ALSA: hda - Fix non-snoop page handling
[linux-2.6.git] / net / wireless / reg.c
blob82c4fc7c994cbe3a0dc89b4a6708f873fcc783d9
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
7 * Permission to use, copy, modify, and/or distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21 /**
22 * DOC: Wireless regulatory infrastructure
24 * The usual implementation is for a driver to read a device EEPROM to
25 * determine which regulatory domain it should be operating under, then
26 * looking up the allowable channels in a driver-local table and finally
27 * registering those channels in the wiphy structure.
29 * Another set of compliance enforcement is for drivers to use their
30 * own compliance limits which can be stored on the EEPROM. The host
31 * driver or firmware may ensure these are used.
33 * In addition to all this we provide an extra layer of regulatory
34 * conformance. For drivers which do not have any regulatory
35 * information CRDA provides the complete regulatory solution.
36 * For others it provides a community effort on further restrictions
37 * to enhance compliance.
39 * Note: When number of rules --> infinity we will not be able to
40 * index on alpha2 any more, instead we'll probably have to
41 * rely on some SHA1 checksum of the regdomain for example.
45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
47 #include <linux/kernel.h>
48 #include <linux/export.h>
49 #include <linux/slab.h>
50 #include <linux/list.h>
51 #include <linux/random.h>
52 #include <linux/ctype.h>
53 #include <linux/nl80211.h>
54 #include <linux/platform_device.h>
55 #include <linux/moduleparam.h>
56 #include <net/cfg80211.h>
57 #include "core.h"
58 #include "reg.h"
59 #include "regdb.h"
60 #include "nl80211.h"
62 #ifdef CONFIG_CFG80211_REG_DEBUG
63 #define REG_DBG_PRINT(format, args...) \
64 printk(KERN_DEBUG pr_fmt(format), ##args)
65 #else
66 #define REG_DBG_PRINT(args...)
67 #endif
69 static struct regulatory_request core_request_world = {
70 .initiator = NL80211_REGDOM_SET_BY_CORE,
71 .alpha2[0] = '0',
72 .alpha2[1] = '0',
73 .intersect = false,
74 .processed = true,
75 .country_ie_env = ENVIRON_ANY,
78 /* Receipt of information from last regulatory request */
79 static struct regulatory_request *last_request = &core_request_world;
81 /* To trigger userspace events */
82 static struct platform_device *reg_pdev;
84 static struct device_type reg_device_type = {
85 .uevent = reg_device_uevent,
89 * Central wireless core regulatory domains, we only need two,
90 * the current one and a world regulatory domain in case we have no
91 * information to give us an alpha2
93 const struct ieee80211_regdomain *cfg80211_regdomain;
96 * Protects static reg.c components:
97 * - cfg80211_world_regdom
98 * - cfg80211_regdom
99 * - last_request
100 * - reg_num_devs_support_basehint
102 static DEFINE_MUTEX(reg_mutex);
105 * Number of devices that registered to the core
106 * that support cellular base station regulatory hints
108 static int reg_num_devs_support_basehint;
110 static inline void assert_reg_lock(void)
112 lockdep_assert_held(&reg_mutex);
115 /* Used to queue up regulatory hints */
116 static LIST_HEAD(reg_requests_list);
117 static spinlock_t reg_requests_lock;
119 /* Used to queue up beacon hints for review */
120 static LIST_HEAD(reg_pending_beacons);
121 static spinlock_t reg_pending_beacons_lock;
123 /* Used to keep track of processed beacon hints */
124 static LIST_HEAD(reg_beacon_list);
126 struct reg_beacon {
127 struct list_head list;
128 struct ieee80211_channel chan;
131 static void reg_todo(struct work_struct *work);
132 static DECLARE_WORK(reg_work, reg_todo);
134 static void reg_timeout_work(struct work_struct *work);
135 static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work);
137 /* We keep a static world regulatory domain in case of the absence of CRDA */
138 static const struct ieee80211_regdomain world_regdom = {
139 .n_reg_rules = 6,
140 .alpha2 = "00",
141 .reg_rules = {
142 /* IEEE 802.11b/g, channels 1..11 */
143 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
144 /* IEEE 802.11b/g, channels 12..13. */
145 REG_RULE(2467-10, 2472+10, 40, 6, 20,
146 NL80211_RRF_PASSIVE_SCAN |
147 NL80211_RRF_NO_IBSS),
148 /* IEEE 802.11 channel 14 - Only JP enables
149 * this and for 802.11b only */
150 REG_RULE(2484-10, 2484+10, 20, 6, 20,
151 NL80211_RRF_PASSIVE_SCAN |
152 NL80211_RRF_NO_IBSS |
153 NL80211_RRF_NO_OFDM),
154 /* IEEE 802.11a, channel 36..48 */
155 REG_RULE(5180-10, 5240+10, 40, 6, 20,
156 NL80211_RRF_PASSIVE_SCAN |
157 NL80211_RRF_NO_IBSS),
159 /* NB: 5260 MHz - 5700 MHz requies DFS */
161 /* IEEE 802.11a, channel 149..165 */
162 REG_RULE(5745-10, 5825+10, 40, 6, 20,
163 NL80211_RRF_PASSIVE_SCAN |
164 NL80211_RRF_NO_IBSS),
166 /* IEEE 802.11ad (60gHz), channels 1..3 */
167 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
171 static const struct ieee80211_regdomain *cfg80211_world_regdom =
172 &world_regdom;
174 static char *ieee80211_regdom = "00";
175 static char user_alpha2[2];
177 module_param(ieee80211_regdom, charp, 0444);
178 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
180 static void reset_regdomains(bool full_reset)
182 /* avoid freeing static information or freeing something twice */
183 if (cfg80211_regdomain == cfg80211_world_regdom)
184 cfg80211_regdomain = NULL;
185 if (cfg80211_world_regdom == &world_regdom)
186 cfg80211_world_regdom = NULL;
187 if (cfg80211_regdomain == &world_regdom)
188 cfg80211_regdomain = NULL;
190 kfree(cfg80211_regdomain);
191 kfree(cfg80211_world_regdom);
193 cfg80211_world_regdom = &world_regdom;
194 cfg80211_regdomain = NULL;
196 if (!full_reset)
197 return;
199 if (last_request != &core_request_world)
200 kfree(last_request);
201 last_request = &core_request_world;
205 * Dynamic world regulatory domain requested by the wireless
206 * core upon initialization
208 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
210 BUG_ON(!last_request);
212 reset_regdomains(false);
214 cfg80211_world_regdom = rd;
215 cfg80211_regdomain = rd;
218 bool is_world_regdom(const char *alpha2)
220 if (!alpha2)
221 return false;
222 if (alpha2[0] == '0' && alpha2[1] == '0')
223 return true;
224 return false;
227 static bool is_alpha2_set(const char *alpha2)
229 if (!alpha2)
230 return false;
231 if (alpha2[0] != 0 && alpha2[1] != 0)
232 return true;
233 return false;
236 static bool is_unknown_alpha2(const char *alpha2)
238 if (!alpha2)
239 return false;
241 * Special case where regulatory domain was built by driver
242 * but a specific alpha2 cannot be determined
244 if (alpha2[0] == '9' && alpha2[1] == '9')
245 return true;
246 return false;
249 static bool is_intersected_alpha2(const char *alpha2)
251 if (!alpha2)
252 return false;
254 * Special case where regulatory domain is the
255 * result of an intersection between two regulatory domain
256 * structures
258 if (alpha2[0] == '9' && alpha2[1] == '8')
259 return true;
260 return false;
263 static bool is_an_alpha2(const char *alpha2)
265 if (!alpha2)
266 return false;
267 if (isalpha(alpha2[0]) && isalpha(alpha2[1]))
268 return true;
269 return false;
272 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
274 if (!alpha2_x || !alpha2_y)
275 return false;
276 if (alpha2_x[0] == alpha2_y[0] &&
277 alpha2_x[1] == alpha2_y[1])
278 return true;
279 return false;
282 static bool regdom_changes(const char *alpha2)
284 assert_cfg80211_lock();
286 if (!cfg80211_regdomain)
287 return true;
288 if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
289 return false;
290 return true;
294 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
295 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
296 * has ever been issued.
298 static bool is_user_regdom_saved(void)
300 if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
301 return false;
303 /* This would indicate a mistake on the design */
304 if (WARN((!is_world_regdom(user_alpha2) &&
305 !is_an_alpha2(user_alpha2)),
306 "Unexpected user alpha2: %c%c\n",
307 user_alpha2[0],
308 user_alpha2[1]))
309 return false;
311 return true;
314 static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
315 const struct ieee80211_regdomain *src_regd)
317 struct ieee80211_regdomain *regd;
318 int size_of_regd = 0;
319 unsigned int i;
321 size_of_regd = sizeof(struct ieee80211_regdomain) +
322 ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule));
324 regd = kzalloc(size_of_regd, GFP_KERNEL);
325 if (!regd)
326 return -ENOMEM;
328 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
330 for (i = 0; i < src_regd->n_reg_rules; i++)
331 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
332 sizeof(struct ieee80211_reg_rule));
334 *dst_regd = regd;
335 return 0;
338 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
339 struct reg_regdb_search_request {
340 char alpha2[2];
341 struct list_head list;
344 static LIST_HEAD(reg_regdb_search_list);
345 static DEFINE_MUTEX(reg_regdb_search_mutex);
347 static void reg_regdb_search(struct work_struct *work)
349 struct reg_regdb_search_request *request;
350 const struct ieee80211_regdomain *curdom, *regdom;
351 int i, r;
352 bool set_reg = false;
354 mutex_lock(&cfg80211_mutex);
356 mutex_lock(&reg_regdb_search_mutex);
357 while (!list_empty(&reg_regdb_search_list)) {
358 request = list_first_entry(&reg_regdb_search_list,
359 struct reg_regdb_search_request,
360 list);
361 list_del(&request->list);
363 for (i=0; i<reg_regdb_size; i++) {
364 curdom = reg_regdb[i];
366 if (!memcmp(request->alpha2, curdom->alpha2, 2)) {
367 r = reg_copy_regd(&regdom, curdom);
368 if (r)
369 break;
370 set_reg = true;
371 break;
375 kfree(request);
377 mutex_unlock(&reg_regdb_search_mutex);
379 if (set_reg)
380 set_regdom(regdom);
382 mutex_unlock(&cfg80211_mutex);
385 static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
387 static void reg_regdb_query(const char *alpha2)
389 struct reg_regdb_search_request *request;
391 if (!alpha2)
392 return;
394 request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
395 if (!request)
396 return;
398 memcpy(request->alpha2, alpha2, 2);
400 mutex_lock(&reg_regdb_search_mutex);
401 list_add_tail(&request->list, &reg_regdb_search_list);
402 mutex_unlock(&reg_regdb_search_mutex);
404 schedule_work(&reg_regdb_work);
407 /* Feel free to add any other sanity checks here */
408 static void reg_regdb_size_check(void)
410 /* We should ideally BUILD_BUG_ON() but then random builds would fail */
411 WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it...");
413 #else
414 static inline void reg_regdb_size_check(void) {}
415 static inline void reg_regdb_query(const char *alpha2) {}
416 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
419 * This lets us keep regulatory code which is updated on a regulatory
420 * basis in userspace. Country information is filled in by
421 * reg_device_uevent
423 static int call_crda(const char *alpha2)
425 if (!is_world_regdom((char *) alpha2))
426 pr_info("Calling CRDA for country: %c%c\n",
427 alpha2[0], alpha2[1]);
428 else
429 pr_info("Calling CRDA to update world regulatory domain\n");
431 /* query internal regulatory database (if it exists) */
432 reg_regdb_query(alpha2);
434 return kobject_uevent(&reg_pdev->dev.kobj, KOBJ_CHANGE);
437 /* Used by nl80211 before kmalloc'ing our regulatory domain */
438 bool reg_is_valid_request(const char *alpha2)
440 assert_cfg80211_lock();
442 if (!last_request)
443 return false;
445 return alpha2_equal(last_request->alpha2, alpha2);
448 /* Sanity check on a regulatory rule */
449 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
451 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
452 u32 freq_diff;
454 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
455 return false;
457 if (freq_range->start_freq_khz > freq_range->end_freq_khz)
458 return false;
460 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
462 if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
463 freq_range->max_bandwidth_khz > freq_diff)
464 return false;
466 return true;
469 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
471 const struct ieee80211_reg_rule *reg_rule = NULL;
472 unsigned int i;
474 if (!rd->n_reg_rules)
475 return false;
477 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
478 return false;
480 for (i = 0; i < rd->n_reg_rules; i++) {
481 reg_rule = &rd->reg_rules[i];
482 if (!is_valid_reg_rule(reg_rule))
483 return false;
486 return true;
489 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
490 u32 center_freq_khz,
491 u32 bw_khz)
493 u32 start_freq_khz, end_freq_khz;
495 start_freq_khz = center_freq_khz - (bw_khz/2);
496 end_freq_khz = center_freq_khz + (bw_khz/2);
498 if (start_freq_khz >= freq_range->start_freq_khz &&
499 end_freq_khz <= freq_range->end_freq_khz)
500 return true;
502 return false;
506 * freq_in_rule_band - tells us if a frequency is in a frequency band
507 * @freq_range: frequency rule we want to query
508 * @freq_khz: frequency we are inquiring about
510 * This lets us know if a specific frequency rule is or is not relevant to
511 * a specific frequency's band. Bands are device specific and artificial
512 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
513 * however it is safe for now to assume that a frequency rule should not be
514 * part of a frequency's band if the start freq or end freq are off by more
515 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the
516 * 60 GHz band.
517 * This resolution can be lowered and should be considered as we add
518 * regulatory rule support for other "bands".
520 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
521 u32 freq_khz)
523 #define ONE_GHZ_IN_KHZ 1000000
525 * From 802.11ad: directional multi-gigabit (DMG):
526 * Pertaining to operation in a frequency band containing a channel
527 * with the Channel starting frequency above 45 GHz.
529 u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
530 10 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
531 if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
532 return true;
533 if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
534 return true;
535 return false;
536 #undef ONE_GHZ_IN_KHZ
540 * Helper for regdom_intersect(), this does the real
541 * mathematical intersection fun
543 static int reg_rules_intersect(
544 const struct ieee80211_reg_rule *rule1,
545 const struct ieee80211_reg_rule *rule2,
546 struct ieee80211_reg_rule *intersected_rule)
548 const struct ieee80211_freq_range *freq_range1, *freq_range2;
549 struct ieee80211_freq_range *freq_range;
550 const struct ieee80211_power_rule *power_rule1, *power_rule2;
551 struct ieee80211_power_rule *power_rule;
552 u32 freq_diff;
554 freq_range1 = &rule1->freq_range;
555 freq_range2 = &rule2->freq_range;
556 freq_range = &intersected_rule->freq_range;
558 power_rule1 = &rule1->power_rule;
559 power_rule2 = &rule2->power_rule;
560 power_rule = &intersected_rule->power_rule;
562 freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
563 freq_range2->start_freq_khz);
564 freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
565 freq_range2->end_freq_khz);
566 freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
567 freq_range2->max_bandwidth_khz);
569 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
570 if (freq_range->max_bandwidth_khz > freq_diff)
571 freq_range->max_bandwidth_khz = freq_diff;
573 power_rule->max_eirp = min(power_rule1->max_eirp,
574 power_rule2->max_eirp);
575 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
576 power_rule2->max_antenna_gain);
578 intersected_rule->flags = (rule1->flags | rule2->flags);
580 if (!is_valid_reg_rule(intersected_rule))
581 return -EINVAL;
583 return 0;
587 * regdom_intersect - do the intersection between two regulatory domains
588 * @rd1: first regulatory domain
589 * @rd2: second regulatory domain
591 * Use this function to get the intersection between two regulatory domains.
592 * Once completed we will mark the alpha2 for the rd as intersected, "98",
593 * as no one single alpha2 can represent this regulatory domain.
595 * Returns a pointer to the regulatory domain structure which will hold the
596 * resulting intersection of rules between rd1 and rd2. We will
597 * kzalloc() this structure for you.
599 static struct ieee80211_regdomain *regdom_intersect(
600 const struct ieee80211_regdomain *rd1,
601 const struct ieee80211_regdomain *rd2)
603 int r, size_of_regd;
604 unsigned int x, y;
605 unsigned int num_rules = 0, rule_idx = 0;
606 const struct ieee80211_reg_rule *rule1, *rule2;
607 struct ieee80211_reg_rule *intersected_rule;
608 struct ieee80211_regdomain *rd;
609 /* This is just a dummy holder to help us count */
610 struct ieee80211_reg_rule irule;
612 /* Uses the stack temporarily for counter arithmetic */
613 intersected_rule = &irule;
615 memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));
617 if (!rd1 || !rd2)
618 return NULL;
621 * First we get a count of the rules we'll need, then we actually
622 * build them. This is to so we can malloc() and free() a
623 * regdomain once. The reason we use reg_rules_intersect() here
624 * is it will return -EINVAL if the rule computed makes no sense.
625 * All rules that do check out OK are valid.
628 for (x = 0; x < rd1->n_reg_rules; x++) {
629 rule1 = &rd1->reg_rules[x];
630 for (y = 0; y < rd2->n_reg_rules; y++) {
631 rule2 = &rd2->reg_rules[y];
632 if (!reg_rules_intersect(rule1, rule2,
633 intersected_rule))
634 num_rules++;
635 memset(intersected_rule, 0,
636 sizeof(struct ieee80211_reg_rule));
640 if (!num_rules)
641 return NULL;
643 size_of_regd = sizeof(struct ieee80211_regdomain) +
644 ((num_rules + 1) * sizeof(struct ieee80211_reg_rule));
646 rd = kzalloc(size_of_regd, GFP_KERNEL);
647 if (!rd)
648 return NULL;
650 for (x = 0; x < rd1->n_reg_rules; x++) {
651 rule1 = &rd1->reg_rules[x];
652 for (y = 0; y < rd2->n_reg_rules; y++) {
653 rule2 = &rd2->reg_rules[y];
655 * This time around instead of using the stack lets
656 * write to the target rule directly saving ourselves
657 * a memcpy()
659 intersected_rule = &rd->reg_rules[rule_idx];
660 r = reg_rules_intersect(rule1, rule2,
661 intersected_rule);
663 * No need to memset here the intersected rule here as
664 * we're not using the stack anymore
666 if (r)
667 continue;
668 rule_idx++;
672 if (rule_idx != num_rules) {
673 kfree(rd);
674 return NULL;
677 rd->n_reg_rules = num_rules;
678 rd->alpha2[0] = '9';
679 rd->alpha2[1] = '8';
681 return rd;
685 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
686 * want to just have the channel structure use these
688 static u32 map_regdom_flags(u32 rd_flags)
690 u32 channel_flags = 0;
691 if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
692 channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
693 if (rd_flags & NL80211_RRF_NO_IBSS)
694 channel_flags |= IEEE80211_CHAN_NO_IBSS;
695 if (rd_flags & NL80211_RRF_DFS)
696 channel_flags |= IEEE80211_CHAN_RADAR;
697 if (rd_flags & NL80211_RRF_NO_OFDM)
698 channel_flags |= IEEE80211_CHAN_NO_OFDM;
699 return channel_flags;
702 static int freq_reg_info_regd(struct wiphy *wiphy,
703 u32 center_freq,
704 u32 desired_bw_khz,
705 const struct ieee80211_reg_rule **reg_rule,
706 const struct ieee80211_regdomain *custom_regd)
708 int i;
709 bool band_rule_found = false;
710 const struct ieee80211_regdomain *regd;
711 bool bw_fits = false;
713 if (!desired_bw_khz)
714 desired_bw_khz = MHZ_TO_KHZ(20);
716 regd = custom_regd ? custom_regd : cfg80211_regdomain;
719 * Follow the driver's regulatory domain, if present, unless a country
720 * IE has been processed or a user wants to help complaince further
722 if (!custom_regd &&
723 last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
724 last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
725 wiphy->regd)
726 regd = wiphy->regd;
728 if (!regd)
729 return -EINVAL;
731 for (i = 0; i < regd->n_reg_rules; i++) {
732 const struct ieee80211_reg_rule *rr;
733 const struct ieee80211_freq_range *fr = NULL;
735 rr = &regd->reg_rules[i];
736 fr = &rr->freq_range;
739 * We only need to know if one frequency rule was
740 * was in center_freq's band, that's enough, so lets
741 * not overwrite it once found
743 if (!band_rule_found)
744 band_rule_found = freq_in_rule_band(fr, center_freq);
746 bw_fits = reg_does_bw_fit(fr,
747 center_freq,
748 desired_bw_khz);
750 if (band_rule_found && bw_fits) {
751 *reg_rule = rr;
752 return 0;
756 if (!band_rule_found)
757 return -ERANGE;
759 return -EINVAL;
762 int freq_reg_info(struct wiphy *wiphy,
763 u32 center_freq,
764 u32 desired_bw_khz,
765 const struct ieee80211_reg_rule **reg_rule)
767 assert_cfg80211_lock();
768 return freq_reg_info_regd(wiphy,
769 center_freq,
770 desired_bw_khz,
771 reg_rule,
772 NULL);
774 EXPORT_SYMBOL(freq_reg_info);
776 #ifdef CONFIG_CFG80211_REG_DEBUG
777 static const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
779 switch (initiator) {
780 case NL80211_REGDOM_SET_BY_CORE:
781 return "Set by core";
782 case NL80211_REGDOM_SET_BY_USER:
783 return "Set by user";
784 case NL80211_REGDOM_SET_BY_DRIVER:
785 return "Set by driver";
786 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
787 return "Set by country IE";
788 default:
789 WARN_ON(1);
790 return "Set by bug";
794 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
795 u32 desired_bw_khz,
796 const struct ieee80211_reg_rule *reg_rule)
798 const struct ieee80211_power_rule *power_rule;
799 const struct ieee80211_freq_range *freq_range;
800 char max_antenna_gain[32];
802 power_rule = &reg_rule->power_rule;
803 freq_range = &reg_rule->freq_range;
805 if (!power_rule->max_antenna_gain)
806 snprintf(max_antenna_gain, 32, "N/A");
807 else
808 snprintf(max_antenna_gain, 32, "%d", power_rule->max_antenna_gain);
810 REG_DBG_PRINT("Updating information on frequency %d MHz "
811 "for a %d MHz width channel with regulatory rule:\n",
812 chan->center_freq,
813 KHZ_TO_MHZ(desired_bw_khz));
815 REG_DBG_PRINT("%d KHz - %d KHz @ %d KHz), (%s mBi, %d mBm)\n",
816 freq_range->start_freq_khz,
817 freq_range->end_freq_khz,
818 freq_range->max_bandwidth_khz,
819 max_antenna_gain,
820 power_rule->max_eirp);
822 #else
823 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
824 u32 desired_bw_khz,
825 const struct ieee80211_reg_rule *reg_rule)
827 return;
829 #endif
832 * Note that right now we assume the desired channel bandwidth
833 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
834 * per channel, the primary and the extension channel). To support
835 * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a
836 * new ieee80211_channel.target_bw and re run the regulatory check
837 * on the wiphy with the target_bw specified. Then we can simply use
838 * that below for the desired_bw_khz below.
840 static void handle_channel(struct wiphy *wiphy,
841 enum nl80211_reg_initiator initiator,
842 enum ieee80211_band band,
843 unsigned int chan_idx)
845 int r;
846 u32 flags, bw_flags = 0;
847 u32 desired_bw_khz = MHZ_TO_KHZ(20);
848 const struct ieee80211_reg_rule *reg_rule = NULL;
849 const struct ieee80211_power_rule *power_rule = NULL;
850 const struct ieee80211_freq_range *freq_range = NULL;
851 struct ieee80211_supported_band *sband;
852 struct ieee80211_channel *chan;
853 struct wiphy *request_wiphy = NULL;
855 assert_cfg80211_lock();
857 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
859 sband = wiphy->bands[band];
860 BUG_ON(chan_idx >= sband->n_channels);
861 chan = &sband->channels[chan_idx];
863 flags = chan->orig_flags;
865 r = freq_reg_info(wiphy,
866 MHZ_TO_KHZ(chan->center_freq),
867 desired_bw_khz,
868 &reg_rule);
870 if (r) {
872 * We will disable all channels that do not match our
873 * received regulatory rule unless the hint is coming
874 * from a Country IE and the Country IE had no information
875 * about a band. The IEEE 802.11 spec allows for an AP
876 * to send only a subset of the regulatory rules allowed,
877 * so an AP in the US that only supports 2.4 GHz may only send
878 * a country IE with information for the 2.4 GHz band
879 * while 5 GHz is still supported.
881 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
882 r == -ERANGE)
883 return;
885 REG_DBG_PRINT("Disabling freq %d MHz\n", chan->center_freq);
886 chan->flags = IEEE80211_CHAN_DISABLED;
887 return;
890 chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);
892 power_rule = &reg_rule->power_rule;
893 freq_range = &reg_rule->freq_range;
895 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
896 bw_flags = IEEE80211_CHAN_NO_HT40;
898 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
899 request_wiphy && request_wiphy == wiphy &&
900 request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
902 * This guarantees the driver's requested regulatory domain
903 * will always be used as a base for further regulatory
904 * settings
906 chan->flags = chan->orig_flags =
907 map_regdom_flags(reg_rule->flags) | bw_flags;
908 chan->max_antenna_gain = chan->orig_mag =
909 (int) MBI_TO_DBI(power_rule->max_antenna_gain);
910 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
911 (int) MBM_TO_DBM(power_rule->max_eirp);
912 return;
915 chan->beacon_found = false;
916 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
917 chan->max_antenna_gain = min(chan->orig_mag,
918 (int) MBI_TO_DBI(power_rule->max_antenna_gain));
919 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
920 if (chan->orig_mpwr) {
922 * Devices that have their own custom regulatory domain
923 * but also use WIPHY_FLAG_STRICT_REGULATORY will follow the
924 * passed country IE power settings.
926 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
927 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY &&
928 wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY)
929 chan->max_power = chan->max_reg_power;
930 else
931 chan->max_power = min(chan->orig_mpwr,
932 chan->max_reg_power);
933 } else
934 chan->max_power = chan->max_reg_power;
937 static void handle_band(struct wiphy *wiphy,
938 enum ieee80211_band band,
939 enum nl80211_reg_initiator initiator)
941 unsigned int i;
942 struct ieee80211_supported_band *sband;
944 BUG_ON(!wiphy->bands[band]);
945 sband = wiphy->bands[band];
947 for (i = 0; i < sband->n_channels; i++)
948 handle_channel(wiphy, initiator, band, i);
951 static bool reg_request_cell_base(struct regulatory_request *request)
953 if (request->initiator != NL80211_REGDOM_SET_BY_USER)
954 return false;
955 if (request->user_reg_hint_type != NL80211_USER_REG_HINT_CELL_BASE)
956 return false;
957 return true;
960 bool reg_last_request_cell_base(void)
962 bool val;
963 assert_cfg80211_lock();
965 mutex_lock(&reg_mutex);
966 val = reg_request_cell_base(last_request);
967 mutex_unlock(&reg_mutex);
968 return val;
971 #ifdef CONFIG_CFG80211_CERTIFICATION_ONUS
973 /* Core specific check */
974 static int reg_ignore_cell_hint(struct regulatory_request *pending_request)
976 if (!reg_num_devs_support_basehint)
977 return -EOPNOTSUPP;
979 if (reg_request_cell_base(last_request)) {
980 if (!regdom_changes(pending_request->alpha2))
981 return -EALREADY;
982 return 0;
984 return 0;
987 /* Device specific check */
988 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
990 if (!(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS))
991 return true;
992 return false;
994 #else
995 static int reg_ignore_cell_hint(struct regulatory_request *pending_request)
997 return -EOPNOTSUPP;
999 static int reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1001 return true;
1003 #endif
1006 static bool ignore_reg_update(struct wiphy *wiphy,
1007 enum nl80211_reg_initiator initiator)
1009 if (!last_request) {
1010 REG_DBG_PRINT("Ignoring regulatory request %s since "
1011 "last_request is not set\n",
1012 reg_initiator_name(initiator));
1013 return true;
1016 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1017 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY) {
1018 REG_DBG_PRINT("Ignoring regulatory request %s "
1019 "since the driver uses its own custom "
1020 "regulatory domain\n",
1021 reg_initiator_name(initiator));
1022 return true;
1026 * wiphy->regd will be set once the device has its own
1027 * desired regulatory domain set
1029 if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY && !wiphy->regd &&
1030 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1031 !is_world_regdom(last_request->alpha2)) {
1032 REG_DBG_PRINT("Ignoring regulatory request %s "
1033 "since the driver requires its own regulatory "
1034 "domain to be set first\n",
1035 reg_initiator_name(initiator));
1036 return true;
1039 if (reg_request_cell_base(last_request))
1040 return reg_dev_ignore_cell_hint(wiphy);
1042 return false;
1045 static void handle_reg_beacon(struct wiphy *wiphy,
1046 unsigned int chan_idx,
1047 struct reg_beacon *reg_beacon)
1049 struct ieee80211_supported_band *sband;
1050 struct ieee80211_channel *chan;
1051 bool channel_changed = false;
1052 struct ieee80211_channel chan_before;
1054 assert_cfg80211_lock();
1056 sband = wiphy->bands[reg_beacon->chan.band];
1057 chan = &sband->channels[chan_idx];
1059 if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1060 return;
1062 if (chan->beacon_found)
1063 return;
1065 chan->beacon_found = true;
1067 if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS)
1068 return;
1070 chan_before.center_freq = chan->center_freq;
1071 chan_before.flags = chan->flags;
1073 if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
1074 chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
1075 channel_changed = true;
1078 if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
1079 chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
1080 channel_changed = true;
1083 if (channel_changed)
1084 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1088 * Called when a scan on a wiphy finds a beacon on
1089 * new channel
1091 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1092 struct reg_beacon *reg_beacon)
1094 unsigned int i;
1095 struct ieee80211_supported_band *sband;
1097 assert_cfg80211_lock();
1099 if (!wiphy->bands[reg_beacon->chan.band])
1100 return;
1102 sband = wiphy->bands[reg_beacon->chan.band];
1104 for (i = 0; i < sband->n_channels; i++)
1105 handle_reg_beacon(wiphy, i, reg_beacon);
1109 * Called upon reg changes or a new wiphy is added
1111 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1113 unsigned int i;
1114 struct ieee80211_supported_band *sband;
1115 struct reg_beacon *reg_beacon;
1117 assert_cfg80211_lock();
1119 if (list_empty(&reg_beacon_list))
1120 return;
1122 list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1123 if (!wiphy->bands[reg_beacon->chan.band])
1124 continue;
1125 sband = wiphy->bands[reg_beacon->chan.band];
1126 for (i = 0; i < sband->n_channels; i++)
1127 handle_reg_beacon(wiphy, i, reg_beacon);
1131 static bool reg_is_world_roaming(struct wiphy *wiphy)
1133 if (is_world_regdom(cfg80211_regdomain->alpha2) ||
1134 (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
1135 return true;
1136 if (last_request &&
1137 last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1138 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1139 return true;
1140 return false;
1143 /* Reap the advantages of previously found beacons */
1144 static void reg_process_beacons(struct wiphy *wiphy)
1147 * Means we are just firing up cfg80211, so no beacons would
1148 * have been processed yet.
1150 if (!last_request)
1151 return;
1152 if (!reg_is_world_roaming(wiphy))
1153 return;
1154 wiphy_update_beacon_reg(wiphy);
1157 static bool is_ht40_not_allowed(struct ieee80211_channel *chan)
1159 if (!chan)
1160 return true;
1161 if (chan->flags & IEEE80211_CHAN_DISABLED)
1162 return true;
1163 /* This would happen when regulatory rules disallow HT40 completely */
1164 if (IEEE80211_CHAN_NO_HT40 == (chan->flags & (IEEE80211_CHAN_NO_HT40)))
1165 return true;
1166 return false;
1169 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1170 enum ieee80211_band band,
1171 unsigned int chan_idx)
1173 struct ieee80211_supported_band *sband;
1174 struct ieee80211_channel *channel;
1175 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1176 unsigned int i;
1178 assert_cfg80211_lock();
1180 sband = wiphy->bands[band];
1181 BUG_ON(chan_idx >= sband->n_channels);
1182 channel = &sband->channels[chan_idx];
1184 if (is_ht40_not_allowed(channel)) {
1185 channel->flags |= IEEE80211_CHAN_NO_HT40;
1186 return;
1190 * We need to ensure the extension channels exist to
1191 * be able to use HT40- or HT40+, this finds them (or not)
1193 for (i = 0; i < sband->n_channels; i++) {
1194 struct ieee80211_channel *c = &sband->channels[i];
1195 if (c->center_freq == (channel->center_freq - 20))
1196 channel_before = c;
1197 if (c->center_freq == (channel->center_freq + 20))
1198 channel_after = c;
1202 * Please note that this assumes target bandwidth is 20 MHz,
1203 * if that ever changes we also need to change the below logic
1204 * to include that as well.
1206 if (is_ht40_not_allowed(channel_before))
1207 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1208 else
1209 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1211 if (is_ht40_not_allowed(channel_after))
1212 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1213 else
1214 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1217 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1218 enum ieee80211_band band)
1220 unsigned int i;
1221 struct ieee80211_supported_band *sband;
1223 BUG_ON(!wiphy->bands[band]);
1224 sband = wiphy->bands[band];
1226 for (i = 0; i < sband->n_channels; i++)
1227 reg_process_ht_flags_channel(wiphy, band, i);
1230 static void reg_process_ht_flags(struct wiphy *wiphy)
1232 enum ieee80211_band band;
1234 if (!wiphy)
1235 return;
1237 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1238 if (wiphy->bands[band])
1239 reg_process_ht_flags_band(wiphy, band);
1244 static void wiphy_update_regulatory(struct wiphy *wiphy,
1245 enum nl80211_reg_initiator initiator)
1247 enum ieee80211_band band;
1249 assert_reg_lock();
1251 if (ignore_reg_update(wiphy, initiator))
1252 return;
1254 last_request->dfs_region = cfg80211_regdomain->dfs_region;
1256 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1257 if (wiphy->bands[band])
1258 handle_band(wiphy, band, initiator);
1261 reg_process_beacons(wiphy);
1262 reg_process_ht_flags(wiphy);
1263 if (wiphy->reg_notifier)
1264 wiphy->reg_notifier(wiphy, last_request);
1267 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1269 struct cfg80211_registered_device *rdev;
1270 struct wiphy *wiphy;
1272 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1273 wiphy = &rdev->wiphy;
1274 wiphy_update_regulatory(wiphy, initiator);
1276 * Regulatory updates set by CORE are ignored for custom
1277 * regulatory cards. Let us notify the changes to the driver,
1278 * as some drivers used this to restore its orig_* reg domain.
1280 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1281 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY &&
1282 wiphy->reg_notifier)
1283 wiphy->reg_notifier(wiphy, last_request);
1287 static void handle_channel_custom(struct wiphy *wiphy,
1288 enum ieee80211_band band,
1289 unsigned int chan_idx,
1290 const struct ieee80211_regdomain *regd)
1292 int r;
1293 u32 desired_bw_khz = MHZ_TO_KHZ(20);
1294 u32 bw_flags = 0;
1295 const struct ieee80211_reg_rule *reg_rule = NULL;
1296 const struct ieee80211_power_rule *power_rule = NULL;
1297 const struct ieee80211_freq_range *freq_range = NULL;
1298 struct ieee80211_supported_band *sband;
1299 struct ieee80211_channel *chan;
1301 assert_reg_lock();
1303 sband = wiphy->bands[band];
1304 BUG_ON(chan_idx >= sband->n_channels);
1305 chan = &sband->channels[chan_idx];
1307 r = freq_reg_info_regd(wiphy,
1308 MHZ_TO_KHZ(chan->center_freq),
1309 desired_bw_khz,
1310 &reg_rule,
1311 regd);
1313 if (r) {
1314 REG_DBG_PRINT("Disabling freq %d MHz as custom "
1315 "regd has no rule that fits a %d MHz "
1316 "wide channel\n",
1317 chan->center_freq,
1318 KHZ_TO_MHZ(desired_bw_khz));
1319 chan->flags = IEEE80211_CHAN_DISABLED;
1320 return;
1323 chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);
1325 power_rule = &reg_rule->power_rule;
1326 freq_range = &reg_rule->freq_range;
1328 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
1329 bw_flags = IEEE80211_CHAN_NO_HT40;
1331 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1332 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1333 chan->max_reg_power = chan->max_power =
1334 (int) MBM_TO_DBM(power_rule->max_eirp);
1337 static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
1338 const struct ieee80211_regdomain *regd)
1340 unsigned int i;
1341 struct ieee80211_supported_band *sband;
1343 BUG_ON(!wiphy->bands[band]);
1344 sband = wiphy->bands[band];
1346 for (i = 0; i < sband->n_channels; i++)
1347 handle_channel_custom(wiphy, band, i, regd);
1350 /* Used by drivers prior to wiphy registration */
1351 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1352 const struct ieee80211_regdomain *regd)
1354 enum ieee80211_band band;
1355 unsigned int bands_set = 0;
1357 mutex_lock(&reg_mutex);
1358 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1359 if (!wiphy->bands[band])
1360 continue;
1361 handle_band_custom(wiphy, band, regd);
1362 bands_set++;
1364 mutex_unlock(&reg_mutex);
1367 * no point in calling this if it won't have any effect
1368 * on your device's supportd bands.
1370 WARN_ON(!bands_set);
1372 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1375 * Return value which can be used by ignore_request() to indicate
1376 * it has been determined we should intersect two regulatory domains
1378 #define REG_INTERSECT 1
1380 /* This has the logic which determines when a new request
1381 * should be ignored. */
1382 static int ignore_request(struct wiphy *wiphy,
1383 struct regulatory_request *pending_request)
1385 struct wiphy *last_wiphy = NULL;
1387 assert_cfg80211_lock();
1389 /* All initial requests are respected */
1390 if (!last_request)
1391 return 0;
1393 switch (pending_request->initiator) {
1394 case NL80211_REGDOM_SET_BY_CORE:
1395 return 0;
1396 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1398 if (reg_request_cell_base(last_request)) {
1399 /* Trust a Cell base station over the AP's country IE */
1400 if (regdom_changes(pending_request->alpha2))
1401 return -EOPNOTSUPP;
1402 return -EALREADY;
1405 last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1407 if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1408 return -EINVAL;
1409 if (last_request->initiator ==
1410 NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1411 if (last_wiphy != wiphy) {
1413 * Two cards with two APs claiming different
1414 * Country IE alpha2s. We could
1415 * intersect them, but that seems unlikely
1416 * to be correct. Reject second one for now.
1418 if (regdom_changes(pending_request->alpha2))
1419 return -EOPNOTSUPP;
1420 return -EALREADY;
1423 * Two consecutive Country IE hints on the same wiphy.
1424 * This should be picked up early by the driver/stack
1426 if (WARN_ON(regdom_changes(pending_request->alpha2)))
1427 return 0;
1428 return -EALREADY;
1430 return 0;
1431 case NL80211_REGDOM_SET_BY_DRIVER:
1432 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
1433 if (regdom_changes(pending_request->alpha2))
1434 return 0;
1435 return -EALREADY;
1439 * This would happen if you unplug and plug your card
1440 * back in or if you add a new device for which the previously
1441 * loaded card also agrees on the regulatory domain.
1443 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1444 !regdom_changes(pending_request->alpha2))
1445 return -EALREADY;
1447 return REG_INTERSECT;
1448 case NL80211_REGDOM_SET_BY_USER:
1449 if (reg_request_cell_base(pending_request))
1450 return reg_ignore_cell_hint(pending_request);
1452 if (reg_request_cell_base(last_request))
1453 return -EOPNOTSUPP;
1455 if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1456 return REG_INTERSECT;
1458 * If the user knows better the user should set the regdom
1459 * to their country before the IE is picked up
1461 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
1462 last_request->intersect)
1463 return -EOPNOTSUPP;
1465 * Process user requests only after previous user/driver/core
1466 * requests have been processed
1468 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
1469 last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1470 last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1471 if (regdom_changes(last_request->alpha2))
1472 return -EAGAIN;
1475 if (!regdom_changes(pending_request->alpha2))
1476 return -EALREADY;
1478 return 0;
1481 return -EINVAL;
1484 static void reg_set_request_processed(void)
1486 bool need_more_processing = false;
1488 last_request->processed = true;
1490 spin_lock(&reg_requests_lock);
1491 if (!list_empty(&reg_requests_list))
1492 need_more_processing = true;
1493 spin_unlock(&reg_requests_lock);
1495 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER)
1496 cancel_delayed_work(&reg_timeout);
1498 if (need_more_processing)
1499 schedule_work(&reg_work);
1503 * __regulatory_hint - hint to the wireless core a regulatory domain
1504 * @wiphy: if the hint comes from country information from an AP, this
1505 * is required to be set to the wiphy that received the information
1506 * @pending_request: the regulatory request currently being processed
1508 * The Wireless subsystem can use this function to hint to the wireless core
1509 * what it believes should be the current regulatory domain.
1511 * Returns zero if all went fine, %-EALREADY if a regulatory domain had
1512 * already been set or other standard error codes.
1514 * Caller must hold &cfg80211_mutex and &reg_mutex
1516 static int __regulatory_hint(struct wiphy *wiphy,
1517 struct regulatory_request *pending_request)
1519 bool intersect = false;
1520 int r = 0;
1522 assert_cfg80211_lock();
1524 r = ignore_request(wiphy, pending_request);
1526 if (r == REG_INTERSECT) {
1527 if (pending_request->initiator ==
1528 NL80211_REGDOM_SET_BY_DRIVER) {
1529 r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1530 if (r) {
1531 kfree(pending_request);
1532 return r;
1535 intersect = true;
1536 } else if (r) {
1538 * If the regulatory domain being requested by the
1539 * driver has already been set just copy it to the
1540 * wiphy
1542 if (r == -EALREADY &&
1543 pending_request->initiator ==
1544 NL80211_REGDOM_SET_BY_DRIVER) {
1545 r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1546 if (r) {
1547 kfree(pending_request);
1548 return r;
1550 r = -EALREADY;
1551 goto new_request;
1553 kfree(pending_request);
1554 return r;
1557 new_request:
1558 if (last_request != &core_request_world)
1559 kfree(last_request);
1561 last_request = pending_request;
1562 last_request->intersect = intersect;
1564 pending_request = NULL;
1566 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1567 user_alpha2[0] = last_request->alpha2[0];
1568 user_alpha2[1] = last_request->alpha2[1];
1571 /* When r == REG_INTERSECT we do need to call CRDA */
1572 if (r < 0) {
1574 * Since CRDA will not be called in this case as we already
1575 * have applied the requested regulatory domain before we just
1576 * inform userspace we have processed the request
1578 if (r == -EALREADY) {
1579 nl80211_send_reg_change_event(last_request);
1580 reg_set_request_processed();
1582 return r;
1585 return call_crda(last_request->alpha2);
1588 /* This processes *all* regulatory hints */
1589 static void reg_process_hint(struct regulatory_request *reg_request,
1590 enum nl80211_reg_initiator reg_initiator)
1592 int r = 0;
1593 struct wiphy *wiphy = NULL;
1595 BUG_ON(!reg_request->alpha2);
1597 if (wiphy_idx_valid(reg_request->wiphy_idx))
1598 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1600 if (reg_initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1601 !wiphy) {
1602 kfree(reg_request);
1603 return;
1606 r = __regulatory_hint(wiphy, reg_request);
1607 /* This is required so that the orig_* parameters are saved */
1608 if (r == -EALREADY && wiphy &&
1609 wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
1610 wiphy_update_regulatory(wiphy, reg_initiator);
1611 return;
1615 * We only time out user hints, given that they should be the only
1616 * source of bogus requests.
1618 if (r != -EALREADY &&
1619 reg_initiator == NL80211_REGDOM_SET_BY_USER)
1620 schedule_delayed_work(&reg_timeout, msecs_to_jiffies(3142));
1624 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
1625 * Regulatory hints come on a first come first serve basis and we
1626 * must process each one atomically.
1628 static void reg_process_pending_hints(void)
1630 struct regulatory_request *reg_request;
1632 mutex_lock(&cfg80211_mutex);
1633 mutex_lock(&reg_mutex);
1635 /* When last_request->processed becomes true this will be rescheduled */
1636 if (last_request && !last_request->processed) {
1637 REG_DBG_PRINT("Pending regulatory request, waiting "
1638 "for it to be processed...\n");
1639 goto out;
1642 spin_lock(&reg_requests_lock);
1644 if (list_empty(&reg_requests_list)) {
1645 spin_unlock(&reg_requests_lock);
1646 goto out;
1649 reg_request = list_first_entry(&reg_requests_list,
1650 struct regulatory_request,
1651 list);
1652 list_del_init(&reg_request->list);
1654 spin_unlock(&reg_requests_lock);
1656 reg_process_hint(reg_request, reg_request->initiator);
1658 out:
1659 mutex_unlock(&reg_mutex);
1660 mutex_unlock(&cfg80211_mutex);
1663 /* Processes beacon hints -- this has nothing to do with country IEs */
1664 static void reg_process_pending_beacon_hints(void)
1666 struct cfg80211_registered_device *rdev;
1667 struct reg_beacon *pending_beacon, *tmp;
1670 * No need to hold the reg_mutex here as we just touch wiphys
1671 * and do not read or access regulatory variables.
1673 mutex_lock(&cfg80211_mutex);
1675 /* This goes through the _pending_ beacon list */
1676 spin_lock_bh(&reg_pending_beacons_lock);
1678 if (list_empty(&reg_pending_beacons)) {
1679 spin_unlock_bh(&reg_pending_beacons_lock);
1680 goto out;
1683 list_for_each_entry_safe(pending_beacon, tmp,
1684 &reg_pending_beacons, list) {
1686 list_del_init(&pending_beacon->list);
1688 /* Applies the beacon hint to current wiphys */
1689 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1690 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1692 /* Remembers the beacon hint for new wiphys or reg changes */
1693 list_add_tail(&pending_beacon->list, &reg_beacon_list);
1696 spin_unlock_bh(&reg_pending_beacons_lock);
1697 out:
1698 mutex_unlock(&cfg80211_mutex);
1701 static void reg_todo(struct work_struct *work)
1703 reg_process_pending_hints();
1704 reg_process_pending_beacon_hints();
1707 static void queue_regulatory_request(struct regulatory_request *request)
1709 if (isalpha(request->alpha2[0]))
1710 request->alpha2[0] = toupper(request->alpha2[0]);
1711 if (isalpha(request->alpha2[1]))
1712 request->alpha2[1] = toupper(request->alpha2[1]);
1714 spin_lock(&reg_requests_lock);
1715 list_add_tail(&request->list, &reg_requests_list);
1716 spin_unlock(&reg_requests_lock);
1718 schedule_work(&reg_work);
1722 * Core regulatory hint -- happens during cfg80211_init()
1723 * and when we restore regulatory settings.
1725 static int regulatory_hint_core(const char *alpha2)
1727 struct regulatory_request *request;
1729 request = kzalloc(sizeof(struct regulatory_request),
1730 GFP_KERNEL);
1731 if (!request)
1732 return -ENOMEM;
1734 request->alpha2[0] = alpha2[0];
1735 request->alpha2[1] = alpha2[1];
1736 request->initiator = NL80211_REGDOM_SET_BY_CORE;
1738 queue_regulatory_request(request);
1740 return 0;
1743 /* User hints */
1744 int regulatory_hint_user(const char *alpha2,
1745 enum nl80211_user_reg_hint_type user_reg_hint_type)
1747 struct regulatory_request *request;
1749 BUG_ON(!alpha2);
1751 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1752 if (!request)
1753 return -ENOMEM;
1755 request->wiphy_idx = WIPHY_IDX_STALE;
1756 request->alpha2[0] = alpha2[0];
1757 request->alpha2[1] = alpha2[1];
1758 request->initiator = NL80211_REGDOM_SET_BY_USER;
1759 request->user_reg_hint_type = user_reg_hint_type;
1761 queue_regulatory_request(request);
1763 return 0;
1766 /* Driver hints */
1767 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
1769 struct regulatory_request *request;
1771 BUG_ON(!alpha2);
1772 BUG_ON(!wiphy);
1774 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1775 if (!request)
1776 return -ENOMEM;
1778 request->wiphy_idx = get_wiphy_idx(wiphy);
1780 /* Must have registered wiphy first */
1781 BUG_ON(!wiphy_idx_valid(request->wiphy_idx));
1783 request->alpha2[0] = alpha2[0];
1784 request->alpha2[1] = alpha2[1];
1785 request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1787 queue_regulatory_request(request);
1789 return 0;
1791 EXPORT_SYMBOL(regulatory_hint);
1794 * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and
1795 * therefore cannot iterate over the rdev list here.
1797 void regulatory_hint_11d(struct wiphy *wiphy,
1798 enum ieee80211_band band,
1799 const u8 *country_ie,
1800 u8 country_ie_len)
1802 char alpha2[2];
1803 enum environment_cap env = ENVIRON_ANY;
1804 struct regulatory_request *request;
1806 mutex_lock(&reg_mutex);
1808 if (unlikely(!last_request))
1809 goto out;
1811 /* IE len must be evenly divisible by 2 */
1812 if (country_ie_len & 0x01)
1813 goto out;
1815 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
1816 goto out;
1818 alpha2[0] = country_ie[0];
1819 alpha2[1] = country_ie[1];
1821 if (country_ie[2] == 'I')
1822 env = ENVIRON_INDOOR;
1823 else if (country_ie[2] == 'O')
1824 env = ENVIRON_OUTDOOR;
1827 * We will run this only upon a successful connection on cfg80211.
1828 * We leave conflict resolution to the workqueue, where can hold
1829 * cfg80211_mutex.
1831 if (likely(last_request->initiator ==
1832 NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1833 wiphy_idx_valid(last_request->wiphy_idx)))
1834 goto out;
1836 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1837 if (!request)
1838 goto out;
1840 request->wiphy_idx = get_wiphy_idx(wiphy);
1841 request->alpha2[0] = alpha2[0];
1842 request->alpha2[1] = alpha2[1];
1843 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1844 request->country_ie_env = env;
1846 mutex_unlock(&reg_mutex);
1848 queue_regulatory_request(request);
1850 return;
1852 out:
1853 mutex_unlock(&reg_mutex);
1856 static void restore_alpha2(char *alpha2, bool reset_user)
1858 /* indicates there is no alpha2 to consider for restoration */
1859 alpha2[0] = '9';
1860 alpha2[1] = '7';
1862 /* The user setting has precedence over the module parameter */
1863 if (is_user_regdom_saved()) {
1864 /* Unless we're asked to ignore it and reset it */
1865 if (reset_user) {
1866 REG_DBG_PRINT("Restoring regulatory settings "
1867 "including user preference\n");
1868 user_alpha2[0] = '9';
1869 user_alpha2[1] = '7';
1872 * If we're ignoring user settings, we still need to
1873 * check the module parameter to ensure we put things
1874 * back as they were for a full restore.
1876 if (!is_world_regdom(ieee80211_regdom)) {
1877 REG_DBG_PRINT("Keeping preference on "
1878 "module parameter ieee80211_regdom: %c%c\n",
1879 ieee80211_regdom[0],
1880 ieee80211_regdom[1]);
1881 alpha2[0] = ieee80211_regdom[0];
1882 alpha2[1] = ieee80211_regdom[1];
1884 } else {
1885 REG_DBG_PRINT("Restoring regulatory settings "
1886 "while preserving user preference for: %c%c\n",
1887 user_alpha2[0],
1888 user_alpha2[1]);
1889 alpha2[0] = user_alpha2[0];
1890 alpha2[1] = user_alpha2[1];
1892 } else if (!is_world_regdom(ieee80211_regdom)) {
1893 REG_DBG_PRINT("Keeping preference on "
1894 "module parameter ieee80211_regdom: %c%c\n",
1895 ieee80211_regdom[0],
1896 ieee80211_regdom[1]);
1897 alpha2[0] = ieee80211_regdom[0];
1898 alpha2[1] = ieee80211_regdom[1];
1899 } else
1900 REG_DBG_PRINT("Restoring regulatory settings\n");
1903 static void restore_custom_reg_settings(struct wiphy *wiphy)
1905 struct ieee80211_supported_band *sband;
1906 enum ieee80211_band band;
1907 struct ieee80211_channel *chan;
1908 int i;
1910 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1911 sband = wiphy->bands[band];
1912 if (!sband)
1913 continue;
1914 for (i = 0; i < sband->n_channels; i++) {
1915 chan = &sband->channels[i];
1916 chan->flags = chan->orig_flags;
1917 chan->max_antenna_gain = chan->orig_mag;
1918 chan->max_power = chan->orig_mpwr;
1919 chan->beacon_found = false;
1925 * Restoring regulatory settings involves ingoring any
1926 * possibly stale country IE information and user regulatory
1927 * settings if so desired, this includes any beacon hints
1928 * learned as we could have traveled outside to another country
1929 * after disconnection. To restore regulatory settings we do
1930 * exactly what we did at bootup:
1932 * - send a core regulatory hint
1933 * - send a user regulatory hint if applicable
1935 * Device drivers that send a regulatory hint for a specific country
1936 * keep their own regulatory domain on wiphy->regd so that does does
1937 * not need to be remembered.
1939 static void restore_regulatory_settings(bool reset_user)
1941 char alpha2[2];
1942 char world_alpha2[2];
1943 struct reg_beacon *reg_beacon, *btmp;
1944 struct regulatory_request *reg_request, *tmp;
1945 LIST_HEAD(tmp_reg_req_list);
1946 struct cfg80211_registered_device *rdev;
1948 mutex_lock(&cfg80211_mutex);
1949 mutex_lock(&reg_mutex);
1951 reset_regdomains(true);
1952 restore_alpha2(alpha2, reset_user);
1955 * If there's any pending requests we simply
1956 * stash them to a temporary pending queue and
1957 * add then after we've restored regulatory
1958 * settings.
1960 spin_lock(&reg_requests_lock);
1961 if (!list_empty(&reg_requests_list)) {
1962 list_for_each_entry_safe(reg_request, tmp,
1963 &reg_requests_list, list) {
1964 if (reg_request->initiator !=
1965 NL80211_REGDOM_SET_BY_USER)
1966 continue;
1967 list_move_tail(&reg_request->list, &tmp_reg_req_list);
1970 spin_unlock(&reg_requests_lock);
1972 /* Clear beacon hints */
1973 spin_lock_bh(&reg_pending_beacons_lock);
1974 if (!list_empty(&reg_pending_beacons)) {
1975 list_for_each_entry_safe(reg_beacon, btmp,
1976 &reg_pending_beacons, list) {
1977 list_del(&reg_beacon->list);
1978 kfree(reg_beacon);
1981 spin_unlock_bh(&reg_pending_beacons_lock);
1983 if (!list_empty(&reg_beacon_list)) {
1984 list_for_each_entry_safe(reg_beacon, btmp,
1985 &reg_beacon_list, list) {
1986 list_del(&reg_beacon->list);
1987 kfree(reg_beacon);
1991 /* First restore to the basic regulatory settings */
1992 cfg80211_regdomain = cfg80211_world_regdom;
1993 world_alpha2[0] = cfg80211_regdomain->alpha2[0];
1994 world_alpha2[1] = cfg80211_regdomain->alpha2[1];
1996 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1997 if (rdev->wiphy.flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1998 restore_custom_reg_settings(&rdev->wiphy);
2001 mutex_unlock(&reg_mutex);
2002 mutex_unlock(&cfg80211_mutex);
2004 regulatory_hint_core(world_alpha2);
2007 * This restores the ieee80211_regdom module parameter
2008 * preference or the last user requested regulatory
2009 * settings, user regulatory settings takes precedence.
2011 if (is_an_alpha2(alpha2))
2012 regulatory_hint_user(user_alpha2, NL80211_USER_REG_HINT_USER);
2014 if (list_empty(&tmp_reg_req_list))
2015 return;
2017 mutex_lock(&cfg80211_mutex);
2018 mutex_lock(&reg_mutex);
2020 spin_lock(&reg_requests_lock);
2021 list_for_each_entry_safe(reg_request, tmp, &tmp_reg_req_list, list) {
2022 REG_DBG_PRINT("Adding request for country %c%c back "
2023 "into the queue\n",
2024 reg_request->alpha2[0],
2025 reg_request->alpha2[1]);
2026 list_move_tail(&reg_request->list, &reg_requests_list);
2028 spin_unlock(&reg_requests_lock);
2030 mutex_unlock(&reg_mutex);
2031 mutex_unlock(&cfg80211_mutex);
2033 REG_DBG_PRINT("Kicking the queue\n");
2035 schedule_work(&reg_work);
2038 void regulatory_hint_disconnect(void)
2040 REG_DBG_PRINT("All devices are disconnected, going to "
2041 "restore regulatory settings\n");
2042 restore_regulatory_settings(false);
2045 static bool freq_is_chan_12_13_14(u16 freq)
2047 if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
2048 freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
2049 freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
2050 return true;
2051 return false;
2054 int regulatory_hint_found_beacon(struct wiphy *wiphy,
2055 struct ieee80211_channel *beacon_chan,
2056 gfp_t gfp)
2058 struct reg_beacon *reg_beacon;
2060 if (likely((beacon_chan->beacon_found ||
2061 (beacon_chan->flags & IEEE80211_CHAN_RADAR) ||
2062 (beacon_chan->band == IEEE80211_BAND_2GHZ &&
2063 !freq_is_chan_12_13_14(beacon_chan->center_freq)))))
2064 return 0;
2066 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
2067 if (!reg_beacon)
2068 return -ENOMEM;
2070 REG_DBG_PRINT("Found new beacon on "
2071 "frequency: %d MHz (Ch %d) on %s\n",
2072 beacon_chan->center_freq,
2073 ieee80211_frequency_to_channel(beacon_chan->center_freq),
2074 wiphy_name(wiphy));
2076 memcpy(&reg_beacon->chan, beacon_chan,
2077 sizeof(struct ieee80211_channel));
2081 * Since we can be called from BH or and non-BH context
2082 * we must use spin_lock_bh()
2084 spin_lock_bh(&reg_pending_beacons_lock);
2085 list_add_tail(&reg_beacon->list, &reg_pending_beacons);
2086 spin_unlock_bh(&reg_pending_beacons_lock);
2088 schedule_work(&reg_work);
2090 return 0;
2093 static void print_rd_rules(const struct ieee80211_regdomain *rd)
2095 unsigned int i;
2096 const struct ieee80211_reg_rule *reg_rule = NULL;
2097 const struct ieee80211_freq_range *freq_range = NULL;
2098 const struct ieee80211_power_rule *power_rule = NULL;
2100 pr_info(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp)\n");
2102 for (i = 0; i < rd->n_reg_rules; i++) {
2103 reg_rule = &rd->reg_rules[i];
2104 freq_range = &reg_rule->freq_range;
2105 power_rule = &reg_rule->power_rule;
2108 * There may not be documentation for max antenna gain
2109 * in certain regions
2111 if (power_rule->max_antenna_gain)
2112 pr_info(" (%d KHz - %d KHz @ %d KHz), (%d mBi, %d mBm)\n",
2113 freq_range->start_freq_khz,
2114 freq_range->end_freq_khz,
2115 freq_range->max_bandwidth_khz,
2116 power_rule->max_antenna_gain,
2117 power_rule->max_eirp);
2118 else
2119 pr_info(" (%d KHz - %d KHz @ %d KHz), (N/A, %d mBm)\n",
2120 freq_range->start_freq_khz,
2121 freq_range->end_freq_khz,
2122 freq_range->max_bandwidth_khz,
2123 power_rule->max_eirp);
2127 bool reg_supported_dfs_region(u8 dfs_region)
2129 switch (dfs_region) {
2130 case NL80211_DFS_UNSET:
2131 case NL80211_DFS_FCC:
2132 case NL80211_DFS_ETSI:
2133 case NL80211_DFS_JP:
2134 return true;
2135 default:
2136 REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n",
2137 dfs_region);
2138 return false;
2142 static void print_dfs_region(u8 dfs_region)
2144 if (!dfs_region)
2145 return;
2147 switch (dfs_region) {
2148 case NL80211_DFS_FCC:
2149 pr_info(" DFS Master region FCC");
2150 break;
2151 case NL80211_DFS_ETSI:
2152 pr_info(" DFS Master region ETSI");
2153 break;
2154 case NL80211_DFS_JP:
2155 pr_info(" DFS Master region JP");
2156 break;
2157 default:
2158 pr_info(" DFS Master region Uknown");
2159 break;
2163 static void print_regdomain(const struct ieee80211_regdomain *rd)
2166 if (is_intersected_alpha2(rd->alpha2)) {
2168 if (last_request->initiator ==
2169 NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2170 struct cfg80211_registered_device *rdev;
2171 rdev = cfg80211_rdev_by_wiphy_idx(
2172 last_request->wiphy_idx);
2173 if (rdev) {
2174 pr_info("Current regulatory domain updated by AP to: %c%c\n",
2175 rdev->country_ie_alpha2[0],
2176 rdev->country_ie_alpha2[1]);
2177 } else
2178 pr_info("Current regulatory domain intersected:\n");
2179 } else
2180 pr_info("Current regulatory domain intersected:\n");
2181 } else if (is_world_regdom(rd->alpha2))
2182 pr_info("World regulatory domain updated:\n");
2183 else {
2184 if (is_unknown_alpha2(rd->alpha2))
2185 pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
2186 else {
2187 if (reg_request_cell_base(last_request))
2188 pr_info("Regulatory domain changed "
2189 "to country: %c%c by Cell Station\n",
2190 rd->alpha2[0], rd->alpha2[1]);
2191 else
2192 pr_info("Regulatory domain changed "
2193 "to country: %c%c\n",
2194 rd->alpha2[0], rd->alpha2[1]);
2197 print_dfs_region(rd->dfs_region);
2198 print_rd_rules(rd);
2201 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2203 pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
2204 print_rd_rules(rd);
2207 /* Takes ownership of rd only if it doesn't fail */
2208 static int __set_regdom(const struct ieee80211_regdomain *rd)
2210 const struct ieee80211_regdomain *intersected_rd = NULL;
2211 struct wiphy *request_wiphy;
2212 /* Some basic sanity checks first */
2214 if (is_world_regdom(rd->alpha2)) {
2215 if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2216 return -EINVAL;
2217 update_world_regdomain(rd);
2218 return 0;
2221 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2222 !is_unknown_alpha2(rd->alpha2))
2223 return -EINVAL;
2225 if (!last_request)
2226 return -EINVAL;
2229 * Lets only bother proceeding on the same alpha2 if the current
2230 * rd is non static (it means CRDA was present and was used last)
2231 * and the pending request came in from a country IE
2233 if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2235 * If someone else asked us to change the rd lets only bother
2236 * checking if the alpha2 changes if CRDA was already called
2238 if (!regdom_changes(rd->alpha2))
2239 return -EALREADY;
2243 * Now lets set the regulatory domain, update all driver channels
2244 * and finally inform them of what we have done, in case they want
2245 * to review or adjust their own settings based on their own
2246 * internal EEPROM data
2249 if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2250 return -EINVAL;
2252 if (!is_valid_rd(rd)) {
2253 pr_err("Invalid regulatory domain detected:\n");
2254 print_regdomain_info(rd);
2255 return -EINVAL;
2258 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2259 if (!request_wiphy &&
2260 (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2261 last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)) {
2262 schedule_delayed_work(&reg_timeout, 0);
2263 return -ENODEV;
2266 if (!last_request->intersect) {
2267 int r;
2269 if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
2270 reset_regdomains(false);
2271 cfg80211_regdomain = rd;
2272 return 0;
2276 * For a driver hint, lets copy the regulatory domain the
2277 * driver wanted to the wiphy to deal with conflicts
2281 * Userspace could have sent two replies with only
2282 * one kernel request.
2284 if (request_wiphy->regd)
2285 return -EALREADY;
2287 r = reg_copy_regd(&request_wiphy->regd, rd);
2288 if (r)
2289 return r;
2291 reset_regdomains(false);
2292 cfg80211_regdomain = rd;
2293 return 0;
2296 /* Intersection requires a bit more work */
2298 if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2300 intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
2301 if (!intersected_rd)
2302 return -EINVAL;
2305 * We can trash what CRDA provided now.
2306 * However if a driver requested this specific regulatory
2307 * domain we keep it for its private use
2309 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
2310 request_wiphy->regd = rd;
2311 else
2312 kfree(rd);
2314 rd = NULL;
2316 reset_regdomains(false);
2317 cfg80211_regdomain = intersected_rd;
2319 return 0;
2322 return -EINVAL;
2327 * Use this call to set the current regulatory domain. Conflicts with
2328 * multiple drivers can be ironed out later. Caller must've already
2329 * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
2331 int set_regdom(const struct ieee80211_regdomain *rd)
2333 int r;
2335 assert_cfg80211_lock();
2337 mutex_lock(&reg_mutex);
2339 /* Note that this doesn't update the wiphys, this is done below */
2340 r = __set_regdom(rd);
2341 if (r) {
2342 if (r == -EALREADY)
2343 reg_set_request_processed();
2345 kfree(rd);
2346 mutex_unlock(&reg_mutex);
2347 return r;
2350 /* This would make this whole thing pointless */
2351 if (!last_request->intersect)
2352 BUG_ON(rd != cfg80211_regdomain);
2354 /* update all wiphys now with the new established regulatory domain */
2355 update_all_wiphy_regulatory(last_request->initiator);
2357 print_regdomain(cfg80211_regdomain);
2359 nl80211_send_reg_change_event(last_request);
2361 reg_set_request_processed();
2363 mutex_unlock(&reg_mutex);
2365 return r;
2368 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
2370 if (last_request && !last_request->processed) {
2371 if (add_uevent_var(env, "COUNTRY=%c%c",
2372 last_request->alpha2[0],
2373 last_request->alpha2[1]))
2374 return -ENOMEM;
2377 return 0;
2380 void wiphy_regulatory_register(struct wiphy *wiphy)
2382 assert_cfg80211_lock();
2384 mutex_lock(&reg_mutex);
2386 if (!reg_dev_ignore_cell_hint(wiphy))
2387 reg_num_devs_support_basehint++;
2389 wiphy_update_regulatory(wiphy, NL80211_REGDOM_SET_BY_CORE);
2391 mutex_unlock(&reg_mutex);
2394 /* Caller must hold cfg80211_mutex */
2395 void wiphy_regulatory_deregister(struct wiphy *wiphy)
2397 struct wiphy *request_wiphy = NULL;
2399 assert_cfg80211_lock();
2401 mutex_lock(&reg_mutex);
2403 if (!reg_dev_ignore_cell_hint(wiphy))
2404 reg_num_devs_support_basehint--;
2406 kfree(wiphy->regd);
2408 if (last_request)
2409 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2411 if (!request_wiphy || request_wiphy != wiphy)
2412 goto out;
2414 last_request->wiphy_idx = WIPHY_IDX_STALE;
2415 last_request->country_ie_env = ENVIRON_ANY;
2416 out:
2417 mutex_unlock(&reg_mutex);
2420 static void reg_timeout_work(struct work_struct *work)
2422 REG_DBG_PRINT("Timeout while waiting for CRDA to reply, "
2423 "restoring regulatory settings\n");
2424 restore_regulatory_settings(true);
2427 int __init regulatory_init(void)
2429 int err = 0;
2431 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2432 if (IS_ERR(reg_pdev))
2433 return PTR_ERR(reg_pdev);
2435 reg_pdev->dev.type = &reg_device_type;
2437 spin_lock_init(&reg_requests_lock);
2438 spin_lock_init(&reg_pending_beacons_lock);
2440 reg_regdb_size_check();
2442 cfg80211_regdomain = cfg80211_world_regdom;
2444 user_alpha2[0] = '9';
2445 user_alpha2[1] = '7';
2447 /* We always try to get an update for the static regdomain */
2448 err = regulatory_hint_core(cfg80211_regdomain->alpha2);
2449 if (err) {
2450 if (err == -ENOMEM)
2451 return err;
2453 * N.B. kobject_uevent_env() can fail mainly for when we're out
2454 * memory which is handled and propagated appropriately above
2455 * but it can also fail during a netlink_broadcast() or during
2456 * early boot for call_usermodehelper(). For now treat these
2457 * errors as non-fatal.
2459 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
2460 #ifdef CONFIG_CFG80211_REG_DEBUG
2461 /* We want to find out exactly why when debugging */
2462 WARN_ON(err);
2463 #endif
2467 * Finally, if the user set the module parameter treat it
2468 * as a user hint.
2470 if (!is_world_regdom(ieee80211_regdom))
2471 regulatory_hint_user(ieee80211_regdom,
2472 NL80211_USER_REG_HINT_USER);
2474 return 0;
2477 void /* __init_or_exit */ regulatory_exit(void)
2479 struct regulatory_request *reg_request, *tmp;
2480 struct reg_beacon *reg_beacon, *btmp;
2482 cancel_work_sync(&reg_work);
2483 cancel_delayed_work_sync(&reg_timeout);
2485 mutex_lock(&cfg80211_mutex);
2486 mutex_lock(&reg_mutex);
2488 reset_regdomains(true);
2490 dev_set_uevent_suppress(&reg_pdev->dev, true);
2492 platform_device_unregister(reg_pdev);
2494 spin_lock_bh(&reg_pending_beacons_lock);
2495 if (!list_empty(&reg_pending_beacons)) {
2496 list_for_each_entry_safe(reg_beacon, btmp,
2497 &reg_pending_beacons, list) {
2498 list_del(&reg_beacon->list);
2499 kfree(reg_beacon);
2502 spin_unlock_bh(&reg_pending_beacons_lock);
2504 if (!list_empty(&reg_beacon_list)) {
2505 list_for_each_entry_safe(reg_beacon, btmp,
2506 &reg_beacon_list, list) {
2507 list_del(&reg_beacon->list);
2508 kfree(reg_beacon);
2512 spin_lock(&reg_requests_lock);
2513 if (!list_empty(&reg_requests_list)) {
2514 list_for_each_entry_safe(reg_request, tmp,
2515 &reg_requests_list, list) {
2516 list_del(&reg_request->list);
2517 kfree(reg_request);
2520 spin_unlock(&reg_requests_lock);
2522 mutex_unlock(&reg_mutex);
2523 mutex_unlock(&cfg80211_mutex);