sched: Make tg_shares_up() walk on-demand
[linux-2.6.git] / kernel / sched_fair.c
blob46ff6587dc169e11c4a084ff7345e72862a6b817
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
23 #include <linux/latencytop.h>
24 #include <linux/sched.h>
27 * Targeted preemption latency for CPU-bound tasks:
28 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
30 * NOTE: this latency value is not the same as the concept of
31 * 'timeslice length' - timeslices in CFS are of variable length
32 * and have no persistent notion like in traditional, time-slice
33 * based scheduling concepts.
35 * (to see the precise effective timeslice length of your workload,
36 * run vmstat and monitor the context-switches (cs) field)
38 unsigned int sysctl_sched_latency = 6000000ULL;
39 unsigned int normalized_sysctl_sched_latency = 6000000ULL;
42 * The initial- and re-scaling of tunables is configurable
43 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
45 * Options are:
46 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
47 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
48 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
50 enum sched_tunable_scaling sysctl_sched_tunable_scaling
51 = SCHED_TUNABLESCALING_LOG;
54 * Minimal preemption granularity for CPU-bound tasks:
55 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
57 unsigned int sysctl_sched_min_granularity = 750000ULL;
58 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
61 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
63 static unsigned int sched_nr_latency = 8;
66 * After fork, child runs first. If set to 0 (default) then
67 * parent will (try to) run first.
69 unsigned int sysctl_sched_child_runs_first __read_mostly;
72 * sys_sched_yield() compat mode
74 * This option switches the agressive yield implementation of the
75 * old scheduler back on.
77 unsigned int __read_mostly sysctl_sched_compat_yield;
80 * SCHED_OTHER wake-up granularity.
81 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
83 * This option delays the preemption effects of decoupled workloads
84 * and reduces their over-scheduling. Synchronous workloads will still
85 * have immediate wakeup/sleep latencies.
87 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
88 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
90 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
92 static const struct sched_class fair_sched_class;
94 /**************************************************************
95 * CFS operations on generic schedulable entities:
98 #ifdef CONFIG_FAIR_GROUP_SCHED
100 /* cpu runqueue to which this cfs_rq is attached */
101 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
103 return cfs_rq->rq;
106 /* An entity is a task if it doesn't "own" a runqueue */
107 #define entity_is_task(se) (!se->my_q)
109 static inline struct task_struct *task_of(struct sched_entity *se)
111 #ifdef CONFIG_SCHED_DEBUG
112 WARN_ON_ONCE(!entity_is_task(se));
113 #endif
114 return container_of(se, struct task_struct, se);
117 /* Walk up scheduling entities hierarchy */
118 #define for_each_sched_entity(se) \
119 for (; se; se = se->parent)
121 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
123 return p->se.cfs_rq;
126 /* runqueue on which this entity is (to be) queued */
127 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
129 return se->cfs_rq;
132 /* runqueue "owned" by this group */
133 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
135 return grp->my_q;
138 /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
139 * another cpu ('this_cpu')
141 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
143 return cfs_rq->tg->cfs_rq[this_cpu];
146 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
148 if (!cfs_rq->on_list) {
149 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
150 &rq_of(cfs_rq)->leaf_cfs_rq_list);
152 cfs_rq->on_list = 1;
156 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
158 if (cfs_rq->on_list) {
159 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
160 cfs_rq->on_list = 0;
164 /* Iterate thr' all leaf cfs_rq's on a runqueue */
165 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
166 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
168 /* Do the two (enqueued) entities belong to the same group ? */
169 static inline int
170 is_same_group(struct sched_entity *se, struct sched_entity *pse)
172 if (se->cfs_rq == pse->cfs_rq)
173 return 1;
175 return 0;
178 static inline struct sched_entity *parent_entity(struct sched_entity *se)
180 return se->parent;
183 /* return depth at which a sched entity is present in the hierarchy */
184 static inline int depth_se(struct sched_entity *se)
186 int depth = 0;
188 for_each_sched_entity(se)
189 depth++;
191 return depth;
194 static void
195 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
197 int se_depth, pse_depth;
200 * preemption test can be made between sibling entities who are in the
201 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
202 * both tasks until we find their ancestors who are siblings of common
203 * parent.
206 /* First walk up until both entities are at same depth */
207 se_depth = depth_se(*se);
208 pse_depth = depth_se(*pse);
210 while (se_depth > pse_depth) {
211 se_depth--;
212 *se = parent_entity(*se);
215 while (pse_depth > se_depth) {
216 pse_depth--;
217 *pse = parent_entity(*pse);
220 while (!is_same_group(*se, *pse)) {
221 *se = parent_entity(*se);
222 *pse = parent_entity(*pse);
226 #else /* !CONFIG_FAIR_GROUP_SCHED */
228 static inline struct task_struct *task_of(struct sched_entity *se)
230 return container_of(se, struct task_struct, se);
233 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
235 return container_of(cfs_rq, struct rq, cfs);
238 #define entity_is_task(se) 1
240 #define for_each_sched_entity(se) \
241 for (; se; se = NULL)
243 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
245 return &task_rq(p)->cfs;
248 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
250 struct task_struct *p = task_of(se);
251 struct rq *rq = task_rq(p);
253 return &rq->cfs;
256 /* runqueue "owned" by this group */
257 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
259 return NULL;
262 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
264 return &cpu_rq(this_cpu)->cfs;
267 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
271 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
275 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
276 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
278 static inline int
279 is_same_group(struct sched_entity *se, struct sched_entity *pse)
281 return 1;
284 static inline struct sched_entity *parent_entity(struct sched_entity *se)
286 return NULL;
289 static inline void
290 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
294 #endif /* CONFIG_FAIR_GROUP_SCHED */
297 /**************************************************************
298 * Scheduling class tree data structure manipulation methods:
301 static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
303 s64 delta = (s64)(vruntime - min_vruntime);
304 if (delta > 0)
305 min_vruntime = vruntime;
307 return min_vruntime;
310 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
312 s64 delta = (s64)(vruntime - min_vruntime);
313 if (delta < 0)
314 min_vruntime = vruntime;
316 return min_vruntime;
319 static inline int entity_before(struct sched_entity *a,
320 struct sched_entity *b)
322 return (s64)(a->vruntime - b->vruntime) < 0;
325 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
327 return se->vruntime - cfs_rq->min_vruntime;
330 static void update_min_vruntime(struct cfs_rq *cfs_rq)
332 u64 vruntime = cfs_rq->min_vruntime;
334 if (cfs_rq->curr)
335 vruntime = cfs_rq->curr->vruntime;
337 if (cfs_rq->rb_leftmost) {
338 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
339 struct sched_entity,
340 run_node);
342 if (!cfs_rq->curr)
343 vruntime = se->vruntime;
344 else
345 vruntime = min_vruntime(vruntime, se->vruntime);
348 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
352 * Enqueue an entity into the rb-tree:
354 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
356 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
357 struct rb_node *parent = NULL;
358 struct sched_entity *entry;
359 s64 key = entity_key(cfs_rq, se);
360 int leftmost = 1;
363 * Find the right place in the rbtree:
365 while (*link) {
366 parent = *link;
367 entry = rb_entry(parent, struct sched_entity, run_node);
369 * We dont care about collisions. Nodes with
370 * the same key stay together.
372 if (key < entity_key(cfs_rq, entry)) {
373 link = &parent->rb_left;
374 } else {
375 link = &parent->rb_right;
376 leftmost = 0;
381 * Maintain a cache of leftmost tree entries (it is frequently
382 * used):
384 if (leftmost)
385 cfs_rq->rb_leftmost = &se->run_node;
387 rb_link_node(&se->run_node, parent, link);
388 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
391 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
393 if (cfs_rq->rb_leftmost == &se->run_node) {
394 struct rb_node *next_node;
396 next_node = rb_next(&se->run_node);
397 cfs_rq->rb_leftmost = next_node;
400 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
403 static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
405 struct rb_node *left = cfs_rq->rb_leftmost;
407 if (!left)
408 return NULL;
410 return rb_entry(left, struct sched_entity, run_node);
413 static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
415 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
417 if (!last)
418 return NULL;
420 return rb_entry(last, struct sched_entity, run_node);
423 /**************************************************************
424 * Scheduling class statistics methods:
427 #ifdef CONFIG_SCHED_DEBUG
428 int sched_proc_update_handler(struct ctl_table *table, int write,
429 void __user *buffer, size_t *lenp,
430 loff_t *ppos)
432 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
433 int factor = get_update_sysctl_factor();
435 if (ret || !write)
436 return ret;
438 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
439 sysctl_sched_min_granularity);
441 #define WRT_SYSCTL(name) \
442 (normalized_sysctl_##name = sysctl_##name / (factor))
443 WRT_SYSCTL(sched_min_granularity);
444 WRT_SYSCTL(sched_latency);
445 WRT_SYSCTL(sched_wakeup_granularity);
446 #undef WRT_SYSCTL
448 return 0;
450 #endif
453 * delta /= w
455 static inline unsigned long
456 calc_delta_fair(unsigned long delta, struct sched_entity *se)
458 if (unlikely(se->load.weight != NICE_0_LOAD))
459 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
461 return delta;
465 * The idea is to set a period in which each task runs once.
467 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
468 * this period because otherwise the slices get too small.
470 * p = (nr <= nl) ? l : l*nr/nl
472 static u64 __sched_period(unsigned long nr_running)
474 u64 period = sysctl_sched_latency;
475 unsigned long nr_latency = sched_nr_latency;
477 if (unlikely(nr_running > nr_latency)) {
478 period = sysctl_sched_min_granularity;
479 period *= nr_running;
482 return period;
486 * We calculate the wall-time slice from the period by taking a part
487 * proportional to the weight.
489 * s = p*P[w/rw]
491 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
493 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
495 for_each_sched_entity(se) {
496 struct load_weight *load;
497 struct load_weight lw;
499 cfs_rq = cfs_rq_of(se);
500 load = &cfs_rq->load;
502 if (unlikely(!se->on_rq)) {
503 lw = cfs_rq->load;
505 update_load_add(&lw, se->load.weight);
506 load = &lw;
508 slice = calc_delta_mine(slice, se->load.weight, load);
510 return slice;
514 * We calculate the vruntime slice of a to be inserted task
516 * vs = s/w
518 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
520 return calc_delta_fair(sched_slice(cfs_rq, se), se);
524 * Update the current task's runtime statistics. Skip current tasks that
525 * are not in our scheduling class.
527 static inline void
528 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
529 unsigned long delta_exec)
531 unsigned long delta_exec_weighted;
533 schedstat_set(curr->statistics.exec_max,
534 max((u64)delta_exec, curr->statistics.exec_max));
536 curr->sum_exec_runtime += delta_exec;
537 schedstat_add(cfs_rq, exec_clock, delta_exec);
538 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
540 curr->vruntime += delta_exec_weighted;
541 update_min_vruntime(cfs_rq);
544 static void update_curr(struct cfs_rq *cfs_rq)
546 struct sched_entity *curr = cfs_rq->curr;
547 u64 now = rq_of(cfs_rq)->clock_task;
548 unsigned long delta_exec;
550 if (unlikely(!curr))
551 return;
554 * Get the amount of time the current task was running
555 * since the last time we changed load (this cannot
556 * overflow on 32 bits):
558 delta_exec = (unsigned long)(now - curr->exec_start);
559 if (!delta_exec)
560 return;
562 __update_curr(cfs_rq, curr, delta_exec);
563 curr->exec_start = now;
565 if (entity_is_task(curr)) {
566 struct task_struct *curtask = task_of(curr);
568 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
569 cpuacct_charge(curtask, delta_exec);
570 account_group_exec_runtime(curtask, delta_exec);
574 static inline void
575 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
577 schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
581 * Task is being enqueued - update stats:
583 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
586 * Are we enqueueing a waiting task? (for current tasks
587 * a dequeue/enqueue event is a NOP)
589 if (se != cfs_rq->curr)
590 update_stats_wait_start(cfs_rq, se);
593 static void
594 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
596 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
597 rq_of(cfs_rq)->clock - se->statistics.wait_start));
598 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
599 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
600 rq_of(cfs_rq)->clock - se->statistics.wait_start);
601 #ifdef CONFIG_SCHEDSTATS
602 if (entity_is_task(se)) {
603 trace_sched_stat_wait(task_of(se),
604 rq_of(cfs_rq)->clock - se->statistics.wait_start);
606 #endif
607 schedstat_set(se->statistics.wait_start, 0);
610 static inline void
611 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
614 * Mark the end of the wait period if dequeueing a
615 * waiting task:
617 if (se != cfs_rq->curr)
618 update_stats_wait_end(cfs_rq, se);
622 * We are picking a new current task - update its stats:
624 static inline void
625 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
628 * We are starting a new run period:
630 se->exec_start = rq_of(cfs_rq)->clock_task;
633 /**************************************************
634 * Scheduling class queueing methods:
637 #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
638 static void
639 add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
641 cfs_rq->task_weight += weight;
643 #else
644 static inline void
645 add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
648 #endif
650 static void
651 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
653 update_load_add(&cfs_rq->load, se->load.weight);
654 if (!parent_entity(se))
655 inc_cpu_load(rq_of(cfs_rq), se->load.weight);
656 if (entity_is_task(se)) {
657 add_cfs_task_weight(cfs_rq, se->load.weight);
658 list_add(&se->group_node, &cfs_rq->tasks);
660 cfs_rq->nr_running++;
663 static void
664 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
666 update_load_sub(&cfs_rq->load, se->load.weight);
667 if (!parent_entity(se))
668 dec_cpu_load(rq_of(cfs_rq), se->load.weight);
669 if (entity_is_task(se)) {
670 add_cfs_task_weight(cfs_rq, -se->load.weight);
671 list_del_init(&se->group_node);
673 cfs_rq->nr_running--;
676 #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
677 static void update_cfs_load(struct cfs_rq *cfs_rq, int lb)
679 u64 period = sched_avg_period();
680 u64 now, delta;
682 if (!cfs_rq)
683 return;
685 now = rq_of(cfs_rq)->clock;
686 delta = now - cfs_rq->load_stamp;
688 cfs_rq->load_stamp = now;
689 cfs_rq->load_period += delta;
690 cfs_rq->load_avg += delta * cfs_rq->load.weight;
692 while (cfs_rq->load_period > period) {
694 * Inline assembly required to prevent the compiler
695 * optimising this loop into a divmod call.
696 * See __iter_div_u64_rem() for another example of this.
698 asm("" : "+rm" (cfs_rq->load_period));
699 cfs_rq->load_period /= 2;
700 cfs_rq->load_avg /= 2;
703 if (lb && !cfs_rq->nr_running) {
704 if (cfs_rq->load_avg < (period / 8))
705 list_del_leaf_cfs_rq(cfs_rq);
709 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
710 unsigned long weight)
712 if (se->on_rq)
713 account_entity_dequeue(cfs_rq, se);
715 update_load_set(&se->load, weight);
717 if (se->on_rq)
718 account_entity_enqueue(cfs_rq, se);
721 static void update_cfs_shares(struct cfs_rq *cfs_rq)
723 struct task_group *tg;
724 struct sched_entity *se;
725 long load_weight, load, shares;
727 if (!cfs_rq)
728 return;
730 tg = cfs_rq->tg;
731 se = tg->se[cpu_of(rq_of(cfs_rq))];
732 if (!se)
733 return;
735 load = cfs_rq->load.weight;
737 load_weight = atomic_read(&tg->load_weight);
738 load_weight -= cfs_rq->load_contribution;
739 load_weight += load;
741 shares = (tg->shares * load);
742 if (load_weight)
743 shares /= load_weight;
745 if (shares < MIN_SHARES)
746 shares = MIN_SHARES;
747 if (shares > tg->shares)
748 shares = tg->shares;
750 reweight_entity(cfs_rq_of(se), se, shares);
752 #else /* CONFIG_FAIR_GROUP_SCHED */
753 static inline void update_cfs_load(struct cfs_rq *cfs_rq, int lb)
757 static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
760 #endif /* CONFIG_FAIR_GROUP_SCHED */
762 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
764 #ifdef CONFIG_SCHEDSTATS
765 struct task_struct *tsk = NULL;
767 if (entity_is_task(se))
768 tsk = task_of(se);
770 if (se->statistics.sleep_start) {
771 u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
773 if ((s64)delta < 0)
774 delta = 0;
776 if (unlikely(delta > se->statistics.sleep_max))
777 se->statistics.sleep_max = delta;
779 se->statistics.sleep_start = 0;
780 se->statistics.sum_sleep_runtime += delta;
782 if (tsk) {
783 account_scheduler_latency(tsk, delta >> 10, 1);
784 trace_sched_stat_sleep(tsk, delta);
787 if (se->statistics.block_start) {
788 u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
790 if ((s64)delta < 0)
791 delta = 0;
793 if (unlikely(delta > se->statistics.block_max))
794 se->statistics.block_max = delta;
796 se->statistics.block_start = 0;
797 se->statistics.sum_sleep_runtime += delta;
799 if (tsk) {
800 if (tsk->in_iowait) {
801 se->statistics.iowait_sum += delta;
802 se->statistics.iowait_count++;
803 trace_sched_stat_iowait(tsk, delta);
807 * Blocking time is in units of nanosecs, so shift by
808 * 20 to get a milliseconds-range estimation of the
809 * amount of time that the task spent sleeping:
811 if (unlikely(prof_on == SLEEP_PROFILING)) {
812 profile_hits(SLEEP_PROFILING,
813 (void *)get_wchan(tsk),
814 delta >> 20);
816 account_scheduler_latency(tsk, delta >> 10, 0);
819 #endif
822 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
824 #ifdef CONFIG_SCHED_DEBUG
825 s64 d = se->vruntime - cfs_rq->min_vruntime;
827 if (d < 0)
828 d = -d;
830 if (d > 3*sysctl_sched_latency)
831 schedstat_inc(cfs_rq, nr_spread_over);
832 #endif
835 static void
836 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
838 u64 vruntime = cfs_rq->min_vruntime;
841 * The 'current' period is already promised to the current tasks,
842 * however the extra weight of the new task will slow them down a
843 * little, place the new task so that it fits in the slot that
844 * stays open at the end.
846 if (initial && sched_feat(START_DEBIT))
847 vruntime += sched_vslice(cfs_rq, se);
849 /* sleeps up to a single latency don't count. */
850 if (!initial) {
851 unsigned long thresh = sysctl_sched_latency;
854 * Halve their sleep time's effect, to allow
855 * for a gentler effect of sleepers:
857 if (sched_feat(GENTLE_FAIR_SLEEPERS))
858 thresh >>= 1;
860 vruntime -= thresh;
863 /* ensure we never gain time by being placed backwards. */
864 vruntime = max_vruntime(se->vruntime, vruntime);
866 se->vruntime = vruntime;
869 static void
870 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
873 * Update the normalized vruntime before updating min_vruntime
874 * through callig update_curr().
876 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
877 se->vruntime += cfs_rq->min_vruntime;
880 * Update run-time statistics of the 'current'.
882 update_curr(cfs_rq);
883 update_cfs_load(cfs_rq, 0);
884 account_entity_enqueue(cfs_rq, se);
885 update_cfs_shares(cfs_rq);
887 if (flags & ENQUEUE_WAKEUP) {
888 place_entity(cfs_rq, se, 0);
889 enqueue_sleeper(cfs_rq, se);
892 update_stats_enqueue(cfs_rq, se);
893 check_spread(cfs_rq, se);
894 if (se != cfs_rq->curr)
895 __enqueue_entity(cfs_rq, se);
896 se->on_rq = 1;
898 if (cfs_rq->nr_running == 1)
899 list_add_leaf_cfs_rq(cfs_rq);
902 static void __clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
904 if (!se || cfs_rq->last == se)
905 cfs_rq->last = NULL;
907 if (!se || cfs_rq->next == se)
908 cfs_rq->next = NULL;
911 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
913 for_each_sched_entity(se)
914 __clear_buddies(cfs_rq_of(se), se);
917 static void
918 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
921 * Update run-time statistics of the 'current'.
923 update_curr(cfs_rq);
925 update_stats_dequeue(cfs_rq, se);
926 if (flags & DEQUEUE_SLEEP) {
927 #ifdef CONFIG_SCHEDSTATS
928 if (entity_is_task(se)) {
929 struct task_struct *tsk = task_of(se);
931 if (tsk->state & TASK_INTERRUPTIBLE)
932 se->statistics.sleep_start = rq_of(cfs_rq)->clock;
933 if (tsk->state & TASK_UNINTERRUPTIBLE)
934 se->statistics.block_start = rq_of(cfs_rq)->clock;
936 #endif
939 clear_buddies(cfs_rq, se);
941 if (se != cfs_rq->curr)
942 __dequeue_entity(cfs_rq, se);
943 se->on_rq = 0;
944 update_cfs_load(cfs_rq, 0);
945 account_entity_dequeue(cfs_rq, se);
946 update_min_vruntime(cfs_rq);
947 update_cfs_shares(cfs_rq);
950 * Normalize the entity after updating the min_vruntime because the
951 * update can refer to the ->curr item and we need to reflect this
952 * movement in our normalized position.
954 if (!(flags & DEQUEUE_SLEEP))
955 se->vruntime -= cfs_rq->min_vruntime;
959 * Preempt the current task with a newly woken task if needed:
961 static void
962 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
964 unsigned long ideal_runtime, delta_exec;
966 ideal_runtime = sched_slice(cfs_rq, curr);
967 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
968 if (delta_exec > ideal_runtime) {
969 resched_task(rq_of(cfs_rq)->curr);
971 * The current task ran long enough, ensure it doesn't get
972 * re-elected due to buddy favours.
974 clear_buddies(cfs_rq, curr);
975 return;
979 * Ensure that a task that missed wakeup preemption by a
980 * narrow margin doesn't have to wait for a full slice.
981 * This also mitigates buddy induced latencies under load.
983 if (!sched_feat(WAKEUP_PREEMPT))
984 return;
986 if (delta_exec < sysctl_sched_min_granularity)
987 return;
989 if (cfs_rq->nr_running > 1) {
990 struct sched_entity *se = __pick_next_entity(cfs_rq);
991 s64 delta = curr->vruntime - se->vruntime;
993 if (delta > ideal_runtime)
994 resched_task(rq_of(cfs_rq)->curr);
998 static void
999 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
1001 /* 'current' is not kept within the tree. */
1002 if (se->on_rq) {
1004 * Any task has to be enqueued before it get to execute on
1005 * a CPU. So account for the time it spent waiting on the
1006 * runqueue.
1008 update_stats_wait_end(cfs_rq, se);
1009 __dequeue_entity(cfs_rq, se);
1012 update_stats_curr_start(cfs_rq, se);
1013 cfs_rq->curr = se;
1014 #ifdef CONFIG_SCHEDSTATS
1016 * Track our maximum slice length, if the CPU's load is at
1017 * least twice that of our own weight (i.e. dont track it
1018 * when there are only lesser-weight tasks around):
1020 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
1021 se->statistics.slice_max = max(se->statistics.slice_max,
1022 se->sum_exec_runtime - se->prev_sum_exec_runtime);
1024 #endif
1025 se->prev_sum_exec_runtime = se->sum_exec_runtime;
1028 static int
1029 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
1031 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
1033 struct sched_entity *se = __pick_next_entity(cfs_rq);
1034 struct sched_entity *left = se;
1036 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
1037 se = cfs_rq->next;
1040 * Prefer last buddy, try to return the CPU to a preempted task.
1042 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
1043 se = cfs_rq->last;
1045 clear_buddies(cfs_rq, se);
1047 return se;
1050 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
1053 * If still on the runqueue then deactivate_task()
1054 * was not called and update_curr() has to be done:
1056 if (prev->on_rq)
1057 update_curr(cfs_rq);
1059 check_spread(cfs_rq, prev);
1060 if (prev->on_rq) {
1061 update_stats_wait_start(cfs_rq, prev);
1062 /* Put 'current' back into the tree. */
1063 __enqueue_entity(cfs_rq, prev);
1065 cfs_rq->curr = NULL;
1068 static void
1069 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
1072 * Update run-time statistics of the 'current'.
1074 update_curr(cfs_rq);
1076 #ifdef CONFIG_SCHED_HRTICK
1078 * queued ticks are scheduled to match the slice, so don't bother
1079 * validating it and just reschedule.
1081 if (queued) {
1082 resched_task(rq_of(cfs_rq)->curr);
1083 return;
1086 * don't let the period tick interfere with the hrtick preemption
1088 if (!sched_feat(DOUBLE_TICK) &&
1089 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
1090 return;
1091 #endif
1093 if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
1094 check_preempt_tick(cfs_rq, curr);
1097 /**************************************************
1098 * CFS operations on tasks:
1101 #ifdef CONFIG_SCHED_HRTICK
1102 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
1104 struct sched_entity *se = &p->se;
1105 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1107 WARN_ON(task_rq(p) != rq);
1109 if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
1110 u64 slice = sched_slice(cfs_rq, se);
1111 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
1112 s64 delta = slice - ran;
1114 if (delta < 0) {
1115 if (rq->curr == p)
1116 resched_task(p);
1117 return;
1121 * Don't schedule slices shorter than 10000ns, that just
1122 * doesn't make sense. Rely on vruntime for fairness.
1124 if (rq->curr != p)
1125 delta = max_t(s64, 10000LL, delta);
1127 hrtick_start(rq, delta);
1132 * called from enqueue/dequeue and updates the hrtick when the
1133 * current task is from our class and nr_running is low enough
1134 * to matter.
1136 static void hrtick_update(struct rq *rq)
1138 struct task_struct *curr = rq->curr;
1140 if (curr->sched_class != &fair_sched_class)
1141 return;
1143 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
1144 hrtick_start_fair(rq, curr);
1146 #else /* !CONFIG_SCHED_HRTICK */
1147 static inline void
1148 hrtick_start_fair(struct rq *rq, struct task_struct *p)
1152 static inline void hrtick_update(struct rq *rq)
1155 #endif
1158 * The enqueue_task method is called before nr_running is
1159 * increased. Here we update the fair scheduling stats and
1160 * then put the task into the rbtree:
1162 static void
1163 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
1165 struct cfs_rq *cfs_rq;
1166 struct sched_entity *se = &p->se;
1168 for_each_sched_entity(se) {
1169 if (se->on_rq)
1170 break;
1171 cfs_rq = cfs_rq_of(se);
1172 enqueue_entity(cfs_rq, se, flags);
1173 flags = ENQUEUE_WAKEUP;
1176 for_each_sched_entity(se) {
1177 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1179 update_cfs_load(cfs_rq, 0);
1180 update_cfs_shares(cfs_rq);
1183 hrtick_update(rq);
1187 * The dequeue_task method is called before nr_running is
1188 * decreased. We remove the task from the rbtree and
1189 * update the fair scheduling stats:
1191 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
1193 struct cfs_rq *cfs_rq;
1194 struct sched_entity *se = &p->se;
1196 for_each_sched_entity(se) {
1197 cfs_rq = cfs_rq_of(se);
1198 dequeue_entity(cfs_rq, se, flags);
1200 /* Don't dequeue parent if it has other entities besides us */
1201 if (cfs_rq->load.weight)
1202 break;
1203 flags |= DEQUEUE_SLEEP;
1206 for_each_sched_entity(se) {
1207 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1209 update_cfs_load(cfs_rq, 0);
1210 update_cfs_shares(cfs_rq);
1213 hrtick_update(rq);
1217 * sched_yield() support is very simple - we dequeue and enqueue.
1219 * If compat_yield is turned on then we requeue to the end of the tree.
1221 static void yield_task_fair(struct rq *rq)
1223 struct task_struct *curr = rq->curr;
1224 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1225 struct sched_entity *rightmost, *se = &curr->se;
1228 * Are we the only task in the tree?
1230 if (unlikely(cfs_rq->nr_running == 1))
1231 return;
1233 clear_buddies(cfs_rq, se);
1235 if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
1236 update_rq_clock(rq);
1238 * Update run-time statistics of the 'current'.
1240 update_curr(cfs_rq);
1242 return;
1245 * Find the rightmost entry in the rbtree:
1247 rightmost = __pick_last_entity(cfs_rq);
1249 * Already in the rightmost position?
1251 if (unlikely(!rightmost || entity_before(rightmost, se)))
1252 return;
1255 * Minimally necessary key value to be last in the tree:
1256 * Upon rescheduling, sched_class::put_prev_task() will place
1257 * 'current' within the tree based on its new key value.
1259 se->vruntime = rightmost->vruntime + 1;
1262 #ifdef CONFIG_SMP
1264 static void task_waking_fair(struct rq *rq, struct task_struct *p)
1266 struct sched_entity *se = &p->se;
1267 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1269 se->vruntime -= cfs_rq->min_vruntime;
1272 #ifdef CONFIG_FAIR_GROUP_SCHED
1274 * effective_load() calculates the load change as seen from the root_task_group
1276 * Adding load to a group doesn't make a group heavier, but can cause movement
1277 * of group shares between cpus. Assuming the shares were perfectly aligned one
1278 * can calculate the shift in shares.
1280 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
1282 struct sched_entity *se = tg->se[cpu];
1284 if (!tg->parent)
1285 return wl;
1287 for_each_sched_entity(se) {
1288 long S, rw, s, a, b;
1290 S = se->my_q->tg->shares;
1291 s = se->load.weight;
1292 rw = se->my_q->load.weight;
1294 a = S*(rw + wl);
1295 b = S*rw + s*wg;
1297 wl = s*(a-b);
1299 if (likely(b))
1300 wl /= b;
1303 * Assume the group is already running and will
1304 * thus already be accounted for in the weight.
1306 * That is, moving shares between CPUs, does not
1307 * alter the group weight.
1309 wg = 0;
1312 return wl;
1315 #else
1317 static inline unsigned long effective_load(struct task_group *tg, int cpu,
1318 unsigned long wl, unsigned long wg)
1320 return wl;
1323 #endif
1325 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
1327 unsigned long this_load, load;
1328 int idx, this_cpu, prev_cpu;
1329 unsigned long tl_per_task;
1330 struct task_group *tg;
1331 unsigned long weight;
1332 int balanced;
1334 idx = sd->wake_idx;
1335 this_cpu = smp_processor_id();
1336 prev_cpu = task_cpu(p);
1337 load = source_load(prev_cpu, idx);
1338 this_load = target_load(this_cpu, idx);
1341 * If sync wakeup then subtract the (maximum possible)
1342 * effect of the currently running task from the load
1343 * of the current CPU:
1345 rcu_read_lock();
1346 if (sync) {
1347 tg = task_group(current);
1348 weight = current->se.load.weight;
1350 this_load += effective_load(tg, this_cpu, -weight, -weight);
1351 load += effective_load(tg, prev_cpu, 0, -weight);
1354 tg = task_group(p);
1355 weight = p->se.load.weight;
1358 * In low-load situations, where prev_cpu is idle and this_cpu is idle
1359 * due to the sync cause above having dropped this_load to 0, we'll
1360 * always have an imbalance, but there's really nothing you can do
1361 * about that, so that's good too.
1363 * Otherwise check if either cpus are near enough in load to allow this
1364 * task to be woken on this_cpu.
1366 if (this_load) {
1367 unsigned long this_eff_load, prev_eff_load;
1369 this_eff_load = 100;
1370 this_eff_load *= power_of(prev_cpu);
1371 this_eff_load *= this_load +
1372 effective_load(tg, this_cpu, weight, weight);
1374 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
1375 prev_eff_load *= power_of(this_cpu);
1376 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
1378 balanced = this_eff_load <= prev_eff_load;
1379 } else
1380 balanced = true;
1381 rcu_read_unlock();
1384 * If the currently running task will sleep within
1385 * a reasonable amount of time then attract this newly
1386 * woken task:
1388 if (sync && balanced)
1389 return 1;
1391 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
1392 tl_per_task = cpu_avg_load_per_task(this_cpu);
1394 if (balanced ||
1395 (this_load <= load &&
1396 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
1398 * This domain has SD_WAKE_AFFINE and
1399 * p is cache cold in this domain, and
1400 * there is no bad imbalance.
1402 schedstat_inc(sd, ttwu_move_affine);
1403 schedstat_inc(p, se.statistics.nr_wakeups_affine);
1405 return 1;
1407 return 0;
1411 * find_idlest_group finds and returns the least busy CPU group within the
1412 * domain.
1414 static struct sched_group *
1415 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
1416 int this_cpu, int load_idx)
1418 struct sched_group *idlest = NULL, *group = sd->groups;
1419 unsigned long min_load = ULONG_MAX, this_load = 0;
1420 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1422 do {
1423 unsigned long load, avg_load;
1424 int local_group;
1425 int i;
1427 /* Skip over this group if it has no CPUs allowed */
1428 if (!cpumask_intersects(sched_group_cpus(group),
1429 &p->cpus_allowed))
1430 continue;
1432 local_group = cpumask_test_cpu(this_cpu,
1433 sched_group_cpus(group));
1435 /* Tally up the load of all CPUs in the group */
1436 avg_load = 0;
1438 for_each_cpu(i, sched_group_cpus(group)) {
1439 /* Bias balancing toward cpus of our domain */
1440 if (local_group)
1441 load = source_load(i, load_idx);
1442 else
1443 load = target_load(i, load_idx);
1445 avg_load += load;
1448 /* Adjust by relative CPU power of the group */
1449 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1451 if (local_group) {
1452 this_load = avg_load;
1453 } else if (avg_load < min_load) {
1454 min_load = avg_load;
1455 idlest = group;
1457 } while (group = group->next, group != sd->groups);
1459 if (!idlest || 100*this_load < imbalance*min_load)
1460 return NULL;
1461 return idlest;
1465 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1467 static int
1468 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1470 unsigned long load, min_load = ULONG_MAX;
1471 int idlest = -1;
1472 int i;
1474 /* Traverse only the allowed CPUs */
1475 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
1476 load = weighted_cpuload(i);
1478 if (load < min_load || (load == min_load && i == this_cpu)) {
1479 min_load = load;
1480 idlest = i;
1484 return idlest;
1488 * Try and locate an idle CPU in the sched_domain.
1490 static int select_idle_sibling(struct task_struct *p, int target)
1492 int cpu = smp_processor_id();
1493 int prev_cpu = task_cpu(p);
1494 struct sched_domain *sd;
1495 int i;
1498 * If the task is going to be woken-up on this cpu and if it is
1499 * already idle, then it is the right target.
1501 if (target == cpu && idle_cpu(cpu))
1502 return cpu;
1505 * If the task is going to be woken-up on the cpu where it previously
1506 * ran and if it is currently idle, then it the right target.
1508 if (target == prev_cpu && idle_cpu(prev_cpu))
1509 return prev_cpu;
1512 * Otherwise, iterate the domains and find an elegible idle cpu.
1514 for_each_domain(target, sd) {
1515 if (!(sd->flags & SD_SHARE_PKG_RESOURCES))
1516 break;
1518 for_each_cpu_and(i, sched_domain_span(sd), &p->cpus_allowed) {
1519 if (idle_cpu(i)) {
1520 target = i;
1521 break;
1526 * Lets stop looking for an idle sibling when we reached
1527 * the domain that spans the current cpu and prev_cpu.
1529 if (cpumask_test_cpu(cpu, sched_domain_span(sd)) &&
1530 cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
1531 break;
1534 return target;
1538 * sched_balance_self: balance the current task (running on cpu) in domains
1539 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1540 * SD_BALANCE_EXEC.
1542 * Balance, ie. select the least loaded group.
1544 * Returns the target CPU number, or the same CPU if no balancing is needed.
1546 * preempt must be disabled.
1548 static int
1549 select_task_rq_fair(struct rq *rq, struct task_struct *p, int sd_flag, int wake_flags)
1551 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
1552 int cpu = smp_processor_id();
1553 int prev_cpu = task_cpu(p);
1554 int new_cpu = cpu;
1555 int want_affine = 0;
1556 int want_sd = 1;
1557 int sync = wake_flags & WF_SYNC;
1559 if (sd_flag & SD_BALANCE_WAKE) {
1560 if (cpumask_test_cpu(cpu, &p->cpus_allowed))
1561 want_affine = 1;
1562 new_cpu = prev_cpu;
1565 for_each_domain(cpu, tmp) {
1566 if (!(tmp->flags & SD_LOAD_BALANCE))
1567 continue;
1570 * If power savings logic is enabled for a domain, see if we
1571 * are not overloaded, if so, don't balance wider.
1573 if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) {
1574 unsigned long power = 0;
1575 unsigned long nr_running = 0;
1576 unsigned long capacity;
1577 int i;
1579 for_each_cpu(i, sched_domain_span(tmp)) {
1580 power += power_of(i);
1581 nr_running += cpu_rq(i)->cfs.nr_running;
1584 capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
1586 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1587 nr_running /= 2;
1589 if (nr_running < capacity)
1590 want_sd = 0;
1594 * If both cpu and prev_cpu are part of this domain,
1595 * cpu is a valid SD_WAKE_AFFINE target.
1597 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
1598 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
1599 affine_sd = tmp;
1600 want_affine = 0;
1603 if (!want_sd && !want_affine)
1604 break;
1606 if (!(tmp->flags & sd_flag))
1607 continue;
1609 if (want_sd)
1610 sd = tmp;
1613 if (affine_sd) {
1614 if (cpu == prev_cpu || wake_affine(affine_sd, p, sync))
1615 return select_idle_sibling(p, cpu);
1616 else
1617 return select_idle_sibling(p, prev_cpu);
1620 while (sd) {
1621 int load_idx = sd->forkexec_idx;
1622 struct sched_group *group;
1623 int weight;
1625 if (!(sd->flags & sd_flag)) {
1626 sd = sd->child;
1627 continue;
1630 if (sd_flag & SD_BALANCE_WAKE)
1631 load_idx = sd->wake_idx;
1633 group = find_idlest_group(sd, p, cpu, load_idx);
1634 if (!group) {
1635 sd = sd->child;
1636 continue;
1639 new_cpu = find_idlest_cpu(group, p, cpu);
1640 if (new_cpu == -1 || new_cpu == cpu) {
1641 /* Now try balancing at a lower domain level of cpu */
1642 sd = sd->child;
1643 continue;
1646 /* Now try balancing at a lower domain level of new_cpu */
1647 cpu = new_cpu;
1648 weight = sd->span_weight;
1649 sd = NULL;
1650 for_each_domain(cpu, tmp) {
1651 if (weight <= tmp->span_weight)
1652 break;
1653 if (tmp->flags & sd_flag)
1654 sd = tmp;
1656 /* while loop will break here if sd == NULL */
1659 return new_cpu;
1661 #endif /* CONFIG_SMP */
1663 static unsigned long
1664 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
1666 unsigned long gran = sysctl_sched_wakeup_granularity;
1669 * Since its curr running now, convert the gran from real-time
1670 * to virtual-time in his units.
1672 * By using 'se' instead of 'curr' we penalize light tasks, so
1673 * they get preempted easier. That is, if 'se' < 'curr' then
1674 * the resulting gran will be larger, therefore penalizing the
1675 * lighter, if otoh 'se' > 'curr' then the resulting gran will
1676 * be smaller, again penalizing the lighter task.
1678 * This is especially important for buddies when the leftmost
1679 * task is higher priority than the buddy.
1681 if (unlikely(se->load.weight != NICE_0_LOAD))
1682 gran = calc_delta_fair(gran, se);
1684 return gran;
1688 * Should 'se' preempt 'curr'.
1690 * |s1
1691 * |s2
1692 * |s3
1694 * |<--->|c
1696 * w(c, s1) = -1
1697 * w(c, s2) = 0
1698 * w(c, s3) = 1
1701 static int
1702 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
1704 s64 gran, vdiff = curr->vruntime - se->vruntime;
1706 if (vdiff <= 0)
1707 return -1;
1709 gran = wakeup_gran(curr, se);
1710 if (vdiff > gran)
1711 return 1;
1713 return 0;
1716 static void set_last_buddy(struct sched_entity *se)
1718 if (likely(task_of(se)->policy != SCHED_IDLE)) {
1719 for_each_sched_entity(se)
1720 cfs_rq_of(se)->last = se;
1724 static void set_next_buddy(struct sched_entity *se)
1726 if (likely(task_of(se)->policy != SCHED_IDLE)) {
1727 for_each_sched_entity(se)
1728 cfs_rq_of(se)->next = se;
1733 * Preempt the current task with a newly woken task if needed:
1735 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1737 struct task_struct *curr = rq->curr;
1738 struct sched_entity *se = &curr->se, *pse = &p->se;
1739 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1740 int scale = cfs_rq->nr_running >= sched_nr_latency;
1742 if (unlikely(rt_prio(p->prio)))
1743 goto preempt;
1745 if (unlikely(p->sched_class != &fair_sched_class))
1746 return;
1748 if (unlikely(se == pse))
1749 return;
1751 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK))
1752 set_next_buddy(pse);
1755 * We can come here with TIF_NEED_RESCHED already set from new task
1756 * wake up path.
1758 if (test_tsk_need_resched(curr))
1759 return;
1762 * Batch and idle tasks do not preempt (their preemption is driven by
1763 * the tick):
1765 if (unlikely(p->policy != SCHED_NORMAL))
1766 return;
1768 /* Idle tasks are by definition preempted by everybody. */
1769 if (unlikely(curr->policy == SCHED_IDLE))
1770 goto preempt;
1772 if (!sched_feat(WAKEUP_PREEMPT))
1773 return;
1775 update_curr(cfs_rq);
1776 find_matching_se(&se, &pse);
1777 BUG_ON(!pse);
1778 if (wakeup_preempt_entity(se, pse) == 1)
1779 goto preempt;
1781 return;
1783 preempt:
1784 resched_task(curr);
1786 * Only set the backward buddy when the current task is still
1787 * on the rq. This can happen when a wakeup gets interleaved
1788 * with schedule on the ->pre_schedule() or idle_balance()
1789 * point, either of which can * drop the rq lock.
1791 * Also, during early boot the idle thread is in the fair class,
1792 * for obvious reasons its a bad idea to schedule back to it.
1794 if (unlikely(!se->on_rq || curr == rq->idle))
1795 return;
1797 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
1798 set_last_buddy(se);
1801 static struct task_struct *pick_next_task_fair(struct rq *rq)
1803 struct task_struct *p;
1804 struct cfs_rq *cfs_rq = &rq->cfs;
1805 struct sched_entity *se;
1807 if (!cfs_rq->nr_running)
1808 return NULL;
1810 do {
1811 se = pick_next_entity(cfs_rq);
1812 set_next_entity(cfs_rq, se);
1813 cfs_rq = group_cfs_rq(se);
1814 } while (cfs_rq);
1816 p = task_of(se);
1817 hrtick_start_fair(rq, p);
1819 return p;
1823 * Account for a descheduled task:
1825 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
1827 struct sched_entity *se = &prev->se;
1828 struct cfs_rq *cfs_rq;
1830 for_each_sched_entity(se) {
1831 cfs_rq = cfs_rq_of(se);
1832 put_prev_entity(cfs_rq, se);
1836 #ifdef CONFIG_SMP
1837 /**************************************************
1838 * Fair scheduling class load-balancing methods:
1842 * pull_task - move a task from a remote runqueue to the local runqueue.
1843 * Both runqueues must be locked.
1845 static void pull_task(struct rq *src_rq, struct task_struct *p,
1846 struct rq *this_rq, int this_cpu)
1848 deactivate_task(src_rq, p, 0);
1849 set_task_cpu(p, this_cpu);
1850 activate_task(this_rq, p, 0);
1851 check_preempt_curr(this_rq, p, 0);
1853 /* re-arm NEWIDLE balancing when moving tasks */
1854 src_rq->avg_idle = this_rq->avg_idle = 2*sysctl_sched_migration_cost;
1855 this_rq->idle_stamp = 0;
1859 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
1861 static
1862 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
1863 struct sched_domain *sd, enum cpu_idle_type idle,
1864 int *all_pinned)
1866 int tsk_cache_hot = 0;
1868 * We do not migrate tasks that are:
1869 * 1) running (obviously), or
1870 * 2) cannot be migrated to this CPU due to cpus_allowed, or
1871 * 3) are cache-hot on their current CPU.
1873 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
1874 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
1875 return 0;
1877 *all_pinned = 0;
1879 if (task_running(rq, p)) {
1880 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1881 return 0;
1885 * Aggressive migration if:
1886 * 1) task is cache cold, or
1887 * 2) too many balance attempts have failed.
1890 tsk_cache_hot = task_hot(p, rq->clock_task, sd);
1891 if (!tsk_cache_hot ||
1892 sd->nr_balance_failed > sd->cache_nice_tries) {
1893 #ifdef CONFIG_SCHEDSTATS
1894 if (tsk_cache_hot) {
1895 schedstat_inc(sd, lb_hot_gained[idle]);
1896 schedstat_inc(p, se.statistics.nr_forced_migrations);
1898 #endif
1899 return 1;
1902 if (tsk_cache_hot) {
1903 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
1904 return 0;
1906 return 1;
1910 * move_one_task tries to move exactly one task from busiest to this_rq, as
1911 * part of active balancing operations within "domain".
1912 * Returns 1 if successful and 0 otherwise.
1914 * Called with both runqueues locked.
1916 static int
1917 move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1918 struct sched_domain *sd, enum cpu_idle_type idle)
1920 struct task_struct *p, *n;
1921 struct cfs_rq *cfs_rq;
1922 int pinned = 0;
1924 for_each_leaf_cfs_rq(busiest, cfs_rq) {
1925 list_for_each_entry_safe(p, n, &cfs_rq->tasks, se.group_node) {
1927 if (!can_migrate_task(p, busiest, this_cpu,
1928 sd, idle, &pinned))
1929 continue;
1931 pull_task(busiest, p, this_rq, this_cpu);
1933 * Right now, this is only the second place pull_task()
1934 * is called, so we can safely collect pull_task()
1935 * stats here rather than inside pull_task().
1937 schedstat_inc(sd, lb_gained[idle]);
1938 return 1;
1942 return 0;
1945 static unsigned long
1946 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1947 unsigned long max_load_move, struct sched_domain *sd,
1948 enum cpu_idle_type idle, int *all_pinned,
1949 int *this_best_prio, struct cfs_rq *busiest_cfs_rq)
1951 int loops = 0, pulled = 0, pinned = 0;
1952 long rem_load_move = max_load_move;
1953 struct task_struct *p, *n;
1955 if (max_load_move == 0)
1956 goto out;
1958 pinned = 1;
1960 list_for_each_entry_safe(p, n, &busiest_cfs_rq->tasks, se.group_node) {
1961 if (loops++ > sysctl_sched_nr_migrate)
1962 break;
1964 if ((p->se.load.weight >> 1) > rem_load_move ||
1965 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned))
1966 continue;
1968 pull_task(busiest, p, this_rq, this_cpu);
1969 pulled++;
1970 rem_load_move -= p->se.load.weight;
1972 #ifdef CONFIG_PREEMPT
1974 * NEWIDLE balancing is a source of latency, so preemptible
1975 * kernels will stop after the first task is pulled to minimize
1976 * the critical section.
1978 if (idle == CPU_NEWLY_IDLE)
1979 break;
1980 #endif
1983 * We only want to steal up to the prescribed amount of
1984 * weighted load.
1986 if (rem_load_move <= 0)
1987 break;
1989 if (p->prio < *this_best_prio)
1990 *this_best_prio = p->prio;
1992 out:
1994 * Right now, this is one of only two places pull_task() is called,
1995 * so we can safely collect pull_task() stats here rather than
1996 * inside pull_task().
1998 schedstat_add(sd, lb_gained[idle], pulled);
2000 if (all_pinned)
2001 *all_pinned = pinned;
2003 return max_load_move - rem_load_move;
2006 #ifdef CONFIG_FAIR_GROUP_SCHED
2008 * update tg->load_weight by folding this cpu's load_avg
2010 static int tg_shares_up(struct task_group *tg, int cpu)
2012 struct cfs_rq *cfs_rq;
2013 unsigned long flags;
2014 struct rq *rq;
2015 long load_avg;
2017 if (!tg->se[cpu])
2018 return 0;
2020 rq = cpu_rq(cpu);
2021 cfs_rq = tg->cfs_rq[cpu];
2023 raw_spin_lock_irqsave(&rq->lock, flags);
2025 update_rq_clock(rq);
2026 update_cfs_load(cfs_rq, 1);
2028 load_avg = div64_u64(cfs_rq->load_avg, cfs_rq->load_period+1);
2029 load_avg -= cfs_rq->load_contribution;
2030 atomic_add(load_avg, &tg->load_weight);
2031 cfs_rq->load_contribution += load_avg;
2034 * We need to update shares after updating tg->load_weight in
2035 * order to adjust the weight of groups with long running tasks.
2037 update_cfs_shares(cfs_rq);
2039 raw_spin_unlock_irqrestore(&rq->lock, flags);
2041 return 0;
2044 static void update_shares(int cpu)
2046 struct cfs_rq *cfs_rq;
2047 struct rq *rq = cpu_rq(cpu);
2049 rcu_read_lock();
2050 for_each_leaf_cfs_rq(rq, cfs_rq) {
2051 struct task_group *tg = cfs_rq->tg;
2053 do {
2054 tg_shares_up(tg, cpu);
2055 tg = tg->parent;
2056 } while (tg);
2058 rcu_read_unlock();
2061 static unsigned long
2062 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
2063 unsigned long max_load_move,
2064 struct sched_domain *sd, enum cpu_idle_type idle,
2065 int *all_pinned, int *this_best_prio)
2067 long rem_load_move = max_load_move;
2068 int busiest_cpu = cpu_of(busiest);
2069 struct task_group *tg;
2071 rcu_read_lock();
2072 update_h_load(busiest_cpu);
2074 list_for_each_entry_rcu(tg, &task_groups, list) {
2075 struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
2076 unsigned long busiest_h_load = busiest_cfs_rq->h_load;
2077 unsigned long busiest_weight = busiest_cfs_rq->load.weight;
2078 u64 rem_load, moved_load;
2081 * empty group
2083 if (!busiest_cfs_rq->task_weight)
2084 continue;
2086 rem_load = (u64)rem_load_move * busiest_weight;
2087 rem_load = div_u64(rem_load, busiest_h_load + 1);
2089 moved_load = balance_tasks(this_rq, this_cpu, busiest,
2090 rem_load, sd, idle, all_pinned, this_best_prio,
2091 busiest_cfs_rq);
2093 if (!moved_load)
2094 continue;
2096 moved_load *= busiest_h_load;
2097 moved_load = div_u64(moved_load, busiest_weight + 1);
2099 rem_load_move -= moved_load;
2100 if (rem_load_move < 0)
2101 break;
2103 rcu_read_unlock();
2105 return max_load_move - rem_load_move;
2107 #else
2108 static inline void update_shares(int cpu)
2112 static unsigned long
2113 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
2114 unsigned long max_load_move,
2115 struct sched_domain *sd, enum cpu_idle_type idle,
2116 int *all_pinned, int *this_best_prio)
2118 return balance_tasks(this_rq, this_cpu, busiest,
2119 max_load_move, sd, idle, all_pinned,
2120 this_best_prio, &busiest->cfs);
2122 #endif
2125 * move_tasks tries to move up to max_load_move weighted load from busiest to
2126 * this_rq, as part of a balancing operation within domain "sd".
2127 * Returns 1 if successful and 0 otherwise.
2129 * Called with both runqueues locked.
2131 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2132 unsigned long max_load_move,
2133 struct sched_domain *sd, enum cpu_idle_type idle,
2134 int *all_pinned)
2136 unsigned long total_load_moved = 0, load_moved;
2137 int this_best_prio = this_rq->curr->prio;
2139 do {
2140 load_moved = load_balance_fair(this_rq, this_cpu, busiest,
2141 max_load_move - total_load_moved,
2142 sd, idle, all_pinned, &this_best_prio);
2144 total_load_moved += load_moved;
2146 #ifdef CONFIG_PREEMPT
2148 * NEWIDLE balancing is a source of latency, so preemptible
2149 * kernels will stop after the first task is pulled to minimize
2150 * the critical section.
2152 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
2153 break;
2155 if (raw_spin_is_contended(&this_rq->lock) ||
2156 raw_spin_is_contended(&busiest->lock))
2157 break;
2158 #endif
2159 } while (load_moved && max_load_move > total_load_moved);
2161 return total_load_moved > 0;
2164 /********** Helpers for find_busiest_group ************************/
2166 * sd_lb_stats - Structure to store the statistics of a sched_domain
2167 * during load balancing.
2169 struct sd_lb_stats {
2170 struct sched_group *busiest; /* Busiest group in this sd */
2171 struct sched_group *this; /* Local group in this sd */
2172 unsigned long total_load; /* Total load of all groups in sd */
2173 unsigned long total_pwr; /* Total power of all groups in sd */
2174 unsigned long avg_load; /* Average load across all groups in sd */
2176 /** Statistics of this group */
2177 unsigned long this_load;
2178 unsigned long this_load_per_task;
2179 unsigned long this_nr_running;
2180 unsigned long this_has_capacity;
2182 /* Statistics of the busiest group */
2183 unsigned long max_load;
2184 unsigned long busiest_load_per_task;
2185 unsigned long busiest_nr_running;
2186 unsigned long busiest_group_capacity;
2187 unsigned long busiest_has_capacity;
2189 int group_imb; /* Is there imbalance in this sd */
2190 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2191 int power_savings_balance; /* Is powersave balance needed for this sd */
2192 struct sched_group *group_min; /* Least loaded group in sd */
2193 struct sched_group *group_leader; /* Group which relieves group_min */
2194 unsigned long min_load_per_task; /* load_per_task in group_min */
2195 unsigned long leader_nr_running; /* Nr running of group_leader */
2196 unsigned long min_nr_running; /* Nr running of group_min */
2197 #endif
2201 * sg_lb_stats - stats of a sched_group required for load_balancing
2203 struct sg_lb_stats {
2204 unsigned long avg_load; /*Avg load across the CPUs of the group */
2205 unsigned long group_load; /* Total load over the CPUs of the group */
2206 unsigned long sum_nr_running; /* Nr tasks running in the group */
2207 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
2208 unsigned long group_capacity;
2209 int group_imb; /* Is there an imbalance in the group ? */
2210 int group_has_capacity; /* Is there extra capacity in the group? */
2214 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
2215 * @group: The group whose first cpu is to be returned.
2217 static inline unsigned int group_first_cpu(struct sched_group *group)
2219 return cpumask_first(sched_group_cpus(group));
2223 * get_sd_load_idx - Obtain the load index for a given sched domain.
2224 * @sd: The sched_domain whose load_idx is to be obtained.
2225 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
2227 static inline int get_sd_load_idx(struct sched_domain *sd,
2228 enum cpu_idle_type idle)
2230 int load_idx;
2232 switch (idle) {
2233 case CPU_NOT_IDLE:
2234 load_idx = sd->busy_idx;
2235 break;
2237 case CPU_NEWLY_IDLE:
2238 load_idx = sd->newidle_idx;
2239 break;
2240 default:
2241 load_idx = sd->idle_idx;
2242 break;
2245 return load_idx;
2249 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2251 * init_sd_power_savings_stats - Initialize power savings statistics for
2252 * the given sched_domain, during load balancing.
2254 * @sd: Sched domain whose power-savings statistics are to be initialized.
2255 * @sds: Variable containing the statistics for sd.
2256 * @idle: Idle status of the CPU at which we're performing load-balancing.
2258 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
2259 struct sd_lb_stats *sds, enum cpu_idle_type idle)
2262 * Busy processors will not participate in power savings
2263 * balance.
2265 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2266 sds->power_savings_balance = 0;
2267 else {
2268 sds->power_savings_balance = 1;
2269 sds->min_nr_running = ULONG_MAX;
2270 sds->leader_nr_running = 0;
2275 * update_sd_power_savings_stats - Update the power saving stats for a
2276 * sched_domain while performing load balancing.
2278 * @group: sched_group belonging to the sched_domain under consideration.
2279 * @sds: Variable containing the statistics of the sched_domain
2280 * @local_group: Does group contain the CPU for which we're performing
2281 * load balancing ?
2282 * @sgs: Variable containing the statistics of the group.
2284 static inline void update_sd_power_savings_stats(struct sched_group *group,
2285 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
2288 if (!sds->power_savings_balance)
2289 return;
2292 * If the local group is idle or completely loaded
2293 * no need to do power savings balance at this domain
2295 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
2296 !sds->this_nr_running))
2297 sds->power_savings_balance = 0;
2300 * If a group is already running at full capacity or idle,
2301 * don't include that group in power savings calculations
2303 if (!sds->power_savings_balance ||
2304 sgs->sum_nr_running >= sgs->group_capacity ||
2305 !sgs->sum_nr_running)
2306 return;
2309 * Calculate the group which has the least non-idle load.
2310 * This is the group from where we need to pick up the load
2311 * for saving power
2313 if ((sgs->sum_nr_running < sds->min_nr_running) ||
2314 (sgs->sum_nr_running == sds->min_nr_running &&
2315 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
2316 sds->group_min = group;
2317 sds->min_nr_running = sgs->sum_nr_running;
2318 sds->min_load_per_task = sgs->sum_weighted_load /
2319 sgs->sum_nr_running;
2323 * Calculate the group which is almost near its
2324 * capacity but still has some space to pick up some load
2325 * from other group and save more power
2327 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
2328 return;
2330 if (sgs->sum_nr_running > sds->leader_nr_running ||
2331 (sgs->sum_nr_running == sds->leader_nr_running &&
2332 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
2333 sds->group_leader = group;
2334 sds->leader_nr_running = sgs->sum_nr_running;
2339 * check_power_save_busiest_group - see if there is potential for some power-savings balance
2340 * @sds: Variable containing the statistics of the sched_domain
2341 * under consideration.
2342 * @this_cpu: Cpu at which we're currently performing load-balancing.
2343 * @imbalance: Variable to store the imbalance.
2345 * Description:
2346 * Check if we have potential to perform some power-savings balance.
2347 * If yes, set the busiest group to be the least loaded group in the
2348 * sched_domain, so that it's CPUs can be put to idle.
2350 * Returns 1 if there is potential to perform power-savings balance.
2351 * Else returns 0.
2353 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
2354 int this_cpu, unsigned long *imbalance)
2356 if (!sds->power_savings_balance)
2357 return 0;
2359 if (sds->this != sds->group_leader ||
2360 sds->group_leader == sds->group_min)
2361 return 0;
2363 *imbalance = sds->min_load_per_task;
2364 sds->busiest = sds->group_min;
2366 return 1;
2369 #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
2370 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
2371 struct sd_lb_stats *sds, enum cpu_idle_type idle)
2373 return;
2376 static inline void update_sd_power_savings_stats(struct sched_group *group,
2377 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
2379 return;
2382 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
2383 int this_cpu, unsigned long *imbalance)
2385 return 0;
2387 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
2390 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
2392 return SCHED_LOAD_SCALE;
2395 unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
2397 return default_scale_freq_power(sd, cpu);
2400 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
2402 unsigned long weight = sd->span_weight;
2403 unsigned long smt_gain = sd->smt_gain;
2405 smt_gain /= weight;
2407 return smt_gain;
2410 unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
2412 return default_scale_smt_power(sd, cpu);
2415 unsigned long scale_rt_power(int cpu)
2417 struct rq *rq = cpu_rq(cpu);
2418 u64 total, available;
2420 total = sched_avg_period() + (rq->clock - rq->age_stamp);
2422 if (unlikely(total < rq->rt_avg)) {
2423 /* Ensures that power won't end up being negative */
2424 available = 0;
2425 } else {
2426 available = total - rq->rt_avg;
2429 if (unlikely((s64)total < SCHED_LOAD_SCALE))
2430 total = SCHED_LOAD_SCALE;
2432 total >>= SCHED_LOAD_SHIFT;
2434 return div_u64(available, total);
2437 static void update_cpu_power(struct sched_domain *sd, int cpu)
2439 unsigned long weight = sd->span_weight;
2440 unsigned long power = SCHED_LOAD_SCALE;
2441 struct sched_group *sdg = sd->groups;
2443 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
2444 if (sched_feat(ARCH_POWER))
2445 power *= arch_scale_smt_power(sd, cpu);
2446 else
2447 power *= default_scale_smt_power(sd, cpu);
2449 power >>= SCHED_LOAD_SHIFT;
2452 sdg->cpu_power_orig = power;
2454 if (sched_feat(ARCH_POWER))
2455 power *= arch_scale_freq_power(sd, cpu);
2456 else
2457 power *= default_scale_freq_power(sd, cpu);
2459 power >>= SCHED_LOAD_SHIFT;
2461 power *= scale_rt_power(cpu);
2462 power >>= SCHED_LOAD_SHIFT;
2464 if (!power)
2465 power = 1;
2467 cpu_rq(cpu)->cpu_power = power;
2468 sdg->cpu_power = power;
2471 static void update_group_power(struct sched_domain *sd, int cpu)
2473 struct sched_domain *child = sd->child;
2474 struct sched_group *group, *sdg = sd->groups;
2475 unsigned long power;
2477 if (!child) {
2478 update_cpu_power(sd, cpu);
2479 return;
2482 power = 0;
2484 group = child->groups;
2485 do {
2486 power += group->cpu_power;
2487 group = group->next;
2488 } while (group != child->groups);
2490 sdg->cpu_power = power;
2494 * Try and fix up capacity for tiny siblings, this is needed when
2495 * things like SD_ASYM_PACKING need f_b_g to select another sibling
2496 * which on its own isn't powerful enough.
2498 * See update_sd_pick_busiest() and check_asym_packing().
2500 static inline int
2501 fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
2504 * Only siblings can have significantly less than SCHED_LOAD_SCALE
2506 if (sd->level != SD_LV_SIBLING)
2507 return 0;
2510 * If ~90% of the cpu_power is still there, we're good.
2512 if (group->cpu_power * 32 > group->cpu_power_orig * 29)
2513 return 1;
2515 return 0;
2519 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
2520 * @sd: The sched_domain whose statistics are to be updated.
2521 * @group: sched_group whose statistics are to be updated.
2522 * @this_cpu: Cpu for which load balance is currently performed.
2523 * @idle: Idle status of this_cpu
2524 * @load_idx: Load index of sched_domain of this_cpu for load calc.
2525 * @sd_idle: Idle status of the sched_domain containing group.
2526 * @local_group: Does group contain this_cpu.
2527 * @cpus: Set of cpus considered for load balancing.
2528 * @balance: Should we balance.
2529 * @sgs: variable to hold the statistics for this group.
2531 static inline void update_sg_lb_stats(struct sched_domain *sd,
2532 struct sched_group *group, int this_cpu,
2533 enum cpu_idle_type idle, int load_idx, int *sd_idle,
2534 int local_group, const struct cpumask *cpus,
2535 int *balance, struct sg_lb_stats *sgs)
2537 unsigned long load, max_cpu_load, min_cpu_load, max_nr_running;
2538 int i;
2539 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2540 unsigned long avg_load_per_task = 0;
2542 if (local_group)
2543 balance_cpu = group_first_cpu(group);
2545 /* Tally up the load of all CPUs in the group */
2546 max_cpu_load = 0;
2547 min_cpu_load = ~0UL;
2548 max_nr_running = 0;
2550 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
2551 struct rq *rq = cpu_rq(i);
2553 if (*sd_idle && rq->nr_running)
2554 *sd_idle = 0;
2556 /* Bias balancing toward cpus of our domain */
2557 if (local_group) {
2558 if (idle_cpu(i) && !first_idle_cpu) {
2559 first_idle_cpu = 1;
2560 balance_cpu = i;
2563 load = target_load(i, load_idx);
2564 } else {
2565 load = source_load(i, load_idx);
2566 if (load > max_cpu_load) {
2567 max_cpu_load = load;
2568 max_nr_running = rq->nr_running;
2570 if (min_cpu_load > load)
2571 min_cpu_load = load;
2574 sgs->group_load += load;
2575 sgs->sum_nr_running += rq->nr_running;
2576 sgs->sum_weighted_load += weighted_cpuload(i);
2581 * First idle cpu or the first cpu(busiest) in this sched group
2582 * is eligible for doing load balancing at this and above
2583 * domains. In the newly idle case, we will allow all the cpu's
2584 * to do the newly idle load balance.
2586 if (idle != CPU_NEWLY_IDLE && local_group) {
2587 if (balance_cpu != this_cpu) {
2588 *balance = 0;
2589 return;
2591 update_group_power(sd, this_cpu);
2594 /* Adjust by relative CPU power of the group */
2595 sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
2598 * Consider the group unbalanced when the imbalance is larger
2599 * than the average weight of two tasks.
2601 * APZ: with cgroup the avg task weight can vary wildly and
2602 * might not be a suitable number - should we keep a
2603 * normalized nr_running number somewhere that negates
2604 * the hierarchy?
2606 if (sgs->sum_nr_running)
2607 avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
2609 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task && max_nr_running > 1)
2610 sgs->group_imb = 1;
2612 sgs->group_capacity = DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
2613 if (!sgs->group_capacity)
2614 sgs->group_capacity = fix_small_capacity(sd, group);
2616 if (sgs->group_capacity > sgs->sum_nr_running)
2617 sgs->group_has_capacity = 1;
2621 * update_sd_pick_busiest - return 1 on busiest group
2622 * @sd: sched_domain whose statistics are to be checked
2623 * @sds: sched_domain statistics
2624 * @sg: sched_group candidate to be checked for being the busiest
2625 * @sgs: sched_group statistics
2626 * @this_cpu: the current cpu
2628 * Determine if @sg is a busier group than the previously selected
2629 * busiest group.
2631 static bool update_sd_pick_busiest(struct sched_domain *sd,
2632 struct sd_lb_stats *sds,
2633 struct sched_group *sg,
2634 struct sg_lb_stats *sgs,
2635 int this_cpu)
2637 if (sgs->avg_load <= sds->max_load)
2638 return false;
2640 if (sgs->sum_nr_running > sgs->group_capacity)
2641 return true;
2643 if (sgs->group_imb)
2644 return true;
2647 * ASYM_PACKING needs to move all the work to the lowest
2648 * numbered CPUs in the group, therefore mark all groups
2649 * higher than ourself as busy.
2651 if ((sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
2652 this_cpu < group_first_cpu(sg)) {
2653 if (!sds->busiest)
2654 return true;
2656 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
2657 return true;
2660 return false;
2664 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
2665 * @sd: sched_domain whose statistics are to be updated.
2666 * @this_cpu: Cpu for which load balance is currently performed.
2667 * @idle: Idle status of this_cpu
2668 * @sd_idle: Idle status of the sched_domain containing sg.
2669 * @cpus: Set of cpus considered for load balancing.
2670 * @balance: Should we balance.
2671 * @sds: variable to hold the statistics for this sched_domain.
2673 static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
2674 enum cpu_idle_type idle, int *sd_idle,
2675 const struct cpumask *cpus, int *balance,
2676 struct sd_lb_stats *sds)
2678 struct sched_domain *child = sd->child;
2679 struct sched_group *sg = sd->groups;
2680 struct sg_lb_stats sgs;
2681 int load_idx, prefer_sibling = 0;
2683 if (child && child->flags & SD_PREFER_SIBLING)
2684 prefer_sibling = 1;
2686 init_sd_power_savings_stats(sd, sds, idle);
2687 load_idx = get_sd_load_idx(sd, idle);
2689 do {
2690 int local_group;
2692 local_group = cpumask_test_cpu(this_cpu, sched_group_cpus(sg));
2693 memset(&sgs, 0, sizeof(sgs));
2694 update_sg_lb_stats(sd, sg, this_cpu, idle, load_idx, sd_idle,
2695 local_group, cpus, balance, &sgs);
2697 if (local_group && !(*balance))
2698 return;
2700 sds->total_load += sgs.group_load;
2701 sds->total_pwr += sg->cpu_power;
2704 * In case the child domain prefers tasks go to siblings
2705 * first, lower the sg capacity to one so that we'll try
2706 * and move all the excess tasks away. We lower the capacity
2707 * of a group only if the local group has the capacity to fit
2708 * these excess tasks, i.e. nr_running < group_capacity. The
2709 * extra check prevents the case where you always pull from the
2710 * heaviest group when it is already under-utilized (possible
2711 * with a large weight task outweighs the tasks on the system).
2713 if (prefer_sibling && !local_group && sds->this_has_capacity)
2714 sgs.group_capacity = min(sgs.group_capacity, 1UL);
2716 if (local_group) {
2717 sds->this_load = sgs.avg_load;
2718 sds->this = sg;
2719 sds->this_nr_running = sgs.sum_nr_running;
2720 sds->this_load_per_task = sgs.sum_weighted_load;
2721 sds->this_has_capacity = sgs.group_has_capacity;
2722 } else if (update_sd_pick_busiest(sd, sds, sg, &sgs, this_cpu)) {
2723 sds->max_load = sgs.avg_load;
2724 sds->busiest = sg;
2725 sds->busiest_nr_running = sgs.sum_nr_running;
2726 sds->busiest_group_capacity = sgs.group_capacity;
2727 sds->busiest_load_per_task = sgs.sum_weighted_load;
2728 sds->busiest_has_capacity = sgs.group_has_capacity;
2729 sds->group_imb = sgs.group_imb;
2732 update_sd_power_savings_stats(sg, sds, local_group, &sgs);
2733 sg = sg->next;
2734 } while (sg != sd->groups);
2737 int __weak arch_sd_sibling_asym_packing(void)
2739 return 0*SD_ASYM_PACKING;
2743 * check_asym_packing - Check to see if the group is packed into the
2744 * sched doman.
2746 * This is primarily intended to used at the sibling level. Some
2747 * cores like POWER7 prefer to use lower numbered SMT threads. In the
2748 * case of POWER7, it can move to lower SMT modes only when higher
2749 * threads are idle. When in lower SMT modes, the threads will
2750 * perform better since they share less core resources. Hence when we
2751 * have idle threads, we want them to be the higher ones.
2753 * This packing function is run on idle threads. It checks to see if
2754 * the busiest CPU in this domain (core in the P7 case) has a higher
2755 * CPU number than the packing function is being run on. Here we are
2756 * assuming lower CPU number will be equivalent to lower a SMT thread
2757 * number.
2759 * Returns 1 when packing is required and a task should be moved to
2760 * this CPU. The amount of the imbalance is returned in *imbalance.
2762 * @sd: The sched_domain whose packing is to be checked.
2763 * @sds: Statistics of the sched_domain which is to be packed
2764 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
2765 * @imbalance: returns amount of imbalanced due to packing.
2767 static int check_asym_packing(struct sched_domain *sd,
2768 struct sd_lb_stats *sds,
2769 int this_cpu, unsigned long *imbalance)
2771 int busiest_cpu;
2773 if (!(sd->flags & SD_ASYM_PACKING))
2774 return 0;
2776 if (!sds->busiest)
2777 return 0;
2779 busiest_cpu = group_first_cpu(sds->busiest);
2780 if (this_cpu > busiest_cpu)
2781 return 0;
2783 *imbalance = DIV_ROUND_CLOSEST(sds->max_load * sds->busiest->cpu_power,
2784 SCHED_LOAD_SCALE);
2785 return 1;
2789 * fix_small_imbalance - Calculate the minor imbalance that exists
2790 * amongst the groups of a sched_domain, during
2791 * load balancing.
2792 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
2793 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
2794 * @imbalance: Variable to store the imbalance.
2796 static inline void fix_small_imbalance(struct sd_lb_stats *sds,
2797 int this_cpu, unsigned long *imbalance)
2799 unsigned long tmp, pwr_now = 0, pwr_move = 0;
2800 unsigned int imbn = 2;
2801 unsigned long scaled_busy_load_per_task;
2803 if (sds->this_nr_running) {
2804 sds->this_load_per_task /= sds->this_nr_running;
2805 if (sds->busiest_load_per_task >
2806 sds->this_load_per_task)
2807 imbn = 1;
2808 } else
2809 sds->this_load_per_task =
2810 cpu_avg_load_per_task(this_cpu);
2812 scaled_busy_load_per_task = sds->busiest_load_per_task
2813 * SCHED_LOAD_SCALE;
2814 scaled_busy_load_per_task /= sds->busiest->cpu_power;
2816 if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
2817 (scaled_busy_load_per_task * imbn)) {
2818 *imbalance = sds->busiest_load_per_task;
2819 return;
2823 * OK, we don't have enough imbalance to justify moving tasks,
2824 * however we may be able to increase total CPU power used by
2825 * moving them.
2828 pwr_now += sds->busiest->cpu_power *
2829 min(sds->busiest_load_per_task, sds->max_load);
2830 pwr_now += sds->this->cpu_power *
2831 min(sds->this_load_per_task, sds->this_load);
2832 pwr_now /= SCHED_LOAD_SCALE;
2834 /* Amount of load we'd subtract */
2835 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
2836 sds->busiest->cpu_power;
2837 if (sds->max_load > tmp)
2838 pwr_move += sds->busiest->cpu_power *
2839 min(sds->busiest_load_per_task, sds->max_load - tmp);
2841 /* Amount of load we'd add */
2842 if (sds->max_load * sds->busiest->cpu_power <
2843 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
2844 tmp = (sds->max_load * sds->busiest->cpu_power) /
2845 sds->this->cpu_power;
2846 else
2847 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
2848 sds->this->cpu_power;
2849 pwr_move += sds->this->cpu_power *
2850 min(sds->this_load_per_task, sds->this_load + tmp);
2851 pwr_move /= SCHED_LOAD_SCALE;
2853 /* Move if we gain throughput */
2854 if (pwr_move > pwr_now)
2855 *imbalance = sds->busiest_load_per_task;
2859 * calculate_imbalance - Calculate the amount of imbalance present within the
2860 * groups of a given sched_domain during load balance.
2861 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
2862 * @this_cpu: Cpu for which currently load balance is being performed.
2863 * @imbalance: The variable to store the imbalance.
2865 static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
2866 unsigned long *imbalance)
2868 unsigned long max_pull, load_above_capacity = ~0UL;
2870 sds->busiest_load_per_task /= sds->busiest_nr_running;
2871 if (sds->group_imb) {
2872 sds->busiest_load_per_task =
2873 min(sds->busiest_load_per_task, sds->avg_load);
2877 * In the presence of smp nice balancing, certain scenarios can have
2878 * max load less than avg load(as we skip the groups at or below
2879 * its cpu_power, while calculating max_load..)
2881 if (sds->max_load < sds->avg_load) {
2882 *imbalance = 0;
2883 return fix_small_imbalance(sds, this_cpu, imbalance);
2886 if (!sds->group_imb) {
2888 * Don't want to pull so many tasks that a group would go idle.
2890 load_above_capacity = (sds->busiest_nr_running -
2891 sds->busiest_group_capacity);
2893 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_LOAD_SCALE);
2895 load_above_capacity /= sds->busiest->cpu_power;
2899 * We're trying to get all the cpus to the average_load, so we don't
2900 * want to push ourselves above the average load, nor do we wish to
2901 * reduce the max loaded cpu below the average load. At the same time,
2902 * we also don't want to reduce the group load below the group capacity
2903 * (so that we can implement power-savings policies etc). Thus we look
2904 * for the minimum possible imbalance.
2905 * Be careful of negative numbers as they'll appear as very large values
2906 * with unsigned longs.
2908 max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
2910 /* How much load to actually move to equalise the imbalance */
2911 *imbalance = min(max_pull * sds->busiest->cpu_power,
2912 (sds->avg_load - sds->this_load) * sds->this->cpu_power)
2913 / SCHED_LOAD_SCALE;
2916 * if *imbalance is less than the average load per runnable task
2917 * there is no gaurantee that any tasks will be moved so we'll have
2918 * a think about bumping its value to force at least one task to be
2919 * moved
2921 if (*imbalance < sds->busiest_load_per_task)
2922 return fix_small_imbalance(sds, this_cpu, imbalance);
2926 /******* find_busiest_group() helpers end here *********************/
2929 * find_busiest_group - Returns the busiest group within the sched_domain
2930 * if there is an imbalance. If there isn't an imbalance, and
2931 * the user has opted for power-savings, it returns a group whose
2932 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
2933 * such a group exists.
2935 * Also calculates the amount of weighted load which should be moved
2936 * to restore balance.
2938 * @sd: The sched_domain whose busiest group is to be returned.
2939 * @this_cpu: The cpu for which load balancing is currently being performed.
2940 * @imbalance: Variable which stores amount of weighted load which should
2941 * be moved to restore balance/put a group to idle.
2942 * @idle: The idle status of this_cpu.
2943 * @sd_idle: The idleness of sd
2944 * @cpus: The set of CPUs under consideration for load-balancing.
2945 * @balance: Pointer to a variable indicating if this_cpu
2946 * is the appropriate cpu to perform load balancing at this_level.
2948 * Returns: - the busiest group if imbalance exists.
2949 * - If no imbalance and user has opted for power-savings balance,
2950 * return the least loaded group whose CPUs can be
2951 * put to idle by rebalancing its tasks onto our group.
2953 static struct sched_group *
2954 find_busiest_group(struct sched_domain *sd, int this_cpu,
2955 unsigned long *imbalance, enum cpu_idle_type idle,
2956 int *sd_idle, const struct cpumask *cpus, int *balance)
2958 struct sd_lb_stats sds;
2960 memset(&sds, 0, sizeof(sds));
2963 * Compute the various statistics relavent for load balancing at
2964 * this level.
2966 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
2967 balance, &sds);
2969 /* Cases where imbalance does not exist from POV of this_cpu */
2970 /* 1) this_cpu is not the appropriate cpu to perform load balancing
2971 * at this level.
2972 * 2) There is no busy sibling group to pull from.
2973 * 3) This group is the busiest group.
2974 * 4) This group is more busy than the avg busieness at this
2975 * sched_domain.
2976 * 5) The imbalance is within the specified limit.
2978 * Note: when doing newidle balance, if the local group has excess
2979 * capacity (i.e. nr_running < group_capacity) and the busiest group
2980 * does not have any capacity, we force a load balance to pull tasks
2981 * to the local group. In this case, we skip past checks 3, 4 and 5.
2983 if (!(*balance))
2984 goto ret;
2986 if ((idle == CPU_IDLE || idle == CPU_NEWLY_IDLE) &&
2987 check_asym_packing(sd, &sds, this_cpu, imbalance))
2988 return sds.busiest;
2990 if (!sds.busiest || sds.busiest_nr_running == 0)
2991 goto out_balanced;
2993 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
2994 if (idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
2995 !sds.busiest_has_capacity)
2996 goto force_balance;
2998 if (sds.this_load >= sds.max_load)
2999 goto out_balanced;
3001 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
3003 if (sds.this_load >= sds.avg_load)
3004 goto out_balanced;
3006 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
3007 goto out_balanced;
3009 force_balance:
3010 /* Looks like there is an imbalance. Compute it */
3011 calculate_imbalance(&sds, this_cpu, imbalance);
3012 return sds.busiest;
3014 out_balanced:
3016 * There is no obvious imbalance. But check if we can do some balancing
3017 * to save power.
3019 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
3020 return sds.busiest;
3021 ret:
3022 *imbalance = 0;
3023 return NULL;
3027 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3029 static struct rq *
3030 find_busiest_queue(struct sched_domain *sd, struct sched_group *group,
3031 enum cpu_idle_type idle, unsigned long imbalance,
3032 const struct cpumask *cpus)
3034 struct rq *busiest = NULL, *rq;
3035 unsigned long max_load = 0;
3036 int i;
3038 for_each_cpu(i, sched_group_cpus(group)) {
3039 unsigned long power = power_of(i);
3040 unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
3041 unsigned long wl;
3043 if (!capacity)
3044 capacity = fix_small_capacity(sd, group);
3046 if (!cpumask_test_cpu(i, cpus))
3047 continue;
3049 rq = cpu_rq(i);
3050 wl = weighted_cpuload(i);
3053 * When comparing with imbalance, use weighted_cpuload()
3054 * which is not scaled with the cpu power.
3056 if (capacity && rq->nr_running == 1 && wl > imbalance)
3057 continue;
3060 * For the load comparisons with the other cpu's, consider
3061 * the weighted_cpuload() scaled with the cpu power, so that
3062 * the load can be moved away from the cpu that is potentially
3063 * running at a lower capacity.
3065 wl = (wl * SCHED_LOAD_SCALE) / power;
3067 if (wl > max_load) {
3068 max_load = wl;
3069 busiest = rq;
3073 return busiest;
3077 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3078 * so long as it is large enough.
3080 #define MAX_PINNED_INTERVAL 512
3082 /* Working cpumask for load_balance and load_balance_newidle. */
3083 static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
3085 static int need_active_balance(struct sched_domain *sd, int sd_idle, int idle,
3086 int busiest_cpu, int this_cpu)
3088 if (idle == CPU_NEWLY_IDLE) {
3091 * ASYM_PACKING needs to force migrate tasks from busy but
3092 * higher numbered CPUs in order to pack all tasks in the
3093 * lowest numbered CPUs.
3095 if ((sd->flags & SD_ASYM_PACKING) && busiest_cpu > this_cpu)
3096 return 1;
3099 * The only task running in a non-idle cpu can be moved to this
3100 * cpu in an attempt to completely freeup the other CPU
3101 * package.
3103 * The package power saving logic comes from
3104 * find_busiest_group(). If there are no imbalance, then
3105 * f_b_g() will return NULL. However when sched_mc={1,2} then
3106 * f_b_g() will select a group from which a running task may be
3107 * pulled to this cpu in order to make the other package idle.
3108 * If there is no opportunity to make a package idle and if
3109 * there are no imbalance, then f_b_g() will return NULL and no
3110 * action will be taken in load_balance_newidle().
3112 * Under normal task pull operation due to imbalance, there
3113 * will be more than one task in the source run queue and
3114 * move_tasks() will succeed. ld_moved will be true and this
3115 * active balance code will not be triggered.
3117 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3118 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3119 return 0;
3121 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
3122 return 0;
3125 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
3128 static int active_load_balance_cpu_stop(void *data);
3131 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3132 * tasks if there is an imbalance.
3134 static int load_balance(int this_cpu, struct rq *this_rq,
3135 struct sched_domain *sd, enum cpu_idle_type idle,
3136 int *balance)
3138 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
3139 struct sched_group *group;
3140 unsigned long imbalance;
3141 struct rq *busiest;
3142 unsigned long flags;
3143 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
3145 cpumask_copy(cpus, cpu_active_mask);
3148 * When power savings policy is enabled for the parent domain, idle
3149 * sibling can pick up load irrespective of busy siblings. In this case,
3150 * let the state of idle sibling percolate up as CPU_IDLE, instead of
3151 * portraying it as CPU_NOT_IDLE.
3153 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3154 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3155 sd_idle = 1;
3157 schedstat_inc(sd, lb_count[idle]);
3159 redo:
3160 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3161 cpus, balance);
3163 if (*balance == 0)
3164 goto out_balanced;
3166 if (!group) {
3167 schedstat_inc(sd, lb_nobusyg[idle]);
3168 goto out_balanced;
3171 busiest = find_busiest_queue(sd, group, idle, imbalance, cpus);
3172 if (!busiest) {
3173 schedstat_inc(sd, lb_nobusyq[idle]);
3174 goto out_balanced;
3177 BUG_ON(busiest == this_rq);
3179 schedstat_add(sd, lb_imbalance[idle], imbalance);
3181 ld_moved = 0;
3182 if (busiest->nr_running > 1) {
3184 * Attempt to move tasks. If find_busiest_group has found
3185 * an imbalance but busiest->nr_running <= 1, the group is
3186 * still unbalanced. ld_moved simply stays zero, so it is
3187 * correctly treated as an imbalance.
3189 local_irq_save(flags);
3190 double_rq_lock(this_rq, busiest);
3191 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3192 imbalance, sd, idle, &all_pinned);
3193 double_rq_unlock(this_rq, busiest);
3194 local_irq_restore(flags);
3197 * some other cpu did the load balance for us.
3199 if (ld_moved && this_cpu != smp_processor_id())
3200 resched_cpu(this_cpu);
3202 /* All tasks on this runqueue were pinned by CPU affinity */
3203 if (unlikely(all_pinned)) {
3204 cpumask_clear_cpu(cpu_of(busiest), cpus);
3205 if (!cpumask_empty(cpus))
3206 goto redo;
3207 goto out_balanced;
3211 if (!ld_moved) {
3212 schedstat_inc(sd, lb_failed[idle]);
3214 * Increment the failure counter only on periodic balance.
3215 * We do not want newidle balance, which can be very
3216 * frequent, pollute the failure counter causing
3217 * excessive cache_hot migrations and active balances.
3219 if (idle != CPU_NEWLY_IDLE)
3220 sd->nr_balance_failed++;
3222 if (need_active_balance(sd, sd_idle, idle, cpu_of(busiest),
3223 this_cpu)) {
3224 raw_spin_lock_irqsave(&busiest->lock, flags);
3226 /* don't kick the active_load_balance_cpu_stop,
3227 * if the curr task on busiest cpu can't be
3228 * moved to this_cpu
3230 if (!cpumask_test_cpu(this_cpu,
3231 &busiest->curr->cpus_allowed)) {
3232 raw_spin_unlock_irqrestore(&busiest->lock,
3233 flags);
3234 all_pinned = 1;
3235 goto out_one_pinned;
3239 * ->active_balance synchronizes accesses to
3240 * ->active_balance_work. Once set, it's cleared
3241 * only after active load balance is finished.
3243 if (!busiest->active_balance) {
3244 busiest->active_balance = 1;
3245 busiest->push_cpu = this_cpu;
3246 active_balance = 1;
3248 raw_spin_unlock_irqrestore(&busiest->lock, flags);
3250 if (active_balance)
3251 stop_one_cpu_nowait(cpu_of(busiest),
3252 active_load_balance_cpu_stop, busiest,
3253 &busiest->active_balance_work);
3256 * We've kicked active balancing, reset the failure
3257 * counter.
3259 sd->nr_balance_failed = sd->cache_nice_tries+1;
3261 } else
3262 sd->nr_balance_failed = 0;
3264 if (likely(!active_balance)) {
3265 /* We were unbalanced, so reset the balancing interval */
3266 sd->balance_interval = sd->min_interval;
3267 } else {
3269 * If we've begun active balancing, start to back off. This
3270 * case may not be covered by the all_pinned logic if there
3271 * is only 1 task on the busy runqueue (because we don't call
3272 * move_tasks).
3274 if (sd->balance_interval < sd->max_interval)
3275 sd->balance_interval *= 2;
3278 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3279 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3280 ld_moved = -1;
3282 goto out;
3284 out_balanced:
3285 schedstat_inc(sd, lb_balanced[idle]);
3287 sd->nr_balance_failed = 0;
3289 out_one_pinned:
3290 /* tune up the balancing interval */
3291 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3292 (sd->balance_interval < sd->max_interval))
3293 sd->balance_interval *= 2;
3295 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3296 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3297 ld_moved = -1;
3298 else
3299 ld_moved = 0;
3300 out:
3301 return ld_moved;
3305 * idle_balance is called by schedule() if this_cpu is about to become
3306 * idle. Attempts to pull tasks from other CPUs.
3308 static void idle_balance(int this_cpu, struct rq *this_rq)
3310 struct sched_domain *sd;
3311 int pulled_task = 0;
3312 unsigned long next_balance = jiffies + HZ;
3314 this_rq->idle_stamp = this_rq->clock;
3316 if (this_rq->avg_idle < sysctl_sched_migration_cost)
3317 return;
3320 * Drop the rq->lock, but keep IRQ/preempt disabled.
3322 raw_spin_unlock(&this_rq->lock);
3324 for_each_domain(this_cpu, sd) {
3325 unsigned long interval;
3326 int balance = 1;
3328 if (!(sd->flags & SD_LOAD_BALANCE))
3329 continue;
3331 if (sd->flags & SD_BALANCE_NEWIDLE) {
3332 /* If we've pulled tasks over stop searching: */
3333 pulled_task = load_balance(this_cpu, this_rq,
3334 sd, CPU_NEWLY_IDLE, &balance);
3337 interval = msecs_to_jiffies(sd->balance_interval);
3338 if (time_after(next_balance, sd->last_balance + interval))
3339 next_balance = sd->last_balance + interval;
3340 if (pulled_task)
3341 break;
3344 raw_spin_lock(&this_rq->lock);
3346 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3348 * We are going idle. next_balance may be set based on
3349 * a busy processor. So reset next_balance.
3351 this_rq->next_balance = next_balance;
3356 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
3357 * running tasks off the busiest CPU onto idle CPUs. It requires at
3358 * least 1 task to be running on each physical CPU where possible, and
3359 * avoids physical / logical imbalances.
3361 static int active_load_balance_cpu_stop(void *data)
3363 struct rq *busiest_rq = data;
3364 int busiest_cpu = cpu_of(busiest_rq);
3365 int target_cpu = busiest_rq->push_cpu;
3366 struct rq *target_rq = cpu_rq(target_cpu);
3367 struct sched_domain *sd;
3369 raw_spin_lock_irq(&busiest_rq->lock);
3371 /* make sure the requested cpu hasn't gone down in the meantime */
3372 if (unlikely(busiest_cpu != smp_processor_id() ||
3373 !busiest_rq->active_balance))
3374 goto out_unlock;
3376 /* Is there any task to move? */
3377 if (busiest_rq->nr_running <= 1)
3378 goto out_unlock;
3381 * This condition is "impossible", if it occurs
3382 * we need to fix it. Originally reported by
3383 * Bjorn Helgaas on a 128-cpu setup.
3385 BUG_ON(busiest_rq == target_rq);
3387 /* move a task from busiest_rq to target_rq */
3388 double_lock_balance(busiest_rq, target_rq);
3390 /* Search for an sd spanning us and the target CPU. */
3391 for_each_domain(target_cpu, sd) {
3392 if ((sd->flags & SD_LOAD_BALANCE) &&
3393 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
3394 break;
3397 if (likely(sd)) {
3398 schedstat_inc(sd, alb_count);
3400 if (move_one_task(target_rq, target_cpu, busiest_rq,
3401 sd, CPU_IDLE))
3402 schedstat_inc(sd, alb_pushed);
3403 else
3404 schedstat_inc(sd, alb_failed);
3406 double_unlock_balance(busiest_rq, target_rq);
3407 out_unlock:
3408 busiest_rq->active_balance = 0;
3409 raw_spin_unlock_irq(&busiest_rq->lock);
3410 return 0;
3413 #ifdef CONFIG_NO_HZ
3415 static DEFINE_PER_CPU(struct call_single_data, remote_sched_softirq_cb);
3417 static void trigger_sched_softirq(void *data)
3419 raise_softirq_irqoff(SCHED_SOFTIRQ);
3422 static inline void init_sched_softirq_csd(struct call_single_data *csd)
3424 csd->func = trigger_sched_softirq;
3425 csd->info = NULL;
3426 csd->flags = 0;
3427 csd->priv = 0;
3431 * idle load balancing details
3432 * - One of the idle CPUs nominates itself as idle load_balancer, while
3433 * entering idle.
3434 * - This idle load balancer CPU will also go into tickless mode when
3435 * it is idle, just like all other idle CPUs
3436 * - When one of the busy CPUs notice that there may be an idle rebalancing
3437 * needed, they will kick the idle load balancer, which then does idle
3438 * load balancing for all the idle CPUs.
3440 static struct {
3441 atomic_t load_balancer;
3442 atomic_t first_pick_cpu;
3443 atomic_t second_pick_cpu;
3444 cpumask_var_t idle_cpus_mask;
3445 cpumask_var_t grp_idle_mask;
3446 unsigned long next_balance; /* in jiffy units */
3447 } nohz ____cacheline_aligned;
3449 int get_nohz_load_balancer(void)
3451 return atomic_read(&nohz.load_balancer);
3454 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3456 * lowest_flag_domain - Return lowest sched_domain containing flag.
3457 * @cpu: The cpu whose lowest level of sched domain is to
3458 * be returned.
3459 * @flag: The flag to check for the lowest sched_domain
3460 * for the given cpu.
3462 * Returns the lowest sched_domain of a cpu which contains the given flag.
3464 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
3466 struct sched_domain *sd;
3468 for_each_domain(cpu, sd)
3469 if (sd && (sd->flags & flag))
3470 break;
3472 return sd;
3476 * for_each_flag_domain - Iterates over sched_domains containing the flag.
3477 * @cpu: The cpu whose domains we're iterating over.
3478 * @sd: variable holding the value of the power_savings_sd
3479 * for cpu.
3480 * @flag: The flag to filter the sched_domains to be iterated.
3482 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
3483 * set, starting from the lowest sched_domain to the highest.
3485 #define for_each_flag_domain(cpu, sd, flag) \
3486 for (sd = lowest_flag_domain(cpu, flag); \
3487 (sd && (sd->flags & flag)); sd = sd->parent)
3490 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
3491 * @ilb_group: group to be checked for semi-idleness
3493 * Returns: 1 if the group is semi-idle. 0 otherwise.
3495 * We define a sched_group to be semi idle if it has atleast one idle-CPU
3496 * and atleast one non-idle CPU. This helper function checks if the given
3497 * sched_group is semi-idle or not.
3499 static inline int is_semi_idle_group(struct sched_group *ilb_group)
3501 cpumask_and(nohz.grp_idle_mask, nohz.idle_cpus_mask,
3502 sched_group_cpus(ilb_group));
3505 * A sched_group is semi-idle when it has atleast one busy cpu
3506 * and atleast one idle cpu.
3508 if (cpumask_empty(nohz.grp_idle_mask))
3509 return 0;
3511 if (cpumask_equal(nohz.grp_idle_mask, sched_group_cpus(ilb_group)))
3512 return 0;
3514 return 1;
3517 * find_new_ilb - Finds the optimum idle load balancer for nomination.
3518 * @cpu: The cpu which is nominating a new idle_load_balancer.
3520 * Returns: Returns the id of the idle load balancer if it exists,
3521 * Else, returns >= nr_cpu_ids.
3523 * This algorithm picks the idle load balancer such that it belongs to a
3524 * semi-idle powersavings sched_domain. The idea is to try and avoid
3525 * completely idle packages/cores just for the purpose of idle load balancing
3526 * when there are other idle cpu's which are better suited for that job.
3528 static int find_new_ilb(int cpu)
3530 struct sched_domain *sd;
3531 struct sched_group *ilb_group;
3534 * Have idle load balancer selection from semi-idle packages only
3535 * when power-aware load balancing is enabled
3537 if (!(sched_smt_power_savings || sched_mc_power_savings))
3538 goto out_done;
3541 * Optimize for the case when we have no idle CPUs or only one
3542 * idle CPU. Don't walk the sched_domain hierarchy in such cases
3544 if (cpumask_weight(nohz.idle_cpus_mask) < 2)
3545 goto out_done;
3547 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
3548 ilb_group = sd->groups;
3550 do {
3551 if (is_semi_idle_group(ilb_group))
3552 return cpumask_first(nohz.grp_idle_mask);
3554 ilb_group = ilb_group->next;
3556 } while (ilb_group != sd->groups);
3559 out_done:
3560 return nr_cpu_ids;
3562 #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
3563 static inline int find_new_ilb(int call_cpu)
3565 return nr_cpu_ids;
3567 #endif
3570 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
3571 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
3572 * CPU (if there is one).
3574 static void nohz_balancer_kick(int cpu)
3576 int ilb_cpu;
3578 nohz.next_balance++;
3580 ilb_cpu = get_nohz_load_balancer();
3582 if (ilb_cpu >= nr_cpu_ids) {
3583 ilb_cpu = cpumask_first(nohz.idle_cpus_mask);
3584 if (ilb_cpu >= nr_cpu_ids)
3585 return;
3588 if (!cpu_rq(ilb_cpu)->nohz_balance_kick) {
3589 struct call_single_data *cp;
3591 cpu_rq(ilb_cpu)->nohz_balance_kick = 1;
3592 cp = &per_cpu(remote_sched_softirq_cb, cpu);
3593 __smp_call_function_single(ilb_cpu, cp, 0);
3595 return;
3599 * This routine will try to nominate the ilb (idle load balancing)
3600 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3601 * load balancing on behalf of all those cpus.
3603 * When the ilb owner becomes busy, we will not have new ilb owner until some
3604 * idle CPU wakes up and goes back to idle or some busy CPU tries to kick
3605 * idle load balancing by kicking one of the idle CPUs.
3607 * Ticks are stopped for the ilb owner as well, with busy CPU kicking this
3608 * ilb owner CPU in future (when there is a need for idle load balancing on
3609 * behalf of all idle CPUs).
3611 void select_nohz_load_balancer(int stop_tick)
3613 int cpu = smp_processor_id();
3615 if (stop_tick) {
3616 if (!cpu_active(cpu)) {
3617 if (atomic_read(&nohz.load_balancer) != cpu)
3618 return;
3621 * If we are going offline and still the leader,
3622 * give up!
3624 if (atomic_cmpxchg(&nohz.load_balancer, cpu,
3625 nr_cpu_ids) != cpu)
3626 BUG();
3628 return;
3631 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
3633 if (atomic_read(&nohz.first_pick_cpu) == cpu)
3634 atomic_cmpxchg(&nohz.first_pick_cpu, cpu, nr_cpu_ids);
3635 if (atomic_read(&nohz.second_pick_cpu) == cpu)
3636 atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
3638 if (atomic_read(&nohz.load_balancer) >= nr_cpu_ids) {
3639 int new_ilb;
3641 /* make me the ilb owner */
3642 if (atomic_cmpxchg(&nohz.load_balancer, nr_cpu_ids,
3643 cpu) != nr_cpu_ids)
3644 return;
3647 * Check to see if there is a more power-efficient
3648 * ilb.
3650 new_ilb = find_new_ilb(cpu);
3651 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
3652 atomic_set(&nohz.load_balancer, nr_cpu_ids);
3653 resched_cpu(new_ilb);
3654 return;
3656 return;
3658 } else {
3659 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
3660 return;
3662 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
3664 if (atomic_read(&nohz.load_balancer) == cpu)
3665 if (atomic_cmpxchg(&nohz.load_balancer, cpu,
3666 nr_cpu_ids) != cpu)
3667 BUG();
3669 return;
3671 #endif
3673 static DEFINE_SPINLOCK(balancing);
3676 * It checks each scheduling domain to see if it is due to be balanced,
3677 * and initiates a balancing operation if so.
3679 * Balancing parameters are set up in arch_init_sched_domains.
3681 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3683 int balance = 1;
3684 struct rq *rq = cpu_rq(cpu);
3685 unsigned long interval;
3686 struct sched_domain *sd;
3687 /* Earliest time when we have to do rebalance again */
3688 unsigned long next_balance = jiffies + 60*HZ;
3689 int update_next_balance = 0;
3690 int need_serialize;
3692 update_shares(cpu);
3694 for_each_domain(cpu, sd) {
3695 if (!(sd->flags & SD_LOAD_BALANCE))
3696 continue;
3698 interval = sd->balance_interval;
3699 if (idle != CPU_IDLE)
3700 interval *= sd->busy_factor;
3702 /* scale ms to jiffies */
3703 interval = msecs_to_jiffies(interval);
3704 if (unlikely(!interval))
3705 interval = 1;
3706 if (interval > HZ*NR_CPUS/10)
3707 interval = HZ*NR_CPUS/10;
3709 need_serialize = sd->flags & SD_SERIALIZE;
3711 if (need_serialize) {
3712 if (!spin_trylock(&balancing))
3713 goto out;
3716 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3717 if (load_balance(cpu, rq, sd, idle, &balance)) {
3719 * We've pulled tasks over so either we're no
3720 * longer idle, or one of our SMT siblings is
3721 * not idle.
3723 idle = CPU_NOT_IDLE;
3725 sd->last_balance = jiffies;
3727 if (need_serialize)
3728 spin_unlock(&balancing);
3729 out:
3730 if (time_after(next_balance, sd->last_balance + interval)) {
3731 next_balance = sd->last_balance + interval;
3732 update_next_balance = 1;
3736 * Stop the load balance at this level. There is another
3737 * CPU in our sched group which is doing load balancing more
3738 * actively.
3740 if (!balance)
3741 break;
3745 * next_balance will be updated only when there is a need.
3746 * When the cpu is attached to null domain for ex, it will not be
3747 * updated.
3749 if (likely(update_next_balance))
3750 rq->next_balance = next_balance;
3753 #ifdef CONFIG_NO_HZ
3755 * In CONFIG_NO_HZ case, the idle balance kickee will do the
3756 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3758 static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
3760 struct rq *this_rq = cpu_rq(this_cpu);
3761 struct rq *rq;
3762 int balance_cpu;
3764 if (idle != CPU_IDLE || !this_rq->nohz_balance_kick)
3765 return;
3767 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
3768 if (balance_cpu == this_cpu)
3769 continue;
3772 * If this cpu gets work to do, stop the load balancing
3773 * work being done for other cpus. Next load
3774 * balancing owner will pick it up.
3776 if (need_resched()) {
3777 this_rq->nohz_balance_kick = 0;
3778 break;
3781 raw_spin_lock_irq(&this_rq->lock);
3782 update_rq_clock(this_rq);
3783 update_cpu_load(this_rq);
3784 raw_spin_unlock_irq(&this_rq->lock);
3786 rebalance_domains(balance_cpu, CPU_IDLE);
3788 rq = cpu_rq(balance_cpu);
3789 if (time_after(this_rq->next_balance, rq->next_balance))
3790 this_rq->next_balance = rq->next_balance;
3792 nohz.next_balance = this_rq->next_balance;
3793 this_rq->nohz_balance_kick = 0;
3797 * Current heuristic for kicking the idle load balancer
3798 * - first_pick_cpu is the one of the busy CPUs. It will kick
3799 * idle load balancer when it has more than one process active. This
3800 * eliminates the need for idle load balancing altogether when we have
3801 * only one running process in the system (common case).
3802 * - If there are more than one busy CPU, idle load balancer may have
3803 * to run for active_load_balance to happen (i.e., two busy CPUs are
3804 * SMT or core siblings and can run better if they move to different
3805 * physical CPUs). So, second_pick_cpu is the second of the busy CPUs
3806 * which will kick idle load balancer as soon as it has any load.
3808 static inline int nohz_kick_needed(struct rq *rq, int cpu)
3810 unsigned long now = jiffies;
3811 int ret;
3812 int first_pick_cpu, second_pick_cpu;
3814 if (time_before(now, nohz.next_balance))
3815 return 0;
3817 if (rq->idle_at_tick)
3818 return 0;
3820 first_pick_cpu = atomic_read(&nohz.first_pick_cpu);
3821 second_pick_cpu = atomic_read(&nohz.second_pick_cpu);
3823 if (first_pick_cpu < nr_cpu_ids && first_pick_cpu != cpu &&
3824 second_pick_cpu < nr_cpu_ids && second_pick_cpu != cpu)
3825 return 0;
3827 ret = atomic_cmpxchg(&nohz.first_pick_cpu, nr_cpu_ids, cpu);
3828 if (ret == nr_cpu_ids || ret == cpu) {
3829 atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
3830 if (rq->nr_running > 1)
3831 return 1;
3832 } else {
3833 ret = atomic_cmpxchg(&nohz.second_pick_cpu, nr_cpu_ids, cpu);
3834 if (ret == nr_cpu_ids || ret == cpu) {
3835 if (rq->nr_running)
3836 return 1;
3839 return 0;
3841 #else
3842 static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
3843 #endif
3846 * run_rebalance_domains is triggered when needed from the scheduler tick.
3847 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
3849 static void run_rebalance_domains(struct softirq_action *h)
3851 int this_cpu = smp_processor_id();
3852 struct rq *this_rq = cpu_rq(this_cpu);
3853 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3854 CPU_IDLE : CPU_NOT_IDLE;
3856 rebalance_domains(this_cpu, idle);
3859 * If this cpu has a pending nohz_balance_kick, then do the
3860 * balancing on behalf of the other idle cpus whose ticks are
3861 * stopped.
3863 nohz_idle_balance(this_cpu, idle);
3866 static inline int on_null_domain(int cpu)
3868 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
3872 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3874 static inline void trigger_load_balance(struct rq *rq, int cpu)
3876 /* Don't need to rebalance while attached to NULL domain */
3877 if (time_after_eq(jiffies, rq->next_balance) &&
3878 likely(!on_null_domain(cpu)))
3879 raise_softirq(SCHED_SOFTIRQ);
3880 #ifdef CONFIG_NO_HZ
3881 else if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
3882 nohz_balancer_kick(cpu);
3883 #endif
3886 static void rq_online_fair(struct rq *rq)
3888 update_sysctl();
3891 static void rq_offline_fair(struct rq *rq)
3893 update_sysctl();
3896 #else /* CONFIG_SMP */
3899 * on UP we do not need to balance between CPUs:
3901 static inline void idle_balance(int cpu, struct rq *rq)
3905 #endif /* CONFIG_SMP */
3908 * scheduler tick hitting a task of our scheduling class:
3910 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
3912 struct cfs_rq *cfs_rq;
3913 struct sched_entity *se = &curr->se;
3915 for_each_sched_entity(se) {
3916 cfs_rq = cfs_rq_of(se);
3917 entity_tick(cfs_rq, se, queued);
3922 * called on fork with the child task as argument from the parent's context
3923 * - child not yet on the tasklist
3924 * - preemption disabled
3926 static void task_fork_fair(struct task_struct *p)
3928 struct cfs_rq *cfs_rq = task_cfs_rq(current);
3929 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
3930 int this_cpu = smp_processor_id();
3931 struct rq *rq = this_rq();
3932 unsigned long flags;
3934 raw_spin_lock_irqsave(&rq->lock, flags);
3936 update_rq_clock(rq);
3938 if (unlikely(task_cpu(p) != this_cpu)) {
3939 rcu_read_lock();
3940 __set_task_cpu(p, this_cpu);
3941 rcu_read_unlock();
3944 update_curr(cfs_rq);
3946 if (curr)
3947 se->vruntime = curr->vruntime;
3948 place_entity(cfs_rq, se, 1);
3950 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
3952 * Upon rescheduling, sched_class::put_prev_task() will place
3953 * 'current' within the tree based on its new key value.
3955 swap(curr->vruntime, se->vruntime);
3956 resched_task(rq->curr);
3959 se->vruntime -= cfs_rq->min_vruntime;
3961 raw_spin_unlock_irqrestore(&rq->lock, flags);
3965 * Priority of the task has changed. Check to see if we preempt
3966 * the current task.
3968 static void prio_changed_fair(struct rq *rq, struct task_struct *p,
3969 int oldprio, int running)
3972 * Reschedule if we are currently running on this runqueue and
3973 * our priority decreased, or if we are not currently running on
3974 * this runqueue and our priority is higher than the current's
3976 if (running) {
3977 if (p->prio > oldprio)
3978 resched_task(rq->curr);
3979 } else
3980 check_preempt_curr(rq, p, 0);
3984 * We switched to the sched_fair class.
3986 static void switched_to_fair(struct rq *rq, struct task_struct *p,
3987 int running)
3990 * We were most likely switched from sched_rt, so
3991 * kick off the schedule if running, otherwise just see
3992 * if we can still preempt the current task.
3994 if (running)
3995 resched_task(rq->curr);
3996 else
3997 check_preempt_curr(rq, p, 0);
4000 /* Account for a task changing its policy or group.
4002 * This routine is mostly called to set cfs_rq->curr field when a task
4003 * migrates between groups/classes.
4005 static void set_curr_task_fair(struct rq *rq)
4007 struct sched_entity *se = &rq->curr->se;
4009 for_each_sched_entity(se)
4010 set_next_entity(cfs_rq_of(se), se);
4013 #ifdef CONFIG_FAIR_GROUP_SCHED
4014 static void task_move_group_fair(struct task_struct *p, int on_rq)
4017 * If the task was not on the rq at the time of this cgroup movement
4018 * it must have been asleep, sleeping tasks keep their ->vruntime
4019 * absolute on their old rq until wakeup (needed for the fair sleeper
4020 * bonus in place_entity()).
4022 * If it was on the rq, we've just 'preempted' it, which does convert
4023 * ->vruntime to a relative base.
4025 * Make sure both cases convert their relative position when migrating
4026 * to another cgroup's rq. This does somewhat interfere with the
4027 * fair sleeper stuff for the first placement, but who cares.
4029 if (!on_rq)
4030 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
4031 set_task_rq(p, task_cpu(p));
4032 if (!on_rq)
4033 p->se.vruntime += cfs_rq_of(&p->se)->min_vruntime;
4035 #endif
4037 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
4039 struct sched_entity *se = &task->se;
4040 unsigned int rr_interval = 0;
4043 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
4044 * idle runqueue:
4046 if (rq->cfs.load.weight)
4047 rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
4049 return rr_interval;
4053 * All the scheduling class methods:
4055 static const struct sched_class fair_sched_class = {
4056 .next = &idle_sched_class,
4057 .enqueue_task = enqueue_task_fair,
4058 .dequeue_task = dequeue_task_fair,
4059 .yield_task = yield_task_fair,
4061 .check_preempt_curr = check_preempt_wakeup,
4063 .pick_next_task = pick_next_task_fair,
4064 .put_prev_task = put_prev_task_fair,
4066 #ifdef CONFIG_SMP
4067 .select_task_rq = select_task_rq_fair,
4069 .rq_online = rq_online_fair,
4070 .rq_offline = rq_offline_fair,
4072 .task_waking = task_waking_fair,
4073 #endif
4075 .set_curr_task = set_curr_task_fair,
4076 .task_tick = task_tick_fair,
4077 .task_fork = task_fork_fair,
4079 .prio_changed = prio_changed_fair,
4080 .switched_to = switched_to_fair,
4082 .get_rr_interval = get_rr_interval_fair,
4084 #ifdef CONFIG_FAIR_GROUP_SCHED
4085 .task_move_group = task_move_group_fair,
4086 #endif
4089 #ifdef CONFIG_SCHED_DEBUG
4090 static void print_cfs_stats(struct seq_file *m, int cpu)
4092 struct cfs_rq *cfs_rq;
4094 rcu_read_lock();
4095 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
4096 print_cfs_rq(m, cpu, cfs_rq);
4097 rcu_read_unlock();
4099 #endif