2 * linux/fs/ext4/ialloc.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
9 * BSD ufs-inspired inode and directory allocation by
10 * Stephen Tweedie (sct@redhat.com), 1993
11 * Big-endian to little-endian byte-swapping/bitmaps by
12 * David S. Miller (davem@caip.rutgers.edu), 1995
15 #include <linux/time.h>
17 #include <linux/jbd2.h>
18 #include <linux/stat.h>
19 #include <linux/string.h>
20 #include <linux/quotaops.h>
21 #include <linux/buffer_head.h>
22 #include <linux/random.h>
23 #include <linux/bitops.h>
24 #include <linux/blkdev.h>
25 #include <asm/byteorder.h>
28 #include "ext4_jbd2.h"
32 #include <trace/events/ext4.h>
35 * ialloc.c contains the inodes allocation and deallocation routines
39 * The free inodes are managed by bitmaps. A file system contains several
40 * blocks groups. Each group contains 1 bitmap block for blocks, 1 bitmap
41 * block for inodes, N blocks for the inode table and data blocks.
43 * The file system contains group descriptors which are located after the
44 * super block. Each descriptor contains the number of the bitmap block and
45 * the free blocks count in the block.
49 * To avoid calling the atomic setbit hundreds or thousands of times, we only
50 * need to use it within a single byte (to ensure we get endianness right).
51 * We can use memset for the rest of the bitmap as there are no other users.
53 void ext4_mark_bitmap_end(int start_bit
, int end_bit
, char *bitmap
)
57 if (start_bit
>= end_bit
)
60 ext4_debug("mark end bits +%d through +%d used\n", start_bit
, end_bit
);
61 for (i
= start_bit
; i
< ((start_bit
+ 7) & ~7UL); i
++)
62 ext4_set_bit(i
, bitmap
);
64 memset(bitmap
+ (i
>> 3), 0xff, (end_bit
- i
) >> 3);
67 /* Initializes an uninitialized inode bitmap */
68 static unsigned ext4_init_inode_bitmap(struct super_block
*sb
,
69 struct buffer_head
*bh
,
70 ext4_group_t block_group
,
71 struct ext4_group_desc
*gdp
)
73 struct ext4_group_info
*grp
;
74 J_ASSERT_BH(bh
, buffer_locked(bh
));
76 /* If checksum is bad mark all blocks and inodes use to prevent
77 * allocation, essentially implementing a per-group read-only flag. */
78 if (!ext4_group_desc_csum_verify(sb
, block_group
, gdp
)) {
79 ext4_error(sb
, "Checksum bad for group %u", block_group
);
80 grp
= ext4_get_group_info(sb
, block_group
);
81 set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT
, &grp
->bb_state
);
82 set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT
, &grp
->bb_state
);
86 memset(bh
->b_data
, 0, (EXT4_INODES_PER_GROUP(sb
) + 7) / 8);
87 ext4_mark_bitmap_end(EXT4_INODES_PER_GROUP(sb
), sb
->s_blocksize
* 8,
89 ext4_inode_bitmap_csum_set(sb
, block_group
, gdp
, bh
,
90 EXT4_INODES_PER_GROUP(sb
) / 8);
91 ext4_group_desc_csum_set(sb
, block_group
, gdp
);
93 return EXT4_INODES_PER_GROUP(sb
);
96 void ext4_end_bitmap_read(struct buffer_head
*bh
, int uptodate
)
99 set_buffer_uptodate(bh
);
100 set_bitmap_uptodate(bh
);
107 * Read the inode allocation bitmap for a given block_group, reading
108 * into the specified slot in the superblock's bitmap cache.
110 * Return buffer_head of bitmap on success or NULL.
112 static struct buffer_head
*
113 ext4_read_inode_bitmap(struct super_block
*sb
, ext4_group_t block_group
)
115 struct ext4_group_desc
*desc
;
116 struct buffer_head
*bh
= NULL
;
117 ext4_fsblk_t bitmap_blk
;
118 struct ext4_group_info
*grp
;
120 desc
= ext4_get_group_desc(sb
, block_group
, NULL
);
124 bitmap_blk
= ext4_inode_bitmap(sb
, desc
);
125 bh
= sb_getblk(sb
, bitmap_blk
);
127 ext4_error(sb
, "Cannot read inode bitmap - "
128 "block_group = %u, inode_bitmap = %llu",
129 block_group
, bitmap_blk
);
132 if (bitmap_uptodate(bh
))
136 if (bitmap_uptodate(bh
)) {
141 ext4_lock_group(sb
, block_group
);
142 if (desc
->bg_flags
& cpu_to_le16(EXT4_BG_INODE_UNINIT
)) {
143 ext4_init_inode_bitmap(sb
, bh
, block_group
, desc
);
144 set_bitmap_uptodate(bh
);
145 set_buffer_uptodate(bh
);
146 set_buffer_verified(bh
);
147 ext4_unlock_group(sb
, block_group
);
151 ext4_unlock_group(sb
, block_group
);
153 if (buffer_uptodate(bh
)) {
155 * if not uninit if bh is uptodate,
156 * bitmap is also uptodate
158 set_bitmap_uptodate(bh
);
163 * submit the buffer_head for reading
165 trace_ext4_load_inode_bitmap(sb
, block_group
);
166 bh
->b_end_io
= ext4_end_bitmap_read
;
168 submit_bh(READ
| REQ_META
| REQ_PRIO
, bh
);
170 if (!buffer_uptodate(bh
)) {
172 ext4_error(sb
, "Cannot read inode bitmap - "
173 "block_group = %u, inode_bitmap = %llu",
174 block_group
, bitmap_blk
);
179 ext4_lock_group(sb
, block_group
);
180 if (!buffer_verified(bh
) &&
181 !ext4_inode_bitmap_csum_verify(sb
, block_group
, desc
, bh
,
182 EXT4_INODES_PER_GROUP(sb
) / 8)) {
183 ext4_unlock_group(sb
, block_group
);
185 ext4_error(sb
, "Corrupt inode bitmap - block_group = %u, "
186 "inode_bitmap = %llu", block_group
, bitmap_blk
);
187 grp
= ext4_get_group_info(sb
, block_group
);
188 set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT
, &grp
->bb_state
);
191 ext4_unlock_group(sb
, block_group
);
192 set_buffer_verified(bh
);
197 * NOTE! When we get the inode, we're the only people
198 * that have access to it, and as such there are no
199 * race conditions we have to worry about. The inode
200 * is not on the hash-lists, and it cannot be reached
201 * through the filesystem because the directory entry
202 * has been deleted earlier.
204 * HOWEVER: we must make sure that we get no aliases,
205 * which means that we have to call "clear_inode()"
206 * _before_ we mark the inode not in use in the inode
207 * bitmaps. Otherwise a newly created file might use
208 * the same inode number (not actually the same pointer
209 * though), and then we'd have two inodes sharing the
210 * same inode number and space on the harddisk.
212 void ext4_free_inode(handle_t
*handle
, struct inode
*inode
)
214 struct super_block
*sb
= inode
->i_sb
;
217 struct buffer_head
*bitmap_bh
= NULL
;
218 struct buffer_head
*bh2
;
219 ext4_group_t block_group
;
221 struct ext4_group_desc
*gdp
;
222 struct ext4_super_block
*es
;
223 struct ext4_sb_info
*sbi
;
224 int fatal
= 0, err
, count
, cleared
;
225 struct ext4_group_info
*grp
;
228 printk(KERN_ERR
"EXT4-fs: %s:%d: inode on "
229 "nonexistent device\n", __func__
, __LINE__
);
232 if (atomic_read(&inode
->i_count
) > 1) {
233 ext4_msg(sb
, KERN_ERR
, "%s:%d: inode #%lu: count=%d",
234 __func__
, __LINE__
, inode
->i_ino
,
235 atomic_read(&inode
->i_count
));
238 if (inode
->i_nlink
) {
239 ext4_msg(sb
, KERN_ERR
, "%s:%d: inode #%lu: nlink=%d\n",
240 __func__
, __LINE__
, inode
->i_ino
, inode
->i_nlink
);
246 ext4_debug("freeing inode %lu\n", ino
);
247 trace_ext4_free_inode(inode
);
250 * Note: we must free any quota before locking the superblock,
251 * as writing the quota to disk may need the lock as well.
253 dquot_initialize(inode
);
254 ext4_xattr_delete_inode(handle
, inode
);
255 dquot_free_inode(inode
);
258 is_directory
= S_ISDIR(inode
->i_mode
);
260 /* Do this BEFORE marking the inode not in use or returning an error */
261 ext4_clear_inode(inode
);
263 es
= EXT4_SB(sb
)->s_es
;
264 if (ino
< EXT4_FIRST_INO(sb
) || ino
> le32_to_cpu(es
->s_inodes_count
)) {
265 ext4_error(sb
, "reserved or nonexistent inode %lu", ino
);
268 block_group
= (ino
- 1) / EXT4_INODES_PER_GROUP(sb
);
269 bit
= (ino
- 1) % EXT4_INODES_PER_GROUP(sb
);
270 bitmap_bh
= ext4_read_inode_bitmap(sb
, block_group
);
271 /* Don't bother if the inode bitmap is corrupt. */
272 grp
= ext4_get_group_info(sb
, block_group
);
273 if (unlikely(EXT4_MB_GRP_IBITMAP_CORRUPT(grp
)) || !bitmap_bh
)
276 BUFFER_TRACE(bitmap_bh
, "get_write_access");
277 fatal
= ext4_journal_get_write_access(handle
, bitmap_bh
);
282 gdp
= ext4_get_group_desc(sb
, block_group
, &bh2
);
284 BUFFER_TRACE(bh2
, "get_write_access");
285 fatal
= ext4_journal_get_write_access(handle
, bh2
);
287 ext4_lock_group(sb
, block_group
);
288 cleared
= ext4_test_and_clear_bit(bit
, bitmap_bh
->b_data
);
289 if (fatal
|| !cleared
) {
290 ext4_unlock_group(sb
, block_group
);
294 count
= ext4_free_inodes_count(sb
, gdp
) + 1;
295 ext4_free_inodes_set(sb
, gdp
, count
);
297 count
= ext4_used_dirs_count(sb
, gdp
) - 1;
298 ext4_used_dirs_set(sb
, gdp
, count
);
299 percpu_counter_dec(&sbi
->s_dirs_counter
);
301 ext4_inode_bitmap_csum_set(sb
, block_group
, gdp
, bitmap_bh
,
302 EXT4_INODES_PER_GROUP(sb
) / 8);
303 ext4_group_desc_csum_set(sb
, block_group
, gdp
);
304 ext4_unlock_group(sb
, block_group
);
306 percpu_counter_inc(&sbi
->s_freeinodes_counter
);
307 if (sbi
->s_log_groups_per_flex
) {
308 ext4_group_t f
= ext4_flex_group(sbi
, block_group
);
310 atomic_inc(&sbi
->s_flex_groups
[f
].free_inodes
);
312 atomic_dec(&sbi
->s_flex_groups
[f
].used_dirs
);
314 BUFFER_TRACE(bh2
, "call ext4_handle_dirty_metadata");
315 fatal
= ext4_handle_dirty_metadata(handle
, NULL
, bh2
);
318 BUFFER_TRACE(bitmap_bh
, "call ext4_handle_dirty_metadata");
319 err
= ext4_handle_dirty_metadata(handle
, NULL
, bitmap_bh
);
323 ext4_error(sb
, "bit already cleared for inode %lu", ino
);
324 set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT
, &grp
->bb_state
);
329 ext4_std_error(sb
, fatal
);
339 * Helper function for Orlov's allocator; returns critical information
340 * for a particular block group or flex_bg. If flex_size is 1, then g
341 * is a block group number; otherwise it is flex_bg number.
343 static void get_orlov_stats(struct super_block
*sb
, ext4_group_t g
,
344 int flex_size
, struct orlov_stats
*stats
)
346 struct ext4_group_desc
*desc
;
347 struct flex_groups
*flex_group
= EXT4_SB(sb
)->s_flex_groups
;
350 stats
->free_inodes
= atomic_read(&flex_group
[g
].free_inodes
);
351 stats
->free_clusters
= atomic64_read(&flex_group
[g
].free_clusters
);
352 stats
->used_dirs
= atomic_read(&flex_group
[g
].used_dirs
);
356 desc
= ext4_get_group_desc(sb
, g
, NULL
);
358 stats
->free_inodes
= ext4_free_inodes_count(sb
, desc
);
359 stats
->free_clusters
= ext4_free_group_clusters(sb
, desc
);
360 stats
->used_dirs
= ext4_used_dirs_count(sb
, desc
);
362 stats
->free_inodes
= 0;
363 stats
->free_clusters
= 0;
364 stats
->used_dirs
= 0;
369 * Orlov's allocator for directories.
371 * We always try to spread first-level directories.
373 * If there are blockgroups with both free inodes and free blocks counts
374 * not worse than average we return one with smallest directory count.
375 * Otherwise we simply return a random group.
377 * For the rest rules look so:
379 * It's OK to put directory into a group unless
380 * it has too many directories already (max_dirs) or
381 * it has too few free inodes left (min_inodes) or
382 * it has too few free blocks left (min_blocks) or
383 * Parent's group is preferred, if it doesn't satisfy these
384 * conditions we search cyclically through the rest. If none
385 * of the groups look good we just look for a group with more
386 * free inodes than average (starting at parent's group).
389 static int find_group_orlov(struct super_block
*sb
, struct inode
*parent
,
390 ext4_group_t
*group
, umode_t mode
,
391 const struct qstr
*qstr
)
393 ext4_group_t parent_group
= EXT4_I(parent
)->i_block_group
;
394 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
395 ext4_group_t real_ngroups
= ext4_get_groups_count(sb
);
396 int inodes_per_group
= EXT4_INODES_PER_GROUP(sb
);
397 unsigned int freei
, avefreei
, grp_free
;
398 ext4_fsblk_t freeb
, avefreec
;
400 int max_dirs
, min_inodes
;
401 ext4_grpblk_t min_clusters
;
402 ext4_group_t i
, grp
, g
, ngroups
;
403 struct ext4_group_desc
*desc
;
404 struct orlov_stats stats
;
405 int flex_size
= ext4_flex_bg_size(sbi
);
406 struct dx_hash_info hinfo
;
408 ngroups
= real_ngroups
;
410 ngroups
= (real_ngroups
+ flex_size
- 1) >>
411 sbi
->s_log_groups_per_flex
;
412 parent_group
>>= sbi
->s_log_groups_per_flex
;
415 freei
= percpu_counter_read_positive(&sbi
->s_freeinodes_counter
);
416 avefreei
= freei
/ ngroups
;
417 freeb
= EXT4_C2B(sbi
,
418 percpu_counter_read_positive(&sbi
->s_freeclusters_counter
));
420 do_div(avefreec
, ngroups
);
421 ndirs
= percpu_counter_read_positive(&sbi
->s_dirs_counter
);
424 ((parent
== sb
->s_root
->d_inode
) ||
425 (ext4_test_inode_flag(parent
, EXT4_INODE_TOPDIR
)))) {
426 int best_ndir
= inodes_per_group
;
430 hinfo
.hash_version
= DX_HASH_HALF_MD4
;
431 hinfo
.seed
= sbi
->s_hash_seed
;
432 ext4fs_dirhash(qstr
->name
, qstr
->len
, &hinfo
);
435 get_random_bytes(&grp
, sizeof(grp
));
436 parent_group
= (unsigned)grp
% ngroups
;
437 for (i
= 0; i
< ngroups
; i
++) {
438 g
= (parent_group
+ i
) % ngroups
;
439 get_orlov_stats(sb
, g
, flex_size
, &stats
);
440 if (!stats
.free_inodes
)
442 if (stats
.used_dirs
>= best_ndir
)
444 if (stats
.free_inodes
< avefreei
)
446 if (stats
.free_clusters
< avefreec
)
450 best_ndir
= stats
.used_dirs
;
455 if (flex_size
== 1) {
461 * We pack inodes at the beginning of the flexgroup's
462 * inode tables. Block allocation decisions will do
463 * something similar, although regular files will
464 * start at 2nd block group of the flexgroup. See
465 * ext4_ext_find_goal() and ext4_find_near().
468 for (i
= 0; i
< flex_size
; i
++) {
469 if (grp
+i
>= real_ngroups
)
471 desc
= ext4_get_group_desc(sb
, grp
+i
, NULL
);
472 if (desc
&& ext4_free_inodes_count(sb
, desc
)) {
480 max_dirs
= ndirs
/ ngroups
+ inodes_per_group
/ 16;
481 min_inodes
= avefreei
- inodes_per_group
*flex_size
/ 4;
484 min_clusters
= avefreec
- EXT4_CLUSTERS_PER_GROUP(sb
)*flex_size
/ 4;
487 * Start looking in the flex group where we last allocated an
488 * inode for this parent directory
490 if (EXT4_I(parent
)->i_last_alloc_group
!= ~0) {
491 parent_group
= EXT4_I(parent
)->i_last_alloc_group
;
493 parent_group
>>= sbi
->s_log_groups_per_flex
;
496 for (i
= 0; i
< ngroups
; i
++) {
497 grp
= (parent_group
+ i
) % ngroups
;
498 get_orlov_stats(sb
, grp
, flex_size
, &stats
);
499 if (stats
.used_dirs
>= max_dirs
)
501 if (stats
.free_inodes
< min_inodes
)
503 if (stats
.free_clusters
< min_clusters
)
509 ngroups
= real_ngroups
;
510 avefreei
= freei
/ ngroups
;
512 parent_group
= EXT4_I(parent
)->i_block_group
;
513 for (i
= 0; i
< ngroups
; i
++) {
514 grp
= (parent_group
+ i
) % ngroups
;
515 desc
= ext4_get_group_desc(sb
, grp
, NULL
);
517 grp_free
= ext4_free_inodes_count(sb
, desc
);
518 if (grp_free
&& grp_free
>= avefreei
) {
527 * The free-inodes counter is approximate, and for really small
528 * filesystems the above test can fail to find any blockgroups
537 static int find_group_other(struct super_block
*sb
, struct inode
*parent
,
538 ext4_group_t
*group
, umode_t mode
)
540 ext4_group_t parent_group
= EXT4_I(parent
)->i_block_group
;
541 ext4_group_t i
, last
, ngroups
= ext4_get_groups_count(sb
);
542 struct ext4_group_desc
*desc
;
543 int flex_size
= ext4_flex_bg_size(EXT4_SB(sb
));
546 * Try to place the inode is the same flex group as its
547 * parent. If we can't find space, use the Orlov algorithm to
548 * find another flex group, and store that information in the
549 * parent directory's inode information so that use that flex
550 * group for future allocations.
556 parent_group
&= ~(flex_size
-1);
557 last
= parent_group
+ flex_size
;
560 for (i
= parent_group
; i
< last
; i
++) {
561 desc
= ext4_get_group_desc(sb
, i
, NULL
);
562 if (desc
&& ext4_free_inodes_count(sb
, desc
)) {
567 if (!retry
&& EXT4_I(parent
)->i_last_alloc_group
!= ~0) {
569 parent_group
= EXT4_I(parent
)->i_last_alloc_group
;
573 * If this didn't work, use the Orlov search algorithm
574 * to find a new flex group; we pass in the mode to
575 * avoid the topdir algorithms.
577 *group
= parent_group
+ flex_size
;
578 if (*group
> ngroups
)
580 return find_group_orlov(sb
, parent
, group
, mode
, NULL
);
584 * Try to place the inode in its parent directory
586 *group
= parent_group
;
587 desc
= ext4_get_group_desc(sb
, *group
, NULL
);
588 if (desc
&& ext4_free_inodes_count(sb
, desc
) &&
589 ext4_free_group_clusters(sb
, desc
))
593 * We're going to place this inode in a different blockgroup from its
594 * parent. We want to cause files in a common directory to all land in
595 * the same blockgroup. But we want files which are in a different
596 * directory which shares a blockgroup with our parent to land in a
597 * different blockgroup.
599 * So add our directory's i_ino into the starting point for the hash.
601 *group
= (*group
+ parent
->i_ino
) % ngroups
;
604 * Use a quadratic hash to find a group with a free inode and some free
607 for (i
= 1; i
< ngroups
; i
<<= 1) {
609 if (*group
>= ngroups
)
611 desc
= ext4_get_group_desc(sb
, *group
, NULL
);
612 if (desc
&& ext4_free_inodes_count(sb
, desc
) &&
613 ext4_free_group_clusters(sb
, desc
))
618 * That failed: try linear search for a free inode, even if that group
619 * has no free blocks.
621 *group
= parent_group
;
622 for (i
= 0; i
< ngroups
; i
++) {
623 if (++*group
>= ngroups
)
625 desc
= ext4_get_group_desc(sb
, *group
, NULL
);
626 if (desc
&& ext4_free_inodes_count(sb
, desc
))
634 * In no journal mode, if an inode has recently been deleted, we want
635 * to avoid reusing it until we're reasonably sure the inode table
636 * block has been written back to disk. (Yes, these values are
637 * somewhat arbitrary...)
639 #define RECENTCY_MIN 5
640 #define RECENTCY_DIRTY 30
642 static int recently_deleted(struct super_block
*sb
, ext4_group_t group
, int ino
)
644 struct ext4_group_desc
*gdp
;
645 struct ext4_inode
*raw_inode
;
646 struct buffer_head
*bh
;
647 unsigned long dtime
, now
;
648 int inodes_per_block
= EXT4_SB(sb
)->s_inodes_per_block
;
649 int offset
, ret
= 0, recentcy
= RECENTCY_MIN
;
651 gdp
= ext4_get_group_desc(sb
, group
, NULL
);
655 bh
= sb_getblk(sb
, ext4_inode_table(sb
, gdp
) +
656 (ino
/ inodes_per_block
));
657 if (unlikely(!bh
) || !buffer_uptodate(bh
))
659 * If the block is not in the buffer cache, then it
660 * must have been written out.
664 offset
= (ino
% inodes_per_block
) * EXT4_INODE_SIZE(sb
);
665 raw_inode
= (struct ext4_inode
*) (bh
->b_data
+ offset
);
666 dtime
= le32_to_cpu(raw_inode
->i_dtime
);
668 if (buffer_dirty(bh
))
669 recentcy
+= RECENTCY_DIRTY
;
671 if (dtime
&& (dtime
< now
) && (now
< dtime
+ recentcy
))
679 * There are two policies for allocating an inode. If the new inode is
680 * a directory, then a forward search is made for a block group with both
681 * free space and a low directory-to-inode ratio; if that fails, then of
682 * the groups with above-average free space, that group with the fewest
683 * directories already is chosen.
685 * For other inodes, search forward from the parent directory's block
686 * group to find a free inode.
688 struct inode
*__ext4_new_inode(handle_t
*handle
, struct inode
*dir
,
689 umode_t mode
, const struct qstr
*qstr
,
690 __u32 goal
, uid_t
*owner
, int handle_type
,
691 unsigned int line_no
, int nblocks
)
693 struct super_block
*sb
;
694 struct buffer_head
*inode_bitmap_bh
= NULL
;
695 struct buffer_head
*group_desc_bh
;
696 ext4_group_t ngroups
, group
= 0;
697 unsigned long ino
= 0;
699 struct ext4_group_desc
*gdp
= NULL
;
700 struct ext4_inode_info
*ei
;
701 struct ext4_sb_info
*sbi
;
705 ext4_group_t flex_group
;
706 struct ext4_group_info
*grp
;
708 /* Cannot create files in a deleted directory */
709 if (!dir
|| !dir
->i_nlink
)
710 return ERR_PTR(-EPERM
);
713 ngroups
= ext4_get_groups_count(sb
);
714 trace_ext4_request_inode(dir
, mode
);
715 inode
= new_inode(sb
);
717 return ERR_PTR(-ENOMEM
);
722 * Initalize owners and quota early so that we don't have to account
723 * for quota initialization worst case in standard inode creating
727 inode
->i_mode
= mode
;
728 i_uid_write(inode
, owner
[0]);
729 i_gid_write(inode
, owner
[1]);
730 } else if (test_opt(sb
, GRPID
)) {
731 inode
->i_mode
= mode
;
732 inode
->i_uid
= current_fsuid();
733 inode
->i_gid
= dir
->i_gid
;
735 inode_init_owner(inode
, dir
, mode
);
736 dquot_initialize(inode
);
739 goal
= sbi
->s_inode_goal
;
741 if (goal
&& goal
<= le32_to_cpu(sbi
->s_es
->s_inodes_count
)) {
742 group
= (goal
- 1) / EXT4_INODES_PER_GROUP(sb
);
743 ino
= (goal
- 1) % EXT4_INODES_PER_GROUP(sb
);
749 ret2
= find_group_orlov(sb
, dir
, &group
, mode
, qstr
);
751 ret2
= find_group_other(sb
, dir
, &group
, mode
);
754 EXT4_I(dir
)->i_last_alloc_group
= group
;
760 * Normally we will only go through one pass of this loop,
761 * unless we get unlucky and it turns out the group we selected
762 * had its last inode grabbed by someone else.
764 for (i
= 0; i
< ngroups
; i
++, ino
= 0) {
767 gdp
= ext4_get_group_desc(sb
, group
, &group_desc_bh
);
772 * Check free inodes count before loading bitmap.
774 if (ext4_free_inodes_count(sb
, gdp
) == 0) {
775 if (++group
== ngroups
)
780 grp
= ext4_get_group_info(sb
, group
);
781 /* Skip groups with already-known suspicious inode tables */
782 if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp
)) {
783 if (++group
== ngroups
)
788 brelse(inode_bitmap_bh
);
789 inode_bitmap_bh
= ext4_read_inode_bitmap(sb
, group
);
790 /* Skip groups with suspicious inode tables */
791 if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp
) || !inode_bitmap_bh
) {
792 if (++group
== ngroups
)
797 repeat_in_this_group
:
798 ino
= ext4_find_next_zero_bit((unsigned long *)
799 inode_bitmap_bh
->b_data
,
800 EXT4_INODES_PER_GROUP(sb
), ino
);
801 if (ino
>= EXT4_INODES_PER_GROUP(sb
))
803 if (group
== 0 && (ino
+1) < EXT4_FIRST_INO(sb
)) {
804 ext4_error(sb
, "reserved inode found cleared - "
805 "inode=%lu", ino
+ 1);
808 if ((EXT4_SB(sb
)->s_journal
== NULL
) &&
809 recently_deleted(sb
, group
, ino
)) {
814 BUG_ON(nblocks
<= 0);
815 handle
= __ext4_journal_start_sb(dir
->i_sb
, line_no
,
816 handle_type
, nblocks
,
818 if (IS_ERR(handle
)) {
819 err
= PTR_ERR(handle
);
820 ext4_std_error(sb
, err
);
824 BUFFER_TRACE(inode_bitmap_bh
, "get_write_access");
825 err
= ext4_journal_get_write_access(handle
, inode_bitmap_bh
);
827 ext4_std_error(sb
, err
);
830 ext4_lock_group(sb
, group
);
831 ret2
= ext4_test_and_set_bit(ino
, inode_bitmap_bh
->b_data
);
832 ext4_unlock_group(sb
, group
);
833 ino
++; /* the inode bitmap is zero-based */
835 goto got
; /* we grabbed the inode! */
837 if (ino
< EXT4_INODES_PER_GROUP(sb
))
838 goto repeat_in_this_group
;
840 if (++group
== ngroups
)
847 BUFFER_TRACE(inode_bitmap_bh
, "call ext4_handle_dirty_metadata");
848 err
= ext4_handle_dirty_metadata(handle
, NULL
, inode_bitmap_bh
);
850 ext4_std_error(sb
, err
);
854 /* We may have to initialize the block bitmap if it isn't already */
855 if (ext4_has_group_desc_csum(sb
) &&
856 gdp
->bg_flags
& cpu_to_le16(EXT4_BG_BLOCK_UNINIT
)) {
857 struct buffer_head
*block_bitmap_bh
;
859 block_bitmap_bh
= ext4_read_block_bitmap(sb
, group
);
860 BUFFER_TRACE(block_bitmap_bh
, "get block bitmap access");
861 err
= ext4_journal_get_write_access(handle
, block_bitmap_bh
);
863 brelse(block_bitmap_bh
);
864 ext4_std_error(sb
, err
);
868 BUFFER_TRACE(block_bitmap_bh
, "dirty block bitmap");
869 err
= ext4_handle_dirty_metadata(handle
, NULL
, block_bitmap_bh
);
871 /* recheck and clear flag under lock if we still need to */
872 ext4_lock_group(sb
, group
);
873 if (gdp
->bg_flags
& cpu_to_le16(EXT4_BG_BLOCK_UNINIT
)) {
874 gdp
->bg_flags
&= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT
);
875 ext4_free_group_clusters_set(sb
, gdp
,
876 ext4_free_clusters_after_init(sb
, group
, gdp
));
877 ext4_block_bitmap_csum_set(sb
, group
, gdp
,
879 ext4_group_desc_csum_set(sb
, group
, gdp
);
881 ext4_unlock_group(sb
, group
);
882 brelse(block_bitmap_bh
);
885 ext4_std_error(sb
, err
);
890 BUFFER_TRACE(group_desc_bh
, "get_write_access");
891 err
= ext4_journal_get_write_access(handle
, group_desc_bh
);
893 ext4_std_error(sb
, err
);
897 /* Update the relevant bg descriptor fields */
898 if (ext4_has_group_desc_csum(sb
)) {
900 struct ext4_group_info
*grp
= ext4_get_group_info(sb
, group
);
902 down_read(&grp
->alloc_sem
); /* protect vs itable lazyinit */
903 ext4_lock_group(sb
, group
); /* while we modify the bg desc */
904 free
= EXT4_INODES_PER_GROUP(sb
) -
905 ext4_itable_unused_count(sb
, gdp
);
906 if (gdp
->bg_flags
& cpu_to_le16(EXT4_BG_INODE_UNINIT
)) {
907 gdp
->bg_flags
&= cpu_to_le16(~EXT4_BG_INODE_UNINIT
);
911 * Check the relative inode number against the last used
912 * relative inode number in this group. if it is greater
913 * we need to update the bg_itable_unused count
916 ext4_itable_unused_set(sb
, gdp
,
917 (EXT4_INODES_PER_GROUP(sb
) - ino
));
918 up_read(&grp
->alloc_sem
);
920 ext4_lock_group(sb
, group
);
923 ext4_free_inodes_set(sb
, gdp
, ext4_free_inodes_count(sb
, gdp
) - 1);
925 ext4_used_dirs_set(sb
, gdp
, ext4_used_dirs_count(sb
, gdp
) + 1);
926 if (sbi
->s_log_groups_per_flex
) {
927 ext4_group_t f
= ext4_flex_group(sbi
, group
);
929 atomic_inc(&sbi
->s_flex_groups
[f
].used_dirs
);
932 if (ext4_has_group_desc_csum(sb
)) {
933 ext4_inode_bitmap_csum_set(sb
, group
, gdp
, inode_bitmap_bh
,
934 EXT4_INODES_PER_GROUP(sb
) / 8);
935 ext4_group_desc_csum_set(sb
, group
, gdp
);
937 ext4_unlock_group(sb
, group
);
939 BUFFER_TRACE(group_desc_bh
, "call ext4_handle_dirty_metadata");
940 err
= ext4_handle_dirty_metadata(handle
, NULL
, group_desc_bh
);
942 ext4_std_error(sb
, err
);
946 percpu_counter_dec(&sbi
->s_freeinodes_counter
);
948 percpu_counter_inc(&sbi
->s_dirs_counter
);
950 if (sbi
->s_log_groups_per_flex
) {
951 flex_group
= ext4_flex_group(sbi
, group
);
952 atomic_dec(&sbi
->s_flex_groups
[flex_group
].free_inodes
);
955 inode
->i_ino
= ino
+ group
* EXT4_INODES_PER_GROUP(sb
);
956 /* This is the optimal IO size (for stat), not the fs block size */
958 inode
->i_mtime
= inode
->i_atime
= inode
->i_ctime
= ei
->i_crtime
=
959 ext4_current_time(inode
);
961 memset(ei
->i_data
, 0, sizeof(ei
->i_data
));
962 ei
->i_dir_start_lookup
= 0;
965 /* Don't inherit extent flag from directory, amongst others. */
967 ext4_mask_flags(mode
, EXT4_I(dir
)->i_flags
& EXT4_FL_INHERITED
);
970 ei
->i_block_group
= group
;
971 ei
->i_last_alloc_group
= ~0;
973 ext4_set_inode_flags(inode
);
974 if (IS_DIRSYNC(inode
))
975 ext4_handle_sync(handle
);
976 if (insert_inode_locked(inode
) < 0) {
978 * Likely a bitmap corruption causing inode to be allocated
982 ext4_error(sb
, "failed to insert inode %lu: doubly allocated?",
986 spin_lock(&sbi
->s_next_gen_lock
);
987 inode
->i_generation
= sbi
->s_next_generation
++;
988 spin_unlock(&sbi
->s_next_gen_lock
);
990 /* Precompute checksum seed for inode metadata */
991 if (EXT4_HAS_RO_COMPAT_FEATURE(sb
,
992 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM
)) {
994 __le32 inum
= cpu_to_le32(inode
->i_ino
);
995 __le32 gen
= cpu_to_le32(inode
->i_generation
);
996 csum
= ext4_chksum(sbi
, sbi
->s_csum_seed
, (__u8
*)&inum
,
998 ei
->i_csum_seed
= ext4_chksum(sbi
, csum
, (__u8
*)&gen
,
1002 ext4_clear_state_flags(ei
); /* Only relevant on 32-bit archs */
1003 ext4_set_inode_state(inode
, EXT4_STATE_NEW
);
1005 ei
->i_extra_isize
= EXT4_SB(sb
)->s_want_extra_isize
;
1007 ei
->i_inline_off
= 0;
1008 if (EXT4_HAS_INCOMPAT_FEATURE(sb
, EXT4_FEATURE_INCOMPAT_INLINE_DATA
))
1009 ext4_set_inode_state(inode
, EXT4_STATE_MAY_INLINE_DATA
);
1012 err
= dquot_alloc_inode(inode
);
1016 err
= ext4_init_acl(handle
, inode
, dir
);
1018 goto fail_free_drop
;
1020 err
= ext4_init_security(handle
, inode
, dir
, qstr
);
1022 goto fail_free_drop
;
1024 if (EXT4_HAS_INCOMPAT_FEATURE(sb
, EXT4_FEATURE_INCOMPAT_EXTENTS
)) {
1025 /* set extent flag only for directory, file and normal symlink*/
1026 if (S_ISDIR(mode
) || S_ISREG(mode
) || S_ISLNK(mode
)) {
1027 ext4_set_inode_flag(inode
, EXT4_INODE_EXTENTS
);
1028 ext4_ext_tree_init(handle
, inode
);
1032 if (ext4_handle_valid(handle
)) {
1033 ei
->i_sync_tid
= handle
->h_transaction
->t_tid
;
1034 ei
->i_datasync_tid
= handle
->h_transaction
->t_tid
;
1037 err
= ext4_mark_inode_dirty(handle
, inode
);
1039 ext4_std_error(sb
, err
);
1040 goto fail_free_drop
;
1043 ext4_debug("allocating inode %lu\n", inode
->i_ino
);
1044 trace_ext4_allocate_inode(inode
, dir
, mode
);
1045 brelse(inode_bitmap_bh
);
1049 dquot_free_inode(inode
);
1052 unlock_new_inode(inode
);
1055 inode
->i_flags
|= S_NOQUOTA
;
1057 brelse(inode_bitmap_bh
);
1058 return ERR_PTR(err
);
1061 /* Verify that we are loading a valid orphan from disk */
1062 struct inode
*ext4_orphan_get(struct super_block
*sb
, unsigned long ino
)
1064 unsigned long max_ino
= le32_to_cpu(EXT4_SB(sb
)->s_es
->s_inodes_count
);
1065 ext4_group_t block_group
;
1067 struct buffer_head
*bitmap_bh
;
1068 struct inode
*inode
= NULL
;
1071 /* Error cases - e2fsck has already cleaned up for us */
1072 if (ino
> max_ino
) {
1073 ext4_warning(sb
, "bad orphan ino %lu! e2fsck was run?", ino
);
1077 block_group
= (ino
- 1) / EXT4_INODES_PER_GROUP(sb
);
1078 bit
= (ino
- 1) % EXT4_INODES_PER_GROUP(sb
);
1079 bitmap_bh
= ext4_read_inode_bitmap(sb
, block_group
);
1081 ext4_warning(sb
, "inode bitmap error for orphan %lu", ino
);
1085 /* Having the inode bit set should be a 100% indicator that this
1086 * is a valid orphan (no e2fsck run on fs). Orphans also include
1087 * inodes that were being truncated, so we can't check i_nlink==0.
1089 if (!ext4_test_bit(bit
, bitmap_bh
->b_data
))
1092 inode
= ext4_iget(sb
, ino
);
1097 * If the orphans has i_nlinks > 0 then it should be able to be
1098 * truncated, otherwise it won't be removed from the orphan list
1099 * during processing and an infinite loop will result.
1101 if (inode
->i_nlink
&& !ext4_can_truncate(inode
))
1104 if (NEXT_ORPHAN(inode
) > max_ino
)
1110 err
= PTR_ERR(inode
);
1113 ext4_warning(sb
, "bad orphan inode %lu! e2fsck was run?", ino
);
1114 printk(KERN_WARNING
"ext4_test_bit(bit=%d, block=%llu) = %d\n",
1115 bit
, (unsigned long long)bitmap_bh
->b_blocknr
,
1116 ext4_test_bit(bit
, bitmap_bh
->b_data
));
1117 printk(KERN_WARNING
"inode=%p\n", inode
);
1119 printk(KERN_WARNING
"is_bad_inode(inode)=%d\n",
1120 is_bad_inode(inode
));
1121 printk(KERN_WARNING
"NEXT_ORPHAN(inode)=%u\n",
1122 NEXT_ORPHAN(inode
));
1123 printk(KERN_WARNING
"max_ino=%lu\n", max_ino
);
1124 printk(KERN_WARNING
"i_nlink=%u\n", inode
->i_nlink
);
1125 /* Avoid freeing blocks if we got a bad deleted inode */
1126 if (inode
->i_nlink
== 0)
1127 inode
->i_blocks
= 0;
1132 return ERR_PTR(err
);
1135 unsigned long ext4_count_free_inodes(struct super_block
*sb
)
1137 unsigned long desc_count
;
1138 struct ext4_group_desc
*gdp
;
1139 ext4_group_t i
, ngroups
= ext4_get_groups_count(sb
);
1141 struct ext4_super_block
*es
;
1142 unsigned long bitmap_count
, x
;
1143 struct buffer_head
*bitmap_bh
= NULL
;
1145 es
= EXT4_SB(sb
)->s_es
;
1149 for (i
= 0; i
< ngroups
; i
++) {
1150 gdp
= ext4_get_group_desc(sb
, i
, NULL
);
1153 desc_count
+= ext4_free_inodes_count(sb
, gdp
);
1155 bitmap_bh
= ext4_read_inode_bitmap(sb
, i
);
1159 x
= ext4_count_free(bitmap_bh
->b_data
,
1160 EXT4_INODES_PER_GROUP(sb
) / 8);
1161 printk(KERN_DEBUG
"group %lu: stored = %d, counted = %lu\n",
1162 (unsigned long) i
, ext4_free_inodes_count(sb
, gdp
), x
);
1166 printk(KERN_DEBUG
"ext4_count_free_inodes: "
1167 "stored = %u, computed = %lu, %lu\n",
1168 le32_to_cpu(es
->s_free_inodes_count
), desc_count
, bitmap_count
);
1172 for (i
= 0; i
< ngroups
; i
++) {
1173 gdp
= ext4_get_group_desc(sb
, i
, NULL
);
1176 desc_count
+= ext4_free_inodes_count(sb
, gdp
);
1183 /* Called at mount-time, super-block is locked */
1184 unsigned long ext4_count_dirs(struct super_block
* sb
)
1186 unsigned long count
= 0;
1187 ext4_group_t i
, ngroups
= ext4_get_groups_count(sb
);
1189 for (i
= 0; i
< ngroups
; i
++) {
1190 struct ext4_group_desc
*gdp
= ext4_get_group_desc(sb
, i
, NULL
);
1193 count
+= ext4_used_dirs_count(sb
, gdp
);
1199 * Zeroes not yet zeroed inode table - just write zeroes through the whole
1200 * inode table. Must be called without any spinlock held. The only place
1201 * where it is called from on active part of filesystem is ext4lazyinit
1202 * thread, so we do not need any special locks, however we have to prevent
1203 * inode allocation from the current group, so we take alloc_sem lock, to
1204 * block ext4_new_inode() until we are finished.
1206 int ext4_init_inode_table(struct super_block
*sb
, ext4_group_t group
,
1209 struct ext4_group_info
*grp
= ext4_get_group_info(sb
, group
);
1210 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
1211 struct ext4_group_desc
*gdp
= NULL
;
1212 struct buffer_head
*group_desc_bh
;
1215 int num
, ret
= 0, used_blks
= 0;
1217 /* This should not happen, but just to be sure check this */
1218 if (sb
->s_flags
& MS_RDONLY
) {
1223 gdp
= ext4_get_group_desc(sb
, group
, &group_desc_bh
);
1228 * We do not need to lock this, because we are the only one
1229 * handling this flag.
1231 if (gdp
->bg_flags
& cpu_to_le16(EXT4_BG_INODE_ZEROED
))
1234 handle
= ext4_journal_start_sb(sb
, EXT4_HT_MISC
, 1);
1235 if (IS_ERR(handle
)) {
1236 ret
= PTR_ERR(handle
);
1240 down_write(&grp
->alloc_sem
);
1242 * If inode bitmap was already initialized there may be some
1243 * used inodes so we need to skip blocks with used inodes in
1246 if (!(gdp
->bg_flags
& cpu_to_le16(EXT4_BG_INODE_UNINIT
)))
1247 used_blks
= DIV_ROUND_UP((EXT4_INODES_PER_GROUP(sb
) -
1248 ext4_itable_unused_count(sb
, gdp
)),
1249 sbi
->s_inodes_per_block
);
1251 if ((used_blks
< 0) || (used_blks
> sbi
->s_itb_per_group
)) {
1252 ext4_error(sb
, "Something is wrong with group %u: "
1253 "used itable blocks: %d; "
1254 "itable unused count: %u",
1256 ext4_itable_unused_count(sb
, gdp
));
1261 blk
= ext4_inode_table(sb
, gdp
) + used_blks
;
1262 num
= sbi
->s_itb_per_group
- used_blks
;
1264 BUFFER_TRACE(group_desc_bh
, "get_write_access");
1265 ret
= ext4_journal_get_write_access(handle
,
1271 * Skip zeroout if the inode table is full. But we set the ZEROED
1272 * flag anyway, because obviously, when it is full it does not need
1275 if (unlikely(num
== 0))
1278 ext4_debug("going to zero out inode table in group %d\n",
1280 ret
= sb_issue_zeroout(sb
, blk
, num
, GFP_NOFS
);
1284 blkdev_issue_flush(sb
->s_bdev
, GFP_NOFS
, NULL
);
1287 ext4_lock_group(sb
, group
);
1288 gdp
->bg_flags
|= cpu_to_le16(EXT4_BG_INODE_ZEROED
);
1289 ext4_group_desc_csum_set(sb
, group
, gdp
);
1290 ext4_unlock_group(sb
, group
);
1292 BUFFER_TRACE(group_desc_bh
,
1293 "call ext4_handle_dirty_metadata");
1294 ret
= ext4_handle_dirty_metadata(handle
, NULL
,
1298 up_write(&grp
->alloc_sem
);
1299 ext4_journal_stop(handle
);