2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
7 * Permission to use, copy, modify, and/or distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
22 * DOC: Wireless regulatory infrastructure
24 * The usual implementation is for a driver to read a device EEPROM to
25 * determine which regulatory domain it should be operating under, then
26 * looking up the allowable channels in a driver-local table and finally
27 * registering those channels in the wiphy structure.
29 * Another set of compliance enforcement is for drivers to use their
30 * own compliance limits which can be stored on the EEPROM. The host
31 * driver or firmware may ensure these are used.
33 * In addition to all this we provide an extra layer of regulatory
34 * conformance. For drivers which do not have any regulatory
35 * information CRDA provides the complete regulatory solution.
36 * For others it provides a community effort on further restrictions
37 * to enhance compliance.
39 * Note: When number of rules --> infinity we will not be able to
40 * index on alpha2 any more, instead we'll probably have to
41 * rely on some SHA1 checksum of the regdomain for example.
45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
47 #include <linux/kernel.h>
48 #include <linux/export.h>
49 #include <linux/slab.h>
50 #include <linux/list.h>
51 #include <linux/random.h>
52 #include <linux/ctype.h>
53 #include <linux/nl80211.h>
54 #include <linux/platform_device.h>
55 #include <linux/moduleparam.h>
56 #include <net/cfg80211.h>
62 #ifdef CONFIG_CFG80211_REG_DEBUG
63 #define REG_DBG_PRINT(format, args...) \
64 printk(KERN_DEBUG pr_fmt(format), ##args)
66 #define REG_DBG_PRINT(args...)
69 static struct regulatory_request core_request_world
= {
70 .initiator
= NL80211_REGDOM_SET_BY_CORE
,
75 .country_ie_env
= ENVIRON_ANY
,
78 /* Receipt of information from last regulatory request */
79 static struct regulatory_request
*last_request
= &core_request_world
;
81 /* To trigger userspace events */
82 static struct platform_device
*reg_pdev
;
84 static struct device_type reg_device_type
= {
85 .uevent
= reg_device_uevent
,
89 * Central wireless core regulatory domains, we only need two,
90 * the current one and a world regulatory domain in case we have no
91 * information to give us an alpha2
93 const struct ieee80211_regdomain
*cfg80211_regdomain
;
96 * Protects static reg.c components:
97 * - cfg80211_world_regdom
100 * - reg_num_devs_support_basehint
102 static DEFINE_MUTEX(reg_mutex
);
105 * Number of devices that registered to the core
106 * that support cellular base station regulatory hints
108 static int reg_num_devs_support_basehint
;
110 static inline void assert_reg_lock(void)
112 lockdep_assert_held(®_mutex
);
115 /* Used to queue up regulatory hints */
116 static LIST_HEAD(reg_requests_list
);
117 static spinlock_t reg_requests_lock
;
119 /* Used to queue up beacon hints for review */
120 static LIST_HEAD(reg_pending_beacons
);
121 static spinlock_t reg_pending_beacons_lock
;
123 /* Used to keep track of processed beacon hints */
124 static LIST_HEAD(reg_beacon_list
);
127 struct list_head list
;
128 struct ieee80211_channel chan
;
131 static void reg_todo(struct work_struct
*work
);
132 static DECLARE_WORK(reg_work
, reg_todo
);
134 static void reg_timeout_work(struct work_struct
*work
);
135 static DECLARE_DELAYED_WORK(reg_timeout
, reg_timeout_work
);
137 /* We keep a static world regulatory domain in case of the absence of CRDA */
138 static const struct ieee80211_regdomain world_regdom
= {
142 /* IEEE 802.11b/g, channels 1..11 */
143 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
144 /* IEEE 802.11b/g, channels 12..13. */
145 REG_RULE(2467-10, 2472+10, 40, 6, 20,
146 NL80211_RRF_PASSIVE_SCAN
|
147 NL80211_RRF_NO_IBSS
),
148 /* IEEE 802.11 channel 14 - Only JP enables
149 * this and for 802.11b only */
150 REG_RULE(2484-10, 2484+10, 20, 6, 20,
151 NL80211_RRF_PASSIVE_SCAN
|
152 NL80211_RRF_NO_IBSS
|
153 NL80211_RRF_NO_OFDM
),
154 /* IEEE 802.11a, channel 36..48 */
155 REG_RULE(5180-10, 5240+10, 40, 6, 20,
156 NL80211_RRF_PASSIVE_SCAN
|
157 NL80211_RRF_NO_IBSS
),
159 /* NB: 5260 MHz - 5700 MHz requies DFS */
161 /* IEEE 802.11a, channel 149..165 */
162 REG_RULE(5745-10, 5825+10, 40, 6, 20,
163 NL80211_RRF_PASSIVE_SCAN
|
164 NL80211_RRF_NO_IBSS
),
166 /* IEEE 802.11ad (60gHz), channels 1..3 */
167 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
171 static const struct ieee80211_regdomain
*cfg80211_world_regdom
=
174 static char *ieee80211_regdom
= "00";
175 static char user_alpha2
[2];
177 module_param(ieee80211_regdom
, charp
, 0444);
178 MODULE_PARM_DESC(ieee80211_regdom
, "IEEE 802.11 regulatory domain code");
180 static void reset_regdomains(bool full_reset
)
182 /* avoid freeing static information or freeing something twice */
183 if (cfg80211_regdomain
== cfg80211_world_regdom
)
184 cfg80211_regdomain
= NULL
;
185 if (cfg80211_world_regdom
== &world_regdom
)
186 cfg80211_world_regdom
= NULL
;
187 if (cfg80211_regdomain
== &world_regdom
)
188 cfg80211_regdomain
= NULL
;
190 kfree(cfg80211_regdomain
);
191 kfree(cfg80211_world_regdom
);
193 cfg80211_world_regdom
= &world_regdom
;
194 cfg80211_regdomain
= NULL
;
199 if (last_request
!= &core_request_world
)
201 last_request
= &core_request_world
;
205 * Dynamic world regulatory domain requested by the wireless
206 * core upon initialization
208 static void update_world_regdomain(const struct ieee80211_regdomain
*rd
)
210 BUG_ON(!last_request
);
212 reset_regdomains(false);
214 cfg80211_world_regdom
= rd
;
215 cfg80211_regdomain
= rd
;
218 bool is_world_regdom(const char *alpha2
)
222 if (alpha2
[0] == '0' && alpha2
[1] == '0')
227 static bool is_alpha2_set(const char *alpha2
)
231 if (alpha2
[0] != 0 && alpha2
[1] != 0)
236 static bool is_unknown_alpha2(const char *alpha2
)
241 * Special case where regulatory domain was built by driver
242 * but a specific alpha2 cannot be determined
244 if (alpha2
[0] == '9' && alpha2
[1] == '9')
249 static bool is_intersected_alpha2(const char *alpha2
)
254 * Special case where regulatory domain is the
255 * result of an intersection between two regulatory domain
258 if (alpha2
[0] == '9' && alpha2
[1] == '8')
263 static bool is_an_alpha2(const char *alpha2
)
267 if (isalpha(alpha2
[0]) && isalpha(alpha2
[1]))
272 static bool alpha2_equal(const char *alpha2_x
, const char *alpha2_y
)
274 if (!alpha2_x
|| !alpha2_y
)
276 if (alpha2_x
[0] == alpha2_y
[0] &&
277 alpha2_x
[1] == alpha2_y
[1])
282 static bool regdom_changes(const char *alpha2
)
284 assert_cfg80211_lock();
286 if (!cfg80211_regdomain
)
288 if (alpha2_equal(cfg80211_regdomain
->alpha2
, alpha2
))
294 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
295 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
296 * has ever been issued.
298 static bool is_user_regdom_saved(void)
300 if (user_alpha2
[0] == '9' && user_alpha2
[1] == '7')
303 /* This would indicate a mistake on the design */
304 if (WARN((!is_world_regdom(user_alpha2
) &&
305 !is_an_alpha2(user_alpha2
)),
306 "Unexpected user alpha2: %c%c\n",
314 static int reg_copy_regd(const struct ieee80211_regdomain
**dst_regd
,
315 const struct ieee80211_regdomain
*src_regd
)
317 struct ieee80211_regdomain
*regd
;
318 int size_of_regd
= 0;
321 size_of_regd
= sizeof(struct ieee80211_regdomain
) +
322 ((src_regd
->n_reg_rules
+ 1) * sizeof(struct ieee80211_reg_rule
));
324 regd
= kzalloc(size_of_regd
, GFP_KERNEL
);
328 memcpy(regd
, src_regd
, sizeof(struct ieee80211_regdomain
));
330 for (i
= 0; i
< src_regd
->n_reg_rules
; i
++)
331 memcpy(®d
->reg_rules
[i
], &src_regd
->reg_rules
[i
],
332 sizeof(struct ieee80211_reg_rule
));
338 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
339 struct reg_regdb_search_request
{
341 struct list_head list
;
344 static LIST_HEAD(reg_regdb_search_list
);
345 static DEFINE_MUTEX(reg_regdb_search_mutex
);
347 static void reg_regdb_search(struct work_struct
*work
)
349 struct reg_regdb_search_request
*request
;
350 const struct ieee80211_regdomain
*curdom
, *regdom
;
352 bool set_reg
= false;
354 mutex_lock(&cfg80211_mutex
);
356 mutex_lock(®_regdb_search_mutex
);
357 while (!list_empty(®_regdb_search_list
)) {
358 request
= list_first_entry(®_regdb_search_list
,
359 struct reg_regdb_search_request
,
361 list_del(&request
->list
);
363 for (i
=0; i
<reg_regdb_size
; i
++) {
364 curdom
= reg_regdb
[i
];
366 if (!memcmp(request
->alpha2
, curdom
->alpha2
, 2)) {
367 r
= reg_copy_regd(®dom
, curdom
);
377 mutex_unlock(®_regdb_search_mutex
);
382 mutex_unlock(&cfg80211_mutex
);
385 static DECLARE_WORK(reg_regdb_work
, reg_regdb_search
);
387 static void reg_regdb_query(const char *alpha2
)
389 struct reg_regdb_search_request
*request
;
394 request
= kzalloc(sizeof(struct reg_regdb_search_request
), GFP_KERNEL
);
398 memcpy(request
->alpha2
, alpha2
, 2);
400 mutex_lock(®_regdb_search_mutex
);
401 list_add_tail(&request
->list
, ®_regdb_search_list
);
402 mutex_unlock(®_regdb_search_mutex
);
404 schedule_work(®_regdb_work
);
407 /* Feel free to add any other sanity checks here */
408 static void reg_regdb_size_check(void)
410 /* We should ideally BUILD_BUG_ON() but then random builds would fail */
411 WARN_ONCE(!reg_regdb_size
, "db.txt is empty, you should update it...");
414 static inline void reg_regdb_size_check(void) {}
415 static inline void reg_regdb_query(const char *alpha2
) {}
416 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
419 * This lets us keep regulatory code which is updated on a regulatory
420 * basis in userspace. Country information is filled in by
423 static int call_crda(const char *alpha2
)
425 if (!is_world_regdom((char *) alpha2
))
426 pr_info("Calling CRDA for country: %c%c\n",
427 alpha2
[0], alpha2
[1]);
429 pr_info("Calling CRDA to update world regulatory domain\n");
431 /* query internal regulatory database (if it exists) */
432 reg_regdb_query(alpha2
);
434 return kobject_uevent(®_pdev
->dev
.kobj
, KOBJ_CHANGE
);
437 /* Used by nl80211 before kmalloc'ing our regulatory domain */
438 bool reg_is_valid_request(const char *alpha2
)
440 assert_cfg80211_lock();
445 return alpha2_equal(last_request
->alpha2
, alpha2
);
448 /* Sanity check on a regulatory rule */
449 static bool is_valid_reg_rule(const struct ieee80211_reg_rule
*rule
)
451 const struct ieee80211_freq_range
*freq_range
= &rule
->freq_range
;
454 if (freq_range
->start_freq_khz
<= 0 || freq_range
->end_freq_khz
<= 0)
457 if (freq_range
->start_freq_khz
> freq_range
->end_freq_khz
)
460 freq_diff
= freq_range
->end_freq_khz
- freq_range
->start_freq_khz
;
462 if (freq_range
->end_freq_khz
<= freq_range
->start_freq_khz
||
463 freq_range
->max_bandwidth_khz
> freq_diff
)
469 static bool is_valid_rd(const struct ieee80211_regdomain
*rd
)
471 const struct ieee80211_reg_rule
*reg_rule
= NULL
;
474 if (!rd
->n_reg_rules
)
477 if (WARN_ON(rd
->n_reg_rules
> NL80211_MAX_SUPP_REG_RULES
))
480 for (i
= 0; i
< rd
->n_reg_rules
; i
++) {
481 reg_rule
= &rd
->reg_rules
[i
];
482 if (!is_valid_reg_rule(reg_rule
))
489 static bool reg_does_bw_fit(const struct ieee80211_freq_range
*freq_range
,
493 u32 start_freq_khz
, end_freq_khz
;
495 start_freq_khz
= center_freq_khz
- (bw_khz
/2);
496 end_freq_khz
= center_freq_khz
+ (bw_khz
/2);
498 if (start_freq_khz
>= freq_range
->start_freq_khz
&&
499 end_freq_khz
<= freq_range
->end_freq_khz
)
506 * freq_in_rule_band - tells us if a frequency is in a frequency band
507 * @freq_range: frequency rule we want to query
508 * @freq_khz: frequency we are inquiring about
510 * This lets us know if a specific frequency rule is or is not relevant to
511 * a specific frequency's band. Bands are device specific and artificial
512 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
513 * however it is safe for now to assume that a frequency rule should not be
514 * part of a frequency's band if the start freq or end freq are off by more
515 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the
517 * This resolution can be lowered and should be considered as we add
518 * regulatory rule support for other "bands".
520 static bool freq_in_rule_band(const struct ieee80211_freq_range
*freq_range
,
523 #define ONE_GHZ_IN_KHZ 1000000
525 * From 802.11ad: directional multi-gigabit (DMG):
526 * Pertaining to operation in a frequency band containing a channel
527 * with the Channel starting frequency above 45 GHz.
529 u32 limit
= freq_khz
> 45 * ONE_GHZ_IN_KHZ
?
530 10 * ONE_GHZ_IN_KHZ
: 2 * ONE_GHZ_IN_KHZ
;
531 if (abs(freq_khz
- freq_range
->start_freq_khz
) <= limit
)
533 if (abs(freq_khz
- freq_range
->end_freq_khz
) <= limit
)
536 #undef ONE_GHZ_IN_KHZ
540 * Helper for regdom_intersect(), this does the real
541 * mathematical intersection fun
543 static int reg_rules_intersect(
544 const struct ieee80211_reg_rule
*rule1
,
545 const struct ieee80211_reg_rule
*rule2
,
546 struct ieee80211_reg_rule
*intersected_rule
)
548 const struct ieee80211_freq_range
*freq_range1
, *freq_range2
;
549 struct ieee80211_freq_range
*freq_range
;
550 const struct ieee80211_power_rule
*power_rule1
, *power_rule2
;
551 struct ieee80211_power_rule
*power_rule
;
554 freq_range1
= &rule1
->freq_range
;
555 freq_range2
= &rule2
->freq_range
;
556 freq_range
= &intersected_rule
->freq_range
;
558 power_rule1
= &rule1
->power_rule
;
559 power_rule2
= &rule2
->power_rule
;
560 power_rule
= &intersected_rule
->power_rule
;
562 freq_range
->start_freq_khz
= max(freq_range1
->start_freq_khz
,
563 freq_range2
->start_freq_khz
);
564 freq_range
->end_freq_khz
= min(freq_range1
->end_freq_khz
,
565 freq_range2
->end_freq_khz
);
566 freq_range
->max_bandwidth_khz
= min(freq_range1
->max_bandwidth_khz
,
567 freq_range2
->max_bandwidth_khz
);
569 freq_diff
= freq_range
->end_freq_khz
- freq_range
->start_freq_khz
;
570 if (freq_range
->max_bandwidth_khz
> freq_diff
)
571 freq_range
->max_bandwidth_khz
= freq_diff
;
573 power_rule
->max_eirp
= min(power_rule1
->max_eirp
,
574 power_rule2
->max_eirp
);
575 power_rule
->max_antenna_gain
= min(power_rule1
->max_antenna_gain
,
576 power_rule2
->max_antenna_gain
);
578 intersected_rule
->flags
= (rule1
->flags
| rule2
->flags
);
580 if (!is_valid_reg_rule(intersected_rule
))
587 * regdom_intersect - do the intersection between two regulatory domains
588 * @rd1: first regulatory domain
589 * @rd2: second regulatory domain
591 * Use this function to get the intersection between two regulatory domains.
592 * Once completed we will mark the alpha2 for the rd as intersected, "98",
593 * as no one single alpha2 can represent this regulatory domain.
595 * Returns a pointer to the regulatory domain structure which will hold the
596 * resulting intersection of rules between rd1 and rd2. We will
597 * kzalloc() this structure for you.
599 static struct ieee80211_regdomain
*regdom_intersect(
600 const struct ieee80211_regdomain
*rd1
,
601 const struct ieee80211_regdomain
*rd2
)
605 unsigned int num_rules
= 0, rule_idx
= 0;
606 const struct ieee80211_reg_rule
*rule1
, *rule2
;
607 struct ieee80211_reg_rule
*intersected_rule
;
608 struct ieee80211_regdomain
*rd
;
609 /* This is just a dummy holder to help us count */
610 struct ieee80211_reg_rule irule
;
612 /* Uses the stack temporarily for counter arithmetic */
613 intersected_rule
= &irule
;
615 memset(intersected_rule
, 0, sizeof(struct ieee80211_reg_rule
));
621 * First we get a count of the rules we'll need, then we actually
622 * build them. This is to so we can malloc() and free() a
623 * regdomain once. The reason we use reg_rules_intersect() here
624 * is it will return -EINVAL if the rule computed makes no sense.
625 * All rules that do check out OK are valid.
628 for (x
= 0; x
< rd1
->n_reg_rules
; x
++) {
629 rule1
= &rd1
->reg_rules
[x
];
630 for (y
= 0; y
< rd2
->n_reg_rules
; y
++) {
631 rule2
= &rd2
->reg_rules
[y
];
632 if (!reg_rules_intersect(rule1
, rule2
,
635 memset(intersected_rule
, 0,
636 sizeof(struct ieee80211_reg_rule
));
643 size_of_regd
= sizeof(struct ieee80211_regdomain
) +
644 ((num_rules
+ 1) * sizeof(struct ieee80211_reg_rule
));
646 rd
= kzalloc(size_of_regd
, GFP_KERNEL
);
650 for (x
= 0; x
< rd1
->n_reg_rules
; x
++) {
651 rule1
= &rd1
->reg_rules
[x
];
652 for (y
= 0; y
< rd2
->n_reg_rules
; y
++) {
653 rule2
= &rd2
->reg_rules
[y
];
655 * This time around instead of using the stack lets
656 * write to the target rule directly saving ourselves
659 intersected_rule
= &rd
->reg_rules
[rule_idx
];
660 r
= reg_rules_intersect(rule1
, rule2
,
663 * No need to memset here the intersected rule here as
664 * we're not using the stack anymore
672 if (rule_idx
!= num_rules
) {
677 rd
->n_reg_rules
= num_rules
;
685 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
686 * want to just have the channel structure use these
688 static u32
map_regdom_flags(u32 rd_flags
)
690 u32 channel_flags
= 0;
691 if (rd_flags
& NL80211_RRF_PASSIVE_SCAN
)
692 channel_flags
|= IEEE80211_CHAN_PASSIVE_SCAN
;
693 if (rd_flags
& NL80211_RRF_NO_IBSS
)
694 channel_flags
|= IEEE80211_CHAN_NO_IBSS
;
695 if (rd_flags
& NL80211_RRF_DFS
)
696 channel_flags
|= IEEE80211_CHAN_RADAR
;
697 if (rd_flags
& NL80211_RRF_NO_OFDM
)
698 channel_flags
|= IEEE80211_CHAN_NO_OFDM
;
699 return channel_flags
;
702 static int freq_reg_info_regd(struct wiphy
*wiphy
,
705 const struct ieee80211_reg_rule
**reg_rule
,
706 const struct ieee80211_regdomain
*custom_regd
)
709 bool band_rule_found
= false;
710 const struct ieee80211_regdomain
*regd
;
711 bool bw_fits
= false;
714 desired_bw_khz
= MHZ_TO_KHZ(20);
716 regd
= custom_regd
? custom_regd
: cfg80211_regdomain
;
719 * Follow the driver's regulatory domain, if present, unless a country
720 * IE has been processed or a user wants to help complaince further
723 last_request
->initiator
!= NL80211_REGDOM_SET_BY_COUNTRY_IE
&&
724 last_request
->initiator
!= NL80211_REGDOM_SET_BY_USER
&&
731 for (i
= 0; i
< regd
->n_reg_rules
; i
++) {
732 const struct ieee80211_reg_rule
*rr
;
733 const struct ieee80211_freq_range
*fr
= NULL
;
735 rr
= ®d
->reg_rules
[i
];
736 fr
= &rr
->freq_range
;
739 * We only need to know if one frequency rule was
740 * was in center_freq's band, that's enough, so lets
741 * not overwrite it once found
743 if (!band_rule_found
)
744 band_rule_found
= freq_in_rule_band(fr
, center_freq
);
746 bw_fits
= reg_does_bw_fit(fr
,
750 if (band_rule_found
&& bw_fits
) {
756 if (!band_rule_found
)
762 int freq_reg_info(struct wiphy
*wiphy
,
765 const struct ieee80211_reg_rule
**reg_rule
)
767 assert_cfg80211_lock();
768 return freq_reg_info_regd(wiphy
,
774 EXPORT_SYMBOL(freq_reg_info
);
776 #ifdef CONFIG_CFG80211_REG_DEBUG
777 static const char *reg_initiator_name(enum nl80211_reg_initiator initiator
)
780 case NL80211_REGDOM_SET_BY_CORE
:
781 return "Set by core";
782 case NL80211_REGDOM_SET_BY_USER
:
783 return "Set by user";
784 case NL80211_REGDOM_SET_BY_DRIVER
:
785 return "Set by driver";
786 case NL80211_REGDOM_SET_BY_COUNTRY_IE
:
787 return "Set by country IE";
794 static void chan_reg_rule_print_dbg(struct ieee80211_channel
*chan
,
796 const struct ieee80211_reg_rule
*reg_rule
)
798 const struct ieee80211_power_rule
*power_rule
;
799 const struct ieee80211_freq_range
*freq_range
;
800 char max_antenna_gain
[32];
802 power_rule
= ®_rule
->power_rule
;
803 freq_range
= ®_rule
->freq_range
;
805 if (!power_rule
->max_antenna_gain
)
806 snprintf(max_antenna_gain
, 32, "N/A");
808 snprintf(max_antenna_gain
, 32, "%d", power_rule
->max_antenna_gain
);
810 REG_DBG_PRINT("Updating information on frequency %d MHz "
811 "for a %d MHz width channel with regulatory rule:\n",
813 KHZ_TO_MHZ(desired_bw_khz
));
815 REG_DBG_PRINT("%d KHz - %d KHz @ %d KHz), (%s mBi, %d mBm)\n",
816 freq_range
->start_freq_khz
,
817 freq_range
->end_freq_khz
,
818 freq_range
->max_bandwidth_khz
,
820 power_rule
->max_eirp
);
823 static void chan_reg_rule_print_dbg(struct ieee80211_channel
*chan
,
825 const struct ieee80211_reg_rule
*reg_rule
)
832 * Note that right now we assume the desired channel bandwidth
833 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
834 * per channel, the primary and the extension channel). To support
835 * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a
836 * new ieee80211_channel.target_bw and re run the regulatory check
837 * on the wiphy with the target_bw specified. Then we can simply use
838 * that below for the desired_bw_khz below.
840 static void handle_channel(struct wiphy
*wiphy
,
841 enum nl80211_reg_initiator initiator
,
842 enum ieee80211_band band
,
843 unsigned int chan_idx
)
846 u32 flags
, bw_flags
= 0;
847 u32 desired_bw_khz
= MHZ_TO_KHZ(20);
848 const struct ieee80211_reg_rule
*reg_rule
= NULL
;
849 const struct ieee80211_power_rule
*power_rule
= NULL
;
850 const struct ieee80211_freq_range
*freq_range
= NULL
;
851 struct ieee80211_supported_band
*sband
;
852 struct ieee80211_channel
*chan
;
853 struct wiphy
*request_wiphy
= NULL
;
855 assert_cfg80211_lock();
857 request_wiphy
= wiphy_idx_to_wiphy(last_request
->wiphy_idx
);
859 sband
= wiphy
->bands
[band
];
860 BUG_ON(chan_idx
>= sband
->n_channels
);
861 chan
= &sband
->channels
[chan_idx
];
863 flags
= chan
->orig_flags
;
865 r
= freq_reg_info(wiphy
,
866 MHZ_TO_KHZ(chan
->center_freq
),
872 * We will disable all channels that do not match our
873 * received regulatory rule unless the hint is coming
874 * from a Country IE and the Country IE had no information
875 * about a band. The IEEE 802.11 spec allows for an AP
876 * to send only a subset of the regulatory rules allowed,
877 * so an AP in the US that only supports 2.4 GHz may only send
878 * a country IE with information for the 2.4 GHz band
879 * while 5 GHz is still supported.
881 if (initiator
== NL80211_REGDOM_SET_BY_COUNTRY_IE
&&
885 REG_DBG_PRINT("Disabling freq %d MHz\n", chan
->center_freq
);
886 chan
->flags
= IEEE80211_CHAN_DISABLED
;
890 chan_reg_rule_print_dbg(chan
, desired_bw_khz
, reg_rule
);
892 power_rule
= ®_rule
->power_rule
;
893 freq_range
= ®_rule
->freq_range
;
895 if (freq_range
->max_bandwidth_khz
< MHZ_TO_KHZ(40))
896 bw_flags
= IEEE80211_CHAN_NO_HT40
;
898 if (last_request
->initiator
== NL80211_REGDOM_SET_BY_DRIVER
&&
899 request_wiphy
&& request_wiphy
== wiphy
&&
900 request_wiphy
->flags
& WIPHY_FLAG_STRICT_REGULATORY
) {
902 * This guarantees the driver's requested regulatory domain
903 * will always be used as a base for further regulatory
906 chan
->flags
= chan
->orig_flags
=
907 map_regdom_flags(reg_rule
->flags
) | bw_flags
;
908 chan
->max_antenna_gain
= chan
->orig_mag
=
909 (int) MBI_TO_DBI(power_rule
->max_antenna_gain
);
910 chan
->max_reg_power
= chan
->max_power
= chan
->orig_mpwr
=
911 (int) MBM_TO_DBM(power_rule
->max_eirp
);
915 chan
->beacon_found
= false;
916 chan
->flags
= flags
| bw_flags
| map_regdom_flags(reg_rule
->flags
);
917 chan
->max_antenna_gain
= min(chan
->orig_mag
,
918 (int) MBI_TO_DBI(power_rule
->max_antenna_gain
));
919 chan
->max_reg_power
= (int) MBM_TO_DBM(power_rule
->max_eirp
);
920 if (chan
->orig_mpwr
) {
922 * Devices that have their own custom regulatory domain
923 * but also use WIPHY_FLAG_STRICT_REGULATORY will follow the
924 * passed country IE power settings.
926 if (initiator
== NL80211_REGDOM_SET_BY_COUNTRY_IE
&&
927 wiphy
->flags
& WIPHY_FLAG_CUSTOM_REGULATORY
&&
928 wiphy
->flags
& WIPHY_FLAG_STRICT_REGULATORY
)
929 chan
->max_power
= chan
->max_reg_power
;
931 chan
->max_power
= min(chan
->orig_mpwr
,
932 chan
->max_reg_power
);
934 chan
->max_power
= chan
->max_reg_power
;
937 static void handle_band(struct wiphy
*wiphy
,
938 enum ieee80211_band band
,
939 enum nl80211_reg_initiator initiator
)
942 struct ieee80211_supported_band
*sband
;
944 BUG_ON(!wiphy
->bands
[band
]);
945 sband
= wiphy
->bands
[band
];
947 for (i
= 0; i
< sband
->n_channels
; i
++)
948 handle_channel(wiphy
, initiator
, band
, i
);
951 static bool reg_request_cell_base(struct regulatory_request
*request
)
953 if (request
->initiator
!= NL80211_REGDOM_SET_BY_USER
)
955 if (request
->user_reg_hint_type
!= NL80211_USER_REG_HINT_CELL_BASE
)
960 bool reg_last_request_cell_base(void)
963 assert_cfg80211_lock();
965 mutex_lock(®_mutex
);
966 val
= reg_request_cell_base(last_request
);
967 mutex_unlock(®_mutex
);
971 #ifdef CONFIG_CFG80211_CERTIFICATION_ONUS
973 /* Core specific check */
974 static int reg_ignore_cell_hint(struct regulatory_request
*pending_request
)
976 if (!reg_num_devs_support_basehint
)
979 if (reg_request_cell_base(last_request
)) {
980 if (!regdom_changes(pending_request
->alpha2
))
987 /* Device specific check */
988 static bool reg_dev_ignore_cell_hint(struct wiphy
*wiphy
)
990 if (!(wiphy
->features
& NL80211_FEATURE_CELL_BASE_REG_HINTS
))
995 static int reg_ignore_cell_hint(struct regulatory_request
*pending_request
)
999 static int reg_dev_ignore_cell_hint(struct wiphy
*wiphy
)
1006 static bool ignore_reg_update(struct wiphy
*wiphy
,
1007 enum nl80211_reg_initiator initiator
)
1009 if (!last_request
) {
1010 REG_DBG_PRINT("Ignoring regulatory request %s since "
1011 "last_request is not set\n",
1012 reg_initiator_name(initiator
));
1016 if (initiator
== NL80211_REGDOM_SET_BY_CORE
&&
1017 wiphy
->flags
& WIPHY_FLAG_CUSTOM_REGULATORY
) {
1018 REG_DBG_PRINT("Ignoring regulatory request %s "
1019 "since the driver uses its own custom "
1020 "regulatory domain\n",
1021 reg_initiator_name(initiator
));
1026 * wiphy->regd will be set once the device has its own
1027 * desired regulatory domain set
1029 if (wiphy
->flags
& WIPHY_FLAG_STRICT_REGULATORY
&& !wiphy
->regd
&&
1030 initiator
!= NL80211_REGDOM_SET_BY_COUNTRY_IE
&&
1031 !is_world_regdom(last_request
->alpha2
)) {
1032 REG_DBG_PRINT("Ignoring regulatory request %s "
1033 "since the driver requires its own regulatory "
1034 "domain to be set first\n",
1035 reg_initiator_name(initiator
));
1039 if (reg_request_cell_base(last_request
))
1040 return reg_dev_ignore_cell_hint(wiphy
);
1045 static void handle_reg_beacon(struct wiphy
*wiphy
,
1046 unsigned int chan_idx
,
1047 struct reg_beacon
*reg_beacon
)
1049 struct ieee80211_supported_band
*sband
;
1050 struct ieee80211_channel
*chan
;
1051 bool channel_changed
= false;
1052 struct ieee80211_channel chan_before
;
1054 assert_cfg80211_lock();
1056 sband
= wiphy
->bands
[reg_beacon
->chan
.band
];
1057 chan
= &sband
->channels
[chan_idx
];
1059 if (likely(chan
->center_freq
!= reg_beacon
->chan
.center_freq
))
1062 if (chan
->beacon_found
)
1065 chan
->beacon_found
= true;
1067 if (wiphy
->flags
& WIPHY_FLAG_DISABLE_BEACON_HINTS
)
1070 chan_before
.center_freq
= chan
->center_freq
;
1071 chan_before
.flags
= chan
->flags
;
1073 if (chan
->flags
& IEEE80211_CHAN_PASSIVE_SCAN
) {
1074 chan
->flags
&= ~IEEE80211_CHAN_PASSIVE_SCAN
;
1075 channel_changed
= true;
1078 if (chan
->flags
& IEEE80211_CHAN_NO_IBSS
) {
1079 chan
->flags
&= ~IEEE80211_CHAN_NO_IBSS
;
1080 channel_changed
= true;
1083 if (channel_changed
)
1084 nl80211_send_beacon_hint_event(wiphy
, &chan_before
, chan
);
1088 * Called when a scan on a wiphy finds a beacon on
1091 static void wiphy_update_new_beacon(struct wiphy
*wiphy
,
1092 struct reg_beacon
*reg_beacon
)
1095 struct ieee80211_supported_band
*sband
;
1097 assert_cfg80211_lock();
1099 if (!wiphy
->bands
[reg_beacon
->chan
.band
])
1102 sband
= wiphy
->bands
[reg_beacon
->chan
.band
];
1104 for (i
= 0; i
< sband
->n_channels
; i
++)
1105 handle_reg_beacon(wiphy
, i
, reg_beacon
);
1109 * Called upon reg changes or a new wiphy is added
1111 static void wiphy_update_beacon_reg(struct wiphy
*wiphy
)
1114 struct ieee80211_supported_band
*sband
;
1115 struct reg_beacon
*reg_beacon
;
1117 assert_cfg80211_lock();
1119 if (list_empty(®_beacon_list
))
1122 list_for_each_entry(reg_beacon
, ®_beacon_list
, list
) {
1123 if (!wiphy
->bands
[reg_beacon
->chan
.band
])
1125 sband
= wiphy
->bands
[reg_beacon
->chan
.band
];
1126 for (i
= 0; i
< sband
->n_channels
; i
++)
1127 handle_reg_beacon(wiphy
, i
, reg_beacon
);
1131 static bool reg_is_world_roaming(struct wiphy
*wiphy
)
1133 if (is_world_regdom(cfg80211_regdomain
->alpha2
) ||
1134 (wiphy
->regd
&& is_world_regdom(wiphy
->regd
->alpha2
)))
1137 last_request
->initiator
!= NL80211_REGDOM_SET_BY_COUNTRY_IE
&&
1138 wiphy
->flags
& WIPHY_FLAG_CUSTOM_REGULATORY
)
1143 /* Reap the advantages of previously found beacons */
1144 static void reg_process_beacons(struct wiphy
*wiphy
)
1147 * Means we are just firing up cfg80211, so no beacons would
1148 * have been processed yet.
1152 if (!reg_is_world_roaming(wiphy
))
1154 wiphy_update_beacon_reg(wiphy
);
1157 static bool is_ht40_not_allowed(struct ieee80211_channel
*chan
)
1161 if (chan
->flags
& IEEE80211_CHAN_DISABLED
)
1163 /* This would happen when regulatory rules disallow HT40 completely */
1164 if (IEEE80211_CHAN_NO_HT40
== (chan
->flags
& (IEEE80211_CHAN_NO_HT40
)))
1169 static void reg_process_ht_flags_channel(struct wiphy
*wiphy
,
1170 enum ieee80211_band band
,
1171 unsigned int chan_idx
)
1173 struct ieee80211_supported_band
*sband
;
1174 struct ieee80211_channel
*channel
;
1175 struct ieee80211_channel
*channel_before
= NULL
, *channel_after
= NULL
;
1178 assert_cfg80211_lock();
1180 sband
= wiphy
->bands
[band
];
1181 BUG_ON(chan_idx
>= sband
->n_channels
);
1182 channel
= &sband
->channels
[chan_idx
];
1184 if (is_ht40_not_allowed(channel
)) {
1185 channel
->flags
|= IEEE80211_CHAN_NO_HT40
;
1190 * We need to ensure the extension channels exist to
1191 * be able to use HT40- or HT40+, this finds them (or not)
1193 for (i
= 0; i
< sband
->n_channels
; i
++) {
1194 struct ieee80211_channel
*c
= &sband
->channels
[i
];
1195 if (c
->center_freq
== (channel
->center_freq
- 20))
1197 if (c
->center_freq
== (channel
->center_freq
+ 20))
1202 * Please note that this assumes target bandwidth is 20 MHz,
1203 * if that ever changes we also need to change the below logic
1204 * to include that as well.
1206 if (is_ht40_not_allowed(channel_before
))
1207 channel
->flags
|= IEEE80211_CHAN_NO_HT40MINUS
;
1209 channel
->flags
&= ~IEEE80211_CHAN_NO_HT40MINUS
;
1211 if (is_ht40_not_allowed(channel_after
))
1212 channel
->flags
|= IEEE80211_CHAN_NO_HT40PLUS
;
1214 channel
->flags
&= ~IEEE80211_CHAN_NO_HT40PLUS
;
1217 static void reg_process_ht_flags_band(struct wiphy
*wiphy
,
1218 enum ieee80211_band band
)
1221 struct ieee80211_supported_band
*sband
;
1223 BUG_ON(!wiphy
->bands
[band
]);
1224 sband
= wiphy
->bands
[band
];
1226 for (i
= 0; i
< sband
->n_channels
; i
++)
1227 reg_process_ht_flags_channel(wiphy
, band
, i
);
1230 static void reg_process_ht_flags(struct wiphy
*wiphy
)
1232 enum ieee80211_band band
;
1237 for (band
= 0; band
< IEEE80211_NUM_BANDS
; band
++) {
1238 if (wiphy
->bands
[band
])
1239 reg_process_ht_flags_band(wiphy
, band
);
1244 static void wiphy_update_regulatory(struct wiphy
*wiphy
,
1245 enum nl80211_reg_initiator initiator
)
1247 enum ieee80211_band band
;
1251 if (ignore_reg_update(wiphy
, initiator
))
1254 last_request
->dfs_region
= cfg80211_regdomain
->dfs_region
;
1256 for (band
= 0; band
< IEEE80211_NUM_BANDS
; band
++) {
1257 if (wiphy
->bands
[band
])
1258 handle_band(wiphy
, band
, initiator
);
1261 reg_process_beacons(wiphy
);
1262 reg_process_ht_flags(wiphy
);
1263 if (wiphy
->reg_notifier
)
1264 wiphy
->reg_notifier(wiphy
, last_request
);
1267 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator
)
1269 struct cfg80211_registered_device
*rdev
;
1270 struct wiphy
*wiphy
;
1272 list_for_each_entry(rdev
, &cfg80211_rdev_list
, list
) {
1273 wiphy
= &rdev
->wiphy
;
1274 wiphy_update_regulatory(wiphy
, initiator
);
1276 * Regulatory updates set by CORE are ignored for custom
1277 * regulatory cards. Let us notify the changes to the driver,
1278 * as some drivers used this to restore its orig_* reg domain.
1280 if (initiator
== NL80211_REGDOM_SET_BY_CORE
&&
1281 wiphy
->flags
& WIPHY_FLAG_CUSTOM_REGULATORY
&&
1282 wiphy
->reg_notifier
)
1283 wiphy
->reg_notifier(wiphy
, last_request
);
1287 static void handle_channel_custom(struct wiphy
*wiphy
,
1288 enum ieee80211_band band
,
1289 unsigned int chan_idx
,
1290 const struct ieee80211_regdomain
*regd
)
1293 u32 desired_bw_khz
= MHZ_TO_KHZ(20);
1295 const struct ieee80211_reg_rule
*reg_rule
= NULL
;
1296 const struct ieee80211_power_rule
*power_rule
= NULL
;
1297 const struct ieee80211_freq_range
*freq_range
= NULL
;
1298 struct ieee80211_supported_band
*sband
;
1299 struct ieee80211_channel
*chan
;
1303 sband
= wiphy
->bands
[band
];
1304 BUG_ON(chan_idx
>= sband
->n_channels
);
1305 chan
= &sband
->channels
[chan_idx
];
1307 r
= freq_reg_info_regd(wiphy
,
1308 MHZ_TO_KHZ(chan
->center_freq
),
1314 REG_DBG_PRINT("Disabling freq %d MHz as custom "
1315 "regd has no rule that fits a %d MHz "
1318 KHZ_TO_MHZ(desired_bw_khz
));
1319 chan
->flags
= IEEE80211_CHAN_DISABLED
;
1323 chan_reg_rule_print_dbg(chan
, desired_bw_khz
, reg_rule
);
1325 power_rule
= ®_rule
->power_rule
;
1326 freq_range
= ®_rule
->freq_range
;
1328 if (freq_range
->max_bandwidth_khz
< MHZ_TO_KHZ(40))
1329 bw_flags
= IEEE80211_CHAN_NO_HT40
;
1331 chan
->flags
|= map_regdom_flags(reg_rule
->flags
) | bw_flags
;
1332 chan
->max_antenna_gain
= (int) MBI_TO_DBI(power_rule
->max_antenna_gain
);
1333 chan
->max_reg_power
= chan
->max_power
=
1334 (int) MBM_TO_DBM(power_rule
->max_eirp
);
1337 static void handle_band_custom(struct wiphy
*wiphy
, enum ieee80211_band band
,
1338 const struct ieee80211_regdomain
*regd
)
1341 struct ieee80211_supported_band
*sband
;
1343 BUG_ON(!wiphy
->bands
[band
]);
1344 sband
= wiphy
->bands
[band
];
1346 for (i
= 0; i
< sband
->n_channels
; i
++)
1347 handle_channel_custom(wiphy
, band
, i
, regd
);
1350 /* Used by drivers prior to wiphy registration */
1351 void wiphy_apply_custom_regulatory(struct wiphy
*wiphy
,
1352 const struct ieee80211_regdomain
*regd
)
1354 enum ieee80211_band band
;
1355 unsigned int bands_set
= 0;
1357 mutex_lock(®_mutex
);
1358 for (band
= 0; band
< IEEE80211_NUM_BANDS
; band
++) {
1359 if (!wiphy
->bands
[band
])
1361 handle_band_custom(wiphy
, band
, regd
);
1364 mutex_unlock(®_mutex
);
1367 * no point in calling this if it won't have any effect
1368 * on your device's supportd bands.
1370 WARN_ON(!bands_set
);
1372 EXPORT_SYMBOL(wiphy_apply_custom_regulatory
);
1375 * Return value which can be used by ignore_request() to indicate
1376 * it has been determined we should intersect two regulatory domains
1378 #define REG_INTERSECT 1
1380 /* This has the logic which determines when a new request
1381 * should be ignored. */
1382 static int ignore_request(struct wiphy
*wiphy
,
1383 struct regulatory_request
*pending_request
)
1385 struct wiphy
*last_wiphy
= NULL
;
1387 assert_cfg80211_lock();
1389 /* All initial requests are respected */
1393 switch (pending_request
->initiator
) {
1394 case NL80211_REGDOM_SET_BY_CORE
:
1396 case NL80211_REGDOM_SET_BY_COUNTRY_IE
:
1398 if (reg_request_cell_base(last_request
)) {
1399 /* Trust a Cell base station over the AP's country IE */
1400 if (regdom_changes(pending_request
->alpha2
))
1405 last_wiphy
= wiphy_idx_to_wiphy(last_request
->wiphy_idx
);
1407 if (unlikely(!is_an_alpha2(pending_request
->alpha2
)))
1409 if (last_request
->initiator
==
1410 NL80211_REGDOM_SET_BY_COUNTRY_IE
) {
1411 if (last_wiphy
!= wiphy
) {
1413 * Two cards with two APs claiming different
1414 * Country IE alpha2s. We could
1415 * intersect them, but that seems unlikely
1416 * to be correct. Reject second one for now.
1418 if (regdom_changes(pending_request
->alpha2
))
1423 * Two consecutive Country IE hints on the same wiphy.
1424 * This should be picked up early by the driver/stack
1426 if (WARN_ON(regdom_changes(pending_request
->alpha2
)))
1431 case NL80211_REGDOM_SET_BY_DRIVER
:
1432 if (last_request
->initiator
== NL80211_REGDOM_SET_BY_CORE
) {
1433 if (regdom_changes(pending_request
->alpha2
))
1439 * This would happen if you unplug and plug your card
1440 * back in or if you add a new device for which the previously
1441 * loaded card also agrees on the regulatory domain.
1443 if (last_request
->initiator
== NL80211_REGDOM_SET_BY_DRIVER
&&
1444 !regdom_changes(pending_request
->alpha2
))
1447 return REG_INTERSECT
;
1448 case NL80211_REGDOM_SET_BY_USER
:
1449 if (reg_request_cell_base(pending_request
))
1450 return reg_ignore_cell_hint(pending_request
);
1452 if (reg_request_cell_base(last_request
))
1455 if (last_request
->initiator
== NL80211_REGDOM_SET_BY_COUNTRY_IE
)
1456 return REG_INTERSECT
;
1458 * If the user knows better the user should set the regdom
1459 * to their country before the IE is picked up
1461 if (last_request
->initiator
== NL80211_REGDOM_SET_BY_USER
&&
1462 last_request
->intersect
)
1465 * Process user requests only after previous user/driver/core
1466 * requests have been processed
1468 if (last_request
->initiator
== NL80211_REGDOM_SET_BY_CORE
||
1469 last_request
->initiator
== NL80211_REGDOM_SET_BY_DRIVER
||
1470 last_request
->initiator
== NL80211_REGDOM_SET_BY_USER
) {
1471 if (regdom_changes(last_request
->alpha2
))
1475 if (!regdom_changes(pending_request
->alpha2
))
1484 static void reg_set_request_processed(void)
1486 bool need_more_processing
= false;
1488 last_request
->processed
= true;
1490 spin_lock(®_requests_lock
);
1491 if (!list_empty(®_requests_list
))
1492 need_more_processing
= true;
1493 spin_unlock(®_requests_lock
);
1495 if (last_request
->initiator
== NL80211_REGDOM_SET_BY_USER
)
1496 cancel_delayed_work(®_timeout
);
1498 if (need_more_processing
)
1499 schedule_work(®_work
);
1503 * __regulatory_hint - hint to the wireless core a regulatory domain
1504 * @wiphy: if the hint comes from country information from an AP, this
1505 * is required to be set to the wiphy that received the information
1506 * @pending_request: the regulatory request currently being processed
1508 * The Wireless subsystem can use this function to hint to the wireless core
1509 * what it believes should be the current regulatory domain.
1511 * Returns zero if all went fine, %-EALREADY if a regulatory domain had
1512 * already been set or other standard error codes.
1514 * Caller must hold &cfg80211_mutex and ®_mutex
1516 static int __regulatory_hint(struct wiphy
*wiphy
,
1517 struct regulatory_request
*pending_request
)
1519 bool intersect
= false;
1522 assert_cfg80211_lock();
1524 r
= ignore_request(wiphy
, pending_request
);
1526 if (r
== REG_INTERSECT
) {
1527 if (pending_request
->initiator
==
1528 NL80211_REGDOM_SET_BY_DRIVER
) {
1529 r
= reg_copy_regd(&wiphy
->regd
, cfg80211_regdomain
);
1531 kfree(pending_request
);
1538 * If the regulatory domain being requested by the
1539 * driver has already been set just copy it to the
1542 if (r
== -EALREADY
&&
1543 pending_request
->initiator
==
1544 NL80211_REGDOM_SET_BY_DRIVER
) {
1545 r
= reg_copy_regd(&wiphy
->regd
, cfg80211_regdomain
);
1547 kfree(pending_request
);
1553 kfree(pending_request
);
1558 if (last_request
!= &core_request_world
)
1559 kfree(last_request
);
1561 last_request
= pending_request
;
1562 last_request
->intersect
= intersect
;
1564 pending_request
= NULL
;
1566 if (last_request
->initiator
== NL80211_REGDOM_SET_BY_USER
) {
1567 user_alpha2
[0] = last_request
->alpha2
[0];
1568 user_alpha2
[1] = last_request
->alpha2
[1];
1571 /* When r == REG_INTERSECT we do need to call CRDA */
1574 * Since CRDA will not be called in this case as we already
1575 * have applied the requested regulatory domain before we just
1576 * inform userspace we have processed the request
1578 if (r
== -EALREADY
) {
1579 nl80211_send_reg_change_event(last_request
);
1580 reg_set_request_processed();
1585 return call_crda(last_request
->alpha2
);
1588 /* This processes *all* regulatory hints */
1589 static void reg_process_hint(struct regulatory_request
*reg_request
,
1590 enum nl80211_reg_initiator reg_initiator
)
1593 struct wiphy
*wiphy
= NULL
;
1595 BUG_ON(!reg_request
->alpha2
);
1597 if (wiphy_idx_valid(reg_request
->wiphy_idx
))
1598 wiphy
= wiphy_idx_to_wiphy(reg_request
->wiphy_idx
);
1600 if (reg_initiator
== NL80211_REGDOM_SET_BY_DRIVER
&&
1606 r
= __regulatory_hint(wiphy
, reg_request
);
1607 /* This is required so that the orig_* parameters are saved */
1608 if (r
== -EALREADY
&& wiphy
&&
1609 wiphy
->flags
& WIPHY_FLAG_STRICT_REGULATORY
) {
1610 wiphy_update_regulatory(wiphy
, reg_initiator
);
1615 * We only time out user hints, given that they should be the only
1616 * source of bogus requests.
1618 if (r
!= -EALREADY
&&
1619 reg_initiator
== NL80211_REGDOM_SET_BY_USER
)
1620 schedule_delayed_work(®_timeout
, msecs_to_jiffies(3142));
1624 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
1625 * Regulatory hints come on a first come first serve basis and we
1626 * must process each one atomically.
1628 static void reg_process_pending_hints(void)
1630 struct regulatory_request
*reg_request
;
1632 mutex_lock(&cfg80211_mutex
);
1633 mutex_lock(®_mutex
);
1635 /* When last_request->processed becomes true this will be rescheduled */
1636 if (last_request
&& !last_request
->processed
) {
1637 REG_DBG_PRINT("Pending regulatory request, waiting "
1638 "for it to be processed...\n");
1642 spin_lock(®_requests_lock
);
1644 if (list_empty(®_requests_list
)) {
1645 spin_unlock(®_requests_lock
);
1649 reg_request
= list_first_entry(®_requests_list
,
1650 struct regulatory_request
,
1652 list_del_init(®_request
->list
);
1654 spin_unlock(®_requests_lock
);
1656 reg_process_hint(reg_request
, reg_request
->initiator
);
1659 mutex_unlock(®_mutex
);
1660 mutex_unlock(&cfg80211_mutex
);
1663 /* Processes beacon hints -- this has nothing to do with country IEs */
1664 static void reg_process_pending_beacon_hints(void)
1666 struct cfg80211_registered_device
*rdev
;
1667 struct reg_beacon
*pending_beacon
, *tmp
;
1670 * No need to hold the reg_mutex here as we just touch wiphys
1671 * and do not read or access regulatory variables.
1673 mutex_lock(&cfg80211_mutex
);
1675 /* This goes through the _pending_ beacon list */
1676 spin_lock_bh(®_pending_beacons_lock
);
1678 if (list_empty(®_pending_beacons
)) {
1679 spin_unlock_bh(®_pending_beacons_lock
);
1683 list_for_each_entry_safe(pending_beacon
, tmp
,
1684 ®_pending_beacons
, list
) {
1686 list_del_init(&pending_beacon
->list
);
1688 /* Applies the beacon hint to current wiphys */
1689 list_for_each_entry(rdev
, &cfg80211_rdev_list
, list
)
1690 wiphy_update_new_beacon(&rdev
->wiphy
, pending_beacon
);
1692 /* Remembers the beacon hint for new wiphys or reg changes */
1693 list_add_tail(&pending_beacon
->list
, ®_beacon_list
);
1696 spin_unlock_bh(®_pending_beacons_lock
);
1698 mutex_unlock(&cfg80211_mutex
);
1701 static void reg_todo(struct work_struct
*work
)
1703 reg_process_pending_hints();
1704 reg_process_pending_beacon_hints();
1707 static void queue_regulatory_request(struct regulatory_request
*request
)
1709 if (isalpha(request
->alpha2
[0]))
1710 request
->alpha2
[0] = toupper(request
->alpha2
[0]);
1711 if (isalpha(request
->alpha2
[1]))
1712 request
->alpha2
[1] = toupper(request
->alpha2
[1]);
1714 spin_lock(®_requests_lock
);
1715 list_add_tail(&request
->list
, ®_requests_list
);
1716 spin_unlock(®_requests_lock
);
1718 schedule_work(®_work
);
1722 * Core regulatory hint -- happens during cfg80211_init()
1723 * and when we restore regulatory settings.
1725 static int regulatory_hint_core(const char *alpha2
)
1727 struct regulatory_request
*request
;
1729 request
= kzalloc(sizeof(struct regulatory_request
),
1734 request
->alpha2
[0] = alpha2
[0];
1735 request
->alpha2
[1] = alpha2
[1];
1736 request
->initiator
= NL80211_REGDOM_SET_BY_CORE
;
1738 queue_regulatory_request(request
);
1744 int regulatory_hint_user(const char *alpha2
,
1745 enum nl80211_user_reg_hint_type user_reg_hint_type
)
1747 struct regulatory_request
*request
;
1751 request
= kzalloc(sizeof(struct regulatory_request
), GFP_KERNEL
);
1755 request
->wiphy_idx
= WIPHY_IDX_STALE
;
1756 request
->alpha2
[0] = alpha2
[0];
1757 request
->alpha2
[1] = alpha2
[1];
1758 request
->initiator
= NL80211_REGDOM_SET_BY_USER
;
1759 request
->user_reg_hint_type
= user_reg_hint_type
;
1761 queue_regulatory_request(request
);
1767 int regulatory_hint(struct wiphy
*wiphy
, const char *alpha2
)
1769 struct regulatory_request
*request
;
1774 request
= kzalloc(sizeof(struct regulatory_request
), GFP_KERNEL
);
1778 request
->wiphy_idx
= get_wiphy_idx(wiphy
);
1780 /* Must have registered wiphy first */
1781 BUG_ON(!wiphy_idx_valid(request
->wiphy_idx
));
1783 request
->alpha2
[0] = alpha2
[0];
1784 request
->alpha2
[1] = alpha2
[1];
1785 request
->initiator
= NL80211_REGDOM_SET_BY_DRIVER
;
1787 queue_regulatory_request(request
);
1791 EXPORT_SYMBOL(regulatory_hint
);
1794 * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and
1795 * therefore cannot iterate over the rdev list here.
1797 void regulatory_hint_11d(struct wiphy
*wiphy
,
1798 enum ieee80211_band band
,
1799 const u8
*country_ie
,
1803 enum environment_cap env
= ENVIRON_ANY
;
1804 struct regulatory_request
*request
;
1806 mutex_lock(®_mutex
);
1808 if (unlikely(!last_request
))
1811 /* IE len must be evenly divisible by 2 */
1812 if (country_ie_len
& 0x01)
1815 if (country_ie_len
< IEEE80211_COUNTRY_IE_MIN_LEN
)
1818 alpha2
[0] = country_ie
[0];
1819 alpha2
[1] = country_ie
[1];
1821 if (country_ie
[2] == 'I')
1822 env
= ENVIRON_INDOOR
;
1823 else if (country_ie
[2] == 'O')
1824 env
= ENVIRON_OUTDOOR
;
1827 * We will run this only upon a successful connection on cfg80211.
1828 * We leave conflict resolution to the workqueue, where can hold
1831 if (likely(last_request
->initiator
==
1832 NL80211_REGDOM_SET_BY_COUNTRY_IE
&&
1833 wiphy_idx_valid(last_request
->wiphy_idx
)))
1836 request
= kzalloc(sizeof(struct regulatory_request
), GFP_KERNEL
);
1840 request
->wiphy_idx
= get_wiphy_idx(wiphy
);
1841 request
->alpha2
[0] = alpha2
[0];
1842 request
->alpha2
[1] = alpha2
[1];
1843 request
->initiator
= NL80211_REGDOM_SET_BY_COUNTRY_IE
;
1844 request
->country_ie_env
= env
;
1846 mutex_unlock(®_mutex
);
1848 queue_regulatory_request(request
);
1853 mutex_unlock(®_mutex
);
1856 static void restore_alpha2(char *alpha2
, bool reset_user
)
1858 /* indicates there is no alpha2 to consider for restoration */
1862 /* The user setting has precedence over the module parameter */
1863 if (is_user_regdom_saved()) {
1864 /* Unless we're asked to ignore it and reset it */
1866 REG_DBG_PRINT("Restoring regulatory settings "
1867 "including user preference\n");
1868 user_alpha2
[0] = '9';
1869 user_alpha2
[1] = '7';
1872 * If we're ignoring user settings, we still need to
1873 * check the module parameter to ensure we put things
1874 * back as they were for a full restore.
1876 if (!is_world_regdom(ieee80211_regdom
)) {
1877 REG_DBG_PRINT("Keeping preference on "
1878 "module parameter ieee80211_regdom: %c%c\n",
1879 ieee80211_regdom
[0],
1880 ieee80211_regdom
[1]);
1881 alpha2
[0] = ieee80211_regdom
[0];
1882 alpha2
[1] = ieee80211_regdom
[1];
1885 REG_DBG_PRINT("Restoring regulatory settings "
1886 "while preserving user preference for: %c%c\n",
1889 alpha2
[0] = user_alpha2
[0];
1890 alpha2
[1] = user_alpha2
[1];
1892 } else if (!is_world_regdom(ieee80211_regdom
)) {
1893 REG_DBG_PRINT("Keeping preference on "
1894 "module parameter ieee80211_regdom: %c%c\n",
1895 ieee80211_regdom
[0],
1896 ieee80211_regdom
[1]);
1897 alpha2
[0] = ieee80211_regdom
[0];
1898 alpha2
[1] = ieee80211_regdom
[1];
1900 REG_DBG_PRINT("Restoring regulatory settings\n");
1903 static void restore_custom_reg_settings(struct wiphy
*wiphy
)
1905 struct ieee80211_supported_band
*sband
;
1906 enum ieee80211_band band
;
1907 struct ieee80211_channel
*chan
;
1910 for (band
= 0; band
< IEEE80211_NUM_BANDS
; band
++) {
1911 sband
= wiphy
->bands
[band
];
1914 for (i
= 0; i
< sband
->n_channels
; i
++) {
1915 chan
= &sband
->channels
[i
];
1916 chan
->flags
= chan
->orig_flags
;
1917 chan
->max_antenna_gain
= chan
->orig_mag
;
1918 chan
->max_power
= chan
->orig_mpwr
;
1919 chan
->beacon_found
= false;
1925 * Restoring regulatory settings involves ingoring any
1926 * possibly stale country IE information and user regulatory
1927 * settings if so desired, this includes any beacon hints
1928 * learned as we could have traveled outside to another country
1929 * after disconnection. To restore regulatory settings we do
1930 * exactly what we did at bootup:
1932 * - send a core regulatory hint
1933 * - send a user regulatory hint if applicable
1935 * Device drivers that send a regulatory hint for a specific country
1936 * keep their own regulatory domain on wiphy->regd so that does does
1937 * not need to be remembered.
1939 static void restore_regulatory_settings(bool reset_user
)
1942 char world_alpha2
[2];
1943 struct reg_beacon
*reg_beacon
, *btmp
;
1944 struct regulatory_request
*reg_request
, *tmp
;
1945 LIST_HEAD(tmp_reg_req_list
);
1946 struct cfg80211_registered_device
*rdev
;
1948 mutex_lock(&cfg80211_mutex
);
1949 mutex_lock(®_mutex
);
1951 reset_regdomains(true);
1952 restore_alpha2(alpha2
, reset_user
);
1955 * If there's any pending requests we simply
1956 * stash them to a temporary pending queue and
1957 * add then after we've restored regulatory
1960 spin_lock(®_requests_lock
);
1961 if (!list_empty(®_requests_list
)) {
1962 list_for_each_entry_safe(reg_request
, tmp
,
1963 ®_requests_list
, list
) {
1964 if (reg_request
->initiator
!=
1965 NL80211_REGDOM_SET_BY_USER
)
1967 list_move_tail(®_request
->list
, &tmp_reg_req_list
);
1970 spin_unlock(®_requests_lock
);
1972 /* Clear beacon hints */
1973 spin_lock_bh(®_pending_beacons_lock
);
1974 if (!list_empty(®_pending_beacons
)) {
1975 list_for_each_entry_safe(reg_beacon
, btmp
,
1976 ®_pending_beacons
, list
) {
1977 list_del(®_beacon
->list
);
1981 spin_unlock_bh(®_pending_beacons_lock
);
1983 if (!list_empty(®_beacon_list
)) {
1984 list_for_each_entry_safe(reg_beacon
, btmp
,
1985 ®_beacon_list
, list
) {
1986 list_del(®_beacon
->list
);
1991 /* First restore to the basic regulatory settings */
1992 cfg80211_regdomain
= cfg80211_world_regdom
;
1993 world_alpha2
[0] = cfg80211_regdomain
->alpha2
[0];
1994 world_alpha2
[1] = cfg80211_regdomain
->alpha2
[1];
1996 list_for_each_entry(rdev
, &cfg80211_rdev_list
, list
) {
1997 if (rdev
->wiphy
.flags
& WIPHY_FLAG_CUSTOM_REGULATORY
)
1998 restore_custom_reg_settings(&rdev
->wiphy
);
2001 mutex_unlock(®_mutex
);
2002 mutex_unlock(&cfg80211_mutex
);
2004 regulatory_hint_core(world_alpha2
);
2007 * This restores the ieee80211_regdom module parameter
2008 * preference or the last user requested regulatory
2009 * settings, user regulatory settings takes precedence.
2011 if (is_an_alpha2(alpha2
))
2012 regulatory_hint_user(user_alpha2
, NL80211_USER_REG_HINT_USER
);
2014 if (list_empty(&tmp_reg_req_list
))
2017 mutex_lock(&cfg80211_mutex
);
2018 mutex_lock(®_mutex
);
2020 spin_lock(®_requests_lock
);
2021 list_for_each_entry_safe(reg_request
, tmp
, &tmp_reg_req_list
, list
) {
2022 REG_DBG_PRINT("Adding request for country %c%c back "
2024 reg_request
->alpha2
[0],
2025 reg_request
->alpha2
[1]);
2026 list_move_tail(®_request
->list
, ®_requests_list
);
2028 spin_unlock(®_requests_lock
);
2030 mutex_unlock(®_mutex
);
2031 mutex_unlock(&cfg80211_mutex
);
2033 REG_DBG_PRINT("Kicking the queue\n");
2035 schedule_work(®_work
);
2038 void regulatory_hint_disconnect(void)
2040 REG_DBG_PRINT("All devices are disconnected, going to "
2041 "restore regulatory settings\n");
2042 restore_regulatory_settings(false);
2045 static bool freq_is_chan_12_13_14(u16 freq
)
2047 if (freq
== ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ
) ||
2048 freq
== ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ
) ||
2049 freq
== ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ
))
2054 int regulatory_hint_found_beacon(struct wiphy
*wiphy
,
2055 struct ieee80211_channel
*beacon_chan
,
2058 struct reg_beacon
*reg_beacon
;
2060 if (likely((beacon_chan
->beacon_found
||
2061 (beacon_chan
->flags
& IEEE80211_CHAN_RADAR
) ||
2062 (beacon_chan
->band
== IEEE80211_BAND_2GHZ
&&
2063 !freq_is_chan_12_13_14(beacon_chan
->center_freq
)))))
2066 reg_beacon
= kzalloc(sizeof(struct reg_beacon
), gfp
);
2070 REG_DBG_PRINT("Found new beacon on "
2071 "frequency: %d MHz (Ch %d) on %s\n",
2072 beacon_chan
->center_freq
,
2073 ieee80211_frequency_to_channel(beacon_chan
->center_freq
),
2076 memcpy(®_beacon
->chan
, beacon_chan
,
2077 sizeof(struct ieee80211_channel
));
2081 * Since we can be called from BH or and non-BH context
2082 * we must use spin_lock_bh()
2084 spin_lock_bh(®_pending_beacons_lock
);
2085 list_add_tail(®_beacon
->list
, ®_pending_beacons
);
2086 spin_unlock_bh(®_pending_beacons_lock
);
2088 schedule_work(®_work
);
2093 static void print_rd_rules(const struct ieee80211_regdomain
*rd
)
2096 const struct ieee80211_reg_rule
*reg_rule
= NULL
;
2097 const struct ieee80211_freq_range
*freq_range
= NULL
;
2098 const struct ieee80211_power_rule
*power_rule
= NULL
;
2100 pr_info(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp)\n");
2102 for (i
= 0; i
< rd
->n_reg_rules
; i
++) {
2103 reg_rule
= &rd
->reg_rules
[i
];
2104 freq_range
= ®_rule
->freq_range
;
2105 power_rule
= ®_rule
->power_rule
;
2108 * There may not be documentation for max antenna gain
2109 * in certain regions
2111 if (power_rule
->max_antenna_gain
)
2112 pr_info(" (%d KHz - %d KHz @ %d KHz), (%d mBi, %d mBm)\n",
2113 freq_range
->start_freq_khz
,
2114 freq_range
->end_freq_khz
,
2115 freq_range
->max_bandwidth_khz
,
2116 power_rule
->max_antenna_gain
,
2117 power_rule
->max_eirp
);
2119 pr_info(" (%d KHz - %d KHz @ %d KHz), (N/A, %d mBm)\n",
2120 freq_range
->start_freq_khz
,
2121 freq_range
->end_freq_khz
,
2122 freq_range
->max_bandwidth_khz
,
2123 power_rule
->max_eirp
);
2127 bool reg_supported_dfs_region(u8 dfs_region
)
2129 switch (dfs_region
) {
2130 case NL80211_DFS_UNSET
:
2131 case NL80211_DFS_FCC
:
2132 case NL80211_DFS_ETSI
:
2133 case NL80211_DFS_JP
:
2136 REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n",
2142 static void print_dfs_region(u8 dfs_region
)
2147 switch (dfs_region
) {
2148 case NL80211_DFS_FCC
:
2149 pr_info(" DFS Master region FCC");
2151 case NL80211_DFS_ETSI
:
2152 pr_info(" DFS Master region ETSI");
2154 case NL80211_DFS_JP
:
2155 pr_info(" DFS Master region JP");
2158 pr_info(" DFS Master region Uknown");
2163 static void print_regdomain(const struct ieee80211_regdomain
*rd
)
2166 if (is_intersected_alpha2(rd
->alpha2
)) {
2168 if (last_request
->initiator
==
2169 NL80211_REGDOM_SET_BY_COUNTRY_IE
) {
2170 struct cfg80211_registered_device
*rdev
;
2171 rdev
= cfg80211_rdev_by_wiphy_idx(
2172 last_request
->wiphy_idx
);
2174 pr_info("Current regulatory domain updated by AP to: %c%c\n",
2175 rdev
->country_ie_alpha2
[0],
2176 rdev
->country_ie_alpha2
[1]);
2178 pr_info("Current regulatory domain intersected:\n");
2180 pr_info("Current regulatory domain intersected:\n");
2181 } else if (is_world_regdom(rd
->alpha2
))
2182 pr_info("World regulatory domain updated:\n");
2184 if (is_unknown_alpha2(rd
->alpha2
))
2185 pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
2187 if (reg_request_cell_base(last_request
))
2188 pr_info("Regulatory domain changed "
2189 "to country: %c%c by Cell Station\n",
2190 rd
->alpha2
[0], rd
->alpha2
[1]);
2192 pr_info("Regulatory domain changed "
2193 "to country: %c%c\n",
2194 rd
->alpha2
[0], rd
->alpha2
[1]);
2197 print_dfs_region(rd
->dfs_region
);
2201 static void print_regdomain_info(const struct ieee80211_regdomain
*rd
)
2203 pr_info("Regulatory domain: %c%c\n", rd
->alpha2
[0], rd
->alpha2
[1]);
2207 /* Takes ownership of rd only if it doesn't fail */
2208 static int __set_regdom(const struct ieee80211_regdomain
*rd
)
2210 const struct ieee80211_regdomain
*intersected_rd
= NULL
;
2211 struct wiphy
*request_wiphy
;
2212 /* Some basic sanity checks first */
2214 if (is_world_regdom(rd
->alpha2
)) {
2215 if (WARN_ON(!reg_is_valid_request(rd
->alpha2
)))
2217 update_world_regdomain(rd
);
2221 if (!is_alpha2_set(rd
->alpha2
) && !is_an_alpha2(rd
->alpha2
) &&
2222 !is_unknown_alpha2(rd
->alpha2
))
2229 * Lets only bother proceeding on the same alpha2 if the current
2230 * rd is non static (it means CRDA was present and was used last)
2231 * and the pending request came in from a country IE
2233 if (last_request
->initiator
!= NL80211_REGDOM_SET_BY_COUNTRY_IE
) {
2235 * If someone else asked us to change the rd lets only bother
2236 * checking if the alpha2 changes if CRDA was already called
2238 if (!regdom_changes(rd
->alpha2
))
2243 * Now lets set the regulatory domain, update all driver channels
2244 * and finally inform them of what we have done, in case they want
2245 * to review or adjust their own settings based on their own
2246 * internal EEPROM data
2249 if (WARN_ON(!reg_is_valid_request(rd
->alpha2
)))
2252 if (!is_valid_rd(rd
)) {
2253 pr_err("Invalid regulatory domain detected:\n");
2254 print_regdomain_info(rd
);
2258 request_wiphy
= wiphy_idx_to_wiphy(last_request
->wiphy_idx
);
2259 if (!request_wiphy
&&
2260 (last_request
->initiator
== NL80211_REGDOM_SET_BY_DRIVER
||
2261 last_request
->initiator
== NL80211_REGDOM_SET_BY_COUNTRY_IE
)) {
2262 schedule_delayed_work(®_timeout
, 0);
2266 if (!last_request
->intersect
) {
2269 if (last_request
->initiator
!= NL80211_REGDOM_SET_BY_DRIVER
) {
2270 reset_regdomains(false);
2271 cfg80211_regdomain
= rd
;
2276 * For a driver hint, lets copy the regulatory domain the
2277 * driver wanted to the wiphy to deal with conflicts
2281 * Userspace could have sent two replies with only
2282 * one kernel request.
2284 if (request_wiphy
->regd
)
2287 r
= reg_copy_regd(&request_wiphy
->regd
, rd
);
2291 reset_regdomains(false);
2292 cfg80211_regdomain
= rd
;
2296 /* Intersection requires a bit more work */
2298 if (last_request
->initiator
!= NL80211_REGDOM_SET_BY_COUNTRY_IE
) {
2300 intersected_rd
= regdom_intersect(rd
, cfg80211_regdomain
);
2301 if (!intersected_rd
)
2305 * We can trash what CRDA provided now.
2306 * However if a driver requested this specific regulatory
2307 * domain we keep it for its private use
2309 if (last_request
->initiator
== NL80211_REGDOM_SET_BY_DRIVER
)
2310 request_wiphy
->regd
= rd
;
2316 reset_regdomains(false);
2317 cfg80211_regdomain
= intersected_rd
;
2327 * Use this call to set the current regulatory domain. Conflicts with
2328 * multiple drivers can be ironed out later. Caller must've already
2329 * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
2331 int set_regdom(const struct ieee80211_regdomain
*rd
)
2335 assert_cfg80211_lock();
2337 mutex_lock(®_mutex
);
2339 /* Note that this doesn't update the wiphys, this is done below */
2340 r
= __set_regdom(rd
);
2343 reg_set_request_processed();
2346 mutex_unlock(®_mutex
);
2350 /* This would make this whole thing pointless */
2351 if (!last_request
->intersect
)
2352 BUG_ON(rd
!= cfg80211_regdomain
);
2354 /* update all wiphys now with the new established regulatory domain */
2355 update_all_wiphy_regulatory(last_request
->initiator
);
2357 print_regdomain(cfg80211_regdomain
);
2359 nl80211_send_reg_change_event(last_request
);
2361 reg_set_request_processed();
2363 mutex_unlock(®_mutex
);
2368 int reg_device_uevent(struct device
*dev
, struct kobj_uevent_env
*env
)
2370 if (last_request
&& !last_request
->processed
) {
2371 if (add_uevent_var(env
, "COUNTRY=%c%c",
2372 last_request
->alpha2
[0],
2373 last_request
->alpha2
[1]))
2380 void wiphy_regulatory_register(struct wiphy
*wiphy
)
2382 assert_cfg80211_lock();
2384 mutex_lock(®_mutex
);
2386 if (!reg_dev_ignore_cell_hint(wiphy
))
2387 reg_num_devs_support_basehint
++;
2389 wiphy_update_regulatory(wiphy
, NL80211_REGDOM_SET_BY_CORE
);
2391 mutex_unlock(®_mutex
);
2394 /* Caller must hold cfg80211_mutex */
2395 void wiphy_regulatory_deregister(struct wiphy
*wiphy
)
2397 struct wiphy
*request_wiphy
= NULL
;
2399 assert_cfg80211_lock();
2401 mutex_lock(®_mutex
);
2403 if (!reg_dev_ignore_cell_hint(wiphy
))
2404 reg_num_devs_support_basehint
--;
2409 request_wiphy
= wiphy_idx_to_wiphy(last_request
->wiphy_idx
);
2411 if (!request_wiphy
|| request_wiphy
!= wiphy
)
2414 last_request
->wiphy_idx
= WIPHY_IDX_STALE
;
2415 last_request
->country_ie_env
= ENVIRON_ANY
;
2417 mutex_unlock(®_mutex
);
2420 static void reg_timeout_work(struct work_struct
*work
)
2422 REG_DBG_PRINT("Timeout while waiting for CRDA to reply, "
2423 "restoring regulatory settings\n");
2424 restore_regulatory_settings(true);
2427 int __init
regulatory_init(void)
2431 reg_pdev
= platform_device_register_simple("regulatory", 0, NULL
, 0);
2432 if (IS_ERR(reg_pdev
))
2433 return PTR_ERR(reg_pdev
);
2435 reg_pdev
->dev
.type
= ®_device_type
;
2437 spin_lock_init(®_requests_lock
);
2438 spin_lock_init(®_pending_beacons_lock
);
2440 reg_regdb_size_check();
2442 cfg80211_regdomain
= cfg80211_world_regdom
;
2444 user_alpha2
[0] = '9';
2445 user_alpha2
[1] = '7';
2447 /* We always try to get an update for the static regdomain */
2448 err
= regulatory_hint_core(cfg80211_regdomain
->alpha2
);
2453 * N.B. kobject_uevent_env() can fail mainly for when we're out
2454 * memory which is handled and propagated appropriately above
2455 * but it can also fail during a netlink_broadcast() or during
2456 * early boot for call_usermodehelper(). For now treat these
2457 * errors as non-fatal.
2459 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
2460 #ifdef CONFIG_CFG80211_REG_DEBUG
2461 /* We want to find out exactly why when debugging */
2467 * Finally, if the user set the module parameter treat it
2470 if (!is_world_regdom(ieee80211_regdom
))
2471 regulatory_hint_user(ieee80211_regdom
,
2472 NL80211_USER_REG_HINT_USER
);
2477 void /* __init_or_exit */ regulatory_exit(void)
2479 struct regulatory_request
*reg_request
, *tmp
;
2480 struct reg_beacon
*reg_beacon
, *btmp
;
2482 cancel_work_sync(®_work
);
2483 cancel_delayed_work_sync(®_timeout
);
2485 mutex_lock(&cfg80211_mutex
);
2486 mutex_lock(®_mutex
);
2488 reset_regdomains(true);
2490 dev_set_uevent_suppress(®_pdev
->dev
, true);
2492 platform_device_unregister(reg_pdev
);
2494 spin_lock_bh(®_pending_beacons_lock
);
2495 if (!list_empty(®_pending_beacons
)) {
2496 list_for_each_entry_safe(reg_beacon
, btmp
,
2497 ®_pending_beacons
, list
) {
2498 list_del(®_beacon
->list
);
2502 spin_unlock_bh(®_pending_beacons_lock
);
2504 if (!list_empty(®_beacon_list
)) {
2505 list_for_each_entry_safe(reg_beacon
, btmp
,
2506 ®_beacon_list
, list
) {
2507 list_del(®_beacon
->list
);
2512 spin_lock(®_requests_lock
);
2513 if (!list_empty(®_requests_list
)) {
2514 list_for_each_entry_safe(reg_request
, tmp
,
2515 ®_requests_list
, list
) {
2516 list_del(®_request
->list
);
2520 spin_unlock(®_requests_lock
);
2522 mutex_unlock(®_mutex
);
2523 mutex_unlock(&cfg80211_mutex
);