x86, bios: Make the x86 early memory reservation a kernel option
[linux-2.6.git] / arch / arm / mm / fault-armv.c
blob9b906dec1ca1abc0ec308472dc39a7684c6c3b01
1 /*
2 * linux/arch/arm/mm/fault-armv.c
4 * Copyright (C) 1995 Linus Torvalds
5 * Modifications for ARM processor (c) 1995-2002 Russell King
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 #include <linux/module.h>
12 #include <linux/sched.h>
13 #include <linux/kernel.h>
14 #include <linux/mm.h>
15 #include <linux/bitops.h>
16 #include <linux/vmalloc.h>
17 #include <linux/init.h>
18 #include <linux/pagemap.h>
19 #include <linux/gfp.h>
21 #include <asm/bugs.h>
22 #include <asm/cacheflush.h>
23 #include <asm/cachetype.h>
24 #include <asm/pgtable.h>
25 #include <asm/tlbflush.h>
27 #include "mm.h"
29 static unsigned long shared_pte_mask = L_PTE_MT_BUFFERABLE;
32 * We take the easy way out of this problem - we make the
33 * PTE uncacheable. However, we leave the write buffer on.
35 * Note that the pte lock held when calling update_mmu_cache must also
36 * guard the pte (somewhere else in the same mm) that we modify here.
37 * Therefore those configurations which might call adjust_pte (those
38 * without CONFIG_CPU_CACHE_VIPT) cannot support split page_table_lock.
40 static int do_adjust_pte(struct vm_area_struct *vma, unsigned long address,
41 unsigned long pfn, pte_t *ptep)
43 pte_t entry = *ptep;
44 int ret;
47 * If this page is present, it's actually being shared.
49 ret = pte_present(entry);
52 * If this page isn't present, or is already setup to
53 * fault (ie, is old), we can safely ignore any issues.
55 if (ret && (pte_val(entry) & L_PTE_MT_MASK) != shared_pte_mask) {
56 flush_cache_page(vma, address, pfn);
57 outer_flush_range((pfn << PAGE_SHIFT),
58 (pfn << PAGE_SHIFT) + PAGE_SIZE);
59 pte_val(entry) &= ~L_PTE_MT_MASK;
60 pte_val(entry) |= shared_pte_mask;
61 set_pte_at(vma->vm_mm, address, ptep, entry);
62 flush_tlb_page(vma, address);
65 return ret;
68 static int adjust_pte(struct vm_area_struct *vma, unsigned long address,
69 unsigned long pfn)
71 spinlock_t *ptl;
72 pgd_t *pgd;
73 pmd_t *pmd;
74 pte_t *pte;
75 int ret;
77 pgd = pgd_offset(vma->vm_mm, address);
78 if (pgd_none_or_clear_bad(pgd))
79 return 0;
81 pmd = pmd_offset(pgd, address);
82 if (pmd_none_or_clear_bad(pmd))
83 return 0;
86 * This is called while another page table is mapped, so we
87 * must use the nested version. This also means we need to
88 * open-code the spin-locking.
90 ptl = pte_lockptr(vma->vm_mm, pmd);
91 pte = pte_offset_map_nested(pmd, address);
92 spin_lock(ptl);
94 ret = do_adjust_pte(vma, address, pfn, pte);
96 spin_unlock(ptl);
97 pte_unmap_nested(pte);
99 return ret;
102 static void
103 make_coherent(struct address_space *mapping, struct vm_area_struct *vma,
104 unsigned long addr, pte_t *ptep, unsigned long pfn)
106 struct mm_struct *mm = vma->vm_mm;
107 struct vm_area_struct *mpnt;
108 struct prio_tree_iter iter;
109 unsigned long offset;
110 pgoff_t pgoff;
111 int aliases = 0;
113 pgoff = vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT);
116 * If we have any shared mappings that are in the same mm
117 * space, then we need to handle them specially to maintain
118 * cache coherency.
120 flush_dcache_mmap_lock(mapping);
121 vma_prio_tree_foreach(mpnt, &iter, &mapping->i_mmap, pgoff, pgoff) {
123 * If this VMA is not in our MM, we can ignore it.
124 * Note that we intentionally mask out the VMA
125 * that we are fixing up.
127 if (mpnt->vm_mm != mm || mpnt == vma)
128 continue;
129 if (!(mpnt->vm_flags & VM_MAYSHARE))
130 continue;
131 offset = (pgoff - mpnt->vm_pgoff) << PAGE_SHIFT;
132 aliases += adjust_pte(mpnt, mpnt->vm_start + offset, pfn);
134 flush_dcache_mmap_unlock(mapping);
135 if (aliases)
136 do_adjust_pte(vma, addr, pfn, ptep);
140 * Take care of architecture specific things when placing a new PTE into
141 * a page table, or changing an existing PTE. Basically, there are two
142 * things that we need to take care of:
144 * 1. If PG_dcache_dirty is set for the page, we need to ensure
145 * that any cache entries for the kernels virtual memory
146 * range are written back to the page.
147 * 2. If we have multiple shared mappings of the same space in
148 * an object, we need to deal with the cache aliasing issues.
150 * Note that the pte lock will be held.
152 void update_mmu_cache(struct vm_area_struct *vma, unsigned long addr,
153 pte_t *ptep)
155 unsigned long pfn = pte_pfn(*ptep);
156 struct address_space *mapping;
157 struct page *page;
159 if (!pfn_valid(pfn))
160 return;
163 * The zero page is never written to, so never has any dirty
164 * cache lines, and therefore never needs to be flushed.
166 page = pfn_to_page(pfn);
167 if (page == ZERO_PAGE(0))
168 return;
170 mapping = page_mapping(page);
171 #ifndef CONFIG_SMP
172 if (test_and_clear_bit(PG_dcache_dirty, &page->flags))
173 __flush_dcache_page(mapping, page);
174 #endif
175 if (mapping) {
176 if (cache_is_vivt())
177 make_coherent(mapping, vma, addr, ptep, pfn);
178 else if (vma->vm_flags & VM_EXEC)
179 __flush_icache_all();
184 * Check whether the write buffer has physical address aliasing
185 * issues. If it has, we need to avoid them for the case where
186 * we have several shared mappings of the same object in user
187 * space.
189 static int __init check_writebuffer(unsigned long *p1, unsigned long *p2)
191 register unsigned long zero = 0, one = 1, val;
193 local_irq_disable();
194 mb();
195 *p1 = one;
196 mb();
197 *p2 = zero;
198 mb();
199 val = *p1;
200 mb();
201 local_irq_enable();
202 return val != zero;
205 void __init check_writebuffer_bugs(void)
207 struct page *page;
208 const char *reason;
209 unsigned long v = 1;
211 printk(KERN_INFO "CPU: Testing write buffer coherency: ");
213 page = alloc_page(GFP_KERNEL);
214 if (page) {
215 unsigned long *p1, *p2;
216 pgprot_t prot = __pgprot_modify(PAGE_KERNEL,
217 L_PTE_MT_MASK, L_PTE_MT_BUFFERABLE);
219 p1 = vmap(&page, 1, VM_IOREMAP, prot);
220 p2 = vmap(&page, 1, VM_IOREMAP, prot);
222 if (p1 && p2) {
223 v = check_writebuffer(p1, p2);
224 reason = "enabling work-around";
225 } else {
226 reason = "unable to map memory\n";
229 vunmap(p1);
230 vunmap(p2);
231 put_page(page);
232 } else {
233 reason = "unable to grab page\n";
236 if (v) {
237 printk("failed, %s\n", reason);
238 shared_pte_mask = L_PTE_MT_UNCACHED;
239 } else {
240 printk("ok\n");