2 * linux/fs/binfmt_elf.c
4 * These are the functions used to load ELF format executables as used
5 * on SVr4 machines. Information on the format may be found in the book
6 * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support
9 * Copyright 1993, 1994: Eric Youngdale (ericy@cais.com).
12 #include <linux/module.h>
13 #include <linux/kernel.h>
16 #include <linux/mman.h>
17 #include <linux/errno.h>
18 #include <linux/signal.h>
19 #include <linux/binfmts.h>
20 #include <linux/string.h>
21 #include <linux/file.h>
22 #include <linux/slab.h>
23 #include <linux/personality.h>
24 #include <linux/elfcore.h>
25 #include <linux/init.h>
26 #include <linux/highuid.h>
27 #include <linux/compiler.h>
28 #include <linux/highmem.h>
29 #include <linux/pagemap.h>
30 #include <linux/vmalloc.h>
31 #include <linux/security.h>
32 #include <linux/random.h>
33 #include <linux/elf.h>
34 #include <linux/utsname.h>
35 #include <linux/coredump.h>
36 #include <linux/sched.h>
37 #include <asm/uaccess.h>
38 #include <asm/param.h>
42 #define user_long_t long
44 #ifndef user_siginfo_t
45 #define user_siginfo_t siginfo_t
48 static int load_elf_binary(struct linux_binprm
*bprm
);
49 static int load_elf_library(struct file
*);
50 static unsigned long elf_map(struct file
*, unsigned long, struct elf_phdr
*,
51 int, int, unsigned long);
54 * If we don't support core dumping, then supply a NULL so we
57 #ifdef CONFIG_ELF_CORE
58 static int elf_core_dump(struct coredump_params
*cprm
);
60 #define elf_core_dump NULL
63 #if ELF_EXEC_PAGESIZE > PAGE_SIZE
64 #define ELF_MIN_ALIGN ELF_EXEC_PAGESIZE
66 #define ELF_MIN_ALIGN PAGE_SIZE
69 #ifndef ELF_CORE_EFLAGS
70 #define ELF_CORE_EFLAGS 0
73 #define ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(ELF_MIN_ALIGN-1))
74 #define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1))
75 #define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1))
77 static struct linux_binfmt elf_format
= {
78 .module
= THIS_MODULE
,
79 .load_binary
= load_elf_binary
,
80 .load_shlib
= load_elf_library
,
81 .core_dump
= elf_core_dump
,
82 .min_coredump
= ELF_EXEC_PAGESIZE
,
85 #define BAD_ADDR(x) ((unsigned long)(x) >= TASK_SIZE)
87 static int set_brk(unsigned long start
, unsigned long end
)
89 start
= ELF_PAGEALIGN(start
);
90 end
= ELF_PAGEALIGN(end
);
93 addr
= vm_brk(start
, end
- start
);
97 current
->mm
->start_brk
= current
->mm
->brk
= end
;
101 /* We need to explicitly zero any fractional pages
102 after the data section (i.e. bss). This would
103 contain the junk from the file that should not
106 static int padzero(unsigned long elf_bss
)
110 nbyte
= ELF_PAGEOFFSET(elf_bss
);
112 nbyte
= ELF_MIN_ALIGN
- nbyte
;
113 if (clear_user((void __user
*) elf_bss
, nbyte
))
119 /* Let's use some macros to make this stack manipulation a little clearer */
120 #ifdef CONFIG_STACK_GROWSUP
121 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items))
122 #define STACK_ROUND(sp, items) \
123 ((15 + (unsigned long) ((sp) + (items))) &~ 15UL)
124 #define STACK_ALLOC(sp, len) ({ \
125 elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \
128 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items))
129 #define STACK_ROUND(sp, items) \
130 (((unsigned long) (sp - items)) &~ 15UL)
131 #define STACK_ALLOC(sp, len) ({ sp -= len ; sp; })
134 #ifndef ELF_BASE_PLATFORM
136 * AT_BASE_PLATFORM indicates the "real" hardware/microarchitecture.
137 * If the arch defines ELF_BASE_PLATFORM (in asm/elf.h), the value
138 * will be copied to the user stack in the same manner as AT_PLATFORM.
140 #define ELF_BASE_PLATFORM NULL
144 create_elf_tables(struct linux_binprm
*bprm
, struct elfhdr
*exec
,
145 unsigned long load_addr
, unsigned long interp_load_addr
)
147 unsigned long p
= bprm
->p
;
148 int argc
= bprm
->argc
;
149 int envc
= bprm
->envc
;
150 elf_addr_t __user
*argv
;
151 elf_addr_t __user
*envp
;
152 elf_addr_t __user
*sp
;
153 elf_addr_t __user
*u_platform
;
154 elf_addr_t __user
*u_base_platform
;
155 elf_addr_t __user
*u_rand_bytes
;
156 const char *k_platform
= ELF_PLATFORM
;
157 const char *k_base_platform
= ELF_BASE_PLATFORM
;
158 unsigned char k_rand_bytes
[16];
160 elf_addr_t
*elf_info
;
162 const struct cred
*cred
= current_cred();
163 struct vm_area_struct
*vma
;
166 * In some cases (e.g. Hyper-Threading), we want to avoid L1
167 * evictions by the processes running on the same package. One
168 * thing we can do is to shuffle the initial stack for them.
171 p
= arch_align_stack(p
);
174 * If this architecture has a platform capability string, copy it
175 * to userspace. In some cases (Sparc), this info is impossible
176 * for userspace to get any other way, in others (i386) it is
181 size_t len
= strlen(k_platform
) + 1;
183 u_platform
= (elf_addr_t __user
*)STACK_ALLOC(p
, len
);
184 if (__copy_to_user(u_platform
, k_platform
, len
))
189 * If this architecture has a "base" platform capability
190 * string, copy it to userspace.
192 u_base_platform
= NULL
;
193 if (k_base_platform
) {
194 size_t len
= strlen(k_base_platform
) + 1;
196 u_base_platform
= (elf_addr_t __user
*)STACK_ALLOC(p
, len
);
197 if (__copy_to_user(u_base_platform
, k_base_platform
, len
))
202 * Generate 16 random bytes for userspace PRNG seeding.
204 get_random_bytes(k_rand_bytes
, sizeof(k_rand_bytes
));
205 u_rand_bytes
= (elf_addr_t __user
*)
206 STACK_ALLOC(p
, sizeof(k_rand_bytes
));
207 if (__copy_to_user(u_rand_bytes
, k_rand_bytes
, sizeof(k_rand_bytes
)))
210 /* Create the ELF interpreter info */
211 elf_info
= (elf_addr_t
*)current
->mm
->saved_auxv
;
212 /* update AT_VECTOR_SIZE_BASE if the number of NEW_AUX_ENT() changes */
213 #define NEW_AUX_ENT(id, val) \
215 elf_info[ei_index++] = id; \
216 elf_info[ei_index++] = val; \
221 * ARCH_DLINFO must come first so PPC can do its special alignment of
223 * update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT() in
224 * ARCH_DLINFO changes
228 NEW_AUX_ENT(AT_HWCAP
, ELF_HWCAP
);
229 NEW_AUX_ENT(AT_PAGESZ
, ELF_EXEC_PAGESIZE
);
230 NEW_AUX_ENT(AT_CLKTCK
, CLOCKS_PER_SEC
);
231 NEW_AUX_ENT(AT_PHDR
, load_addr
+ exec
->e_phoff
);
232 NEW_AUX_ENT(AT_PHENT
, sizeof(struct elf_phdr
));
233 NEW_AUX_ENT(AT_PHNUM
, exec
->e_phnum
);
234 NEW_AUX_ENT(AT_BASE
, interp_load_addr
);
235 NEW_AUX_ENT(AT_FLAGS
, 0);
236 NEW_AUX_ENT(AT_ENTRY
, exec
->e_entry
);
237 NEW_AUX_ENT(AT_UID
, from_kuid_munged(cred
->user_ns
, cred
->uid
));
238 NEW_AUX_ENT(AT_EUID
, from_kuid_munged(cred
->user_ns
, cred
->euid
));
239 NEW_AUX_ENT(AT_GID
, from_kgid_munged(cred
->user_ns
, cred
->gid
));
240 NEW_AUX_ENT(AT_EGID
, from_kgid_munged(cred
->user_ns
, cred
->egid
));
241 NEW_AUX_ENT(AT_SECURE
, security_bprm_secureexec(bprm
));
242 NEW_AUX_ENT(AT_RANDOM
, (elf_addr_t
)(unsigned long)u_rand_bytes
);
243 NEW_AUX_ENT(AT_EXECFN
, bprm
->exec
);
245 NEW_AUX_ENT(AT_PLATFORM
,
246 (elf_addr_t
)(unsigned long)u_platform
);
248 if (k_base_platform
) {
249 NEW_AUX_ENT(AT_BASE_PLATFORM
,
250 (elf_addr_t
)(unsigned long)u_base_platform
);
252 if (bprm
->interp_flags
& BINPRM_FLAGS_EXECFD
) {
253 NEW_AUX_ENT(AT_EXECFD
, bprm
->interp_data
);
256 /* AT_NULL is zero; clear the rest too */
257 memset(&elf_info
[ei_index
], 0,
258 sizeof current
->mm
->saved_auxv
- ei_index
* sizeof elf_info
[0]);
260 /* And advance past the AT_NULL entry. */
263 sp
= STACK_ADD(p
, ei_index
);
265 items
= (argc
+ 1) + (envc
+ 1) + 1;
266 bprm
->p
= STACK_ROUND(sp
, items
);
268 /* Point sp at the lowest address on the stack */
269 #ifdef CONFIG_STACK_GROWSUP
270 sp
= (elf_addr_t __user
*)bprm
->p
- items
- ei_index
;
271 bprm
->exec
= (unsigned long)sp
; /* XXX: PARISC HACK */
273 sp
= (elf_addr_t __user
*)bprm
->p
;
278 * Grow the stack manually; some architectures have a limit on how
279 * far ahead a user-space access may be in order to grow the stack.
281 vma
= find_extend_vma(current
->mm
, bprm
->p
);
285 /* Now, let's put argc (and argv, envp if appropriate) on the stack */
286 if (__put_user(argc
, sp
++))
289 envp
= argv
+ argc
+ 1;
291 /* Populate argv and envp */
292 p
= current
->mm
->arg_end
= current
->mm
->arg_start
;
295 if (__put_user((elf_addr_t
)p
, argv
++))
297 len
= strnlen_user((void __user
*)p
, MAX_ARG_STRLEN
);
298 if (!len
|| len
> MAX_ARG_STRLEN
)
302 if (__put_user(0, argv
))
304 current
->mm
->arg_end
= current
->mm
->env_start
= p
;
307 if (__put_user((elf_addr_t
)p
, envp
++))
309 len
= strnlen_user((void __user
*)p
, MAX_ARG_STRLEN
);
310 if (!len
|| len
> MAX_ARG_STRLEN
)
314 if (__put_user(0, envp
))
316 current
->mm
->env_end
= p
;
318 /* Put the elf_info on the stack in the right place. */
319 sp
= (elf_addr_t __user
*)envp
+ 1;
320 if (copy_to_user(sp
, elf_info
, ei_index
* sizeof(elf_addr_t
)))
325 static unsigned long elf_map(struct file
*filep
, unsigned long addr
,
326 struct elf_phdr
*eppnt
, int prot
, int type
,
327 unsigned long total_size
)
329 unsigned long map_addr
;
330 unsigned long size
= eppnt
->p_filesz
+ ELF_PAGEOFFSET(eppnt
->p_vaddr
);
331 unsigned long off
= eppnt
->p_offset
- ELF_PAGEOFFSET(eppnt
->p_vaddr
);
332 addr
= ELF_PAGESTART(addr
);
333 size
= ELF_PAGEALIGN(size
);
335 /* mmap() will return -EINVAL if given a zero size, but a
336 * segment with zero filesize is perfectly valid */
341 * total_size is the size of the ELF (interpreter) image.
342 * The _first_ mmap needs to know the full size, otherwise
343 * randomization might put this image into an overlapping
344 * position with the ELF binary image. (since size < total_size)
345 * So we first map the 'big' image - and unmap the remainder at
346 * the end. (which unmap is needed for ELF images with holes.)
349 total_size
= ELF_PAGEALIGN(total_size
);
350 map_addr
= vm_mmap(filep
, addr
, total_size
, prot
, type
, off
);
351 if (!BAD_ADDR(map_addr
))
352 vm_munmap(map_addr
+size
, total_size
-size
);
354 map_addr
= vm_mmap(filep
, addr
, size
, prot
, type
, off
);
359 static unsigned long total_mapping_size(struct elf_phdr
*cmds
, int nr
)
361 int i
, first_idx
= -1, last_idx
= -1;
363 for (i
= 0; i
< nr
; i
++) {
364 if (cmds
[i
].p_type
== PT_LOAD
) {
373 return cmds
[last_idx
].p_vaddr
+ cmds
[last_idx
].p_memsz
-
374 ELF_PAGESTART(cmds
[first_idx
].p_vaddr
);
378 /* This is much more generalized than the library routine read function,
379 so we keep this separate. Technically the library read function
380 is only provided so that we can read a.out libraries that have
383 static unsigned long load_elf_interp(struct elfhdr
*interp_elf_ex
,
384 struct file
*interpreter
, unsigned long *interp_map_addr
,
385 unsigned long no_base
)
387 struct elf_phdr
*elf_phdata
;
388 struct elf_phdr
*eppnt
;
389 unsigned long load_addr
= 0;
390 int load_addr_set
= 0;
391 unsigned long last_bss
= 0, elf_bss
= 0;
392 unsigned long error
= ~0UL;
393 unsigned long total_size
;
396 /* First of all, some simple consistency checks */
397 if (interp_elf_ex
->e_type
!= ET_EXEC
&&
398 interp_elf_ex
->e_type
!= ET_DYN
)
400 if (!elf_check_arch(interp_elf_ex
))
402 if (!interpreter
->f_op
|| !interpreter
->f_op
->mmap
)
406 * If the size of this structure has changed, then punt, since
407 * we will be doing the wrong thing.
409 if (interp_elf_ex
->e_phentsize
!= sizeof(struct elf_phdr
))
411 if (interp_elf_ex
->e_phnum
< 1 ||
412 interp_elf_ex
->e_phnum
> 65536U / sizeof(struct elf_phdr
))
415 /* Now read in all of the header information */
416 size
= sizeof(struct elf_phdr
) * interp_elf_ex
->e_phnum
;
417 if (size
> ELF_MIN_ALIGN
)
419 elf_phdata
= kmalloc(size
, GFP_KERNEL
);
423 retval
= kernel_read(interpreter
, interp_elf_ex
->e_phoff
,
424 (char *)elf_phdata
, size
);
426 if (retval
!= size
) {
432 total_size
= total_mapping_size(elf_phdata
, interp_elf_ex
->e_phnum
);
439 for (i
= 0; i
< interp_elf_ex
->e_phnum
; i
++, eppnt
++) {
440 if (eppnt
->p_type
== PT_LOAD
) {
441 int elf_type
= MAP_PRIVATE
| MAP_DENYWRITE
;
443 unsigned long vaddr
= 0;
444 unsigned long k
, map_addr
;
446 if (eppnt
->p_flags
& PF_R
)
447 elf_prot
= PROT_READ
;
448 if (eppnt
->p_flags
& PF_W
)
449 elf_prot
|= PROT_WRITE
;
450 if (eppnt
->p_flags
& PF_X
)
451 elf_prot
|= PROT_EXEC
;
452 vaddr
= eppnt
->p_vaddr
;
453 if (interp_elf_ex
->e_type
== ET_EXEC
|| load_addr_set
)
454 elf_type
|= MAP_FIXED
;
455 else if (no_base
&& interp_elf_ex
->e_type
== ET_DYN
)
458 map_addr
= elf_map(interpreter
, load_addr
+ vaddr
,
459 eppnt
, elf_prot
, elf_type
, total_size
);
461 if (!*interp_map_addr
)
462 *interp_map_addr
= map_addr
;
464 if (BAD_ADDR(map_addr
))
467 if (!load_addr_set
&&
468 interp_elf_ex
->e_type
== ET_DYN
) {
469 load_addr
= map_addr
- ELF_PAGESTART(vaddr
);
474 * Check to see if the section's size will overflow the
475 * allowed task size. Note that p_filesz must always be
476 * <= p_memsize so it's only necessary to check p_memsz.
478 k
= load_addr
+ eppnt
->p_vaddr
;
480 eppnt
->p_filesz
> eppnt
->p_memsz
||
481 eppnt
->p_memsz
> TASK_SIZE
||
482 TASK_SIZE
- eppnt
->p_memsz
< k
) {
488 * Find the end of the file mapping for this phdr, and
489 * keep track of the largest address we see for this.
491 k
= load_addr
+ eppnt
->p_vaddr
+ eppnt
->p_filesz
;
496 * Do the same thing for the memory mapping - between
497 * elf_bss and last_bss is the bss section.
499 k
= load_addr
+ eppnt
->p_memsz
+ eppnt
->p_vaddr
;
505 if (last_bss
> elf_bss
) {
507 * Now fill out the bss section. First pad the last page up
508 * to the page boundary, and then perform a mmap to make sure
509 * that there are zero-mapped pages up to and including the
512 if (padzero(elf_bss
)) {
517 /* What we have mapped so far */
518 elf_bss
= ELF_PAGESTART(elf_bss
+ ELF_MIN_ALIGN
- 1);
520 /* Map the last of the bss segment */
521 error
= vm_brk(elf_bss
, last_bss
- elf_bss
);
535 * These are the functions used to load ELF style executables and shared
536 * libraries. There is no binary dependent code anywhere else.
539 #define INTERPRETER_NONE 0
540 #define INTERPRETER_ELF 2
542 #ifndef STACK_RND_MASK
543 #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12)) /* 8MB of VA */
546 static unsigned long randomize_stack_top(unsigned long stack_top
)
548 unsigned int random_variable
= 0;
550 if ((current
->flags
& PF_RANDOMIZE
) &&
551 !(current
->personality
& ADDR_NO_RANDOMIZE
)) {
552 random_variable
= get_random_int() & STACK_RND_MASK
;
553 random_variable
<<= PAGE_SHIFT
;
555 #ifdef CONFIG_STACK_GROWSUP
556 return PAGE_ALIGN(stack_top
) + random_variable
;
558 return PAGE_ALIGN(stack_top
) - random_variable
;
562 static int load_elf_binary(struct linux_binprm
*bprm
)
564 struct file
*interpreter
= NULL
; /* to shut gcc up */
565 unsigned long load_addr
= 0, load_bias
= 0;
566 int load_addr_set
= 0;
567 char * elf_interpreter
= NULL
;
569 struct elf_phdr
*elf_ppnt
, *elf_phdata
;
570 unsigned long elf_bss
, elf_brk
;
573 unsigned long elf_entry
;
574 unsigned long interp_load_addr
= 0;
575 unsigned long start_code
, end_code
, start_data
, end_data
;
576 unsigned long reloc_func_desc __maybe_unused
= 0;
577 int executable_stack
= EXSTACK_DEFAULT
;
578 unsigned long def_flags
= 0;
579 struct pt_regs
*regs
= current_pt_regs();
581 struct elfhdr elf_ex
;
582 struct elfhdr interp_elf_ex
;
585 loc
= kmalloc(sizeof(*loc
), GFP_KERNEL
);
591 /* Get the exec-header */
592 loc
->elf_ex
= *((struct elfhdr
*)bprm
->buf
);
595 /* First of all, some simple consistency checks */
596 if (memcmp(loc
->elf_ex
.e_ident
, ELFMAG
, SELFMAG
) != 0)
599 if (loc
->elf_ex
.e_type
!= ET_EXEC
&& loc
->elf_ex
.e_type
!= ET_DYN
)
601 if (!elf_check_arch(&loc
->elf_ex
))
603 if (!bprm
->file
->f_op
|| !bprm
->file
->f_op
->mmap
)
606 /* Now read in all of the header information */
607 if (loc
->elf_ex
.e_phentsize
!= sizeof(struct elf_phdr
))
609 if (loc
->elf_ex
.e_phnum
< 1 ||
610 loc
->elf_ex
.e_phnum
> 65536U / sizeof(struct elf_phdr
))
612 size
= loc
->elf_ex
.e_phnum
* sizeof(struct elf_phdr
);
614 elf_phdata
= kmalloc(size
, GFP_KERNEL
);
618 retval
= kernel_read(bprm
->file
, loc
->elf_ex
.e_phoff
,
619 (char *)elf_phdata
, size
);
620 if (retval
!= size
) {
626 elf_ppnt
= elf_phdata
;
635 for (i
= 0; i
< loc
->elf_ex
.e_phnum
; i
++) {
636 if (elf_ppnt
->p_type
== PT_INTERP
) {
637 /* This is the program interpreter used for
638 * shared libraries - for now assume that this
639 * is an a.out format binary
642 if (elf_ppnt
->p_filesz
> PATH_MAX
||
643 elf_ppnt
->p_filesz
< 2)
647 elf_interpreter
= kmalloc(elf_ppnt
->p_filesz
,
649 if (!elf_interpreter
)
652 retval
= kernel_read(bprm
->file
, elf_ppnt
->p_offset
,
655 if (retval
!= elf_ppnt
->p_filesz
) {
658 goto out_free_interp
;
660 /* make sure path is NULL terminated */
662 if (elf_interpreter
[elf_ppnt
->p_filesz
- 1] != '\0')
663 goto out_free_interp
;
665 interpreter
= open_exec(elf_interpreter
);
666 retval
= PTR_ERR(interpreter
);
667 if (IS_ERR(interpreter
))
668 goto out_free_interp
;
671 * If the binary is not readable then enforce
672 * mm->dumpable = 0 regardless of the interpreter's
675 would_dump(bprm
, interpreter
);
677 retval
= kernel_read(interpreter
, 0, bprm
->buf
,
679 if (retval
!= BINPRM_BUF_SIZE
) {
682 goto out_free_dentry
;
685 /* Get the exec headers */
686 loc
->interp_elf_ex
= *((struct elfhdr
*)bprm
->buf
);
692 elf_ppnt
= elf_phdata
;
693 for (i
= 0; i
< loc
->elf_ex
.e_phnum
; i
++, elf_ppnt
++)
694 if (elf_ppnt
->p_type
== PT_GNU_STACK
) {
695 if (elf_ppnt
->p_flags
& PF_X
)
696 executable_stack
= EXSTACK_ENABLE_X
;
698 executable_stack
= EXSTACK_DISABLE_X
;
702 /* Some simple consistency checks for the interpreter */
703 if (elf_interpreter
) {
705 /* Not an ELF interpreter */
706 if (memcmp(loc
->interp_elf_ex
.e_ident
, ELFMAG
, SELFMAG
) != 0)
707 goto out_free_dentry
;
708 /* Verify the interpreter has a valid arch */
709 if (!elf_check_arch(&loc
->interp_elf_ex
))
710 goto out_free_dentry
;
713 /* Flush all traces of the currently running executable */
714 retval
= flush_old_exec(bprm
);
716 goto out_free_dentry
;
718 /* OK, This is the point of no return */
719 current
->mm
->def_flags
= def_flags
;
721 /* Do this immediately, since STACK_TOP as used in setup_arg_pages
722 may depend on the personality. */
723 SET_PERSONALITY(loc
->elf_ex
);
724 if (elf_read_implies_exec(loc
->elf_ex
, executable_stack
))
725 current
->personality
|= READ_IMPLIES_EXEC
;
727 if (!(current
->personality
& ADDR_NO_RANDOMIZE
) && randomize_va_space
)
728 current
->flags
|= PF_RANDOMIZE
;
730 setup_new_exec(bprm
);
732 /* Do this so that we can load the interpreter, if need be. We will
733 change some of these later */
734 current
->mm
->free_area_cache
= current
->mm
->mmap_base
;
735 current
->mm
->cached_hole_size
= 0;
736 retval
= setup_arg_pages(bprm
, randomize_stack_top(STACK_TOP
),
739 send_sig(SIGKILL
, current
, 0);
740 goto out_free_dentry
;
743 current
->mm
->start_stack
= bprm
->p
;
745 /* Now we do a little grungy work by mmapping the ELF image into
746 the correct location in memory. */
747 for(i
= 0, elf_ppnt
= elf_phdata
;
748 i
< loc
->elf_ex
.e_phnum
; i
++, elf_ppnt
++) {
749 int elf_prot
= 0, elf_flags
;
750 unsigned long k
, vaddr
;
752 if (elf_ppnt
->p_type
!= PT_LOAD
)
755 if (unlikely (elf_brk
> elf_bss
)) {
758 /* There was a PT_LOAD segment with p_memsz > p_filesz
759 before this one. Map anonymous pages, if needed,
760 and clear the area. */
761 retval
= set_brk(elf_bss
+ load_bias
,
762 elf_brk
+ load_bias
);
764 send_sig(SIGKILL
, current
, 0);
765 goto out_free_dentry
;
767 nbyte
= ELF_PAGEOFFSET(elf_bss
);
769 nbyte
= ELF_MIN_ALIGN
- nbyte
;
770 if (nbyte
> elf_brk
- elf_bss
)
771 nbyte
= elf_brk
- elf_bss
;
772 if (clear_user((void __user
*)elf_bss
+
775 * This bss-zeroing can fail if the ELF
776 * file specifies odd protections. So
777 * we don't check the return value
783 if (elf_ppnt
->p_flags
& PF_R
)
784 elf_prot
|= PROT_READ
;
785 if (elf_ppnt
->p_flags
& PF_W
)
786 elf_prot
|= PROT_WRITE
;
787 if (elf_ppnt
->p_flags
& PF_X
)
788 elf_prot
|= PROT_EXEC
;
790 elf_flags
= MAP_PRIVATE
| MAP_DENYWRITE
| MAP_EXECUTABLE
;
792 vaddr
= elf_ppnt
->p_vaddr
;
793 if (loc
->elf_ex
.e_type
== ET_EXEC
|| load_addr_set
) {
794 elf_flags
|= MAP_FIXED
;
795 } else if (loc
->elf_ex
.e_type
== ET_DYN
) {
796 /* Try and get dynamic programs out of the way of the
797 * default mmap base, as well as whatever program they
798 * might try to exec. This is because the brk will
799 * follow the loader, and is not movable. */
800 #ifdef CONFIG_ARCH_BINFMT_ELF_RANDOMIZE_PIE
801 /* Memory randomization might have been switched off
802 * in runtime via sysctl.
803 * If that is the case, retain the original non-zero
804 * load_bias value in order to establish proper
805 * non-randomized mappings.
807 if (current
->flags
& PF_RANDOMIZE
)
810 load_bias
= ELF_PAGESTART(ELF_ET_DYN_BASE
- vaddr
);
812 load_bias
= ELF_PAGESTART(ELF_ET_DYN_BASE
- vaddr
);
816 error
= elf_map(bprm
->file
, load_bias
+ vaddr
, elf_ppnt
,
817 elf_prot
, elf_flags
, 0);
818 if (BAD_ADDR(error
)) {
819 send_sig(SIGKILL
, current
, 0);
820 retval
= IS_ERR((void *)error
) ?
821 PTR_ERR((void*)error
) : -EINVAL
;
822 goto out_free_dentry
;
825 if (!load_addr_set
) {
827 load_addr
= (elf_ppnt
->p_vaddr
- elf_ppnt
->p_offset
);
828 if (loc
->elf_ex
.e_type
== ET_DYN
) {
830 ELF_PAGESTART(load_bias
+ vaddr
);
831 load_addr
+= load_bias
;
832 reloc_func_desc
= load_bias
;
835 k
= elf_ppnt
->p_vaddr
;
842 * Check to see if the section's size will overflow the
843 * allowed task size. Note that p_filesz must always be
844 * <= p_memsz so it is only necessary to check p_memsz.
846 if (BAD_ADDR(k
) || elf_ppnt
->p_filesz
> elf_ppnt
->p_memsz
||
847 elf_ppnt
->p_memsz
> TASK_SIZE
||
848 TASK_SIZE
- elf_ppnt
->p_memsz
< k
) {
849 /* set_brk can never work. Avoid overflows. */
850 send_sig(SIGKILL
, current
, 0);
852 goto out_free_dentry
;
855 k
= elf_ppnt
->p_vaddr
+ elf_ppnt
->p_filesz
;
859 if ((elf_ppnt
->p_flags
& PF_X
) && end_code
< k
)
863 k
= elf_ppnt
->p_vaddr
+ elf_ppnt
->p_memsz
;
868 loc
->elf_ex
.e_entry
+= load_bias
;
869 elf_bss
+= load_bias
;
870 elf_brk
+= load_bias
;
871 start_code
+= load_bias
;
872 end_code
+= load_bias
;
873 start_data
+= load_bias
;
874 end_data
+= load_bias
;
876 /* Calling set_brk effectively mmaps the pages that we need
877 * for the bss and break sections. We must do this before
878 * mapping in the interpreter, to make sure it doesn't wind
879 * up getting placed where the bss needs to go.
881 retval
= set_brk(elf_bss
, elf_brk
);
883 send_sig(SIGKILL
, current
, 0);
884 goto out_free_dentry
;
886 if (likely(elf_bss
!= elf_brk
) && unlikely(padzero(elf_bss
))) {
887 send_sig(SIGSEGV
, current
, 0);
888 retval
= -EFAULT
; /* Nobody gets to see this, but.. */
889 goto out_free_dentry
;
892 if (elf_interpreter
) {
893 unsigned long interp_map_addr
= 0;
895 elf_entry
= load_elf_interp(&loc
->interp_elf_ex
,
899 if (!IS_ERR((void *)elf_entry
)) {
901 * load_elf_interp() returns relocation
904 interp_load_addr
= elf_entry
;
905 elf_entry
+= loc
->interp_elf_ex
.e_entry
;
907 if (BAD_ADDR(elf_entry
)) {
908 force_sig(SIGSEGV
, current
);
909 retval
= IS_ERR((void *)elf_entry
) ?
910 (int)elf_entry
: -EINVAL
;
911 goto out_free_dentry
;
913 reloc_func_desc
= interp_load_addr
;
915 allow_write_access(interpreter
);
917 kfree(elf_interpreter
);
919 elf_entry
= loc
->elf_ex
.e_entry
;
920 if (BAD_ADDR(elf_entry
)) {
921 force_sig(SIGSEGV
, current
);
923 goto out_free_dentry
;
929 set_binfmt(&elf_format
);
931 #ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES
932 retval
= arch_setup_additional_pages(bprm
, !!elf_interpreter
);
934 send_sig(SIGKILL
, current
, 0);
937 #endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */
939 install_exec_creds(bprm
);
940 retval
= create_elf_tables(bprm
, &loc
->elf_ex
,
941 load_addr
, interp_load_addr
);
943 send_sig(SIGKILL
, current
, 0);
946 /* N.B. passed_fileno might not be initialized? */
947 current
->mm
->end_code
= end_code
;
948 current
->mm
->start_code
= start_code
;
949 current
->mm
->start_data
= start_data
;
950 current
->mm
->end_data
= end_data
;
951 current
->mm
->start_stack
= bprm
->p
;
953 #ifdef arch_randomize_brk
954 if ((current
->flags
& PF_RANDOMIZE
) && (randomize_va_space
> 1)) {
955 current
->mm
->brk
= current
->mm
->start_brk
=
956 arch_randomize_brk(current
->mm
);
957 #ifdef CONFIG_COMPAT_BRK
958 current
->brk_randomized
= 1;
963 if (current
->personality
& MMAP_PAGE_ZERO
) {
964 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
965 and some applications "depend" upon this behavior.
966 Since we do not have the power to recompile these, we
967 emulate the SVr4 behavior. Sigh. */
968 error
= vm_mmap(NULL
, 0, PAGE_SIZE
, PROT_READ
| PROT_EXEC
,
969 MAP_FIXED
| MAP_PRIVATE
, 0);
974 * The ABI may specify that certain registers be set up in special
975 * ways (on i386 %edx is the address of a DT_FINI function, for
976 * example. In addition, it may also specify (eg, PowerPC64 ELF)
977 * that the e_entry field is the address of the function descriptor
978 * for the startup routine, rather than the address of the startup
979 * routine itself. This macro performs whatever initialization to
980 * the regs structure is required as well as any relocations to the
981 * function descriptor entries when executing dynamically links apps.
983 ELF_PLAT_INIT(regs
, reloc_func_desc
);
986 start_thread(regs
, elf_entry
, bprm
->p
);
995 allow_write_access(interpreter
);
999 kfree(elf_interpreter
);
1005 /* This is really simpleminded and specialized - we are loading an
1006 a.out library that is given an ELF header. */
1007 static int load_elf_library(struct file
*file
)
1009 struct elf_phdr
*elf_phdata
;
1010 struct elf_phdr
*eppnt
;
1011 unsigned long elf_bss
, bss
, len
;
1012 int retval
, error
, i
, j
;
1013 struct elfhdr elf_ex
;
1016 retval
= kernel_read(file
, 0, (char *)&elf_ex
, sizeof(elf_ex
));
1017 if (retval
!= sizeof(elf_ex
))
1020 if (memcmp(elf_ex
.e_ident
, ELFMAG
, SELFMAG
) != 0)
1023 /* First of all, some simple consistency checks */
1024 if (elf_ex
.e_type
!= ET_EXEC
|| elf_ex
.e_phnum
> 2 ||
1025 !elf_check_arch(&elf_ex
) || !file
->f_op
|| !file
->f_op
->mmap
)
1028 /* Now read in all of the header information */
1030 j
= sizeof(struct elf_phdr
) * elf_ex
.e_phnum
;
1031 /* j < ELF_MIN_ALIGN because elf_ex.e_phnum <= 2 */
1034 elf_phdata
= kmalloc(j
, GFP_KERNEL
);
1040 retval
= kernel_read(file
, elf_ex
.e_phoff
, (char *)eppnt
, j
);
1044 for (j
= 0, i
= 0; i
<elf_ex
.e_phnum
; i
++)
1045 if ((eppnt
+ i
)->p_type
== PT_LOAD
)
1050 while (eppnt
->p_type
!= PT_LOAD
)
1053 /* Now use mmap to map the library into memory. */
1054 error
= vm_mmap(file
,
1055 ELF_PAGESTART(eppnt
->p_vaddr
),
1057 ELF_PAGEOFFSET(eppnt
->p_vaddr
)),
1058 PROT_READ
| PROT_WRITE
| PROT_EXEC
,
1059 MAP_FIXED
| MAP_PRIVATE
| MAP_DENYWRITE
,
1061 ELF_PAGEOFFSET(eppnt
->p_vaddr
)));
1062 if (error
!= ELF_PAGESTART(eppnt
->p_vaddr
))
1065 elf_bss
= eppnt
->p_vaddr
+ eppnt
->p_filesz
;
1066 if (padzero(elf_bss
)) {
1071 len
= ELF_PAGESTART(eppnt
->p_filesz
+ eppnt
->p_vaddr
+
1073 bss
= eppnt
->p_memsz
+ eppnt
->p_vaddr
;
1075 vm_brk(len
, bss
- len
);
1084 #ifdef CONFIG_ELF_CORE
1088 * Modelled on fs/exec.c:aout_core_dump()
1089 * Jeremy Fitzhardinge <jeremy@sw.oz.au>
1093 * The purpose of always_dump_vma() is to make sure that special kernel mappings
1094 * that are useful for post-mortem analysis are included in every core dump.
1095 * In that way we ensure that the core dump is fully interpretable later
1096 * without matching up the same kernel and hardware config to see what PC values
1097 * meant. These special mappings include - vDSO, vsyscall, and other
1098 * architecture specific mappings
1100 static bool always_dump_vma(struct vm_area_struct
*vma
)
1102 /* Any vsyscall mappings? */
1103 if (vma
== get_gate_vma(vma
->vm_mm
))
1106 * arch_vma_name() returns non-NULL for special architecture mappings,
1107 * such as vDSO sections.
1109 if (arch_vma_name(vma
))
1116 * Decide what to dump of a segment, part, all or none.
1118 static unsigned long vma_dump_size(struct vm_area_struct
*vma
,
1119 unsigned long mm_flags
)
1121 #define FILTER(type) (mm_flags & (1UL << MMF_DUMP_##type))
1123 /* always dump the vdso and vsyscall sections */
1124 if (always_dump_vma(vma
))
1127 if (vma
->vm_flags
& VM_DONTDUMP
)
1130 /* Hugetlb memory check */
1131 if (vma
->vm_flags
& VM_HUGETLB
) {
1132 if ((vma
->vm_flags
& VM_SHARED
) && FILTER(HUGETLB_SHARED
))
1134 if (!(vma
->vm_flags
& VM_SHARED
) && FILTER(HUGETLB_PRIVATE
))
1138 /* Do not dump I/O mapped devices or special mappings */
1139 if (vma
->vm_flags
& VM_IO
)
1142 /* By default, dump shared memory if mapped from an anonymous file. */
1143 if (vma
->vm_flags
& VM_SHARED
) {
1144 if (vma
->vm_file
->f_path
.dentry
->d_inode
->i_nlink
== 0 ?
1145 FILTER(ANON_SHARED
) : FILTER(MAPPED_SHARED
))
1150 /* Dump segments that have been written to. */
1151 if (vma
->anon_vma
&& FILTER(ANON_PRIVATE
))
1153 if (vma
->vm_file
== NULL
)
1156 if (FILTER(MAPPED_PRIVATE
))
1160 * If this looks like the beginning of a DSO or executable mapping,
1161 * check for an ELF header. If we find one, dump the first page to
1162 * aid in determining what was mapped here.
1164 if (FILTER(ELF_HEADERS
) &&
1165 vma
->vm_pgoff
== 0 && (vma
->vm_flags
& VM_READ
)) {
1166 u32 __user
*header
= (u32 __user
*) vma
->vm_start
;
1168 mm_segment_t fs
= get_fs();
1170 * Doing it this way gets the constant folded by GCC.
1174 char elfmag
[SELFMAG
];
1176 BUILD_BUG_ON(SELFMAG
!= sizeof word
);
1177 magic
.elfmag
[EI_MAG0
] = ELFMAG0
;
1178 magic
.elfmag
[EI_MAG1
] = ELFMAG1
;
1179 magic
.elfmag
[EI_MAG2
] = ELFMAG2
;
1180 magic
.elfmag
[EI_MAG3
] = ELFMAG3
;
1182 * Switch to the user "segment" for get_user(),
1183 * then put back what elf_core_dump() had in place.
1186 if (unlikely(get_user(word
, header
)))
1189 if (word
== magic
.cmp
)
1198 return vma
->vm_end
- vma
->vm_start
;
1201 /* An ELF note in memory */
1206 unsigned int datasz
;
1210 static int notesize(struct memelfnote
*en
)
1214 sz
= sizeof(struct elf_note
);
1215 sz
+= roundup(strlen(en
->name
) + 1, 4);
1216 sz
+= roundup(en
->datasz
, 4);
1221 #define DUMP_WRITE(addr, nr, foffset) \
1222 do { if (!dump_write(file, (addr), (nr))) return 0; *foffset += (nr); } while(0)
1224 static int alignfile(struct file
*file
, loff_t
*foffset
)
1226 static const char buf
[4] = { 0, };
1227 DUMP_WRITE(buf
, roundup(*foffset
, 4) - *foffset
, foffset
);
1231 static int writenote(struct memelfnote
*men
, struct file
*file
,
1235 en
.n_namesz
= strlen(men
->name
) + 1;
1236 en
.n_descsz
= men
->datasz
;
1237 en
.n_type
= men
->type
;
1239 DUMP_WRITE(&en
, sizeof(en
), foffset
);
1240 DUMP_WRITE(men
->name
, en
.n_namesz
, foffset
);
1241 if (!alignfile(file
, foffset
))
1243 DUMP_WRITE(men
->data
, men
->datasz
, foffset
);
1244 if (!alignfile(file
, foffset
))
1251 static void fill_elf_header(struct elfhdr
*elf
, int segs
,
1252 u16 machine
, u32 flags
, u8 osabi
)
1254 memset(elf
, 0, sizeof(*elf
));
1256 memcpy(elf
->e_ident
, ELFMAG
, SELFMAG
);
1257 elf
->e_ident
[EI_CLASS
] = ELF_CLASS
;
1258 elf
->e_ident
[EI_DATA
] = ELF_DATA
;
1259 elf
->e_ident
[EI_VERSION
] = EV_CURRENT
;
1260 elf
->e_ident
[EI_OSABI
] = ELF_OSABI
;
1262 elf
->e_type
= ET_CORE
;
1263 elf
->e_machine
= machine
;
1264 elf
->e_version
= EV_CURRENT
;
1265 elf
->e_phoff
= sizeof(struct elfhdr
);
1266 elf
->e_flags
= flags
;
1267 elf
->e_ehsize
= sizeof(struct elfhdr
);
1268 elf
->e_phentsize
= sizeof(struct elf_phdr
);
1269 elf
->e_phnum
= segs
;
1274 static void fill_elf_note_phdr(struct elf_phdr
*phdr
, int sz
, loff_t offset
)
1276 phdr
->p_type
= PT_NOTE
;
1277 phdr
->p_offset
= offset
;
1280 phdr
->p_filesz
= sz
;
1287 static void fill_note(struct memelfnote
*note
, const char *name
, int type
,
1288 unsigned int sz
, void *data
)
1298 * fill up all the fields in prstatus from the given task struct, except
1299 * registers which need to be filled up separately.
1301 static void fill_prstatus(struct elf_prstatus
*prstatus
,
1302 struct task_struct
*p
, long signr
)
1304 prstatus
->pr_info
.si_signo
= prstatus
->pr_cursig
= signr
;
1305 prstatus
->pr_sigpend
= p
->pending
.signal
.sig
[0];
1306 prstatus
->pr_sighold
= p
->blocked
.sig
[0];
1308 prstatus
->pr_ppid
= task_pid_vnr(rcu_dereference(p
->real_parent
));
1310 prstatus
->pr_pid
= task_pid_vnr(p
);
1311 prstatus
->pr_pgrp
= task_pgrp_vnr(p
);
1312 prstatus
->pr_sid
= task_session_vnr(p
);
1313 if (thread_group_leader(p
)) {
1314 struct task_cputime cputime
;
1317 * This is the record for the group leader. It shows the
1318 * group-wide total, not its individual thread total.
1320 thread_group_cputime(p
, &cputime
);
1321 cputime_to_timeval(cputime
.utime
, &prstatus
->pr_utime
);
1322 cputime_to_timeval(cputime
.stime
, &prstatus
->pr_stime
);
1324 cputime_t utime
, stime
;
1326 task_cputime(p
, &utime
, &stime
);
1327 cputime_to_timeval(utime
, &prstatus
->pr_utime
);
1328 cputime_to_timeval(stime
, &prstatus
->pr_stime
);
1330 cputime_to_timeval(p
->signal
->cutime
, &prstatus
->pr_cutime
);
1331 cputime_to_timeval(p
->signal
->cstime
, &prstatus
->pr_cstime
);
1334 static int fill_psinfo(struct elf_prpsinfo
*psinfo
, struct task_struct
*p
,
1335 struct mm_struct
*mm
)
1337 const struct cred
*cred
;
1338 unsigned int i
, len
;
1340 /* first copy the parameters from user space */
1341 memset(psinfo
, 0, sizeof(struct elf_prpsinfo
));
1343 len
= mm
->arg_end
- mm
->arg_start
;
1344 if (len
>= ELF_PRARGSZ
)
1345 len
= ELF_PRARGSZ
-1;
1346 if (copy_from_user(&psinfo
->pr_psargs
,
1347 (const char __user
*)mm
->arg_start
, len
))
1349 for(i
= 0; i
< len
; i
++)
1350 if (psinfo
->pr_psargs
[i
] == 0)
1351 psinfo
->pr_psargs
[i
] = ' ';
1352 psinfo
->pr_psargs
[len
] = 0;
1355 psinfo
->pr_ppid
= task_pid_vnr(rcu_dereference(p
->real_parent
));
1357 psinfo
->pr_pid
= task_pid_vnr(p
);
1358 psinfo
->pr_pgrp
= task_pgrp_vnr(p
);
1359 psinfo
->pr_sid
= task_session_vnr(p
);
1361 i
= p
->state
? ffz(~p
->state
) + 1 : 0;
1362 psinfo
->pr_state
= i
;
1363 psinfo
->pr_sname
= (i
> 5) ? '.' : "RSDTZW"[i
];
1364 psinfo
->pr_zomb
= psinfo
->pr_sname
== 'Z';
1365 psinfo
->pr_nice
= task_nice(p
);
1366 psinfo
->pr_flag
= p
->flags
;
1368 cred
= __task_cred(p
);
1369 SET_UID(psinfo
->pr_uid
, from_kuid_munged(cred
->user_ns
, cred
->uid
));
1370 SET_GID(psinfo
->pr_gid
, from_kgid_munged(cred
->user_ns
, cred
->gid
));
1372 strncpy(psinfo
->pr_fname
, p
->comm
, sizeof(psinfo
->pr_fname
));
1377 static void fill_auxv_note(struct memelfnote
*note
, struct mm_struct
*mm
)
1379 elf_addr_t
*auxv
= (elf_addr_t
*) mm
->saved_auxv
;
1383 while (auxv
[i
- 2] != AT_NULL
);
1384 fill_note(note
, "CORE", NT_AUXV
, i
* sizeof(elf_addr_t
), auxv
);
1387 static void fill_siginfo_note(struct memelfnote
*note
, user_siginfo_t
*csigdata
,
1390 mm_segment_t old_fs
= get_fs();
1392 copy_siginfo_to_user((user_siginfo_t __user
*) csigdata
, siginfo
);
1394 fill_note(note
, "CORE", NT_SIGINFO
, sizeof(*csigdata
), csigdata
);
1397 #define MAX_FILE_NOTE_SIZE (4*1024*1024)
1399 * Format of NT_FILE note:
1401 * long count -- how many files are mapped
1402 * long page_size -- units for file_ofs
1403 * array of [COUNT] elements of
1407 * followed by COUNT filenames in ASCII: "FILE1" NUL "FILE2" NUL...
1409 static void fill_files_note(struct memelfnote
*note
)
1411 struct vm_area_struct
*vma
;
1412 unsigned count
, size
, names_ofs
, remaining
, n
;
1414 user_long_t
*start_end_ofs
;
1415 char *name_base
, *name_curpos
;
1417 /* *Estimated* file count and total data size needed */
1418 count
= current
->mm
->map_count
;
1421 names_ofs
= (2 + 3 * count
) * sizeof(data
[0]);
1423 if (size
>= MAX_FILE_NOTE_SIZE
) /* paranoia check */
1425 size
= round_up(size
, PAGE_SIZE
);
1426 data
= vmalloc(size
);
1430 start_end_ofs
= data
+ 2;
1431 name_base
= name_curpos
= ((char *)data
) + names_ofs
;
1432 remaining
= size
- names_ofs
;
1434 for (vma
= current
->mm
->mmap
; vma
!= NULL
; vma
= vma
->vm_next
) {
1436 const char *filename
;
1438 file
= vma
->vm_file
;
1441 filename
= d_path(&file
->f_path
, name_curpos
, remaining
);
1442 if (IS_ERR(filename
)) {
1443 if (PTR_ERR(filename
) == -ENAMETOOLONG
) {
1445 size
= size
* 5 / 4;
1451 /* d_path() fills at the end, move name down */
1452 /* n = strlen(filename) + 1: */
1453 n
= (name_curpos
+ remaining
) - filename
;
1454 remaining
= filename
- name_curpos
;
1455 memmove(name_curpos
, filename
, n
);
1458 *start_end_ofs
++ = vma
->vm_start
;
1459 *start_end_ofs
++ = vma
->vm_end
;
1460 *start_end_ofs
++ = vma
->vm_pgoff
;
1464 /* Now we know exact count of files, can store it */
1466 data
[1] = PAGE_SIZE
;
1468 * Count usually is less than current->mm->map_count,
1469 * we need to move filenames down.
1471 n
= current
->mm
->map_count
- count
;
1473 unsigned shift_bytes
= n
* 3 * sizeof(data
[0]);
1474 memmove(name_base
- shift_bytes
, name_base
,
1475 name_curpos
- name_base
);
1476 name_curpos
-= shift_bytes
;
1479 size
= name_curpos
- (char *)data
;
1480 fill_note(note
, "CORE", NT_FILE
, size
, data
);
1484 #ifdef CORE_DUMP_USE_REGSET
1485 #include <linux/regset.h>
1487 struct elf_thread_core_info
{
1488 struct elf_thread_core_info
*next
;
1489 struct task_struct
*task
;
1490 struct elf_prstatus prstatus
;
1491 struct memelfnote notes
[0];
1494 struct elf_note_info
{
1495 struct elf_thread_core_info
*thread
;
1496 struct memelfnote psinfo
;
1497 struct memelfnote signote
;
1498 struct memelfnote auxv
;
1499 struct memelfnote files
;
1500 user_siginfo_t csigdata
;
1506 * When a regset has a writeback hook, we call it on each thread before
1507 * dumping user memory. On register window machines, this makes sure the
1508 * user memory backing the register data is up to date before we read it.
1510 static void do_thread_regset_writeback(struct task_struct
*task
,
1511 const struct user_regset
*regset
)
1513 if (regset
->writeback
)
1514 regset
->writeback(task
, regset
, 1);
1518 #define PR_REG_SIZE(S) sizeof(S)
1521 #ifndef PRSTATUS_SIZE
1522 #define PRSTATUS_SIZE(S) sizeof(S)
1526 #define PR_REG_PTR(S) (&((S)->pr_reg))
1529 #ifndef SET_PR_FPVALID
1530 #define SET_PR_FPVALID(S, V) ((S)->pr_fpvalid = (V))
1533 static int fill_thread_core_info(struct elf_thread_core_info
*t
,
1534 const struct user_regset_view
*view
,
1535 long signr
, size_t *total
)
1540 * NT_PRSTATUS is the one special case, because the regset data
1541 * goes into the pr_reg field inside the note contents, rather
1542 * than being the whole note contents. We fill the reset in here.
1543 * We assume that regset 0 is NT_PRSTATUS.
1545 fill_prstatus(&t
->prstatus
, t
->task
, signr
);
1546 (void) view
->regsets
[0].get(t
->task
, &view
->regsets
[0],
1547 0, PR_REG_SIZE(t
->prstatus
.pr_reg
),
1548 PR_REG_PTR(&t
->prstatus
), NULL
);
1550 fill_note(&t
->notes
[0], "CORE", NT_PRSTATUS
,
1551 PRSTATUS_SIZE(t
->prstatus
), &t
->prstatus
);
1552 *total
+= notesize(&t
->notes
[0]);
1554 do_thread_regset_writeback(t
->task
, &view
->regsets
[0]);
1557 * Each other regset might generate a note too. For each regset
1558 * that has no core_note_type or is inactive, we leave t->notes[i]
1559 * all zero and we'll know to skip writing it later.
1561 for (i
= 1; i
< view
->n
; ++i
) {
1562 const struct user_regset
*regset
= &view
->regsets
[i
];
1563 do_thread_regset_writeback(t
->task
, regset
);
1564 if (regset
->core_note_type
&& regset
->get
&&
1565 (!regset
->active
|| regset
->active(t
->task
, regset
))) {
1567 size_t size
= regset
->n
* regset
->size
;
1568 void *data
= kmalloc(size
, GFP_KERNEL
);
1569 if (unlikely(!data
))
1571 ret
= regset
->get(t
->task
, regset
,
1572 0, size
, data
, NULL
);
1576 if (regset
->core_note_type
!= NT_PRFPREG
)
1577 fill_note(&t
->notes
[i
], "LINUX",
1578 regset
->core_note_type
,
1581 SET_PR_FPVALID(&t
->prstatus
, 1);
1582 fill_note(&t
->notes
[i
], "CORE",
1583 NT_PRFPREG
, size
, data
);
1585 *total
+= notesize(&t
->notes
[i
]);
1593 static int fill_note_info(struct elfhdr
*elf
, int phdrs
,
1594 struct elf_note_info
*info
,
1595 siginfo_t
*siginfo
, struct pt_regs
*regs
)
1597 struct task_struct
*dump_task
= current
;
1598 const struct user_regset_view
*view
= task_user_regset_view(dump_task
);
1599 struct elf_thread_core_info
*t
;
1600 struct elf_prpsinfo
*psinfo
;
1601 struct core_thread
*ct
;
1605 info
->thread
= NULL
;
1607 psinfo
= kmalloc(sizeof(*psinfo
), GFP_KERNEL
);
1608 if (psinfo
== NULL
) {
1609 info
->psinfo
.data
= NULL
; /* So we don't free this wrongly */
1613 fill_note(&info
->psinfo
, "CORE", NT_PRPSINFO
, sizeof(*psinfo
), psinfo
);
1616 * Figure out how many notes we're going to need for each thread.
1618 info
->thread_notes
= 0;
1619 for (i
= 0; i
< view
->n
; ++i
)
1620 if (view
->regsets
[i
].core_note_type
!= 0)
1621 ++info
->thread_notes
;
1624 * Sanity check. We rely on regset 0 being in NT_PRSTATUS,
1625 * since it is our one special case.
1627 if (unlikely(info
->thread_notes
== 0) ||
1628 unlikely(view
->regsets
[0].core_note_type
!= NT_PRSTATUS
)) {
1634 * Initialize the ELF file header.
1636 fill_elf_header(elf
, phdrs
,
1637 view
->e_machine
, view
->e_flags
, view
->ei_osabi
);
1640 * Allocate a structure for each thread.
1642 for (ct
= &dump_task
->mm
->core_state
->dumper
; ct
; ct
= ct
->next
) {
1643 t
= kzalloc(offsetof(struct elf_thread_core_info
,
1644 notes
[info
->thread_notes
]),
1650 if (ct
->task
== dump_task
|| !info
->thread
) {
1651 t
->next
= info
->thread
;
1655 * Make sure to keep the original task at
1656 * the head of the list.
1658 t
->next
= info
->thread
->next
;
1659 info
->thread
->next
= t
;
1664 * Now fill in each thread's information.
1666 for (t
= info
->thread
; t
!= NULL
; t
= t
->next
)
1667 if (!fill_thread_core_info(t
, view
, siginfo
->si_signo
, &info
->size
))
1671 * Fill in the two process-wide notes.
1673 fill_psinfo(psinfo
, dump_task
->group_leader
, dump_task
->mm
);
1674 info
->size
+= notesize(&info
->psinfo
);
1676 fill_siginfo_note(&info
->signote
, &info
->csigdata
, siginfo
);
1677 info
->size
+= notesize(&info
->signote
);
1679 fill_auxv_note(&info
->auxv
, current
->mm
);
1680 info
->size
+= notesize(&info
->auxv
);
1682 fill_files_note(&info
->files
);
1683 info
->size
+= notesize(&info
->files
);
1688 static size_t get_note_info_size(struct elf_note_info
*info
)
1694 * Write all the notes for each thread. When writing the first thread, the
1695 * process-wide notes are interleaved after the first thread-specific note.
1697 static int write_note_info(struct elf_note_info
*info
,
1698 struct file
*file
, loff_t
*foffset
)
1701 struct elf_thread_core_info
*t
= info
->thread
;
1706 if (!writenote(&t
->notes
[0], file
, foffset
))
1709 if (first
&& !writenote(&info
->psinfo
, file
, foffset
))
1711 if (first
&& !writenote(&info
->signote
, file
, foffset
))
1713 if (first
&& !writenote(&info
->auxv
, file
, foffset
))
1715 if (first
&& !writenote(&info
->files
, file
, foffset
))
1718 for (i
= 1; i
< info
->thread_notes
; ++i
)
1719 if (t
->notes
[i
].data
&&
1720 !writenote(&t
->notes
[i
], file
, foffset
))
1730 static void free_note_info(struct elf_note_info
*info
)
1732 struct elf_thread_core_info
*threads
= info
->thread
;
1735 struct elf_thread_core_info
*t
= threads
;
1737 WARN_ON(t
->notes
[0].data
&& t
->notes
[0].data
!= &t
->prstatus
);
1738 for (i
= 1; i
< info
->thread_notes
; ++i
)
1739 kfree(t
->notes
[i
].data
);
1742 kfree(info
->psinfo
.data
);
1743 vfree(info
->files
.data
);
1748 /* Here is the structure in which status of each thread is captured. */
1749 struct elf_thread_status
1751 struct list_head list
;
1752 struct elf_prstatus prstatus
; /* NT_PRSTATUS */
1753 elf_fpregset_t fpu
; /* NT_PRFPREG */
1754 struct task_struct
*thread
;
1755 #ifdef ELF_CORE_COPY_XFPREGS
1756 elf_fpxregset_t xfpu
; /* ELF_CORE_XFPREG_TYPE */
1758 struct memelfnote notes
[3];
1763 * In order to add the specific thread information for the elf file format,
1764 * we need to keep a linked list of every threads pr_status and then create
1765 * a single section for them in the final core file.
1767 static int elf_dump_thread_status(long signr
, struct elf_thread_status
*t
)
1770 struct task_struct
*p
= t
->thread
;
1773 fill_prstatus(&t
->prstatus
, p
, signr
);
1774 elf_core_copy_task_regs(p
, &t
->prstatus
.pr_reg
);
1776 fill_note(&t
->notes
[0], "CORE", NT_PRSTATUS
, sizeof(t
->prstatus
),
1779 sz
+= notesize(&t
->notes
[0]);
1781 if ((t
->prstatus
.pr_fpvalid
= elf_core_copy_task_fpregs(p
, NULL
,
1783 fill_note(&t
->notes
[1], "CORE", NT_PRFPREG
, sizeof(t
->fpu
),
1786 sz
+= notesize(&t
->notes
[1]);
1789 #ifdef ELF_CORE_COPY_XFPREGS
1790 if (elf_core_copy_task_xfpregs(p
, &t
->xfpu
)) {
1791 fill_note(&t
->notes
[2], "LINUX", ELF_CORE_XFPREG_TYPE
,
1792 sizeof(t
->xfpu
), &t
->xfpu
);
1794 sz
+= notesize(&t
->notes
[2]);
1800 struct elf_note_info
{
1801 struct memelfnote
*notes
;
1802 struct elf_prstatus
*prstatus
; /* NT_PRSTATUS */
1803 struct elf_prpsinfo
*psinfo
; /* NT_PRPSINFO */
1804 struct list_head thread_list
;
1805 elf_fpregset_t
*fpu
;
1806 #ifdef ELF_CORE_COPY_XFPREGS
1807 elf_fpxregset_t
*xfpu
;
1809 user_siginfo_t csigdata
;
1810 int thread_status_size
;
1814 static int elf_note_info_init(struct elf_note_info
*info
)
1816 memset(info
, 0, sizeof(*info
));
1817 INIT_LIST_HEAD(&info
->thread_list
);
1819 /* Allocate space for ELF notes */
1820 info
->notes
= kmalloc(8 * sizeof(struct memelfnote
), GFP_KERNEL
);
1823 info
->psinfo
= kmalloc(sizeof(*info
->psinfo
), GFP_KERNEL
);
1826 info
->prstatus
= kmalloc(sizeof(*info
->prstatus
), GFP_KERNEL
);
1827 if (!info
->prstatus
)
1829 info
->fpu
= kmalloc(sizeof(*info
->fpu
), GFP_KERNEL
);
1832 #ifdef ELF_CORE_COPY_XFPREGS
1833 info
->xfpu
= kmalloc(sizeof(*info
->xfpu
), GFP_KERNEL
);
1840 static int fill_note_info(struct elfhdr
*elf
, int phdrs
,
1841 struct elf_note_info
*info
,
1842 siginfo_t
*siginfo
, struct pt_regs
*regs
)
1844 struct list_head
*t
;
1846 if (!elf_note_info_init(info
))
1849 if (siginfo
->si_signo
) {
1850 struct core_thread
*ct
;
1851 struct elf_thread_status
*ets
;
1853 for (ct
= current
->mm
->core_state
->dumper
.next
;
1854 ct
; ct
= ct
->next
) {
1855 ets
= kzalloc(sizeof(*ets
), GFP_KERNEL
);
1859 ets
->thread
= ct
->task
;
1860 list_add(&ets
->list
, &info
->thread_list
);
1863 list_for_each(t
, &info
->thread_list
) {
1866 ets
= list_entry(t
, struct elf_thread_status
, list
);
1867 sz
= elf_dump_thread_status(siginfo
->si_signo
, ets
);
1868 info
->thread_status_size
+= sz
;
1871 /* now collect the dump for the current */
1872 memset(info
->prstatus
, 0, sizeof(*info
->prstatus
));
1873 fill_prstatus(info
->prstatus
, current
, siginfo
->si_signo
);
1874 elf_core_copy_regs(&info
->prstatus
->pr_reg
, regs
);
1877 fill_elf_header(elf
, phdrs
, ELF_ARCH
, ELF_CORE_EFLAGS
, ELF_OSABI
);
1880 * Set up the notes in similar form to SVR4 core dumps made
1881 * with info from their /proc.
1884 fill_note(info
->notes
+ 0, "CORE", NT_PRSTATUS
,
1885 sizeof(*info
->prstatus
), info
->prstatus
);
1886 fill_psinfo(info
->psinfo
, current
->group_leader
, current
->mm
);
1887 fill_note(info
->notes
+ 1, "CORE", NT_PRPSINFO
,
1888 sizeof(*info
->psinfo
), info
->psinfo
);
1890 fill_siginfo_note(info
->notes
+ 2, &info
->csigdata
, siginfo
);
1891 fill_auxv_note(info
->notes
+ 3, current
->mm
);
1892 fill_files_note(info
->notes
+ 4);
1896 /* Try to dump the FPU. */
1897 info
->prstatus
->pr_fpvalid
= elf_core_copy_task_fpregs(current
, regs
,
1899 if (info
->prstatus
->pr_fpvalid
)
1900 fill_note(info
->notes
+ info
->numnote
++,
1901 "CORE", NT_PRFPREG
, sizeof(*info
->fpu
), info
->fpu
);
1902 #ifdef ELF_CORE_COPY_XFPREGS
1903 if (elf_core_copy_task_xfpregs(current
, info
->xfpu
))
1904 fill_note(info
->notes
+ info
->numnote
++,
1905 "LINUX", ELF_CORE_XFPREG_TYPE
,
1906 sizeof(*info
->xfpu
), info
->xfpu
);
1912 static size_t get_note_info_size(struct elf_note_info
*info
)
1917 for (i
= 0; i
< info
->numnote
; i
++)
1918 sz
+= notesize(info
->notes
+ i
);
1920 sz
+= info
->thread_status_size
;
1925 static int write_note_info(struct elf_note_info
*info
,
1926 struct file
*file
, loff_t
*foffset
)
1929 struct list_head
*t
;
1931 for (i
= 0; i
< info
->numnote
; i
++)
1932 if (!writenote(info
->notes
+ i
, file
, foffset
))
1935 /* write out the thread status notes section */
1936 list_for_each(t
, &info
->thread_list
) {
1937 struct elf_thread_status
*tmp
=
1938 list_entry(t
, struct elf_thread_status
, list
);
1940 for (i
= 0; i
< tmp
->num_notes
; i
++)
1941 if (!writenote(&tmp
->notes
[i
], file
, foffset
))
1948 static void free_note_info(struct elf_note_info
*info
)
1950 while (!list_empty(&info
->thread_list
)) {
1951 struct list_head
*tmp
= info
->thread_list
.next
;
1953 kfree(list_entry(tmp
, struct elf_thread_status
, list
));
1956 /* Free data allocated by fill_files_note(): */
1957 vfree(info
->notes
[4].data
);
1959 kfree(info
->prstatus
);
1960 kfree(info
->psinfo
);
1963 #ifdef ELF_CORE_COPY_XFPREGS
1970 static struct vm_area_struct
*first_vma(struct task_struct
*tsk
,
1971 struct vm_area_struct
*gate_vma
)
1973 struct vm_area_struct
*ret
= tsk
->mm
->mmap
;
1980 * Helper function for iterating across a vma list. It ensures that the caller
1981 * will visit `gate_vma' prior to terminating the search.
1983 static struct vm_area_struct
*next_vma(struct vm_area_struct
*this_vma
,
1984 struct vm_area_struct
*gate_vma
)
1986 struct vm_area_struct
*ret
;
1988 ret
= this_vma
->vm_next
;
1991 if (this_vma
== gate_vma
)
1996 static void fill_extnum_info(struct elfhdr
*elf
, struct elf_shdr
*shdr4extnum
,
1997 elf_addr_t e_shoff
, int segs
)
1999 elf
->e_shoff
= e_shoff
;
2000 elf
->e_shentsize
= sizeof(*shdr4extnum
);
2002 elf
->e_shstrndx
= SHN_UNDEF
;
2004 memset(shdr4extnum
, 0, sizeof(*shdr4extnum
));
2006 shdr4extnum
->sh_type
= SHT_NULL
;
2007 shdr4extnum
->sh_size
= elf
->e_shnum
;
2008 shdr4extnum
->sh_link
= elf
->e_shstrndx
;
2009 shdr4extnum
->sh_info
= segs
;
2012 static size_t elf_core_vma_data_size(struct vm_area_struct
*gate_vma
,
2013 unsigned long mm_flags
)
2015 struct vm_area_struct
*vma
;
2018 for (vma
= first_vma(current
, gate_vma
); vma
!= NULL
;
2019 vma
= next_vma(vma
, gate_vma
))
2020 size
+= vma_dump_size(vma
, mm_flags
);
2027 * This is a two-pass process; first we find the offsets of the bits,
2028 * and then they are actually written out. If we run out of core limit
2031 static int elf_core_dump(struct coredump_params
*cprm
)
2037 struct vm_area_struct
*vma
, *gate_vma
;
2038 struct elfhdr
*elf
= NULL
;
2039 loff_t offset
= 0, dataoff
, foffset
;
2040 struct elf_note_info info
;
2041 struct elf_phdr
*phdr4note
= NULL
;
2042 struct elf_shdr
*shdr4extnum
= NULL
;
2047 * We no longer stop all VM operations.
2049 * This is because those proceses that could possibly change map_count
2050 * or the mmap / vma pages are now blocked in do_exit on current
2051 * finishing this core dump.
2053 * Only ptrace can touch these memory addresses, but it doesn't change
2054 * the map_count or the pages allocated. So no possibility of crashing
2055 * exists while dumping the mm->vm_next areas to the core file.
2058 /* alloc memory for large data structures: too large to be on stack */
2059 elf
= kmalloc(sizeof(*elf
), GFP_KERNEL
);
2063 * The number of segs are recored into ELF header as 16bit value.
2064 * Please check DEFAULT_MAX_MAP_COUNT definition when you modify here.
2066 segs
= current
->mm
->map_count
;
2067 segs
+= elf_core_extra_phdrs();
2069 gate_vma
= get_gate_vma(current
->mm
);
2070 if (gate_vma
!= NULL
)
2073 /* for notes section */
2076 /* If segs > PN_XNUM(0xffff), then e_phnum overflows. To avoid
2077 * this, kernel supports extended numbering. Have a look at
2078 * include/linux/elf.h for further information. */
2079 e_phnum
= segs
> PN_XNUM
? PN_XNUM
: segs
;
2082 * Collect all the non-memory information about the process for the
2083 * notes. This also sets up the file header.
2085 if (!fill_note_info(elf
, e_phnum
, &info
, cprm
->siginfo
, cprm
->regs
))
2089 current
->flags
|= PF_DUMPCORE
;
2094 offset
+= sizeof(*elf
); /* Elf header */
2095 offset
+= segs
* sizeof(struct elf_phdr
); /* Program headers */
2098 /* Write notes phdr entry */
2100 size_t sz
= get_note_info_size(&info
);
2102 sz
+= elf_coredump_extra_notes_size();
2104 phdr4note
= kmalloc(sizeof(*phdr4note
), GFP_KERNEL
);
2108 fill_elf_note_phdr(phdr4note
, sz
, offset
);
2112 dataoff
= offset
= roundup(offset
, ELF_EXEC_PAGESIZE
);
2114 offset
+= elf_core_vma_data_size(gate_vma
, cprm
->mm_flags
);
2115 offset
+= elf_core_extra_data_size();
2118 if (e_phnum
== PN_XNUM
) {
2119 shdr4extnum
= kmalloc(sizeof(*shdr4extnum
), GFP_KERNEL
);
2122 fill_extnum_info(elf
, shdr4extnum
, e_shoff
, segs
);
2127 size
+= sizeof(*elf
);
2128 if (size
> cprm
->limit
|| !dump_write(cprm
->file
, elf
, sizeof(*elf
)))
2131 size
+= sizeof(*phdr4note
);
2132 if (size
> cprm
->limit
2133 || !dump_write(cprm
->file
, phdr4note
, sizeof(*phdr4note
)))
2136 /* Write program headers for segments dump */
2137 for (vma
= first_vma(current
, gate_vma
); vma
!= NULL
;
2138 vma
= next_vma(vma
, gate_vma
)) {
2139 struct elf_phdr phdr
;
2141 phdr
.p_type
= PT_LOAD
;
2142 phdr
.p_offset
= offset
;
2143 phdr
.p_vaddr
= vma
->vm_start
;
2145 phdr
.p_filesz
= vma_dump_size(vma
, cprm
->mm_flags
);
2146 phdr
.p_memsz
= vma
->vm_end
- vma
->vm_start
;
2147 offset
+= phdr
.p_filesz
;
2148 phdr
.p_flags
= vma
->vm_flags
& VM_READ
? PF_R
: 0;
2149 if (vma
->vm_flags
& VM_WRITE
)
2150 phdr
.p_flags
|= PF_W
;
2151 if (vma
->vm_flags
& VM_EXEC
)
2152 phdr
.p_flags
|= PF_X
;
2153 phdr
.p_align
= ELF_EXEC_PAGESIZE
;
2155 size
+= sizeof(phdr
);
2156 if (size
> cprm
->limit
2157 || !dump_write(cprm
->file
, &phdr
, sizeof(phdr
)))
2161 if (!elf_core_write_extra_phdrs(cprm
->file
, offset
, &size
, cprm
->limit
))
2164 /* write out the notes section */
2165 if (!write_note_info(&info
, cprm
->file
, &foffset
))
2168 if (elf_coredump_extra_notes_write(cprm
->file
, &foffset
))
2172 if (!dump_seek(cprm
->file
, dataoff
- foffset
))
2175 for (vma
= first_vma(current
, gate_vma
); vma
!= NULL
;
2176 vma
= next_vma(vma
, gate_vma
)) {
2180 end
= vma
->vm_start
+ vma_dump_size(vma
, cprm
->mm_flags
);
2182 for (addr
= vma
->vm_start
; addr
< end
; addr
+= PAGE_SIZE
) {
2186 page
= get_dump_page(addr
);
2188 void *kaddr
= kmap(page
);
2189 stop
= ((size
+= PAGE_SIZE
) > cprm
->limit
) ||
2190 !dump_write(cprm
->file
, kaddr
,
2193 page_cache_release(page
);
2195 stop
= !dump_seek(cprm
->file
, PAGE_SIZE
);
2201 if (!elf_core_write_extra_data(cprm
->file
, &size
, cprm
->limit
))
2204 if (e_phnum
== PN_XNUM
) {
2205 size
+= sizeof(*shdr4extnum
);
2206 if (size
> cprm
->limit
2207 || !dump_write(cprm
->file
, shdr4extnum
,
2208 sizeof(*shdr4extnum
)))
2216 free_note_info(&info
);
2224 #endif /* CONFIG_ELF_CORE */
2226 static int __init
init_elf_binfmt(void)
2228 register_binfmt(&elf_format
);
2232 static void __exit
exit_elf_binfmt(void)
2234 /* Remove the COFF and ELF loaders. */
2235 unregister_binfmt(&elf_format
);
2238 core_initcall(init_elf_binfmt
);
2239 module_exit(exit_elf_binfmt
);
2240 MODULE_LICENSE("GPL");