mips: Use HAVE_MEMBLOCK_NODE_MAP
[linux-2.6.git] / mm / page_alloc.c
blob6ce27331834c94ee944a68fed300abc57dd1d850
1 /*
2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_cgroup.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/memory.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <linux/ftrace_event.h>
58 #include <linux/memcontrol.h>
59 #include <linux/prefetch.h>
61 #include <asm/tlbflush.h>
62 #include <asm/div64.h>
63 #include "internal.h"
65 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
66 DEFINE_PER_CPU(int, numa_node);
67 EXPORT_PER_CPU_SYMBOL(numa_node);
68 #endif
70 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
72 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
73 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
74 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
75 * defined in <linux/topology.h>.
77 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
78 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
79 #endif
82 * Array of node states.
84 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
85 [N_POSSIBLE] = NODE_MASK_ALL,
86 [N_ONLINE] = { { [0] = 1UL } },
87 #ifndef CONFIG_NUMA
88 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
89 #ifdef CONFIG_HIGHMEM
90 [N_HIGH_MEMORY] = { { [0] = 1UL } },
91 #endif
92 [N_CPU] = { { [0] = 1UL } },
93 #endif /* NUMA */
95 EXPORT_SYMBOL(node_states);
97 unsigned long totalram_pages __read_mostly;
98 unsigned long totalreserve_pages __read_mostly;
99 int percpu_pagelist_fraction;
100 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
102 #ifdef CONFIG_PM_SLEEP
104 * The following functions are used by the suspend/hibernate code to temporarily
105 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
106 * while devices are suspended. To avoid races with the suspend/hibernate code,
107 * they should always be called with pm_mutex held (gfp_allowed_mask also should
108 * only be modified with pm_mutex held, unless the suspend/hibernate code is
109 * guaranteed not to run in parallel with that modification).
112 static gfp_t saved_gfp_mask;
114 void pm_restore_gfp_mask(void)
116 WARN_ON(!mutex_is_locked(&pm_mutex));
117 if (saved_gfp_mask) {
118 gfp_allowed_mask = saved_gfp_mask;
119 saved_gfp_mask = 0;
123 void pm_restrict_gfp_mask(void)
125 WARN_ON(!mutex_is_locked(&pm_mutex));
126 WARN_ON(saved_gfp_mask);
127 saved_gfp_mask = gfp_allowed_mask;
128 gfp_allowed_mask &= ~GFP_IOFS;
130 #endif /* CONFIG_PM_SLEEP */
132 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
133 int pageblock_order __read_mostly;
134 #endif
136 static void __free_pages_ok(struct page *page, unsigned int order);
139 * results with 256, 32 in the lowmem_reserve sysctl:
140 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
141 * 1G machine -> (16M dma, 784M normal, 224M high)
142 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
143 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
144 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
146 * TBD: should special case ZONE_DMA32 machines here - in those we normally
147 * don't need any ZONE_NORMAL reservation
149 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
150 #ifdef CONFIG_ZONE_DMA
151 256,
152 #endif
153 #ifdef CONFIG_ZONE_DMA32
154 256,
155 #endif
156 #ifdef CONFIG_HIGHMEM
158 #endif
162 EXPORT_SYMBOL(totalram_pages);
164 static char * const zone_names[MAX_NR_ZONES] = {
165 #ifdef CONFIG_ZONE_DMA
166 "DMA",
167 #endif
168 #ifdef CONFIG_ZONE_DMA32
169 "DMA32",
170 #endif
171 "Normal",
172 #ifdef CONFIG_HIGHMEM
173 "HighMem",
174 #endif
175 "Movable",
178 int min_free_kbytes = 1024;
180 static unsigned long __meminitdata nr_kernel_pages;
181 static unsigned long __meminitdata nr_all_pages;
182 static unsigned long __meminitdata dma_reserve;
184 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
185 #ifndef CONFIG_HAVE_MEMBLOCK_NODE_MAP
187 * MAX_ACTIVE_REGIONS determines the maximum number of distinct ranges
188 * of memory (RAM) that may be registered with add_active_range().
189 * Ranges passed to add_active_range() will be merged if possible so
190 * the number of times add_active_range() can be called is related to
191 * the number of nodes and the number of holes
193 #ifdef CONFIG_MAX_ACTIVE_REGIONS
194 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
195 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
196 #else
197 #if MAX_NUMNODES >= 32
198 /* If there can be many nodes, allow up to 50 holes per node */
199 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
200 #else
201 /* By default, allow up to 256 distinct regions */
202 #define MAX_ACTIVE_REGIONS 256
203 #endif
204 #endif
206 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
207 static int __meminitdata nr_nodemap_entries;
208 #endif /* !CONFIG_HAVE_MEMBLOCK_NODE_MAP */
210 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
211 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
212 static unsigned long __initdata required_kernelcore;
213 static unsigned long __initdata required_movablecore;
214 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
216 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
217 int movable_zone;
218 EXPORT_SYMBOL(movable_zone);
219 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
221 #if MAX_NUMNODES > 1
222 int nr_node_ids __read_mostly = MAX_NUMNODES;
223 int nr_online_nodes __read_mostly = 1;
224 EXPORT_SYMBOL(nr_node_ids);
225 EXPORT_SYMBOL(nr_online_nodes);
226 #endif
228 int page_group_by_mobility_disabled __read_mostly;
230 static void set_pageblock_migratetype(struct page *page, int migratetype)
233 if (unlikely(page_group_by_mobility_disabled))
234 migratetype = MIGRATE_UNMOVABLE;
236 set_pageblock_flags_group(page, (unsigned long)migratetype,
237 PB_migrate, PB_migrate_end);
240 bool oom_killer_disabled __read_mostly;
242 #ifdef CONFIG_DEBUG_VM
243 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
245 int ret = 0;
246 unsigned seq;
247 unsigned long pfn = page_to_pfn(page);
249 do {
250 seq = zone_span_seqbegin(zone);
251 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
252 ret = 1;
253 else if (pfn < zone->zone_start_pfn)
254 ret = 1;
255 } while (zone_span_seqretry(zone, seq));
257 return ret;
260 static int page_is_consistent(struct zone *zone, struct page *page)
262 if (!pfn_valid_within(page_to_pfn(page)))
263 return 0;
264 if (zone != page_zone(page))
265 return 0;
267 return 1;
270 * Temporary debugging check for pages not lying within a given zone.
272 static int bad_range(struct zone *zone, struct page *page)
274 if (page_outside_zone_boundaries(zone, page))
275 return 1;
276 if (!page_is_consistent(zone, page))
277 return 1;
279 return 0;
281 #else
282 static inline int bad_range(struct zone *zone, struct page *page)
284 return 0;
286 #endif
288 static void bad_page(struct page *page)
290 static unsigned long resume;
291 static unsigned long nr_shown;
292 static unsigned long nr_unshown;
294 /* Don't complain about poisoned pages */
295 if (PageHWPoison(page)) {
296 reset_page_mapcount(page); /* remove PageBuddy */
297 return;
301 * Allow a burst of 60 reports, then keep quiet for that minute;
302 * or allow a steady drip of one report per second.
304 if (nr_shown == 60) {
305 if (time_before(jiffies, resume)) {
306 nr_unshown++;
307 goto out;
309 if (nr_unshown) {
310 printk(KERN_ALERT
311 "BUG: Bad page state: %lu messages suppressed\n",
312 nr_unshown);
313 nr_unshown = 0;
315 nr_shown = 0;
317 if (nr_shown++ == 0)
318 resume = jiffies + 60 * HZ;
320 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
321 current->comm, page_to_pfn(page));
322 dump_page(page);
324 print_modules();
325 dump_stack();
326 out:
327 /* Leave bad fields for debug, except PageBuddy could make trouble */
328 reset_page_mapcount(page); /* remove PageBuddy */
329 add_taint(TAINT_BAD_PAGE);
333 * Higher-order pages are called "compound pages". They are structured thusly:
335 * The first PAGE_SIZE page is called the "head page".
337 * The remaining PAGE_SIZE pages are called "tail pages".
339 * All pages have PG_compound set. All pages have their ->private pointing at
340 * the head page (even the head page has this).
342 * The first tail page's ->lru.next holds the address of the compound page's
343 * put_page() function. Its ->lru.prev holds the order of allocation.
344 * This usage means that zero-order pages may not be compound.
347 static void free_compound_page(struct page *page)
349 __free_pages_ok(page, compound_order(page));
352 void prep_compound_page(struct page *page, unsigned long order)
354 int i;
355 int nr_pages = 1 << order;
357 set_compound_page_dtor(page, free_compound_page);
358 set_compound_order(page, order);
359 __SetPageHead(page);
360 for (i = 1; i < nr_pages; i++) {
361 struct page *p = page + i;
363 __SetPageTail(p);
364 p->first_page = page;
368 /* update __split_huge_page_refcount if you change this function */
369 static int destroy_compound_page(struct page *page, unsigned long order)
371 int i;
372 int nr_pages = 1 << order;
373 int bad = 0;
375 if (unlikely(compound_order(page) != order) ||
376 unlikely(!PageHead(page))) {
377 bad_page(page);
378 bad++;
381 __ClearPageHead(page);
383 for (i = 1; i < nr_pages; i++) {
384 struct page *p = page + i;
386 if (unlikely(!PageTail(p) || (p->first_page != page))) {
387 bad_page(page);
388 bad++;
390 __ClearPageTail(p);
393 return bad;
396 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
398 int i;
401 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
402 * and __GFP_HIGHMEM from hard or soft interrupt context.
404 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
405 for (i = 0; i < (1 << order); i++)
406 clear_highpage(page + i);
409 static inline void set_page_order(struct page *page, int order)
411 set_page_private(page, order);
412 __SetPageBuddy(page);
415 static inline void rmv_page_order(struct page *page)
417 __ClearPageBuddy(page);
418 set_page_private(page, 0);
422 * Locate the struct page for both the matching buddy in our
423 * pair (buddy1) and the combined O(n+1) page they form (page).
425 * 1) Any buddy B1 will have an order O twin B2 which satisfies
426 * the following equation:
427 * B2 = B1 ^ (1 << O)
428 * For example, if the starting buddy (buddy2) is #8 its order
429 * 1 buddy is #10:
430 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
432 * 2) Any buddy B will have an order O+1 parent P which
433 * satisfies the following equation:
434 * P = B & ~(1 << O)
436 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
438 static inline unsigned long
439 __find_buddy_index(unsigned long page_idx, unsigned int order)
441 return page_idx ^ (1 << order);
445 * This function checks whether a page is free && is the buddy
446 * we can do coalesce a page and its buddy if
447 * (a) the buddy is not in a hole &&
448 * (b) the buddy is in the buddy system &&
449 * (c) a page and its buddy have the same order &&
450 * (d) a page and its buddy are in the same zone.
452 * For recording whether a page is in the buddy system, we set ->_mapcount -2.
453 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
455 * For recording page's order, we use page_private(page).
457 static inline int page_is_buddy(struct page *page, struct page *buddy,
458 int order)
460 if (!pfn_valid_within(page_to_pfn(buddy)))
461 return 0;
463 if (page_zone_id(page) != page_zone_id(buddy))
464 return 0;
466 if (PageBuddy(buddy) && page_order(buddy) == order) {
467 VM_BUG_ON(page_count(buddy) != 0);
468 return 1;
470 return 0;
474 * Freeing function for a buddy system allocator.
476 * The concept of a buddy system is to maintain direct-mapped table
477 * (containing bit values) for memory blocks of various "orders".
478 * The bottom level table contains the map for the smallest allocatable
479 * units of memory (here, pages), and each level above it describes
480 * pairs of units from the levels below, hence, "buddies".
481 * At a high level, all that happens here is marking the table entry
482 * at the bottom level available, and propagating the changes upward
483 * as necessary, plus some accounting needed to play nicely with other
484 * parts of the VM system.
485 * At each level, we keep a list of pages, which are heads of continuous
486 * free pages of length of (1 << order) and marked with _mapcount -2. Page's
487 * order is recorded in page_private(page) field.
488 * So when we are allocating or freeing one, we can derive the state of the
489 * other. That is, if we allocate a small block, and both were
490 * free, the remainder of the region must be split into blocks.
491 * If a block is freed, and its buddy is also free, then this
492 * triggers coalescing into a block of larger size.
494 * -- wli
497 static inline void __free_one_page(struct page *page,
498 struct zone *zone, unsigned int order,
499 int migratetype)
501 unsigned long page_idx;
502 unsigned long combined_idx;
503 unsigned long uninitialized_var(buddy_idx);
504 struct page *buddy;
506 if (unlikely(PageCompound(page)))
507 if (unlikely(destroy_compound_page(page, order)))
508 return;
510 VM_BUG_ON(migratetype == -1);
512 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
514 VM_BUG_ON(page_idx & ((1 << order) - 1));
515 VM_BUG_ON(bad_range(zone, page));
517 while (order < MAX_ORDER-1) {
518 buddy_idx = __find_buddy_index(page_idx, order);
519 buddy = page + (buddy_idx - page_idx);
520 if (!page_is_buddy(page, buddy, order))
521 break;
523 /* Our buddy is free, merge with it and move up one order. */
524 list_del(&buddy->lru);
525 zone->free_area[order].nr_free--;
526 rmv_page_order(buddy);
527 combined_idx = buddy_idx & page_idx;
528 page = page + (combined_idx - page_idx);
529 page_idx = combined_idx;
530 order++;
532 set_page_order(page, order);
535 * If this is not the largest possible page, check if the buddy
536 * of the next-highest order is free. If it is, it's possible
537 * that pages are being freed that will coalesce soon. In case,
538 * that is happening, add the free page to the tail of the list
539 * so it's less likely to be used soon and more likely to be merged
540 * as a higher order page
542 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
543 struct page *higher_page, *higher_buddy;
544 combined_idx = buddy_idx & page_idx;
545 higher_page = page + (combined_idx - page_idx);
546 buddy_idx = __find_buddy_index(combined_idx, order + 1);
547 higher_buddy = page + (buddy_idx - combined_idx);
548 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
549 list_add_tail(&page->lru,
550 &zone->free_area[order].free_list[migratetype]);
551 goto out;
555 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
556 out:
557 zone->free_area[order].nr_free++;
561 * free_page_mlock() -- clean up attempts to free and mlocked() page.
562 * Page should not be on lru, so no need to fix that up.
563 * free_pages_check() will verify...
565 static inline void free_page_mlock(struct page *page)
567 __dec_zone_page_state(page, NR_MLOCK);
568 __count_vm_event(UNEVICTABLE_MLOCKFREED);
571 static inline int free_pages_check(struct page *page)
573 if (unlikely(page_mapcount(page) |
574 (page->mapping != NULL) |
575 (atomic_read(&page->_count) != 0) |
576 (page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
577 (mem_cgroup_bad_page_check(page)))) {
578 bad_page(page);
579 return 1;
581 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
582 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
583 return 0;
587 * Frees a number of pages from the PCP lists
588 * Assumes all pages on list are in same zone, and of same order.
589 * count is the number of pages to free.
591 * If the zone was previously in an "all pages pinned" state then look to
592 * see if this freeing clears that state.
594 * And clear the zone's pages_scanned counter, to hold off the "all pages are
595 * pinned" detection logic.
597 static void free_pcppages_bulk(struct zone *zone, int count,
598 struct per_cpu_pages *pcp)
600 int migratetype = 0;
601 int batch_free = 0;
602 int to_free = count;
604 spin_lock(&zone->lock);
605 zone->all_unreclaimable = 0;
606 zone->pages_scanned = 0;
608 while (to_free) {
609 struct page *page;
610 struct list_head *list;
613 * Remove pages from lists in a round-robin fashion. A
614 * batch_free count is maintained that is incremented when an
615 * empty list is encountered. This is so more pages are freed
616 * off fuller lists instead of spinning excessively around empty
617 * lists
619 do {
620 batch_free++;
621 if (++migratetype == MIGRATE_PCPTYPES)
622 migratetype = 0;
623 list = &pcp->lists[migratetype];
624 } while (list_empty(list));
626 /* This is the only non-empty list. Free them all. */
627 if (batch_free == MIGRATE_PCPTYPES)
628 batch_free = to_free;
630 do {
631 page = list_entry(list->prev, struct page, lru);
632 /* must delete as __free_one_page list manipulates */
633 list_del(&page->lru);
634 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
635 __free_one_page(page, zone, 0, page_private(page));
636 trace_mm_page_pcpu_drain(page, 0, page_private(page));
637 } while (--to_free && --batch_free && !list_empty(list));
639 __mod_zone_page_state(zone, NR_FREE_PAGES, count);
640 spin_unlock(&zone->lock);
643 static void free_one_page(struct zone *zone, struct page *page, int order,
644 int migratetype)
646 spin_lock(&zone->lock);
647 zone->all_unreclaimable = 0;
648 zone->pages_scanned = 0;
650 __free_one_page(page, zone, order, migratetype);
651 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
652 spin_unlock(&zone->lock);
655 static bool free_pages_prepare(struct page *page, unsigned int order)
657 int i;
658 int bad = 0;
660 trace_mm_page_free_direct(page, order);
661 kmemcheck_free_shadow(page, order);
663 if (PageAnon(page))
664 page->mapping = NULL;
665 for (i = 0; i < (1 << order); i++)
666 bad += free_pages_check(page + i);
667 if (bad)
668 return false;
670 if (!PageHighMem(page)) {
671 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
672 debug_check_no_obj_freed(page_address(page),
673 PAGE_SIZE << order);
675 arch_free_page(page, order);
676 kernel_map_pages(page, 1 << order, 0);
678 return true;
681 static void __free_pages_ok(struct page *page, unsigned int order)
683 unsigned long flags;
684 int wasMlocked = __TestClearPageMlocked(page);
686 if (!free_pages_prepare(page, order))
687 return;
689 local_irq_save(flags);
690 if (unlikely(wasMlocked))
691 free_page_mlock(page);
692 __count_vm_events(PGFREE, 1 << order);
693 free_one_page(page_zone(page), page, order,
694 get_pageblock_migratetype(page));
695 local_irq_restore(flags);
699 * permit the bootmem allocator to evade page validation on high-order frees
701 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
703 if (order == 0) {
704 __ClearPageReserved(page);
705 set_page_count(page, 0);
706 set_page_refcounted(page);
707 __free_page(page);
708 } else {
709 int loop;
711 prefetchw(page);
712 for (loop = 0; loop < (1 << order); loop++) {
713 struct page *p = &page[loop];
715 if (loop + 1 < (1 << order))
716 prefetchw(p + 1);
717 __ClearPageReserved(p);
718 set_page_count(p, 0);
721 set_page_refcounted(page);
722 __free_pages(page, order);
728 * The order of subdivision here is critical for the IO subsystem.
729 * Please do not alter this order without good reasons and regression
730 * testing. Specifically, as large blocks of memory are subdivided,
731 * the order in which smaller blocks are delivered depends on the order
732 * they're subdivided in this function. This is the primary factor
733 * influencing the order in which pages are delivered to the IO
734 * subsystem according to empirical testing, and this is also justified
735 * by considering the behavior of a buddy system containing a single
736 * large block of memory acted on by a series of small allocations.
737 * This behavior is a critical factor in sglist merging's success.
739 * -- wli
741 static inline void expand(struct zone *zone, struct page *page,
742 int low, int high, struct free_area *area,
743 int migratetype)
745 unsigned long size = 1 << high;
747 while (high > low) {
748 area--;
749 high--;
750 size >>= 1;
751 VM_BUG_ON(bad_range(zone, &page[size]));
752 list_add(&page[size].lru, &area->free_list[migratetype]);
753 area->nr_free++;
754 set_page_order(&page[size], high);
759 * This page is about to be returned from the page allocator
761 static inline int check_new_page(struct page *page)
763 if (unlikely(page_mapcount(page) |
764 (page->mapping != NULL) |
765 (atomic_read(&page->_count) != 0) |
766 (page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
767 (mem_cgroup_bad_page_check(page)))) {
768 bad_page(page);
769 return 1;
771 return 0;
774 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
776 int i;
778 for (i = 0; i < (1 << order); i++) {
779 struct page *p = page + i;
780 if (unlikely(check_new_page(p)))
781 return 1;
784 set_page_private(page, 0);
785 set_page_refcounted(page);
787 arch_alloc_page(page, order);
788 kernel_map_pages(page, 1 << order, 1);
790 if (gfp_flags & __GFP_ZERO)
791 prep_zero_page(page, order, gfp_flags);
793 if (order && (gfp_flags & __GFP_COMP))
794 prep_compound_page(page, order);
796 return 0;
800 * Go through the free lists for the given migratetype and remove
801 * the smallest available page from the freelists
803 static inline
804 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
805 int migratetype)
807 unsigned int current_order;
808 struct free_area * area;
809 struct page *page;
811 /* Find a page of the appropriate size in the preferred list */
812 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
813 area = &(zone->free_area[current_order]);
814 if (list_empty(&area->free_list[migratetype]))
815 continue;
817 page = list_entry(area->free_list[migratetype].next,
818 struct page, lru);
819 list_del(&page->lru);
820 rmv_page_order(page);
821 area->nr_free--;
822 expand(zone, page, order, current_order, area, migratetype);
823 return page;
826 return NULL;
831 * This array describes the order lists are fallen back to when
832 * the free lists for the desirable migrate type are depleted
834 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
835 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
836 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
837 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
838 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
842 * Move the free pages in a range to the free lists of the requested type.
843 * Note that start_page and end_pages are not aligned on a pageblock
844 * boundary. If alignment is required, use move_freepages_block()
846 static int move_freepages(struct zone *zone,
847 struct page *start_page, struct page *end_page,
848 int migratetype)
850 struct page *page;
851 unsigned long order;
852 int pages_moved = 0;
854 #ifndef CONFIG_HOLES_IN_ZONE
856 * page_zone is not safe to call in this context when
857 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
858 * anyway as we check zone boundaries in move_freepages_block().
859 * Remove at a later date when no bug reports exist related to
860 * grouping pages by mobility
862 BUG_ON(page_zone(start_page) != page_zone(end_page));
863 #endif
865 for (page = start_page; page <= end_page;) {
866 /* Make sure we are not inadvertently changing nodes */
867 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
869 if (!pfn_valid_within(page_to_pfn(page))) {
870 page++;
871 continue;
874 if (!PageBuddy(page)) {
875 page++;
876 continue;
879 order = page_order(page);
880 list_move(&page->lru,
881 &zone->free_area[order].free_list[migratetype]);
882 page += 1 << order;
883 pages_moved += 1 << order;
886 return pages_moved;
889 static int move_freepages_block(struct zone *zone, struct page *page,
890 int migratetype)
892 unsigned long start_pfn, end_pfn;
893 struct page *start_page, *end_page;
895 start_pfn = page_to_pfn(page);
896 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
897 start_page = pfn_to_page(start_pfn);
898 end_page = start_page + pageblock_nr_pages - 1;
899 end_pfn = start_pfn + pageblock_nr_pages - 1;
901 /* Do not cross zone boundaries */
902 if (start_pfn < zone->zone_start_pfn)
903 start_page = page;
904 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
905 return 0;
907 return move_freepages(zone, start_page, end_page, migratetype);
910 static void change_pageblock_range(struct page *pageblock_page,
911 int start_order, int migratetype)
913 int nr_pageblocks = 1 << (start_order - pageblock_order);
915 while (nr_pageblocks--) {
916 set_pageblock_migratetype(pageblock_page, migratetype);
917 pageblock_page += pageblock_nr_pages;
921 /* Remove an element from the buddy allocator from the fallback list */
922 static inline struct page *
923 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
925 struct free_area * area;
926 int current_order;
927 struct page *page;
928 int migratetype, i;
930 /* Find the largest possible block of pages in the other list */
931 for (current_order = MAX_ORDER-1; current_order >= order;
932 --current_order) {
933 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
934 migratetype = fallbacks[start_migratetype][i];
936 /* MIGRATE_RESERVE handled later if necessary */
937 if (migratetype == MIGRATE_RESERVE)
938 continue;
940 area = &(zone->free_area[current_order]);
941 if (list_empty(&area->free_list[migratetype]))
942 continue;
944 page = list_entry(area->free_list[migratetype].next,
945 struct page, lru);
946 area->nr_free--;
949 * If breaking a large block of pages, move all free
950 * pages to the preferred allocation list. If falling
951 * back for a reclaimable kernel allocation, be more
952 * aggressive about taking ownership of free pages
954 if (unlikely(current_order >= (pageblock_order >> 1)) ||
955 start_migratetype == MIGRATE_RECLAIMABLE ||
956 page_group_by_mobility_disabled) {
957 unsigned long pages;
958 pages = move_freepages_block(zone, page,
959 start_migratetype);
961 /* Claim the whole block if over half of it is free */
962 if (pages >= (1 << (pageblock_order-1)) ||
963 page_group_by_mobility_disabled)
964 set_pageblock_migratetype(page,
965 start_migratetype);
967 migratetype = start_migratetype;
970 /* Remove the page from the freelists */
971 list_del(&page->lru);
972 rmv_page_order(page);
974 /* Take ownership for orders >= pageblock_order */
975 if (current_order >= pageblock_order)
976 change_pageblock_range(page, current_order,
977 start_migratetype);
979 expand(zone, page, order, current_order, area, migratetype);
981 trace_mm_page_alloc_extfrag(page, order, current_order,
982 start_migratetype, migratetype);
984 return page;
988 return NULL;
992 * Do the hard work of removing an element from the buddy allocator.
993 * Call me with the zone->lock already held.
995 static struct page *__rmqueue(struct zone *zone, unsigned int order,
996 int migratetype)
998 struct page *page;
1000 retry_reserve:
1001 page = __rmqueue_smallest(zone, order, migratetype);
1003 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1004 page = __rmqueue_fallback(zone, order, migratetype);
1007 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1008 * is used because __rmqueue_smallest is an inline function
1009 * and we want just one call site
1011 if (!page) {
1012 migratetype = MIGRATE_RESERVE;
1013 goto retry_reserve;
1017 trace_mm_page_alloc_zone_locked(page, order, migratetype);
1018 return page;
1022 * Obtain a specified number of elements from the buddy allocator, all under
1023 * a single hold of the lock, for efficiency. Add them to the supplied list.
1024 * Returns the number of new pages which were placed at *list.
1026 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1027 unsigned long count, struct list_head *list,
1028 int migratetype, int cold)
1030 int i;
1032 spin_lock(&zone->lock);
1033 for (i = 0; i < count; ++i) {
1034 struct page *page = __rmqueue(zone, order, migratetype);
1035 if (unlikely(page == NULL))
1036 break;
1039 * Split buddy pages returned by expand() are received here
1040 * in physical page order. The page is added to the callers and
1041 * list and the list head then moves forward. From the callers
1042 * perspective, the linked list is ordered by page number in
1043 * some conditions. This is useful for IO devices that can
1044 * merge IO requests if the physical pages are ordered
1045 * properly.
1047 if (likely(cold == 0))
1048 list_add(&page->lru, list);
1049 else
1050 list_add_tail(&page->lru, list);
1051 set_page_private(page, migratetype);
1052 list = &page->lru;
1054 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1055 spin_unlock(&zone->lock);
1056 return i;
1059 #ifdef CONFIG_NUMA
1061 * Called from the vmstat counter updater to drain pagesets of this
1062 * currently executing processor on remote nodes after they have
1063 * expired.
1065 * Note that this function must be called with the thread pinned to
1066 * a single processor.
1068 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1070 unsigned long flags;
1071 int to_drain;
1073 local_irq_save(flags);
1074 if (pcp->count >= pcp->batch)
1075 to_drain = pcp->batch;
1076 else
1077 to_drain = pcp->count;
1078 free_pcppages_bulk(zone, to_drain, pcp);
1079 pcp->count -= to_drain;
1080 local_irq_restore(flags);
1082 #endif
1085 * Drain pages of the indicated processor.
1087 * The processor must either be the current processor and the
1088 * thread pinned to the current processor or a processor that
1089 * is not online.
1091 static void drain_pages(unsigned int cpu)
1093 unsigned long flags;
1094 struct zone *zone;
1096 for_each_populated_zone(zone) {
1097 struct per_cpu_pageset *pset;
1098 struct per_cpu_pages *pcp;
1100 local_irq_save(flags);
1101 pset = per_cpu_ptr(zone->pageset, cpu);
1103 pcp = &pset->pcp;
1104 if (pcp->count) {
1105 free_pcppages_bulk(zone, pcp->count, pcp);
1106 pcp->count = 0;
1108 local_irq_restore(flags);
1113 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1115 void drain_local_pages(void *arg)
1117 drain_pages(smp_processor_id());
1121 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
1123 void drain_all_pages(void)
1125 on_each_cpu(drain_local_pages, NULL, 1);
1128 #ifdef CONFIG_HIBERNATION
1130 void mark_free_pages(struct zone *zone)
1132 unsigned long pfn, max_zone_pfn;
1133 unsigned long flags;
1134 int order, t;
1135 struct list_head *curr;
1137 if (!zone->spanned_pages)
1138 return;
1140 spin_lock_irqsave(&zone->lock, flags);
1142 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1143 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1144 if (pfn_valid(pfn)) {
1145 struct page *page = pfn_to_page(pfn);
1147 if (!swsusp_page_is_forbidden(page))
1148 swsusp_unset_page_free(page);
1151 for_each_migratetype_order(order, t) {
1152 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1153 unsigned long i;
1155 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1156 for (i = 0; i < (1UL << order); i++)
1157 swsusp_set_page_free(pfn_to_page(pfn + i));
1160 spin_unlock_irqrestore(&zone->lock, flags);
1162 #endif /* CONFIG_PM */
1165 * Free a 0-order page
1166 * cold == 1 ? free a cold page : free a hot page
1168 void free_hot_cold_page(struct page *page, int cold)
1170 struct zone *zone = page_zone(page);
1171 struct per_cpu_pages *pcp;
1172 unsigned long flags;
1173 int migratetype;
1174 int wasMlocked = __TestClearPageMlocked(page);
1176 if (!free_pages_prepare(page, 0))
1177 return;
1179 migratetype = get_pageblock_migratetype(page);
1180 set_page_private(page, migratetype);
1181 local_irq_save(flags);
1182 if (unlikely(wasMlocked))
1183 free_page_mlock(page);
1184 __count_vm_event(PGFREE);
1187 * We only track unmovable, reclaimable and movable on pcp lists.
1188 * Free ISOLATE pages back to the allocator because they are being
1189 * offlined but treat RESERVE as movable pages so we can get those
1190 * areas back if necessary. Otherwise, we may have to free
1191 * excessively into the page allocator
1193 if (migratetype >= MIGRATE_PCPTYPES) {
1194 if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1195 free_one_page(zone, page, 0, migratetype);
1196 goto out;
1198 migratetype = MIGRATE_MOVABLE;
1201 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1202 if (cold)
1203 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1204 else
1205 list_add(&page->lru, &pcp->lists[migratetype]);
1206 pcp->count++;
1207 if (pcp->count >= pcp->high) {
1208 free_pcppages_bulk(zone, pcp->batch, pcp);
1209 pcp->count -= pcp->batch;
1212 out:
1213 local_irq_restore(flags);
1217 * split_page takes a non-compound higher-order page, and splits it into
1218 * n (1<<order) sub-pages: page[0..n]
1219 * Each sub-page must be freed individually.
1221 * Note: this is probably too low level an operation for use in drivers.
1222 * Please consult with lkml before using this in your driver.
1224 void split_page(struct page *page, unsigned int order)
1226 int i;
1228 VM_BUG_ON(PageCompound(page));
1229 VM_BUG_ON(!page_count(page));
1231 #ifdef CONFIG_KMEMCHECK
1233 * Split shadow pages too, because free(page[0]) would
1234 * otherwise free the whole shadow.
1236 if (kmemcheck_page_is_tracked(page))
1237 split_page(virt_to_page(page[0].shadow), order);
1238 #endif
1240 for (i = 1; i < (1 << order); i++)
1241 set_page_refcounted(page + i);
1245 * Similar to split_page except the page is already free. As this is only
1246 * being used for migration, the migratetype of the block also changes.
1247 * As this is called with interrupts disabled, the caller is responsible
1248 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1249 * are enabled.
1251 * Note: this is probably too low level an operation for use in drivers.
1252 * Please consult with lkml before using this in your driver.
1254 int split_free_page(struct page *page)
1256 unsigned int order;
1257 unsigned long watermark;
1258 struct zone *zone;
1260 BUG_ON(!PageBuddy(page));
1262 zone = page_zone(page);
1263 order = page_order(page);
1265 /* Obey watermarks as if the page was being allocated */
1266 watermark = low_wmark_pages(zone) + (1 << order);
1267 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1268 return 0;
1270 /* Remove page from free list */
1271 list_del(&page->lru);
1272 zone->free_area[order].nr_free--;
1273 rmv_page_order(page);
1274 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1UL << order));
1276 /* Split into individual pages */
1277 set_page_refcounted(page);
1278 split_page(page, order);
1280 if (order >= pageblock_order - 1) {
1281 struct page *endpage = page + (1 << order) - 1;
1282 for (; page < endpage; page += pageblock_nr_pages)
1283 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1286 return 1 << order;
1290 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1291 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1292 * or two.
1294 static inline
1295 struct page *buffered_rmqueue(struct zone *preferred_zone,
1296 struct zone *zone, int order, gfp_t gfp_flags,
1297 int migratetype)
1299 unsigned long flags;
1300 struct page *page;
1301 int cold = !!(gfp_flags & __GFP_COLD);
1303 again:
1304 if (likely(order == 0)) {
1305 struct per_cpu_pages *pcp;
1306 struct list_head *list;
1308 local_irq_save(flags);
1309 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1310 list = &pcp->lists[migratetype];
1311 if (list_empty(list)) {
1312 pcp->count += rmqueue_bulk(zone, 0,
1313 pcp->batch, list,
1314 migratetype, cold);
1315 if (unlikely(list_empty(list)))
1316 goto failed;
1319 if (cold)
1320 page = list_entry(list->prev, struct page, lru);
1321 else
1322 page = list_entry(list->next, struct page, lru);
1324 list_del(&page->lru);
1325 pcp->count--;
1326 } else {
1327 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1329 * __GFP_NOFAIL is not to be used in new code.
1331 * All __GFP_NOFAIL callers should be fixed so that they
1332 * properly detect and handle allocation failures.
1334 * We most definitely don't want callers attempting to
1335 * allocate greater than order-1 page units with
1336 * __GFP_NOFAIL.
1338 WARN_ON_ONCE(order > 1);
1340 spin_lock_irqsave(&zone->lock, flags);
1341 page = __rmqueue(zone, order, migratetype);
1342 spin_unlock(&zone->lock);
1343 if (!page)
1344 goto failed;
1345 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
1348 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1349 zone_statistics(preferred_zone, zone, gfp_flags);
1350 local_irq_restore(flags);
1352 VM_BUG_ON(bad_range(zone, page));
1353 if (prep_new_page(page, order, gfp_flags))
1354 goto again;
1355 return page;
1357 failed:
1358 local_irq_restore(flags);
1359 return NULL;
1362 /* The ALLOC_WMARK bits are used as an index to zone->watermark */
1363 #define ALLOC_WMARK_MIN WMARK_MIN
1364 #define ALLOC_WMARK_LOW WMARK_LOW
1365 #define ALLOC_WMARK_HIGH WMARK_HIGH
1366 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
1368 /* Mask to get the watermark bits */
1369 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
1371 #define ALLOC_HARDER 0x10 /* try to alloc harder */
1372 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1373 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1375 #ifdef CONFIG_FAIL_PAGE_ALLOC
1377 static struct {
1378 struct fault_attr attr;
1380 u32 ignore_gfp_highmem;
1381 u32 ignore_gfp_wait;
1382 u32 min_order;
1383 } fail_page_alloc = {
1384 .attr = FAULT_ATTR_INITIALIZER,
1385 .ignore_gfp_wait = 1,
1386 .ignore_gfp_highmem = 1,
1387 .min_order = 1,
1390 static int __init setup_fail_page_alloc(char *str)
1392 return setup_fault_attr(&fail_page_alloc.attr, str);
1394 __setup("fail_page_alloc=", setup_fail_page_alloc);
1396 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1398 if (order < fail_page_alloc.min_order)
1399 return 0;
1400 if (gfp_mask & __GFP_NOFAIL)
1401 return 0;
1402 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1403 return 0;
1404 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1405 return 0;
1407 return should_fail(&fail_page_alloc.attr, 1 << order);
1410 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1412 static int __init fail_page_alloc_debugfs(void)
1414 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1415 struct dentry *dir;
1417 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1418 &fail_page_alloc.attr);
1419 if (IS_ERR(dir))
1420 return PTR_ERR(dir);
1422 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1423 &fail_page_alloc.ignore_gfp_wait))
1424 goto fail;
1425 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1426 &fail_page_alloc.ignore_gfp_highmem))
1427 goto fail;
1428 if (!debugfs_create_u32("min-order", mode, dir,
1429 &fail_page_alloc.min_order))
1430 goto fail;
1432 return 0;
1433 fail:
1434 debugfs_remove_recursive(dir);
1436 return -ENOMEM;
1439 late_initcall(fail_page_alloc_debugfs);
1441 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1443 #else /* CONFIG_FAIL_PAGE_ALLOC */
1445 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1447 return 0;
1450 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1453 * Return true if free pages are above 'mark'. This takes into account the order
1454 * of the allocation.
1456 static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1457 int classzone_idx, int alloc_flags, long free_pages)
1459 /* free_pages my go negative - that's OK */
1460 long min = mark;
1461 int o;
1463 free_pages -= (1 << order) + 1;
1464 if (alloc_flags & ALLOC_HIGH)
1465 min -= min / 2;
1466 if (alloc_flags & ALLOC_HARDER)
1467 min -= min / 4;
1469 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1470 return false;
1471 for (o = 0; o < order; o++) {
1472 /* At the next order, this order's pages become unavailable */
1473 free_pages -= z->free_area[o].nr_free << o;
1475 /* Require fewer higher order pages to be free */
1476 min >>= 1;
1478 if (free_pages <= min)
1479 return false;
1481 return true;
1484 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1485 int classzone_idx, int alloc_flags)
1487 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1488 zone_page_state(z, NR_FREE_PAGES));
1491 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1492 int classzone_idx, int alloc_flags)
1494 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1496 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1497 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1499 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1500 free_pages);
1503 #ifdef CONFIG_NUMA
1505 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1506 * skip over zones that are not allowed by the cpuset, or that have
1507 * been recently (in last second) found to be nearly full. See further
1508 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1509 * that have to skip over a lot of full or unallowed zones.
1511 * If the zonelist cache is present in the passed in zonelist, then
1512 * returns a pointer to the allowed node mask (either the current
1513 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1515 * If the zonelist cache is not available for this zonelist, does
1516 * nothing and returns NULL.
1518 * If the fullzones BITMAP in the zonelist cache is stale (more than
1519 * a second since last zap'd) then we zap it out (clear its bits.)
1521 * We hold off even calling zlc_setup, until after we've checked the
1522 * first zone in the zonelist, on the theory that most allocations will
1523 * be satisfied from that first zone, so best to examine that zone as
1524 * quickly as we can.
1526 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1528 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1529 nodemask_t *allowednodes; /* zonelist_cache approximation */
1531 zlc = zonelist->zlcache_ptr;
1532 if (!zlc)
1533 return NULL;
1535 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1536 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1537 zlc->last_full_zap = jiffies;
1540 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1541 &cpuset_current_mems_allowed :
1542 &node_states[N_HIGH_MEMORY];
1543 return allowednodes;
1547 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1548 * if it is worth looking at further for free memory:
1549 * 1) Check that the zone isn't thought to be full (doesn't have its
1550 * bit set in the zonelist_cache fullzones BITMAP).
1551 * 2) Check that the zones node (obtained from the zonelist_cache
1552 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1553 * Return true (non-zero) if zone is worth looking at further, or
1554 * else return false (zero) if it is not.
1556 * This check -ignores- the distinction between various watermarks,
1557 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1558 * found to be full for any variation of these watermarks, it will
1559 * be considered full for up to one second by all requests, unless
1560 * we are so low on memory on all allowed nodes that we are forced
1561 * into the second scan of the zonelist.
1563 * In the second scan we ignore this zonelist cache and exactly
1564 * apply the watermarks to all zones, even it is slower to do so.
1565 * We are low on memory in the second scan, and should leave no stone
1566 * unturned looking for a free page.
1568 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1569 nodemask_t *allowednodes)
1571 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1572 int i; /* index of *z in zonelist zones */
1573 int n; /* node that zone *z is on */
1575 zlc = zonelist->zlcache_ptr;
1576 if (!zlc)
1577 return 1;
1579 i = z - zonelist->_zonerefs;
1580 n = zlc->z_to_n[i];
1582 /* This zone is worth trying if it is allowed but not full */
1583 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1587 * Given 'z' scanning a zonelist, set the corresponding bit in
1588 * zlc->fullzones, so that subsequent attempts to allocate a page
1589 * from that zone don't waste time re-examining it.
1591 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1593 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1594 int i; /* index of *z in zonelist zones */
1596 zlc = zonelist->zlcache_ptr;
1597 if (!zlc)
1598 return;
1600 i = z - zonelist->_zonerefs;
1602 set_bit(i, zlc->fullzones);
1606 * clear all zones full, called after direct reclaim makes progress so that
1607 * a zone that was recently full is not skipped over for up to a second
1609 static void zlc_clear_zones_full(struct zonelist *zonelist)
1611 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1613 zlc = zonelist->zlcache_ptr;
1614 if (!zlc)
1615 return;
1617 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1620 #else /* CONFIG_NUMA */
1622 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1624 return NULL;
1627 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1628 nodemask_t *allowednodes)
1630 return 1;
1633 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1637 static void zlc_clear_zones_full(struct zonelist *zonelist)
1640 #endif /* CONFIG_NUMA */
1643 * get_page_from_freelist goes through the zonelist trying to allocate
1644 * a page.
1646 static struct page *
1647 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1648 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1649 struct zone *preferred_zone, int migratetype)
1651 struct zoneref *z;
1652 struct page *page = NULL;
1653 int classzone_idx;
1654 struct zone *zone;
1655 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1656 int zlc_active = 0; /* set if using zonelist_cache */
1657 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1659 classzone_idx = zone_idx(preferred_zone);
1660 zonelist_scan:
1662 * Scan zonelist, looking for a zone with enough free.
1663 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1665 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1666 high_zoneidx, nodemask) {
1667 if (NUMA_BUILD && zlc_active &&
1668 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1669 continue;
1670 if ((alloc_flags & ALLOC_CPUSET) &&
1671 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1672 continue;
1674 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1675 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1676 unsigned long mark;
1677 int ret;
1679 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1680 if (zone_watermark_ok(zone, order, mark,
1681 classzone_idx, alloc_flags))
1682 goto try_this_zone;
1684 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
1686 * we do zlc_setup if there are multiple nodes
1687 * and before considering the first zone allowed
1688 * by the cpuset.
1690 allowednodes = zlc_setup(zonelist, alloc_flags);
1691 zlc_active = 1;
1692 did_zlc_setup = 1;
1695 if (zone_reclaim_mode == 0)
1696 goto this_zone_full;
1699 * As we may have just activated ZLC, check if the first
1700 * eligible zone has failed zone_reclaim recently.
1702 if (NUMA_BUILD && zlc_active &&
1703 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1704 continue;
1706 ret = zone_reclaim(zone, gfp_mask, order);
1707 switch (ret) {
1708 case ZONE_RECLAIM_NOSCAN:
1709 /* did not scan */
1710 continue;
1711 case ZONE_RECLAIM_FULL:
1712 /* scanned but unreclaimable */
1713 continue;
1714 default:
1715 /* did we reclaim enough */
1716 if (!zone_watermark_ok(zone, order, mark,
1717 classzone_idx, alloc_flags))
1718 goto this_zone_full;
1722 try_this_zone:
1723 page = buffered_rmqueue(preferred_zone, zone, order,
1724 gfp_mask, migratetype);
1725 if (page)
1726 break;
1727 this_zone_full:
1728 if (NUMA_BUILD)
1729 zlc_mark_zone_full(zonelist, z);
1732 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1733 /* Disable zlc cache for second zonelist scan */
1734 zlc_active = 0;
1735 goto zonelist_scan;
1737 return page;
1741 * Large machines with many possible nodes should not always dump per-node
1742 * meminfo in irq context.
1744 static inline bool should_suppress_show_mem(void)
1746 bool ret = false;
1748 #if NODES_SHIFT > 8
1749 ret = in_interrupt();
1750 #endif
1751 return ret;
1754 static DEFINE_RATELIMIT_STATE(nopage_rs,
1755 DEFAULT_RATELIMIT_INTERVAL,
1756 DEFAULT_RATELIMIT_BURST);
1758 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
1760 unsigned int filter = SHOW_MEM_FILTER_NODES;
1762 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
1763 return;
1766 * This documents exceptions given to allocations in certain
1767 * contexts that are allowed to allocate outside current's set
1768 * of allowed nodes.
1770 if (!(gfp_mask & __GFP_NOMEMALLOC))
1771 if (test_thread_flag(TIF_MEMDIE) ||
1772 (current->flags & (PF_MEMALLOC | PF_EXITING)))
1773 filter &= ~SHOW_MEM_FILTER_NODES;
1774 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
1775 filter &= ~SHOW_MEM_FILTER_NODES;
1777 if (fmt) {
1778 struct va_format vaf;
1779 va_list args;
1781 va_start(args, fmt);
1783 vaf.fmt = fmt;
1784 vaf.va = &args;
1786 pr_warn("%pV", &vaf);
1788 va_end(args);
1791 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
1792 current->comm, order, gfp_mask);
1794 dump_stack();
1795 if (!should_suppress_show_mem())
1796 show_mem(filter);
1799 static inline int
1800 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1801 unsigned long pages_reclaimed)
1803 /* Do not loop if specifically requested */
1804 if (gfp_mask & __GFP_NORETRY)
1805 return 0;
1808 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1809 * means __GFP_NOFAIL, but that may not be true in other
1810 * implementations.
1812 if (order <= PAGE_ALLOC_COSTLY_ORDER)
1813 return 1;
1816 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1817 * specified, then we retry until we no longer reclaim any pages
1818 * (above), or we've reclaimed an order of pages at least as
1819 * large as the allocation's order. In both cases, if the
1820 * allocation still fails, we stop retrying.
1822 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1823 return 1;
1826 * Don't let big-order allocations loop unless the caller
1827 * explicitly requests that.
1829 if (gfp_mask & __GFP_NOFAIL)
1830 return 1;
1832 return 0;
1835 static inline struct page *
1836 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1837 struct zonelist *zonelist, enum zone_type high_zoneidx,
1838 nodemask_t *nodemask, struct zone *preferred_zone,
1839 int migratetype)
1841 struct page *page;
1843 /* Acquire the OOM killer lock for the zones in zonelist */
1844 if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
1845 schedule_timeout_uninterruptible(1);
1846 return NULL;
1850 * Go through the zonelist yet one more time, keep very high watermark
1851 * here, this is only to catch a parallel oom killing, we must fail if
1852 * we're still under heavy pressure.
1854 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1855 order, zonelist, high_zoneidx,
1856 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
1857 preferred_zone, migratetype);
1858 if (page)
1859 goto out;
1861 if (!(gfp_mask & __GFP_NOFAIL)) {
1862 /* The OOM killer will not help higher order allocs */
1863 if (order > PAGE_ALLOC_COSTLY_ORDER)
1864 goto out;
1865 /* The OOM killer does not needlessly kill tasks for lowmem */
1866 if (high_zoneidx < ZONE_NORMAL)
1867 goto out;
1869 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
1870 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
1871 * The caller should handle page allocation failure by itself if
1872 * it specifies __GFP_THISNODE.
1873 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
1875 if (gfp_mask & __GFP_THISNODE)
1876 goto out;
1878 /* Exhausted what can be done so it's blamo time */
1879 out_of_memory(zonelist, gfp_mask, order, nodemask);
1881 out:
1882 clear_zonelist_oom(zonelist, gfp_mask);
1883 return page;
1886 #ifdef CONFIG_COMPACTION
1887 /* Try memory compaction for high-order allocations before reclaim */
1888 static struct page *
1889 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
1890 struct zonelist *zonelist, enum zone_type high_zoneidx,
1891 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1892 int migratetype, unsigned long *did_some_progress,
1893 bool sync_migration)
1895 struct page *page;
1897 if (!order || compaction_deferred(preferred_zone))
1898 return NULL;
1900 current->flags |= PF_MEMALLOC;
1901 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
1902 nodemask, sync_migration);
1903 current->flags &= ~PF_MEMALLOC;
1904 if (*did_some_progress != COMPACT_SKIPPED) {
1906 /* Page migration frees to the PCP lists but we want merging */
1907 drain_pages(get_cpu());
1908 put_cpu();
1910 page = get_page_from_freelist(gfp_mask, nodemask,
1911 order, zonelist, high_zoneidx,
1912 alloc_flags, preferred_zone,
1913 migratetype);
1914 if (page) {
1915 preferred_zone->compact_considered = 0;
1916 preferred_zone->compact_defer_shift = 0;
1917 count_vm_event(COMPACTSUCCESS);
1918 return page;
1922 * It's bad if compaction run occurs and fails.
1923 * The most likely reason is that pages exist,
1924 * but not enough to satisfy watermarks.
1926 count_vm_event(COMPACTFAIL);
1927 defer_compaction(preferred_zone);
1929 cond_resched();
1932 return NULL;
1934 #else
1935 static inline struct page *
1936 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
1937 struct zonelist *zonelist, enum zone_type high_zoneidx,
1938 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1939 int migratetype, unsigned long *did_some_progress,
1940 bool sync_migration)
1942 return NULL;
1944 #endif /* CONFIG_COMPACTION */
1946 /* The really slow allocator path where we enter direct reclaim */
1947 static inline struct page *
1948 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
1949 struct zonelist *zonelist, enum zone_type high_zoneidx,
1950 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1951 int migratetype, unsigned long *did_some_progress)
1953 struct page *page = NULL;
1954 struct reclaim_state reclaim_state;
1955 bool drained = false;
1957 cond_resched();
1959 /* We now go into synchronous reclaim */
1960 cpuset_memory_pressure_bump();
1961 current->flags |= PF_MEMALLOC;
1962 lockdep_set_current_reclaim_state(gfp_mask);
1963 reclaim_state.reclaimed_slab = 0;
1964 current->reclaim_state = &reclaim_state;
1966 *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
1968 current->reclaim_state = NULL;
1969 lockdep_clear_current_reclaim_state();
1970 current->flags &= ~PF_MEMALLOC;
1972 cond_resched();
1974 if (unlikely(!(*did_some_progress)))
1975 return NULL;
1977 /* After successful reclaim, reconsider all zones for allocation */
1978 if (NUMA_BUILD)
1979 zlc_clear_zones_full(zonelist);
1981 retry:
1982 page = get_page_from_freelist(gfp_mask, nodemask, order,
1983 zonelist, high_zoneidx,
1984 alloc_flags, preferred_zone,
1985 migratetype);
1988 * If an allocation failed after direct reclaim, it could be because
1989 * pages are pinned on the per-cpu lists. Drain them and try again
1991 if (!page && !drained) {
1992 drain_all_pages();
1993 drained = true;
1994 goto retry;
1997 return page;
2001 * This is called in the allocator slow-path if the allocation request is of
2002 * sufficient urgency to ignore watermarks and take other desperate measures
2004 static inline struct page *
2005 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2006 struct zonelist *zonelist, enum zone_type high_zoneidx,
2007 nodemask_t *nodemask, struct zone *preferred_zone,
2008 int migratetype)
2010 struct page *page;
2012 do {
2013 page = get_page_from_freelist(gfp_mask, nodemask, order,
2014 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
2015 preferred_zone, migratetype);
2017 if (!page && gfp_mask & __GFP_NOFAIL)
2018 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2019 } while (!page && (gfp_mask & __GFP_NOFAIL));
2021 return page;
2024 static inline
2025 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
2026 enum zone_type high_zoneidx,
2027 enum zone_type classzone_idx)
2029 struct zoneref *z;
2030 struct zone *zone;
2032 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
2033 wakeup_kswapd(zone, order, classzone_idx);
2036 static inline int
2037 gfp_to_alloc_flags(gfp_t gfp_mask)
2039 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2040 const gfp_t wait = gfp_mask & __GFP_WAIT;
2042 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2043 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2046 * The caller may dip into page reserves a bit more if the caller
2047 * cannot run direct reclaim, or if the caller has realtime scheduling
2048 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2049 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2051 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2053 if (!wait) {
2055 * Not worth trying to allocate harder for
2056 * __GFP_NOMEMALLOC even if it can't schedule.
2058 if (!(gfp_mask & __GFP_NOMEMALLOC))
2059 alloc_flags |= ALLOC_HARDER;
2061 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2062 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
2064 alloc_flags &= ~ALLOC_CPUSET;
2065 } else if (unlikely(rt_task(current)) && !in_interrupt())
2066 alloc_flags |= ALLOC_HARDER;
2068 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2069 if (!in_interrupt() &&
2070 ((current->flags & PF_MEMALLOC) ||
2071 unlikely(test_thread_flag(TIF_MEMDIE))))
2072 alloc_flags |= ALLOC_NO_WATERMARKS;
2075 return alloc_flags;
2078 static inline struct page *
2079 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2080 struct zonelist *zonelist, enum zone_type high_zoneidx,
2081 nodemask_t *nodemask, struct zone *preferred_zone,
2082 int migratetype)
2084 const gfp_t wait = gfp_mask & __GFP_WAIT;
2085 struct page *page = NULL;
2086 int alloc_flags;
2087 unsigned long pages_reclaimed = 0;
2088 unsigned long did_some_progress;
2089 bool sync_migration = false;
2092 * In the slowpath, we sanity check order to avoid ever trying to
2093 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2094 * be using allocators in order of preference for an area that is
2095 * too large.
2097 if (order >= MAX_ORDER) {
2098 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2099 return NULL;
2103 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2104 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2105 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2106 * using a larger set of nodes after it has established that the
2107 * allowed per node queues are empty and that nodes are
2108 * over allocated.
2110 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2111 goto nopage;
2113 restart:
2114 if (!(gfp_mask & __GFP_NO_KSWAPD))
2115 wake_all_kswapd(order, zonelist, high_zoneidx,
2116 zone_idx(preferred_zone));
2119 * OK, we're below the kswapd watermark and have kicked background
2120 * reclaim. Now things get more complex, so set up alloc_flags according
2121 * to how we want to proceed.
2123 alloc_flags = gfp_to_alloc_flags(gfp_mask);
2126 * Find the true preferred zone if the allocation is unconstrained by
2127 * cpusets.
2129 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2130 first_zones_zonelist(zonelist, high_zoneidx, NULL,
2131 &preferred_zone);
2133 rebalance:
2134 /* This is the last chance, in general, before the goto nopage. */
2135 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
2136 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2137 preferred_zone, migratetype);
2138 if (page)
2139 goto got_pg;
2141 /* Allocate without watermarks if the context allows */
2142 if (alloc_flags & ALLOC_NO_WATERMARKS) {
2143 page = __alloc_pages_high_priority(gfp_mask, order,
2144 zonelist, high_zoneidx, nodemask,
2145 preferred_zone, migratetype);
2146 if (page)
2147 goto got_pg;
2150 /* Atomic allocations - we can't balance anything */
2151 if (!wait)
2152 goto nopage;
2154 /* Avoid recursion of direct reclaim */
2155 if (current->flags & PF_MEMALLOC)
2156 goto nopage;
2158 /* Avoid allocations with no watermarks from looping endlessly */
2159 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2160 goto nopage;
2163 * Try direct compaction. The first pass is asynchronous. Subsequent
2164 * attempts after direct reclaim are synchronous
2166 page = __alloc_pages_direct_compact(gfp_mask, order,
2167 zonelist, high_zoneidx,
2168 nodemask,
2169 alloc_flags, preferred_zone,
2170 migratetype, &did_some_progress,
2171 sync_migration);
2172 if (page)
2173 goto got_pg;
2174 sync_migration = true;
2176 /* Try direct reclaim and then allocating */
2177 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2178 zonelist, high_zoneidx,
2179 nodemask,
2180 alloc_flags, preferred_zone,
2181 migratetype, &did_some_progress);
2182 if (page)
2183 goto got_pg;
2186 * If we failed to make any progress reclaiming, then we are
2187 * running out of options and have to consider going OOM
2189 if (!did_some_progress) {
2190 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
2191 if (oom_killer_disabled)
2192 goto nopage;
2193 page = __alloc_pages_may_oom(gfp_mask, order,
2194 zonelist, high_zoneidx,
2195 nodemask, preferred_zone,
2196 migratetype);
2197 if (page)
2198 goto got_pg;
2200 if (!(gfp_mask & __GFP_NOFAIL)) {
2202 * The oom killer is not called for high-order
2203 * allocations that may fail, so if no progress
2204 * is being made, there are no other options and
2205 * retrying is unlikely to help.
2207 if (order > PAGE_ALLOC_COSTLY_ORDER)
2208 goto nopage;
2210 * The oom killer is not called for lowmem
2211 * allocations to prevent needlessly killing
2212 * innocent tasks.
2214 if (high_zoneidx < ZONE_NORMAL)
2215 goto nopage;
2218 goto restart;
2222 /* Check if we should retry the allocation */
2223 pages_reclaimed += did_some_progress;
2224 if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
2225 /* Wait for some write requests to complete then retry */
2226 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2227 goto rebalance;
2228 } else {
2230 * High-order allocations do not necessarily loop after
2231 * direct reclaim and reclaim/compaction depends on compaction
2232 * being called after reclaim so call directly if necessary
2234 page = __alloc_pages_direct_compact(gfp_mask, order,
2235 zonelist, high_zoneidx,
2236 nodemask,
2237 alloc_flags, preferred_zone,
2238 migratetype, &did_some_progress,
2239 sync_migration);
2240 if (page)
2241 goto got_pg;
2244 nopage:
2245 warn_alloc_failed(gfp_mask, order, NULL);
2246 return page;
2247 got_pg:
2248 if (kmemcheck_enabled)
2249 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2250 return page;
2255 * This is the 'heart' of the zoned buddy allocator.
2257 struct page *
2258 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2259 struct zonelist *zonelist, nodemask_t *nodemask)
2261 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2262 struct zone *preferred_zone;
2263 struct page *page;
2264 int migratetype = allocflags_to_migratetype(gfp_mask);
2266 gfp_mask &= gfp_allowed_mask;
2268 lockdep_trace_alloc(gfp_mask);
2270 might_sleep_if(gfp_mask & __GFP_WAIT);
2272 if (should_fail_alloc_page(gfp_mask, order))
2273 return NULL;
2276 * Check the zones suitable for the gfp_mask contain at least one
2277 * valid zone. It's possible to have an empty zonelist as a result
2278 * of GFP_THISNODE and a memoryless node
2280 if (unlikely(!zonelist->_zonerefs->zone))
2281 return NULL;
2283 get_mems_allowed();
2284 /* The preferred zone is used for statistics later */
2285 first_zones_zonelist(zonelist, high_zoneidx,
2286 nodemask ? : &cpuset_current_mems_allowed,
2287 &preferred_zone);
2288 if (!preferred_zone) {
2289 put_mems_allowed();
2290 return NULL;
2293 /* First allocation attempt */
2294 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2295 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
2296 preferred_zone, migratetype);
2297 if (unlikely(!page))
2298 page = __alloc_pages_slowpath(gfp_mask, order,
2299 zonelist, high_zoneidx, nodemask,
2300 preferred_zone, migratetype);
2301 put_mems_allowed();
2303 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2304 return page;
2306 EXPORT_SYMBOL(__alloc_pages_nodemask);
2309 * Common helper functions.
2311 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2313 struct page *page;
2316 * __get_free_pages() returns a 32-bit address, which cannot represent
2317 * a highmem page
2319 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2321 page = alloc_pages(gfp_mask, order);
2322 if (!page)
2323 return 0;
2324 return (unsigned long) page_address(page);
2326 EXPORT_SYMBOL(__get_free_pages);
2328 unsigned long get_zeroed_page(gfp_t gfp_mask)
2330 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2332 EXPORT_SYMBOL(get_zeroed_page);
2334 void __pagevec_free(struct pagevec *pvec)
2336 int i = pagevec_count(pvec);
2338 while (--i >= 0) {
2339 trace_mm_pagevec_free(pvec->pages[i], pvec->cold);
2340 free_hot_cold_page(pvec->pages[i], pvec->cold);
2344 void __free_pages(struct page *page, unsigned int order)
2346 if (put_page_testzero(page)) {
2347 if (order == 0)
2348 free_hot_cold_page(page, 0);
2349 else
2350 __free_pages_ok(page, order);
2354 EXPORT_SYMBOL(__free_pages);
2356 void free_pages(unsigned long addr, unsigned int order)
2358 if (addr != 0) {
2359 VM_BUG_ON(!virt_addr_valid((void *)addr));
2360 __free_pages(virt_to_page((void *)addr), order);
2364 EXPORT_SYMBOL(free_pages);
2366 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2368 if (addr) {
2369 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2370 unsigned long used = addr + PAGE_ALIGN(size);
2372 split_page(virt_to_page((void *)addr), order);
2373 while (used < alloc_end) {
2374 free_page(used);
2375 used += PAGE_SIZE;
2378 return (void *)addr;
2382 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2383 * @size: the number of bytes to allocate
2384 * @gfp_mask: GFP flags for the allocation
2386 * This function is similar to alloc_pages(), except that it allocates the
2387 * minimum number of pages to satisfy the request. alloc_pages() can only
2388 * allocate memory in power-of-two pages.
2390 * This function is also limited by MAX_ORDER.
2392 * Memory allocated by this function must be released by free_pages_exact().
2394 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2396 unsigned int order = get_order(size);
2397 unsigned long addr;
2399 addr = __get_free_pages(gfp_mask, order);
2400 return make_alloc_exact(addr, order, size);
2402 EXPORT_SYMBOL(alloc_pages_exact);
2405 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2406 * pages on a node.
2407 * @nid: the preferred node ID where memory should be allocated
2408 * @size: the number of bytes to allocate
2409 * @gfp_mask: GFP flags for the allocation
2411 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2412 * back.
2413 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2414 * but is not exact.
2416 void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2418 unsigned order = get_order(size);
2419 struct page *p = alloc_pages_node(nid, gfp_mask, order);
2420 if (!p)
2421 return NULL;
2422 return make_alloc_exact((unsigned long)page_address(p), order, size);
2424 EXPORT_SYMBOL(alloc_pages_exact_nid);
2427 * free_pages_exact - release memory allocated via alloc_pages_exact()
2428 * @virt: the value returned by alloc_pages_exact.
2429 * @size: size of allocation, same value as passed to alloc_pages_exact().
2431 * Release the memory allocated by a previous call to alloc_pages_exact.
2433 void free_pages_exact(void *virt, size_t size)
2435 unsigned long addr = (unsigned long)virt;
2436 unsigned long end = addr + PAGE_ALIGN(size);
2438 while (addr < end) {
2439 free_page(addr);
2440 addr += PAGE_SIZE;
2443 EXPORT_SYMBOL(free_pages_exact);
2445 static unsigned int nr_free_zone_pages(int offset)
2447 struct zoneref *z;
2448 struct zone *zone;
2450 /* Just pick one node, since fallback list is circular */
2451 unsigned int sum = 0;
2453 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2455 for_each_zone_zonelist(zone, z, zonelist, offset) {
2456 unsigned long size = zone->present_pages;
2457 unsigned long high = high_wmark_pages(zone);
2458 if (size > high)
2459 sum += size - high;
2462 return sum;
2466 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2468 unsigned int nr_free_buffer_pages(void)
2470 return nr_free_zone_pages(gfp_zone(GFP_USER));
2472 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2475 * Amount of free RAM allocatable within all zones
2477 unsigned int nr_free_pagecache_pages(void)
2479 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2482 static inline void show_node(struct zone *zone)
2484 if (NUMA_BUILD)
2485 printk("Node %d ", zone_to_nid(zone));
2488 void si_meminfo(struct sysinfo *val)
2490 val->totalram = totalram_pages;
2491 val->sharedram = 0;
2492 val->freeram = global_page_state(NR_FREE_PAGES);
2493 val->bufferram = nr_blockdev_pages();
2494 val->totalhigh = totalhigh_pages;
2495 val->freehigh = nr_free_highpages();
2496 val->mem_unit = PAGE_SIZE;
2499 EXPORT_SYMBOL(si_meminfo);
2501 #ifdef CONFIG_NUMA
2502 void si_meminfo_node(struct sysinfo *val, int nid)
2504 pg_data_t *pgdat = NODE_DATA(nid);
2506 val->totalram = pgdat->node_present_pages;
2507 val->freeram = node_page_state(nid, NR_FREE_PAGES);
2508 #ifdef CONFIG_HIGHMEM
2509 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
2510 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2511 NR_FREE_PAGES);
2512 #else
2513 val->totalhigh = 0;
2514 val->freehigh = 0;
2515 #endif
2516 val->mem_unit = PAGE_SIZE;
2518 #endif
2521 * Determine whether the node should be displayed or not, depending on whether
2522 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
2524 bool skip_free_areas_node(unsigned int flags, int nid)
2526 bool ret = false;
2528 if (!(flags & SHOW_MEM_FILTER_NODES))
2529 goto out;
2531 get_mems_allowed();
2532 ret = !node_isset(nid, cpuset_current_mems_allowed);
2533 put_mems_allowed();
2534 out:
2535 return ret;
2538 #define K(x) ((x) << (PAGE_SHIFT-10))
2541 * Show free area list (used inside shift_scroll-lock stuff)
2542 * We also calculate the percentage fragmentation. We do this by counting the
2543 * memory on each free list with the exception of the first item on the list.
2544 * Suppresses nodes that are not allowed by current's cpuset if
2545 * SHOW_MEM_FILTER_NODES is passed.
2547 void show_free_areas(unsigned int filter)
2549 int cpu;
2550 struct zone *zone;
2552 for_each_populated_zone(zone) {
2553 if (skip_free_areas_node(filter, zone_to_nid(zone)))
2554 continue;
2555 show_node(zone);
2556 printk("%s per-cpu:\n", zone->name);
2558 for_each_online_cpu(cpu) {
2559 struct per_cpu_pageset *pageset;
2561 pageset = per_cpu_ptr(zone->pageset, cpu);
2563 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2564 cpu, pageset->pcp.high,
2565 pageset->pcp.batch, pageset->pcp.count);
2569 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2570 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2571 " unevictable:%lu"
2572 " dirty:%lu writeback:%lu unstable:%lu\n"
2573 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2574 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
2575 global_page_state(NR_ACTIVE_ANON),
2576 global_page_state(NR_INACTIVE_ANON),
2577 global_page_state(NR_ISOLATED_ANON),
2578 global_page_state(NR_ACTIVE_FILE),
2579 global_page_state(NR_INACTIVE_FILE),
2580 global_page_state(NR_ISOLATED_FILE),
2581 global_page_state(NR_UNEVICTABLE),
2582 global_page_state(NR_FILE_DIRTY),
2583 global_page_state(NR_WRITEBACK),
2584 global_page_state(NR_UNSTABLE_NFS),
2585 global_page_state(NR_FREE_PAGES),
2586 global_page_state(NR_SLAB_RECLAIMABLE),
2587 global_page_state(NR_SLAB_UNRECLAIMABLE),
2588 global_page_state(NR_FILE_MAPPED),
2589 global_page_state(NR_SHMEM),
2590 global_page_state(NR_PAGETABLE),
2591 global_page_state(NR_BOUNCE));
2593 for_each_populated_zone(zone) {
2594 int i;
2596 if (skip_free_areas_node(filter, zone_to_nid(zone)))
2597 continue;
2598 show_node(zone);
2599 printk("%s"
2600 " free:%lukB"
2601 " min:%lukB"
2602 " low:%lukB"
2603 " high:%lukB"
2604 " active_anon:%lukB"
2605 " inactive_anon:%lukB"
2606 " active_file:%lukB"
2607 " inactive_file:%lukB"
2608 " unevictable:%lukB"
2609 " isolated(anon):%lukB"
2610 " isolated(file):%lukB"
2611 " present:%lukB"
2612 " mlocked:%lukB"
2613 " dirty:%lukB"
2614 " writeback:%lukB"
2615 " mapped:%lukB"
2616 " shmem:%lukB"
2617 " slab_reclaimable:%lukB"
2618 " slab_unreclaimable:%lukB"
2619 " kernel_stack:%lukB"
2620 " pagetables:%lukB"
2621 " unstable:%lukB"
2622 " bounce:%lukB"
2623 " writeback_tmp:%lukB"
2624 " pages_scanned:%lu"
2625 " all_unreclaimable? %s"
2626 "\n",
2627 zone->name,
2628 K(zone_page_state(zone, NR_FREE_PAGES)),
2629 K(min_wmark_pages(zone)),
2630 K(low_wmark_pages(zone)),
2631 K(high_wmark_pages(zone)),
2632 K(zone_page_state(zone, NR_ACTIVE_ANON)),
2633 K(zone_page_state(zone, NR_INACTIVE_ANON)),
2634 K(zone_page_state(zone, NR_ACTIVE_FILE)),
2635 K(zone_page_state(zone, NR_INACTIVE_FILE)),
2636 K(zone_page_state(zone, NR_UNEVICTABLE)),
2637 K(zone_page_state(zone, NR_ISOLATED_ANON)),
2638 K(zone_page_state(zone, NR_ISOLATED_FILE)),
2639 K(zone->present_pages),
2640 K(zone_page_state(zone, NR_MLOCK)),
2641 K(zone_page_state(zone, NR_FILE_DIRTY)),
2642 K(zone_page_state(zone, NR_WRITEBACK)),
2643 K(zone_page_state(zone, NR_FILE_MAPPED)),
2644 K(zone_page_state(zone, NR_SHMEM)),
2645 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
2646 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
2647 zone_page_state(zone, NR_KERNEL_STACK) *
2648 THREAD_SIZE / 1024,
2649 K(zone_page_state(zone, NR_PAGETABLE)),
2650 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
2651 K(zone_page_state(zone, NR_BOUNCE)),
2652 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
2653 zone->pages_scanned,
2654 (zone->all_unreclaimable ? "yes" : "no")
2656 printk("lowmem_reserve[]:");
2657 for (i = 0; i < MAX_NR_ZONES; i++)
2658 printk(" %lu", zone->lowmem_reserve[i]);
2659 printk("\n");
2662 for_each_populated_zone(zone) {
2663 unsigned long nr[MAX_ORDER], flags, order, total = 0;
2665 if (skip_free_areas_node(filter, zone_to_nid(zone)))
2666 continue;
2667 show_node(zone);
2668 printk("%s: ", zone->name);
2670 spin_lock_irqsave(&zone->lock, flags);
2671 for (order = 0; order < MAX_ORDER; order++) {
2672 nr[order] = zone->free_area[order].nr_free;
2673 total += nr[order] << order;
2675 spin_unlock_irqrestore(&zone->lock, flags);
2676 for (order = 0; order < MAX_ORDER; order++)
2677 printk("%lu*%lukB ", nr[order], K(1UL) << order);
2678 printk("= %lukB\n", K(total));
2681 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2683 show_swap_cache_info();
2686 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2688 zoneref->zone = zone;
2689 zoneref->zone_idx = zone_idx(zone);
2693 * Builds allocation fallback zone lists.
2695 * Add all populated zones of a node to the zonelist.
2697 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2698 int nr_zones, enum zone_type zone_type)
2700 struct zone *zone;
2702 BUG_ON(zone_type >= MAX_NR_ZONES);
2703 zone_type++;
2705 do {
2706 zone_type--;
2707 zone = pgdat->node_zones + zone_type;
2708 if (populated_zone(zone)) {
2709 zoneref_set_zone(zone,
2710 &zonelist->_zonerefs[nr_zones++]);
2711 check_highest_zone(zone_type);
2714 } while (zone_type);
2715 return nr_zones;
2720 * zonelist_order:
2721 * 0 = automatic detection of better ordering.
2722 * 1 = order by ([node] distance, -zonetype)
2723 * 2 = order by (-zonetype, [node] distance)
2725 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2726 * the same zonelist. So only NUMA can configure this param.
2728 #define ZONELIST_ORDER_DEFAULT 0
2729 #define ZONELIST_ORDER_NODE 1
2730 #define ZONELIST_ORDER_ZONE 2
2732 /* zonelist order in the kernel.
2733 * set_zonelist_order() will set this to NODE or ZONE.
2735 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2736 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2739 #ifdef CONFIG_NUMA
2740 /* The value user specified ....changed by config */
2741 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2742 /* string for sysctl */
2743 #define NUMA_ZONELIST_ORDER_LEN 16
2744 char numa_zonelist_order[16] = "default";
2747 * interface for configure zonelist ordering.
2748 * command line option "numa_zonelist_order"
2749 * = "[dD]efault - default, automatic configuration.
2750 * = "[nN]ode - order by node locality, then by zone within node
2751 * = "[zZ]one - order by zone, then by locality within zone
2754 static int __parse_numa_zonelist_order(char *s)
2756 if (*s == 'd' || *s == 'D') {
2757 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2758 } else if (*s == 'n' || *s == 'N') {
2759 user_zonelist_order = ZONELIST_ORDER_NODE;
2760 } else if (*s == 'z' || *s == 'Z') {
2761 user_zonelist_order = ZONELIST_ORDER_ZONE;
2762 } else {
2763 printk(KERN_WARNING
2764 "Ignoring invalid numa_zonelist_order value: "
2765 "%s\n", s);
2766 return -EINVAL;
2768 return 0;
2771 static __init int setup_numa_zonelist_order(char *s)
2773 int ret;
2775 if (!s)
2776 return 0;
2778 ret = __parse_numa_zonelist_order(s);
2779 if (ret == 0)
2780 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
2782 return ret;
2784 early_param("numa_zonelist_order", setup_numa_zonelist_order);
2787 * sysctl handler for numa_zonelist_order
2789 int numa_zonelist_order_handler(ctl_table *table, int write,
2790 void __user *buffer, size_t *length,
2791 loff_t *ppos)
2793 char saved_string[NUMA_ZONELIST_ORDER_LEN];
2794 int ret;
2795 static DEFINE_MUTEX(zl_order_mutex);
2797 mutex_lock(&zl_order_mutex);
2798 if (write)
2799 strcpy(saved_string, (char*)table->data);
2800 ret = proc_dostring(table, write, buffer, length, ppos);
2801 if (ret)
2802 goto out;
2803 if (write) {
2804 int oldval = user_zonelist_order;
2805 if (__parse_numa_zonelist_order((char*)table->data)) {
2807 * bogus value. restore saved string
2809 strncpy((char*)table->data, saved_string,
2810 NUMA_ZONELIST_ORDER_LEN);
2811 user_zonelist_order = oldval;
2812 } else if (oldval != user_zonelist_order) {
2813 mutex_lock(&zonelists_mutex);
2814 build_all_zonelists(NULL);
2815 mutex_unlock(&zonelists_mutex);
2818 out:
2819 mutex_unlock(&zl_order_mutex);
2820 return ret;
2824 #define MAX_NODE_LOAD (nr_online_nodes)
2825 static int node_load[MAX_NUMNODES];
2828 * find_next_best_node - find the next node that should appear in a given node's fallback list
2829 * @node: node whose fallback list we're appending
2830 * @used_node_mask: nodemask_t of already used nodes
2832 * We use a number of factors to determine which is the next node that should
2833 * appear on a given node's fallback list. The node should not have appeared
2834 * already in @node's fallback list, and it should be the next closest node
2835 * according to the distance array (which contains arbitrary distance values
2836 * from each node to each node in the system), and should also prefer nodes
2837 * with no CPUs, since presumably they'll have very little allocation pressure
2838 * on them otherwise.
2839 * It returns -1 if no node is found.
2841 static int find_next_best_node(int node, nodemask_t *used_node_mask)
2843 int n, val;
2844 int min_val = INT_MAX;
2845 int best_node = -1;
2846 const struct cpumask *tmp = cpumask_of_node(0);
2848 /* Use the local node if we haven't already */
2849 if (!node_isset(node, *used_node_mask)) {
2850 node_set(node, *used_node_mask);
2851 return node;
2854 for_each_node_state(n, N_HIGH_MEMORY) {
2856 /* Don't want a node to appear more than once */
2857 if (node_isset(n, *used_node_mask))
2858 continue;
2860 /* Use the distance array to find the distance */
2861 val = node_distance(node, n);
2863 /* Penalize nodes under us ("prefer the next node") */
2864 val += (n < node);
2866 /* Give preference to headless and unused nodes */
2867 tmp = cpumask_of_node(n);
2868 if (!cpumask_empty(tmp))
2869 val += PENALTY_FOR_NODE_WITH_CPUS;
2871 /* Slight preference for less loaded node */
2872 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2873 val += node_load[n];
2875 if (val < min_val) {
2876 min_val = val;
2877 best_node = n;
2881 if (best_node >= 0)
2882 node_set(best_node, *used_node_mask);
2884 return best_node;
2889 * Build zonelists ordered by node and zones within node.
2890 * This results in maximum locality--normal zone overflows into local
2891 * DMA zone, if any--but risks exhausting DMA zone.
2893 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2895 int j;
2896 struct zonelist *zonelist;
2898 zonelist = &pgdat->node_zonelists[0];
2899 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
2901 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2902 MAX_NR_ZONES - 1);
2903 zonelist->_zonerefs[j].zone = NULL;
2904 zonelist->_zonerefs[j].zone_idx = 0;
2908 * Build gfp_thisnode zonelists
2910 static void build_thisnode_zonelists(pg_data_t *pgdat)
2912 int j;
2913 struct zonelist *zonelist;
2915 zonelist = &pgdat->node_zonelists[1];
2916 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2917 zonelist->_zonerefs[j].zone = NULL;
2918 zonelist->_zonerefs[j].zone_idx = 0;
2922 * Build zonelists ordered by zone and nodes within zones.
2923 * This results in conserving DMA zone[s] until all Normal memory is
2924 * exhausted, but results in overflowing to remote node while memory
2925 * may still exist in local DMA zone.
2927 static int node_order[MAX_NUMNODES];
2929 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2931 int pos, j, node;
2932 int zone_type; /* needs to be signed */
2933 struct zone *z;
2934 struct zonelist *zonelist;
2936 zonelist = &pgdat->node_zonelists[0];
2937 pos = 0;
2938 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2939 for (j = 0; j < nr_nodes; j++) {
2940 node = node_order[j];
2941 z = &NODE_DATA(node)->node_zones[zone_type];
2942 if (populated_zone(z)) {
2943 zoneref_set_zone(z,
2944 &zonelist->_zonerefs[pos++]);
2945 check_highest_zone(zone_type);
2949 zonelist->_zonerefs[pos].zone = NULL;
2950 zonelist->_zonerefs[pos].zone_idx = 0;
2953 static int default_zonelist_order(void)
2955 int nid, zone_type;
2956 unsigned long low_kmem_size,total_size;
2957 struct zone *z;
2958 int average_size;
2960 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
2961 * If they are really small and used heavily, the system can fall
2962 * into OOM very easily.
2963 * This function detect ZONE_DMA/DMA32 size and configures zone order.
2965 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2966 low_kmem_size = 0;
2967 total_size = 0;
2968 for_each_online_node(nid) {
2969 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2970 z = &NODE_DATA(nid)->node_zones[zone_type];
2971 if (populated_zone(z)) {
2972 if (zone_type < ZONE_NORMAL)
2973 low_kmem_size += z->present_pages;
2974 total_size += z->present_pages;
2975 } else if (zone_type == ZONE_NORMAL) {
2977 * If any node has only lowmem, then node order
2978 * is preferred to allow kernel allocations
2979 * locally; otherwise, they can easily infringe
2980 * on other nodes when there is an abundance of
2981 * lowmem available to allocate from.
2983 return ZONELIST_ORDER_NODE;
2987 if (!low_kmem_size || /* there are no DMA area. */
2988 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2989 return ZONELIST_ORDER_NODE;
2991 * look into each node's config.
2992 * If there is a node whose DMA/DMA32 memory is very big area on
2993 * local memory, NODE_ORDER may be suitable.
2995 average_size = total_size /
2996 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2997 for_each_online_node(nid) {
2998 low_kmem_size = 0;
2999 total_size = 0;
3000 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3001 z = &NODE_DATA(nid)->node_zones[zone_type];
3002 if (populated_zone(z)) {
3003 if (zone_type < ZONE_NORMAL)
3004 low_kmem_size += z->present_pages;
3005 total_size += z->present_pages;
3008 if (low_kmem_size &&
3009 total_size > average_size && /* ignore small node */
3010 low_kmem_size > total_size * 70/100)
3011 return ZONELIST_ORDER_NODE;
3013 return ZONELIST_ORDER_ZONE;
3016 static void set_zonelist_order(void)
3018 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3019 current_zonelist_order = default_zonelist_order();
3020 else
3021 current_zonelist_order = user_zonelist_order;
3024 static void build_zonelists(pg_data_t *pgdat)
3026 int j, node, load;
3027 enum zone_type i;
3028 nodemask_t used_mask;
3029 int local_node, prev_node;
3030 struct zonelist *zonelist;
3031 int order = current_zonelist_order;
3033 /* initialize zonelists */
3034 for (i = 0; i < MAX_ZONELISTS; i++) {
3035 zonelist = pgdat->node_zonelists + i;
3036 zonelist->_zonerefs[0].zone = NULL;
3037 zonelist->_zonerefs[0].zone_idx = 0;
3040 /* NUMA-aware ordering of nodes */
3041 local_node = pgdat->node_id;
3042 load = nr_online_nodes;
3043 prev_node = local_node;
3044 nodes_clear(used_mask);
3046 memset(node_order, 0, sizeof(node_order));
3047 j = 0;
3049 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3050 int distance = node_distance(local_node, node);
3053 * If another node is sufficiently far away then it is better
3054 * to reclaim pages in a zone before going off node.
3056 if (distance > RECLAIM_DISTANCE)
3057 zone_reclaim_mode = 1;
3060 * We don't want to pressure a particular node.
3061 * So adding penalty to the first node in same
3062 * distance group to make it round-robin.
3064 if (distance != node_distance(local_node, prev_node))
3065 node_load[node] = load;
3067 prev_node = node;
3068 load--;
3069 if (order == ZONELIST_ORDER_NODE)
3070 build_zonelists_in_node_order(pgdat, node);
3071 else
3072 node_order[j++] = node; /* remember order */
3075 if (order == ZONELIST_ORDER_ZONE) {
3076 /* calculate node order -- i.e., DMA last! */
3077 build_zonelists_in_zone_order(pgdat, j);
3080 build_thisnode_zonelists(pgdat);
3083 /* Construct the zonelist performance cache - see further mmzone.h */
3084 static void build_zonelist_cache(pg_data_t *pgdat)
3086 struct zonelist *zonelist;
3087 struct zonelist_cache *zlc;
3088 struct zoneref *z;
3090 zonelist = &pgdat->node_zonelists[0];
3091 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3092 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
3093 for (z = zonelist->_zonerefs; z->zone; z++)
3094 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
3097 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3099 * Return node id of node used for "local" allocations.
3100 * I.e., first node id of first zone in arg node's generic zonelist.
3101 * Used for initializing percpu 'numa_mem', which is used primarily
3102 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3104 int local_memory_node(int node)
3106 struct zone *zone;
3108 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3109 gfp_zone(GFP_KERNEL),
3110 NULL,
3111 &zone);
3112 return zone->node;
3114 #endif
3116 #else /* CONFIG_NUMA */
3118 static void set_zonelist_order(void)
3120 current_zonelist_order = ZONELIST_ORDER_ZONE;
3123 static void build_zonelists(pg_data_t *pgdat)
3125 int node, local_node;
3126 enum zone_type j;
3127 struct zonelist *zonelist;
3129 local_node = pgdat->node_id;
3131 zonelist = &pgdat->node_zonelists[0];
3132 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
3135 * Now we build the zonelist so that it contains the zones
3136 * of all the other nodes.
3137 * We don't want to pressure a particular node, so when
3138 * building the zones for node N, we make sure that the
3139 * zones coming right after the local ones are those from
3140 * node N+1 (modulo N)
3142 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3143 if (!node_online(node))
3144 continue;
3145 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3146 MAX_NR_ZONES - 1);
3148 for (node = 0; node < local_node; node++) {
3149 if (!node_online(node))
3150 continue;
3151 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3152 MAX_NR_ZONES - 1);
3155 zonelist->_zonerefs[j].zone = NULL;
3156 zonelist->_zonerefs[j].zone_idx = 0;
3159 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3160 static void build_zonelist_cache(pg_data_t *pgdat)
3162 pgdat->node_zonelists[0].zlcache_ptr = NULL;
3165 #endif /* CONFIG_NUMA */
3168 * Boot pageset table. One per cpu which is going to be used for all
3169 * zones and all nodes. The parameters will be set in such a way
3170 * that an item put on a list will immediately be handed over to
3171 * the buddy list. This is safe since pageset manipulation is done
3172 * with interrupts disabled.
3174 * The boot_pagesets must be kept even after bootup is complete for
3175 * unused processors and/or zones. They do play a role for bootstrapping
3176 * hotplugged processors.
3178 * zoneinfo_show() and maybe other functions do
3179 * not check if the processor is online before following the pageset pointer.
3180 * Other parts of the kernel may not check if the zone is available.
3182 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3183 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3184 static void setup_zone_pageset(struct zone *zone);
3187 * Global mutex to protect against size modification of zonelists
3188 * as well as to serialize pageset setup for the new populated zone.
3190 DEFINE_MUTEX(zonelists_mutex);
3192 /* return values int ....just for stop_machine() */
3193 static __init_refok int __build_all_zonelists(void *data)
3195 int nid;
3196 int cpu;
3198 #ifdef CONFIG_NUMA
3199 memset(node_load, 0, sizeof(node_load));
3200 #endif
3201 for_each_online_node(nid) {
3202 pg_data_t *pgdat = NODE_DATA(nid);
3204 build_zonelists(pgdat);
3205 build_zonelist_cache(pgdat);
3209 * Initialize the boot_pagesets that are going to be used
3210 * for bootstrapping processors. The real pagesets for
3211 * each zone will be allocated later when the per cpu
3212 * allocator is available.
3214 * boot_pagesets are used also for bootstrapping offline
3215 * cpus if the system is already booted because the pagesets
3216 * are needed to initialize allocators on a specific cpu too.
3217 * F.e. the percpu allocator needs the page allocator which
3218 * needs the percpu allocator in order to allocate its pagesets
3219 * (a chicken-egg dilemma).
3221 for_each_possible_cpu(cpu) {
3222 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3224 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3226 * We now know the "local memory node" for each node--
3227 * i.e., the node of the first zone in the generic zonelist.
3228 * Set up numa_mem percpu variable for on-line cpus. During
3229 * boot, only the boot cpu should be on-line; we'll init the
3230 * secondary cpus' numa_mem as they come on-line. During
3231 * node/memory hotplug, we'll fixup all on-line cpus.
3233 if (cpu_online(cpu))
3234 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3235 #endif
3238 return 0;
3242 * Called with zonelists_mutex held always
3243 * unless system_state == SYSTEM_BOOTING.
3245 void __ref build_all_zonelists(void *data)
3247 set_zonelist_order();
3249 if (system_state == SYSTEM_BOOTING) {
3250 __build_all_zonelists(NULL);
3251 mminit_verify_zonelist();
3252 cpuset_init_current_mems_allowed();
3253 } else {
3254 /* we have to stop all cpus to guarantee there is no user
3255 of zonelist */
3256 #ifdef CONFIG_MEMORY_HOTPLUG
3257 if (data)
3258 setup_zone_pageset((struct zone *)data);
3259 #endif
3260 stop_machine(__build_all_zonelists, NULL, NULL);
3261 /* cpuset refresh routine should be here */
3263 vm_total_pages = nr_free_pagecache_pages();
3265 * Disable grouping by mobility if the number of pages in the
3266 * system is too low to allow the mechanism to work. It would be
3267 * more accurate, but expensive to check per-zone. This check is
3268 * made on memory-hotadd so a system can start with mobility
3269 * disabled and enable it later
3271 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3272 page_group_by_mobility_disabled = 1;
3273 else
3274 page_group_by_mobility_disabled = 0;
3276 printk("Built %i zonelists in %s order, mobility grouping %s. "
3277 "Total pages: %ld\n",
3278 nr_online_nodes,
3279 zonelist_order_name[current_zonelist_order],
3280 page_group_by_mobility_disabled ? "off" : "on",
3281 vm_total_pages);
3282 #ifdef CONFIG_NUMA
3283 printk("Policy zone: %s\n", zone_names[policy_zone]);
3284 #endif
3288 * Helper functions to size the waitqueue hash table.
3289 * Essentially these want to choose hash table sizes sufficiently
3290 * large so that collisions trying to wait on pages are rare.
3291 * But in fact, the number of active page waitqueues on typical
3292 * systems is ridiculously low, less than 200. So this is even
3293 * conservative, even though it seems large.
3295 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3296 * waitqueues, i.e. the size of the waitq table given the number of pages.
3298 #define PAGES_PER_WAITQUEUE 256
3300 #ifndef CONFIG_MEMORY_HOTPLUG
3301 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3303 unsigned long size = 1;
3305 pages /= PAGES_PER_WAITQUEUE;
3307 while (size < pages)
3308 size <<= 1;
3311 * Once we have dozens or even hundreds of threads sleeping
3312 * on IO we've got bigger problems than wait queue collision.
3313 * Limit the size of the wait table to a reasonable size.
3315 size = min(size, 4096UL);
3317 return max(size, 4UL);
3319 #else
3321 * A zone's size might be changed by hot-add, so it is not possible to determine
3322 * a suitable size for its wait_table. So we use the maximum size now.
3324 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3326 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3327 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3328 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3330 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3331 * or more by the traditional way. (See above). It equals:
3333 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3334 * ia64(16K page size) : = ( 8G + 4M)byte.
3335 * powerpc (64K page size) : = (32G +16M)byte.
3337 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3339 return 4096UL;
3341 #endif
3344 * This is an integer logarithm so that shifts can be used later
3345 * to extract the more random high bits from the multiplicative
3346 * hash function before the remainder is taken.
3348 static inline unsigned long wait_table_bits(unsigned long size)
3350 return ffz(~size);
3353 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3356 * Check if a pageblock contains reserved pages
3358 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3360 unsigned long pfn;
3362 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3363 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3364 return 1;
3366 return 0;
3370 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3371 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3372 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3373 * higher will lead to a bigger reserve which will get freed as contiguous
3374 * blocks as reclaim kicks in
3376 static void setup_zone_migrate_reserve(struct zone *zone)
3378 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
3379 struct page *page;
3380 unsigned long block_migratetype;
3381 int reserve;
3383 /* Get the start pfn, end pfn and the number of blocks to reserve */
3384 start_pfn = zone->zone_start_pfn;
3385 end_pfn = start_pfn + zone->spanned_pages;
3386 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
3387 pageblock_order;
3390 * Reserve blocks are generally in place to help high-order atomic
3391 * allocations that are short-lived. A min_free_kbytes value that
3392 * would result in more than 2 reserve blocks for atomic allocations
3393 * is assumed to be in place to help anti-fragmentation for the
3394 * future allocation of hugepages at runtime.
3396 reserve = min(2, reserve);
3398 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
3399 if (!pfn_valid(pfn))
3400 continue;
3401 page = pfn_to_page(pfn);
3403 /* Watch out for overlapping nodes */
3404 if (page_to_nid(page) != zone_to_nid(zone))
3405 continue;
3407 /* Blocks with reserved pages will never free, skip them. */
3408 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
3409 if (pageblock_is_reserved(pfn, block_end_pfn))
3410 continue;
3412 block_migratetype = get_pageblock_migratetype(page);
3414 /* If this block is reserved, account for it */
3415 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
3416 reserve--;
3417 continue;
3420 /* Suitable for reserving if this block is movable */
3421 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
3422 set_pageblock_migratetype(page, MIGRATE_RESERVE);
3423 move_freepages_block(zone, page, MIGRATE_RESERVE);
3424 reserve--;
3425 continue;
3429 * If the reserve is met and this is a previous reserved block,
3430 * take it back
3432 if (block_migratetype == MIGRATE_RESERVE) {
3433 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3434 move_freepages_block(zone, page, MIGRATE_MOVABLE);
3440 * Initially all pages are reserved - free ones are freed
3441 * up by free_all_bootmem() once the early boot process is
3442 * done. Non-atomic initialization, single-pass.
3444 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
3445 unsigned long start_pfn, enum memmap_context context)
3447 struct page *page;
3448 unsigned long end_pfn = start_pfn + size;
3449 unsigned long pfn;
3450 struct zone *z;
3452 if (highest_memmap_pfn < end_pfn - 1)
3453 highest_memmap_pfn = end_pfn - 1;
3455 z = &NODE_DATA(nid)->node_zones[zone];
3456 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3458 * There can be holes in boot-time mem_map[]s
3459 * handed to this function. They do not
3460 * exist on hotplugged memory.
3462 if (context == MEMMAP_EARLY) {
3463 if (!early_pfn_valid(pfn))
3464 continue;
3465 if (!early_pfn_in_nid(pfn, nid))
3466 continue;
3468 page = pfn_to_page(pfn);
3469 set_page_links(page, zone, nid, pfn);
3470 mminit_verify_page_links(page, zone, nid, pfn);
3471 init_page_count(page);
3472 reset_page_mapcount(page);
3473 SetPageReserved(page);
3475 * Mark the block movable so that blocks are reserved for
3476 * movable at startup. This will force kernel allocations
3477 * to reserve their blocks rather than leaking throughout
3478 * the address space during boot when many long-lived
3479 * kernel allocations are made. Later some blocks near
3480 * the start are marked MIGRATE_RESERVE by
3481 * setup_zone_migrate_reserve()
3483 * bitmap is created for zone's valid pfn range. but memmap
3484 * can be created for invalid pages (for alignment)
3485 * check here not to call set_pageblock_migratetype() against
3486 * pfn out of zone.
3488 if ((z->zone_start_pfn <= pfn)
3489 && (pfn < z->zone_start_pfn + z->spanned_pages)
3490 && !(pfn & (pageblock_nr_pages - 1)))
3491 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3493 INIT_LIST_HEAD(&page->lru);
3494 #ifdef WANT_PAGE_VIRTUAL
3495 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3496 if (!is_highmem_idx(zone))
3497 set_page_address(page, __va(pfn << PAGE_SHIFT));
3498 #endif
3502 static void __meminit zone_init_free_lists(struct zone *zone)
3504 int order, t;
3505 for_each_migratetype_order(order, t) {
3506 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
3507 zone->free_area[order].nr_free = 0;
3511 #ifndef __HAVE_ARCH_MEMMAP_INIT
3512 #define memmap_init(size, nid, zone, start_pfn) \
3513 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3514 #endif
3516 static int zone_batchsize(struct zone *zone)
3518 #ifdef CONFIG_MMU
3519 int batch;
3522 * The per-cpu-pages pools are set to around 1000th of the
3523 * size of the zone. But no more than 1/2 of a meg.
3525 * OK, so we don't know how big the cache is. So guess.
3527 batch = zone->present_pages / 1024;
3528 if (batch * PAGE_SIZE > 512 * 1024)
3529 batch = (512 * 1024) / PAGE_SIZE;
3530 batch /= 4; /* We effectively *= 4 below */
3531 if (batch < 1)
3532 batch = 1;
3535 * Clamp the batch to a 2^n - 1 value. Having a power
3536 * of 2 value was found to be more likely to have
3537 * suboptimal cache aliasing properties in some cases.
3539 * For example if 2 tasks are alternately allocating
3540 * batches of pages, one task can end up with a lot
3541 * of pages of one half of the possible page colors
3542 * and the other with pages of the other colors.
3544 batch = rounddown_pow_of_two(batch + batch/2) - 1;
3546 return batch;
3548 #else
3549 /* The deferral and batching of frees should be suppressed under NOMMU
3550 * conditions.
3552 * The problem is that NOMMU needs to be able to allocate large chunks
3553 * of contiguous memory as there's no hardware page translation to
3554 * assemble apparent contiguous memory from discontiguous pages.
3556 * Queueing large contiguous runs of pages for batching, however,
3557 * causes the pages to actually be freed in smaller chunks. As there
3558 * can be a significant delay between the individual batches being
3559 * recycled, this leads to the once large chunks of space being
3560 * fragmented and becoming unavailable for high-order allocations.
3562 return 0;
3563 #endif
3566 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
3568 struct per_cpu_pages *pcp;
3569 int migratetype;
3571 memset(p, 0, sizeof(*p));
3573 pcp = &p->pcp;
3574 pcp->count = 0;
3575 pcp->high = 6 * batch;
3576 pcp->batch = max(1UL, 1 * batch);
3577 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3578 INIT_LIST_HEAD(&pcp->lists[migratetype]);
3582 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3583 * to the value high for the pageset p.
3586 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3587 unsigned long high)
3589 struct per_cpu_pages *pcp;
3591 pcp = &p->pcp;
3592 pcp->high = high;
3593 pcp->batch = max(1UL, high/4);
3594 if ((high/4) > (PAGE_SHIFT * 8))
3595 pcp->batch = PAGE_SHIFT * 8;
3598 static void setup_zone_pageset(struct zone *zone)
3600 int cpu;
3602 zone->pageset = alloc_percpu(struct per_cpu_pageset);
3604 for_each_possible_cpu(cpu) {
3605 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
3607 setup_pageset(pcp, zone_batchsize(zone));
3609 if (percpu_pagelist_fraction)
3610 setup_pagelist_highmark(pcp,
3611 (zone->present_pages /
3612 percpu_pagelist_fraction));
3617 * Allocate per cpu pagesets and initialize them.
3618 * Before this call only boot pagesets were available.
3620 void __init setup_per_cpu_pageset(void)
3622 struct zone *zone;
3624 for_each_populated_zone(zone)
3625 setup_zone_pageset(zone);
3628 static noinline __init_refok
3629 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
3631 int i;
3632 struct pglist_data *pgdat = zone->zone_pgdat;
3633 size_t alloc_size;
3636 * The per-page waitqueue mechanism uses hashed waitqueues
3637 * per zone.
3639 zone->wait_table_hash_nr_entries =
3640 wait_table_hash_nr_entries(zone_size_pages);
3641 zone->wait_table_bits =
3642 wait_table_bits(zone->wait_table_hash_nr_entries);
3643 alloc_size = zone->wait_table_hash_nr_entries
3644 * sizeof(wait_queue_head_t);
3646 if (!slab_is_available()) {
3647 zone->wait_table = (wait_queue_head_t *)
3648 alloc_bootmem_node_nopanic(pgdat, alloc_size);
3649 } else {
3651 * This case means that a zone whose size was 0 gets new memory
3652 * via memory hot-add.
3653 * But it may be the case that a new node was hot-added. In
3654 * this case vmalloc() will not be able to use this new node's
3655 * memory - this wait_table must be initialized to use this new
3656 * node itself as well.
3657 * To use this new node's memory, further consideration will be
3658 * necessary.
3660 zone->wait_table = vmalloc(alloc_size);
3662 if (!zone->wait_table)
3663 return -ENOMEM;
3665 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
3666 init_waitqueue_head(zone->wait_table + i);
3668 return 0;
3671 static int __zone_pcp_update(void *data)
3673 struct zone *zone = data;
3674 int cpu;
3675 unsigned long batch = zone_batchsize(zone), flags;
3677 for_each_possible_cpu(cpu) {
3678 struct per_cpu_pageset *pset;
3679 struct per_cpu_pages *pcp;
3681 pset = per_cpu_ptr(zone->pageset, cpu);
3682 pcp = &pset->pcp;
3684 local_irq_save(flags);
3685 free_pcppages_bulk(zone, pcp->count, pcp);
3686 setup_pageset(pset, batch);
3687 local_irq_restore(flags);
3689 return 0;
3692 void zone_pcp_update(struct zone *zone)
3694 stop_machine(__zone_pcp_update, zone, NULL);
3697 static __meminit void zone_pcp_init(struct zone *zone)
3700 * per cpu subsystem is not up at this point. The following code
3701 * relies on the ability of the linker to provide the
3702 * offset of a (static) per cpu variable into the per cpu area.
3704 zone->pageset = &boot_pageset;
3706 if (zone->present_pages)
3707 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
3708 zone->name, zone->present_pages,
3709 zone_batchsize(zone));
3712 __meminit int init_currently_empty_zone(struct zone *zone,
3713 unsigned long zone_start_pfn,
3714 unsigned long size,
3715 enum memmap_context context)
3717 struct pglist_data *pgdat = zone->zone_pgdat;
3718 int ret;
3719 ret = zone_wait_table_init(zone, size);
3720 if (ret)
3721 return ret;
3722 pgdat->nr_zones = zone_idx(zone) + 1;
3724 zone->zone_start_pfn = zone_start_pfn;
3726 mminit_dprintk(MMINIT_TRACE, "memmap_init",
3727 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
3728 pgdat->node_id,
3729 (unsigned long)zone_idx(zone),
3730 zone_start_pfn, (zone_start_pfn + size));
3732 zone_init_free_lists(zone);
3734 return 0;
3737 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3738 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3740 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3741 * Architectures may implement their own version but if add_active_range()
3742 * was used and there are no special requirements, this is a convenient
3743 * alternative
3745 int __meminit __early_pfn_to_nid(unsigned long pfn)
3747 unsigned long start_pfn, end_pfn;
3748 int i, nid;
3750 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
3751 if (start_pfn <= pfn && pfn < end_pfn)
3752 return nid;
3753 /* This is a memory hole */
3754 return -1;
3756 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3758 int __meminit early_pfn_to_nid(unsigned long pfn)
3760 int nid;
3762 nid = __early_pfn_to_nid(pfn);
3763 if (nid >= 0)
3764 return nid;
3765 /* just returns 0 */
3766 return 0;
3769 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
3770 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3772 int nid;
3774 nid = __early_pfn_to_nid(pfn);
3775 if (nid >= 0 && nid != node)
3776 return false;
3777 return true;
3779 #endif
3782 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3783 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3784 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3786 * If an architecture guarantees that all ranges registered with
3787 * add_active_ranges() contain no holes and may be freed, this
3788 * this function may be used instead of calling free_bootmem() manually.
3790 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
3792 unsigned long start_pfn, end_pfn;
3793 int i, this_nid;
3795 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
3796 start_pfn = min(start_pfn, max_low_pfn);
3797 end_pfn = min(end_pfn, max_low_pfn);
3799 if (start_pfn < end_pfn)
3800 free_bootmem_node(NODE_DATA(this_nid),
3801 PFN_PHYS(start_pfn),
3802 (end_pfn - start_pfn) << PAGE_SHIFT);
3806 int __init add_from_early_node_map(struct range *range, int az,
3807 int nr_range, int nid)
3809 unsigned long start_pfn, end_pfn;
3810 int i;
3812 /* need to go over early_node_map to find out good range for node */
3813 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL)
3814 nr_range = add_range(range, az, nr_range, start_pfn, end_pfn);
3815 return nr_range;
3819 * sparse_memory_present_with_active_regions - Call memory_present for each active range
3820 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3822 * If an architecture guarantees that all ranges registered with
3823 * add_active_ranges() contain no holes and may be freed, this
3824 * function may be used instead of calling memory_present() manually.
3826 void __init sparse_memory_present_with_active_regions(int nid)
3828 unsigned long start_pfn, end_pfn;
3829 int i, this_nid;
3831 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
3832 memory_present(this_nid, start_pfn, end_pfn);
3836 * get_pfn_range_for_nid - Return the start and end page frames for a node
3837 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3838 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3839 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3841 * It returns the start and end page frame of a node based on information
3842 * provided by an arch calling add_active_range(). If called for a node
3843 * with no available memory, a warning is printed and the start and end
3844 * PFNs will be 0.
3846 void __meminit get_pfn_range_for_nid(unsigned int nid,
3847 unsigned long *start_pfn, unsigned long *end_pfn)
3849 unsigned long this_start_pfn, this_end_pfn;
3850 int i;
3852 *start_pfn = -1UL;
3853 *end_pfn = 0;
3855 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
3856 *start_pfn = min(*start_pfn, this_start_pfn);
3857 *end_pfn = max(*end_pfn, this_end_pfn);
3860 if (*start_pfn == -1UL)
3861 *start_pfn = 0;
3865 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3866 * assumption is made that zones within a node are ordered in monotonic
3867 * increasing memory addresses so that the "highest" populated zone is used
3869 static void __init find_usable_zone_for_movable(void)
3871 int zone_index;
3872 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3873 if (zone_index == ZONE_MOVABLE)
3874 continue;
3876 if (arch_zone_highest_possible_pfn[zone_index] >
3877 arch_zone_lowest_possible_pfn[zone_index])
3878 break;
3881 VM_BUG_ON(zone_index == -1);
3882 movable_zone = zone_index;
3886 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3887 * because it is sized independent of architecture. Unlike the other zones,
3888 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3889 * in each node depending on the size of each node and how evenly kernelcore
3890 * is distributed. This helper function adjusts the zone ranges
3891 * provided by the architecture for a given node by using the end of the
3892 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3893 * zones within a node are in order of monotonic increases memory addresses
3895 static void __meminit adjust_zone_range_for_zone_movable(int nid,
3896 unsigned long zone_type,
3897 unsigned long node_start_pfn,
3898 unsigned long node_end_pfn,
3899 unsigned long *zone_start_pfn,
3900 unsigned long *zone_end_pfn)
3902 /* Only adjust if ZONE_MOVABLE is on this node */
3903 if (zone_movable_pfn[nid]) {
3904 /* Size ZONE_MOVABLE */
3905 if (zone_type == ZONE_MOVABLE) {
3906 *zone_start_pfn = zone_movable_pfn[nid];
3907 *zone_end_pfn = min(node_end_pfn,
3908 arch_zone_highest_possible_pfn[movable_zone]);
3910 /* Adjust for ZONE_MOVABLE starting within this range */
3911 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3912 *zone_end_pfn > zone_movable_pfn[nid]) {
3913 *zone_end_pfn = zone_movable_pfn[nid];
3915 /* Check if this whole range is within ZONE_MOVABLE */
3916 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
3917 *zone_start_pfn = *zone_end_pfn;
3922 * Return the number of pages a zone spans in a node, including holes
3923 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3925 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
3926 unsigned long zone_type,
3927 unsigned long *ignored)
3929 unsigned long node_start_pfn, node_end_pfn;
3930 unsigned long zone_start_pfn, zone_end_pfn;
3932 /* Get the start and end of the node and zone */
3933 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3934 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3935 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
3936 adjust_zone_range_for_zone_movable(nid, zone_type,
3937 node_start_pfn, node_end_pfn,
3938 &zone_start_pfn, &zone_end_pfn);
3940 /* Check that this node has pages within the zone's required range */
3941 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3942 return 0;
3944 /* Move the zone boundaries inside the node if necessary */
3945 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3946 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3948 /* Return the spanned pages */
3949 return zone_end_pfn - zone_start_pfn;
3953 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3954 * then all holes in the requested range will be accounted for.
3956 unsigned long __meminit __absent_pages_in_range(int nid,
3957 unsigned long range_start_pfn,
3958 unsigned long range_end_pfn)
3960 unsigned long nr_absent = range_end_pfn - range_start_pfn;
3961 unsigned long start_pfn, end_pfn;
3962 int i;
3964 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
3965 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
3966 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
3967 nr_absent -= end_pfn - start_pfn;
3969 return nr_absent;
3973 * absent_pages_in_range - Return number of page frames in holes within a range
3974 * @start_pfn: The start PFN to start searching for holes
3975 * @end_pfn: The end PFN to stop searching for holes
3977 * It returns the number of pages frames in memory holes within a range.
3979 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3980 unsigned long end_pfn)
3982 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3985 /* Return the number of page frames in holes in a zone on a node */
3986 static unsigned long __meminit zone_absent_pages_in_node(int nid,
3987 unsigned long zone_type,
3988 unsigned long *ignored)
3990 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
3991 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
3992 unsigned long node_start_pfn, node_end_pfn;
3993 unsigned long zone_start_pfn, zone_end_pfn;
3995 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3996 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
3997 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
3999 adjust_zone_range_for_zone_movable(nid, zone_type,
4000 node_start_pfn, node_end_pfn,
4001 &zone_start_pfn, &zone_end_pfn);
4002 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
4005 #else
4006 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4007 unsigned long zone_type,
4008 unsigned long *zones_size)
4010 return zones_size[zone_type];
4013 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4014 unsigned long zone_type,
4015 unsigned long *zholes_size)
4017 if (!zholes_size)
4018 return 0;
4020 return zholes_size[zone_type];
4023 #endif
4025 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4026 unsigned long *zones_size, unsigned long *zholes_size)
4028 unsigned long realtotalpages, totalpages = 0;
4029 enum zone_type i;
4031 for (i = 0; i < MAX_NR_ZONES; i++)
4032 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4033 zones_size);
4034 pgdat->node_spanned_pages = totalpages;
4036 realtotalpages = totalpages;
4037 for (i = 0; i < MAX_NR_ZONES; i++)
4038 realtotalpages -=
4039 zone_absent_pages_in_node(pgdat->node_id, i,
4040 zholes_size);
4041 pgdat->node_present_pages = realtotalpages;
4042 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4043 realtotalpages);
4046 #ifndef CONFIG_SPARSEMEM
4048 * Calculate the size of the zone->blockflags rounded to an unsigned long
4049 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4050 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4051 * round what is now in bits to nearest long in bits, then return it in
4052 * bytes.
4054 static unsigned long __init usemap_size(unsigned long zonesize)
4056 unsigned long usemapsize;
4058 usemapsize = roundup(zonesize, pageblock_nr_pages);
4059 usemapsize = usemapsize >> pageblock_order;
4060 usemapsize *= NR_PAGEBLOCK_BITS;
4061 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4063 return usemapsize / 8;
4066 static void __init setup_usemap(struct pglist_data *pgdat,
4067 struct zone *zone, unsigned long zonesize)
4069 unsigned long usemapsize = usemap_size(zonesize);
4070 zone->pageblock_flags = NULL;
4071 if (usemapsize)
4072 zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
4073 usemapsize);
4075 #else
4076 static inline void setup_usemap(struct pglist_data *pgdat,
4077 struct zone *zone, unsigned long zonesize) {}
4078 #endif /* CONFIG_SPARSEMEM */
4080 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4082 /* Return a sensible default order for the pageblock size. */
4083 static inline int pageblock_default_order(void)
4085 if (HPAGE_SHIFT > PAGE_SHIFT)
4086 return HUGETLB_PAGE_ORDER;
4088 return MAX_ORDER-1;
4091 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4092 static inline void __init set_pageblock_order(unsigned int order)
4094 /* Check that pageblock_nr_pages has not already been setup */
4095 if (pageblock_order)
4096 return;
4099 * Assume the largest contiguous order of interest is a huge page.
4100 * This value may be variable depending on boot parameters on IA64
4102 pageblock_order = order;
4104 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4107 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4108 * and pageblock_default_order() are unused as pageblock_order is set
4109 * at compile-time. See include/linux/pageblock-flags.h for the values of
4110 * pageblock_order based on the kernel config
4112 static inline int pageblock_default_order(unsigned int order)
4114 return MAX_ORDER-1;
4116 #define set_pageblock_order(x) do {} while (0)
4118 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4121 * Set up the zone data structures:
4122 * - mark all pages reserved
4123 * - mark all memory queues empty
4124 * - clear the memory bitmaps
4126 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4127 unsigned long *zones_size, unsigned long *zholes_size)
4129 enum zone_type j;
4130 int nid = pgdat->node_id;
4131 unsigned long zone_start_pfn = pgdat->node_start_pfn;
4132 int ret;
4134 pgdat_resize_init(pgdat);
4135 pgdat->nr_zones = 0;
4136 init_waitqueue_head(&pgdat->kswapd_wait);
4137 pgdat->kswapd_max_order = 0;
4138 pgdat_page_cgroup_init(pgdat);
4140 for (j = 0; j < MAX_NR_ZONES; j++) {
4141 struct zone *zone = pgdat->node_zones + j;
4142 unsigned long size, realsize, memmap_pages;
4143 enum lru_list l;
4145 size = zone_spanned_pages_in_node(nid, j, zones_size);
4146 realsize = size - zone_absent_pages_in_node(nid, j,
4147 zholes_size);
4150 * Adjust realsize so that it accounts for how much memory
4151 * is used by this zone for memmap. This affects the watermark
4152 * and per-cpu initialisations
4154 memmap_pages =
4155 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
4156 if (realsize >= memmap_pages) {
4157 realsize -= memmap_pages;
4158 if (memmap_pages)
4159 printk(KERN_DEBUG
4160 " %s zone: %lu pages used for memmap\n",
4161 zone_names[j], memmap_pages);
4162 } else
4163 printk(KERN_WARNING
4164 " %s zone: %lu pages exceeds realsize %lu\n",
4165 zone_names[j], memmap_pages, realsize);
4167 /* Account for reserved pages */
4168 if (j == 0 && realsize > dma_reserve) {
4169 realsize -= dma_reserve;
4170 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
4171 zone_names[0], dma_reserve);
4174 if (!is_highmem_idx(j))
4175 nr_kernel_pages += realsize;
4176 nr_all_pages += realsize;
4178 zone->spanned_pages = size;
4179 zone->present_pages = realsize;
4180 #ifdef CONFIG_NUMA
4181 zone->node = nid;
4182 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
4183 / 100;
4184 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
4185 #endif
4186 zone->name = zone_names[j];
4187 spin_lock_init(&zone->lock);
4188 spin_lock_init(&zone->lru_lock);
4189 zone_seqlock_init(zone);
4190 zone->zone_pgdat = pgdat;
4192 zone_pcp_init(zone);
4193 for_each_lru(l)
4194 INIT_LIST_HEAD(&zone->lru[l].list);
4195 zone->reclaim_stat.recent_rotated[0] = 0;
4196 zone->reclaim_stat.recent_rotated[1] = 0;
4197 zone->reclaim_stat.recent_scanned[0] = 0;
4198 zone->reclaim_stat.recent_scanned[1] = 0;
4199 zap_zone_vm_stats(zone);
4200 zone->flags = 0;
4201 if (!size)
4202 continue;
4204 set_pageblock_order(pageblock_default_order());
4205 setup_usemap(pgdat, zone, size);
4206 ret = init_currently_empty_zone(zone, zone_start_pfn,
4207 size, MEMMAP_EARLY);
4208 BUG_ON(ret);
4209 memmap_init(size, nid, j, zone_start_pfn);
4210 zone_start_pfn += size;
4214 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4216 /* Skip empty nodes */
4217 if (!pgdat->node_spanned_pages)
4218 return;
4220 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4221 /* ia64 gets its own node_mem_map, before this, without bootmem */
4222 if (!pgdat->node_mem_map) {
4223 unsigned long size, start, end;
4224 struct page *map;
4227 * The zone's endpoints aren't required to be MAX_ORDER
4228 * aligned but the node_mem_map endpoints must be in order
4229 * for the buddy allocator to function correctly.
4231 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4232 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
4233 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4234 size = (end - start) * sizeof(struct page);
4235 map = alloc_remap(pgdat->node_id, size);
4236 if (!map)
4237 map = alloc_bootmem_node_nopanic(pgdat, size);
4238 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4240 #ifndef CONFIG_NEED_MULTIPLE_NODES
4242 * With no DISCONTIG, the global mem_map is just set as node 0's
4244 if (pgdat == NODE_DATA(0)) {
4245 mem_map = NODE_DATA(0)->node_mem_map;
4246 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
4247 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4248 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4249 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4251 #endif
4252 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4255 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4256 unsigned long node_start_pfn, unsigned long *zholes_size)
4258 pg_data_t *pgdat = NODE_DATA(nid);
4260 pgdat->node_id = nid;
4261 pgdat->node_start_pfn = node_start_pfn;
4262 calculate_node_totalpages(pgdat, zones_size, zholes_size);
4264 alloc_node_mem_map(pgdat);
4265 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4266 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4267 nid, (unsigned long)pgdat,
4268 (unsigned long)pgdat->node_mem_map);
4269 #endif
4271 free_area_init_core(pgdat, zones_size, zholes_size);
4274 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
4276 #if MAX_NUMNODES > 1
4278 * Figure out the number of possible node ids.
4280 static void __init setup_nr_node_ids(void)
4282 unsigned int node;
4283 unsigned int highest = 0;
4285 for_each_node_mask(node, node_possible_map)
4286 highest = node;
4287 nr_node_ids = highest + 1;
4289 #else
4290 static inline void setup_nr_node_ids(void)
4293 #endif
4295 #ifndef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4297 * Common iterator interface used to define for_each_mem_pfn_range().
4299 void __meminit __next_mem_pfn_range(int *idx, int nid,
4300 unsigned long *out_start_pfn,
4301 unsigned long *out_end_pfn, int *out_nid)
4303 struct node_active_region *r = NULL;
4305 while (++*idx < nr_nodemap_entries) {
4306 if (nid == MAX_NUMNODES || nid == early_node_map[*idx].nid) {
4307 r = &early_node_map[*idx];
4308 break;
4311 if (!r) {
4312 *idx = -1;
4313 return;
4316 if (out_start_pfn)
4317 *out_start_pfn = r->start_pfn;
4318 if (out_end_pfn)
4319 *out_end_pfn = r->end_pfn;
4320 if (out_nid)
4321 *out_nid = r->nid;
4325 * add_active_range - Register a range of PFNs backed by physical memory
4326 * @nid: The node ID the range resides on
4327 * @start_pfn: The start PFN of the available physical memory
4328 * @end_pfn: The end PFN of the available physical memory
4330 * These ranges are stored in an early_node_map[] and later used by
4331 * free_area_init_nodes() to calculate zone sizes and holes. If the
4332 * range spans a memory hole, it is up to the architecture to ensure
4333 * the memory is not freed by the bootmem allocator. If possible
4334 * the range being registered will be merged with existing ranges.
4336 void __init add_active_range(unsigned int nid, unsigned long start_pfn,
4337 unsigned long end_pfn)
4339 int i;
4341 mminit_dprintk(MMINIT_TRACE, "memory_register",
4342 "Entering add_active_range(%d, %#lx, %#lx) "
4343 "%d entries of %d used\n",
4344 nid, start_pfn, end_pfn,
4345 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
4347 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
4349 /* Merge with existing active regions if possible */
4350 for (i = 0; i < nr_nodemap_entries; i++) {
4351 if (early_node_map[i].nid != nid)
4352 continue;
4354 /* Skip if an existing region covers this new one */
4355 if (start_pfn >= early_node_map[i].start_pfn &&
4356 end_pfn <= early_node_map[i].end_pfn)
4357 return;
4359 /* Merge forward if suitable */
4360 if (start_pfn <= early_node_map[i].end_pfn &&
4361 end_pfn > early_node_map[i].end_pfn) {
4362 early_node_map[i].end_pfn = end_pfn;
4363 return;
4366 /* Merge backward if suitable */
4367 if (start_pfn < early_node_map[i].start_pfn &&
4368 end_pfn >= early_node_map[i].start_pfn) {
4369 early_node_map[i].start_pfn = start_pfn;
4370 return;
4374 /* Check that early_node_map is large enough */
4375 if (i >= MAX_ACTIVE_REGIONS) {
4376 printk(KERN_CRIT "More than %d memory regions, truncating\n",
4377 MAX_ACTIVE_REGIONS);
4378 return;
4381 early_node_map[i].nid = nid;
4382 early_node_map[i].start_pfn = start_pfn;
4383 early_node_map[i].end_pfn = end_pfn;
4384 nr_nodemap_entries = i + 1;
4388 * remove_active_range - Shrink an existing registered range of PFNs
4389 * @nid: The node id the range is on that should be shrunk
4390 * @start_pfn: The new PFN of the range
4391 * @end_pfn: The new PFN of the range
4393 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
4394 * The map is kept near the end physical page range that has already been
4395 * registered. This function allows an arch to shrink an existing registered
4396 * range.
4398 void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
4399 unsigned long end_pfn)
4401 unsigned long this_start_pfn, this_end_pfn;
4402 int i, j;
4403 int removed = 0;
4405 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
4406 nid, start_pfn, end_pfn);
4408 /* Find the old active region end and shrink */
4409 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4410 if (this_start_pfn >= start_pfn && this_end_pfn <= end_pfn) {
4411 /* clear it */
4412 early_node_map[i].start_pfn = 0;
4413 early_node_map[i].end_pfn = 0;
4414 removed = 1;
4415 continue;
4417 if (this_start_pfn < start_pfn && this_end_pfn > start_pfn) {
4418 early_node_map[i].end_pfn = start_pfn;
4419 if (this_end_pfn > end_pfn)
4420 add_active_range(nid, end_pfn, this_end_pfn);
4421 continue;
4423 if (this_start_pfn >= start_pfn && this_end_pfn > end_pfn &&
4424 this_start_pfn < end_pfn) {
4425 early_node_map[i].start_pfn = end_pfn;
4426 continue;
4430 if (!removed)
4431 return;
4433 /* remove the blank ones */
4434 for (i = nr_nodemap_entries - 1; i > 0; i--) {
4435 if (early_node_map[i].nid != nid)
4436 continue;
4437 if (early_node_map[i].end_pfn)
4438 continue;
4439 /* we found it, get rid of it */
4440 for (j = i; j < nr_nodemap_entries - 1; j++)
4441 memcpy(&early_node_map[j], &early_node_map[j+1],
4442 sizeof(early_node_map[j]));
4443 j = nr_nodemap_entries - 1;
4444 memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
4445 nr_nodemap_entries--;
4450 * remove_all_active_ranges - Remove all currently registered regions
4452 * During discovery, it may be found that a table like SRAT is invalid
4453 * and an alternative discovery method must be used. This function removes
4454 * all currently registered regions.
4456 void __init remove_all_active_ranges(void)
4458 memset(early_node_map, 0, sizeof(early_node_map));
4459 nr_nodemap_entries = 0;
4462 /* Compare two active node_active_regions */
4463 static int __init cmp_node_active_region(const void *a, const void *b)
4465 struct node_active_region *arange = (struct node_active_region *)a;
4466 struct node_active_region *brange = (struct node_active_region *)b;
4468 /* Done this way to avoid overflows */
4469 if (arange->start_pfn > brange->start_pfn)
4470 return 1;
4471 if (arange->start_pfn < brange->start_pfn)
4472 return -1;
4474 return 0;
4477 /* sort the node_map by start_pfn */
4478 void __init sort_node_map(void)
4480 sort(early_node_map, (size_t)nr_nodemap_entries,
4481 sizeof(struct node_active_region),
4482 cmp_node_active_region, NULL);
4484 #else /* !CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4485 static inline void sort_node_map(void)
4488 #endif
4491 * node_map_pfn_alignment - determine the maximum internode alignment
4493 * This function should be called after node map is populated and sorted.
4494 * It calculates the maximum power of two alignment which can distinguish
4495 * all the nodes.
4497 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4498 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
4499 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
4500 * shifted, 1GiB is enough and this function will indicate so.
4502 * This is used to test whether pfn -> nid mapping of the chosen memory
4503 * model has fine enough granularity to avoid incorrect mapping for the
4504 * populated node map.
4506 * Returns the determined alignment in pfn's. 0 if there is no alignment
4507 * requirement (single node).
4509 unsigned long __init node_map_pfn_alignment(void)
4511 unsigned long accl_mask = 0, last_end = 0;
4512 unsigned long start, end, mask;
4513 int last_nid = -1;
4514 int i, nid;
4516 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
4517 if (!start || last_nid < 0 || last_nid == nid) {
4518 last_nid = nid;
4519 last_end = end;
4520 continue;
4524 * Start with a mask granular enough to pin-point to the
4525 * start pfn and tick off bits one-by-one until it becomes
4526 * too coarse to separate the current node from the last.
4528 mask = ~((1 << __ffs(start)) - 1);
4529 while (mask && last_end <= (start & (mask << 1)))
4530 mask <<= 1;
4532 /* accumulate all internode masks */
4533 accl_mask |= mask;
4536 /* convert mask to number of pages */
4537 return ~accl_mask + 1;
4540 /* Find the lowest pfn for a node */
4541 static unsigned long __init find_min_pfn_for_node(int nid)
4543 unsigned long min_pfn = ULONG_MAX;
4544 unsigned long start_pfn;
4545 int i;
4547 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
4548 min_pfn = min(min_pfn, start_pfn);
4550 if (min_pfn == ULONG_MAX) {
4551 printk(KERN_WARNING
4552 "Could not find start_pfn for node %d\n", nid);
4553 return 0;
4556 return min_pfn;
4560 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4562 * It returns the minimum PFN based on information provided via
4563 * add_active_range().
4565 unsigned long __init find_min_pfn_with_active_regions(void)
4567 return find_min_pfn_for_node(MAX_NUMNODES);
4571 * early_calculate_totalpages()
4572 * Sum pages in active regions for movable zone.
4573 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4575 static unsigned long __init early_calculate_totalpages(void)
4577 unsigned long totalpages = 0;
4578 unsigned long start_pfn, end_pfn;
4579 int i, nid;
4581 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
4582 unsigned long pages = end_pfn - start_pfn;
4584 totalpages += pages;
4585 if (pages)
4586 node_set_state(nid, N_HIGH_MEMORY);
4588 return totalpages;
4592 * Find the PFN the Movable zone begins in each node. Kernel memory
4593 * is spread evenly between nodes as long as the nodes have enough
4594 * memory. When they don't, some nodes will have more kernelcore than
4595 * others
4597 static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
4599 int i, nid;
4600 unsigned long usable_startpfn;
4601 unsigned long kernelcore_node, kernelcore_remaining;
4602 /* save the state before borrow the nodemask */
4603 nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
4604 unsigned long totalpages = early_calculate_totalpages();
4605 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
4608 * If movablecore was specified, calculate what size of
4609 * kernelcore that corresponds so that memory usable for
4610 * any allocation type is evenly spread. If both kernelcore
4611 * and movablecore are specified, then the value of kernelcore
4612 * will be used for required_kernelcore if it's greater than
4613 * what movablecore would have allowed.
4615 if (required_movablecore) {
4616 unsigned long corepages;
4619 * Round-up so that ZONE_MOVABLE is at least as large as what
4620 * was requested by the user
4622 required_movablecore =
4623 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4624 corepages = totalpages - required_movablecore;
4626 required_kernelcore = max(required_kernelcore, corepages);
4629 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4630 if (!required_kernelcore)
4631 goto out;
4633 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4634 find_usable_zone_for_movable();
4635 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4637 restart:
4638 /* Spread kernelcore memory as evenly as possible throughout nodes */
4639 kernelcore_node = required_kernelcore / usable_nodes;
4640 for_each_node_state(nid, N_HIGH_MEMORY) {
4641 unsigned long start_pfn, end_pfn;
4644 * Recalculate kernelcore_node if the division per node
4645 * now exceeds what is necessary to satisfy the requested
4646 * amount of memory for the kernel
4648 if (required_kernelcore < kernelcore_node)
4649 kernelcore_node = required_kernelcore / usable_nodes;
4652 * As the map is walked, we track how much memory is usable
4653 * by the kernel using kernelcore_remaining. When it is
4654 * 0, the rest of the node is usable by ZONE_MOVABLE
4656 kernelcore_remaining = kernelcore_node;
4658 /* Go through each range of PFNs within this node */
4659 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4660 unsigned long size_pages;
4662 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
4663 if (start_pfn >= end_pfn)
4664 continue;
4666 /* Account for what is only usable for kernelcore */
4667 if (start_pfn < usable_startpfn) {
4668 unsigned long kernel_pages;
4669 kernel_pages = min(end_pfn, usable_startpfn)
4670 - start_pfn;
4672 kernelcore_remaining -= min(kernel_pages,
4673 kernelcore_remaining);
4674 required_kernelcore -= min(kernel_pages,
4675 required_kernelcore);
4677 /* Continue if range is now fully accounted */
4678 if (end_pfn <= usable_startpfn) {
4681 * Push zone_movable_pfn to the end so
4682 * that if we have to rebalance
4683 * kernelcore across nodes, we will
4684 * not double account here
4686 zone_movable_pfn[nid] = end_pfn;
4687 continue;
4689 start_pfn = usable_startpfn;
4693 * The usable PFN range for ZONE_MOVABLE is from
4694 * start_pfn->end_pfn. Calculate size_pages as the
4695 * number of pages used as kernelcore
4697 size_pages = end_pfn - start_pfn;
4698 if (size_pages > kernelcore_remaining)
4699 size_pages = kernelcore_remaining;
4700 zone_movable_pfn[nid] = start_pfn + size_pages;
4703 * Some kernelcore has been met, update counts and
4704 * break if the kernelcore for this node has been
4705 * satisified
4707 required_kernelcore -= min(required_kernelcore,
4708 size_pages);
4709 kernelcore_remaining -= size_pages;
4710 if (!kernelcore_remaining)
4711 break;
4716 * If there is still required_kernelcore, we do another pass with one
4717 * less node in the count. This will push zone_movable_pfn[nid] further
4718 * along on the nodes that still have memory until kernelcore is
4719 * satisified
4721 usable_nodes--;
4722 if (usable_nodes && required_kernelcore > usable_nodes)
4723 goto restart;
4725 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4726 for (nid = 0; nid < MAX_NUMNODES; nid++)
4727 zone_movable_pfn[nid] =
4728 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4730 out:
4731 /* restore the node_state */
4732 node_states[N_HIGH_MEMORY] = saved_node_state;
4735 /* Any regular memory on that node ? */
4736 static void check_for_regular_memory(pg_data_t *pgdat)
4738 #ifdef CONFIG_HIGHMEM
4739 enum zone_type zone_type;
4741 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4742 struct zone *zone = &pgdat->node_zones[zone_type];
4743 if (zone->present_pages)
4744 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4746 #endif
4750 * free_area_init_nodes - Initialise all pg_data_t and zone data
4751 * @max_zone_pfn: an array of max PFNs for each zone
4753 * This will call free_area_init_node() for each active node in the system.
4754 * Using the page ranges provided by add_active_range(), the size of each
4755 * zone in each node and their holes is calculated. If the maximum PFN
4756 * between two adjacent zones match, it is assumed that the zone is empty.
4757 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4758 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4759 * starts where the previous one ended. For example, ZONE_DMA32 starts
4760 * at arch_max_dma_pfn.
4762 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4764 unsigned long start_pfn, end_pfn;
4765 int i, nid;
4767 /* Sort early_node_map as initialisation assumes it is sorted */
4768 sort_node_map();
4770 /* Record where the zone boundaries are */
4771 memset(arch_zone_lowest_possible_pfn, 0,
4772 sizeof(arch_zone_lowest_possible_pfn));
4773 memset(arch_zone_highest_possible_pfn, 0,
4774 sizeof(arch_zone_highest_possible_pfn));
4775 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4776 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4777 for (i = 1; i < MAX_NR_ZONES; i++) {
4778 if (i == ZONE_MOVABLE)
4779 continue;
4780 arch_zone_lowest_possible_pfn[i] =
4781 arch_zone_highest_possible_pfn[i-1];
4782 arch_zone_highest_possible_pfn[i] =
4783 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4785 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4786 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4788 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4789 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4790 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
4792 /* Print out the zone ranges */
4793 printk("Zone PFN ranges:\n");
4794 for (i = 0; i < MAX_NR_ZONES; i++) {
4795 if (i == ZONE_MOVABLE)
4796 continue;
4797 printk(" %-8s ", zone_names[i]);
4798 if (arch_zone_lowest_possible_pfn[i] ==
4799 arch_zone_highest_possible_pfn[i])
4800 printk("empty\n");
4801 else
4802 printk("%0#10lx -> %0#10lx\n",
4803 arch_zone_lowest_possible_pfn[i],
4804 arch_zone_highest_possible_pfn[i]);
4807 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4808 printk("Movable zone start PFN for each node\n");
4809 for (i = 0; i < MAX_NUMNODES; i++) {
4810 if (zone_movable_pfn[i])
4811 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
4814 /* Print out the early_node_map[] */
4815 printk("Early memory PFN ranges\n");
4816 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
4817 printk(" %3d: %0#10lx -> %0#10lx\n", nid, start_pfn, end_pfn);
4819 /* Initialise every node */
4820 mminit_verify_pageflags_layout();
4821 setup_nr_node_ids();
4822 for_each_online_node(nid) {
4823 pg_data_t *pgdat = NODE_DATA(nid);
4824 free_area_init_node(nid, NULL,
4825 find_min_pfn_for_node(nid), NULL);
4827 /* Any memory on that node */
4828 if (pgdat->node_present_pages)
4829 node_set_state(nid, N_HIGH_MEMORY);
4830 check_for_regular_memory(pgdat);
4834 static int __init cmdline_parse_core(char *p, unsigned long *core)
4836 unsigned long long coremem;
4837 if (!p)
4838 return -EINVAL;
4840 coremem = memparse(p, &p);
4841 *core = coremem >> PAGE_SHIFT;
4843 /* Paranoid check that UL is enough for the coremem value */
4844 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4846 return 0;
4850 * kernelcore=size sets the amount of memory for use for allocations that
4851 * cannot be reclaimed or migrated.
4853 static int __init cmdline_parse_kernelcore(char *p)
4855 return cmdline_parse_core(p, &required_kernelcore);
4859 * movablecore=size sets the amount of memory for use for allocations that
4860 * can be reclaimed or migrated.
4862 static int __init cmdline_parse_movablecore(char *p)
4864 return cmdline_parse_core(p, &required_movablecore);
4867 early_param("kernelcore", cmdline_parse_kernelcore);
4868 early_param("movablecore", cmdline_parse_movablecore);
4870 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4873 * set_dma_reserve - set the specified number of pages reserved in the first zone
4874 * @new_dma_reserve: The number of pages to mark reserved
4876 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4877 * In the DMA zone, a significant percentage may be consumed by kernel image
4878 * and other unfreeable allocations which can skew the watermarks badly. This
4879 * function may optionally be used to account for unfreeable pages in the
4880 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4881 * smaller per-cpu batchsize.
4883 void __init set_dma_reserve(unsigned long new_dma_reserve)
4885 dma_reserve = new_dma_reserve;
4888 void __init free_area_init(unsigned long *zones_size)
4890 free_area_init_node(0, zones_size,
4891 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4894 static int page_alloc_cpu_notify(struct notifier_block *self,
4895 unsigned long action, void *hcpu)
4897 int cpu = (unsigned long)hcpu;
4899 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
4900 drain_pages(cpu);
4903 * Spill the event counters of the dead processor
4904 * into the current processors event counters.
4905 * This artificially elevates the count of the current
4906 * processor.
4908 vm_events_fold_cpu(cpu);
4911 * Zero the differential counters of the dead processor
4912 * so that the vm statistics are consistent.
4914 * This is only okay since the processor is dead and cannot
4915 * race with what we are doing.
4917 refresh_cpu_vm_stats(cpu);
4919 return NOTIFY_OK;
4922 void __init page_alloc_init(void)
4924 hotcpu_notifier(page_alloc_cpu_notify, 0);
4928 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4929 * or min_free_kbytes changes.
4931 static void calculate_totalreserve_pages(void)
4933 struct pglist_data *pgdat;
4934 unsigned long reserve_pages = 0;
4935 enum zone_type i, j;
4937 for_each_online_pgdat(pgdat) {
4938 for (i = 0; i < MAX_NR_ZONES; i++) {
4939 struct zone *zone = pgdat->node_zones + i;
4940 unsigned long max = 0;
4942 /* Find valid and maximum lowmem_reserve in the zone */
4943 for (j = i; j < MAX_NR_ZONES; j++) {
4944 if (zone->lowmem_reserve[j] > max)
4945 max = zone->lowmem_reserve[j];
4948 /* we treat the high watermark as reserved pages. */
4949 max += high_wmark_pages(zone);
4951 if (max > zone->present_pages)
4952 max = zone->present_pages;
4953 reserve_pages += max;
4956 totalreserve_pages = reserve_pages;
4960 * setup_per_zone_lowmem_reserve - called whenever
4961 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4962 * has a correct pages reserved value, so an adequate number of
4963 * pages are left in the zone after a successful __alloc_pages().
4965 static void setup_per_zone_lowmem_reserve(void)
4967 struct pglist_data *pgdat;
4968 enum zone_type j, idx;
4970 for_each_online_pgdat(pgdat) {
4971 for (j = 0; j < MAX_NR_ZONES; j++) {
4972 struct zone *zone = pgdat->node_zones + j;
4973 unsigned long present_pages = zone->present_pages;
4975 zone->lowmem_reserve[j] = 0;
4977 idx = j;
4978 while (idx) {
4979 struct zone *lower_zone;
4981 idx--;
4983 if (sysctl_lowmem_reserve_ratio[idx] < 1)
4984 sysctl_lowmem_reserve_ratio[idx] = 1;
4986 lower_zone = pgdat->node_zones + idx;
4987 lower_zone->lowmem_reserve[j] = present_pages /
4988 sysctl_lowmem_reserve_ratio[idx];
4989 present_pages += lower_zone->present_pages;
4994 /* update totalreserve_pages */
4995 calculate_totalreserve_pages();
4999 * setup_per_zone_wmarks - called when min_free_kbytes changes
5000 * or when memory is hot-{added|removed}
5002 * Ensures that the watermark[min,low,high] values for each zone are set
5003 * correctly with respect to min_free_kbytes.
5005 void setup_per_zone_wmarks(void)
5007 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5008 unsigned long lowmem_pages = 0;
5009 struct zone *zone;
5010 unsigned long flags;
5012 /* Calculate total number of !ZONE_HIGHMEM pages */
5013 for_each_zone(zone) {
5014 if (!is_highmem(zone))
5015 lowmem_pages += zone->present_pages;
5018 for_each_zone(zone) {
5019 u64 tmp;
5021 spin_lock_irqsave(&zone->lock, flags);
5022 tmp = (u64)pages_min * zone->present_pages;
5023 do_div(tmp, lowmem_pages);
5024 if (is_highmem(zone)) {
5026 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5027 * need highmem pages, so cap pages_min to a small
5028 * value here.
5030 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5031 * deltas controls asynch page reclaim, and so should
5032 * not be capped for highmem.
5034 int min_pages;
5036 min_pages = zone->present_pages / 1024;
5037 if (min_pages < SWAP_CLUSTER_MAX)
5038 min_pages = SWAP_CLUSTER_MAX;
5039 if (min_pages > 128)
5040 min_pages = 128;
5041 zone->watermark[WMARK_MIN] = min_pages;
5042 } else {
5044 * If it's a lowmem zone, reserve a number of pages
5045 * proportionate to the zone's size.
5047 zone->watermark[WMARK_MIN] = tmp;
5050 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5051 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
5052 setup_zone_migrate_reserve(zone);
5053 spin_unlock_irqrestore(&zone->lock, flags);
5056 /* update totalreserve_pages */
5057 calculate_totalreserve_pages();
5061 * The inactive anon list should be small enough that the VM never has to
5062 * do too much work, but large enough that each inactive page has a chance
5063 * to be referenced again before it is swapped out.
5065 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5066 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5067 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5068 * the anonymous pages are kept on the inactive list.
5070 * total target max
5071 * memory ratio inactive anon
5072 * -------------------------------------
5073 * 10MB 1 5MB
5074 * 100MB 1 50MB
5075 * 1GB 3 250MB
5076 * 10GB 10 0.9GB
5077 * 100GB 31 3GB
5078 * 1TB 101 10GB
5079 * 10TB 320 32GB
5081 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
5083 unsigned int gb, ratio;
5085 /* Zone size in gigabytes */
5086 gb = zone->present_pages >> (30 - PAGE_SHIFT);
5087 if (gb)
5088 ratio = int_sqrt(10 * gb);
5089 else
5090 ratio = 1;
5092 zone->inactive_ratio = ratio;
5095 static void __meminit setup_per_zone_inactive_ratio(void)
5097 struct zone *zone;
5099 for_each_zone(zone)
5100 calculate_zone_inactive_ratio(zone);
5104 * Initialise min_free_kbytes.
5106 * For small machines we want it small (128k min). For large machines
5107 * we want it large (64MB max). But it is not linear, because network
5108 * bandwidth does not increase linearly with machine size. We use
5110 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5111 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5113 * which yields
5115 * 16MB: 512k
5116 * 32MB: 724k
5117 * 64MB: 1024k
5118 * 128MB: 1448k
5119 * 256MB: 2048k
5120 * 512MB: 2896k
5121 * 1024MB: 4096k
5122 * 2048MB: 5792k
5123 * 4096MB: 8192k
5124 * 8192MB: 11584k
5125 * 16384MB: 16384k
5127 int __meminit init_per_zone_wmark_min(void)
5129 unsigned long lowmem_kbytes;
5131 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5133 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5134 if (min_free_kbytes < 128)
5135 min_free_kbytes = 128;
5136 if (min_free_kbytes > 65536)
5137 min_free_kbytes = 65536;
5138 setup_per_zone_wmarks();
5139 refresh_zone_stat_thresholds();
5140 setup_per_zone_lowmem_reserve();
5141 setup_per_zone_inactive_ratio();
5142 return 0;
5144 module_init(init_per_zone_wmark_min)
5147 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5148 * that we can call two helper functions whenever min_free_kbytes
5149 * changes.
5151 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
5152 void __user *buffer, size_t *length, loff_t *ppos)
5154 proc_dointvec(table, write, buffer, length, ppos);
5155 if (write)
5156 setup_per_zone_wmarks();
5157 return 0;
5160 #ifdef CONFIG_NUMA
5161 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
5162 void __user *buffer, size_t *length, loff_t *ppos)
5164 struct zone *zone;
5165 int rc;
5167 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5168 if (rc)
5169 return rc;
5171 for_each_zone(zone)
5172 zone->min_unmapped_pages = (zone->present_pages *
5173 sysctl_min_unmapped_ratio) / 100;
5174 return 0;
5177 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
5178 void __user *buffer, size_t *length, loff_t *ppos)
5180 struct zone *zone;
5181 int rc;
5183 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5184 if (rc)
5185 return rc;
5187 for_each_zone(zone)
5188 zone->min_slab_pages = (zone->present_pages *
5189 sysctl_min_slab_ratio) / 100;
5190 return 0;
5192 #endif
5195 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5196 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5197 * whenever sysctl_lowmem_reserve_ratio changes.
5199 * The reserve ratio obviously has absolutely no relation with the
5200 * minimum watermarks. The lowmem reserve ratio can only make sense
5201 * if in function of the boot time zone sizes.
5203 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
5204 void __user *buffer, size_t *length, loff_t *ppos)
5206 proc_dointvec_minmax(table, write, buffer, length, ppos);
5207 setup_per_zone_lowmem_reserve();
5208 return 0;
5212 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5213 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
5214 * can have before it gets flushed back to buddy allocator.
5217 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
5218 void __user *buffer, size_t *length, loff_t *ppos)
5220 struct zone *zone;
5221 unsigned int cpu;
5222 int ret;
5224 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5225 if (!write || (ret == -EINVAL))
5226 return ret;
5227 for_each_populated_zone(zone) {
5228 for_each_possible_cpu(cpu) {
5229 unsigned long high;
5230 high = zone->present_pages / percpu_pagelist_fraction;
5231 setup_pagelist_highmark(
5232 per_cpu_ptr(zone->pageset, cpu), high);
5235 return 0;
5238 int hashdist = HASHDIST_DEFAULT;
5240 #ifdef CONFIG_NUMA
5241 static int __init set_hashdist(char *str)
5243 if (!str)
5244 return 0;
5245 hashdist = simple_strtoul(str, &str, 0);
5246 return 1;
5248 __setup("hashdist=", set_hashdist);
5249 #endif
5252 * allocate a large system hash table from bootmem
5253 * - it is assumed that the hash table must contain an exact power-of-2
5254 * quantity of entries
5255 * - limit is the number of hash buckets, not the total allocation size
5257 void *__init alloc_large_system_hash(const char *tablename,
5258 unsigned long bucketsize,
5259 unsigned long numentries,
5260 int scale,
5261 int flags,
5262 unsigned int *_hash_shift,
5263 unsigned int *_hash_mask,
5264 unsigned long limit)
5266 unsigned long long max = limit;
5267 unsigned long log2qty, size;
5268 void *table = NULL;
5270 /* allow the kernel cmdline to have a say */
5271 if (!numentries) {
5272 /* round applicable memory size up to nearest megabyte */
5273 numentries = nr_kernel_pages;
5274 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5275 numentries >>= 20 - PAGE_SHIFT;
5276 numentries <<= 20 - PAGE_SHIFT;
5278 /* limit to 1 bucket per 2^scale bytes of low memory */
5279 if (scale > PAGE_SHIFT)
5280 numentries >>= (scale - PAGE_SHIFT);
5281 else
5282 numentries <<= (PAGE_SHIFT - scale);
5284 /* Make sure we've got at least a 0-order allocation.. */
5285 if (unlikely(flags & HASH_SMALL)) {
5286 /* Makes no sense without HASH_EARLY */
5287 WARN_ON(!(flags & HASH_EARLY));
5288 if (!(numentries >> *_hash_shift)) {
5289 numentries = 1UL << *_hash_shift;
5290 BUG_ON(!numentries);
5292 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
5293 numentries = PAGE_SIZE / bucketsize;
5295 numentries = roundup_pow_of_two(numentries);
5297 /* limit allocation size to 1/16 total memory by default */
5298 if (max == 0) {
5299 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5300 do_div(max, bucketsize);
5303 if (numentries > max)
5304 numentries = max;
5306 log2qty = ilog2(numentries);
5308 do {
5309 size = bucketsize << log2qty;
5310 if (flags & HASH_EARLY)
5311 table = alloc_bootmem_nopanic(size);
5312 else if (hashdist)
5313 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5314 else {
5316 * If bucketsize is not a power-of-two, we may free
5317 * some pages at the end of hash table which
5318 * alloc_pages_exact() automatically does
5320 if (get_order(size) < MAX_ORDER) {
5321 table = alloc_pages_exact(size, GFP_ATOMIC);
5322 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5325 } while (!table && size > PAGE_SIZE && --log2qty);
5327 if (!table)
5328 panic("Failed to allocate %s hash table\n", tablename);
5330 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
5331 tablename,
5332 (1UL << log2qty),
5333 ilog2(size) - PAGE_SHIFT,
5334 size);
5336 if (_hash_shift)
5337 *_hash_shift = log2qty;
5338 if (_hash_mask)
5339 *_hash_mask = (1 << log2qty) - 1;
5341 return table;
5344 /* Return a pointer to the bitmap storing bits affecting a block of pages */
5345 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5346 unsigned long pfn)
5348 #ifdef CONFIG_SPARSEMEM
5349 return __pfn_to_section(pfn)->pageblock_flags;
5350 #else
5351 return zone->pageblock_flags;
5352 #endif /* CONFIG_SPARSEMEM */
5355 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5357 #ifdef CONFIG_SPARSEMEM
5358 pfn &= (PAGES_PER_SECTION-1);
5359 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5360 #else
5361 pfn = pfn - zone->zone_start_pfn;
5362 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5363 #endif /* CONFIG_SPARSEMEM */
5367 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
5368 * @page: The page within the block of interest
5369 * @start_bitidx: The first bit of interest to retrieve
5370 * @end_bitidx: The last bit of interest
5371 * returns pageblock_bits flags
5373 unsigned long get_pageblock_flags_group(struct page *page,
5374 int start_bitidx, int end_bitidx)
5376 struct zone *zone;
5377 unsigned long *bitmap;
5378 unsigned long pfn, bitidx;
5379 unsigned long flags = 0;
5380 unsigned long value = 1;
5382 zone = page_zone(page);
5383 pfn = page_to_pfn(page);
5384 bitmap = get_pageblock_bitmap(zone, pfn);
5385 bitidx = pfn_to_bitidx(zone, pfn);
5387 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5388 if (test_bit(bitidx + start_bitidx, bitmap))
5389 flags |= value;
5391 return flags;
5395 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
5396 * @page: The page within the block of interest
5397 * @start_bitidx: The first bit of interest
5398 * @end_bitidx: The last bit of interest
5399 * @flags: The flags to set
5401 void set_pageblock_flags_group(struct page *page, unsigned long flags,
5402 int start_bitidx, int end_bitidx)
5404 struct zone *zone;
5405 unsigned long *bitmap;
5406 unsigned long pfn, bitidx;
5407 unsigned long value = 1;
5409 zone = page_zone(page);
5410 pfn = page_to_pfn(page);
5411 bitmap = get_pageblock_bitmap(zone, pfn);
5412 bitidx = pfn_to_bitidx(zone, pfn);
5413 VM_BUG_ON(pfn < zone->zone_start_pfn);
5414 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
5416 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5417 if (flags & value)
5418 __set_bit(bitidx + start_bitidx, bitmap);
5419 else
5420 __clear_bit(bitidx + start_bitidx, bitmap);
5424 * This is designed as sub function...plz see page_isolation.c also.
5425 * set/clear page block's type to be ISOLATE.
5426 * page allocater never alloc memory from ISOLATE block.
5429 static int
5430 __count_immobile_pages(struct zone *zone, struct page *page, int count)
5432 unsigned long pfn, iter, found;
5434 * For avoiding noise data, lru_add_drain_all() should be called
5435 * If ZONE_MOVABLE, the zone never contains immobile pages
5437 if (zone_idx(zone) == ZONE_MOVABLE)
5438 return true;
5440 if (get_pageblock_migratetype(page) == MIGRATE_MOVABLE)
5441 return true;
5443 pfn = page_to_pfn(page);
5444 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
5445 unsigned long check = pfn + iter;
5447 if (!pfn_valid_within(check))
5448 continue;
5450 page = pfn_to_page(check);
5451 if (!page_count(page)) {
5452 if (PageBuddy(page))
5453 iter += (1 << page_order(page)) - 1;
5454 continue;
5456 if (!PageLRU(page))
5457 found++;
5459 * If there are RECLAIMABLE pages, we need to check it.
5460 * But now, memory offline itself doesn't call shrink_slab()
5461 * and it still to be fixed.
5464 * If the page is not RAM, page_count()should be 0.
5465 * we don't need more check. This is an _used_ not-movable page.
5467 * The problematic thing here is PG_reserved pages. PG_reserved
5468 * is set to both of a memory hole page and a _used_ kernel
5469 * page at boot.
5471 if (found > count)
5472 return false;
5474 return true;
5477 bool is_pageblock_removable_nolock(struct page *page)
5479 struct zone *zone = page_zone(page);
5480 return __count_immobile_pages(zone, page, 0);
5483 int set_migratetype_isolate(struct page *page)
5485 struct zone *zone;
5486 unsigned long flags, pfn;
5487 struct memory_isolate_notify arg;
5488 int notifier_ret;
5489 int ret = -EBUSY;
5491 zone = page_zone(page);
5493 spin_lock_irqsave(&zone->lock, flags);
5495 pfn = page_to_pfn(page);
5496 arg.start_pfn = pfn;
5497 arg.nr_pages = pageblock_nr_pages;
5498 arg.pages_found = 0;
5501 * It may be possible to isolate a pageblock even if the
5502 * migratetype is not MIGRATE_MOVABLE. The memory isolation
5503 * notifier chain is used by balloon drivers to return the
5504 * number of pages in a range that are held by the balloon
5505 * driver to shrink memory. If all the pages are accounted for
5506 * by balloons, are free, or on the LRU, isolation can continue.
5507 * Later, for example, when memory hotplug notifier runs, these
5508 * pages reported as "can be isolated" should be isolated(freed)
5509 * by the balloon driver through the memory notifier chain.
5511 notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg);
5512 notifier_ret = notifier_to_errno(notifier_ret);
5513 if (notifier_ret)
5514 goto out;
5516 * FIXME: Now, memory hotplug doesn't call shrink_slab() by itself.
5517 * We just check MOVABLE pages.
5519 if (__count_immobile_pages(zone, page, arg.pages_found))
5520 ret = 0;
5523 * immobile means "not-on-lru" paes. If immobile is larger than
5524 * removable-by-driver pages reported by notifier, we'll fail.
5527 out:
5528 if (!ret) {
5529 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
5530 move_freepages_block(zone, page, MIGRATE_ISOLATE);
5533 spin_unlock_irqrestore(&zone->lock, flags);
5534 if (!ret)
5535 drain_all_pages();
5536 return ret;
5539 void unset_migratetype_isolate(struct page *page)
5541 struct zone *zone;
5542 unsigned long flags;
5543 zone = page_zone(page);
5544 spin_lock_irqsave(&zone->lock, flags);
5545 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
5546 goto out;
5547 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5548 move_freepages_block(zone, page, MIGRATE_MOVABLE);
5549 out:
5550 spin_unlock_irqrestore(&zone->lock, flags);
5553 #ifdef CONFIG_MEMORY_HOTREMOVE
5555 * All pages in the range must be isolated before calling this.
5557 void
5558 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
5560 struct page *page;
5561 struct zone *zone;
5562 int order, i;
5563 unsigned long pfn;
5564 unsigned long flags;
5565 /* find the first valid pfn */
5566 for (pfn = start_pfn; pfn < end_pfn; pfn++)
5567 if (pfn_valid(pfn))
5568 break;
5569 if (pfn == end_pfn)
5570 return;
5571 zone = page_zone(pfn_to_page(pfn));
5572 spin_lock_irqsave(&zone->lock, flags);
5573 pfn = start_pfn;
5574 while (pfn < end_pfn) {
5575 if (!pfn_valid(pfn)) {
5576 pfn++;
5577 continue;
5579 page = pfn_to_page(pfn);
5580 BUG_ON(page_count(page));
5581 BUG_ON(!PageBuddy(page));
5582 order = page_order(page);
5583 #ifdef CONFIG_DEBUG_VM
5584 printk(KERN_INFO "remove from free list %lx %d %lx\n",
5585 pfn, 1 << order, end_pfn);
5586 #endif
5587 list_del(&page->lru);
5588 rmv_page_order(page);
5589 zone->free_area[order].nr_free--;
5590 __mod_zone_page_state(zone, NR_FREE_PAGES,
5591 - (1UL << order));
5592 for (i = 0; i < (1 << order); i++)
5593 SetPageReserved((page+i));
5594 pfn += (1 << order);
5596 spin_unlock_irqrestore(&zone->lock, flags);
5598 #endif
5600 #ifdef CONFIG_MEMORY_FAILURE
5601 bool is_free_buddy_page(struct page *page)
5603 struct zone *zone = page_zone(page);
5604 unsigned long pfn = page_to_pfn(page);
5605 unsigned long flags;
5606 int order;
5608 spin_lock_irqsave(&zone->lock, flags);
5609 for (order = 0; order < MAX_ORDER; order++) {
5610 struct page *page_head = page - (pfn & ((1 << order) - 1));
5612 if (PageBuddy(page_head) && page_order(page_head) >= order)
5613 break;
5615 spin_unlock_irqrestore(&zone->lock, flags);
5617 return order < MAX_ORDER;
5619 #endif
5621 static struct trace_print_flags pageflag_names[] = {
5622 {1UL << PG_locked, "locked" },
5623 {1UL << PG_error, "error" },
5624 {1UL << PG_referenced, "referenced" },
5625 {1UL << PG_uptodate, "uptodate" },
5626 {1UL << PG_dirty, "dirty" },
5627 {1UL << PG_lru, "lru" },
5628 {1UL << PG_active, "active" },
5629 {1UL << PG_slab, "slab" },
5630 {1UL << PG_owner_priv_1, "owner_priv_1" },
5631 {1UL << PG_arch_1, "arch_1" },
5632 {1UL << PG_reserved, "reserved" },
5633 {1UL << PG_private, "private" },
5634 {1UL << PG_private_2, "private_2" },
5635 {1UL << PG_writeback, "writeback" },
5636 #ifdef CONFIG_PAGEFLAGS_EXTENDED
5637 {1UL << PG_head, "head" },
5638 {1UL << PG_tail, "tail" },
5639 #else
5640 {1UL << PG_compound, "compound" },
5641 #endif
5642 {1UL << PG_swapcache, "swapcache" },
5643 {1UL << PG_mappedtodisk, "mappedtodisk" },
5644 {1UL << PG_reclaim, "reclaim" },
5645 {1UL << PG_swapbacked, "swapbacked" },
5646 {1UL << PG_unevictable, "unevictable" },
5647 #ifdef CONFIG_MMU
5648 {1UL << PG_mlocked, "mlocked" },
5649 #endif
5650 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
5651 {1UL << PG_uncached, "uncached" },
5652 #endif
5653 #ifdef CONFIG_MEMORY_FAILURE
5654 {1UL << PG_hwpoison, "hwpoison" },
5655 #endif
5656 {-1UL, NULL },
5659 static void dump_page_flags(unsigned long flags)
5661 const char *delim = "";
5662 unsigned long mask;
5663 int i;
5665 printk(KERN_ALERT "page flags: %#lx(", flags);
5667 /* remove zone id */
5668 flags &= (1UL << NR_PAGEFLAGS) - 1;
5670 for (i = 0; pageflag_names[i].name && flags; i++) {
5672 mask = pageflag_names[i].mask;
5673 if ((flags & mask) != mask)
5674 continue;
5676 flags &= ~mask;
5677 printk("%s%s", delim, pageflag_names[i].name);
5678 delim = "|";
5681 /* check for left over flags */
5682 if (flags)
5683 printk("%s%#lx", delim, flags);
5685 printk(")\n");
5688 void dump_page(struct page *page)
5690 printk(KERN_ALERT
5691 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
5692 page, atomic_read(&page->_count), page_mapcount(page),
5693 page->mapping, page->index);
5694 dump_page_flags(page->flags);
5695 mem_cgroup_print_bad_page(page);