2 * raid10.c : Multiple Devices driver for Linux
4 * Copyright (C) 2000-2004 Neil Brown
6 * RAID-10 support for md.
8 * Base on code in raid1.c. See raid1.c for further copyright information.
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/module.h>
25 #include <linux/seq_file.h>
26 #include <linux/ratelimit.h>
33 * RAID10 provides a combination of RAID0 and RAID1 functionality.
34 * The layout of data is defined by
37 * near_copies (stored in low byte of layout)
38 * far_copies (stored in second byte of layout)
39 * far_offset (stored in bit 16 of layout )
41 * The data to be stored is divided into chunks using chunksize.
42 * Each device is divided into far_copies sections.
43 * In each section, chunks are laid out in a style similar to raid0, but
44 * near_copies copies of each chunk is stored (each on a different drive).
45 * The starting device for each section is offset near_copies from the starting
46 * device of the previous section.
47 * Thus they are (near_copies*far_copies) of each chunk, and each is on a different
49 * near_copies and far_copies must be at least one, and their product is at most
52 * If far_offset is true, then the far_copies are handled a bit differently.
53 * The copies are still in different stripes, but instead of be very far apart
54 * on disk, there are adjacent stripes.
58 * Number of guaranteed r10bios in case of extreme VM load:
60 #define NR_RAID10_BIOS 256
62 /* When there are this many requests queue to be written by
63 * the raid10 thread, we become 'congested' to provide back-pressure
66 static int max_queued_requests
= 1024;
68 static void allow_barrier(struct r10conf
*conf
);
69 static void lower_barrier(struct r10conf
*conf
);
70 static int enough(struct r10conf
*conf
, int ignore
);
72 static void * r10bio_pool_alloc(gfp_t gfp_flags
, void *data
)
74 struct r10conf
*conf
= data
;
75 int size
= offsetof(struct r10bio
, devs
[conf
->copies
]);
77 /* allocate a r10bio with room for raid_disks entries in the
79 return kzalloc(size
, gfp_flags
);
82 static void r10bio_pool_free(void *r10_bio
, void *data
)
87 /* Maximum size of each resync request */
88 #define RESYNC_BLOCK_SIZE (64*1024)
89 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
90 /* amount of memory to reserve for resync requests */
91 #define RESYNC_WINDOW (1024*1024)
92 /* maximum number of concurrent requests, memory permitting */
93 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
96 * When performing a resync, we need to read and compare, so
97 * we need as many pages are there are copies.
98 * When performing a recovery, we need 2 bios, one for read,
99 * one for write (we recover only one drive per r10buf)
102 static void * r10buf_pool_alloc(gfp_t gfp_flags
, void *data
)
104 struct r10conf
*conf
= data
;
106 struct r10bio
*r10_bio
;
111 r10_bio
= r10bio_pool_alloc(gfp_flags
, conf
);
115 if (test_bit(MD_RECOVERY_SYNC
, &conf
->mddev
->recovery
))
116 nalloc
= conf
->copies
; /* resync */
118 nalloc
= 2; /* recovery */
123 for (j
= nalloc
; j
-- ; ) {
124 bio
= bio_kmalloc(gfp_flags
, RESYNC_PAGES
);
127 r10_bio
->devs
[j
].bio
= bio
;
128 if (!conf
->have_replacement
)
130 bio
= bio_kmalloc(gfp_flags
, RESYNC_PAGES
);
133 r10_bio
->devs
[j
].repl_bio
= bio
;
136 * Allocate RESYNC_PAGES data pages and attach them
139 for (j
= 0 ; j
< nalloc
; j
++) {
140 struct bio
*rbio
= r10_bio
->devs
[j
].repl_bio
;
141 bio
= r10_bio
->devs
[j
].bio
;
142 for (i
= 0; i
< RESYNC_PAGES
; i
++) {
143 if (j
== 1 && !test_bit(MD_RECOVERY_SYNC
,
144 &conf
->mddev
->recovery
)) {
145 /* we can share bv_page's during recovery */
146 struct bio
*rbio
= r10_bio
->devs
[0].bio
;
147 page
= rbio
->bi_io_vec
[i
].bv_page
;
150 page
= alloc_page(gfp_flags
);
154 bio
->bi_io_vec
[i
].bv_page
= page
;
156 rbio
->bi_io_vec
[i
].bv_page
= page
;
164 safe_put_page(bio
->bi_io_vec
[i
-1].bv_page
);
166 for (i
= 0; i
< RESYNC_PAGES
; i
++)
167 safe_put_page(r10_bio
->devs
[j
].bio
->bi_io_vec
[i
].bv_page
);
170 while (++j
< nalloc
) {
171 bio_put(r10_bio
->devs
[j
].bio
);
172 if (r10_bio
->devs
[j
].repl_bio
)
173 bio_put(r10_bio
->devs
[j
].repl_bio
);
175 r10bio_pool_free(r10_bio
, conf
);
179 static void r10buf_pool_free(void *__r10_bio
, void *data
)
182 struct r10conf
*conf
= data
;
183 struct r10bio
*r10bio
= __r10_bio
;
186 for (j
=0; j
< conf
->copies
; j
++) {
187 struct bio
*bio
= r10bio
->devs
[j
].bio
;
189 for (i
= 0; i
< RESYNC_PAGES
; i
++) {
190 safe_put_page(bio
->bi_io_vec
[i
].bv_page
);
191 bio
->bi_io_vec
[i
].bv_page
= NULL
;
195 bio
= r10bio
->devs
[j
].repl_bio
;
199 r10bio_pool_free(r10bio
, conf
);
202 static void put_all_bios(struct r10conf
*conf
, struct r10bio
*r10_bio
)
206 for (i
= 0; i
< conf
->copies
; i
++) {
207 struct bio
**bio
= & r10_bio
->devs
[i
].bio
;
208 if (!BIO_SPECIAL(*bio
))
211 bio
= &r10_bio
->devs
[i
].repl_bio
;
212 if (r10_bio
->read_slot
< 0 && !BIO_SPECIAL(*bio
))
218 static void free_r10bio(struct r10bio
*r10_bio
)
220 struct r10conf
*conf
= r10_bio
->mddev
->private;
222 put_all_bios(conf
, r10_bio
);
223 mempool_free(r10_bio
, conf
->r10bio_pool
);
226 static void put_buf(struct r10bio
*r10_bio
)
228 struct r10conf
*conf
= r10_bio
->mddev
->private;
230 mempool_free(r10_bio
, conf
->r10buf_pool
);
235 static void reschedule_retry(struct r10bio
*r10_bio
)
238 struct mddev
*mddev
= r10_bio
->mddev
;
239 struct r10conf
*conf
= mddev
->private;
241 spin_lock_irqsave(&conf
->device_lock
, flags
);
242 list_add(&r10_bio
->retry_list
, &conf
->retry_list
);
244 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
246 /* wake up frozen array... */
247 wake_up(&conf
->wait_barrier
);
249 md_wakeup_thread(mddev
->thread
);
253 * raid_end_bio_io() is called when we have finished servicing a mirrored
254 * operation and are ready to return a success/failure code to the buffer
257 static void raid_end_bio_io(struct r10bio
*r10_bio
)
259 struct bio
*bio
= r10_bio
->master_bio
;
261 struct r10conf
*conf
= r10_bio
->mddev
->private;
263 if (bio
->bi_phys_segments
) {
265 spin_lock_irqsave(&conf
->device_lock
, flags
);
266 bio
->bi_phys_segments
--;
267 done
= (bio
->bi_phys_segments
== 0);
268 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
271 if (!test_bit(R10BIO_Uptodate
, &r10_bio
->state
))
272 clear_bit(BIO_UPTODATE
, &bio
->bi_flags
);
276 * Wake up any possible resync thread that waits for the device
281 free_r10bio(r10_bio
);
285 * Update disk head position estimator based on IRQ completion info.
287 static inline void update_head_pos(int slot
, struct r10bio
*r10_bio
)
289 struct r10conf
*conf
= r10_bio
->mddev
->private;
291 conf
->mirrors
[r10_bio
->devs
[slot
].devnum
].head_position
=
292 r10_bio
->devs
[slot
].addr
+ (r10_bio
->sectors
);
296 * Find the disk number which triggered given bio
298 static int find_bio_disk(struct r10conf
*conf
, struct r10bio
*r10_bio
,
299 struct bio
*bio
, int *slotp
, int *replp
)
304 for (slot
= 0; slot
< conf
->copies
; slot
++) {
305 if (r10_bio
->devs
[slot
].bio
== bio
)
307 if (r10_bio
->devs
[slot
].repl_bio
== bio
) {
313 BUG_ON(slot
== conf
->copies
);
314 update_head_pos(slot
, r10_bio
);
320 return r10_bio
->devs
[slot
].devnum
;
323 static void raid10_end_read_request(struct bio
*bio
, int error
)
325 int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
326 struct r10bio
*r10_bio
= bio
->bi_private
;
328 struct md_rdev
*rdev
;
329 struct r10conf
*conf
= r10_bio
->mddev
->private;
332 slot
= r10_bio
->read_slot
;
333 dev
= r10_bio
->devs
[slot
].devnum
;
334 rdev
= r10_bio
->devs
[slot
].rdev
;
336 * this branch is our 'one mirror IO has finished' event handler:
338 update_head_pos(slot
, r10_bio
);
342 * Set R10BIO_Uptodate in our master bio, so that
343 * we will return a good error code to the higher
344 * levels even if IO on some other mirrored buffer fails.
346 * The 'master' represents the composite IO operation to
347 * user-side. So if something waits for IO, then it will
348 * wait for the 'master' bio.
350 set_bit(R10BIO_Uptodate
, &r10_bio
->state
);
352 /* If all other devices that store this block have
353 * failed, we want to return the error upwards rather
354 * than fail the last device. Here we redefine
355 * "uptodate" to mean "Don't want to retry"
358 spin_lock_irqsave(&conf
->device_lock
, flags
);
359 if (!enough(conf
, rdev
->raid_disk
))
361 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
364 raid_end_bio_io(r10_bio
);
365 rdev_dec_pending(rdev
, conf
->mddev
);
368 * oops, read error - keep the refcount on the rdev
370 char b
[BDEVNAME_SIZE
];
371 printk_ratelimited(KERN_ERR
372 "md/raid10:%s: %s: rescheduling sector %llu\n",
374 bdevname(rdev
->bdev
, b
),
375 (unsigned long long)r10_bio
->sector
);
376 set_bit(R10BIO_ReadError
, &r10_bio
->state
);
377 reschedule_retry(r10_bio
);
381 static void close_write(struct r10bio
*r10_bio
)
383 /* clear the bitmap if all writes complete successfully */
384 bitmap_endwrite(r10_bio
->mddev
->bitmap
, r10_bio
->sector
,
386 !test_bit(R10BIO_Degraded
, &r10_bio
->state
),
388 md_write_end(r10_bio
->mddev
);
391 static void one_write_done(struct r10bio
*r10_bio
)
393 if (atomic_dec_and_test(&r10_bio
->remaining
)) {
394 if (test_bit(R10BIO_WriteError
, &r10_bio
->state
))
395 reschedule_retry(r10_bio
);
397 close_write(r10_bio
);
398 if (test_bit(R10BIO_MadeGood
, &r10_bio
->state
))
399 reschedule_retry(r10_bio
);
401 raid_end_bio_io(r10_bio
);
406 static void raid10_end_write_request(struct bio
*bio
, int error
)
408 int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
409 struct r10bio
*r10_bio
= bio
->bi_private
;
412 struct r10conf
*conf
= r10_bio
->mddev
->private;
414 struct md_rdev
*rdev
= NULL
;
416 dev
= find_bio_disk(conf
, r10_bio
, bio
, &slot
, &repl
);
419 rdev
= conf
->mirrors
[dev
].replacement
;
423 rdev
= conf
->mirrors
[dev
].rdev
;
426 * this branch is our 'one mirror IO has finished' event handler:
430 /* Never record new bad blocks to replacement,
433 md_error(rdev
->mddev
, rdev
);
435 set_bit(WriteErrorSeen
, &rdev
->flags
);
436 if (!test_and_set_bit(WantReplacement
, &rdev
->flags
))
437 set_bit(MD_RECOVERY_NEEDED
,
438 &rdev
->mddev
->recovery
);
439 set_bit(R10BIO_WriteError
, &r10_bio
->state
);
444 * Set R10BIO_Uptodate in our master bio, so that
445 * we will return a good error code for to the higher
446 * levels even if IO on some other mirrored buffer fails.
448 * The 'master' represents the composite IO operation to
449 * user-side. So if something waits for IO, then it will
450 * wait for the 'master' bio.
455 set_bit(R10BIO_Uptodate
, &r10_bio
->state
);
457 /* Maybe we can clear some bad blocks. */
458 if (is_badblock(rdev
,
459 r10_bio
->devs
[slot
].addr
,
461 &first_bad
, &bad_sectors
)) {
464 r10_bio
->devs
[slot
].repl_bio
= IO_MADE_GOOD
;
466 r10_bio
->devs
[slot
].bio
= IO_MADE_GOOD
;
468 set_bit(R10BIO_MadeGood
, &r10_bio
->state
);
474 * Let's see if all mirrored write operations have finished
477 one_write_done(r10_bio
);
479 rdev_dec_pending(conf
->mirrors
[dev
].rdev
, conf
->mddev
);
483 * RAID10 layout manager
484 * As well as the chunksize and raid_disks count, there are two
485 * parameters: near_copies and far_copies.
486 * near_copies * far_copies must be <= raid_disks.
487 * Normally one of these will be 1.
488 * If both are 1, we get raid0.
489 * If near_copies == raid_disks, we get raid1.
491 * Chunks are laid out in raid0 style with near_copies copies of the
492 * first chunk, followed by near_copies copies of the next chunk and
494 * If far_copies > 1, then after 1/far_copies of the array has been assigned
495 * as described above, we start again with a device offset of near_copies.
496 * So we effectively have another copy of the whole array further down all
497 * the drives, but with blocks on different drives.
498 * With this layout, and block is never stored twice on the one device.
500 * raid10_find_phys finds the sector offset of a given virtual sector
501 * on each device that it is on.
503 * raid10_find_virt does the reverse mapping, from a device and a
504 * sector offset to a virtual address
507 static void raid10_find_phys(struct r10conf
*conf
, struct r10bio
*r10bio
)
517 /* now calculate first sector/dev */
518 chunk
= r10bio
->sector
>> conf
->chunk_shift
;
519 sector
= r10bio
->sector
& conf
->chunk_mask
;
521 chunk
*= conf
->near_copies
;
523 dev
= sector_div(stripe
, conf
->raid_disks
);
524 if (conf
->far_offset
)
525 stripe
*= conf
->far_copies
;
527 sector
+= stripe
<< conf
->chunk_shift
;
529 /* and calculate all the others */
530 for (n
=0; n
< conf
->near_copies
; n
++) {
533 r10bio
->devs
[slot
].addr
= sector
;
534 r10bio
->devs
[slot
].devnum
= d
;
537 for (f
= 1; f
< conf
->far_copies
; f
++) {
538 d
+= conf
->near_copies
;
539 if (d
>= conf
->raid_disks
)
540 d
-= conf
->raid_disks
;
542 r10bio
->devs
[slot
].devnum
= d
;
543 r10bio
->devs
[slot
].addr
= s
;
547 if (dev
>= conf
->raid_disks
) {
549 sector
+= (conf
->chunk_mask
+ 1);
552 BUG_ON(slot
!= conf
->copies
);
555 static sector_t
raid10_find_virt(struct r10conf
*conf
, sector_t sector
, int dev
)
557 sector_t offset
, chunk
, vchunk
;
559 offset
= sector
& conf
->chunk_mask
;
560 if (conf
->far_offset
) {
562 chunk
= sector
>> conf
->chunk_shift
;
563 fc
= sector_div(chunk
, conf
->far_copies
);
564 dev
-= fc
* conf
->near_copies
;
566 dev
+= conf
->raid_disks
;
568 while (sector
>= conf
->stride
) {
569 sector
-= conf
->stride
;
570 if (dev
< conf
->near_copies
)
571 dev
+= conf
->raid_disks
- conf
->near_copies
;
573 dev
-= conf
->near_copies
;
575 chunk
= sector
>> conf
->chunk_shift
;
577 vchunk
= chunk
* conf
->raid_disks
+ dev
;
578 sector_div(vchunk
, conf
->near_copies
);
579 return (vchunk
<< conf
->chunk_shift
) + offset
;
583 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
585 * @bvm: properties of new bio
586 * @biovec: the request that could be merged to it.
588 * Return amount of bytes we can accept at this offset
589 * This requires checking for end-of-chunk if near_copies != raid_disks,
590 * and for subordinate merge_bvec_fns if merge_check_needed.
592 static int raid10_mergeable_bvec(struct request_queue
*q
,
593 struct bvec_merge_data
*bvm
,
594 struct bio_vec
*biovec
)
596 struct mddev
*mddev
= q
->queuedata
;
597 struct r10conf
*conf
= mddev
->private;
598 sector_t sector
= bvm
->bi_sector
+ get_start_sect(bvm
->bi_bdev
);
600 unsigned int chunk_sectors
= mddev
->chunk_sectors
;
601 unsigned int bio_sectors
= bvm
->bi_size
>> 9;
603 if (conf
->near_copies
< conf
->raid_disks
) {
604 max
= (chunk_sectors
- ((sector
& (chunk_sectors
- 1))
605 + bio_sectors
)) << 9;
607 /* bio_add cannot handle a negative return */
609 if (max
<= biovec
->bv_len
&& bio_sectors
== 0)
610 return biovec
->bv_len
;
612 max
= biovec
->bv_len
;
614 if (mddev
->merge_check_needed
) {
615 struct r10bio r10_bio
;
617 r10_bio
.sector
= sector
;
618 raid10_find_phys(conf
, &r10_bio
);
620 for (s
= 0; s
< conf
->copies
; s
++) {
621 int disk
= r10_bio
.devs
[s
].devnum
;
622 struct md_rdev
*rdev
= rcu_dereference(
623 conf
->mirrors
[disk
].rdev
);
624 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
)) {
625 struct request_queue
*q
=
626 bdev_get_queue(rdev
->bdev
);
627 if (q
->merge_bvec_fn
) {
628 bvm
->bi_sector
= r10_bio
.devs
[s
].addr
630 bvm
->bi_bdev
= rdev
->bdev
;
631 max
= min(max
, q
->merge_bvec_fn(
635 rdev
= rcu_dereference(conf
->mirrors
[disk
].replacement
);
636 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
)) {
637 struct request_queue
*q
=
638 bdev_get_queue(rdev
->bdev
);
639 if (q
->merge_bvec_fn
) {
640 bvm
->bi_sector
= r10_bio
.devs
[s
].addr
642 bvm
->bi_bdev
= rdev
->bdev
;
643 max
= min(max
, q
->merge_bvec_fn(
654 * This routine returns the disk from which the requested read should
655 * be done. There is a per-array 'next expected sequential IO' sector
656 * number - if this matches on the next IO then we use the last disk.
657 * There is also a per-disk 'last know head position' sector that is
658 * maintained from IRQ contexts, both the normal and the resync IO
659 * completion handlers update this position correctly. If there is no
660 * perfect sequential match then we pick the disk whose head is closest.
662 * If there are 2 mirrors in the same 2 devices, performance degrades
663 * because position is mirror, not device based.
665 * The rdev for the device selected will have nr_pending incremented.
669 * FIXME: possibly should rethink readbalancing and do it differently
670 * depending on near_copies / far_copies geometry.
672 static struct md_rdev
*read_balance(struct r10conf
*conf
,
673 struct r10bio
*r10_bio
,
676 const sector_t this_sector
= r10_bio
->sector
;
678 int sectors
= r10_bio
->sectors
;
679 int best_good_sectors
;
680 sector_t new_distance
, best_dist
;
681 struct md_rdev
*rdev
, *best_rdev
;
685 raid10_find_phys(conf
, r10_bio
);
688 sectors
= r10_bio
->sectors
;
691 best_dist
= MaxSector
;
692 best_good_sectors
= 0;
695 * Check if we can balance. We can balance on the whole
696 * device if no resync is going on (recovery is ok), or below
697 * the resync window. We take the first readable disk when
698 * above the resync window.
700 if (conf
->mddev
->recovery_cp
< MaxSector
701 && (this_sector
+ sectors
>= conf
->next_resync
))
704 for (slot
= 0; slot
< conf
->copies
; slot
++) {
709 if (r10_bio
->devs
[slot
].bio
== IO_BLOCKED
)
711 disk
= r10_bio
->devs
[slot
].devnum
;
712 rdev
= rcu_dereference(conf
->mirrors
[disk
].replacement
);
713 if (rdev
== NULL
|| test_bit(Faulty
, &rdev
->flags
) ||
714 test_bit(Unmerged
, &rdev
->flags
) ||
715 r10_bio
->devs
[slot
].addr
+ sectors
> rdev
->recovery_offset
)
716 rdev
= rcu_dereference(conf
->mirrors
[disk
].rdev
);
718 test_bit(Faulty
, &rdev
->flags
) ||
719 test_bit(Unmerged
, &rdev
->flags
))
721 if (!test_bit(In_sync
, &rdev
->flags
) &&
722 r10_bio
->devs
[slot
].addr
+ sectors
> rdev
->recovery_offset
)
725 dev_sector
= r10_bio
->devs
[slot
].addr
;
726 if (is_badblock(rdev
, dev_sector
, sectors
,
727 &first_bad
, &bad_sectors
)) {
728 if (best_dist
< MaxSector
)
729 /* Already have a better slot */
731 if (first_bad
<= dev_sector
) {
732 /* Cannot read here. If this is the
733 * 'primary' device, then we must not read
734 * beyond 'bad_sectors' from another device.
736 bad_sectors
-= (dev_sector
- first_bad
);
737 if (!do_balance
&& sectors
> bad_sectors
)
738 sectors
= bad_sectors
;
739 if (best_good_sectors
> sectors
)
740 best_good_sectors
= sectors
;
742 sector_t good_sectors
=
743 first_bad
- dev_sector
;
744 if (good_sectors
> best_good_sectors
) {
745 best_good_sectors
= good_sectors
;
750 /* Must read from here */
755 best_good_sectors
= sectors
;
760 /* This optimisation is debatable, and completely destroys
761 * sequential read speed for 'far copies' arrays. So only
762 * keep it for 'near' arrays, and review those later.
764 if (conf
->near_copies
> 1 && !atomic_read(&rdev
->nr_pending
))
767 /* for far > 1 always use the lowest address */
768 if (conf
->far_copies
> 1)
769 new_distance
= r10_bio
->devs
[slot
].addr
;
771 new_distance
= abs(r10_bio
->devs
[slot
].addr
-
772 conf
->mirrors
[disk
].head_position
);
773 if (new_distance
< best_dist
) {
774 best_dist
= new_distance
;
779 if (slot
>= conf
->copies
) {
785 atomic_inc(&rdev
->nr_pending
);
786 if (test_bit(Faulty
, &rdev
->flags
)) {
787 /* Cannot risk returning a device that failed
788 * before we inc'ed nr_pending
790 rdev_dec_pending(rdev
, conf
->mddev
);
793 r10_bio
->read_slot
= slot
;
797 *max_sectors
= best_good_sectors
;
802 static int raid10_congested(void *data
, int bits
)
804 struct mddev
*mddev
= data
;
805 struct r10conf
*conf
= mddev
->private;
808 if ((bits
& (1 << BDI_async_congested
)) &&
809 conf
->pending_count
>= max_queued_requests
)
812 if (mddev_congested(mddev
, bits
))
815 for (i
= 0; i
< conf
->raid_disks
&& ret
== 0; i
++) {
816 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
817 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
)) {
818 struct request_queue
*q
= bdev_get_queue(rdev
->bdev
);
820 ret
|= bdi_congested(&q
->backing_dev_info
, bits
);
827 static void flush_pending_writes(struct r10conf
*conf
)
829 /* Any writes that have been queued but are awaiting
830 * bitmap updates get flushed here.
832 spin_lock_irq(&conf
->device_lock
);
834 if (conf
->pending_bio_list
.head
) {
836 bio
= bio_list_get(&conf
->pending_bio_list
);
837 conf
->pending_count
= 0;
838 spin_unlock_irq(&conf
->device_lock
);
839 /* flush any pending bitmap writes to disk
840 * before proceeding w/ I/O */
841 bitmap_unplug(conf
->mddev
->bitmap
);
842 wake_up(&conf
->wait_barrier
);
844 while (bio
) { /* submit pending writes */
845 struct bio
*next
= bio
->bi_next
;
847 generic_make_request(bio
);
851 spin_unlock_irq(&conf
->device_lock
);
855 * Sometimes we need to suspend IO while we do something else,
856 * either some resync/recovery, or reconfigure the array.
857 * To do this we raise a 'barrier'.
858 * The 'barrier' is a counter that can be raised multiple times
859 * to count how many activities are happening which preclude
861 * We can only raise the barrier if there is no pending IO.
862 * i.e. if nr_pending == 0.
863 * We choose only to raise the barrier if no-one is waiting for the
864 * barrier to go down. This means that as soon as an IO request
865 * is ready, no other operations which require a barrier will start
866 * until the IO request has had a chance.
868 * So: regular IO calls 'wait_barrier'. When that returns there
869 * is no backgroup IO happening, It must arrange to call
870 * allow_barrier when it has finished its IO.
871 * backgroup IO calls must call raise_barrier. Once that returns
872 * there is no normal IO happeing. It must arrange to call
873 * lower_barrier when the particular background IO completes.
876 static void raise_barrier(struct r10conf
*conf
, int force
)
878 BUG_ON(force
&& !conf
->barrier
);
879 spin_lock_irq(&conf
->resync_lock
);
881 /* Wait until no block IO is waiting (unless 'force') */
882 wait_event_lock_irq(conf
->wait_barrier
, force
|| !conf
->nr_waiting
,
883 conf
->resync_lock
, );
885 /* block any new IO from starting */
888 /* Now wait for all pending IO to complete */
889 wait_event_lock_irq(conf
->wait_barrier
,
890 !conf
->nr_pending
&& conf
->barrier
< RESYNC_DEPTH
,
891 conf
->resync_lock
, );
893 spin_unlock_irq(&conf
->resync_lock
);
896 static void lower_barrier(struct r10conf
*conf
)
899 spin_lock_irqsave(&conf
->resync_lock
, flags
);
901 spin_unlock_irqrestore(&conf
->resync_lock
, flags
);
902 wake_up(&conf
->wait_barrier
);
905 static void wait_barrier(struct r10conf
*conf
)
907 spin_lock_irq(&conf
->resync_lock
);
910 /* Wait for the barrier to drop.
911 * However if there are already pending
912 * requests (preventing the barrier from
913 * rising completely), and the
914 * pre-process bio queue isn't empty,
915 * then don't wait, as we need to empty
916 * that queue to get the nr_pending
919 wait_event_lock_irq(conf
->wait_barrier
,
923 !bio_list_empty(current
->bio_list
)),
929 spin_unlock_irq(&conf
->resync_lock
);
932 static void allow_barrier(struct r10conf
*conf
)
935 spin_lock_irqsave(&conf
->resync_lock
, flags
);
937 spin_unlock_irqrestore(&conf
->resync_lock
, flags
);
938 wake_up(&conf
->wait_barrier
);
941 static void freeze_array(struct r10conf
*conf
)
943 /* stop syncio and normal IO and wait for everything to
945 * We increment barrier and nr_waiting, and then
946 * wait until nr_pending match nr_queued+1
947 * This is called in the context of one normal IO request
948 * that has failed. Thus any sync request that might be pending
949 * will be blocked by nr_pending, and we need to wait for
950 * pending IO requests to complete or be queued for re-try.
951 * Thus the number queued (nr_queued) plus this request (1)
952 * must match the number of pending IOs (nr_pending) before
955 spin_lock_irq(&conf
->resync_lock
);
958 wait_event_lock_irq(conf
->wait_barrier
,
959 conf
->nr_pending
== conf
->nr_queued
+1,
961 flush_pending_writes(conf
));
963 spin_unlock_irq(&conf
->resync_lock
);
966 static void unfreeze_array(struct r10conf
*conf
)
968 /* reverse the effect of the freeze */
969 spin_lock_irq(&conf
->resync_lock
);
972 wake_up(&conf
->wait_barrier
);
973 spin_unlock_irq(&conf
->resync_lock
);
976 static void make_request(struct mddev
*mddev
, struct bio
* bio
)
978 struct r10conf
*conf
= mddev
->private;
979 struct r10bio
*r10_bio
;
980 struct bio
*read_bio
;
982 int chunk_sects
= conf
->chunk_mask
+ 1;
983 const int rw
= bio_data_dir(bio
);
984 const unsigned long do_sync
= (bio
->bi_rw
& REQ_SYNC
);
985 const unsigned long do_fua
= (bio
->bi_rw
& REQ_FUA
);
987 struct md_rdev
*blocked_rdev
;
992 if (unlikely(bio
->bi_rw
& REQ_FLUSH
)) {
993 md_flush_request(mddev
, bio
);
997 /* If this request crosses a chunk boundary, we need to
998 * split it. This will only happen for 1 PAGE (or less) requests.
1000 if (unlikely( (bio
->bi_sector
& conf
->chunk_mask
) + (bio
->bi_size
>> 9)
1002 conf
->near_copies
< conf
->raid_disks
)) {
1003 struct bio_pair
*bp
;
1004 /* Sanity check -- queue functions should prevent this happening */
1005 if (bio
->bi_vcnt
!= 1 ||
1008 /* This is a one page bio that upper layers
1009 * refuse to split for us, so we need to split it.
1012 chunk_sects
- (bio
->bi_sector
& (chunk_sects
- 1)) );
1014 /* Each of these 'make_request' calls will call 'wait_barrier'.
1015 * If the first succeeds but the second blocks due to the resync
1016 * thread raising the barrier, we will deadlock because the
1017 * IO to the underlying device will be queued in generic_make_request
1018 * and will never complete, so will never reduce nr_pending.
1019 * So increment nr_waiting here so no new raise_barriers will
1020 * succeed, and so the second wait_barrier cannot block.
1022 spin_lock_irq(&conf
->resync_lock
);
1024 spin_unlock_irq(&conf
->resync_lock
);
1026 make_request(mddev
, &bp
->bio1
);
1027 make_request(mddev
, &bp
->bio2
);
1029 spin_lock_irq(&conf
->resync_lock
);
1031 wake_up(&conf
->wait_barrier
);
1032 spin_unlock_irq(&conf
->resync_lock
);
1034 bio_pair_release(bp
);
1037 printk("md/raid10:%s: make_request bug: can't convert block across chunks"
1038 " or bigger than %dk %llu %d\n", mdname(mddev
), chunk_sects
/2,
1039 (unsigned long long)bio
->bi_sector
, bio
->bi_size
>> 10);
1045 md_write_start(mddev
, bio
);
1048 * Register the new request and wait if the reconstruction
1049 * thread has put up a bar for new requests.
1050 * Continue immediately if no resync is active currently.
1054 r10_bio
= mempool_alloc(conf
->r10bio_pool
, GFP_NOIO
);
1056 r10_bio
->master_bio
= bio
;
1057 r10_bio
->sectors
= bio
->bi_size
>> 9;
1059 r10_bio
->mddev
= mddev
;
1060 r10_bio
->sector
= bio
->bi_sector
;
1063 /* We might need to issue multiple reads to different
1064 * devices if there are bad blocks around, so we keep
1065 * track of the number of reads in bio->bi_phys_segments.
1066 * If this is 0, there is only one r10_bio and no locking
1067 * will be needed when the request completes. If it is
1068 * non-zero, then it is the number of not-completed requests.
1070 bio
->bi_phys_segments
= 0;
1071 clear_bit(BIO_SEG_VALID
, &bio
->bi_flags
);
1075 * read balancing logic:
1077 struct md_rdev
*rdev
;
1081 rdev
= read_balance(conf
, r10_bio
, &max_sectors
);
1083 raid_end_bio_io(r10_bio
);
1086 slot
= r10_bio
->read_slot
;
1088 read_bio
= bio_clone_mddev(bio
, GFP_NOIO
, mddev
);
1089 md_trim_bio(read_bio
, r10_bio
->sector
- bio
->bi_sector
,
1092 r10_bio
->devs
[slot
].bio
= read_bio
;
1093 r10_bio
->devs
[slot
].rdev
= rdev
;
1095 read_bio
->bi_sector
= r10_bio
->devs
[slot
].addr
+
1097 read_bio
->bi_bdev
= rdev
->bdev
;
1098 read_bio
->bi_end_io
= raid10_end_read_request
;
1099 read_bio
->bi_rw
= READ
| do_sync
;
1100 read_bio
->bi_private
= r10_bio
;
1102 if (max_sectors
< r10_bio
->sectors
) {
1103 /* Could not read all from this device, so we will
1104 * need another r10_bio.
1106 sectors_handled
= (r10_bio
->sectors
+ max_sectors
1108 r10_bio
->sectors
= max_sectors
;
1109 spin_lock_irq(&conf
->device_lock
);
1110 if (bio
->bi_phys_segments
== 0)
1111 bio
->bi_phys_segments
= 2;
1113 bio
->bi_phys_segments
++;
1114 spin_unlock(&conf
->device_lock
);
1115 /* Cannot call generic_make_request directly
1116 * as that will be queued in __generic_make_request
1117 * and subsequent mempool_alloc might block
1118 * waiting for it. so hand bio over to raid10d.
1120 reschedule_retry(r10_bio
);
1122 r10_bio
= mempool_alloc(conf
->r10bio_pool
, GFP_NOIO
);
1124 r10_bio
->master_bio
= bio
;
1125 r10_bio
->sectors
= ((bio
->bi_size
>> 9)
1128 r10_bio
->mddev
= mddev
;
1129 r10_bio
->sector
= bio
->bi_sector
+ sectors_handled
;
1132 generic_make_request(read_bio
);
1139 if (conf
->pending_count
>= max_queued_requests
) {
1140 md_wakeup_thread(mddev
->thread
);
1141 wait_event(conf
->wait_barrier
,
1142 conf
->pending_count
< max_queued_requests
);
1144 /* first select target devices under rcu_lock and
1145 * inc refcount on their rdev. Record them by setting
1147 * If there are known/acknowledged bad blocks on any device
1148 * on which we have seen a write error, we want to avoid
1149 * writing to those blocks. This potentially requires several
1150 * writes to write around the bad blocks. Each set of writes
1151 * gets its own r10_bio with a set of bios attached. The number
1152 * of r10_bios is recored in bio->bi_phys_segments just as with
1155 plugged
= mddev_check_plugged(mddev
);
1157 r10_bio
->read_slot
= -1; /* make sure repl_bio gets freed */
1158 raid10_find_phys(conf
, r10_bio
);
1160 blocked_rdev
= NULL
;
1162 max_sectors
= r10_bio
->sectors
;
1164 for (i
= 0; i
< conf
->copies
; i
++) {
1165 int d
= r10_bio
->devs
[i
].devnum
;
1166 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
1167 struct md_rdev
*rrdev
= rcu_dereference(
1168 conf
->mirrors
[d
].replacement
);
1171 if (rdev
&& unlikely(test_bit(Blocked
, &rdev
->flags
))) {
1172 atomic_inc(&rdev
->nr_pending
);
1173 blocked_rdev
= rdev
;
1176 if (rrdev
&& unlikely(test_bit(Blocked
, &rrdev
->flags
))) {
1177 atomic_inc(&rrdev
->nr_pending
);
1178 blocked_rdev
= rrdev
;
1181 if (rrdev
&& (test_bit(Faulty
, &rrdev
->flags
)
1182 || test_bit(Unmerged
, &rrdev
->flags
)))
1185 r10_bio
->devs
[i
].bio
= NULL
;
1186 r10_bio
->devs
[i
].repl_bio
= NULL
;
1187 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
) ||
1188 test_bit(Unmerged
, &rdev
->flags
)) {
1189 set_bit(R10BIO_Degraded
, &r10_bio
->state
);
1192 if (test_bit(WriteErrorSeen
, &rdev
->flags
)) {
1194 sector_t dev_sector
= r10_bio
->devs
[i
].addr
;
1198 is_bad
= is_badblock(rdev
, dev_sector
,
1200 &first_bad
, &bad_sectors
);
1202 /* Mustn't write here until the bad block
1205 atomic_inc(&rdev
->nr_pending
);
1206 set_bit(BlockedBadBlocks
, &rdev
->flags
);
1207 blocked_rdev
= rdev
;
1210 if (is_bad
&& first_bad
<= dev_sector
) {
1211 /* Cannot write here at all */
1212 bad_sectors
-= (dev_sector
- first_bad
);
1213 if (bad_sectors
< max_sectors
)
1214 /* Mustn't write more than bad_sectors
1215 * to other devices yet
1217 max_sectors
= bad_sectors
;
1218 /* We don't set R10BIO_Degraded as that
1219 * only applies if the disk is missing,
1220 * so it might be re-added, and we want to
1221 * know to recover this chunk.
1222 * In this case the device is here, and the
1223 * fact that this chunk is not in-sync is
1224 * recorded in the bad block log.
1229 int good_sectors
= first_bad
- dev_sector
;
1230 if (good_sectors
< max_sectors
)
1231 max_sectors
= good_sectors
;
1234 r10_bio
->devs
[i
].bio
= bio
;
1235 atomic_inc(&rdev
->nr_pending
);
1237 r10_bio
->devs
[i
].repl_bio
= bio
;
1238 atomic_inc(&rrdev
->nr_pending
);
1243 if (unlikely(blocked_rdev
)) {
1244 /* Have to wait for this device to get unblocked, then retry */
1248 for (j
= 0; j
< i
; j
++) {
1249 if (r10_bio
->devs
[j
].bio
) {
1250 d
= r10_bio
->devs
[j
].devnum
;
1251 rdev_dec_pending(conf
->mirrors
[d
].rdev
, mddev
);
1253 if (r10_bio
->devs
[j
].repl_bio
) {
1254 struct md_rdev
*rdev
;
1255 d
= r10_bio
->devs
[j
].devnum
;
1256 rdev
= conf
->mirrors
[d
].replacement
;
1258 /* Race with remove_disk */
1260 rdev
= conf
->mirrors
[d
].rdev
;
1262 rdev_dec_pending(rdev
, mddev
);
1265 allow_barrier(conf
);
1266 md_wait_for_blocked_rdev(blocked_rdev
, mddev
);
1271 if (max_sectors
< r10_bio
->sectors
) {
1272 /* We are splitting this into multiple parts, so
1273 * we need to prepare for allocating another r10_bio.
1275 r10_bio
->sectors
= max_sectors
;
1276 spin_lock_irq(&conf
->device_lock
);
1277 if (bio
->bi_phys_segments
== 0)
1278 bio
->bi_phys_segments
= 2;
1280 bio
->bi_phys_segments
++;
1281 spin_unlock_irq(&conf
->device_lock
);
1283 sectors_handled
= r10_bio
->sector
+ max_sectors
- bio
->bi_sector
;
1285 atomic_set(&r10_bio
->remaining
, 1);
1286 bitmap_startwrite(mddev
->bitmap
, r10_bio
->sector
, r10_bio
->sectors
, 0);
1288 for (i
= 0; i
< conf
->copies
; i
++) {
1290 int d
= r10_bio
->devs
[i
].devnum
;
1291 if (!r10_bio
->devs
[i
].bio
)
1294 mbio
= bio_clone_mddev(bio
, GFP_NOIO
, mddev
);
1295 md_trim_bio(mbio
, r10_bio
->sector
- bio
->bi_sector
,
1297 r10_bio
->devs
[i
].bio
= mbio
;
1299 mbio
->bi_sector
= (r10_bio
->devs
[i
].addr
+
1300 conf
->mirrors
[d
].rdev
->data_offset
);
1301 mbio
->bi_bdev
= conf
->mirrors
[d
].rdev
->bdev
;
1302 mbio
->bi_end_io
= raid10_end_write_request
;
1303 mbio
->bi_rw
= WRITE
| do_sync
| do_fua
;
1304 mbio
->bi_private
= r10_bio
;
1306 atomic_inc(&r10_bio
->remaining
);
1307 spin_lock_irqsave(&conf
->device_lock
, flags
);
1308 bio_list_add(&conf
->pending_bio_list
, mbio
);
1309 conf
->pending_count
++;
1310 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1312 if (!r10_bio
->devs
[i
].repl_bio
)
1315 mbio
= bio_clone_mddev(bio
, GFP_NOIO
, mddev
);
1316 md_trim_bio(mbio
, r10_bio
->sector
- bio
->bi_sector
,
1318 r10_bio
->devs
[i
].repl_bio
= mbio
;
1320 /* We are actively writing to the original device
1321 * so it cannot disappear, so the replacement cannot
1324 mbio
->bi_sector
= (r10_bio
->devs
[i
].addr
+
1325 conf
->mirrors
[d
].replacement
->data_offset
);
1326 mbio
->bi_bdev
= conf
->mirrors
[d
].replacement
->bdev
;
1327 mbio
->bi_end_io
= raid10_end_write_request
;
1328 mbio
->bi_rw
= WRITE
| do_sync
| do_fua
;
1329 mbio
->bi_private
= r10_bio
;
1331 atomic_inc(&r10_bio
->remaining
);
1332 spin_lock_irqsave(&conf
->device_lock
, flags
);
1333 bio_list_add(&conf
->pending_bio_list
, mbio
);
1334 conf
->pending_count
++;
1335 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1338 /* Don't remove the bias on 'remaining' (one_write_done) until
1339 * after checking if we need to go around again.
1342 if (sectors_handled
< (bio
->bi_size
>> 9)) {
1343 one_write_done(r10_bio
);
1344 /* We need another r10_bio. It has already been counted
1345 * in bio->bi_phys_segments.
1347 r10_bio
= mempool_alloc(conf
->r10bio_pool
, GFP_NOIO
);
1349 r10_bio
->master_bio
= bio
;
1350 r10_bio
->sectors
= (bio
->bi_size
>> 9) - sectors_handled
;
1352 r10_bio
->mddev
= mddev
;
1353 r10_bio
->sector
= bio
->bi_sector
+ sectors_handled
;
1357 one_write_done(r10_bio
);
1359 /* In case raid10d snuck in to freeze_array */
1360 wake_up(&conf
->wait_barrier
);
1362 if (do_sync
|| !mddev
->bitmap
|| !plugged
)
1363 md_wakeup_thread(mddev
->thread
);
1366 static void status(struct seq_file
*seq
, struct mddev
*mddev
)
1368 struct r10conf
*conf
= mddev
->private;
1371 if (conf
->near_copies
< conf
->raid_disks
)
1372 seq_printf(seq
, " %dK chunks", mddev
->chunk_sectors
/ 2);
1373 if (conf
->near_copies
> 1)
1374 seq_printf(seq
, " %d near-copies", conf
->near_copies
);
1375 if (conf
->far_copies
> 1) {
1376 if (conf
->far_offset
)
1377 seq_printf(seq
, " %d offset-copies", conf
->far_copies
);
1379 seq_printf(seq
, " %d far-copies", conf
->far_copies
);
1381 seq_printf(seq
, " [%d/%d] [", conf
->raid_disks
,
1382 conf
->raid_disks
- mddev
->degraded
);
1383 for (i
= 0; i
< conf
->raid_disks
; i
++)
1384 seq_printf(seq
, "%s",
1385 conf
->mirrors
[i
].rdev
&&
1386 test_bit(In_sync
, &conf
->mirrors
[i
].rdev
->flags
) ? "U" : "_");
1387 seq_printf(seq
, "]");
1390 /* check if there are enough drives for
1391 * every block to appear on atleast one.
1392 * Don't consider the device numbered 'ignore'
1393 * as we might be about to remove it.
1395 static int enough(struct r10conf
*conf
, int ignore
)
1400 int n
= conf
->copies
;
1403 if (conf
->mirrors
[first
].rdev
&&
1406 first
= (first
+1) % conf
->raid_disks
;
1410 } while (first
!= 0);
1414 static void error(struct mddev
*mddev
, struct md_rdev
*rdev
)
1416 char b
[BDEVNAME_SIZE
];
1417 struct r10conf
*conf
= mddev
->private;
1420 * If it is not operational, then we have already marked it as dead
1421 * else if it is the last working disks, ignore the error, let the
1422 * next level up know.
1423 * else mark the drive as failed
1425 if (test_bit(In_sync
, &rdev
->flags
)
1426 && !enough(conf
, rdev
->raid_disk
))
1428 * Don't fail the drive, just return an IO error.
1431 if (test_and_clear_bit(In_sync
, &rdev
->flags
)) {
1432 unsigned long flags
;
1433 spin_lock_irqsave(&conf
->device_lock
, flags
);
1435 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1437 * if recovery is running, make sure it aborts.
1439 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
1441 set_bit(Blocked
, &rdev
->flags
);
1442 set_bit(Faulty
, &rdev
->flags
);
1443 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
1445 "md/raid10:%s: Disk failure on %s, disabling device.\n"
1446 "md/raid10:%s: Operation continuing on %d devices.\n",
1447 mdname(mddev
), bdevname(rdev
->bdev
, b
),
1448 mdname(mddev
), conf
->raid_disks
- mddev
->degraded
);
1451 static void print_conf(struct r10conf
*conf
)
1454 struct mirror_info
*tmp
;
1456 printk(KERN_DEBUG
"RAID10 conf printout:\n");
1458 printk(KERN_DEBUG
"(!conf)\n");
1461 printk(KERN_DEBUG
" --- wd:%d rd:%d\n", conf
->raid_disks
- conf
->mddev
->degraded
,
1464 for (i
= 0; i
< conf
->raid_disks
; i
++) {
1465 char b
[BDEVNAME_SIZE
];
1466 tmp
= conf
->mirrors
+ i
;
1468 printk(KERN_DEBUG
" disk %d, wo:%d, o:%d, dev:%s\n",
1469 i
, !test_bit(In_sync
, &tmp
->rdev
->flags
),
1470 !test_bit(Faulty
, &tmp
->rdev
->flags
),
1471 bdevname(tmp
->rdev
->bdev
,b
));
1475 static void close_sync(struct r10conf
*conf
)
1478 allow_barrier(conf
);
1480 mempool_destroy(conf
->r10buf_pool
);
1481 conf
->r10buf_pool
= NULL
;
1484 static int raid10_spare_active(struct mddev
*mddev
)
1487 struct r10conf
*conf
= mddev
->private;
1488 struct mirror_info
*tmp
;
1490 unsigned long flags
;
1493 * Find all non-in_sync disks within the RAID10 configuration
1494 * and mark them in_sync
1496 for (i
= 0; i
< conf
->raid_disks
; i
++) {
1497 tmp
= conf
->mirrors
+ i
;
1498 if (tmp
->replacement
1499 && tmp
->replacement
->recovery_offset
== MaxSector
1500 && !test_bit(Faulty
, &tmp
->replacement
->flags
)
1501 && !test_and_set_bit(In_sync
, &tmp
->replacement
->flags
)) {
1502 /* Replacement has just become active */
1504 || !test_and_clear_bit(In_sync
, &tmp
->rdev
->flags
))
1507 /* Replaced device not technically faulty,
1508 * but we need to be sure it gets removed
1509 * and never re-added.
1511 set_bit(Faulty
, &tmp
->rdev
->flags
);
1512 sysfs_notify_dirent_safe(
1513 tmp
->rdev
->sysfs_state
);
1515 sysfs_notify_dirent_safe(tmp
->replacement
->sysfs_state
);
1516 } else if (tmp
->rdev
1517 && !test_bit(Faulty
, &tmp
->rdev
->flags
)
1518 && !test_and_set_bit(In_sync
, &tmp
->rdev
->flags
)) {
1520 sysfs_notify_dirent(tmp
->rdev
->sysfs_state
);
1523 spin_lock_irqsave(&conf
->device_lock
, flags
);
1524 mddev
->degraded
-= count
;
1525 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1532 static int raid10_add_disk(struct mddev
*mddev
, struct md_rdev
*rdev
)
1534 struct r10conf
*conf
= mddev
->private;
1538 int last
= conf
->raid_disks
- 1;
1539 struct request_queue
*q
= bdev_get_queue(rdev
->bdev
);
1541 if (mddev
->recovery_cp
< MaxSector
)
1542 /* only hot-add to in-sync arrays, as recovery is
1543 * very different from resync
1546 if (rdev
->saved_raid_disk
< 0 && !enough(conf
, -1))
1549 if (rdev
->raid_disk
>= 0)
1550 first
= last
= rdev
->raid_disk
;
1552 if (q
->merge_bvec_fn
) {
1553 set_bit(Unmerged
, &rdev
->flags
);
1554 mddev
->merge_check_needed
= 1;
1557 if (rdev
->saved_raid_disk
>= first
&&
1558 conf
->mirrors
[rdev
->saved_raid_disk
].rdev
== NULL
)
1559 mirror
= rdev
->saved_raid_disk
;
1562 for ( ; mirror
<= last
; mirror
++) {
1563 struct mirror_info
*p
= &conf
->mirrors
[mirror
];
1564 if (p
->recovery_disabled
== mddev
->recovery_disabled
)
1567 if (!test_bit(WantReplacement
, &p
->rdev
->flags
) ||
1568 p
->replacement
!= NULL
)
1570 clear_bit(In_sync
, &rdev
->flags
);
1571 set_bit(Replacement
, &rdev
->flags
);
1572 rdev
->raid_disk
= mirror
;
1574 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
1575 rdev
->data_offset
<< 9);
1577 rcu_assign_pointer(p
->replacement
, rdev
);
1581 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
1582 rdev
->data_offset
<< 9);
1584 p
->head_position
= 0;
1585 p
->recovery_disabled
= mddev
->recovery_disabled
- 1;
1586 rdev
->raid_disk
= mirror
;
1588 if (rdev
->saved_raid_disk
!= mirror
)
1590 rcu_assign_pointer(p
->rdev
, rdev
);
1593 if (err
== 0 && test_bit(Unmerged
, &rdev
->flags
)) {
1594 /* Some requests might not have seen this new
1595 * merge_bvec_fn. We must wait for them to complete
1596 * before merging the device fully.
1597 * First we make sure any code which has tested
1598 * our function has submitted the request, then
1599 * we wait for all outstanding requests to complete.
1601 synchronize_sched();
1602 raise_barrier(conf
, 0);
1603 lower_barrier(conf
);
1604 clear_bit(Unmerged
, &rdev
->flags
);
1606 md_integrity_add_rdev(rdev
, mddev
);
1611 static int raid10_remove_disk(struct mddev
*mddev
, struct md_rdev
*rdev
)
1613 struct r10conf
*conf
= mddev
->private;
1615 int number
= rdev
->raid_disk
;
1616 struct md_rdev
**rdevp
;
1617 struct mirror_info
*p
= conf
->mirrors
+ number
;
1620 if (rdev
== p
->rdev
)
1622 else if (rdev
== p
->replacement
)
1623 rdevp
= &p
->replacement
;
1627 if (test_bit(In_sync
, &rdev
->flags
) ||
1628 atomic_read(&rdev
->nr_pending
)) {
1632 /* Only remove faulty devices if recovery
1635 if (!test_bit(Faulty
, &rdev
->flags
) &&
1636 mddev
->recovery_disabled
!= p
->recovery_disabled
&&
1637 (!p
->replacement
|| p
->replacement
== rdev
) &&
1644 if (atomic_read(&rdev
->nr_pending
)) {
1645 /* lost the race, try later */
1649 } else if (p
->replacement
) {
1650 /* We must have just cleared 'rdev' */
1651 p
->rdev
= p
->replacement
;
1652 clear_bit(Replacement
, &p
->replacement
->flags
);
1653 smp_mb(); /* Make sure other CPUs may see both as identical
1654 * but will never see neither -- if they are careful.
1656 p
->replacement
= NULL
;
1657 clear_bit(WantReplacement
, &rdev
->flags
);
1659 /* We might have just remove the Replacement as faulty
1660 * Clear the flag just in case
1662 clear_bit(WantReplacement
, &rdev
->flags
);
1664 err
= md_integrity_register(mddev
);
1673 static void end_sync_read(struct bio
*bio
, int error
)
1675 struct r10bio
*r10_bio
= bio
->bi_private
;
1676 struct r10conf
*conf
= r10_bio
->mddev
->private;
1679 d
= find_bio_disk(conf
, r10_bio
, bio
, NULL
, NULL
);
1681 if (test_bit(BIO_UPTODATE
, &bio
->bi_flags
))
1682 set_bit(R10BIO_Uptodate
, &r10_bio
->state
);
1684 /* The write handler will notice the lack of
1685 * R10BIO_Uptodate and record any errors etc
1687 atomic_add(r10_bio
->sectors
,
1688 &conf
->mirrors
[d
].rdev
->corrected_errors
);
1690 /* for reconstruct, we always reschedule after a read.
1691 * for resync, only after all reads
1693 rdev_dec_pending(conf
->mirrors
[d
].rdev
, conf
->mddev
);
1694 if (test_bit(R10BIO_IsRecover
, &r10_bio
->state
) ||
1695 atomic_dec_and_test(&r10_bio
->remaining
)) {
1696 /* we have read all the blocks,
1697 * do the comparison in process context in raid10d
1699 reschedule_retry(r10_bio
);
1703 static void end_sync_request(struct r10bio
*r10_bio
)
1705 struct mddev
*mddev
= r10_bio
->mddev
;
1707 while (atomic_dec_and_test(&r10_bio
->remaining
)) {
1708 if (r10_bio
->master_bio
== NULL
) {
1709 /* the primary of several recovery bios */
1710 sector_t s
= r10_bio
->sectors
;
1711 if (test_bit(R10BIO_MadeGood
, &r10_bio
->state
) ||
1712 test_bit(R10BIO_WriteError
, &r10_bio
->state
))
1713 reschedule_retry(r10_bio
);
1716 md_done_sync(mddev
, s
, 1);
1719 struct r10bio
*r10_bio2
= (struct r10bio
*)r10_bio
->master_bio
;
1720 if (test_bit(R10BIO_MadeGood
, &r10_bio
->state
) ||
1721 test_bit(R10BIO_WriteError
, &r10_bio
->state
))
1722 reschedule_retry(r10_bio
);
1730 static void end_sync_write(struct bio
*bio
, int error
)
1732 int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
1733 struct r10bio
*r10_bio
= bio
->bi_private
;
1734 struct mddev
*mddev
= r10_bio
->mddev
;
1735 struct r10conf
*conf
= mddev
->private;
1741 struct md_rdev
*rdev
= NULL
;
1743 d
= find_bio_disk(conf
, r10_bio
, bio
, &slot
, &repl
);
1745 rdev
= conf
->mirrors
[d
].replacement
;
1747 rdev
= conf
->mirrors
[d
].rdev
;
1751 md_error(mddev
, rdev
);
1753 set_bit(WriteErrorSeen
, &rdev
->flags
);
1754 if (!test_and_set_bit(WantReplacement
, &rdev
->flags
))
1755 set_bit(MD_RECOVERY_NEEDED
,
1756 &rdev
->mddev
->recovery
);
1757 set_bit(R10BIO_WriteError
, &r10_bio
->state
);
1759 } else if (is_badblock(rdev
,
1760 r10_bio
->devs
[slot
].addr
,
1762 &first_bad
, &bad_sectors
))
1763 set_bit(R10BIO_MadeGood
, &r10_bio
->state
);
1765 rdev_dec_pending(rdev
, mddev
);
1767 end_sync_request(r10_bio
);
1771 * Note: sync and recover and handled very differently for raid10
1772 * This code is for resync.
1773 * For resync, we read through virtual addresses and read all blocks.
1774 * If there is any error, we schedule a write. The lowest numbered
1775 * drive is authoritative.
1776 * However requests come for physical address, so we need to map.
1777 * For every physical address there are raid_disks/copies virtual addresses,
1778 * which is always are least one, but is not necessarly an integer.
1779 * This means that a physical address can span multiple chunks, so we may
1780 * have to submit multiple io requests for a single sync request.
1783 * We check if all blocks are in-sync and only write to blocks that
1786 static void sync_request_write(struct mddev
*mddev
, struct r10bio
*r10_bio
)
1788 struct r10conf
*conf
= mddev
->private;
1790 struct bio
*tbio
, *fbio
;
1792 atomic_set(&r10_bio
->remaining
, 1);
1794 /* find the first device with a block */
1795 for (i
=0; i
<conf
->copies
; i
++)
1796 if (test_bit(BIO_UPTODATE
, &r10_bio
->devs
[i
].bio
->bi_flags
))
1799 if (i
== conf
->copies
)
1803 fbio
= r10_bio
->devs
[i
].bio
;
1805 /* now find blocks with errors */
1806 for (i
=0 ; i
< conf
->copies
; i
++) {
1808 int vcnt
= r10_bio
->sectors
>> (PAGE_SHIFT
-9);
1810 tbio
= r10_bio
->devs
[i
].bio
;
1812 if (tbio
->bi_end_io
!= end_sync_read
)
1816 if (test_bit(BIO_UPTODATE
, &r10_bio
->devs
[i
].bio
->bi_flags
)) {
1817 /* We know that the bi_io_vec layout is the same for
1818 * both 'first' and 'i', so we just compare them.
1819 * All vec entries are PAGE_SIZE;
1821 for (j
= 0; j
< vcnt
; j
++)
1822 if (memcmp(page_address(fbio
->bi_io_vec
[j
].bv_page
),
1823 page_address(tbio
->bi_io_vec
[j
].bv_page
),
1828 mddev
->resync_mismatches
+= r10_bio
->sectors
;
1829 if (test_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
))
1830 /* Don't fix anything. */
1833 /* Ok, we need to write this bio, either to correct an
1834 * inconsistency or to correct an unreadable block.
1835 * First we need to fixup bv_offset, bv_len and
1836 * bi_vecs, as the read request might have corrupted these
1838 tbio
->bi_vcnt
= vcnt
;
1839 tbio
->bi_size
= r10_bio
->sectors
<< 9;
1841 tbio
->bi_phys_segments
= 0;
1842 tbio
->bi_flags
&= ~(BIO_POOL_MASK
- 1);
1843 tbio
->bi_flags
|= 1 << BIO_UPTODATE
;
1844 tbio
->bi_next
= NULL
;
1845 tbio
->bi_rw
= WRITE
;
1846 tbio
->bi_private
= r10_bio
;
1847 tbio
->bi_sector
= r10_bio
->devs
[i
].addr
;
1849 for (j
=0; j
< vcnt
; j
++) {
1850 tbio
->bi_io_vec
[j
].bv_offset
= 0;
1851 tbio
->bi_io_vec
[j
].bv_len
= PAGE_SIZE
;
1853 memcpy(page_address(tbio
->bi_io_vec
[j
].bv_page
),
1854 page_address(fbio
->bi_io_vec
[j
].bv_page
),
1857 tbio
->bi_end_io
= end_sync_write
;
1859 d
= r10_bio
->devs
[i
].devnum
;
1860 atomic_inc(&conf
->mirrors
[d
].rdev
->nr_pending
);
1861 atomic_inc(&r10_bio
->remaining
);
1862 md_sync_acct(conf
->mirrors
[d
].rdev
->bdev
, tbio
->bi_size
>> 9);
1864 tbio
->bi_sector
+= conf
->mirrors
[d
].rdev
->data_offset
;
1865 tbio
->bi_bdev
= conf
->mirrors
[d
].rdev
->bdev
;
1866 generic_make_request(tbio
);
1869 /* Now write out to any replacement devices
1872 for (i
= 0; i
< conf
->copies
; i
++) {
1874 int vcnt
= r10_bio
->sectors
>> (PAGE_SHIFT
-9);
1876 tbio
= r10_bio
->devs
[i
].repl_bio
;
1877 if (!tbio
|| !tbio
->bi_end_io
)
1879 if (r10_bio
->devs
[i
].bio
->bi_end_io
!= end_sync_write
1880 && r10_bio
->devs
[i
].bio
!= fbio
)
1881 for (j
= 0; j
< vcnt
; j
++)
1882 memcpy(page_address(tbio
->bi_io_vec
[j
].bv_page
),
1883 page_address(fbio
->bi_io_vec
[j
].bv_page
),
1885 d
= r10_bio
->devs
[i
].devnum
;
1886 atomic_inc(&r10_bio
->remaining
);
1887 md_sync_acct(conf
->mirrors
[d
].replacement
->bdev
,
1888 tbio
->bi_size
>> 9);
1889 generic_make_request(tbio
);
1893 if (atomic_dec_and_test(&r10_bio
->remaining
)) {
1894 md_done_sync(mddev
, r10_bio
->sectors
, 1);
1900 * Now for the recovery code.
1901 * Recovery happens across physical sectors.
1902 * We recover all non-is_sync drives by finding the virtual address of
1903 * each, and then choose a working drive that also has that virt address.
1904 * There is a separate r10_bio for each non-in_sync drive.
1905 * Only the first two slots are in use. The first for reading,
1906 * The second for writing.
1909 static void fix_recovery_read_error(struct r10bio
*r10_bio
)
1911 /* We got a read error during recovery.
1912 * We repeat the read in smaller page-sized sections.
1913 * If a read succeeds, write it to the new device or record
1914 * a bad block if we cannot.
1915 * If a read fails, record a bad block on both old and
1918 struct mddev
*mddev
= r10_bio
->mddev
;
1919 struct r10conf
*conf
= mddev
->private;
1920 struct bio
*bio
= r10_bio
->devs
[0].bio
;
1922 int sectors
= r10_bio
->sectors
;
1924 int dr
= r10_bio
->devs
[0].devnum
;
1925 int dw
= r10_bio
->devs
[1].devnum
;
1929 struct md_rdev
*rdev
;
1933 if (s
> (PAGE_SIZE
>>9))
1936 rdev
= conf
->mirrors
[dr
].rdev
;
1937 addr
= r10_bio
->devs
[0].addr
+ sect
,
1938 ok
= sync_page_io(rdev
,
1941 bio
->bi_io_vec
[idx
].bv_page
,
1944 rdev
= conf
->mirrors
[dw
].rdev
;
1945 addr
= r10_bio
->devs
[1].addr
+ sect
;
1946 ok
= sync_page_io(rdev
,
1949 bio
->bi_io_vec
[idx
].bv_page
,
1952 set_bit(WriteErrorSeen
, &rdev
->flags
);
1953 if (!test_and_set_bit(WantReplacement
,
1955 set_bit(MD_RECOVERY_NEEDED
,
1956 &rdev
->mddev
->recovery
);
1960 /* We don't worry if we cannot set a bad block -
1961 * it really is bad so there is no loss in not
1964 rdev_set_badblocks(rdev
, addr
, s
, 0);
1966 if (rdev
!= conf
->mirrors
[dw
].rdev
) {
1967 /* need bad block on destination too */
1968 struct md_rdev
*rdev2
= conf
->mirrors
[dw
].rdev
;
1969 addr
= r10_bio
->devs
[1].addr
+ sect
;
1970 ok
= rdev_set_badblocks(rdev2
, addr
, s
, 0);
1972 /* just abort the recovery */
1974 "md/raid10:%s: recovery aborted"
1975 " due to read error\n",
1978 conf
->mirrors
[dw
].recovery_disabled
1979 = mddev
->recovery_disabled
;
1980 set_bit(MD_RECOVERY_INTR
,
1993 static void recovery_request_write(struct mddev
*mddev
, struct r10bio
*r10_bio
)
1995 struct r10conf
*conf
= mddev
->private;
1997 struct bio
*wbio
, *wbio2
;
1999 if (!test_bit(R10BIO_Uptodate
, &r10_bio
->state
)) {
2000 fix_recovery_read_error(r10_bio
);
2001 end_sync_request(r10_bio
);
2006 * share the pages with the first bio
2007 * and submit the write request
2009 d
= r10_bio
->devs
[1].devnum
;
2010 wbio
= r10_bio
->devs
[1].bio
;
2011 wbio2
= r10_bio
->devs
[1].repl_bio
;
2012 if (wbio
->bi_end_io
) {
2013 atomic_inc(&conf
->mirrors
[d
].rdev
->nr_pending
);
2014 md_sync_acct(conf
->mirrors
[d
].rdev
->bdev
, wbio
->bi_size
>> 9);
2015 generic_make_request(wbio
);
2017 if (wbio2
&& wbio2
->bi_end_io
) {
2018 atomic_inc(&conf
->mirrors
[d
].replacement
->nr_pending
);
2019 md_sync_acct(conf
->mirrors
[d
].replacement
->bdev
,
2020 wbio2
->bi_size
>> 9);
2021 generic_make_request(wbio2
);
2027 * Used by fix_read_error() to decay the per rdev read_errors.
2028 * We halve the read error count for every hour that has elapsed
2029 * since the last recorded read error.
2032 static void check_decay_read_errors(struct mddev
*mddev
, struct md_rdev
*rdev
)
2034 struct timespec cur_time_mon
;
2035 unsigned long hours_since_last
;
2036 unsigned int read_errors
= atomic_read(&rdev
->read_errors
);
2038 ktime_get_ts(&cur_time_mon
);
2040 if (rdev
->last_read_error
.tv_sec
== 0 &&
2041 rdev
->last_read_error
.tv_nsec
== 0) {
2042 /* first time we've seen a read error */
2043 rdev
->last_read_error
= cur_time_mon
;
2047 hours_since_last
= (cur_time_mon
.tv_sec
-
2048 rdev
->last_read_error
.tv_sec
) / 3600;
2050 rdev
->last_read_error
= cur_time_mon
;
2053 * if hours_since_last is > the number of bits in read_errors
2054 * just set read errors to 0. We do this to avoid
2055 * overflowing the shift of read_errors by hours_since_last.
2057 if (hours_since_last
>= 8 * sizeof(read_errors
))
2058 atomic_set(&rdev
->read_errors
, 0);
2060 atomic_set(&rdev
->read_errors
, read_errors
>> hours_since_last
);
2063 static int r10_sync_page_io(struct md_rdev
*rdev
, sector_t sector
,
2064 int sectors
, struct page
*page
, int rw
)
2069 if (is_badblock(rdev
, sector
, sectors
, &first_bad
, &bad_sectors
)
2070 && (rw
== READ
|| test_bit(WriteErrorSeen
, &rdev
->flags
)))
2072 if (sync_page_io(rdev
, sector
, sectors
<< 9, page
, rw
, false))
2076 set_bit(WriteErrorSeen
, &rdev
->flags
);
2077 if (!test_and_set_bit(WantReplacement
, &rdev
->flags
))
2078 set_bit(MD_RECOVERY_NEEDED
,
2079 &rdev
->mddev
->recovery
);
2081 /* need to record an error - either for the block or the device */
2082 if (!rdev_set_badblocks(rdev
, sector
, sectors
, 0))
2083 md_error(rdev
->mddev
, rdev
);
2088 * This is a kernel thread which:
2090 * 1. Retries failed read operations on working mirrors.
2091 * 2. Updates the raid superblock when problems encounter.
2092 * 3. Performs writes following reads for array synchronising.
2095 static void fix_read_error(struct r10conf
*conf
, struct mddev
*mddev
, struct r10bio
*r10_bio
)
2097 int sect
= 0; /* Offset from r10_bio->sector */
2098 int sectors
= r10_bio
->sectors
;
2099 struct md_rdev
*rdev
;
2100 int max_read_errors
= atomic_read(&mddev
->max_corr_read_errors
);
2101 int d
= r10_bio
->devs
[r10_bio
->read_slot
].devnum
;
2103 /* still own a reference to this rdev, so it cannot
2104 * have been cleared recently.
2106 rdev
= conf
->mirrors
[d
].rdev
;
2108 if (test_bit(Faulty
, &rdev
->flags
))
2109 /* drive has already been failed, just ignore any
2110 more fix_read_error() attempts */
2113 check_decay_read_errors(mddev
, rdev
);
2114 atomic_inc(&rdev
->read_errors
);
2115 if (atomic_read(&rdev
->read_errors
) > max_read_errors
) {
2116 char b
[BDEVNAME_SIZE
];
2117 bdevname(rdev
->bdev
, b
);
2120 "md/raid10:%s: %s: Raid device exceeded "
2121 "read_error threshold [cur %d:max %d]\n",
2123 atomic_read(&rdev
->read_errors
), max_read_errors
);
2125 "md/raid10:%s: %s: Failing raid device\n",
2127 md_error(mddev
, conf
->mirrors
[d
].rdev
);
2128 r10_bio
->devs
[r10_bio
->read_slot
].bio
= IO_BLOCKED
;
2134 int sl
= r10_bio
->read_slot
;
2138 if (s
> (PAGE_SIZE
>>9))
2146 d
= r10_bio
->devs
[sl
].devnum
;
2147 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
2149 !test_bit(Unmerged
, &rdev
->flags
) &&
2150 test_bit(In_sync
, &rdev
->flags
) &&
2151 is_badblock(rdev
, r10_bio
->devs
[sl
].addr
+ sect
, s
,
2152 &first_bad
, &bad_sectors
) == 0) {
2153 atomic_inc(&rdev
->nr_pending
);
2155 success
= sync_page_io(rdev
,
2156 r10_bio
->devs
[sl
].addr
+
2159 conf
->tmppage
, READ
, false);
2160 rdev_dec_pending(rdev
, mddev
);
2166 if (sl
== conf
->copies
)
2168 } while (!success
&& sl
!= r10_bio
->read_slot
);
2172 /* Cannot read from anywhere, just mark the block
2173 * as bad on the first device to discourage future
2176 int dn
= r10_bio
->devs
[r10_bio
->read_slot
].devnum
;
2177 rdev
= conf
->mirrors
[dn
].rdev
;
2179 if (!rdev_set_badblocks(
2181 r10_bio
->devs
[r10_bio
->read_slot
].addr
2184 md_error(mddev
, rdev
);
2185 r10_bio
->devs
[r10_bio
->read_slot
].bio
2192 /* write it back and re-read */
2194 while (sl
!= r10_bio
->read_slot
) {
2195 char b
[BDEVNAME_SIZE
];
2200 d
= r10_bio
->devs
[sl
].devnum
;
2201 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
2203 test_bit(Unmerged
, &rdev
->flags
) ||
2204 !test_bit(In_sync
, &rdev
->flags
))
2207 atomic_inc(&rdev
->nr_pending
);
2209 if (r10_sync_page_io(rdev
,
2210 r10_bio
->devs
[sl
].addr
+
2212 s
<<9, conf
->tmppage
, WRITE
)
2214 /* Well, this device is dead */
2216 "md/raid10:%s: read correction "
2218 " (%d sectors at %llu on %s)\n",
2220 (unsigned long long)(
2221 sect
+ rdev
->data_offset
),
2222 bdevname(rdev
->bdev
, b
));
2223 printk(KERN_NOTICE
"md/raid10:%s: %s: failing "
2226 bdevname(rdev
->bdev
, b
));
2228 rdev_dec_pending(rdev
, mddev
);
2232 while (sl
!= r10_bio
->read_slot
) {
2233 char b
[BDEVNAME_SIZE
];
2238 d
= r10_bio
->devs
[sl
].devnum
;
2239 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
2241 !test_bit(In_sync
, &rdev
->flags
))
2244 atomic_inc(&rdev
->nr_pending
);
2246 switch (r10_sync_page_io(rdev
,
2247 r10_bio
->devs
[sl
].addr
+
2249 s
<<9, conf
->tmppage
,
2252 /* Well, this device is dead */
2254 "md/raid10:%s: unable to read back "
2256 " (%d sectors at %llu on %s)\n",
2258 (unsigned long long)(
2259 sect
+ rdev
->data_offset
),
2260 bdevname(rdev
->bdev
, b
));
2261 printk(KERN_NOTICE
"md/raid10:%s: %s: failing "
2264 bdevname(rdev
->bdev
, b
));
2268 "md/raid10:%s: read error corrected"
2269 " (%d sectors at %llu on %s)\n",
2271 (unsigned long long)(
2272 sect
+ rdev
->data_offset
),
2273 bdevname(rdev
->bdev
, b
));
2274 atomic_add(s
, &rdev
->corrected_errors
);
2277 rdev_dec_pending(rdev
, mddev
);
2287 static void bi_complete(struct bio
*bio
, int error
)
2289 complete((struct completion
*)bio
->bi_private
);
2292 static int submit_bio_wait(int rw
, struct bio
*bio
)
2294 struct completion event
;
2297 init_completion(&event
);
2298 bio
->bi_private
= &event
;
2299 bio
->bi_end_io
= bi_complete
;
2300 submit_bio(rw
, bio
);
2301 wait_for_completion(&event
);
2303 return test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
2306 static int narrow_write_error(struct r10bio
*r10_bio
, int i
)
2308 struct bio
*bio
= r10_bio
->master_bio
;
2309 struct mddev
*mddev
= r10_bio
->mddev
;
2310 struct r10conf
*conf
= mddev
->private;
2311 struct md_rdev
*rdev
= conf
->mirrors
[r10_bio
->devs
[i
].devnum
].rdev
;
2312 /* bio has the data to be written to slot 'i' where
2313 * we just recently had a write error.
2314 * We repeatedly clone the bio and trim down to one block,
2315 * then try the write. Where the write fails we record
2317 * It is conceivable that the bio doesn't exactly align with
2318 * blocks. We must handle this.
2320 * We currently own a reference to the rdev.
2326 int sect_to_write
= r10_bio
->sectors
;
2329 if (rdev
->badblocks
.shift
< 0)
2332 block_sectors
= 1 << rdev
->badblocks
.shift
;
2333 sector
= r10_bio
->sector
;
2334 sectors
= ((r10_bio
->sector
+ block_sectors
)
2335 & ~(sector_t
)(block_sectors
- 1))
2338 while (sect_to_write
) {
2340 if (sectors
> sect_to_write
)
2341 sectors
= sect_to_write
;
2342 /* Write at 'sector' for 'sectors' */
2343 wbio
= bio_clone_mddev(bio
, GFP_NOIO
, mddev
);
2344 md_trim_bio(wbio
, sector
- bio
->bi_sector
, sectors
);
2345 wbio
->bi_sector
= (r10_bio
->devs
[i
].addr
+
2347 (sector
- r10_bio
->sector
));
2348 wbio
->bi_bdev
= rdev
->bdev
;
2349 if (submit_bio_wait(WRITE
, wbio
) == 0)
2351 ok
= rdev_set_badblocks(rdev
, sector
,
2356 sect_to_write
-= sectors
;
2358 sectors
= block_sectors
;
2363 static void handle_read_error(struct mddev
*mddev
, struct r10bio
*r10_bio
)
2365 int slot
= r10_bio
->read_slot
;
2367 struct r10conf
*conf
= mddev
->private;
2368 struct md_rdev
*rdev
= r10_bio
->devs
[slot
].rdev
;
2369 char b
[BDEVNAME_SIZE
];
2370 unsigned long do_sync
;
2373 /* we got a read error. Maybe the drive is bad. Maybe just
2374 * the block and we can fix it.
2375 * We freeze all other IO, and try reading the block from
2376 * other devices. When we find one, we re-write
2377 * and check it that fixes the read error.
2378 * This is all done synchronously while the array is
2381 bio
= r10_bio
->devs
[slot
].bio
;
2382 bdevname(bio
->bi_bdev
, b
);
2384 r10_bio
->devs
[slot
].bio
= NULL
;
2386 if (mddev
->ro
== 0) {
2388 fix_read_error(conf
, mddev
, r10_bio
);
2389 unfreeze_array(conf
);
2391 r10_bio
->devs
[slot
].bio
= IO_BLOCKED
;
2393 rdev_dec_pending(rdev
, mddev
);
2396 rdev
= read_balance(conf
, r10_bio
, &max_sectors
);
2398 printk(KERN_ALERT
"md/raid10:%s: %s: unrecoverable I/O"
2399 " read error for block %llu\n",
2401 (unsigned long long)r10_bio
->sector
);
2402 raid_end_bio_io(r10_bio
);
2406 do_sync
= (r10_bio
->master_bio
->bi_rw
& REQ_SYNC
);
2407 slot
= r10_bio
->read_slot
;
2410 "md/raid10:%s: %s: redirecting"
2411 "sector %llu to another mirror\n",
2413 bdevname(rdev
->bdev
, b
),
2414 (unsigned long long)r10_bio
->sector
);
2415 bio
= bio_clone_mddev(r10_bio
->master_bio
,
2418 r10_bio
->sector
- bio
->bi_sector
,
2420 r10_bio
->devs
[slot
].bio
= bio
;
2421 r10_bio
->devs
[slot
].rdev
= rdev
;
2422 bio
->bi_sector
= r10_bio
->devs
[slot
].addr
2423 + rdev
->data_offset
;
2424 bio
->bi_bdev
= rdev
->bdev
;
2425 bio
->bi_rw
= READ
| do_sync
;
2426 bio
->bi_private
= r10_bio
;
2427 bio
->bi_end_io
= raid10_end_read_request
;
2428 if (max_sectors
< r10_bio
->sectors
) {
2429 /* Drat - have to split this up more */
2430 struct bio
*mbio
= r10_bio
->master_bio
;
2431 int sectors_handled
=
2432 r10_bio
->sector
+ max_sectors
2434 r10_bio
->sectors
= max_sectors
;
2435 spin_lock_irq(&conf
->device_lock
);
2436 if (mbio
->bi_phys_segments
== 0)
2437 mbio
->bi_phys_segments
= 2;
2439 mbio
->bi_phys_segments
++;
2440 spin_unlock_irq(&conf
->device_lock
);
2441 generic_make_request(bio
);
2443 r10_bio
= mempool_alloc(conf
->r10bio_pool
,
2445 r10_bio
->master_bio
= mbio
;
2446 r10_bio
->sectors
= (mbio
->bi_size
>> 9)
2449 set_bit(R10BIO_ReadError
,
2451 r10_bio
->mddev
= mddev
;
2452 r10_bio
->sector
= mbio
->bi_sector
2457 generic_make_request(bio
);
2460 static void handle_write_completed(struct r10conf
*conf
, struct r10bio
*r10_bio
)
2462 /* Some sort of write request has finished and it
2463 * succeeded in writing where we thought there was a
2464 * bad block. So forget the bad block.
2465 * Or possibly if failed and we need to record
2469 struct md_rdev
*rdev
;
2471 if (test_bit(R10BIO_IsSync
, &r10_bio
->state
) ||
2472 test_bit(R10BIO_IsRecover
, &r10_bio
->state
)) {
2473 for (m
= 0; m
< conf
->copies
; m
++) {
2474 int dev
= r10_bio
->devs
[m
].devnum
;
2475 rdev
= conf
->mirrors
[dev
].rdev
;
2476 if (r10_bio
->devs
[m
].bio
== NULL
)
2478 if (test_bit(BIO_UPTODATE
,
2479 &r10_bio
->devs
[m
].bio
->bi_flags
)) {
2480 rdev_clear_badblocks(
2482 r10_bio
->devs
[m
].addr
,
2485 if (!rdev_set_badblocks(
2487 r10_bio
->devs
[m
].addr
,
2488 r10_bio
->sectors
, 0))
2489 md_error(conf
->mddev
, rdev
);
2491 rdev
= conf
->mirrors
[dev
].replacement
;
2492 if (r10_bio
->devs
[m
].repl_bio
== NULL
)
2494 if (test_bit(BIO_UPTODATE
,
2495 &r10_bio
->devs
[m
].repl_bio
->bi_flags
)) {
2496 rdev_clear_badblocks(
2498 r10_bio
->devs
[m
].addr
,
2501 if (!rdev_set_badblocks(
2503 r10_bio
->devs
[m
].addr
,
2504 r10_bio
->sectors
, 0))
2505 md_error(conf
->mddev
, rdev
);
2510 for (m
= 0; m
< conf
->copies
; m
++) {
2511 int dev
= r10_bio
->devs
[m
].devnum
;
2512 struct bio
*bio
= r10_bio
->devs
[m
].bio
;
2513 rdev
= conf
->mirrors
[dev
].rdev
;
2514 if (bio
== IO_MADE_GOOD
) {
2515 rdev_clear_badblocks(
2517 r10_bio
->devs
[m
].addr
,
2519 rdev_dec_pending(rdev
, conf
->mddev
);
2520 } else if (bio
!= NULL
&&
2521 !test_bit(BIO_UPTODATE
, &bio
->bi_flags
)) {
2522 if (!narrow_write_error(r10_bio
, m
)) {
2523 md_error(conf
->mddev
, rdev
);
2524 set_bit(R10BIO_Degraded
,
2527 rdev_dec_pending(rdev
, conf
->mddev
);
2529 bio
= r10_bio
->devs
[m
].repl_bio
;
2530 rdev
= conf
->mirrors
[dev
].replacement
;
2531 if (rdev
&& bio
== IO_MADE_GOOD
) {
2532 rdev_clear_badblocks(
2534 r10_bio
->devs
[m
].addr
,
2536 rdev_dec_pending(rdev
, conf
->mddev
);
2539 if (test_bit(R10BIO_WriteError
,
2541 close_write(r10_bio
);
2542 raid_end_bio_io(r10_bio
);
2546 static void raid10d(struct mddev
*mddev
)
2548 struct r10bio
*r10_bio
;
2549 unsigned long flags
;
2550 struct r10conf
*conf
= mddev
->private;
2551 struct list_head
*head
= &conf
->retry_list
;
2552 struct blk_plug plug
;
2554 md_check_recovery(mddev
);
2556 blk_start_plug(&plug
);
2559 flush_pending_writes(conf
);
2561 spin_lock_irqsave(&conf
->device_lock
, flags
);
2562 if (list_empty(head
)) {
2563 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
2566 r10_bio
= list_entry(head
->prev
, struct r10bio
, retry_list
);
2567 list_del(head
->prev
);
2569 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
2571 mddev
= r10_bio
->mddev
;
2572 conf
= mddev
->private;
2573 if (test_bit(R10BIO_MadeGood
, &r10_bio
->state
) ||
2574 test_bit(R10BIO_WriteError
, &r10_bio
->state
))
2575 handle_write_completed(conf
, r10_bio
);
2576 else if (test_bit(R10BIO_IsSync
, &r10_bio
->state
))
2577 sync_request_write(mddev
, r10_bio
);
2578 else if (test_bit(R10BIO_IsRecover
, &r10_bio
->state
))
2579 recovery_request_write(mddev
, r10_bio
);
2580 else if (test_bit(R10BIO_ReadError
, &r10_bio
->state
))
2581 handle_read_error(mddev
, r10_bio
);
2583 /* just a partial read to be scheduled from a
2586 int slot
= r10_bio
->read_slot
;
2587 generic_make_request(r10_bio
->devs
[slot
].bio
);
2591 if (mddev
->flags
& ~(1<<MD_CHANGE_PENDING
))
2592 md_check_recovery(mddev
);
2594 blk_finish_plug(&plug
);
2598 static int init_resync(struct r10conf
*conf
)
2603 buffs
= RESYNC_WINDOW
/ RESYNC_BLOCK_SIZE
;
2604 BUG_ON(conf
->r10buf_pool
);
2605 conf
->have_replacement
= 0;
2606 for (i
= 0; i
< conf
->raid_disks
; i
++)
2607 if (conf
->mirrors
[i
].replacement
)
2608 conf
->have_replacement
= 1;
2609 conf
->r10buf_pool
= mempool_create(buffs
, r10buf_pool_alloc
, r10buf_pool_free
, conf
);
2610 if (!conf
->r10buf_pool
)
2612 conf
->next_resync
= 0;
2617 * perform a "sync" on one "block"
2619 * We need to make sure that no normal I/O request - particularly write
2620 * requests - conflict with active sync requests.
2622 * This is achieved by tracking pending requests and a 'barrier' concept
2623 * that can be installed to exclude normal IO requests.
2625 * Resync and recovery are handled very differently.
2626 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2628 * For resync, we iterate over virtual addresses, read all copies,
2629 * and update if there are differences. If only one copy is live,
2631 * For recovery, we iterate over physical addresses, read a good
2632 * value for each non-in_sync drive, and over-write.
2634 * So, for recovery we may have several outstanding complex requests for a
2635 * given address, one for each out-of-sync device. We model this by allocating
2636 * a number of r10_bio structures, one for each out-of-sync device.
2637 * As we setup these structures, we collect all bio's together into a list
2638 * which we then process collectively to add pages, and then process again
2639 * to pass to generic_make_request.
2641 * The r10_bio structures are linked using a borrowed master_bio pointer.
2642 * This link is counted in ->remaining. When the r10_bio that points to NULL
2643 * has its remaining count decremented to 0, the whole complex operation
2648 static sector_t
sync_request(struct mddev
*mddev
, sector_t sector_nr
,
2649 int *skipped
, int go_faster
)
2651 struct r10conf
*conf
= mddev
->private;
2652 struct r10bio
*r10_bio
;
2653 struct bio
*biolist
= NULL
, *bio
;
2654 sector_t max_sector
, nr_sectors
;
2657 sector_t sync_blocks
;
2658 sector_t sectors_skipped
= 0;
2659 int chunks_skipped
= 0;
2661 if (!conf
->r10buf_pool
)
2662 if (init_resync(conf
))
2666 max_sector
= mddev
->dev_sectors
;
2667 if (test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
))
2668 max_sector
= mddev
->resync_max_sectors
;
2669 if (sector_nr
>= max_sector
) {
2670 /* If we aborted, we need to abort the
2671 * sync on the 'current' bitmap chucks (there can
2672 * be several when recovering multiple devices).
2673 * as we may have started syncing it but not finished.
2674 * We can find the current address in
2675 * mddev->curr_resync, but for recovery,
2676 * we need to convert that to several
2677 * virtual addresses.
2679 if (mddev
->curr_resync
< max_sector
) { /* aborted */
2680 if (test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
))
2681 bitmap_end_sync(mddev
->bitmap
, mddev
->curr_resync
,
2683 else for (i
=0; i
<conf
->raid_disks
; i
++) {
2685 raid10_find_virt(conf
, mddev
->curr_resync
, i
);
2686 bitmap_end_sync(mddev
->bitmap
, sect
,
2690 /* completed sync */
2691 if ((!mddev
->bitmap
|| conf
->fullsync
)
2692 && conf
->have_replacement
2693 && test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
)) {
2694 /* Completed a full sync so the replacements
2695 * are now fully recovered.
2697 for (i
= 0; i
< conf
->raid_disks
; i
++)
2698 if (conf
->mirrors
[i
].replacement
)
2699 conf
->mirrors
[i
].replacement
2705 bitmap_close_sync(mddev
->bitmap
);
2708 return sectors_skipped
;
2710 if (chunks_skipped
>= conf
->raid_disks
) {
2711 /* if there has been nothing to do on any drive,
2712 * then there is nothing to do at all..
2715 return (max_sector
- sector_nr
) + sectors_skipped
;
2718 if (max_sector
> mddev
->resync_max
)
2719 max_sector
= mddev
->resync_max
; /* Don't do IO beyond here */
2721 /* make sure whole request will fit in a chunk - if chunks
2724 if (conf
->near_copies
< conf
->raid_disks
&&
2725 max_sector
> (sector_nr
| conf
->chunk_mask
))
2726 max_sector
= (sector_nr
| conf
->chunk_mask
) + 1;
2728 * If there is non-resync activity waiting for us then
2729 * put in a delay to throttle resync.
2731 if (!go_faster
&& conf
->nr_waiting
)
2732 msleep_interruptible(1000);
2734 /* Again, very different code for resync and recovery.
2735 * Both must result in an r10bio with a list of bios that
2736 * have bi_end_io, bi_sector, bi_bdev set,
2737 * and bi_private set to the r10bio.
2738 * For recovery, we may actually create several r10bios
2739 * with 2 bios in each, that correspond to the bios in the main one.
2740 * In this case, the subordinate r10bios link back through a
2741 * borrowed master_bio pointer, and the counter in the master
2742 * includes a ref from each subordinate.
2744 /* First, we decide what to do and set ->bi_end_io
2745 * To end_sync_read if we want to read, and
2746 * end_sync_write if we will want to write.
2749 max_sync
= RESYNC_PAGES
<< (PAGE_SHIFT
-9);
2750 if (!test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
)) {
2751 /* recovery... the complicated one */
2755 for (i
=0 ; i
<conf
->raid_disks
; i
++) {
2761 struct mirror_info
*mirror
= &conf
->mirrors
[i
];
2763 if ((mirror
->rdev
== NULL
||
2764 test_bit(In_sync
, &mirror
->rdev
->flags
))
2766 (mirror
->replacement
== NULL
||
2768 &mirror
->replacement
->flags
)))
2772 /* want to reconstruct this device */
2774 sect
= raid10_find_virt(conf
, sector_nr
, i
);
2775 /* Unless we are doing a full sync, or a replacement
2776 * we only need to recover the block if it is set in
2779 must_sync
= bitmap_start_sync(mddev
->bitmap
, sect
,
2781 if (sync_blocks
< max_sync
)
2782 max_sync
= sync_blocks
;
2784 mirror
->replacement
== NULL
&&
2786 /* yep, skip the sync_blocks here, but don't assume
2787 * that there will never be anything to do here
2789 chunks_skipped
= -1;
2793 r10_bio
= mempool_alloc(conf
->r10buf_pool
, GFP_NOIO
);
2794 raise_barrier(conf
, rb2
!= NULL
);
2795 atomic_set(&r10_bio
->remaining
, 0);
2797 r10_bio
->master_bio
= (struct bio
*)rb2
;
2799 atomic_inc(&rb2
->remaining
);
2800 r10_bio
->mddev
= mddev
;
2801 set_bit(R10BIO_IsRecover
, &r10_bio
->state
);
2802 r10_bio
->sector
= sect
;
2804 raid10_find_phys(conf
, r10_bio
);
2806 /* Need to check if the array will still be
2809 for (j
=0; j
<conf
->raid_disks
; j
++)
2810 if (conf
->mirrors
[j
].rdev
== NULL
||
2811 test_bit(Faulty
, &conf
->mirrors
[j
].rdev
->flags
)) {
2816 must_sync
= bitmap_start_sync(mddev
->bitmap
, sect
,
2817 &sync_blocks
, still_degraded
);
2820 for (j
=0; j
<conf
->copies
;j
++) {
2822 int d
= r10_bio
->devs
[j
].devnum
;
2823 sector_t from_addr
, to_addr
;
2824 struct md_rdev
*rdev
;
2825 sector_t sector
, first_bad
;
2827 if (!conf
->mirrors
[d
].rdev
||
2828 !test_bit(In_sync
, &conf
->mirrors
[d
].rdev
->flags
))
2830 /* This is where we read from */
2832 rdev
= conf
->mirrors
[d
].rdev
;
2833 sector
= r10_bio
->devs
[j
].addr
;
2835 if (is_badblock(rdev
, sector
, max_sync
,
2836 &first_bad
, &bad_sectors
)) {
2837 if (first_bad
> sector
)
2838 max_sync
= first_bad
- sector
;
2840 bad_sectors
-= (sector
2842 if (max_sync
> bad_sectors
)
2843 max_sync
= bad_sectors
;
2847 bio
= r10_bio
->devs
[0].bio
;
2848 bio
->bi_next
= biolist
;
2850 bio
->bi_private
= r10_bio
;
2851 bio
->bi_end_io
= end_sync_read
;
2853 from_addr
= r10_bio
->devs
[j
].addr
;
2854 bio
->bi_sector
= from_addr
+ rdev
->data_offset
;
2855 bio
->bi_bdev
= rdev
->bdev
;
2856 atomic_inc(&rdev
->nr_pending
);
2857 /* and we write to 'i' (if not in_sync) */
2859 for (k
=0; k
<conf
->copies
; k
++)
2860 if (r10_bio
->devs
[k
].devnum
== i
)
2862 BUG_ON(k
== conf
->copies
);
2863 to_addr
= r10_bio
->devs
[k
].addr
;
2864 r10_bio
->devs
[0].devnum
= d
;
2865 r10_bio
->devs
[0].addr
= from_addr
;
2866 r10_bio
->devs
[1].devnum
= i
;
2867 r10_bio
->devs
[1].addr
= to_addr
;
2869 rdev
= mirror
->rdev
;
2870 if (!test_bit(In_sync
, &rdev
->flags
)) {
2871 bio
= r10_bio
->devs
[1].bio
;
2872 bio
->bi_next
= biolist
;
2874 bio
->bi_private
= r10_bio
;
2875 bio
->bi_end_io
= end_sync_write
;
2877 bio
->bi_sector
= to_addr
2878 + rdev
->data_offset
;
2879 bio
->bi_bdev
= rdev
->bdev
;
2880 atomic_inc(&r10_bio
->remaining
);
2882 r10_bio
->devs
[1].bio
->bi_end_io
= NULL
;
2884 /* and maybe write to replacement */
2885 bio
= r10_bio
->devs
[1].repl_bio
;
2887 bio
->bi_end_io
= NULL
;
2888 rdev
= mirror
->replacement
;
2889 /* Note: if rdev != NULL, then bio
2890 * cannot be NULL as r10buf_pool_alloc will
2891 * have allocated it.
2892 * So the second test here is pointless.
2893 * But it keeps semantic-checkers happy, and
2894 * this comment keeps human reviewers
2897 if (rdev
== NULL
|| bio
== NULL
||
2898 test_bit(Faulty
, &rdev
->flags
))
2900 bio
->bi_next
= biolist
;
2902 bio
->bi_private
= r10_bio
;
2903 bio
->bi_end_io
= end_sync_write
;
2905 bio
->bi_sector
= to_addr
+ rdev
->data_offset
;
2906 bio
->bi_bdev
= rdev
->bdev
;
2907 atomic_inc(&r10_bio
->remaining
);
2910 if (j
== conf
->copies
) {
2911 /* Cannot recover, so abort the recovery or
2912 * record a bad block */
2915 atomic_dec(&rb2
->remaining
);
2918 /* problem is that there are bad blocks
2919 * on other device(s)
2922 for (k
= 0; k
< conf
->copies
; k
++)
2923 if (r10_bio
->devs
[k
].devnum
== i
)
2925 if (!test_bit(In_sync
,
2926 &mirror
->rdev
->flags
)
2927 && !rdev_set_badblocks(
2929 r10_bio
->devs
[k
].addr
,
2932 if (mirror
->replacement
&&
2933 !rdev_set_badblocks(
2934 mirror
->replacement
,
2935 r10_bio
->devs
[k
].addr
,
2940 if (!test_and_set_bit(MD_RECOVERY_INTR
,
2942 printk(KERN_INFO
"md/raid10:%s: insufficient "
2943 "working devices for recovery.\n",
2945 mirror
->recovery_disabled
2946 = mddev
->recovery_disabled
;
2951 if (biolist
== NULL
) {
2953 struct r10bio
*rb2
= r10_bio
;
2954 r10_bio
= (struct r10bio
*) rb2
->master_bio
;
2955 rb2
->master_bio
= NULL
;
2961 /* resync. Schedule a read for every block at this virt offset */
2964 bitmap_cond_end_sync(mddev
->bitmap
, sector_nr
);
2966 if (!bitmap_start_sync(mddev
->bitmap
, sector_nr
,
2967 &sync_blocks
, mddev
->degraded
) &&
2968 !conf
->fullsync
&& !test_bit(MD_RECOVERY_REQUESTED
,
2969 &mddev
->recovery
)) {
2970 /* We can skip this block */
2972 return sync_blocks
+ sectors_skipped
;
2974 if (sync_blocks
< max_sync
)
2975 max_sync
= sync_blocks
;
2976 r10_bio
= mempool_alloc(conf
->r10buf_pool
, GFP_NOIO
);
2978 r10_bio
->mddev
= mddev
;
2979 atomic_set(&r10_bio
->remaining
, 0);
2980 raise_barrier(conf
, 0);
2981 conf
->next_resync
= sector_nr
;
2983 r10_bio
->master_bio
= NULL
;
2984 r10_bio
->sector
= sector_nr
;
2985 set_bit(R10BIO_IsSync
, &r10_bio
->state
);
2986 raid10_find_phys(conf
, r10_bio
);
2987 r10_bio
->sectors
= (sector_nr
| conf
->chunk_mask
) - sector_nr
+1;
2989 for (i
=0; i
<conf
->copies
; i
++) {
2990 int d
= r10_bio
->devs
[i
].devnum
;
2991 sector_t first_bad
, sector
;
2994 if (r10_bio
->devs
[i
].repl_bio
)
2995 r10_bio
->devs
[i
].repl_bio
->bi_end_io
= NULL
;
2997 bio
= r10_bio
->devs
[i
].bio
;
2998 bio
->bi_end_io
= NULL
;
2999 clear_bit(BIO_UPTODATE
, &bio
->bi_flags
);
3000 if (conf
->mirrors
[d
].rdev
== NULL
||
3001 test_bit(Faulty
, &conf
->mirrors
[d
].rdev
->flags
))
3003 sector
= r10_bio
->devs
[i
].addr
;
3004 if (is_badblock(conf
->mirrors
[d
].rdev
,
3006 &first_bad
, &bad_sectors
)) {
3007 if (first_bad
> sector
)
3008 max_sync
= first_bad
- sector
;
3010 bad_sectors
-= (sector
- first_bad
);
3011 if (max_sync
> bad_sectors
)
3012 max_sync
= max_sync
;
3016 atomic_inc(&conf
->mirrors
[d
].rdev
->nr_pending
);
3017 atomic_inc(&r10_bio
->remaining
);
3018 bio
->bi_next
= biolist
;
3020 bio
->bi_private
= r10_bio
;
3021 bio
->bi_end_io
= end_sync_read
;
3023 bio
->bi_sector
= sector
+
3024 conf
->mirrors
[d
].rdev
->data_offset
;
3025 bio
->bi_bdev
= conf
->mirrors
[d
].rdev
->bdev
;
3028 if (conf
->mirrors
[d
].replacement
== NULL
||
3030 &conf
->mirrors
[d
].replacement
->flags
))
3033 /* Need to set up for writing to the replacement */
3034 bio
= r10_bio
->devs
[i
].repl_bio
;
3035 clear_bit(BIO_UPTODATE
, &bio
->bi_flags
);
3037 sector
= r10_bio
->devs
[i
].addr
;
3038 atomic_inc(&conf
->mirrors
[d
].rdev
->nr_pending
);
3039 bio
->bi_next
= biolist
;
3041 bio
->bi_private
= r10_bio
;
3042 bio
->bi_end_io
= end_sync_write
;
3044 bio
->bi_sector
= sector
+
3045 conf
->mirrors
[d
].replacement
->data_offset
;
3046 bio
->bi_bdev
= conf
->mirrors
[d
].replacement
->bdev
;
3051 for (i
=0; i
<conf
->copies
; i
++) {
3052 int d
= r10_bio
->devs
[i
].devnum
;
3053 if (r10_bio
->devs
[i
].bio
->bi_end_io
)
3054 rdev_dec_pending(conf
->mirrors
[d
].rdev
,
3056 if (r10_bio
->devs
[i
].repl_bio
&&
3057 r10_bio
->devs
[i
].repl_bio
->bi_end_io
)
3059 conf
->mirrors
[d
].replacement
,
3068 for (bio
= biolist
; bio
; bio
=bio
->bi_next
) {
3070 bio
->bi_flags
&= ~(BIO_POOL_MASK
- 1);
3072 bio
->bi_flags
|= 1 << BIO_UPTODATE
;
3075 bio
->bi_phys_segments
= 0;
3080 if (sector_nr
+ max_sync
< max_sector
)
3081 max_sector
= sector_nr
+ max_sync
;
3084 int len
= PAGE_SIZE
;
3085 if (sector_nr
+ (len
>>9) > max_sector
)
3086 len
= (max_sector
- sector_nr
) << 9;
3089 for (bio
= biolist
; bio
; bio
=bio
->bi_next
) {
3091 page
= bio
->bi_io_vec
[bio
->bi_vcnt
].bv_page
;
3092 if (bio_add_page(bio
, page
, len
, 0))
3096 bio
->bi_io_vec
[bio
->bi_vcnt
].bv_page
= page
;
3097 for (bio2
= biolist
;
3098 bio2
&& bio2
!= bio
;
3099 bio2
= bio2
->bi_next
) {
3100 /* remove last page from this bio */
3102 bio2
->bi_size
-= len
;
3103 bio2
->bi_flags
&= ~(1<< BIO_SEG_VALID
);
3107 nr_sectors
+= len
>>9;
3108 sector_nr
+= len
>>9;
3109 } while (biolist
->bi_vcnt
< RESYNC_PAGES
);
3111 r10_bio
->sectors
= nr_sectors
;
3115 biolist
= biolist
->bi_next
;
3117 bio
->bi_next
= NULL
;
3118 r10_bio
= bio
->bi_private
;
3119 r10_bio
->sectors
= nr_sectors
;
3121 if (bio
->bi_end_io
== end_sync_read
) {
3122 md_sync_acct(bio
->bi_bdev
, nr_sectors
);
3123 generic_make_request(bio
);
3127 if (sectors_skipped
)
3128 /* pretend they weren't skipped, it makes
3129 * no important difference in this case
3131 md_done_sync(mddev
, sectors_skipped
, 1);
3133 return sectors_skipped
+ nr_sectors
;
3135 /* There is nowhere to write, so all non-sync
3136 * drives must be failed or in resync, all drives
3137 * have a bad block, so try the next chunk...
3139 if (sector_nr
+ max_sync
< max_sector
)
3140 max_sector
= sector_nr
+ max_sync
;
3142 sectors_skipped
+= (max_sector
- sector_nr
);
3144 sector_nr
= max_sector
;
3149 raid10_size(struct mddev
*mddev
, sector_t sectors
, int raid_disks
)
3152 struct r10conf
*conf
= mddev
->private;
3155 raid_disks
= conf
->raid_disks
;
3157 sectors
= conf
->dev_sectors
;
3159 size
= sectors
>> conf
->chunk_shift
;
3160 sector_div(size
, conf
->far_copies
);
3161 size
= size
* raid_disks
;
3162 sector_div(size
, conf
->near_copies
);
3164 return size
<< conf
->chunk_shift
;
3168 static struct r10conf
*setup_conf(struct mddev
*mddev
)
3170 struct r10conf
*conf
= NULL
;
3172 sector_t stride
, size
;
3175 if (mddev
->new_chunk_sectors
< (PAGE_SIZE
>> 9) ||
3176 !is_power_of_2(mddev
->new_chunk_sectors
)) {
3177 printk(KERN_ERR
"md/raid10:%s: chunk size must be "
3178 "at least PAGE_SIZE(%ld) and be a power of 2.\n",
3179 mdname(mddev
), PAGE_SIZE
);
3183 nc
= mddev
->new_layout
& 255;
3184 fc
= (mddev
->new_layout
>> 8) & 255;
3185 fo
= mddev
->new_layout
& (1<<16);
3187 if ((nc
*fc
) <2 || (nc
*fc
) > mddev
->raid_disks
||
3188 (mddev
->new_layout
>> 17)) {
3189 printk(KERN_ERR
"md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3190 mdname(mddev
), mddev
->new_layout
);
3195 conf
= kzalloc(sizeof(struct r10conf
), GFP_KERNEL
);
3199 conf
->mirrors
= kzalloc(sizeof(struct mirror_info
)*mddev
->raid_disks
,
3204 conf
->tmppage
= alloc_page(GFP_KERNEL
);
3209 conf
->raid_disks
= mddev
->raid_disks
;
3210 conf
->near_copies
= nc
;
3211 conf
->far_copies
= fc
;
3212 conf
->copies
= nc
*fc
;
3213 conf
->far_offset
= fo
;
3214 conf
->chunk_mask
= mddev
->new_chunk_sectors
- 1;
3215 conf
->chunk_shift
= ffz(~mddev
->new_chunk_sectors
);
3217 conf
->r10bio_pool
= mempool_create(NR_RAID10_BIOS
, r10bio_pool_alloc
,
3218 r10bio_pool_free
, conf
);
3219 if (!conf
->r10bio_pool
)
3222 size
= mddev
->dev_sectors
>> conf
->chunk_shift
;
3223 sector_div(size
, fc
);
3224 size
= size
* conf
->raid_disks
;
3225 sector_div(size
, nc
);
3226 /* 'size' is now the number of chunks in the array */
3227 /* calculate "used chunks per device" in 'stride' */
3228 stride
= size
* conf
->copies
;
3230 /* We need to round up when dividing by raid_disks to
3231 * get the stride size.
3233 stride
+= conf
->raid_disks
- 1;
3234 sector_div(stride
, conf
->raid_disks
);
3236 conf
->dev_sectors
= stride
<< conf
->chunk_shift
;
3241 sector_div(stride
, fc
);
3242 conf
->stride
= stride
<< conf
->chunk_shift
;
3245 spin_lock_init(&conf
->device_lock
);
3246 INIT_LIST_HEAD(&conf
->retry_list
);
3248 spin_lock_init(&conf
->resync_lock
);
3249 init_waitqueue_head(&conf
->wait_barrier
);
3251 conf
->thread
= md_register_thread(raid10d
, mddev
, NULL
);
3255 conf
->mddev
= mddev
;
3259 printk(KERN_ERR
"md/raid10:%s: couldn't allocate memory.\n",
3262 if (conf
->r10bio_pool
)
3263 mempool_destroy(conf
->r10bio_pool
);
3264 kfree(conf
->mirrors
);
3265 safe_put_page(conf
->tmppage
);
3268 return ERR_PTR(err
);
3271 static int run(struct mddev
*mddev
)
3273 struct r10conf
*conf
;
3274 int i
, disk_idx
, chunk_size
;
3275 struct mirror_info
*disk
;
3276 struct md_rdev
*rdev
;
3280 * copy the already verified devices into our private RAID10
3281 * bookkeeping area. [whatever we allocate in run(),
3282 * should be freed in stop()]
3285 if (mddev
->private == NULL
) {
3286 conf
= setup_conf(mddev
);
3288 return PTR_ERR(conf
);
3289 mddev
->private = conf
;
3291 conf
= mddev
->private;
3295 mddev
->thread
= conf
->thread
;
3296 conf
->thread
= NULL
;
3298 chunk_size
= mddev
->chunk_sectors
<< 9;
3299 blk_queue_io_min(mddev
->queue
, chunk_size
);
3300 if (conf
->raid_disks
% conf
->near_copies
)
3301 blk_queue_io_opt(mddev
->queue
, chunk_size
* conf
->raid_disks
);
3303 blk_queue_io_opt(mddev
->queue
, chunk_size
*
3304 (conf
->raid_disks
/ conf
->near_copies
));
3306 rdev_for_each(rdev
, mddev
) {
3308 disk_idx
= rdev
->raid_disk
;
3309 if (disk_idx
>= conf
->raid_disks
3312 disk
= conf
->mirrors
+ disk_idx
;
3314 if (test_bit(Replacement
, &rdev
->flags
)) {
3315 if (disk
->replacement
)
3317 disk
->replacement
= rdev
;
3324 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
3325 rdev
->data_offset
<< 9);
3327 disk
->head_position
= 0;
3329 /* need to check that every block has at least one working mirror */
3330 if (!enough(conf
, -1)) {
3331 printk(KERN_ERR
"md/raid10:%s: not enough operational mirrors.\n",
3336 mddev
->degraded
= 0;
3337 for (i
= 0; i
< conf
->raid_disks
; i
++) {
3339 disk
= conf
->mirrors
+ i
;
3341 if (!disk
->rdev
&& disk
->replacement
) {
3342 /* The replacement is all we have - use it */
3343 disk
->rdev
= disk
->replacement
;
3344 disk
->replacement
= NULL
;
3345 clear_bit(Replacement
, &disk
->rdev
->flags
);
3349 !test_bit(In_sync
, &disk
->rdev
->flags
)) {
3350 disk
->head_position
= 0;
3355 disk
->recovery_disabled
= mddev
->recovery_disabled
- 1;
3358 if (mddev
->recovery_cp
!= MaxSector
)
3359 printk(KERN_NOTICE
"md/raid10:%s: not clean"
3360 " -- starting background reconstruction\n",
3363 "md/raid10:%s: active with %d out of %d devices\n",
3364 mdname(mddev
), conf
->raid_disks
- mddev
->degraded
,
3367 * Ok, everything is just fine now
3369 mddev
->dev_sectors
= conf
->dev_sectors
;
3370 size
= raid10_size(mddev
, 0, 0);
3371 md_set_array_sectors(mddev
, size
);
3372 mddev
->resync_max_sectors
= size
;
3374 mddev
->queue
->backing_dev_info
.congested_fn
= raid10_congested
;
3375 mddev
->queue
->backing_dev_info
.congested_data
= mddev
;
3377 /* Calculate max read-ahead size.
3378 * We need to readahead at least twice a whole stripe....
3382 int stripe
= conf
->raid_disks
*
3383 ((mddev
->chunk_sectors
<< 9) / PAGE_SIZE
);
3384 stripe
/= conf
->near_copies
;
3385 if (mddev
->queue
->backing_dev_info
.ra_pages
< 2* stripe
)
3386 mddev
->queue
->backing_dev_info
.ra_pages
= 2* stripe
;
3389 blk_queue_merge_bvec(mddev
->queue
, raid10_mergeable_bvec
);
3391 if (md_integrity_register(mddev
))
3397 md_unregister_thread(&mddev
->thread
);
3398 if (conf
->r10bio_pool
)
3399 mempool_destroy(conf
->r10bio_pool
);
3400 safe_put_page(conf
->tmppage
);
3401 kfree(conf
->mirrors
);
3403 mddev
->private = NULL
;
3408 static int stop(struct mddev
*mddev
)
3410 struct r10conf
*conf
= mddev
->private;
3412 raise_barrier(conf
, 0);
3413 lower_barrier(conf
);
3415 md_unregister_thread(&mddev
->thread
);
3416 blk_sync_queue(mddev
->queue
); /* the unplug fn references 'conf'*/
3417 if (conf
->r10bio_pool
)
3418 mempool_destroy(conf
->r10bio_pool
);
3419 kfree(conf
->mirrors
);
3421 mddev
->private = NULL
;
3425 static void raid10_quiesce(struct mddev
*mddev
, int state
)
3427 struct r10conf
*conf
= mddev
->private;
3431 raise_barrier(conf
, 0);
3434 lower_barrier(conf
);
3439 static int raid10_resize(struct mddev
*mddev
, sector_t sectors
)
3441 /* Resize of 'far' arrays is not supported.
3442 * For 'near' and 'offset' arrays we can set the
3443 * number of sectors used to be an appropriate multiple
3444 * of the chunk size.
3445 * For 'offset', this is far_copies*chunksize.
3446 * For 'near' the multiplier is the LCM of
3447 * near_copies and raid_disks.
3448 * So if far_copies > 1 && !far_offset, fail.
3449 * Else find LCM(raid_disks, near_copy)*far_copies and
3450 * multiply by chunk_size. Then round to this number.
3451 * This is mostly done by raid10_size()
3453 struct r10conf
*conf
= mddev
->private;
3454 sector_t oldsize
, size
;
3456 if (conf
->far_copies
> 1 && !conf
->far_offset
)
3459 oldsize
= raid10_size(mddev
, 0, 0);
3460 size
= raid10_size(mddev
, sectors
, 0);
3461 md_set_array_sectors(mddev
, size
);
3462 if (mddev
->array_sectors
> size
)
3464 set_capacity(mddev
->gendisk
, mddev
->array_sectors
);
3465 revalidate_disk(mddev
->gendisk
);
3466 if (sectors
> mddev
->dev_sectors
&&
3467 mddev
->recovery_cp
> oldsize
) {
3468 mddev
->recovery_cp
= oldsize
;
3469 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
3471 mddev
->dev_sectors
= sectors
;
3472 mddev
->resync_max_sectors
= size
;
3476 static void *raid10_takeover_raid0(struct mddev
*mddev
)
3478 struct md_rdev
*rdev
;
3479 struct r10conf
*conf
;
3481 if (mddev
->degraded
> 0) {
3482 printk(KERN_ERR
"md/raid10:%s: Error: degraded raid0!\n",
3484 return ERR_PTR(-EINVAL
);
3487 /* Set new parameters */
3488 mddev
->new_level
= 10;
3489 /* new layout: far_copies = 1, near_copies = 2 */
3490 mddev
->new_layout
= (1<<8) + 2;
3491 mddev
->new_chunk_sectors
= mddev
->chunk_sectors
;
3492 mddev
->delta_disks
= mddev
->raid_disks
;
3493 mddev
->raid_disks
*= 2;
3494 /* make sure it will be not marked as dirty */
3495 mddev
->recovery_cp
= MaxSector
;
3497 conf
= setup_conf(mddev
);
3498 if (!IS_ERR(conf
)) {
3499 rdev_for_each(rdev
, mddev
)
3500 if (rdev
->raid_disk
>= 0)
3501 rdev
->new_raid_disk
= rdev
->raid_disk
* 2;
3508 static void *raid10_takeover(struct mddev
*mddev
)
3510 struct r0conf
*raid0_conf
;
3512 /* raid10 can take over:
3513 * raid0 - providing it has only two drives
3515 if (mddev
->level
== 0) {
3516 /* for raid0 takeover only one zone is supported */
3517 raid0_conf
= mddev
->private;
3518 if (raid0_conf
->nr_strip_zones
> 1) {
3519 printk(KERN_ERR
"md/raid10:%s: cannot takeover raid 0"
3520 " with more than one zone.\n",
3522 return ERR_PTR(-EINVAL
);
3524 return raid10_takeover_raid0(mddev
);
3526 return ERR_PTR(-EINVAL
);
3529 static struct md_personality raid10_personality
=
3533 .owner
= THIS_MODULE
,
3534 .make_request
= make_request
,
3538 .error_handler
= error
,
3539 .hot_add_disk
= raid10_add_disk
,
3540 .hot_remove_disk
= raid10_remove_disk
,
3541 .spare_active
= raid10_spare_active
,
3542 .sync_request
= sync_request
,
3543 .quiesce
= raid10_quiesce
,
3544 .size
= raid10_size
,
3545 .resize
= raid10_resize
,
3546 .takeover
= raid10_takeover
,
3549 static int __init
raid_init(void)
3551 return register_md_personality(&raid10_personality
);
3554 static void raid_exit(void)
3556 unregister_md_personality(&raid10_personality
);
3559 module_init(raid_init
);
3560 module_exit(raid_exit
);
3561 MODULE_LICENSE("GPL");
3562 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
3563 MODULE_ALIAS("md-personality-9"); /* RAID10 */
3564 MODULE_ALIAS("md-raid10");
3565 MODULE_ALIAS("md-level-10");
3567 module_param(max_queued_requests
, int, S_IRUGO
|S_IWUSR
);