writeback: per task dirty rate limit
[linux-2.6.git] / mm / page-writeback.c
blobdaff320d263febc0112169fb5822a19868603734
1 /*
2 * mm/page-writeback.c
4 * Copyright (C) 2002, Linus Torvalds.
5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Contains functions related to writing back dirty pages at the
8 * address_space level.
10 * 10Apr2002 Andrew Morton
11 * Initial version
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/spinlock.h>
17 #include <linux/fs.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/slab.h>
21 #include <linux/pagemap.h>
22 #include <linux/writeback.h>
23 #include <linux/init.h>
24 #include <linux/backing-dev.h>
25 #include <linux/task_io_accounting_ops.h>
26 #include <linux/blkdev.h>
27 #include <linux/mpage.h>
28 #include <linux/rmap.h>
29 #include <linux/percpu.h>
30 #include <linux/notifier.h>
31 #include <linux/smp.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/syscalls.h>
35 #include <linux/buffer_head.h>
36 #include <linux/pagevec.h>
37 #include <trace/events/writeback.h>
40 * Sleep at most 200ms at a time in balance_dirty_pages().
42 #define MAX_PAUSE max(HZ/5, 1)
45 * Estimate write bandwidth at 200ms intervals.
47 #define BANDWIDTH_INTERVAL max(HZ/5, 1)
49 #define RATELIMIT_CALC_SHIFT 10
52 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
53 * will look to see if it needs to force writeback or throttling.
55 static long ratelimit_pages = 32;
57 /* The following parameters are exported via /proc/sys/vm */
60 * Start background writeback (via writeback threads) at this percentage
62 int dirty_background_ratio = 10;
65 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
66 * dirty_background_ratio * the amount of dirtyable memory
68 unsigned long dirty_background_bytes;
71 * free highmem will not be subtracted from the total free memory
72 * for calculating free ratios if vm_highmem_is_dirtyable is true
74 int vm_highmem_is_dirtyable;
77 * The generator of dirty data starts writeback at this percentage
79 int vm_dirty_ratio = 20;
82 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
83 * vm_dirty_ratio * the amount of dirtyable memory
85 unsigned long vm_dirty_bytes;
88 * The interval between `kupdate'-style writebacks
90 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
93 * The longest time for which data is allowed to remain dirty
95 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
98 * Flag that makes the machine dump writes/reads and block dirtyings.
100 int block_dump;
103 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
104 * a full sync is triggered after this time elapses without any disk activity.
106 int laptop_mode;
108 EXPORT_SYMBOL(laptop_mode);
110 /* End of sysctl-exported parameters */
112 unsigned long global_dirty_limit;
115 * Scale the writeback cache size proportional to the relative writeout speeds.
117 * We do this by keeping a floating proportion between BDIs, based on page
118 * writeback completions [end_page_writeback()]. Those devices that write out
119 * pages fastest will get the larger share, while the slower will get a smaller
120 * share.
122 * We use page writeout completions because we are interested in getting rid of
123 * dirty pages. Having them written out is the primary goal.
125 * We introduce a concept of time, a period over which we measure these events,
126 * because demand can/will vary over time. The length of this period itself is
127 * measured in page writeback completions.
130 static struct prop_descriptor vm_completions;
131 static struct prop_descriptor vm_dirties;
134 * couple the period to the dirty_ratio:
136 * period/2 ~ roundup_pow_of_two(dirty limit)
138 static int calc_period_shift(void)
140 unsigned long dirty_total;
142 if (vm_dirty_bytes)
143 dirty_total = vm_dirty_bytes / PAGE_SIZE;
144 else
145 dirty_total = (vm_dirty_ratio * determine_dirtyable_memory()) /
146 100;
147 return 2 + ilog2(dirty_total - 1);
151 * update the period when the dirty threshold changes.
153 static void update_completion_period(void)
155 int shift = calc_period_shift();
156 prop_change_shift(&vm_completions, shift);
157 prop_change_shift(&vm_dirties, shift);
159 writeback_set_ratelimit();
162 int dirty_background_ratio_handler(struct ctl_table *table, int write,
163 void __user *buffer, size_t *lenp,
164 loff_t *ppos)
166 int ret;
168 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
169 if (ret == 0 && write)
170 dirty_background_bytes = 0;
171 return ret;
174 int dirty_background_bytes_handler(struct ctl_table *table, int write,
175 void __user *buffer, size_t *lenp,
176 loff_t *ppos)
178 int ret;
180 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
181 if (ret == 0 && write)
182 dirty_background_ratio = 0;
183 return ret;
186 int dirty_ratio_handler(struct ctl_table *table, int write,
187 void __user *buffer, size_t *lenp,
188 loff_t *ppos)
190 int old_ratio = vm_dirty_ratio;
191 int ret;
193 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
194 if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
195 update_completion_period();
196 vm_dirty_bytes = 0;
198 return ret;
202 int dirty_bytes_handler(struct ctl_table *table, int write,
203 void __user *buffer, size_t *lenp,
204 loff_t *ppos)
206 unsigned long old_bytes = vm_dirty_bytes;
207 int ret;
209 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
210 if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
211 update_completion_period();
212 vm_dirty_ratio = 0;
214 return ret;
218 * Increment the BDI's writeout completion count and the global writeout
219 * completion count. Called from test_clear_page_writeback().
221 static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
223 __inc_bdi_stat(bdi, BDI_WRITTEN);
224 __prop_inc_percpu_max(&vm_completions, &bdi->completions,
225 bdi->max_prop_frac);
228 void bdi_writeout_inc(struct backing_dev_info *bdi)
230 unsigned long flags;
232 local_irq_save(flags);
233 __bdi_writeout_inc(bdi);
234 local_irq_restore(flags);
236 EXPORT_SYMBOL_GPL(bdi_writeout_inc);
238 void task_dirty_inc(struct task_struct *tsk)
240 prop_inc_single(&vm_dirties, &tsk->dirties);
244 * Obtain an accurate fraction of the BDI's portion.
246 static void bdi_writeout_fraction(struct backing_dev_info *bdi,
247 long *numerator, long *denominator)
249 prop_fraction_percpu(&vm_completions, &bdi->completions,
250 numerator, denominator);
253 static inline void task_dirties_fraction(struct task_struct *tsk,
254 long *numerator, long *denominator)
256 prop_fraction_single(&vm_dirties, &tsk->dirties,
257 numerator, denominator);
261 * task_dirty_limit - scale down dirty throttling threshold for one task
263 * task specific dirty limit:
265 * dirty -= (dirty/8) * p_{t}
267 * To protect light/slow dirtying tasks from heavier/fast ones, we start
268 * throttling individual tasks before reaching the bdi dirty limit.
269 * Relatively low thresholds will be allocated to heavy dirtiers. So when
270 * dirty pages grow large, heavy dirtiers will be throttled first, which will
271 * effectively curb the growth of dirty pages. Light dirtiers with high enough
272 * dirty threshold may never get throttled.
274 #define TASK_LIMIT_FRACTION 8
275 static unsigned long task_dirty_limit(struct task_struct *tsk,
276 unsigned long bdi_dirty)
278 long numerator, denominator;
279 unsigned long dirty = bdi_dirty;
280 u64 inv = dirty / TASK_LIMIT_FRACTION;
282 task_dirties_fraction(tsk, &numerator, &denominator);
283 inv *= numerator;
284 do_div(inv, denominator);
286 dirty -= inv;
288 return max(dirty, bdi_dirty/2);
291 /* Minimum limit for any task */
292 static unsigned long task_min_dirty_limit(unsigned long bdi_dirty)
294 return bdi_dirty - bdi_dirty / TASK_LIMIT_FRACTION;
300 static unsigned int bdi_min_ratio;
302 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
304 int ret = 0;
306 spin_lock_bh(&bdi_lock);
307 if (min_ratio > bdi->max_ratio) {
308 ret = -EINVAL;
309 } else {
310 min_ratio -= bdi->min_ratio;
311 if (bdi_min_ratio + min_ratio < 100) {
312 bdi_min_ratio += min_ratio;
313 bdi->min_ratio += min_ratio;
314 } else {
315 ret = -EINVAL;
318 spin_unlock_bh(&bdi_lock);
320 return ret;
323 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
325 int ret = 0;
327 if (max_ratio > 100)
328 return -EINVAL;
330 spin_lock_bh(&bdi_lock);
331 if (bdi->min_ratio > max_ratio) {
332 ret = -EINVAL;
333 } else {
334 bdi->max_ratio = max_ratio;
335 bdi->max_prop_frac = (PROP_FRAC_BASE * max_ratio) / 100;
337 spin_unlock_bh(&bdi_lock);
339 return ret;
341 EXPORT_SYMBOL(bdi_set_max_ratio);
344 * Work out the current dirty-memory clamping and background writeout
345 * thresholds.
347 * The main aim here is to lower them aggressively if there is a lot of mapped
348 * memory around. To avoid stressing page reclaim with lots of unreclaimable
349 * pages. It is better to clamp down on writers than to start swapping, and
350 * performing lots of scanning.
352 * We only allow 1/2 of the currently-unmapped memory to be dirtied.
354 * We don't permit the clamping level to fall below 5% - that is getting rather
355 * excessive.
357 * We make sure that the background writeout level is below the adjusted
358 * clamping level.
361 static unsigned long highmem_dirtyable_memory(unsigned long total)
363 #ifdef CONFIG_HIGHMEM
364 int node;
365 unsigned long x = 0;
367 for_each_node_state(node, N_HIGH_MEMORY) {
368 struct zone *z =
369 &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
371 x += zone_page_state(z, NR_FREE_PAGES) +
372 zone_reclaimable_pages(z);
375 * Make sure that the number of highmem pages is never larger
376 * than the number of the total dirtyable memory. This can only
377 * occur in very strange VM situations but we want to make sure
378 * that this does not occur.
380 return min(x, total);
381 #else
382 return 0;
383 #endif
387 * determine_dirtyable_memory - amount of memory that may be used
389 * Returns the numebr of pages that can currently be freed and used
390 * by the kernel for direct mappings.
392 unsigned long determine_dirtyable_memory(void)
394 unsigned long x;
396 x = global_page_state(NR_FREE_PAGES) + global_reclaimable_pages();
398 if (!vm_highmem_is_dirtyable)
399 x -= highmem_dirtyable_memory(x);
401 return x + 1; /* Ensure that we never return 0 */
404 static unsigned long dirty_freerun_ceiling(unsigned long thresh,
405 unsigned long bg_thresh)
407 return (thresh + bg_thresh) / 2;
410 static unsigned long hard_dirty_limit(unsigned long thresh)
412 return max(thresh, global_dirty_limit);
416 * global_dirty_limits - background-writeback and dirty-throttling thresholds
418 * Calculate the dirty thresholds based on sysctl parameters
419 * - vm.dirty_background_ratio or vm.dirty_background_bytes
420 * - vm.dirty_ratio or vm.dirty_bytes
421 * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
422 * real-time tasks.
424 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
426 unsigned long background;
427 unsigned long dirty;
428 unsigned long uninitialized_var(available_memory);
429 struct task_struct *tsk;
431 if (!vm_dirty_bytes || !dirty_background_bytes)
432 available_memory = determine_dirtyable_memory();
434 if (vm_dirty_bytes)
435 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
436 else
437 dirty = (vm_dirty_ratio * available_memory) / 100;
439 if (dirty_background_bytes)
440 background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
441 else
442 background = (dirty_background_ratio * available_memory) / 100;
444 if (background >= dirty)
445 background = dirty / 2;
446 tsk = current;
447 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
448 background += background / 4;
449 dirty += dirty / 4;
451 *pbackground = background;
452 *pdirty = dirty;
453 trace_global_dirty_state(background, dirty);
457 * bdi_dirty_limit - @bdi's share of dirty throttling threshold
458 * @bdi: the backing_dev_info to query
459 * @dirty: global dirty limit in pages
461 * Returns @bdi's dirty limit in pages. The term "dirty" in the context of
462 * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
463 * And the "limit" in the name is not seriously taken as hard limit in
464 * balance_dirty_pages().
466 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
467 * - starving fast devices
468 * - piling up dirty pages (that will take long time to sync) on slow devices
470 * The bdi's share of dirty limit will be adapting to its throughput and
471 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
473 unsigned long bdi_dirty_limit(struct backing_dev_info *bdi, unsigned long dirty)
475 u64 bdi_dirty;
476 long numerator, denominator;
479 * Calculate this BDI's share of the dirty ratio.
481 bdi_writeout_fraction(bdi, &numerator, &denominator);
483 bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
484 bdi_dirty *= numerator;
485 do_div(bdi_dirty, denominator);
487 bdi_dirty += (dirty * bdi->min_ratio) / 100;
488 if (bdi_dirty > (dirty * bdi->max_ratio) / 100)
489 bdi_dirty = dirty * bdi->max_ratio / 100;
491 return bdi_dirty;
495 * Dirty position control.
497 * (o) global/bdi setpoints
499 * We want the dirty pages be balanced around the global/bdi setpoints.
500 * When the number of dirty pages is higher/lower than the setpoint, the
501 * dirty position control ratio (and hence task dirty ratelimit) will be
502 * decreased/increased to bring the dirty pages back to the setpoint.
504 * pos_ratio = 1 << RATELIMIT_CALC_SHIFT
506 * if (dirty < setpoint) scale up pos_ratio
507 * if (dirty > setpoint) scale down pos_ratio
509 * if (bdi_dirty < bdi_setpoint) scale up pos_ratio
510 * if (bdi_dirty > bdi_setpoint) scale down pos_ratio
512 * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
514 * (o) global control line
516 * ^ pos_ratio
518 * | |<===== global dirty control scope ======>|
519 * 2.0 .............*
520 * | .*
521 * | . *
522 * | . *
523 * | . *
524 * | . *
525 * | . *
526 * 1.0 ................................*
527 * | . . *
528 * | . . *
529 * | . . *
530 * | . . *
531 * | . . *
532 * 0 +------------.------------------.----------------------*------------->
533 * freerun^ setpoint^ limit^ dirty pages
535 * (o) bdi control line
537 * ^ pos_ratio
539 * | *
540 * | *
541 * | *
542 * | *
543 * | * |<=========== span ============>|
544 * 1.0 .......................*
545 * | . *
546 * | . *
547 * | . *
548 * | . *
549 * | . *
550 * | . *
551 * | . *
552 * | . *
553 * | . *
554 * | . *
555 * | . *
556 * 1/4 ...............................................* * * * * * * * * * * *
557 * | . .
558 * | . .
559 * | . .
560 * 0 +----------------------.-------------------------------.------------->
561 * bdi_setpoint^ x_intercept^
563 * The bdi control line won't drop below pos_ratio=1/4, so that bdi_dirty can
564 * be smoothly throttled down to normal if it starts high in situations like
565 * - start writing to a slow SD card and a fast disk at the same time. The SD
566 * card's bdi_dirty may rush to many times higher than bdi_setpoint.
567 * - the bdi dirty thresh drops quickly due to change of JBOD workload
569 static unsigned long bdi_position_ratio(struct backing_dev_info *bdi,
570 unsigned long thresh,
571 unsigned long bg_thresh,
572 unsigned long dirty,
573 unsigned long bdi_thresh,
574 unsigned long bdi_dirty)
576 unsigned long write_bw = bdi->avg_write_bandwidth;
577 unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
578 unsigned long limit = hard_dirty_limit(thresh);
579 unsigned long x_intercept;
580 unsigned long setpoint; /* dirty pages' target balance point */
581 unsigned long bdi_setpoint;
582 unsigned long span;
583 long long pos_ratio; /* for scaling up/down the rate limit */
584 long x;
586 if (unlikely(dirty >= limit))
587 return 0;
590 * global setpoint
592 * setpoint - dirty 3
593 * f(dirty) := 1.0 + (----------------)
594 * limit - setpoint
596 * it's a 3rd order polynomial that subjects to
598 * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast
599 * (2) f(setpoint) = 1.0 => the balance point
600 * (3) f(limit) = 0 => the hard limit
601 * (4) df/dx <= 0 => negative feedback control
602 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
603 * => fast response on large errors; small oscillation near setpoint
605 setpoint = (freerun + limit) / 2;
606 x = div_s64((setpoint - dirty) << RATELIMIT_CALC_SHIFT,
607 limit - setpoint + 1);
608 pos_ratio = x;
609 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
610 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
611 pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
614 * We have computed basic pos_ratio above based on global situation. If
615 * the bdi is over/under its share of dirty pages, we want to scale
616 * pos_ratio further down/up. That is done by the following mechanism.
620 * bdi setpoint
622 * f(bdi_dirty) := 1.0 + k * (bdi_dirty - bdi_setpoint)
624 * x_intercept - bdi_dirty
625 * := --------------------------
626 * x_intercept - bdi_setpoint
628 * The main bdi control line is a linear function that subjects to
630 * (1) f(bdi_setpoint) = 1.0
631 * (2) k = - 1 / (8 * write_bw) (in single bdi case)
632 * or equally: x_intercept = bdi_setpoint + 8 * write_bw
634 * For single bdi case, the dirty pages are observed to fluctuate
635 * regularly within range
636 * [bdi_setpoint - write_bw/2, bdi_setpoint + write_bw/2]
637 * for various filesystems, where (2) can yield in a reasonable 12.5%
638 * fluctuation range for pos_ratio.
640 * For JBOD case, bdi_thresh (not bdi_dirty!) could fluctuate up to its
641 * own size, so move the slope over accordingly and choose a slope that
642 * yields 100% pos_ratio fluctuation on suddenly doubled bdi_thresh.
644 if (unlikely(bdi_thresh > thresh))
645 bdi_thresh = thresh;
647 * scale global setpoint to bdi's:
648 * bdi_setpoint = setpoint * bdi_thresh / thresh
650 x = div_u64((u64)bdi_thresh << 16, thresh + 1);
651 bdi_setpoint = setpoint * (u64)x >> 16;
653 * Use span=(8*write_bw) in single bdi case as indicated by
654 * (thresh - bdi_thresh ~= 0) and transit to bdi_thresh in JBOD case.
656 * bdi_thresh thresh - bdi_thresh
657 * span = ---------- * (8 * write_bw) + ------------------- * bdi_thresh
658 * thresh thresh
660 span = (thresh - bdi_thresh + 8 * write_bw) * (u64)x >> 16;
661 x_intercept = bdi_setpoint + span;
663 if (bdi_dirty < x_intercept - span / 4) {
664 pos_ratio *= x_intercept - bdi_dirty;
665 do_div(pos_ratio, x_intercept - bdi_setpoint + 1);
666 } else
667 pos_ratio /= 4;
669 return pos_ratio;
672 static void bdi_update_write_bandwidth(struct backing_dev_info *bdi,
673 unsigned long elapsed,
674 unsigned long written)
676 const unsigned long period = roundup_pow_of_two(3 * HZ);
677 unsigned long avg = bdi->avg_write_bandwidth;
678 unsigned long old = bdi->write_bandwidth;
679 u64 bw;
682 * bw = written * HZ / elapsed
684 * bw * elapsed + write_bandwidth * (period - elapsed)
685 * write_bandwidth = ---------------------------------------------------
686 * period
688 bw = written - bdi->written_stamp;
689 bw *= HZ;
690 if (unlikely(elapsed > period)) {
691 do_div(bw, elapsed);
692 avg = bw;
693 goto out;
695 bw += (u64)bdi->write_bandwidth * (period - elapsed);
696 bw >>= ilog2(period);
699 * one more level of smoothing, for filtering out sudden spikes
701 if (avg > old && old >= (unsigned long)bw)
702 avg -= (avg - old) >> 3;
704 if (avg < old && old <= (unsigned long)bw)
705 avg += (old - avg) >> 3;
707 out:
708 bdi->write_bandwidth = bw;
709 bdi->avg_write_bandwidth = avg;
713 * The global dirtyable memory and dirty threshold could be suddenly knocked
714 * down by a large amount (eg. on the startup of KVM in a swapless system).
715 * This may throw the system into deep dirty exceeded state and throttle
716 * heavy/light dirtiers alike. To retain good responsiveness, maintain
717 * global_dirty_limit for tracking slowly down to the knocked down dirty
718 * threshold.
720 static void update_dirty_limit(unsigned long thresh, unsigned long dirty)
722 unsigned long limit = global_dirty_limit;
725 * Follow up in one step.
727 if (limit < thresh) {
728 limit = thresh;
729 goto update;
733 * Follow down slowly. Use the higher one as the target, because thresh
734 * may drop below dirty. This is exactly the reason to introduce
735 * global_dirty_limit which is guaranteed to lie above the dirty pages.
737 thresh = max(thresh, dirty);
738 if (limit > thresh) {
739 limit -= (limit - thresh) >> 5;
740 goto update;
742 return;
743 update:
744 global_dirty_limit = limit;
747 static void global_update_bandwidth(unsigned long thresh,
748 unsigned long dirty,
749 unsigned long now)
751 static DEFINE_SPINLOCK(dirty_lock);
752 static unsigned long update_time;
755 * check locklessly first to optimize away locking for the most time
757 if (time_before(now, update_time + BANDWIDTH_INTERVAL))
758 return;
760 spin_lock(&dirty_lock);
761 if (time_after_eq(now, update_time + BANDWIDTH_INTERVAL)) {
762 update_dirty_limit(thresh, dirty);
763 update_time = now;
765 spin_unlock(&dirty_lock);
769 * Maintain bdi->dirty_ratelimit, the base dirty throttle rate.
771 * Normal bdi tasks will be curbed at or below it in long term.
772 * Obviously it should be around (write_bw / N) when there are N dd tasks.
774 static void bdi_update_dirty_ratelimit(struct backing_dev_info *bdi,
775 unsigned long thresh,
776 unsigned long bg_thresh,
777 unsigned long dirty,
778 unsigned long bdi_thresh,
779 unsigned long bdi_dirty,
780 unsigned long dirtied,
781 unsigned long elapsed)
783 unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
784 unsigned long limit = hard_dirty_limit(thresh);
785 unsigned long setpoint = (freerun + limit) / 2;
786 unsigned long write_bw = bdi->avg_write_bandwidth;
787 unsigned long dirty_ratelimit = bdi->dirty_ratelimit;
788 unsigned long dirty_rate;
789 unsigned long task_ratelimit;
790 unsigned long balanced_dirty_ratelimit;
791 unsigned long pos_ratio;
792 unsigned long step;
793 unsigned long x;
796 * The dirty rate will match the writeout rate in long term, except
797 * when dirty pages are truncated by userspace or re-dirtied by FS.
799 dirty_rate = (dirtied - bdi->dirtied_stamp) * HZ / elapsed;
801 pos_ratio = bdi_position_ratio(bdi, thresh, bg_thresh, dirty,
802 bdi_thresh, bdi_dirty);
804 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
806 task_ratelimit = (u64)dirty_ratelimit *
807 pos_ratio >> RATELIMIT_CALC_SHIFT;
808 task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
811 * A linear estimation of the "balanced" throttle rate. The theory is,
812 * if there are N dd tasks, each throttled at task_ratelimit, the bdi's
813 * dirty_rate will be measured to be (N * task_ratelimit). So the below
814 * formula will yield the balanced rate limit (write_bw / N).
816 * Note that the expanded form is not a pure rate feedback:
817 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1)
818 * but also takes pos_ratio into account:
819 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2)
821 * (1) is not realistic because pos_ratio also takes part in balancing
822 * the dirty rate. Consider the state
823 * pos_ratio = 0.5 (3)
824 * rate = 2 * (write_bw / N) (4)
825 * If (1) is used, it will stuck in that state! Because each dd will
826 * be throttled at
827 * task_ratelimit = pos_ratio * rate = (write_bw / N) (5)
828 * yielding
829 * dirty_rate = N * task_ratelimit = write_bw (6)
830 * put (6) into (1) we get
831 * rate_(i+1) = rate_(i) (7)
833 * So we end up using (2) to always keep
834 * rate_(i+1) ~= (write_bw / N) (8)
835 * regardless of the value of pos_ratio. As long as (8) is satisfied,
836 * pos_ratio is able to drive itself to 1.0, which is not only where
837 * the dirty count meet the setpoint, but also where the slope of
838 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
840 balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
841 dirty_rate | 1);
844 * We could safely do this and return immediately:
846 * bdi->dirty_ratelimit = balanced_dirty_ratelimit;
848 * However to get a more stable dirty_ratelimit, the below elaborated
849 * code makes use of task_ratelimit to filter out sigular points and
850 * limit the step size.
852 * The below code essentially only uses the relative value of
854 * task_ratelimit - dirty_ratelimit
855 * = (pos_ratio - 1) * dirty_ratelimit
857 * which reflects the direction and size of dirty position error.
861 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
862 * task_ratelimit is on the same side of dirty_ratelimit, too.
863 * For example, when
864 * - dirty_ratelimit > balanced_dirty_ratelimit
865 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
866 * lowering dirty_ratelimit will help meet both the position and rate
867 * control targets. Otherwise, don't update dirty_ratelimit if it will
868 * only help meet the rate target. After all, what the users ultimately
869 * feel and care are stable dirty rate and small position error.
871 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
872 * and filter out the sigular points of balanced_dirty_ratelimit. Which
873 * keeps jumping around randomly and can even leap far away at times
874 * due to the small 200ms estimation period of dirty_rate (we want to
875 * keep that period small to reduce time lags).
877 step = 0;
878 if (dirty < setpoint) {
879 x = min(bdi->balanced_dirty_ratelimit,
880 min(balanced_dirty_ratelimit, task_ratelimit));
881 if (dirty_ratelimit < x)
882 step = x - dirty_ratelimit;
883 } else {
884 x = max(bdi->balanced_dirty_ratelimit,
885 max(balanced_dirty_ratelimit, task_ratelimit));
886 if (dirty_ratelimit > x)
887 step = dirty_ratelimit - x;
891 * Don't pursue 100% rate matching. It's impossible since the balanced
892 * rate itself is constantly fluctuating. So decrease the track speed
893 * when it gets close to the target. Helps eliminate pointless tremors.
895 step >>= dirty_ratelimit / (2 * step + 1);
897 * Limit the tracking speed to avoid overshooting.
899 step = (step + 7) / 8;
901 if (dirty_ratelimit < balanced_dirty_ratelimit)
902 dirty_ratelimit += step;
903 else
904 dirty_ratelimit -= step;
906 bdi->dirty_ratelimit = max(dirty_ratelimit, 1UL);
907 bdi->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
910 void __bdi_update_bandwidth(struct backing_dev_info *bdi,
911 unsigned long thresh,
912 unsigned long bg_thresh,
913 unsigned long dirty,
914 unsigned long bdi_thresh,
915 unsigned long bdi_dirty,
916 unsigned long start_time)
918 unsigned long now = jiffies;
919 unsigned long elapsed = now - bdi->bw_time_stamp;
920 unsigned long dirtied;
921 unsigned long written;
924 * rate-limit, only update once every 200ms.
926 if (elapsed < BANDWIDTH_INTERVAL)
927 return;
929 dirtied = percpu_counter_read(&bdi->bdi_stat[BDI_DIRTIED]);
930 written = percpu_counter_read(&bdi->bdi_stat[BDI_WRITTEN]);
933 * Skip quiet periods when disk bandwidth is under-utilized.
934 * (at least 1s idle time between two flusher runs)
936 if (elapsed > HZ && time_before(bdi->bw_time_stamp, start_time))
937 goto snapshot;
939 if (thresh) {
940 global_update_bandwidth(thresh, dirty, now);
941 bdi_update_dirty_ratelimit(bdi, thresh, bg_thresh, dirty,
942 bdi_thresh, bdi_dirty,
943 dirtied, elapsed);
945 bdi_update_write_bandwidth(bdi, elapsed, written);
947 snapshot:
948 bdi->dirtied_stamp = dirtied;
949 bdi->written_stamp = written;
950 bdi->bw_time_stamp = now;
953 static void bdi_update_bandwidth(struct backing_dev_info *bdi,
954 unsigned long thresh,
955 unsigned long bg_thresh,
956 unsigned long dirty,
957 unsigned long bdi_thresh,
958 unsigned long bdi_dirty,
959 unsigned long start_time)
961 if (time_is_after_eq_jiffies(bdi->bw_time_stamp + BANDWIDTH_INTERVAL))
962 return;
963 spin_lock(&bdi->wb.list_lock);
964 __bdi_update_bandwidth(bdi, thresh, bg_thresh, dirty,
965 bdi_thresh, bdi_dirty, start_time);
966 spin_unlock(&bdi->wb.list_lock);
970 * After a task dirtied this many pages, balance_dirty_pages_ratelimited_nr()
971 * will look to see if it needs to start dirty throttling.
973 * If dirty_poll_interval is too low, big NUMA machines will call the expensive
974 * global_page_state() too often. So scale it near-sqrt to the safety margin
975 * (the number of pages we may dirty without exceeding the dirty limits).
977 static unsigned long dirty_poll_interval(unsigned long dirty,
978 unsigned long thresh)
980 if (thresh > dirty)
981 return 1UL << (ilog2(thresh - dirty) >> 1);
983 return 1;
987 * balance_dirty_pages() must be called by processes which are generating dirty
988 * data. It looks at the number of dirty pages in the machine and will force
989 * the caller to perform writeback if the system is over `vm_dirty_ratio'.
990 * If we're over `background_thresh' then the writeback threads are woken to
991 * perform some writeout.
993 static void balance_dirty_pages(struct address_space *mapping,
994 unsigned long write_chunk)
996 unsigned long nr_reclaimable, bdi_nr_reclaimable;
997 unsigned long nr_dirty; /* = file_dirty + writeback + unstable_nfs */
998 unsigned long bdi_dirty;
999 unsigned long freerun;
1000 unsigned long background_thresh;
1001 unsigned long dirty_thresh;
1002 unsigned long bdi_thresh;
1003 unsigned long task_bdi_thresh;
1004 unsigned long min_task_bdi_thresh;
1005 unsigned long pages_written = 0;
1006 unsigned long pause = 1;
1007 bool dirty_exceeded = false;
1008 bool clear_dirty_exceeded = true;
1009 struct backing_dev_info *bdi = mapping->backing_dev_info;
1010 unsigned long start_time = jiffies;
1012 for (;;) {
1013 nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
1014 global_page_state(NR_UNSTABLE_NFS);
1015 nr_dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
1017 global_dirty_limits(&background_thresh, &dirty_thresh);
1020 * Throttle it only when the background writeback cannot
1021 * catch-up. This avoids (excessively) small writeouts
1022 * when the bdi limits are ramping up.
1024 freerun = dirty_freerun_ceiling(dirty_thresh,
1025 background_thresh);
1026 if (nr_dirty <= freerun)
1027 break;
1029 bdi_thresh = bdi_dirty_limit(bdi, dirty_thresh);
1030 min_task_bdi_thresh = task_min_dirty_limit(bdi_thresh);
1031 task_bdi_thresh = task_dirty_limit(current, bdi_thresh);
1034 * In order to avoid the stacked BDI deadlock we need
1035 * to ensure we accurately count the 'dirty' pages when
1036 * the threshold is low.
1038 * Otherwise it would be possible to get thresh+n pages
1039 * reported dirty, even though there are thresh-m pages
1040 * actually dirty; with m+n sitting in the percpu
1041 * deltas.
1043 if (task_bdi_thresh < 2 * bdi_stat_error(bdi)) {
1044 bdi_nr_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
1045 bdi_dirty = bdi_nr_reclaimable +
1046 bdi_stat_sum(bdi, BDI_WRITEBACK);
1047 } else {
1048 bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
1049 bdi_dirty = bdi_nr_reclaimable +
1050 bdi_stat(bdi, BDI_WRITEBACK);
1054 * The bdi thresh is somehow "soft" limit derived from the
1055 * global "hard" limit. The former helps to prevent heavy IO
1056 * bdi or process from holding back light ones; The latter is
1057 * the last resort safeguard.
1059 dirty_exceeded = (bdi_dirty > task_bdi_thresh) ||
1060 (nr_dirty > dirty_thresh);
1061 clear_dirty_exceeded = (bdi_dirty <= min_task_bdi_thresh) &&
1062 (nr_dirty <= dirty_thresh);
1064 if (!dirty_exceeded)
1065 break;
1067 if (!bdi->dirty_exceeded)
1068 bdi->dirty_exceeded = 1;
1070 bdi_update_bandwidth(bdi, dirty_thresh, background_thresh,
1071 nr_dirty, bdi_thresh, bdi_dirty,
1072 start_time);
1074 /* Note: nr_reclaimable denotes nr_dirty + nr_unstable.
1075 * Unstable writes are a feature of certain networked
1076 * filesystems (i.e. NFS) in which data may have been
1077 * written to the server's write cache, but has not yet
1078 * been flushed to permanent storage.
1079 * Only move pages to writeback if this bdi is over its
1080 * threshold otherwise wait until the disk writes catch
1081 * up.
1083 trace_balance_dirty_start(bdi);
1084 if (bdi_nr_reclaimable > task_bdi_thresh) {
1085 pages_written += writeback_inodes_wb(&bdi->wb,
1086 write_chunk);
1087 trace_balance_dirty_written(bdi, pages_written);
1088 if (pages_written >= write_chunk)
1089 break; /* We've done our duty */
1091 __set_current_state(TASK_UNINTERRUPTIBLE);
1092 io_schedule_timeout(pause);
1093 trace_balance_dirty_wait(bdi);
1095 dirty_thresh = hard_dirty_limit(dirty_thresh);
1097 * max-pause area. If dirty exceeded but still within this
1098 * area, no need to sleep for more than 200ms: (a) 8 pages per
1099 * 200ms is typically more than enough to curb heavy dirtiers;
1100 * (b) the pause time limit makes the dirtiers more responsive.
1102 if (nr_dirty < dirty_thresh &&
1103 bdi_dirty < (task_bdi_thresh + bdi_thresh) / 2 &&
1104 time_after(jiffies, start_time + MAX_PAUSE))
1105 break;
1108 * Increase the delay for each loop, up to our previous
1109 * default of taking a 100ms nap.
1111 pause <<= 1;
1112 if (pause > HZ / 10)
1113 pause = HZ / 10;
1116 /* Clear dirty_exceeded flag only when no task can exceed the limit */
1117 if (clear_dirty_exceeded && bdi->dirty_exceeded)
1118 bdi->dirty_exceeded = 0;
1120 current->nr_dirtied = 0;
1121 current->nr_dirtied_pause = dirty_poll_interval(nr_dirty, dirty_thresh);
1123 if (writeback_in_progress(bdi))
1124 return;
1127 * In laptop mode, we wait until hitting the higher threshold before
1128 * starting background writeout, and then write out all the way down
1129 * to the lower threshold. So slow writers cause minimal disk activity.
1131 * In normal mode, we start background writeout at the lower
1132 * background_thresh, to keep the amount of dirty memory low.
1134 if ((laptop_mode && pages_written) ||
1135 (!laptop_mode && (nr_reclaimable > background_thresh)))
1136 bdi_start_background_writeback(bdi);
1139 void set_page_dirty_balance(struct page *page, int page_mkwrite)
1141 if (set_page_dirty(page) || page_mkwrite) {
1142 struct address_space *mapping = page_mapping(page);
1144 if (mapping)
1145 balance_dirty_pages_ratelimited(mapping);
1149 static DEFINE_PER_CPU(int, bdp_ratelimits);
1152 * balance_dirty_pages_ratelimited_nr - balance dirty memory state
1153 * @mapping: address_space which was dirtied
1154 * @nr_pages_dirtied: number of pages which the caller has just dirtied
1156 * Processes which are dirtying memory should call in here once for each page
1157 * which was newly dirtied. The function will periodically check the system's
1158 * dirty state and will initiate writeback if needed.
1160 * On really big machines, get_writeback_state is expensive, so try to avoid
1161 * calling it too often (ratelimiting). But once we're over the dirty memory
1162 * limit we decrease the ratelimiting by a lot, to prevent individual processes
1163 * from overshooting the limit by (ratelimit_pages) each.
1165 void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
1166 unsigned long nr_pages_dirtied)
1168 struct backing_dev_info *bdi = mapping->backing_dev_info;
1169 int ratelimit;
1170 int *p;
1172 if (!bdi_cap_account_dirty(bdi))
1173 return;
1175 ratelimit = current->nr_dirtied_pause;
1176 if (bdi->dirty_exceeded)
1177 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1179 current->nr_dirtied += nr_pages_dirtied;
1181 preempt_disable();
1183 * This prevents one CPU to accumulate too many dirtied pages without
1184 * calling into balance_dirty_pages(), which can happen when there are
1185 * 1000+ tasks, all of them start dirtying pages at exactly the same
1186 * time, hence all honoured too large initial task->nr_dirtied_pause.
1188 p = &__get_cpu_var(bdp_ratelimits);
1189 if (unlikely(current->nr_dirtied >= ratelimit))
1190 *p = 0;
1191 else {
1192 *p += nr_pages_dirtied;
1193 if (unlikely(*p >= ratelimit_pages)) {
1194 *p = 0;
1195 ratelimit = 0;
1198 preempt_enable();
1200 if (unlikely(current->nr_dirtied >= ratelimit))
1201 balance_dirty_pages(mapping, current->nr_dirtied);
1203 EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
1205 void throttle_vm_writeout(gfp_t gfp_mask)
1207 unsigned long background_thresh;
1208 unsigned long dirty_thresh;
1210 for ( ; ; ) {
1211 global_dirty_limits(&background_thresh, &dirty_thresh);
1214 * Boost the allowable dirty threshold a bit for page
1215 * allocators so they don't get DoS'ed by heavy writers
1217 dirty_thresh += dirty_thresh / 10; /* wheeee... */
1219 if (global_page_state(NR_UNSTABLE_NFS) +
1220 global_page_state(NR_WRITEBACK) <= dirty_thresh)
1221 break;
1222 congestion_wait(BLK_RW_ASYNC, HZ/10);
1225 * The caller might hold locks which can prevent IO completion
1226 * or progress in the filesystem. So we cannot just sit here
1227 * waiting for IO to complete.
1229 if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
1230 break;
1235 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1237 int dirty_writeback_centisecs_handler(ctl_table *table, int write,
1238 void __user *buffer, size_t *length, loff_t *ppos)
1240 proc_dointvec(table, write, buffer, length, ppos);
1241 bdi_arm_supers_timer();
1242 return 0;
1245 #ifdef CONFIG_BLOCK
1246 void laptop_mode_timer_fn(unsigned long data)
1248 struct request_queue *q = (struct request_queue *)data;
1249 int nr_pages = global_page_state(NR_FILE_DIRTY) +
1250 global_page_state(NR_UNSTABLE_NFS);
1253 * We want to write everything out, not just down to the dirty
1254 * threshold
1256 if (bdi_has_dirty_io(&q->backing_dev_info))
1257 bdi_start_writeback(&q->backing_dev_info, nr_pages);
1261 * We've spun up the disk and we're in laptop mode: schedule writeback
1262 * of all dirty data a few seconds from now. If the flush is already scheduled
1263 * then push it back - the user is still using the disk.
1265 void laptop_io_completion(struct backing_dev_info *info)
1267 mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
1271 * We're in laptop mode and we've just synced. The sync's writes will have
1272 * caused another writeback to be scheduled by laptop_io_completion.
1273 * Nothing needs to be written back anymore, so we unschedule the writeback.
1275 void laptop_sync_completion(void)
1277 struct backing_dev_info *bdi;
1279 rcu_read_lock();
1281 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
1282 del_timer(&bdi->laptop_mode_wb_timer);
1284 rcu_read_unlock();
1286 #endif
1289 * If ratelimit_pages is too high then we can get into dirty-data overload
1290 * if a large number of processes all perform writes at the same time.
1291 * If it is too low then SMP machines will call the (expensive)
1292 * get_writeback_state too often.
1294 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
1295 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
1296 * thresholds.
1299 void writeback_set_ratelimit(void)
1301 unsigned long background_thresh;
1302 unsigned long dirty_thresh;
1303 global_dirty_limits(&background_thresh, &dirty_thresh);
1304 ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
1305 if (ratelimit_pages < 16)
1306 ratelimit_pages = 16;
1309 static int __cpuinit
1310 ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
1312 writeback_set_ratelimit();
1313 return NOTIFY_DONE;
1316 static struct notifier_block __cpuinitdata ratelimit_nb = {
1317 .notifier_call = ratelimit_handler,
1318 .next = NULL,
1322 * Called early on to tune the page writeback dirty limits.
1324 * We used to scale dirty pages according to how total memory
1325 * related to pages that could be allocated for buffers (by
1326 * comparing nr_free_buffer_pages() to vm_total_pages.
1328 * However, that was when we used "dirty_ratio" to scale with
1329 * all memory, and we don't do that any more. "dirty_ratio"
1330 * is now applied to total non-HIGHPAGE memory (by subtracting
1331 * totalhigh_pages from vm_total_pages), and as such we can't
1332 * get into the old insane situation any more where we had
1333 * large amounts of dirty pages compared to a small amount of
1334 * non-HIGHMEM memory.
1336 * But we might still want to scale the dirty_ratio by how
1337 * much memory the box has..
1339 void __init page_writeback_init(void)
1341 int shift;
1343 writeback_set_ratelimit();
1344 register_cpu_notifier(&ratelimit_nb);
1346 shift = calc_period_shift();
1347 prop_descriptor_init(&vm_completions, shift);
1348 prop_descriptor_init(&vm_dirties, shift);
1352 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
1353 * @mapping: address space structure to write
1354 * @start: starting page index
1355 * @end: ending page index (inclusive)
1357 * This function scans the page range from @start to @end (inclusive) and tags
1358 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
1359 * that write_cache_pages (or whoever calls this function) will then use
1360 * TOWRITE tag to identify pages eligible for writeback. This mechanism is
1361 * used to avoid livelocking of writeback by a process steadily creating new
1362 * dirty pages in the file (thus it is important for this function to be quick
1363 * so that it can tag pages faster than a dirtying process can create them).
1366 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
1368 void tag_pages_for_writeback(struct address_space *mapping,
1369 pgoff_t start, pgoff_t end)
1371 #define WRITEBACK_TAG_BATCH 4096
1372 unsigned long tagged;
1374 do {
1375 spin_lock_irq(&mapping->tree_lock);
1376 tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
1377 &start, end, WRITEBACK_TAG_BATCH,
1378 PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
1379 spin_unlock_irq(&mapping->tree_lock);
1380 WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
1381 cond_resched();
1382 /* We check 'start' to handle wrapping when end == ~0UL */
1383 } while (tagged >= WRITEBACK_TAG_BATCH && start);
1385 EXPORT_SYMBOL(tag_pages_for_writeback);
1388 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
1389 * @mapping: address space structure to write
1390 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1391 * @writepage: function called for each page
1392 * @data: data passed to writepage function
1394 * If a page is already under I/O, write_cache_pages() skips it, even
1395 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
1396 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
1397 * and msync() need to guarantee that all the data which was dirty at the time
1398 * the call was made get new I/O started against them. If wbc->sync_mode is
1399 * WB_SYNC_ALL then we were called for data integrity and we must wait for
1400 * existing IO to complete.
1402 * To avoid livelocks (when other process dirties new pages), we first tag
1403 * pages which should be written back with TOWRITE tag and only then start
1404 * writing them. For data-integrity sync we have to be careful so that we do
1405 * not miss some pages (e.g., because some other process has cleared TOWRITE
1406 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
1407 * by the process clearing the DIRTY tag (and submitting the page for IO).
1409 int write_cache_pages(struct address_space *mapping,
1410 struct writeback_control *wbc, writepage_t writepage,
1411 void *data)
1413 int ret = 0;
1414 int done = 0;
1415 struct pagevec pvec;
1416 int nr_pages;
1417 pgoff_t uninitialized_var(writeback_index);
1418 pgoff_t index;
1419 pgoff_t end; /* Inclusive */
1420 pgoff_t done_index;
1421 int cycled;
1422 int range_whole = 0;
1423 int tag;
1425 pagevec_init(&pvec, 0);
1426 if (wbc->range_cyclic) {
1427 writeback_index = mapping->writeback_index; /* prev offset */
1428 index = writeback_index;
1429 if (index == 0)
1430 cycled = 1;
1431 else
1432 cycled = 0;
1433 end = -1;
1434 } else {
1435 index = wbc->range_start >> PAGE_CACHE_SHIFT;
1436 end = wbc->range_end >> PAGE_CACHE_SHIFT;
1437 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1438 range_whole = 1;
1439 cycled = 1; /* ignore range_cyclic tests */
1441 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1442 tag = PAGECACHE_TAG_TOWRITE;
1443 else
1444 tag = PAGECACHE_TAG_DIRTY;
1445 retry:
1446 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1447 tag_pages_for_writeback(mapping, index, end);
1448 done_index = index;
1449 while (!done && (index <= end)) {
1450 int i;
1452 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
1453 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1454 if (nr_pages == 0)
1455 break;
1457 for (i = 0; i < nr_pages; i++) {
1458 struct page *page = pvec.pages[i];
1461 * At this point, the page may be truncated or
1462 * invalidated (changing page->mapping to NULL), or
1463 * even swizzled back from swapper_space to tmpfs file
1464 * mapping. However, page->index will not change
1465 * because we have a reference on the page.
1467 if (page->index > end) {
1469 * can't be range_cyclic (1st pass) because
1470 * end == -1 in that case.
1472 done = 1;
1473 break;
1476 done_index = page->index;
1478 lock_page(page);
1481 * Page truncated or invalidated. We can freely skip it
1482 * then, even for data integrity operations: the page
1483 * has disappeared concurrently, so there could be no
1484 * real expectation of this data interity operation
1485 * even if there is now a new, dirty page at the same
1486 * pagecache address.
1488 if (unlikely(page->mapping != mapping)) {
1489 continue_unlock:
1490 unlock_page(page);
1491 continue;
1494 if (!PageDirty(page)) {
1495 /* someone wrote it for us */
1496 goto continue_unlock;
1499 if (PageWriteback(page)) {
1500 if (wbc->sync_mode != WB_SYNC_NONE)
1501 wait_on_page_writeback(page);
1502 else
1503 goto continue_unlock;
1506 BUG_ON(PageWriteback(page));
1507 if (!clear_page_dirty_for_io(page))
1508 goto continue_unlock;
1510 trace_wbc_writepage(wbc, mapping->backing_dev_info);
1511 ret = (*writepage)(page, wbc, data);
1512 if (unlikely(ret)) {
1513 if (ret == AOP_WRITEPAGE_ACTIVATE) {
1514 unlock_page(page);
1515 ret = 0;
1516 } else {
1518 * done_index is set past this page,
1519 * so media errors will not choke
1520 * background writeout for the entire
1521 * file. This has consequences for
1522 * range_cyclic semantics (ie. it may
1523 * not be suitable for data integrity
1524 * writeout).
1526 done_index = page->index + 1;
1527 done = 1;
1528 break;
1533 * We stop writing back only if we are not doing
1534 * integrity sync. In case of integrity sync we have to
1535 * keep going until we have written all the pages
1536 * we tagged for writeback prior to entering this loop.
1538 if (--wbc->nr_to_write <= 0 &&
1539 wbc->sync_mode == WB_SYNC_NONE) {
1540 done = 1;
1541 break;
1544 pagevec_release(&pvec);
1545 cond_resched();
1547 if (!cycled && !done) {
1549 * range_cyclic:
1550 * We hit the last page and there is more work to be done: wrap
1551 * back to the start of the file
1553 cycled = 1;
1554 index = 0;
1555 end = writeback_index - 1;
1556 goto retry;
1558 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1559 mapping->writeback_index = done_index;
1561 return ret;
1563 EXPORT_SYMBOL(write_cache_pages);
1566 * Function used by generic_writepages to call the real writepage
1567 * function and set the mapping flags on error
1569 static int __writepage(struct page *page, struct writeback_control *wbc,
1570 void *data)
1572 struct address_space *mapping = data;
1573 int ret = mapping->a_ops->writepage(page, wbc);
1574 mapping_set_error(mapping, ret);
1575 return ret;
1579 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
1580 * @mapping: address space structure to write
1581 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1583 * This is a library function, which implements the writepages()
1584 * address_space_operation.
1586 int generic_writepages(struct address_space *mapping,
1587 struct writeback_control *wbc)
1589 struct blk_plug plug;
1590 int ret;
1592 /* deal with chardevs and other special file */
1593 if (!mapping->a_ops->writepage)
1594 return 0;
1596 blk_start_plug(&plug);
1597 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
1598 blk_finish_plug(&plug);
1599 return ret;
1602 EXPORT_SYMBOL(generic_writepages);
1604 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
1606 int ret;
1608 if (wbc->nr_to_write <= 0)
1609 return 0;
1610 if (mapping->a_ops->writepages)
1611 ret = mapping->a_ops->writepages(mapping, wbc);
1612 else
1613 ret = generic_writepages(mapping, wbc);
1614 return ret;
1618 * write_one_page - write out a single page and optionally wait on I/O
1619 * @page: the page to write
1620 * @wait: if true, wait on writeout
1622 * The page must be locked by the caller and will be unlocked upon return.
1624 * write_one_page() returns a negative error code if I/O failed.
1626 int write_one_page(struct page *page, int wait)
1628 struct address_space *mapping = page->mapping;
1629 int ret = 0;
1630 struct writeback_control wbc = {
1631 .sync_mode = WB_SYNC_ALL,
1632 .nr_to_write = 1,
1635 BUG_ON(!PageLocked(page));
1637 if (wait)
1638 wait_on_page_writeback(page);
1640 if (clear_page_dirty_for_io(page)) {
1641 page_cache_get(page);
1642 ret = mapping->a_ops->writepage(page, &wbc);
1643 if (ret == 0 && wait) {
1644 wait_on_page_writeback(page);
1645 if (PageError(page))
1646 ret = -EIO;
1648 page_cache_release(page);
1649 } else {
1650 unlock_page(page);
1652 return ret;
1654 EXPORT_SYMBOL(write_one_page);
1657 * For address_spaces which do not use buffers nor write back.
1659 int __set_page_dirty_no_writeback(struct page *page)
1661 if (!PageDirty(page))
1662 return !TestSetPageDirty(page);
1663 return 0;
1667 * Helper function for set_page_dirty family.
1668 * NOTE: This relies on being atomic wrt interrupts.
1670 void account_page_dirtied(struct page *page, struct address_space *mapping)
1672 if (mapping_cap_account_dirty(mapping)) {
1673 __inc_zone_page_state(page, NR_FILE_DIRTY);
1674 __inc_zone_page_state(page, NR_DIRTIED);
1675 __inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
1676 __inc_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED);
1677 task_dirty_inc(current);
1678 task_io_account_write(PAGE_CACHE_SIZE);
1681 EXPORT_SYMBOL(account_page_dirtied);
1684 * Helper function for set_page_writeback family.
1685 * NOTE: Unlike account_page_dirtied this does not rely on being atomic
1686 * wrt interrupts.
1688 void account_page_writeback(struct page *page)
1690 inc_zone_page_state(page, NR_WRITEBACK);
1692 EXPORT_SYMBOL(account_page_writeback);
1695 * For address_spaces which do not use buffers. Just tag the page as dirty in
1696 * its radix tree.
1698 * This is also used when a single buffer is being dirtied: we want to set the
1699 * page dirty in that case, but not all the buffers. This is a "bottom-up"
1700 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
1702 * Most callers have locked the page, which pins the address_space in memory.
1703 * But zap_pte_range() does not lock the page, however in that case the
1704 * mapping is pinned by the vma's ->vm_file reference.
1706 * We take care to handle the case where the page was truncated from the
1707 * mapping by re-checking page_mapping() inside tree_lock.
1709 int __set_page_dirty_nobuffers(struct page *page)
1711 if (!TestSetPageDirty(page)) {
1712 struct address_space *mapping = page_mapping(page);
1713 struct address_space *mapping2;
1715 if (!mapping)
1716 return 1;
1718 spin_lock_irq(&mapping->tree_lock);
1719 mapping2 = page_mapping(page);
1720 if (mapping2) { /* Race with truncate? */
1721 BUG_ON(mapping2 != mapping);
1722 WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
1723 account_page_dirtied(page, mapping);
1724 radix_tree_tag_set(&mapping->page_tree,
1725 page_index(page), PAGECACHE_TAG_DIRTY);
1727 spin_unlock_irq(&mapping->tree_lock);
1728 if (mapping->host) {
1729 /* !PageAnon && !swapper_space */
1730 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1732 return 1;
1734 return 0;
1736 EXPORT_SYMBOL(__set_page_dirty_nobuffers);
1739 * When a writepage implementation decides that it doesn't want to write this
1740 * page for some reason, it should redirty the locked page via
1741 * redirty_page_for_writepage() and it should then unlock the page and return 0
1743 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
1745 wbc->pages_skipped++;
1746 return __set_page_dirty_nobuffers(page);
1748 EXPORT_SYMBOL(redirty_page_for_writepage);
1751 * Dirty a page.
1753 * For pages with a mapping this should be done under the page lock
1754 * for the benefit of asynchronous memory errors who prefer a consistent
1755 * dirty state. This rule can be broken in some special cases,
1756 * but should be better not to.
1758 * If the mapping doesn't provide a set_page_dirty a_op, then
1759 * just fall through and assume that it wants buffer_heads.
1761 int set_page_dirty(struct page *page)
1763 struct address_space *mapping = page_mapping(page);
1765 if (likely(mapping)) {
1766 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
1768 * readahead/lru_deactivate_page could remain
1769 * PG_readahead/PG_reclaim due to race with end_page_writeback
1770 * About readahead, if the page is written, the flags would be
1771 * reset. So no problem.
1772 * About lru_deactivate_page, if the page is redirty, the flag
1773 * will be reset. So no problem. but if the page is used by readahead
1774 * it will confuse readahead and make it restart the size rampup
1775 * process. But it's a trivial problem.
1777 ClearPageReclaim(page);
1778 #ifdef CONFIG_BLOCK
1779 if (!spd)
1780 spd = __set_page_dirty_buffers;
1781 #endif
1782 return (*spd)(page);
1784 if (!PageDirty(page)) {
1785 if (!TestSetPageDirty(page))
1786 return 1;
1788 return 0;
1790 EXPORT_SYMBOL(set_page_dirty);
1793 * set_page_dirty() is racy if the caller has no reference against
1794 * page->mapping->host, and if the page is unlocked. This is because another
1795 * CPU could truncate the page off the mapping and then free the mapping.
1797 * Usually, the page _is_ locked, or the caller is a user-space process which
1798 * holds a reference on the inode by having an open file.
1800 * In other cases, the page should be locked before running set_page_dirty().
1802 int set_page_dirty_lock(struct page *page)
1804 int ret;
1806 lock_page(page);
1807 ret = set_page_dirty(page);
1808 unlock_page(page);
1809 return ret;
1811 EXPORT_SYMBOL(set_page_dirty_lock);
1814 * Clear a page's dirty flag, while caring for dirty memory accounting.
1815 * Returns true if the page was previously dirty.
1817 * This is for preparing to put the page under writeout. We leave the page
1818 * tagged as dirty in the radix tree so that a concurrent write-for-sync
1819 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
1820 * implementation will run either set_page_writeback() or set_page_dirty(),
1821 * at which stage we bring the page's dirty flag and radix-tree dirty tag
1822 * back into sync.
1824 * This incoherency between the page's dirty flag and radix-tree tag is
1825 * unfortunate, but it only exists while the page is locked.
1827 int clear_page_dirty_for_io(struct page *page)
1829 struct address_space *mapping = page_mapping(page);
1831 BUG_ON(!PageLocked(page));
1833 if (mapping && mapping_cap_account_dirty(mapping)) {
1835 * Yes, Virginia, this is indeed insane.
1837 * We use this sequence to make sure that
1838 * (a) we account for dirty stats properly
1839 * (b) we tell the low-level filesystem to
1840 * mark the whole page dirty if it was
1841 * dirty in a pagetable. Only to then
1842 * (c) clean the page again and return 1 to
1843 * cause the writeback.
1845 * This way we avoid all nasty races with the
1846 * dirty bit in multiple places and clearing
1847 * them concurrently from different threads.
1849 * Note! Normally the "set_page_dirty(page)"
1850 * has no effect on the actual dirty bit - since
1851 * that will already usually be set. But we
1852 * need the side effects, and it can help us
1853 * avoid races.
1855 * We basically use the page "master dirty bit"
1856 * as a serialization point for all the different
1857 * threads doing their things.
1859 if (page_mkclean(page))
1860 set_page_dirty(page);
1862 * We carefully synchronise fault handlers against
1863 * installing a dirty pte and marking the page dirty
1864 * at this point. We do this by having them hold the
1865 * page lock at some point after installing their
1866 * pte, but before marking the page dirty.
1867 * Pages are always locked coming in here, so we get
1868 * the desired exclusion. See mm/memory.c:do_wp_page()
1869 * for more comments.
1871 if (TestClearPageDirty(page)) {
1872 dec_zone_page_state(page, NR_FILE_DIRTY);
1873 dec_bdi_stat(mapping->backing_dev_info,
1874 BDI_RECLAIMABLE);
1875 return 1;
1877 return 0;
1879 return TestClearPageDirty(page);
1881 EXPORT_SYMBOL(clear_page_dirty_for_io);
1883 int test_clear_page_writeback(struct page *page)
1885 struct address_space *mapping = page_mapping(page);
1886 int ret;
1888 if (mapping) {
1889 struct backing_dev_info *bdi = mapping->backing_dev_info;
1890 unsigned long flags;
1892 spin_lock_irqsave(&mapping->tree_lock, flags);
1893 ret = TestClearPageWriteback(page);
1894 if (ret) {
1895 radix_tree_tag_clear(&mapping->page_tree,
1896 page_index(page),
1897 PAGECACHE_TAG_WRITEBACK);
1898 if (bdi_cap_account_writeback(bdi)) {
1899 __dec_bdi_stat(bdi, BDI_WRITEBACK);
1900 __bdi_writeout_inc(bdi);
1903 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1904 } else {
1905 ret = TestClearPageWriteback(page);
1907 if (ret) {
1908 dec_zone_page_state(page, NR_WRITEBACK);
1909 inc_zone_page_state(page, NR_WRITTEN);
1911 return ret;
1914 int test_set_page_writeback(struct page *page)
1916 struct address_space *mapping = page_mapping(page);
1917 int ret;
1919 if (mapping) {
1920 struct backing_dev_info *bdi = mapping->backing_dev_info;
1921 unsigned long flags;
1923 spin_lock_irqsave(&mapping->tree_lock, flags);
1924 ret = TestSetPageWriteback(page);
1925 if (!ret) {
1926 radix_tree_tag_set(&mapping->page_tree,
1927 page_index(page),
1928 PAGECACHE_TAG_WRITEBACK);
1929 if (bdi_cap_account_writeback(bdi))
1930 __inc_bdi_stat(bdi, BDI_WRITEBACK);
1932 if (!PageDirty(page))
1933 radix_tree_tag_clear(&mapping->page_tree,
1934 page_index(page),
1935 PAGECACHE_TAG_DIRTY);
1936 radix_tree_tag_clear(&mapping->page_tree,
1937 page_index(page),
1938 PAGECACHE_TAG_TOWRITE);
1939 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1940 } else {
1941 ret = TestSetPageWriteback(page);
1943 if (!ret)
1944 account_page_writeback(page);
1945 return ret;
1948 EXPORT_SYMBOL(test_set_page_writeback);
1951 * Return true if any of the pages in the mapping are marked with the
1952 * passed tag.
1954 int mapping_tagged(struct address_space *mapping, int tag)
1956 return radix_tree_tagged(&mapping->page_tree, tag);
1958 EXPORT_SYMBOL(mapping_tagged);