock_irqsave(&adapter->rcv_lock, flags);
2986 rfd = NULL;
2987 element = rx_local->recv_list.next;
2988 rfd = (struct rfd *) list_entry(element, struct rfd, list_node);
2990 if (rfd == NULL) {
2991 spin_unlock_irqrestore(&adapter->rcv_lock, flags);
2992 return NULL;
2995 list_del(&rfd->list_node);
2996 rx_local->num_ready_recv--;
2998 spin_unlock_irqrestore(&adapter->rcv_lock, flags);
3000 rfd->bufferindex = buff_index;
3001 rfd->ringindex = ring_index;
3003 /* In V1 silicon, there is a bug which screws up filtering of
3004 * runt packets. Therefore runt packet filtering is disabled
3005 * in the MAC and the packets are dropped here. They are
3006 * also counted here.
3008 if (len < (NIC_MIN_PACKET_SIZE + 4)) {
3009 adapter->stats.rx_other_errs++;
3010 len = 0;
3013 if (len) {
3014 /* Determine if this is a multicast packet coming in */
3015 if ((word0 & ALCATEL_MULTICAST_PKT) &&
3016 !(word0 & ALCATEL_BROADCAST_PKT)) {
3017 /* Promiscuous mode and Multicast mode are
3018 * not mutually exclusive as was first
3019 * thought. I guess Promiscuous is just
3020 * considered a super-set of the other
3021 * filters. Generally filter is 0x2b when in
3022 * promiscuous mode.
3024 if ((adapter->packet_filter &
3025 ET131X_PACKET_TYPE_MULTICAST)
3026 && !(adapter->packet_filter &
3027 ET131X_PACKET_TYPE_PROMISCUOUS)
3028 && !(adapter->packet_filter &
3029 ET131X_PACKET_TYPE_ALL_MULTICAST)) {
3031 * Note - ring_index for fbr[] array is reversed
3032 * 1 for FBR0 etc
3034 buf = rx_local->fbr[(ring_index == 0 ? 1 : 0)]->
3035 virt[buff_index];
3037 /* Loop through our list to see if the
3038 * destination address of this packet
3039 * matches one in our list.
3041 for (i = 0; i < adapter->multicast_addr_count;
3042 i++) {
3043 if (buf[0] ==
3044 adapter->multicast_list[i][0]
3045 && buf[1] ==
3046 adapter->multicast_list[i][1]
3047 && buf[2] ==
3048 adapter->multicast_list[i][2]
3049 && buf[3] ==
3050 adapter->multicast_list[i][3]
3051 && buf[4] ==
3052 adapter->multicast_list[i][4]
3053 && buf[5] ==
3054 adapter->multicast_list[i][5]) {
3055 break;
3059 /* If our index is equal to the number
3060 * of Multicast address we have, then
3061 * this means we did not find this
3062 * packet's matching address in our
3063 * list. Set the len to zero,
3064 * so we free our RFD when we return
3065 * from this function.
3067 if (i == adapter->multicast_addr_count)
3068 len = 0;
3071 if (len > 0)
3072 adapter->stats.multicast_pkts_rcvd++;
3073 } else if (word0 & ALCATEL_BROADCAST_PKT)
3074 adapter->stats.broadcast_pkts_rcvd++;
3075 else
3076 /* Not sure what this counter measures in
3077 * promiscuous mode. Perhaps we should check
3078 * the MAC address to see if it is directed
3079 * to us in promiscuous mode.
3081 adapter->stats.unicast_pkts_rcvd++;
3084 if (len > 0) {
3085 struct sk_buff *skb = NULL;
3087 /*rfd->len = len - 4; */
3088 rfd->len = len;
3090 skb = dev_alloc_skb(rfd->len + 2);
3091 if (!skb) {
3092 dev_err(&adapter->pdev->dev,
3093 "Couldn't alloc an SKB for Rx\n");
3094 return NULL;
3097 adapter->net_stats.rx_bytes += rfd->len;
3100 * Note - ring_index for fbr[] array is reversed,
3101 * 1 for FBR0 etc
3103 memcpy(skb_put(skb, rfd->len),
3104 rx_local->fbr[(ring_index == 0 ? 1 : 0)]->virt[buff_index],
3105 rfd->len);
3107 skb->dev = adapter->netdev;
3108 skb->protocol = eth_type_trans(skb, adapter->netdev);
3109 skb->ip_summed = CHECKSUM_NONE;
3111 netif_rx_ni(skb);
3112 } else {
3113 rfd->len = 0;
3116 nic_return_rfd(adapter, rfd);
3117 return rfd;
3121 * et131x_handle_recv_interrupt - Interrupt handler for receive processing
3122 * @adapter: pointer to our adapter
3124 * Assumption, Rcv spinlock has been acquired.
3126 static void et131x_handle_recv_interrupt(struct et131x_adapter *adapter)
3128 struct rfd *rfd = NULL;
3129 u32 count = 0;
3130 bool done = true;
3132 /* Process up to available RFD's */
3133 while (count < NUM_PACKETS_HANDLED) {
3134 if (list_empty(&adapter->rx_ring.recv_list)) {
3135 WARN_ON(adapter->rx_ring.num_ready_recv != 0);
3136 done = false;
3137 break;
3140 rfd = nic_rx_pkts(adapter);
3142 if (rfd == NULL)
3143 break;
3145 /* Do not receive any packets until a filter has been set.
3146 * Do not receive any packets until we have link.
3147 * If length is zero, return the RFD in order to advance the
3148 * Free buffer ring.
3150 if (!adapter->packet_filter ||
3151 !netif_carrier_ok(adapter->netdev) ||
3152 rfd->len == 0)
3153 continue;
3155 /* Increment the number of packets we received */
3156 adapter->net_stats.rx_packets++;
3158 /* Set the status on the packet, either resources or success */
3159 if (adapter->rx_ring.num_ready_recv < RFD_LOW_WATER_MARK) {
3160 dev_warn(&adapter->pdev->dev,
3161 "RFD's are running out\n");
3163 count++;
3166 if (count == NUM_PACKETS_HANDLED || !done) {
3167 adapter->rx_ring.unfinished_receives = true;
3168 writel(PARM_TX_TIME_INT_DEF * NANO_IN_A_MICRO,
3169 &adapter->regs->global.watchdog_timer);
3170 } else
3171 /* Watchdog timer will disable itself if appropriate. */
3172 adapter->rx_ring.unfinished_receives = false;
3176 * et131x_tx_dma_memory_alloc
3177 * @adapter: pointer to our private adapter structure
3179 * Returns 0 on success and errno on failure (as defined in errno.h).
3181 * Allocates memory that will be visible both to the device and to the CPU.
3182 * The OS will pass us packets, pointers to which we will insert in the Tx
3183 * Descriptor queue. The device will read this queue to find the packets in
3184 * memory. The device will update the "status" in memory each time it xmits a
3185 * packet.
3187 static int et131x_tx_dma_memory_alloc(struct et131x_adapter *adapter)
3189 int desc_size = 0;
3190 struct tx_ring *tx_ring = &adapter->tx_ring;
3192 /* Allocate memory for the TCB's (Transmit Control Block) */
3193 adapter->tx_ring.tcb_ring =
3194 kcalloc(NUM_TCB, sizeof(struct tcb), GFP_ATOMIC | GFP_DMA);
3195 if (!adapter->tx_ring.tcb_ring) {
3196 dev_err(&adapter->pdev->dev, "Cannot alloc memory for TCBs\n");
3197 return -ENOMEM;
3200 /* Allocate enough memory for the Tx descriptor ring, and allocate
3201 * some extra so that the ring can be aligned on a 4k boundary.
3203 desc_size = (sizeof(struct tx_desc) * NUM_DESC_PER_RING_TX) + 4096 - 1;
3204 tx_ring->tx_desc_ring =
3205 (struct tx_desc *) dma_alloc_coherent(&adapter->pdev->dev,
3206 desc_size,
3207 &tx_ring->tx_desc_ring_pa,
3208 GFP_KERNEL);
3209 if (!adapter->tx_ring.tx_desc_ring) {
3210 dev_err(&adapter->pdev->dev,
3211 "Cannot alloc memory for Tx Ring\n");
3212 return -ENOMEM;
3215 /* Save physical address
3217 * NOTE: dma_alloc_coherent(), used above to alloc DMA regions,
3218 * ALWAYS returns SAC (32-bit) addresses. If DAC (64-bit) addresses
3219 * are ever returned, make sure the high part is retrieved here before
3220 * storing the adjusted address.
3222 /* Allocate memory for the Tx status block */
3223 tx_ring->tx_status = dma_alloc_coherent(&adapter->pdev->dev,
3224 sizeof(u32),
3225 &tx_ring->tx_status_pa,
3226 GFP_KERNEL);
3227 if (!adapter->tx_ring.tx_status_pa) {
3228 dev_err(&adapter->pdev->dev,
3229 "Cannot alloc memory for Tx status block\n");
3230 return -ENOMEM;
3232 return 0;
3236 * et131x_tx_dma_memory_free - Free all memory allocated within this module
3237 * @adapter: pointer to our private adapter structure
3239 * Returns 0 on success and errno on failure (as defined in errno.h).
3241 static void et131x_tx_dma_memory_free(struct et131x_adapter *adapter)
3243 int desc_size = 0;
3245 if (adapter->tx_ring.tx_desc_ring) {
3246 /* Free memory relating to Tx rings here */
3247 desc_size = (sizeof(struct tx_desc) * NUM_DESC_PER_RING_TX)
3248 + 4096 - 1;
3249 dma_free_coherent(&adapter->pdev->dev,
3250 desc_size,
3251 adapter->tx_ring.tx_desc_ring,
3252 adapter->tx_ring.tx_desc_ring_pa);
3253 adapter->tx_ring.tx_desc_ring = NULL;
3256 /* Free memory for the Tx status block */
3257 if (adapter->tx_ring.tx_status) {
3258 dma_free_coherent(&adapter->pdev->dev,
3259 sizeof(u32),
3260 adapter->tx_ring.tx_status,
3261 adapter->tx_ring.tx_status_pa);
3263 adapter->tx_ring.tx_status = NULL;
3265 /* Free the memory for the tcb structures */
3266 kfree(adapter->tx_ring.tcb_ring);
3270 * nic_send_packet - NIC specific send handler for version B silicon.
3271 * @adapter: pointer to our adapter
3272 * @tcb: pointer to struct tcb
3274 * Returns 0 or errno.
3276 static int nic_send_packet(struct et131x_adapter *adapter, struct tcb *tcb)
3278 u32 i;
3279 struct tx_desc desc[24]; /* 24 x 16 byte */
3280 u32 frag = 0;
3281 u32 thiscopy, remainder;
3282 struct sk_buff *skb = tcb->skb;
3283 u32 nr_frags = skb_shinfo(skb)->nr_frags + 1;
3284 struct skb_frag_struct *frags = &skb_shinfo(skb)->frags[0];
3285 unsigned long flags;
3286 struct phy_device *phydev = adapter->phydev;
3288 /* Part of the optimizations of this send routine restrict us to
3289 * sending 24 fragments at a pass. In practice we should never see
3290 * more than 5 fragments.
3292 * NOTE: The older version of this function (below) can handle any
3293 * number of fragments. If needed, we can call this function,
3294 * although it is less efficient.
3296 if (nr_frags > 23)
3297 return -EIO;
3299 memset(desc, 0, sizeof(struct tx_desc) * (nr_frags + 1));
3301 for (i = 0; i < nr_frags; i++) {
3302 /* If there is something in this element, lets get a
3303 * descriptor from the ring and get the necessary data
3305 if (i == 0) {
3306 /* If the fragments are smaller than a standard MTU,
3307 * then map them to a single descriptor in the Tx
3308 * Desc ring. However, if they're larger, as is
3309 * possible with support for jumbo packets, then
3310 * split them each across 2 descriptors.
3312 * This will work until we determine why the hardware
3313 * doesn't seem to like large fragments.
3315 if ((skb->len - skb->data_len) <= 1514) {
3316 desc[frag].addr_hi = 0;
3317 /* Low 16bits are length, high is vlan and
3318 unused currently so zero */
3319 desc[frag].len_vlan =
3320 skb->len - skb->data_len;
3322 /* NOTE: Here, the dma_addr_t returned from
3323 * dma_map_single() is implicitly cast as a
3324 * u32. Although dma_addr_t can be
3325 * 64-bit, the address returned by
3326 * dma_map_single() is always 32-bit
3327 * addressable (as defined by the pci/dma
3328 * subsystem)
3330 desc[frag++].addr_lo =
3331 dma_map_single(&adapter->pdev->dev,
3332 skb->data,
3333 skb->len -
3334 skb->data_len,
3335 DMA_TO_DEVICE);
3336 } else {
3337 desc[frag].addr_hi = 0;
3338 desc[frag].len_vlan =
3339 (skb->len - skb->data_len) / 2;
3341 /* NOTE: Here, the dma_addr_t returned from
3342 * dma_map_single() is implicitly cast as a
3343 * u32. Although dma_addr_t can be
3344 * 64-bit, the address returned by
3345 * dma_map_single() is always 32-bit
3346 * addressable (as defined by the pci/dma
3347 * subsystem)
3349 desc[frag++].addr_lo =
3350 dma_map_single(&adapter->pdev->dev,
3351 skb->data,
3352 ((skb->len -
3353 skb->data_len) / 2),
3354 DMA_TO_DEVICE);
3355 desc[frag].addr_hi = 0;
3357 desc[frag].len_vlan =
3358 (skb->len - skb->data_len) / 2;
3360 /* NOTE: Here, the dma_addr_t returned from
3361 * dma_map_single() is implicitly cast as a
3362 * u32. Although dma_addr_t can be
3363 * 64-bit, the address returned by
3364 * dma_map_single() is always 32-bit
3365 * addressable (as defined by the pci/dma
3366 * subsystem)
3368 desc[frag++].addr_lo =
3369 dma_map_single(&adapter->pdev->dev,
3370 skb->data +
3371 ((skb->len -
3372 skb->data_len) / 2),
3373 ((skb->len -
3374 skb->data_len) / 2),
3375 DMA_TO_DEVICE);
3377 } else {
3378 desc[frag].addr_hi = 0;
3379 desc[frag].len_vlan =
3380 frags[i - 1].size;
3382 /* NOTE: Here, the dma_addr_t returned from
3383 * dma_map_page() is implicitly cast as a u32.
3384 * Although dma_addr_t can be 64-bit, the address
3385 * returned by dma_map_page() is always 32-bit
3386 * addressable (as defined by the pci/dma subsystem)
3388 desc[frag++].addr_lo = skb_frag_dma_map(
3389 &adapter->pdev->dev,
3390 &frags[i - 1],
3392 frags[i - 1].size,
3393 DMA_TO_DEVICE);
3397 if (phydev && phydev->speed == SPEED_1000) {
3398 if (++adapter->tx_ring.since_irq == PARM_TX_NUM_BUFS_DEF) {
3399 /* Last element & Interrupt flag */
3400 desc[frag - 1].flags = 0x5;
3401 adapter->tx_ring.since_irq = 0;
3402 } else { /* Last element */
3403 desc[frag - 1].flags = 0x1;
3405 } else
3406 desc[frag - 1].flags = 0x5;
3408 desc[0].flags |= 2; /* First element flag */
3410 tcb->index_start = adapter->tx_ring.send_idx;
3411 tcb->stale = 0;
3413 spin_lock_irqsave(&adapter->send_hw_lock, flags);
3415 thiscopy = NUM_DESC_PER_RING_TX -
3416 INDEX10(adapter->tx_ring.send_idx);
3418 if (thiscopy >= frag) {
3419 remainder = 0;
3420 thiscopy = frag;
3421 } else {
3422 remainder = frag - thiscopy;
3425 memcpy(adapter->tx_ring.tx_desc_ring +
3426 INDEX10(adapter->tx_ring.send_idx), desc,
3427 sizeof(struct tx_desc) * thiscopy);
3429 add_10bit(&adapter->tx_ring.send_idx, thiscopy);
3431 if (INDEX10(adapter->tx_ring.send_idx) == 0 ||
3432 INDEX10(adapter->tx_ring.send_idx) == NUM_DESC_PER_RING_TX) {
3433 adapter->tx_ring.send_idx &= ~ET_DMA10_MASK;
3434 adapter->tx_ring.send_idx ^= ET_DMA10_WRAP;
3437 if (remainder) {
3438 memcpy(adapter->tx_ring.tx_desc_ring,
3439 desc + thiscopy,
3440 sizeof(struct tx_desc) * remainder);
3442 add_10bit(&adapter->tx_ring.send_idx, remainder);
3445 if (INDEX10(adapter->tx_ring.send_idx) == 0) {
3446 if (adapter->tx_ring.send_idx)
3447 tcb->index = NUM_DESC_PER_RING_TX - 1;
3448 else
3449 tcb->index = ET_DMA10_WRAP|(NUM_DESC_PER_RING_TX - 1);
3450 } else
3451 tcb->index = adapter->tx_ring.send_idx - 1;
3453 spin_lock(&adapter->tcb_send_qlock);
3455 if (adapter->tx_ring.send_tail)
3456 adapter->tx_ring.send_tail->next = tcb;
3457 else
3458 adapter->tx_ring.send_head = tcb;
3460 adapter->tx_ring.send_tail = tcb;
3462 WARN_ON(tcb->next != NULL);
3464 adapter->tx_ring.used++;
3466 spin_unlock(&adapter->tcb_send_qlock);
3468 /* Write the new write pointer back to the device. */
3469 writel(adapter->tx_ring.send_idx,
3470 &adapter->regs->txdma.service_request);
3472 /* For Gig only, we use Tx Interrupt coalescing. Enable the software
3473 * timer to wake us up if this packet isn't followed by N more.
3475 if (phydev && phydev->speed == SPEED_1000) {
3476 writel(PARM_TX_TIME_INT_DEF * NANO_IN_A_MICRO,
3477 &adapter->regs->global.watchdog_timer);
3479 spin_unlock_irqrestore(&adapter->send_hw_lock, flags);
3481 return 0;
3485 * send_packet - Do the work to send a packet
3486 * @skb: the packet(s) to send
3487 * @adapter: a pointer to the device's private adapter structure
3489 * Return 0 in almost all cases; non-zero value in extreme hard failure only.
3491 * Assumption: Send spinlock has been acquired
3493 static int send_packet(struct sk_buff *skb, struct et131x_adapter *adapter)
3495 int status;
3496 struct tcb *tcb = NULL;
3497 u16 *shbufva;
3498 unsigned long flags;
3500 /* All packets must have at least a MAC address and a protocol type */
3501 if (skb->len < ETH_HLEN)
3502 return -EIO;
3504 /* Get a TCB for this packet */
3505 spin_lock_irqsave(&adapter->tcb_ready_qlock, flags);
3507 tcb = adapter->tx_ring.tcb_qhead;
3509 if (tcb == NULL) {
3510 spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
3511 return -ENOMEM;
3514 adapter->tx_ring.tcb_qhead = tcb->next;
3516 if (adapter->tx_ring.tcb_qhead == NULL)
3517 adapter->tx_ring.tcb_qtail = NULL;
3519 spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
3521 tcb->skb = skb;
3523 if (skb->data != NULL && skb->len - skb->data_len >= 6) {
3524 shbufva = (u16 *) skb->data;
3526 if ((shbufva[0] == 0xffff) &&
3527 (shbufva[1] == 0xffff) && (shbufva[2] == 0xffff)) {
3528 tcb->flags |= fMP_DEST_BROAD;
3529 } else if ((shbufva[0] & 0x3) == 0x0001) {
3530 tcb->flags |= fMP_DEST_MULTI;
3534 tcb->next = NULL;
3536 /* Call the NIC specific send handler. */
3537 status = nic_send_packet(adapter, tcb);
3539 if (status != 0) {
3540 spin_lock_irqsave(&adapter->tcb_ready_qlock, flags);
3542 if (adapter->tx_ring.tcb_qtail)
3543 adapter->tx_ring.tcb_qtail->next = tcb;
3544 else
3545 /* Apparently ready Q is empty. */
3546 adapter->tx_ring.tcb_qhead = tcb;
3548 adapter->tx_ring.tcb_qtail = tcb;
3549 spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
3550 return status;
3552 WARN_ON(adapter->tx_ring.used > NUM_TCB);
3553 return 0;
3557 * et131x_send_packets - This function is called by the OS to send packets
3558 * @skb: the packet(s) to send
3559 * @netdev:device on which to TX the above packet(s)
3561 * Return 0 in almost all cases; non-zero value in extreme hard failure only
3563 static int et131x_send_packets(struct sk_buff *skb, struct net_device *netdev)
3565 int status = 0;
3566 struct et131x_adapter *adapter = netdev_priv(netdev);
3568 /* Send these packets
3570 * NOTE: The Linux Tx entry point is only given one packet at a time
3571 * to Tx, so the PacketCount and it's array used makes no sense here
3574 /* TCB is not available */
3575 if (adapter->tx_ring.used >= NUM_TCB) {
3576 /* NOTE: If there's an error on send, no need to queue the
3577 * packet under Linux; if we just send an error up to the
3578 * netif layer, it will resend the skb to us.
3580 status = -ENOMEM;
3581 } else {
3582 /* We need to see if the link is up; if it's not, make the
3583 * netif layer think we're good and drop the packet
3585 if ((adapter->flags & fMP_ADAPTER_FAIL_SEND_MASK) ||
3586 !netif_carrier_ok(netdev)) {
3587 dev_kfree_skb_any(skb);
3588 skb = NULL;
3590 adapter->net_stats.tx_dropped++;
3591 } else {
3592 status = send_packet(skb, adapter);
3593 if (status != 0 && status != -ENOMEM) {
3594 /* On any other error, make netif think we're
3595 * OK and drop the packet
3597 dev_kfree_skb_any(skb);
3598 skb = NULL;
3599 adapter->net_stats.tx_dropped++;
3603 return status;
3607 * free_send_packet - Recycle a struct tcb
3608 * @adapter: pointer to our adapter
3609 * @tcb: pointer to struct tcb
3611 * Complete the packet if necessary
3612 * Assumption - Send spinlock has been acquired
3614 static inline void free_send_packet(struct et131x_adapter *adapter,
3615 struct tcb *tcb)
3617 unsigned long flags;
3618 struct tx_desc *desc = NULL;
3619 struct net_device_stats *stats = &adapter->net_stats;
3621 if (tcb->flags & fMP_DEST_BROAD)
3622 atomic_inc(&adapter->stats.broadcast_pkts_xmtd);
3623 else if (tcb->flags & fMP_DEST_MULTI)
3624 atomic_inc(&adapter->stats.multicast_pkts_xmtd);
3625 else
3626 atomic_inc(&adapter->stats.unicast_pkts_xmtd);
3628 if (tcb->skb) {
3629 stats->tx_bytes += tcb->skb->len;
3631 /* Iterate through the TX descriptors on the ring
3632 * corresponding to this packet and umap the fragments
3633 * they point to
3635 do {
3636 desc = (struct tx_desc *)
3637 (adapter->tx_ring.tx_desc_ring +
3638 INDEX10(tcb->index_start));
3640 dma_unmap_single(&adapter->pdev->dev,
3641 desc->addr_lo,
3642 desc->len_vlan, DMA_TO_DEVICE);
3644 add_10bit(&tcb->index_start, 1);
3645 if (INDEX10(tcb->index_start) >=
3646 NUM_DESC_PER_RING_TX) {
3647 tcb->index_start &= ~ET_DMA10_MASK;
3648 tcb->index_start ^= ET_DMA10_WRAP;
3650 } while (desc != (adapter->tx_ring.tx_desc_ring +
3651 INDEX10(tcb->index)));
3653 dev_kfree_skb_any(tcb->skb);
3656 memset(tcb, 0, sizeof(struct tcb));
3658 /* Add the TCB to the Ready Q */
3659 spin_lock_irqsave(&adapter->tcb_ready_qlock, flags);
3661 adapter->net_stats.tx_packets++;
3663 if (adapter->tx_ring.tcb_qtail)
3664 adapter->tx_ring.tcb_qtail->next = tcb;
3665 else
3666 /* Apparently ready Q is empty. */
3667 adapter->tx_ring.tcb_qhead = tcb;
3669 adapter->tx_ring.tcb_qtail = tcb;
3671 spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
3672 WARN_ON(adapter->tx_ring.used < 0);
3676 * et131x_free_busy_send_packets - Free and complete the stopped active sends
3677 * @adapter: pointer to our adapter
3679 * Assumption - Send spinlock has been acquired
3681 static void et131x_free_busy_send_packets(struct et131x_adapter *adapter)
3683 struct tcb *tcb;
3684 unsigned long flags;
3685 u32 freed = 0;
3687 /* Any packets being sent? Check the first TCB on the send list */
3688 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
3690 tcb = adapter->tx_ring.send_head;
3692 while (tcb != NULL && freed < NUM_TCB) {
3693 struct tcb *next = tcb->next;
3695 adapter->tx_ring.send_head = next;
3697 if (next == NULL)
3698 adapter->tx_ring.send_tail = NULL;
3700 adapter->tx_ring.used--;
3702 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
3704 freed++;
3705 free_send_packet(adapter, tcb);
3707 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
3709 tcb = adapter->tx_ring.send_head;
3712 WARN_ON(freed == NUM_TCB);
3714 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
3716 adapter->tx_ring.used = 0;
3720 * et131x_handle_send_interrupt - Interrupt handler for sending processing
3721 * @adapter: pointer to our adapter
3723 * Re-claim the send resources, complete sends and get more to send from
3724 * the send wait queue.
3726 * Assumption - Send spinlock has been acquired
3728 static void et131x_handle_send_interrupt(struct et131x_adapter *adapter)
3730 unsigned long flags;
3731 u32 serviced;
3732 struct tcb *tcb;
3733 u32 index;
3735 serviced = readl(&adapter->regs->txdma.new_service_complete);
3736 index = INDEX10(serviced);
3738 /* Has the ring wrapped? Process any descriptors that do not have
3739 * the same "wrap" indicator as the current completion indicator
3741 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
3743 tcb = adapter->tx_ring.send_head;
3745 while (tcb &&
3746 ((serviced ^ tcb->index) & ET_DMA10_WRAP) &&
3747 index < INDEX10(tcb->index)) {
3748 adapter->tx_ring.used--;
3749 adapter->tx_ring.send_head = tcb->next;
3750 if (tcb->next == NULL)
3751 adapter->tx_ring.send_tail = NULL;
3753 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
3754 free_send_packet(adapter, tcb);
3755 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
3757 /* Goto the next packet */
3758 tcb = adapter->tx_ring.send_head;
3760 while (tcb &&
3761 !((serviced ^ tcb->index) & ET_DMA10_WRAP)
3762 && index > (tcb->index & ET_DMA10_MASK)) {
3763 adapter->tx_ring.used--;
3764 adapter->tx_ring.send_head = tcb->next;
3765 if (tcb->next == NULL)
3766 adapter->tx_ring.send_tail = NULL;
3768 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
3769 free_send_packet(adapter, tcb);
3770 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
3772 /* Goto the next packet */
3773 tcb = adapter->tx_ring.send_head;
3776 /* Wake up the queue when we hit a low-water mark */
3777 if (adapter->tx_ring.used <= NUM_TCB / 3)
3778 netif_wake_queue(adapter->netdev);
3780 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
3783 static int et131x_get_settings(struct net_device *netdev,
3784 struct ethtool_cmd *cmd)
3786 struct et131x_adapter *adapter = netdev_priv(netdev);
3788 return phy_ethtool_gset(adapter->phydev, cmd);
3791 static int et131x_set_settings(struct net_device *netdev,
3792 struct ethtool_cmd *cmd)
3794 struct et131x_adapter *adapter = netdev_priv(netdev);
3796 return phy_ethtool_sset(adapter->phydev, cmd);
3799 static int et131x_get_regs_len(struct net_device *netdev)
3801 #define ET131X_REGS_LEN 256
3802 return ET131X_REGS_LEN * sizeof(u32);
3805 static void et131x_get_regs(struct net_device *netdev,
3806 struct ethtool_regs *regs, void *regs_data)
3808 struct et131x_adapter *adapter = netdev_priv(netdev);
3809 struct address_map __iomem *aregs = adapter->regs;
3810 u32 *regs_buff = regs_data;
3811 u32 num = 0;
3813 memset(regs_data, 0, et131x_get_regs_len(netdev));
3815 regs->version = (1 << 24) | (adapter->pdev->revision << 16) |
3816 adapter->pdev->device;
3818 /* PHY regs */
3819 et131x_mii_read(adapter, MII_BMCR, (u16 *)&regs_buff[num++]);
3820 et131x_mii_read(adapter, MII_BMSR, (u16 *)&regs_buff[num++]);
3821 et131x_mii_read(adapter, MII_PHYSID1, (u16 *)&regs_buff[num++]);
3822 et131x_mii_read(adapter, MII_PHYSID2, (u16 *)&regs_buff[num++]);
3823 et131x_mii_read(adapter, MII_ADVERTISE, (u16 *)&regs_buff[num++]);
3824 et131x_mii_read(adapter, MII_LPA, (u16 *)&regs_buff[num++]);
3825 et131x_mii_read(adapter, MII_EXPANSION, (u16 *)&regs_buff[num++]);
3826 /* Autoneg next page transmit reg */
3827 et131x_mii_read(adapter, 0x07, (u16 *)&regs_buff[num++]);
3828 /* Link partner next page reg */
3829 et131x_mii_read(adapter, 0x08, (u16 *)&regs_buff[num++]);
3830 et131x_mii_read(adapter, MII_CTRL1000, (u16 *)&regs_buff[num++]);
3831 et131x_mii_read(adapter, MII_STAT1000, (u16 *)&regs_buff[num++]);
3832 et131x_mii_read(adapter, MII_ESTATUS, (u16 *)&regs_buff[num++]);
3833 et131x_mii_read(adapter, PHY_INDEX_REG, (u16 *)&regs_buff[num++]);
3834 et131x_mii_read(adapter, PHY_DATA_REG, (u16 *)&regs_buff[num++]);
3835 et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG,
3836 (u16 *)&regs_buff[num++]);
3837 et131x_mii_read(adapter, PHY_LOOPBACK_CONTROL,
3838 (u16 *)&regs_buff[num++]);
3839 et131x_mii_read(adapter, PHY_LOOPBACK_CONTROL+1,
3840 (u16 *)&regs_buff[num++]);
3841 et131x_mii_read(adapter, PHY_REGISTER_MGMT_CONTROL,
3842 (u16 *)&regs_buff[num++]);
3843 et131x_mii_read(adapter, PHY_CONFIG, (u16 *)&regs_buff[num++]);
3844 et131x_mii_read(adapter, PHY_PHY_CONTROL, (u16 *)&regs_buff[num++]);
3845 et131x_mii_read(adapter, PHY_INTERRUPT_MASK, (u16 *)&regs_buff[num++]);
3846 et131x_mii_read(adapter, PHY_INTERRUPT_STATUS,
3847 (u16 *)&regs_buff[num++]);
3848 et131x_mii_read(adapter, PHY_PHY_STATUS, (u16 *)&regs_buff[num++]);
3849 et131x_mii_read(adapter, PHY_LED_1, (u16 *)&regs_buff[num++]);
3850 et131x_mii_read(adapter, PHY_LED_2, (u16 *)&regs_buff[num++]);
3852 /* Global regs */
3853 regs_buff[num++] = readl(&aregs->global.txq_start_addr);
3854 regs_buff[num++] = readl(&aregs->global.txq_end_addr);
3855 regs_buff[num++] = readl(&aregs->global.rxq_start_addr);
3856 regs_buff[num++] = readl(&aregs->global.rxq_end_addr);
3857 regs_buff[num++] = readl(&aregs->global.pm_csr);
3858 regs_buff[num++] = adapter->stats.interrupt_status;
3859 regs_buff[num++] = readl(&aregs->global.int_mask);
3860 regs_buff[num++] = readl(&aregs->global.int_alias_clr_en);
3861 regs_buff[num++] = readl(&aregs->global.int_status_alias);
3862 regs_buff[num++] = readl(&aregs->global.sw_reset);
3863 regs_buff[num++] = readl(&aregs->global.slv_timer);
3864 regs_buff[num++] = readl(&aregs->global.msi_config);
3865 regs_buff[num++] = readl(&aregs->global.loopback);
3866 regs_buff[num++] = readl(&aregs->global.watchdog_timer);
3868 /* TXDMA regs */
3869 regs_buff[num++] = readl(&aregs->txdma.csr);
3870 regs_buff[num++] = readl(&aregs->txdma.pr_base_hi);
3871 regs_buff[num++] = readl(&aregs->txdma.pr_base_lo);
3872 regs_buff[num++] = readl(&aregs->txdma.pr_num_des);
3873 regs_buff[num++] = readl(&aregs->txdma.txq_wr_addr);
3874 regs_buff[num++] = readl(&aregs->txdma.txq_wr_addr_ext);
3875 regs_buff[num++] = readl(&aregs->txdma.txq_rd_addr);
3876 regs_buff[num++] = readl(&aregs->txdma.dma_wb_base_hi);
3877 regs_buff[num++] = readl(&aregs->txdma.dma_wb_base_lo);
3878 regs_buff[num++] = readl(&aregs->txdma.service_request);
3879 regs_buff[num++] = readl(&aregs->txdma.service_complete);
3880 regs_buff[num++] = readl(&aregs->txdma.cache_rd_index);
3881 regs_buff[num++] = readl(&aregs->txdma.cache_wr_index);
3882 regs_buff[num++] = readl(&aregs->txdma.tx_dma_error);
3883 regs_buff[num++] = readl(&aregs->txdma.desc_abort_cnt);
3884 regs_buff[num++] = readl(&aregs->txdma.payload_abort_cnt);
3885 regs_buff[num++] = readl(&aregs->txdma.writeback_abort_cnt);
3886 regs_buff[num++] = readl(&aregs->txdma.desc_timeout_cnt);
3887 regs_buff[num++] = readl(&aregs->txdma.payload_timeout_cnt);
3888 regs_buff[num++] = readl(&aregs->txdma.writeback_timeout_cnt);
3889 regs_buff[num++] = readl(&aregs->txdma.desc_error_cnt);
3890 regs_buff[num++] = readl(&aregs->txdma.payload_error_cnt);
3891 regs_buff[num++] = readl(&aregs->txdma.writeback_error_cnt);
3892 regs_buff[num++] = readl(&aregs->txdma.dropped_tlp_cnt);
3893 regs_buff[num++] = readl(&aregs->txdma.new_service_complete);
3894 regs_buff[num++] = readl(&aregs->txdma.ethernet_packet_cnt);
3896 /* RXDMA regs */
3897 regs_buff[num++] = readl(&aregs->rxdma.csr);
3898 regs_buff[num++] = readl(&aregs->rxdma.dma_wb_base_hi);
3899 regs_buff[num++] = readl(&aregs->rxdma.dma_wb_base_lo);
3900 regs_buff[num++] = readl(&aregs->rxdma.num_pkt_done);
3901 regs_buff[num++] = readl(&aregs->rxdma.max_pkt_time);
3902 regs_buff[num++] = readl(&aregs->rxdma.rxq_rd_addr);
3903 regs_buff[num++] = readl(&aregs->rxdma.rxq_rd_addr_ext);
3904 regs_buff[num++] = readl(&aregs->rxdma.rxq_wr_addr);
3905 regs_buff[num++] = readl(&aregs->rxdma.psr_base_hi);
3906 regs_buff[num++] = readl(&aregs->rxdma.psr_base_lo);
3907 regs_buff[num++] = readl(&aregs->rxdma.psr_num_des);
3908 regs_buff[num++] = readl(&aregs->rxdma.psr_avail_offset);
3909 regs_buff[num++] = readl(&aregs->rxdma.psr_full_offset);
3910 regs_buff[num++] = readl(&aregs->rxdma.psr_access_index);
3911 regs_buff[num++] = readl(&aregs->rxdma.psr_min_des);
3912 regs_buff[num++] = readl(&aregs->rxdma.fbr0_base_lo);
3913 regs_buff[num++] = readl(&aregs->rxdma.fbr0_base_hi);
3914 regs_buff[num++] = readl(&aregs->rxdma.fbr0_num_des);
3915 regs_buff[num++] = readl(&aregs->rxdma.fbr0_avail_offset);
3916 regs_buff[num++] = readl(&aregs->rxdma.fbr0_full_offset);
3917 regs_buff[num++] = readl(&aregs->rxdma.fbr0_rd_index);
3918 regs_buff[num++] = readl(&aregs->rxdma.fbr0_min_des);
3919 regs_buff[num++] = readl(&aregs->rxdma.fbr1_base_lo);
3920 regs_buff[num++] = readl(&aregs->rxdma.fbr1_base_hi);
3921 regs_buff[num++] = readl(&aregs->rxdma.fbr1_num_des);
3922 regs_buff[num++] = readl(&aregs->rxdma.fbr1_avail_offset);
3923 regs_buff[num++] = readl(&aregs->rxdma.fbr1_full_offset);
3924 regs_buff[num++] = readl(&aregs->rxdma.fbr1_rd_index);
3925 regs_buff[num++] = readl(&aregs->rxdma.fbr1_min_des);
3928 #define ET131X_DRVINFO_LEN 32 /* value from ethtool.h */
3929 static void et131x_get_drvinfo(struct net_device *netdev,
3930 struct ethtool_drvinfo *info)
3932 struct et131x_adapter *adapter = netdev_priv(netdev);
3934 strncpy(info->driver, DRIVER_NAME, ET131X_DRVINFO_LEN);
3935 strncpy(info->version, DRIVER_VERSION, ET131X_DRVINFO_LEN);
3936 strncpy(info->bus_info, pci_name(adapter->pdev), ET131X_DRVINFO_LEN);
3939 static struct ethtool_ops et131x_ethtool_ops = {
3940 .get_settings = et131x_get_settings,
3941 .set_settings = et131x_set_settings,
3942 .get_drvinfo = et131x_get_drvinfo,
3943 .get_regs_len = et131x_get_regs_len,
3944 .get_regs = et131x_get_regs,
3945 .get_link = ethtool_op_get_link,
3948 static void et131x_set_ethtool_ops(struct net_device *netdev)
3950 SET_ETHTOOL_OPS(netdev, &et131x_ethtool_ops);
3954 * et131x_hwaddr_init - set up the MAC Address on the ET1310
3955 * @adapter: pointer to our private adapter structure
3957 static void et131x_hwaddr_init(struct et131x_adapter *adapter)
3959 /* If have our default mac from init and no mac address from
3960 * EEPROM then we need to generate the last octet and set it on the
3961 * device
3963 if (adapter->rom_addr[0] == 0x00 &&
3964 adapter->rom_addr[1] == 0x00 &&
3965 adapter->rom_addr[2] == 0x00 &&
3966 adapter->rom_addr[3] == 0x00 &&
3967 adapter->rom_addr[4] == 0x00 &&
3968 adapter->rom_addr[5] == 0x00) {
3970 * We need to randomly generate the last octet so we
3971 * decrease our chances of setting the mac address to
3972 * same as another one of our cards in the system
3974 get_random_bytes(&adapter->addr[5], 1);
3976 * We have the default value in the register we are
3977 * working with so we need to copy the current
3978 * address into the permanent address
3980 memcpy(adapter->rom_addr,
3981 adapter->addr, ETH_ALEN);
3982 } else {
3983 /* We do not have an override address, so set the
3984 * current address to the permanent address and add
3985 * it to the device
3987 memcpy(adapter->addr,
3988 adapter->rom_addr, ETH_ALEN);
3993 * et131x_pci_init - initial PCI setup
3994 * @adapter: pointer to our private adapter structure
3995 * @pdev: our PCI device
3997 * Perform the initial setup of PCI registers and if possible initialise
3998 * the MAC address. At this point the I/O registers have yet to be mapped
4000 static int et131x_pci_init(struct et131x_adapter *adapter,
4001 struct pci_dev *pdev)
4003 int cap = pci_pcie_cap(pdev);
4004 u16 max_payload;
4005 u16 ctl;
4006 int i, rc;
4008 rc = et131x_init_eeprom(adapter);
4009 if (rc < 0)
4010 goto out;
4012 if (!cap) {
4013 dev_err(&pdev->dev, "Missing PCIe capabilities\n");
4014 goto err_out;
4017 /* Let's set up the PORT LOGIC Register. First we need to know what
4018 * the max_payload_size is
4020 if (pci_read_config_word(pdev, cap + PCI_EXP_DEVCAP, &max_payload)) {
4021 dev_err(&pdev->dev,
4022 "Could not read PCI config space for Max Payload Size\n");
4023 goto err_out;
4026 /* Program the Ack/Nak latency and replay timers */
4027 max_payload &= 0x07;
4029 if (max_payload < 2) {
4030 static const u16 acknak[2] = { 0x76, 0xD0 };
4031 static const u16 replay[2] = { 0x1E0, 0x2ED };
4033 if (pci_write_config_word(pdev, ET1310_PCI_ACK_NACK,
4034 acknak[max_payload])) {
4035 dev_err(&pdev->dev,
4036 "Could not write PCI config space for ACK/NAK\n");
4037 goto err_out;
4039 if (pci_write_config_word(pdev, ET1310_PCI_REPLAY,
4040 replay[max_payload])) {
4041 dev_err(&pdev->dev,
4042 "Could not write PCI config space for Replay Timer\n");
4043 goto err_out;
4047 /* l0s and l1 latency timers. We are using default values.
4048 * Representing 001 for L0s and 010 for L1
4050 if (pci_write_config_byte(pdev, ET1310_PCI_L0L1LATENCY, 0x11)) {
4051 dev_err(&pdev->dev,
4052 "Could not write PCI config space for Latency Timers\n");
4053 goto err_out;
4056 /* Change the max read size to 2k */
4057 if (pci_read_config_word(pdev, cap + PCI_EXP_DEVCTL, &ctl)) {
4058 dev_err(&pdev->dev,
4059 "Could not read PCI config space for Max read size\n");
4060 goto err_out;
4063 ctl = (ctl & ~PCI_EXP_DEVCTL_READRQ) | ( 0x04 << 12);
4065 if (pci_write_config_word(pdev, cap + PCI_EXP_DEVCTL, ctl)) {
4066 dev_err(&pdev->dev,
4067 "Could not write PCI config space for Max read size\n");
4068 goto err_out;
4071 /* Get MAC address from config space if an eeprom exists, otherwise
4072 * the MAC address there will not be valid
4074 if (!adapter->has_eeprom) {
4075 et131x_hwaddr_init(adapter);
4076 return 0;
4079 for (i = 0; i < ETH_ALEN; i++) {
4080 if (pci_read_config_byte(pdev, ET1310_PCI_MAC_ADDRESS + i,
4081 adapter->rom_addr + i)) {
4082 dev_err(&pdev->dev, "Could not read PCI config space for MAC address\n");
4083 goto err_out;
4086 memcpy(adapter->addr, adapter->rom_addr, ETH_ALEN);
4087 out:
4088 return rc;
4089 err_out:
4090 rc = -EIO;
4091 goto out;
4095 * et131x_error_timer_handler
4096 * @data: timer-specific variable; here a pointer to our adapter structure
4098 * The routine called when the error timer expires, to track the number of
4099 * recurring errors.
4101 static void et131x_error_timer_handler(unsigned long data)
4103 struct et131x_adapter *adapter = (struct et131x_adapter *) data;
4104 struct phy_device *phydev = adapter->phydev;
4106 if (et1310_in_phy_coma(adapter)) {
4107 /* Bring the device immediately out of coma, to
4108 * prevent it from sleeping indefinitely, this
4109 * mechanism could be improved! */
4110 et1310_disable_phy_coma(adapter);
4111 adapter->boot_coma = 20;
4112 } else {
4113 et1310_update_macstat_host_counters(adapter);
4116 if (!phydev->link && adapter->boot_coma < 11)
4117 adapter->boot_coma++;
4119 if (adapter->boot_coma == 10) {
4120 if (!phydev->link) {
4121 if (!et1310_in_phy_coma(adapter)) {
4122 /* NOTE - This was originally a 'sync with
4123 * interrupt'. How to do that under Linux?
4125 et131x_enable_interrupts(adapter);
4126 et1310_enable_phy_coma(adapter);
4131 /* This is a periodic timer, so reschedule */
4132 mod_timer(&adapter->error_timer, jiffies +
4133 TX_ERROR_PERIOD * HZ / 1000);
4137 * et131x_adapter_memory_alloc
4138 * @adapter: pointer to our private adapter structure
4140 * Returns 0 on success, errno on failure (as defined in errno.h).
4142 * Allocate all the memory blocks for send, receive and others.
4144 static int et131x_adapter_memory_alloc(struct et131x_adapter *adapter)
4146 int status;
4148 /* Allocate memory for the Tx Ring */
4149 status = et131x_tx_dma_memory_alloc(adapter);
4150 if (status != 0) {
4151 dev_err(&adapter->pdev->dev,
4152 "et131x_tx_dma_memory_alloc FAILED\n");
4153 return status;
4155 /* Receive buffer memory allocation */
4156 status = et131x_rx_dma_memory_alloc(adapter);
4157 if (status != 0) {
4158 dev_err(&adapter->pdev->dev,
4159 "et131x_rx_dma_memory_alloc FAILED\n");
4160 et131x_tx_dma_memory_free(adapter);
4161 return status;
4164 /* Init receive data structures */
4165 status = et131x_init_recv(adapter);
4166 if (status != 0) {
4167 dev_err(&adapter->pdev->dev,
4168 "et131x_init_recv FAILED\n");
4169 et131x_tx_dma_memory_free(adapter);
4170 et131x_rx_dma_memory_free(adapter);
4172 return status;
4176 * et131x_adapter_memory_free - Free all memory allocated for use by Tx & Rx
4177 * @adapter: pointer to our private adapter structure
4179 static void et131x_adapter_memory_free(struct et131x_adapter *adapter)
4181 /* Free DMA memory */
4182 et131x_tx_dma_memory_free(adapter);
4183 et131x_rx_dma_memory_free(adapter);
4186 static void et131x_adjust_link(struct net_device *netdev)
4188 struct et131x_adapter *adapter = netdev_priv(netdev);
4189 struct phy_device *phydev = adapter->phydev;
4191 if (netif_carrier_ok(netdev)) {
4192 adapter->boot_coma = 20;
4194 if (phydev && phydev->speed == SPEED_10) {
4196 * NOTE - Is there a way to query this without
4197 * TruePHY?
4198 * && TRU_QueryCoreType(adapter->hTruePhy, 0)==
4199 * EMI_TRUEPHY_A13O) {
4201 u16 register18;
4203 et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG,
4204 &register18);
4205 et131x_mii_write(adapter, PHY_MPHY_CONTROL_REG,
4206 register18 | 0x4);
4207 et131x_mii_write(adapter, PHY_INDEX_REG,
4208 register18 | 0x8402);
4209 et131x_mii_write(adapter, PHY_DATA_REG,
4210 register18 | 511);
4211 et131x_mii_write(adapter, PHY_MPHY_CONTROL_REG,
4212 register18);
4215 et1310_config_flow_control(adapter);
4217 if (phydev && phydev->speed == SPEED_1000 &&
4218 adapter->registry_jumbo_packet > 2048) {
4219 u16 reg;
4221 et131x_mii_read(adapter, PHY_CONFIG, &reg);
4222 reg &= ~ET_PHY_CONFIG_TX_FIFO_DEPTH;
4223 reg |= ET_PHY_CONFIG_FIFO_DEPTH_32;
4224 et131x_mii_write(adapter, PHY_CONFIG, reg);
4227 et131x_set_rx_dma_timer(adapter);
4228 et1310_config_mac_regs2(adapter);
4231 if (phydev && phydev->link != adapter->link) {
4233 * Check to see if we are in coma mode and if
4234 * so, disable it because we will not be able
4235 * to read PHY values until we are out.
4237 if (et1310_in_phy_coma(adapter))
4238 et1310_disable_phy_coma(adapter);
4240 if (phydev->link) {
4241 adapter->boot_coma = 20;
4242 } else {
4243 dev_warn(&adapter->pdev->dev,
4244 "Link down - cable problem ?\n");
4245 adapter->boot_coma = 0;
4247 if (phydev->speed == SPEED_10) {
4248 /* NOTE - Is there a way to query this without
4249 * TruePHY?
4250 * && TRU_QueryCoreType(adapter->hTruePhy, 0) ==
4251 * EMI_TRUEPHY_A13O)
4253 u16 register18;
4255 et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG,
4256 &register18);
4257 et131x_mii_write(adapter, PHY_MPHY_CONTROL_REG,
4258 register18 | 0x4);
4259 et131x_mii_write(adapter, PHY_INDEX_REG,
4260 register18 | 0x8402);
4261 et131x_mii_write(adapter, PHY_DATA_REG,
4262 register18 | 511);
4263 et131x_mii_write(adapter, PHY_MPHY_CONTROL_REG,
4264 register18);
4267 /* Free the packets being actively sent & stopped */
4268 et131x_free_busy_send_packets(adapter);
4270 /* Re-initialize the send structures */
4271 et131x_init_send(adapter);
4274 * Bring the device back to the state it was during
4275 * init prior to autonegotiation being complete. This
4276 * way, when we get the auto-neg complete interrupt,
4277 * we can complete init by calling config_mac_regs2.
4279 et131x_soft_reset(adapter);
4281 /* Setup ET1310 as per the documentation */
4282 et131x_adapter_setup(adapter);
4284 /* perform reset of tx/rx */
4285 et131x_disable_txrx(netdev);
4286 et131x_enable_txrx(netdev);
4289 adapter->link = phydev->link;
4291 phy_print_status(phydev);
4295 static int et131x_mii_probe(struct net_device *netdev)
4297 struct et131x_adapter *adapter = netdev_priv(netdev);
4298 struct phy_device *phydev = NULL;
4300 phydev = phy_find_first(adapter->mii_bus);
4301 if (!phydev) {
4302 dev_err(&adapter->pdev->dev, "no PHY found\n");
4303 return -ENODEV;
4306 phydev = phy_connect(netdev, dev_name(&phydev->dev),
4307 &et131x_adjust_link, 0, PHY_INTERFACE_MODE_MII);
4309 if (IS_ERR(phydev)) {
4310 dev_err(&adapter->pdev->dev, "Could not attach to PHY\n");
4311 return PTR_ERR(phydev);
4314 phydev->supported &= (SUPPORTED_10baseT_Half
4315 | SUPPORTED_10baseT_Full
4316 | SUPPORTED_100baseT_Half
4317 | SUPPORTED_100baseT_Full
4318 | SUPPORTED_Autoneg
4319 | SUPPORTED_MII
4320 | SUPPORTED_TP);
4322 if (adapter->pdev->device != ET131X_PCI_DEVICE_ID_FAST)
4323 phydev->supported |= SUPPORTED_1000baseT_Full;
4325 phydev->advertising = phydev->supported;
4326 adapter->phydev = phydev;
4328 dev_info(&adapter->pdev->dev, "attached PHY driver [%s] "
4329 "(mii_bus:phy_addr=%s)\n",
4330 phydev->drv->name, dev_name(&phydev->dev));
4332 return 0;
4336 * et131x_adapter_init
4337 * @adapter: pointer to the private adapter struct
4338 * @pdev: pointer to the PCI device
4340 * Initialize the data structures for the et131x_adapter object and link
4341 * them together with the platform provided device structures.
4343 static struct et131x_adapter *et131x_adapter_init(struct net_device *netdev,
4344 struct pci_dev *pdev)
4346 static const u8 default_mac[] = { 0x00, 0x05, 0x3d, 0x00, 0x02, 0x00 };
4348 struct et131x_adapter *adapter;
4350 /* Allocate private adapter struct and copy in relevant information */
4351 adapter = netdev_priv(netdev);
4352 adapter->pdev = pci_dev_get(pdev);
4353 adapter->netdev = netdev;
4355 /* Initialize spinlocks here */
4356 spin_lock_init(&adapter->lock);
4357 spin_lock_init(&adapter->tcb_send_qlock);
4358 spin_lock_init(&adapter->tcb_ready_qlock);
4359 spin_lock_init(&adapter->send_hw_lock);
4360 spin_lock_init(&adapter->rcv_lock);
4361 spin_lock_init(&adapter->rcv_pend_lock);
4362 spin_lock_init(&adapter->fbr_lock);
4363 spin_lock_init(&adapter->phy_lock);
4365 adapter->registry_jumbo_packet = 1514; /* 1514-9216 */
4367 /* Set the MAC address to a default */
4368 memcpy(adapter->addr, default_mac, ETH_ALEN);
4370 return adapter;
4374 * et131x_pci_remove
4375 * @pdev: a pointer to the device's pci_dev structure
4377 * Registered in the pci_driver structure, this function is called when the
4378 * PCI subsystem detects that a PCI device which matches the information
4379 * contained in the pci_device_id table has been removed.
4381 static void __devexit et131x_pci_remove(struct pci_dev *pdev)
4383 struct net_device *netdev = pci_get_drvdata(pdev);
4384 struct et131x_adapter *adapter = netdev_priv(netdev);
4386 unregister_netdev(netdev);
4387 phy_disconnect(adapter->phydev);
4388 mdiobus_unregister(adapter->mii_bus);
4389 kfree(adapter->mii_bus->irq);
4390 mdiobus_free(adapter->mii_bus);
4392 et131x_adapter_memory_free(adapter);
4393 iounmap(adapter->regs);
4394 pci_dev_put(pdev);
4396 free_netdev(netdev);
4397 pci_release_regions(pdev);
4398 pci_disable_device(pdev);
4402 * et131x_up - Bring up a device for use.
4403 * @netdev: device to be opened
4405 static void et131x_up(struct net_device *netdev)
4407 struct et131x_adapter *adapter = netdev_priv(netdev);
4409 et131x_enable_txrx(netdev);
4410 phy_start(adapter->phydev);
4414 * et131x_down - Bring down the device
4415 * @netdev: device to be brought down
4417 static void et131x_down(struct net_device *netdev)
4419 struct et131x_adapter *adapter = netdev_priv(netdev);
4421 /* Save the timestamp for the TX watchdog, prevent a timeout */
4422 netdev->trans_start = jiffies;
4424 phy_stop(adapter->phydev);
4425 et131x_disable_txrx(netdev);
4428 #ifdef CONFIG_PM_SLEEP
4429 static int et131x_suspend(struct device *dev)
4431 struct pci_dev *pdev = to_pci_dev(dev);
4432 struct net_device *netdev = pci_get_drvdata(pdev);
4434 if (netif_running(netdev)) {
4435 netif_device_detach(netdev);
4436 et131x_down(netdev);
4437 pci_save_state(pdev);
4440 return 0;
4443 static int et131x_resume(struct device *dev)
4445 struct pci_dev *pdev = to_pci_dev(dev);
4446 struct net_device *netdev = pci_get_drvdata(pdev);
4448 if (netif_running(netdev)) {
4449 pci_restore_state(pdev);
4450 et131x_up(netdev);
4451 netif_device_attach(netdev);
4454 return 0;
4457 static SIMPLE_DEV_PM_OPS(et131x_pm_ops, et131x_suspend, et131x_resume);
4458 #define ET131X_PM_OPS (&et131x_pm_ops)
4459 #else
4460 #define ET131X_PM_OPS NULL
4461 #endif
4464 * et131x_isr - The Interrupt Service Routine for the driver.
4465 * @irq: the IRQ on which the interrupt was received.
4466 * @dev_id: device-specific info (here a pointer to a net_device struct)
4468 * Returns a value indicating if the interrupt was handled.
4470 irqreturn_t et131x_isr(int irq, void *dev_id)
4472 bool handled = true;
4473 struct net_device *netdev = (struct net_device *)dev_id;
4474 struct et131x_adapter *adapter = NULL;
4475 u32 status;
4477 if (!netif_device_present(netdev)) {
4478 handled = false;
4479 goto out;
4482 adapter = netdev_priv(netdev);
4484 /* If the adapter is in low power state, then it should not
4485 * recognize any interrupt
4488 /* Disable Device Interrupts */
4489 et131x_disable_interrupts(adapter);
4491 /* Get a copy of the value in the interrupt status register
4492 * so we can process the interrupting section
4494 status = readl(&adapter->regs->global.int_status);
4496 if (adapter->flowcontrol == FLOW_TXONLY ||
4497 adapter->flowcontrol == FLOW_BOTH) {
4498 status &= ~INT_MASK_ENABLE;
4499 } else {
4500 status &= ~INT_MASK_ENABLE_NO_FLOW;
4503 /* Make sure this is our interrupt */
4504 if (!status) {
4505 handled = false;
4506 et131x_enable_interrupts(adapter);
4507 goto out;
4510 /* This is our interrupt, so process accordingly */
4512 if (status & ET_INTR_WATCHDOG) {
4513 struct tcb *tcb = adapter->tx_ring.send_head;
4515 if (tcb)
4516 if (++tcb->stale > 1)
4517 status |= ET_INTR_TXDMA_ISR;
4519 if (adapter->rx_ring.unfinished_receives)
4520 status |= ET_INTR_RXDMA_XFR_DONE;
4521 else if (tcb == NULL)
4522 writel(0, &adapter->regs->global.watchdog_timer);
4524 status &= ~ET_INTR_WATCHDOG;
4527 if (status == 0) {
4528 /* This interrupt has in some way been "handled" by
4529 * the ISR. Either it was a spurious Rx interrupt, or
4530 * it was a Tx interrupt that has been filtered by
4531 * the ISR.
4533 et131x_enable_interrupts(adapter);
4534 goto out;
4537 /* We need to save the interrupt status value for use in our
4538 * DPC. We will clear the software copy of that in that
4539 * routine.
4541 adapter->stats.interrupt_status = status;
4543 /* Schedule the ISR handler as a bottom-half task in the
4544 * kernel's tq_immediate queue, and mark the queue for
4545 * execution
4547 schedule_work(&adapter->task);
4548 out:
4549 return IRQ_RETVAL(handled);
4553 * et131x_isr_handler - The ISR handler
4554 * @p_adapter, a pointer to the device's private adapter structure
4556 * scheduled to run in a deferred context by the ISR. This is where the ISR's
4557 * work actually gets done.
4559 static void et131x_isr_handler(struct work_struct *work)
4561 struct et131x_adapter *adapter =
4562 container_of(work, struct et131x_adapter, task);
4563 u32 status = adapter->stats.interrupt_status;
4564 struct address_map __iomem *iomem = adapter->regs;
4567 * These first two are by far the most common. Once handled, we clear
4568 * their two bits in the status word. If the word is now zero, we
4569 * exit.
4571 /* Handle all the completed Transmit interrupts */
4572 if (status & ET_INTR_TXDMA_ISR)
4573 et131x_handle_send_interrupt(adapter);
4575 /* Handle all the completed Receives interrupts */
4576 if (status & ET_INTR_RXDMA_XFR_DONE)
4577 et131x_handle_recv_interrupt(adapter);
4579 status &= 0xffffffd7;
4581 if (status) {
4582 /* Handle the TXDMA Error interrupt */
4583 if (status & ET_INTR_TXDMA_ERR) {
4584 u32 txdma_err;
4586 /* Following read also clears the register (COR) */
4587 txdma_err = readl(&iomem->txdma.tx_dma_error);
4589 dev_warn(&adapter->pdev->dev,
4590 "TXDMA_ERR interrupt, error = %d\n",
4591 txdma_err);
4594 /* Handle Free Buffer Ring 0 and 1 Low interrupt */
4595 if (status &
4596 (ET_INTR_RXDMA_FB_R0_LOW | ET_INTR_RXDMA_FB_R1_LOW)) {
4598 * This indicates the number of unused buffers in
4599 * RXDMA free buffer ring 0 is <= the limit you
4600 * programmed. Free buffer resources need to be
4601 * returned. Free buffers are consumed as packets
4602 * are passed from the network to the host. The host
4603 * becomes aware of the packets from the contents of
4604 * the packet status ring. This ring is queried when
4605 * the packet done interrupt occurs. Packets are then
4606 * passed to the OS. When the OS is done with the
4607 * packets the resources can be returned to the
4608 * ET1310 for re-use. This interrupt is one method of
4609 * returning resources.
4612 /* If the user has flow control on, then we will
4613 * send a pause packet, otherwise just exit
4615 if (adapter->flowcontrol == FLOW_TXONLY ||
4616 adapter->flowcontrol == FLOW_BOTH) {
4617 u32 pm_csr;
4619 /* Tell the device to send a pause packet via
4620 * the back pressure register (bp req and
4621 * bp xon/xoff)
4623 pm_csr = readl(&iomem->global.pm_csr);
4624 if (!et1310_in_phy_coma(adapter))
4625 writel(3, &iomem->txmac.bp_ctrl);
4629 /* Handle Packet Status Ring Low Interrupt */
4630 if (status & ET_INTR_RXDMA_STAT_LOW) {
4633 * Same idea as with the two Free Buffer Rings.
4634 * Packets going from the network to the host each
4635 * consume a free buffer resource and a packet status
4636 * resource. These resoures are passed to the OS.
4637 * When the OS is done with the resources, they need
4638 * to be returned to the ET1310. This is one method
4639 * of returning the resources.
4643 /* Handle RXDMA Error Interrupt */
4644 if (status & ET_INTR_RXDMA_ERR) {
4646 * The rxdma_error interrupt is sent when a time-out
4647 * on a request issued by the JAGCore has occurred or
4648 * a completion is returned with an un-successful
4649 * status. In both cases the request is considered
4650 * complete. The JAGCore will automatically re-try the
4651 * request in question. Normally information on events
4652 * like these are sent to the host using the "Advanced
4653 * Error Reporting" capability. This interrupt is
4654 * another way of getting similar information. The
4655 * only thing required is to clear the interrupt by
4656 * reading the ISR in the global resources. The
4657 * JAGCore will do a re-try on the request. Normally
4658 * you should never see this interrupt. If you start
4659 * to see this interrupt occurring frequently then
4660 * something bad has occurred. A reset might be the
4661 * thing to do.
4663 /* TRAP();*/
4665 dev_warn(&adapter->pdev->dev,
4666 "RxDMA_ERR interrupt, error %x\n",
4667 readl(&iomem->txmac.tx_test));
4670 /* Handle the Wake on LAN Event */
4671 if (status & ET_INTR_WOL) {
4673 * This is a secondary interrupt for wake on LAN.
4674 * The driver should never see this, if it does,
4675 * something serious is wrong. We will TRAP the
4676 * message when we are in DBG mode, otherwise we
4677 * will ignore it.
4679 dev_err(&adapter->pdev->dev, "WAKE_ON_LAN interrupt\n");
4682 /* Let's move on to the TxMac */
4683 if (status & ET_INTR_TXMAC) {
4684 u32 err = readl(&iomem->txmac.err);
4687 * When any of the errors occur and TXMAC generates
4688 * an interrupt to report these errors, it usually
4689 * means that TXMAC has detected an error in the data
4690 * stream retrieved from the on-chip Tx Q. All of
4691 * these errors are catastrophic and TXMAC won't be
4692 * able to recover data when these errors occur. In
4693 * a nutshell, the whole Tx path will have to be reset
4694 * and re-configured afterwards.
4696 dev_warn(&adapter->pdev->dev,
4697 "TXMAC interrupt, error 0x%08x\n",
4698 err);
4700 /* If we are debugging, we want to see this error,
4701 * otherwise we just want the device to be reset and
4702 * continue
4706 /* Handle RXMAC Interrupt */
4707 if (status & ET_INTR_RXMAC) {
4709 * These interrupts are catastrophic to the device,
4710 * what we need to do is disable the interrupts and
4711 * set the flag to cause us to reset so we can solve
4712 * this issue.
4714 /* MP_SET_FLAG( adapter,
4715 fMP_ADAPTER_HARDWARE_ERROR); */
4717 dev_warn(&adapter->pdev->dev,
4718 "RXMAC interrupt, error 0x%08x. Requesting reset\n",
4719 readl(&iomem->rxmac.err_reg));
4721 dev_warn(&adapter->pdev->dev,
4722 "Enable 0x%08x, Diag 0x%08x\n",
4723 readl(&iomem->rxmac.ctrl),
4724 readl(&iomem->rxmac.rxq_diag));
4727 * If we are debugging, we want to see this error,
4728 * otherwise we just want the device to be reset and
4729 * continue
4733 /* Handle MAC_STAT Interrupt */
4734 if (status & ET_INTR_MAC_STAT) {
4736 * This means at least one of the un-masked counters
4737 * in the MAC_STAT block has rolled over. Use this
4738 * to maintain the top, software managed bits of the
4739 * counter(s).
4741 et1310_handle_macstat_interrupt(adapter);
4744 /* Handle SLV Timeout Interrupt */
4745 if (status & ET_INTR_SLV_TIMEOUT) {
4747 * This means a timeout has occurred on a read or
4748 * write request to one of the JAGCore registers. The
4749 * Global Resources block has terminated the request
4750 * and on a read request, returned a "fake" value.
4751 * The most likely reasons are: Bad Address or the
4752 * addressed module is in a power-down state and
4753 * can't respond.
4757 et131x_enable_interrupts(adapter);
4761 * et131x_stats - Return the current device statistics.
4762 * @netdev: device whose stats are being queried
4764 * Returns 0 on success, errno on failure (as defined in errno.h)
4766 static struct net_device_stats *et131x_stats(struct net_device *netdev)
4768 struct et131x_adapter *adapter = netdev_priv(netdev);
4769 struct net_device_stats *stats = &adapter->net_stats;
4770 struct ce_stats *devstat = &adapter->stats;
4772 stats->rx_errors = devstat->rx_length_errs +
4773 devstat->rx_align_errs +
4774 devstat->rx_crc_errs +
4775 devstat->rx_code_violations +
4776 devstat->rx_other_errs;
4777 stats->tx_errors = devstat->tx_max_pkt_errs;
4778 stats->multicast = devstat->multicast_pkts_rcvd;
4779 stats->collisions = devstat->tx_collisions;
4781 stats->rx_length_errors = devstat->rx_length_errs;
4782 stats->rx_over_errors = devstat->rx_overflows;
4783 stats->rx_crc_errors = devstat->rx_crc_errs;
4785 /* NOTE: These stats don't have corresponding values in CE_STATS,
4786 * so we're going to have to update these directly from within the
4787 * TX/RX code
4789 /* stats->rx_bytes = 20; devstat->; */
4790 /* stats->tx_bytes = 20; devstat->; */
4791 /* stats->rx_dropped = devstat->; */
4792 /* stats->tx_dropped = devstat->; */
4794 /* NOTE: Not used, can't find analogous statistics */
4795 /* stats->rx_frame_errors = devstat->; */
4796 /* stats->rx_fifo_errors = devstat->; */
4797 /* stats->rx_missed_errors = devstat->; */
4799 /* stats->tx_aborted_errors = devstat->; */
4800 /* stats->tx_carrier_errors = devstat->; */
4801 /* stats->tx_fifo_errors = devstat->; */
4802 /* stats->tx_heartbeat_errors = devstat->; */
4803 /* stats->tx_window_errors = devstat->; */
4804 return stats;
4808 * et131x_open - Open the device for use.
4809 * @netdev: device to be opened
4811 * Returns 0 on success, errno on failure (as defined in errno.h)
4813 static int et131x_open(struct net_device *netdev)
4815 struct et131x_adapter *adapter = netdev_priv(netdev);
4816 struct pci_dev *pdev = adapter->pdev;
4817 unsigned int irq = pdev->irq;
4818 int result;
4820 /* Start the timer to track NIC errors */
4821 init_timer(&adapter->error_timer);
4822 adapter->error_timer.expires = jiffies + TX_ERROR_PERIOD * HZ / 1000;
4823 adapter->error_timer.function = et131x_error_timer_handler;
4824 adapter->error_timer.data = (unsigned long)adapter;
4825 add_timer(&adapter->error_timer);
4827 result = request_irq(irq, et131x_isr, IRQF_SHARED, netdev->name, netdev);
4828 if (result) {
4829 dev_err(&pdev->dev, "could not register IRQ %d\n", irq);
4830 return result;
4833 adapter->flags |= fMP_ADAPTER_INTERRUPT_IN_USE;
4835 et131x_up(netdev);
4837 return result;
4841 * et131x_close - Close the device
4842 * @netdev: device to be closed
4844 * Returns 0 on success, errno on failure (as defined in errno.h)
4846 static int et131x_close(struct net_device *netdev)
4848 struct et131x_adapter *adapter = netdev_priv(netdev);
4850 et131x_down(netdev);
4852 adapter->flags &= ~fMP_ADAPTER_INTERRUPT_IN_USE;
4853 free_irq(adapter->pdev->irq, netdev);
4855 /* Stop the error timer */
4856 return del_timer_sync(&adapter->error_timer);
4860 * et131x_ioctl - The I/O Control handler for the driver
4861 * @netdev: device on which the control request is being made
4862 * @reqbuf: a pointer to the IOCTL request buffer
4863 * @cmd: the IOCTL command code
4865 * Returns 0 on success, errno on failure (as defined in errno.h)
4867 static int et131x_ioctl(struct net_device *netdev, struct ifreq *reqbuf,
4868 int cmd)
4870 struct et131x_adapter *adapter = netdev_priv(netdev);
4872 if (!adapter->phydev)
4873 return -EINVAL;
4875 return phy_mii_ioctl(adapter->phydev, reqbuf, cmd);
4879 * et131x_set_packet_filter - Configures the Rx Packet filtering on the device
4880 * @adapter: pointer to our private adapter structure
4882 * FIXME: lot of dups with MAC code
4884 * Returns 0 on success, errno on failure
4886 static int et131x_set_packet_filter(struct et131x_adapter *adapter)
4888 int filter = adapter->packet_filter;
4889 int status = 0;
4890 u32 ctrl;
4891 u32 pf_ctrl;
4893 ctrl = readl(&adapter->regs->rxmac.ctrl);
4894 pf_ctrl = readl(&adapter->regs->rxmac.pf_ctrl);
4896 /* Default to disabled packet filtering. Enable it in the individual
4897 * case statements that require the device to filter something
4899 ctrl |= 0x04;
4901 /* Set us to be in promiscuous mode so we receive everything, this
4902 * is also true when we get a packet filter of 0
4904 if ((filter & ET131X_PACKET_TYPE_PROMISCUOUS) || filter == 0)
4905 pf_ctrl &= ~7; /* Clear filter bits */
4906 else {
4908 * Set us up with Multicast packet filtering. Three cases are
4909 * possible - (1) we have a multi-cast list, (2) we receive ALL
4910 * multicast entries or (3) we receive none.
4912 if (filter & ET131X_PACKET_TYPE_ALL_MULTICAST)
4913 pf_ctrl &= ~2; /* Multicast filter bit */
4914 else {
4915 et1310_setup_device_for_multicast(adapter);
4916 pf_ctrl |= 2;
4917 ctrl &= ~0x04;
4920 /* Set us up with Unicast packet filtering */
4921 if (filter & ET131X_PACKET_TYPE_DIRECTED) {
4922 et1310_setup_device_for_unicast(adapter);
4923 pf_ctrl |= 4;
4924 ctrl &= ~0x04;
4927 /* Set us up with Broadcast packet filtering */
4928 if (filter & ET131X_PACKET_TYPE_BROADCAST) {
4929 pf_ctrl |= 1; /* Broadcast filter bit */
4930 ctrl &= ~0x04;
4931 } else
4932 pf_ctrl &= ~1;
4934 /* Setup the receive mac configuration registers - Packet
4935 * Filter control + the enable / disable for packet filter
4936 * in the control reg.
4938 writel(pf_ctrl, &adapter->regs->rxmac.pf_ctrl);
4939 writel(ctrl, &adapter->regs->rxmac.ctrl);
4941 return status;
4945 * et131x_multicast - The handler to configure multicasting on the interface
4946 * @netdev: a pointer to a net_device struct representing the device
4948 static void et131x_multicast(struct net_device *netdev)
4950 struct et131x_adapter *adapter = netdev_priv(netdev);
4951 int packet_filter;
4952 unsigned long flags;
4953 struct netdev_hw_addr *ha;
4954 int i;
4956 spin_lock_irqsave(&adapter->lock, flags);
4958 /* Before we modify the platform-independent filter flags, store them
4959 * locally. This allows us to determine if anything's changed and if
4960 * we even need to bother the hardware
4962 packet_filter = adapter->packet_filter;
4964 /* Clear the 'multicast' flag locally; because we only have a single
4965 * flag to check multicast, and multiple multicast addresses can be
4966 * set, this is the easiest way to determine if more than one
4967 * multicast address is being set.
4969 packet_filter &= ~ET131X_PACKET_TYPE_MULTICAST;
4971 /* Check the net_device flags and set the device independent flags
4972 * accordingly
4975 if (netdev->flags & IFF_PROMISC)
4976 adapter->packet_filter |= ET131X_PACKET_TYPE_PROMISCUOUS;
4977 else
4978 adapter->packet_filter &= ~ET131X_PACKET_TYPE_PROMISCUOUS;
4980 if (netdev->flags & IFF_ALLMULTI)
4981 adapter->packet_filter |= ET131X_PACKET_TYPE_ALL_MULTICAST;
4983 if (netdev_mc_count(netdev) > NIC_MAX_MCAST_LIST)
4984 adapter->packet_filter |= ET131X_PACKET_TYPE_ALL_MULTICAST;
4986 if (netdev_mc_count(netdev) < 1) {
4987 adapter->packet_filter &= ~ET131X_PACKET_TYPE_ALL_MULTICAST;
4988 adapter->packet_filter &= ~ET131X_PACKET_TYPE_MULTICAST;
4989 } else
4990 adapter->packet_filter |= ET131X_PACKET_TYPE_MULTICAST;
4992 /* Set values in the private adapter struct */
4993 i = 0;
4994 netdev_for_each_mc_addr(ha, netdev) {
4995 if (i == NIC_MAX_MCAST_LIST)
4996 break;
4997 memcpy(adapter->multicast_list[i++], ha->addr, ETH_ALEN);
4999 adapter->multicast_addr_count = i;
5001 /* Are the new flags different from the previous ones? If not, then no
5002 * action is required
5004 * NOTE - This block will always update the multicast_list with the
5005 * hardware, even if the addresses aren't the same.
5007 if (packet_filter != adapter->packet_filter) {
5008 /* Call the device's filter function */
5009 et131x_set_packet_filter(adapter);
5011 spin_unlock_irqrestore(&adapter->lock, flags);
5015 * et131x_tx - The handler to tx a packet on the device
5016 * @skb: data to be Tx'd
5017 * @netdev: device on which data is to be Tx'd
5019 * Returns 0 on success, errno on failure (as defined in errno.h)
5021 static int et131x_tx(struct sk_buff *skb, struct net_device *netdev)
5023 int status = 0;
5024 struct et131x_adapter *adapter = netdev_priv(netdev);
5026 /* stop the queue if it's getting full */
5027 if (adapter->tx_ring.used >= NUM_TCB - 1 &&
5028 !netif_queue_stopped(netdev))
5029 netif_stop_queue(netdev);
5031 /* Save the timestamp for the TX timeout watchdog */
5032 netdev->trans_start = jiffies;
5034 /* Call the device-specific data Tx routine */
5035 status = et131x_send_packets(skb, netdev);
5037 /* Check status and manage the netif queue if necessary */
5038 if (status != 0) {
5039 if (status == -ENOMEM)
5040 status = NETDEV_TX_BUSY;
5041 else
5042 status = NETDEV_TX_OK;
5044 return status;
5048 * et131x_tx_timeout - Timeout handler
5049 * @netdev: a pointer to a net_device struct representing the device
5051 * The handler called when a Tx request times out. The timeout period is
5052 * specified by the 'tx_timeo" element in the net_device structure (see
5053 * et131x_alloc_device() to see how this value is set).
5055 static void et131x_tx_timeout(struct net_device *netdev)
5057 struct et131x_adapter *adapter = netdev_priv(netdev);
5058 struct tcb *tcb;
5059 unsigned long flags;
5061 /* If the device is closed, ignore the timeout */
5062 if (~(adapter->flags & fMP_ADAPTER_INTERRUPT_IN_USE))
5063 return;
5065 /* Any nonrecoverable hardware error?
5066 * Checks adapter->flags for any failure in phy reading
5068 if (adapter->flags & fMP_ADAPTER_NON_RECOVER_ERROR)
5069 return;
5071 /* Hardware failure? */
5072 if (adapter->flags & fMP_ADAPTER_HARDWARE_ERROR) {
5073 dev_err(&adapter->pdev->dev, "hardware error - reset\n");
5074 return;
5077 /* Is send stuck? */
5078 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
5080 tcb = adapter->tx_ring.send_head;
5082 if (tcb != NULL) {
5083 tcb->count++;
5085 if (tcb->count > NIC_SEND_HANG_THRESHOLD) {
5086 spin_unlock_irqrestore(&adapter->tcb_send_qlock,
5087 flags);
5089 dev_warn(&adapter->pdev->dev,
5090 "Send stuck - reset. tcb->WrIndex %x, flags 0x%08x\n",
5091 tcb->index,
5092 tcb->flags);
5094 adapter->net_stats.tx_errors++;
5096 /* perform reset of tx/rx */
5097 et131x_disable_txrx(netdev);
5098 et131x_enable_txrx(netdev);
5099 return;
5103 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
5107 * et131x_change_mtu - The handler called to change the MTU for the device
5108 * @netdev: device whose MTU is to be changed
5109 * @new_mtu: the desired MTU
5111 * Returns 0 on success, errno on failure (as defined in errno.h)
5113 static int et131x_change_mtu(struct net_device *netdev, int new_mtu)
5115 int result = 0;
5116 struct et131x_adapter *adapter = netdev_priv(netdev);
5118 /* Make sure the requested MTU is valid */
5119 if (new_mtu < 64 || new_mtu > 9216)
5120 return -EINVAL;
5122 et131x_disable_txrx(netdev);
5123 et131x_handle_send_interrupt(adapter);
5124 et131x_handle_recv_interrupt(adapter);
5126 /* Set the new MTU */
5127 netdev->mtu = new_mtu;
5129 /* Free Rx DMA memory */
5130 et131x_adapter_memory_free(adapter);
5132 /* Set the config parameter for Jumbo Packet support */
5133 adapter->registry_jumbo_packet = new_mtu + 14;
5134 et131x_soft_reset(adapter);
5136 /* Alloc and init Rx DMA memory */
5137 result = et131x_adapter_memory_alloc(adapter);
5138 if (result != 0) {
5139 dev_warn(&adapter->pdev->dev,
5140 "Change MTU failed; couldn't re-alloc DMA memory\n");
5141 return result;
5144 et131x_init_send(adapter);
5146 et131x_hwaddr_init(adapter);
5147 memcpy(netdev->dev_addr, adapter->addr, ETH_ALEN);
5149 /* Init the device with the new settings */
5150 et131x_adapter_setup(adapter);
5152 et131x_enable_txrx(netdev);
5154 return result;
5158 * et131x_set_mac_addr - handler to change the MAC address for the device
5159 * @netdev: device whose MAC is to be changed
5160 * @new_mac: the desired MAC address
5162 * Returns 0 on success, errno on failure (as defined in errno.h)
5164 * IMPLEMENTED BY : blux http://berndlux.de 22.01.2007 21:14
5166 static int et131x_set_mac_addr(struct net_device *netdev, void *new_mac)
5168 int result = 0;
5169 struct et131x_adapter *adapter = netdev_priv(netdev);
5170 struct sockaddr *address = new_mac;
5172 /* begin blux */
5174 if (adapter == NULL)
5175 return -ENODEV;
5177 /* Make sure the requested MAC is valid */
5178 if (!is_valid_ether_addr(address->sa_data))
5179 return -EADDRNOTAVAIL;
5181 et131x_disable_txrx(netdev);
5182 et131x_handle_send_interrupt(adapter);
5183 et131x_handle_recv_interrupt(adapter);
5185 /* Set the new MAC */
5186 /* netdev->set_mac_address = &new_mac; */
5188 memcpy(netdev->dev_addr, address->sa_data, netdev->addr_len);
5190 printk(KERN_INFO "%s: Setting MAC address to %pM\n",
5191 netdev->name, netdev->dev_addr);
5193 /* Free Rx DMA memory */
5194 et131x_adapter_memory_free(adapter);
5196 et131x_soft_reset(adapter);
5198 /* Alloc and init Rx DMA memory */
5199 result = et131x_adapter_memory_alloc(adapter);
5200 if (result != 0) {
5201 dev_err(&adapter->pdev->dev,
5202 "Change MAC failed; couldn't re-alloc DMA memory\n");
5203 return result;
5206 et131x_init_send(adapter);
5208 et131x_hwaddr_init(adapter);
5210 /* Init the device with the new settings */
5211 et131x_adapter_setup(adapter);
5213 et131x_enable_txrx(netdev);
5215 return result;
5218 static const struct net_device_ops et131x_netdev_ops = {
5219 .ndo_open = et131x_open,
5220 .ndo_stop = et131x_close,
5221 .ndo_start_xmit = et131x_tx,
5222 .ndo_set_rx_mode = et131x_multicast,
5223 .ndo_tx_timeout = et131x_tx_timeout,
5224 .ndo_change_mtu = et131x_change_mtu,
5225 .ndo_set_mac_address = et131x_set_mac_addr,
5226 .ndo_validate_addr = eth_validate_addr,
5227 .ndo_get_stats = et131x_stats,
5228 .ndo_do_ioctl = et131x_ioctl,
5232 * et131x_pci_setup - Perform device initialization
5233 * @pdev: a pointer to the device's pci_dev structure
5234 * @ent: this device's entry in the pci_device_id table
5236 * Returns 0 on success, errno on failure (as defined in errno.h)
5238 * Registered in the pci_driver structure, this function is called when the
5239 * PCI subsystem finds a new PCI device which matches the information
5240 * contained in the pci_device_id table. This routine is the equivalent to
5241 * a device insertion routine.
5243 static int __devinit et131x_pci_setup(struct pci_dev *pdev,
5244 const struct pci_device_id *ent)
5246 struct net_device *netdev;
5247 struct et131x_adapter *adapter;
5248 int rc;
5249 int ii;
5251 rc = pci_enable_device(pdev);
5252 if (rc < 0) {
5253 dev_err(&pdev->dev, "pci_enable_device() failed\n");
5254 goto out;
5257 /* Perform some basic PCI checks */
5258 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
5259 dev_err(&pdev->dev, "Can't find PCI device's base address\n");
5260 rc = -ENODEV;
5261 goto err_disable;
5264 rc = pci_request_regions(pdev, DRIVER_NAME);
5265 if (rc < 0) {
5266 dev_err(&pdev->dev, "Can't get PCI resources\n");
5267 goto err_disable;
5270 pci_set_master(pdev);
5272 /* Check the DMA addressing support of this device */
5273 if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(64))) {
5274 rc = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
5275 if (rc < 0) {
5276 dev_err(&pdev->dev,
5277 "Unable to obtain 64 bit DMA for consistent allocations\n");
5278 goto err_release_res;
5280 } else if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(32))) {
5281 rc = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
5282 if (rc < 0) {
5283 dev_err(&pdev->dev,
5284 "Unable to obtain 32 bit DMA for consistent allocations\n");
5285 goto err_release_res;
5287 } else {
5288 dev_err(&pdev->dev, "No usable DMA addressing method\n");
5289 rc = -EIO;
5290 goto err_release_res;
5293 /* Allocate netdev and private adapter structs */
5294 netdev = alloc_etherdev(sizeof(struct et131x_adapter));
5295 if (!netdev) {
5296 dev_err(&pdev->dev, "Couldn't alloc netdev struct\n");
5297 rc = -ENOMEM;
5298 goto err_release_res;
5301 netdev->watchdog_timeo = ET131X_TX_TIMEOUT;
5302 netdev->netdev_ops = &et131x_netdev_ops;
5304 SET_NETDEV_DEV(netdev, &pdev->dev);
5305 et131x_set_ethtool_ops(netdev);
5307 adapter = et131x_adapter_init(netdev, pdev);
5309 rc = et131x_pci_init(adapter, pdev);
5310 if (rc < 0)
5311 goto err_free_dev;
5313 /* Map the bus-relative registers to system virtual memory */
5314 adapter->regs = pci_ioremap_bar(pdev, 0);
5315 if (!adapter->regs) {
5316 dev_err(&pdev->dev, "Cannot map device registers\n");
5317 rc = -ENOMEM;
5318 goto err_free_dev;
5321 /* If Phy COMA mode was enabled when we went down, disable it here. */
5322 writel(ET_PMCSR_INIT, &adapter->regs->global.pm_csr);
5324 /* Issue a global reset to the et1310 */
5325 et131x_soft_reset(adapter);
5327 /* Disable all interrupts (paranoid) */
5328 et131x_disable_interrupts(adapter);
5330 /* Allocate DMA memory */
5331 rc = et131x_adapter_memory_alloc(adapter);
5332 if (rc < 0) {
5333 dev_err(&pdev->dev, "Could not alloc adapater memory (DMA)\n");
5334 goto err_iounmap;
5337 /* Init send data structures */
5338 et131x_init_send(adapter);
5340 /* Set up the task structure for the ISR's deferred handler */
5341 INIT_WORK(&adapter->task, et131x_isr_handler);
5343 /* Copy address into the net_device struct */
5344 memcpy(netdev->dev_addr, adapter->addr, ETH_ALEN);
5346 /* Init variable for counting how long we do not have link status */
5347 adapter->boot_coma = 0;
5348 et1310_disable_phy_coma(adapter);
5350 rc = -ENOMEM;
5352 /* Setup the mii_bus struct */
5353 adapter->mii_bus = mdiobus_alloc();
5354 if (!adapter->mii_bus) {
5355 dev_err(&pdev->dev, "Alloc of mii_bus struct failed\n");
5356 goto err_mem_free;
5359 adapter->mii_bus->name = "et131x_eth_mii";
5360 snprintf(adapter->mii_bus->id, MII_BUS_ID_SIZE, "%x",
5361 (adapter->pdev->bus->number << 8) | adapter->pdev->devfn);
5362 adapter->mii_bus->priv = netdev;
5363 adapter->mii_bus->read = et131x_mdio_read;
5364 adapter->mii_bus->write = et131x_mdio_write;
5365 adapter->mii_bus->reset = et131x_mdio_reset;
5366 adapter->mii_bus->irq = kmalloc(sizeof(int)*PHY_MAX_ADDR, GFP_KERNEL);
5367 if (!adapter->mii_bus->irq) {
5368 dev_err(&pdev->dev, "mii_bus irq allocation failed\n");
5369 goto err_mdio_free;
5372 for (ii = 0; ii < PHY_MAX_ADDR; ii++)
5373 adapter->mii_bus->irq[ii] = PHY_POLL;
5375 rc = mdiobus_register(adapter->mii_bus);
5376 if (rc < 0) {
5377 dev_err(&pdev->dev, "failed to register MII bus\n");
5378 goto err_mdio_free_irq;
5381 rc = et131x_mii_probe(netdev);
5382 if (rc < 0) {
5383 dev_err(&pdev->dev, "failed to probe MII bus\n");
5384 goto err_mdio_unregister;
5387 /* Setup et1310 as per the documentation */
5388 et131x_adapter_setup(adapter);
5390 /* We can enable interrupts now
5392 * NOTE - Because registration of interrupt handler is done in the
5393 * device's open(), defer enabling device interrupts to that
5394 * point
5397 /* Register the net_device struct with the Linux network layer */
5398 rc = register_netdev(netdev);
5399 if (rc < 0) {
5400 dev_err(&pdev->dev, "register_netdev() failed\n");
5401 goto err_phy_disconnect;
5404 /* Register the net_device struct with the PCI subsystem. Save a copy
5405 * of the PCI config space for this device now that the device has
5406 * been initialized, just in case it needs to be quickly restored.
5408 pci_set_drvdata(pdev, netdev);
5409 out:
5410 return rc;
5412 err_phy_disconnect:
5413 phy_disconnect(adapter->phydev);
5414 err_mdio_unregister:
5415 mdiobus_unregister(adapter->mii_bus);
5416 err_mdio_free_irq:
5417 kfree(adapter->mii_bus->irq);
5418 err_mdio_free:
5419 mdiobus_free(adapter->mii_bus);
5420 err_mem_free:
5421 et131x_adapter_memory_free(adapter);
5422 err_iounmap:
5423 iounmap(adapter->regs);
5424 err_free_dev:
5425 pci_dev_put(pdev);
5426 free_netdev(netdev);
5427 err_release_res:
5428 pci_release_regions(pdev);
5429 err_disable:
5430 pci_disable_device(pdev);
5431 goto out;
5434 static DEFINE_PCI_DEVICE_TABLE(et131x_pci_table) = {
5435 { PCI_VDEVICE(ATT, ET131X_PCI_DEVICE_ID_GIG), 0UL},
5436 { PCI_VDEVICE(ATT, ET131X_PCI_DEVICE_ID_FAST), 0UL},
5437 {0,}
5439 MODULE_DEVICE_TABLE(pci, et131x_pci_table);
5441 static struct pci_driver et131x_driver = {
5442 .name = DRIVER_NAME,
5443 .id_table = et131x_pci_table,
5444 .probe = et131x_pci_setup,
5445 .remove = __devexit_p(et131x_pci_remove),
5446 .driver.pm = ET131X_PM_OPS,
5450 * et131x_init_module - The "main" entry point called on driver initialization
5452 * Returns 0 on success, errno on failure (as defined in errno.h)
5454 static int __init et131x_init_module(void)
5456 return pci_register_driver(&et131x_driver);
5460 * et131x_cleanup_module - The entry point called on driver cleanup
5462 static void __exit et131x_cleanup_module(void)
5464 pci_unregister_driver(&et131x_driver);
5467 module_init(et131x_init_module);
5468 module_exit(et131x_cleanup_module);