block: remove spurious uses of REQ_HARDBARRIER
[linux-2.6.git] / drivers / atm / firestream.c
blob8717809787fb7af21069dd726e11abbdcff70ee5
2 /* drivers/atm/firestream.c - FireStream 155 (MB86697) and
3 * FireStream 50 (MB86695) device driver
4 */
6 /* Written & (C) 2000 by R.E.Wolff@BitWizard.nl
7 * Copied snippets from zatm.c by Werner Almesberger, EPFL LRC/ICA
8 * and ambassador.c Copyright (C) 1995-1999 Madge Networks Ltd
9 */
12 This program is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 2 of the License, or
15 (at your option) any later version.
17 This program is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
22 You should have received a copy of the GNU General Public License
23 along with this program; if not, write to the Free Software
24 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
26 The GNU GPL is contained in /usr/doc/copyright/GPL on a Debian
27 system and in the file COPYING in the Linux kernel source.
31 #include <linux/module.h>
32 #include <linux/sched.h>
33 #include <linux/kernel.h>
34 #include <linux/mm.h>
35 #include <linux/pci.h>
36 #include <linux/poison.h>
37 #include <linux/errno.h>
38 #include <linux/atm.h>
39 #include <linux/atmdev.h>
40 #include <linux/sonet.h>
41 #include <linux/skbuff.h>
42 #include <linux/netdevice.h>
43 #include <linux/delay.h>
44 #include <linux/ioport.h> /* for request_region */
45 #include <linux/uio.h>
46 #include <linux/init.h>
47 #include <linux/capability.h>
48 #include <linux/bitops.h>
49 #include <linux/slab.h>
50 #include <asm/byteorder.h>
51 #include <asm/system.h>
52 #include <asm/string.h>
53 #include <asm/io.h>
54 #include <asm/atomic.h>
55 #include <asm/uaccess.h>
56 #include <linux/wait.h>
58 #include "firestream.h"
60 static int loopback = 0;
61 static int num=0x5a;
63 /* According to measurements (but they look suspicious to me!) done in
64 * '97, 37% of the packets are one cell in size. So it pays to have
65 * buffers allocated at that size. A large jump in percentage of
66 * packets occurs at packets around 536 bytes in length. So it also
67 * pays to have those pre-allocated. Unfortunately, we can't fully
68 * take advantage of this as the majority of the packets is likely to
69 * be TCP/IP (As where obviously the measurement comes from) There the
70 * link would be opened with say a 1500 byte MTU, and we can't handle
71 * smaller buffers more efficiently than the larger ones. -- REW
74 /* Due to the way Linux memory management works, specifying "576" as
75 * an allocation size here isn't going to help. They are allocated
76 * from 1024-byte regions anyway. With the size of the sk_buffs (quite
77 * large), it doesn't pay to allocate the smallest size (64) -- REW */
79 /* This is all guesswork. Hard numbers to back this up or disprove this,
80 * are appreciated. -- REW */
82 /* The last entry should be about 64k. However, the "buffer size" is
83 * passed to the chip in a 16 bit field. I don't know how "65536"
84 * would be interpreted. -- REW */
86 #define NP FS_NR_FREE_POOLS
87 static int rx_buf_sizes[NP] = {128, 256, 512, 1024, 2048, 4096, 16384, 65520};
88 /* log2: 7 8 9 10 11 12 14 16 */
90 #if 0
91 static int rx_pool_sizes[NP] = {1024, 1024, 512, 256, 128, 64, 32, 32};
92 #else
93 /* debug */
94 static int rx_pool_sizes[NP] = {128, 128, 128, 64, 64, 64, 32, 32};
95 #endif
96 /* log2: 10 10 9 8 7 6 5 5 */
97 /* sumlog2: 17 18 18 18 18 18 19 21 */
98 /* mem allocated: 128k 256k 256k 256k 256k 256k 512k 2M */
99 /* tot mem: almost 4M */
101 /* NP is shorter, so that it fits on a single line. */
102 #undef NP
105 /* Small hardware gotcha:
107 The FS50 CAM (VP/VC match registers) always take the lowest channel
108 number that matches. This is not a problem.
110 However, they also ignore whether the channel is enabled or
111 not. This means that if you allocate channel 0 to 1.2 and then
112 channel 1 to 0.0, then disabeling channel 0 and writing 0 to the
113 match channel for channel 0 will "steal" the traffic from channel
114 1, even if you correctly disable channel 0.
116 Workaround:
118 - When disabling channels, write an invalid VP/VC value to the
119 match register. (We use 0xffffffff, which in the worst case
120 matches VP/VC = <maxVP>/<maxVC>, but I expect it not to match
121 anything as some "when not in use, program to 0" bits are now
122 programmed to 1...)
124 - Don't initialize the match registers to 0, as 0.0 is a valid
125 channel.
129 /* Optimization hints and tips.
131 The FireStream chips are very capable of reducing the amount of
132 "interrupt-traffic" for the CPU. This driver requests an interrupt on EVERY
133 action. You could try to minimize this a bit.
135 Besides that, the userspace->kernel copy and the PCI bus are the
136 performance limiting issues for this driver.
138 You could queue up a bunch of outgoing packets without telling the
139 FireStream. I'm not sure that's going to win you much though. The
140 Linux layer won't tell us in advance when it's not going to give us
141 any more packets in a while. So this is tricky to implement right without
142 introducing extra delays.
144 -- REW
150 /* The strings that define what the RX queue entry is all about. */
151 /* Fujitsu: Please tell me which ones can have a pointer to a
152 freepool descriptor! */
153 static char *res_strings[] = {
154 "RX OK: streaming not EOP",
155 "RX OK: streaming EOP",
156 "RX OK: Single buffer packet",
157 "RX OK: packet mode",
158 "RX OK: F4 OAM (end to end)",
159 "RX OK: F4 OAM (Segment)",
160 "RX OK: F5 OAM (end to end)",
161 "RX OK: F5 OAM (Segment)",
162 "RX OK: RM cell",
163 "RX OK: TRANSP cell",
164 "RX OK: TRANSPC cell",
165 "Unmatched cell",
166 "reserved 12",
167 "reserved 13",
168 "reserved 14",
169 "Unrecognized cell",
170 "reserved 16",
171 "reassemby abort: AAL5 abort",
172 "packet purged",
173 "packet ageing timeout",
174 "channel ageing timeout",
175 "calculated length error",
176 "programmed length limit error",
177 "aal5 crc32 error",
178 "oam transp or transpc crc10 error",
179 "reserved 25",
180 "reserved 26",
181 "reserved 27",
182 "reserved 28",
183 "reserved 29",
184 "reserved 30",
185 "reassembly abort: no buffers",
186 "receive buffer overflow",
187 "change in GFC",
188 "receive buffer full",
189 "low priority discard - no receive descriptor",
190 "low priority discard - missing end of packet",
191 "reserved 41",
192 "reserved 42",
193 "reserved 43",
194 "reserved 44",
195 "reserved 45",
196 "reserved 46",
197 "reserved 47",
198 "reserved 48",
199 "reserved 49",
200 "reserved 50",
201 "reserved 51",
202 "reserved 52",
203 "reserved 53",
204 "reserved 54",
205 "reserved 55",
206 "reserved 56",
207 "reserved 57",
208 "reserved 58",
209 "reserved 59",
210 "reserved 60",
211 "reserved 61",
212 "reserved 62",
213 "reserved 63",
216 static char *irq_bitname[] = {
217 "LPCO",
218 "DPCO",
219 "RBRQ0_W",
220 "RBRQ1_W",
221 "RBRQ2_W",
222 "RBRQ3_W",
223 "RBRQ0_NF",
224 "RBRQ1_NF",
225 "RBRQ2_NF",
226 "RBRQ3_NF",
227 "BFP_SC",
228 "INIT",
229 "INIT_ERR",
230 "USCEO",
231 "UPEC0",
232 "VPFCO",
233 "CRCCO",
234 "HECO",
235 "TBRQ_W",
236 "TBRQ_NF",
237 "CTPQ_E",
238 "GFC_C0",
239 "PCI_FTL",
240 "CSQ_W",
241 "CSQ_NF",
242 "EXT_INT",
243 "RXDMA_S"
247 #define PHY_EOF -1
248 #define PHY_CLEARALL -2
250 struct reginit_item {
251 int reg, val;
255 static struct reginit_item PHY_NTC_INIT[] __devinitdata = {
256 { PHY_CLEARALL, 0x40 },
257 { 0x12, 0x0001 },
258 { 0x13, 0x7605 },
259 { 0x1A, 0x0001 },
260 { 0x1B, 0x0005 },
261 { 0x38, 0x0003 },
262 { 0x39, 0x0006 }, /* changed here to make loopback */
263 { 0x01, 0x5262 },
264 { 0x15, 0x0213 },
265 { 0x00, 0x0003 },
266 { PHY_EOF, 0}, /* -1 signals end of list */
270 /* Safetyfeature: If the card interrupts more than this number of times
271 in a jiffy (1/100th of a second) then we just disable the interrupt and
272 print a message. This prevents the system from hanging.
274 150000 packets per second is close to the limit a PC is going to have
275 anyway. We therefore have to disable this for production. -- REW */
276 #undef IRQ_RATE_LIMIT // 100
278 /* Interrupts work now. Unlike serial cards, ATM cards don't work all
279 that great without interrupts. -- REW */
280 #undef FS_POLL_FREQ // 100
283 This driver can spew a whole lot of debugging output at you. If you
284 need maximum performance, you should disable the DEBUG define. To
285 aid in debugging in the field, I'm leaving the compile-time debug
286 features enabled, and disable them "runtime". That allows me to
287 instruct people with problems to enable debugging without requiring
288 them to recompile... -- REW
290 #define DEBUG
292 #ifdef DEBUG
293 #define fs_dprintk(f, str...) if (fs_debug & f) printk (str)
294 #else
295 #define fs_dprintk(f, str...) /* nothing */
296 #endif
299 static int fs_keystream = 0;
301 #ifdef DEBUG
302 /* I didn't forget to set this to zero before shipping. Hit me with a stick
303 if you get this with the debug default not set to zero again. -- REW */
304 static int fs_debug = 0;
305 #else
306 #define fs_debug 0
307 #endif
309 #ifdef MODULE
310 #ifdef DEBUG
311 module_param(fs_debug, int, 0644);
312 #endif
313 module_param(loopback, int, 0);
314 module_param(num, int, 0);
315 module_param(fs_keystream, int, 0);
316 /* XXX Add rx_buf_sizes, and rx_pool_sizes As per request Amar. -- REW */
317 #endif
320 #define FS_DEBUG_FLOW 0x00000001
321 #define FS_DEBUG_OPEN 0x00000002
322 #define FS_DEBUG_QUEUE 0x00000004
323 #define FS_DEBUG_IRQ 0x00000008
324 #define FS_DEBUG_INIT 0x00000010
325 #define FS_DEBUG_SEND 0x00000020
326 #define FS_DEBUG_PHY 0x00000040
327 #define FS_DEBUG_CLEANUP 0x00000080
328 #define FS_DEBUG_QOS 0x00000100
329 #define FS_DEBUG_TXQ 0x00000200
330 #define FS_DEBUG_ALLOC 0x00000400
331 #define FS_DEBUG_TXMEM 0x00000800
332 #define FS_DEBUG_QSIZE 0x00001000
335 #define func_enter() fs_dprintk(FS_DEBUG_FLOW, "fs: enter %s\n", __func__)
336 #define func_exit() fs_dprintk(FS_DEBUG_FLOW, "fs: exit %s\n", __func__)
339 static struct fs_dev *fs_boards = NULL;
341 #ifdef DEBUG
343 static void my_hd (void *addr, int len)
345 int j, ch;
346 unsigned char *ptr = addr;
348 while (len > 0) {
349 printk ("%p ", ptr);
350 for (j=0;j < ((len < 16)?len:16);j++) {
351 printk ("%02x %s", ptr[j], (j==7)?" ":"");
353 for ( ;j < 16;j++) {
354 printk (" %s", (j==7)?" ":"");
356 for (j=0;j < ((len < 16)?len:16);j++) {
357 ch = ptr[j];
358 printk ("%c", (ch < 0x20)?'.':((ch > 0x7f)?'.':ch));
360 printk ("\n");
361 ptr += 16;
362 len -= 16;
365 #else /* DEBUG */
366 static void my_hd (void *addr, int len){}
367 #endif /* DEBUG */
369 /********** free an skb (as per ATM device driver documentation) **********/
371 /* Hmm. If this is ATM specific, why isn't there an ATM routine for this?
372 * I copied it over from the ambassador driver. -- REW */
374 static inline void fs_kfree_skb (struct sk_buff * skb)
376 if (ATM_SKB(skb)->vcc->pop)
377 ATM_SKB(skb)->vcc->pop (ATM_SKB(skb)->vcc, skb);
378 else
379 dev_kfree_skb_any (skb);
385 /* It seems the ATM forum recommends this horribly complicated 16bit
386 * floating point format. Turns out the Ambassador uses the exact same
387 * encoding. I just copied it over. If Mitch agrees, I'll move it over
388 * to the atm_misc file or something like that. (and remove it from
389 * here and the ambassador driver) -- REW
392 /* The good thing about this format is that it is monotonic. So,
393 a conversion routine need not be very complicated. To be able to
394 round "nearest" we need to take along a few extra bits. Lets
395 put these after 16 bits, so that we can just return the top 16
396 bits of the 32bit number as the result:
398 int mr (unsigned int rate, int r)
400 int e = 16+9;
401 static int round[4]={0, 0, 0xffff, 0x8000};
402 if (!rate) return 0;
403 while (rate & 0xfc000000) {
404 rate >>= 1;
405 e++;
407 while (! (rate & 0xfe000000)) {
408 rate <<= 1;
409 e--;
412 // Now the mantissa is in positions bit 16-25. Excepf for the "hidden 1" that's in bit 26.
413 rate &= ~0x02000000;
414 // Next add in the exponent
415 rate |= e << (16+9);
416 // And perform the rounding:
417 return (rate + round[r]) >> 16;
420 14 lines-of-code. Compare that with the 120 that the Ambassador
421 guys needed. (would be 8 lines shorter if I'd try to really reduce
422 the number of lines:
424 int mr (unsigned int rate, int r)
426 int e = 16+9;
427 static int round[4]={0, 0, 0xffff, 0x8000};
428 if (!rate) return 0;
429 for (; rate & 0xfc000000 ;rate >>= 1, e++);
430 for (;!(rate & 0xfe000000);rate <<= 1, e--);
431 return ((rate & ~0x02000000) | (e << (16+9)) + round[r]) >> 16;
434 Exercise for the reader: Remove one more line-of-code, without
435 cheating. (Just joining two lines is cheating). (I know it's
436 possible, don't think you've beat me if you found it... If you
437 manage to lose two lines or more, keep me updated! ;-)
439 -- REW */
442 #define ROUND_UP 1
443 #define ROUND_DOWN 2
444 #define ROUND_NEAREST 3
445 /********** make rate (not quite as much fun as Horizon) **********/
447 static unsigned int make_rate (unsigned int rate, int r,
448 u16 * bits, unsigned int * actual)
450 unsigned char exp = -1; /* hush gcc */
451 unsigned int man = -1; /* hush gcc */
453 fs_dprintk (FS_DEBUG_QOS, "make_rate %u", rate);
455 /* rates in cells per second, ITU format (nasty 16-bit floating-point)
456 given 5-bit e and 9-bit m:
457 rate = EITHER (1+m/2^9)*2^e OR 0
458 bits = EITHER 1<<14 | e<<9 | m OR 0
459 (bit 15 is "reserved", bit 14 "non-zero")
460 smallest rate is 0 (special representation)
461 largest rate is (1+511/512)*2^31 = 4290772992 (< 2^32-1)
462 smallest non-zero rate is (1+0/512)*2^0 = 1 (> 0)
463 simple algorithm:
464 find position of top bit, this gives e
465 remove top bit and shift (rounding if feeling clever) by 9-e
467 /* Ambassador ucode bug: please don't set bit 14! so 0 rate not
468 representable. // This should move into the ambassador driver
469 when properly merged. -- REW */
471 if (rate > 0xffc00000U) {
472 /* larger than largest representable rate */
474 if (r == ROUND_UP) {
475 return -EINVAL;
476 } else {
477 exp = 31;
478 man = 511;
481 } else if (rate) {
482 /* representable rate */
484 exp = 31;
485 man = rate;
487 /* invariant: rate = man*2^(exp-31) */
488 while (!(man & (1<<31))) {
489 exp = exp - 1;
490 man = man<<1;
493 /* man has top bit set
494 rate = (2^31+(man-2^31))*2^(exp-31)
495 rate = (1+(man-2^31)/2^31)*2^exp
497 man = man<<1;
498 man &= 0xffffffffU; /* a nop on 32-bit systems */
499 /* rate = (1+man/2^32)*2^exp
501 exp is in the range 0 to 31, man is in the range 0 to 2^32-1
502 time to lose significance... we want m in the range 0 to 2^9-1
503 rounding presents a minor problem... we first decide which way
504 we are rounding (based on given rounding direction and possibly
505 the bits of the mantissa that are to be discarded).
508 switch (r) {
509 case ROUND_DOWN: {
510 /* just truncate */
511 man = man>>(32-9);
512 break;
514 case ROUND_UP: {
515 /* check all bits that we are discarding */
516 if (man & (~0U>>9)) {
517 man = (man>>(32-9)) + 1;
518 if (man == (1<<9)) {
519 /* no need to check for round up outside of range */
520 man = 0;
521 exp += 1;
523 } else {
524 man = (man>>(32-9));
526 break;
528 case ROUND_NEAREST: {
529 /* check msb that we are discarding */
530 if (man & (1<<(32-9-1))) {
531 man = (man>>(32-9)) + 1;
532 if (man == (1<<9)) {
533 /* no need to check for round up outside of range */
534 man = 0;
535 exp += 1;
537 } else {
538 man = (man>>(32-9));
540 break;
544 } else {
545 /* zero rate - not representable */
547 if (r == ROUND_DOWN) {
548 return -EINVAL;
549 } else {
550 exp = 0;
551 man = 0;
555 fs_dprintk (FS_DEBUG_QOS, "rate: man=%u, exp=%hu", man, exp);
557 if (bits)
558 *bits = /* (1<<14) | */ (exp<<9) | man;
560 if (actual)
561 *actual = (exp >= 9)
562 ? (1 << exp) + (man << (exp-9))
563 : (1 << exp) + ((man + (1<<(9-exp-1))) >> (9-exp));
565 return 0;
571 /* FireStream access routines */
572 /* For DEEP-DOWN debugging these can be rigged to intercept accesses to
573 certain registers or to just log all accesses. */
575 static inline void write_fs (struct fs_dev *dev, int offset, u32 val)
577 writel (val, dev->base + offset);
581 static inline u32 read_fs (struct fs_dev *dev, int offset)
583 return readl (dev->base + offset);
588 static inline struct FS_QENTRY *get_qentry (struct fs_dev *dev, struct queue *q)
590 return bus_to_virt (read_fs (dev, Q_WP(q->offset)) & Q_ADDR_MASK);
594 static void submit_qentry (struct fs_dev *dev, struct queue *q, struct FS_QENTRY *qe)
596 u32 wp;
597 struct FS_QENTRY *cqe;
599 /* XXX Sanity check: the write pointer can be checked to be
600 still the same as the value passed as qe... -- REW */
601 /* udelay (5); */
602 while ((wp = read_fs (dev, Q_WP (q->offset))) & Q_FULL) {
603 fs_dprintk (FS_DEBUG_TXQ, "Found queue at %x full. Waiting.\n",
604 q->offset);
605 schedule ();
608 wp &= ~0xf;
609 cqe = bus_to_virt (wp);
610 if (qe != cqe) {
611 fs_dprintk (FS_DEBUG_TXQ, "q mismatch! %p %p\n", qe, cqe);
614 write_fs (dev, Q_WP(q->offset), Q_INCWRAP);
617 static int c;
618 if (!(c++ % 100))
620 int rp, wp;
621 rp = read_fs (dev, Q_RP(q->offset));
622 wp = read_fs (dev, Q_WP(q->offset));
623 fs_dprintk (FS_DEBUG_TXQ, "q at %d: %x-%x: %x entries.\n",
624 q->offset, rp, wp, wp-rp);
629 #ifdef DEBUG_EXTRA
630 static struct FS_QENTRY pq[60];
631 static int qp;
633 static struct FS_BPENTRY dq[60];
634 static int qd;
635 static void *da[60];
636 #endif
638 static void submit_queue (struct fs_dev *dev, struct queue *q,
639 u32 cmd, u32 p1, u32 p2, u32 p3)
641 struct FS_QENTRY *qe;
643 qe = get_qentry (dev, q);
644 qe->cmd = cmd;
645 qe->p0 = p1;
646 qe->p1 = p2;
647 qe->p2 = p3;
648 submit_qentry (dev, q, qe);
650 #ifdef DEBUG_EXTRA
651 pq[qp].cmd = cmd;
652 pq[qp].p0 = p1;
653 pq[qp].p1 = p2;
654 pq[qp].p2 = p3;
655 qp++;
656 if (qp >= 60) qp = 0;
657 #endif
660 /* Test the "other" way one day... -- REW */
661 #if 1
662 #define submit_command submit_queue
663 #else
665 static void submit_command (struct fs_dev *dev, struct queue *q,
666 u32 cmd, u32 p1, u32 p2, u32 p3)
668 write_fs (dev, CMDR0, cmd);
669 write_fs (dev, CMDR1, p1);
670 write_fs (dev, CMDR2, p2);
671 write_fs (dev, CMDR3, p3);
673 #endif
677 static void process_return_queue (struct fs_dev *dev, struct queue *q)
679 long rq;
680 struct FS_QENTRY *qe;
681 void *tc;
683 while (!((rq = read_fs (dev, Q_RP(q->offset))) & Q_EMPTY)) {
684 fs_dprintk (FS_DEBUG_QUEUE, "reaping return queue entry at %lx\n", rq);
685 qe = bus_to_virt (rq);
687 fs_dprintk (FS_DEBUG_QUEUE, "queue entry: %08x %08x %08x %08x. (%d)\n",
688 qe->cmd, qe->p0, qe->p1, qe->p2, STATUS_CODE (qe));
690 switch (STATUS_CODE (qe)) {
691 case 5:
692 tc = bus_to_virt (qe->p0);
693 fs_dprintk (FS_DEBUG_ALLOC, "Free tc: %p\n", tc);
694 kfree (tc);
695 break;
698 write_fs (dev, Q_RP(q->offset), Q_INCWRAP);
703 static void process_txdone_queue (struct fs_dev *dev, struct queue *q)
705 long rq;
706 long tmp;
707 struct FS_QENTRY *qe;
708 struct sk_buff *skb;
709 struct FS_BPENTRY *td;
711 while (!((rq = read_fs (dev, Q_RP(q->offset))) & Q_EMPTY)) {
712 fs_dprintk (FS_DEBUG_QUEUE, "reaping txdone entry at %lx\n", rq);
713 qe = bus_to_virt (rq);
715 fs_dprintk (FS_DEBUG_QUEUE, "queue entry: %08x %08x %08x %08x: %d\n",
716 qe->cmd, qe->p0, qe->p1, qe->p2, STATUS_CODE (qe));
718 if (STATUS_CODE (qe) != 2)
719 fs_dprintk (FS_DEBUG_TXMEM, "queue entry: %08x %08x %08x %08x: %d\n",
720 qe->cmd, qe->p0, qe->p1, qe->p2, STATUS_CODE (qe));
723 switch (STATUS_CODE (qe)) {
724 case 0x01: /* This is for AAL0 where we put the chip in streaming mode */
725 /* Fall through */
726 case 0x02:
727 /* Process a real txdone entry. */
728 tmp = qe->p0;
729 if (tmp & 0x0f)
730 printk (KERN_WARNING "td not aligned: %ld\n", tmp);
731 tmp &= ~0x0f;
732 td = bus_to_virt (tmp);
734 fs_dprintk (FS_DEBUG_QUEUE, "Pool entry: %08x %08x %08x %08x %p.\n",
735 td->flags, td->next, td->bsa, td->aal_bufsize, td->skb );
737 skb = td->skb;
738 if (skb == FS_VCC (ATM_SKB(skb)->vcc)->last_skb) {
739 wake_up_interruptible (& FS_VCC (ATM_SKB(skb)->vcc)->close_wait);
740 FS_VCC (ATM_SKB(skb)->vcc)->last_skb = NULL;
742 td->dev->ntxpckts--;
745 static int c=0;
747 if (!(c++ % 100)) {
748 fs_dprintk (FS_DEBUG_QSIZE, "[%d]", td->dev->ntxpckts);
752 atomic_inc(&ATM_SKB(skb)->vcc->stats->tx);
754 fs_dprintk (FS_DEBUG_TXMEM, "i");
755 fs_dprintk (FS_DEBUG_ALLOC, "Free t-skb: %p\n", skb);
756 fs_kfree_skb (skb);
758 fs_dprintk (FS_DEBUG_ALLOC, "Free trans-d: %p\n", td);
759 memset (td, ATM_POISON_FREE, sizeof(struct FS_BPENTRY));
760 kfree (td);
761 break;
762 default:
763 /* Here we get the tx purge inhibit command ... */
764 /* Action, I believe, is "don't do anything". -- REW */
768 write_fs (dev, Q_RP(q->offset), Q_INCWRAP);
773 static void process_incoming (struct fs_dev *dev, struct queue *q)
775 long rq;
776 struct FS_QENTRY *qe;
777 struct FS_BPENTRY *pe;
778 struct sk_buff *skb;
779 unsigned int channo;
780 struct atm_vcc *atm_vcc;
782 while (!((rq = read_fs (dev, Q_RP(q->offset))) & Q_EMPTY)) {
783 fs_dprintk (FS_DEBUG_QUEUE, "reaping incoming queue entry at %lx\n", rq);
784 qe = bus_to_virt (rq);
786 fs_dprintk (FS_DEBUG_QUEUE, "queue entry: %08x %08x %08x %08x. ",
787 qe->cmd, qe->p0, qe->p1, qe->p2);
789 fs_dprintk (FS_DEBUG_QUEUE, "-> %x: %s\n",
790 STATUS_CODE (qe),
791 res_strings[STATUS_CODE(qe)]);
793 pe = bus_to_virt (qe->p0);
794 fs_dprintk (FS_DEBUG_QUEUE, "Pool entry: %08x %08x %08x %08x %p %p.\n",
795 pe->flags, pe->next, pe->bsa, pe->aal_bufsize,
796 pe->skb, pe->fp);
798 channo = qe->cmd & 0xffff;
800 if (channo < dev->nchannels)
801 atm_vcc = dev->atm_vccs[channo];
802 else
803 atm_vcc = NULL;
805 /* Single buffer packet */
806 switch (STATUS_CODE (qe)) {
807 case 0x1:
808 /* Fall through for streaming mode */
809 case 0x2:/* Packet received OK.... */
810 if (atm_vcc) {
811 skb = pe->skb;
812 pe->fp->n--;
813 #if 0
814 fs_dprintk (FS_DEBUG_QUEUE, "Got skb: %p\n", skb);
815 if (FS_DEBUG_QUEUE & fs_debug) my_hd (bus_to_virt (pe->bsa), 0x20);
816 #endif
817 skb_put (skb, qe->p1 & 0xffff);
818 ATM_SKB(skb)->vcc = atm_vcc;
819 atomic_inc(&atm_vcc->stats->rx);
820 __net_timestamp(skb);
821 fs_dprintk (FS_DEBUG_ALLOC, "Free rec-skb: %p (pushed)\n", skb);
822 atm_vcc->push (atm_vcc, skb);
823 fs_dprintk (FS_DEBUG_ALLOC, "Free rec-d: %p\n", pe);
824 kfree (pe);
825 } else {
826 printk (KERN_ERR "Got a receive on a non-open channel %d.\n", channo);
828 break;
829 case 0x17:/* AAL 5 CRC32 error. IFF the length field is nonzero, a buffer
830 has been consumed and needs to be processed. -- REW */
831 if (qe->p1 & 0xffff) {
832 pe = bus_to_virt (qe->p0);
833 pe->fp->n--;
834 fs_dprintk (FS_DEBUG_ALLOC, "Free rec-skb: %p\n", pe->skb);
835 dev_kfree_skb_any (pe->skb);
836 fs_dprintk (FS_DEBUG_ALLOC, "Free rec-d: %p\n", pe);
837 kfree (pe);
839 if (atm_vcc)
840 atomic_inc(&atm_vcc->stats->rx_drop);
841 break;
842 case 0x1f: /* Reassembly abort: no buffers. */
843 /* Silently increment error counter. */
844 if (atm_vcc)
845 atomic_inc(&atm_vcc->stats->rx_drop);
846 break;
847 default: /* Hmm. Haven't written the code to handle the others yet... -- REW */
848 printk (KERN_WARNING "Don't know what to do with RX status %x: %s.\n",
849 STATUS_CODE(qe), res_strings[STATUS_CODE (qe)]);
851 write_fs (dev, Q_RP(q->offset), Q_INCWRAP);
857 #define DO_DIRECTION(tp) ((tp)->traffic_class != ATM_NONE)
859 static int fs_open(struct atm_vcc *atm_vcc)
861 struct fs_dev *dev;
862 struct fs_vcc *vcc;
863 struct fs_transmit_config *tc;
864 struct atm_trafprm * txtp;
865 struct atm_trafprm * rxtp;
866 /* struct fs_receive_config *rc;*/
867 /* struct FS_QENTRY *qe; */
868 int error;
869 int bfp;
870 int to;
871 unsigned short tmc0;
872 short vpi = atm_vcc->vpi;
873 int vci = atm_vcc->vci;
875 func_enter ();
877 dev = FS_DEV(atm_vcc->dev);
878 fs_dprintk (FS_DEBUG_OPEN, "fs: open on dev: %p, vcc at %p\n",
879 dev, atm_vcc);
881 if (vci != ATM_VPI_UNSPEC && vpi != ATM_VCI_UNSPEC)
882 set_bit(ATM_VF_ADDR, &atm_vcc->flags);
884 if ((atm_vcc->qos.aal != ATM_AAL5) &&
885 (atm_vcc->qos.aal != ATM_AAL2))
886 return -EINVAL; /* XXX AAL0 */
888 fs_dprintk (FS_DEBUG_OPEN, "fs: (itf %d): open %d.%d\n",
889 atm_vcc->dev->number, atm_vcc->vpi, atm_vcc->vci);
891 /* XXX handle qos parameters (rate limiting) ? */
893 vcc = kmalloc(sizeof(struct fs_vcc), GFP_KERNEL);
894 fs_dprintk (FS_DEBUG_ALLOC, "Alloc VCC: %p(%Zd)\n", vcc, sizeof(struct fs_vcc));
895 if (!vcc) {
896 clear_bit(ATM_VF_ADDR, &atm_vcc->flags);
897 return -ENOMEM;
900 atm_vcc->dev_data = vcc;
901 vcc->last_skb = NULL;
903 init_waitqueue_head (&vcc->close_wait);
905 txtp = &atm_vcc->qos.txtp;
906 rxtp = &atm_vcc->qos.rxtp;
908 if (!test_bit(ATM_VF_PARTIAL, &atm_vcc->flags)) {
909 if (IS_FS50(dev)) {
910 /* Increment the channel numer: take a free one next time. */
911 for (to=33;to;to--, dev->channo++) {
912 /* We only have 32 channels */
913 if (dev->channo >= 32)
914 dev->channo = 0;
915 /* If we need to do RX, AND the RX is inuse, try the next */
916 if (DO_DIRECTION(rxtp) && dev->atm_vccs[dev->channo])
917 continue;
918 /* If we need to do TX, AND the TX is inuse, try the next */
919 if (DO_DIRECTION(txtp) && test_bit (dev->channo, dev->tx_inuse))
920 continue;
921 /* Ok, both are free! (or not needed) */
922 break;
924 if (!to) {
925 printk ("No more free channels for FS50..\n");
926 return -EBUSY;
928 vcc->channo = dev->channo;
929 dev->channo &= dev->channel_mask;
931 } else {
932 vcc->channo = (vpi << FS155_VCI_BITS) | (vci);
933 if (((DO_DIRECTION(rxtp) && dev->atm_vccs[vcc->channo])) ||
934 ( DO_DIRECTION(txtp) && test_bit (vcc->channo, dev->tx_inuse))) {
935 printk ("Channel is in use for FS155.\n");
936 return -EBUSY;
939 fs_dprintk (FS_DEBUG_OPEN, "OK. Allocated channel %x(%d).\n",
940 vcc->channo, vcc->channo);
943 if (DO_DIRECTION (txtp)) {
944 tc = kmalloc (sizeof (struct fs_transmit_config), GFP_KERNEL);
945 fs_dprintk (FS_DEBUG_ALLOC, "Alloc tc: %p(%Zd)\n",
946 tc, sizeof (struct fs_transmit_config));
947 if (!tc) {
948 fs_dprintk (FS_DEBUG_OPEN, "fs: can't alloc transmit_config.\n");
949 return -ENOMEM;
952 /* Allocate the "open" entry from the high priority txq. This makes
953 it most likely that the chip will notice it. It also prevents us
954 from having to wait for completion. On the other hand, we may
955 need to wait for completion anyway, to see if it completed
956 successfully. */
958 switch (atm_vcc->qos.aal) {
959 case ATM_AAL2:
960 case ATM_AAL0:
961 tc->flags = 0
962 | TC_FLAGS_TRANSPARENT_PAYLOAD
963 | TC_FLAGS_PACKET
964 | (1 << 28)
965 | TC_FLAGS_TYPE_UBR /* XXX Change to VBR -- PVDL */
966 | TC_FLAGS_CAL0;
967 break;
968 case ATM_AAL5:
969 tc->flags = 0
970 | TC_FLAGS_AAL5
971 | TC_FLAGS_PACKET /* ??? */
972 | TC_FLAGS_TYPE_CBR
973 | TC_FLAGS_CAL0;
974 break;
975 default:
976 printk ("Unknown aal: %d\n", atm_vcc->qos.aal);
977 tc->flags = 0;
979 /* Docs are vague about this atm_hdr field. By the way, the FS
980 * chip makes odd errors if lower bits are set.... -- REW */
981 tc->atm_hdr = (vpi << 20) | (vci << 4);
982 tmc0 = 0;
984 int pcr = atm_pcr_goal (txtp);
986 fs_dprintk (FS_DEBUG_OPEN, "pcr = %d.\n", pcr);
988 /* XXX Hmm. officially we're only allowed to do this if rounding
989 is round_down -- REW */
990 if (IS_FS50(dev)) {
991 if (pcr > 51840000/53/8) pcr = 51840000/53/8;
992 } else {
993 if (pcr > 155520000/53/8) pcr = 155520000/53/8;
995 if (!pcr) {
996 /* no rate cap */
997 tmc0 = IS_FS50(dev)?0x61BE:0x64c9; /* Just copied over the bits from Fujitsu -- REW */
998 } else {
999 int r;
1000 if (pcr < 0) {
1001 r = ROUND_DOWN;
1002 pcr = -pcr;
1003 } else {
1004 r = ROUND_UP;
1006 error = make_rate (pcr, r, &tmc0, NULL);
1007 if (error) {
1008 kfree(tc);
1009 return error;
1012 fs_dprintk (FS_DEBUG_OPEN, "pcr = %d.\n", pcr);
1015 tc->TMC[0] = tmc0 | 0x4000;
1016 tc->TMC[1] = 0; /* Unused */
1017 tc->TMC[2] = 0; /* Unused */
1018 tc->TMC[3] = 0; /* Unused */
1020 tc->spec = 0; /* UTOPIA address, UDF, HEC: Unused -> 0 */
1021 tc->rtag[0] = 0; /* What should I do with routing tags???
1022 -- Not used -- AS -- Thanks -- REW*/
1023 tc->rtag[1] = 0;
1024 tc->rtag[2] = 0;
1026 if (fs_debug & FS_DEBUG_OPEN) {
1027 fs_dprintk (FS_DEBUG_OPEN, "TX config record:\n");
1028 my_hd (tc, sizeof (*tc));
1031 /* We now use the "submit_command" function to submit commands to
1032 the firestream. There is a define up near the definition of
1033 that routine that switches this routine between immediate write
1034 to the immediate comamnd registers and queuing the commands in
1035 the HPTXQ for execution. This last technique might be more
1036 efficient if we know we're going to submit a whole lot of
1037 commands in one go, but this driver is not setup to be able to
1038 use such a construct. So it probably doen't matter much right
1039 now. -- REW */
1041 /* The command is IMMediate and INQueue. The parameters are out-of-line.. */
1042 submit_command (dev, &dev->hp_txq,
1043 QE_CMD_CONFIG_TX | QE_CMD_IMM_INQ | vcc->channo,
1044 virt_to_bus (tc), 0, 0);
1046 submit_command (dev, &dev->hp_txq,
1047 QE_CMD_TX_EN | QE_CMD_IMM_INQ | vcc->channo,
1048 0, 0, 0);
1049 set_bit (vcc->channo, dev->tx_inuse);
1052 if (DO_DIRECTION (rxtp)) {
1053 dev->atm_vccs[vcc->channo] = atm_vcc;
1055 for (bfp = 0;bfp < FS_NR_FREE_POOLS; bfp++)
1056 if (atm_vcc->qos.rxtp.max_sdu <= dev->rx_fp[bfp].bufsize) break;
1057 if (bfp >= FS_NR_FREE_POOLS) {
1058 fs_dprintk (FS_DEBUG_OPEN, "No free pool fits sdu: %d.\n",
1059 atm_vcc->qos.rxtp.max_sdu);
1060 /* XXX Cleanup? -- Would just calling fs_close work??? -- REW */
1062 /* XXX clear tx inuse. Close TX part? */
1063 dev->atm_vccs[vcc->channo] = NULL;
1064 kfree (vcc);
1065 return -EINVAL;
1068 switch (atm_vcc->qos.aal) {
1069 case ATM_AAL0:
1070 case ATM_AAL2:
1071 submit_command (dev, &dev->hp_txq,
1072 QE_CMD_CONFIG_RX | QE_CMD_IMM_INQ | vcc->channo,
1073 RC_FLAGS_TRANSP |
1074 RC_FLAGS_BFPS_BFP * bfp |
1075 RC_FLAGS_RXBM_PSB, 0, 0);
1076 break;
1077 case ATM_AAL5:
1078 submit_command (dev, &dev->hp_txq,
1079 QE_CMD_CONFIG_RX | QE_CMD_IMM_INQ | vcc->channo,
1080 RC_FLAGS_AAL5 |
1081 RC_FLAGS_BFPS_BFP * bfp |
1082 RC_FLAGS_RXBM_PSB, 0, 0);
1083 break;
1085 if (IS_FS50 (dev)) {
1086 submit_command (dev, &dev->hp_txq,
1087 QE_CMD_REG_WR | QE_CMD_IMM_INQ,
1088 0x80 + vcc->channo,
1089 (vpi << 16) | vci, 0 ); /* XXX -- Use defines. */
1091 submit_command (dev, &dev->hp_txq,
1092 QE_CMD_RX_EN | QE_CMD_IMM_INQ | vcc->channo,
1093 0, 0, 0);
1096 /* Indicate we're done! */
1097 set_bit(ATM_VF_READY, &atm_vcc->flags);
1099 func_exit ();
1100 return 0;
1104 static void fs_close(struct atm_vcc *atm_vcc)
1106 struct fs_dev *dev = FS_DEV (atm_vcc->dev);
1107 struct fs_vcc *vcc = FS_VCC (atm_vcc);
1108 struct atm_trafprm * txtp;
1109 struct atm_trafprm * rxtp;
1111 func_enter ();
1113 clear_bit(ATM_VF_READY, &atm_vcc->flags);
1115 fs_dprintk (FS_DEBUG_QSIZE, "--==**[%d]**==--", dev->ntxpckts);
1116 if (vcc->last_skb) {
1117 fs_dprintk (FS_DEBUG_QUEUE, "Waiting for skb %p to be sent.\n",
1118 vcc->last_skb);
1119 /* We're going to wait for the last packet to get sent on this VC. It would
1120 be impolite not to send them don't you think?
1122 We don't know which packets didn't get sent. So if we get interrupted in
1123 this sleep_on, we'll lose any reference to these packets. Memory leak!
1124 On the other hand, it's awfully convenient that we can abort a "close" that
1125 is taking too long. Maybe just use non-interruptible sleep on? -- REW */
1126 interruptible_sleep_on (& vcc->close_wait);
1129 txtp = &atm_vcc->qos.txtp;
1130 rxtp = &atm_vcc->qos.rxtp;
1133 /* See App note XXX (Unpublished as of now) for the reason for the
1134 removal of the "CMD_IMM_INQ" part of the TX_PURGE_INH... -- REW */
1136 if (DO_DIRECTION (txtp)) {
1137 submit_command (dev, &dev->hp_txq,
1138 QE_CMD_TX_PURGE_INH | /*QE_CMD_IMM_INQ|*/ vcc->channo, 0,0,0);
1139 clear_bit (vcc->channo, dev->tx_inuse);
1142 if (DO_DIRECTION (rxtp)) {
1143 submit_command (dev, &dev->hp_txq,
1144 QE_CMD_RX_PURGE_INH | QE_CMD_IMM_INQ | vcc->channo, 0,0,0);
1145 dev->atm_vccs [vcc->channo] = NULL;
1147 /* This means that this is configured as a receive channel */
1148 if (IS_FS50 (dev)) {
1149 /* Disable the receive filter. Is 0/0 indeed an invalid receive
1150 channel? -- REW. Yes it is. -- Hang. Ok. I'll use -1
1151 (0xfff...) -- REW */
1152 submit_command (dev, &dev->hp_txq,
1153 QE_CMD_REG_WR | QE_CMD_IMM_INQ,
1154 0x80 + vcc->channo, -1, 0 );
1158 fs_dprintk (FS_DEBUG_ALLOC, "Free vcc: %p\n", vcc);
1159 kfree (vcc);
1161 func_exit ();
1165 static int fs_send (struct atm_vcc *atm_vcc, struct sk_buff *skb)
1167 struct fs_dev *dev = FS_DEV (atm_vcc->dev);
1168 struct fs_vcc *vcc = FS_VCC (atm_vcc);
1169 struct FS_BPENTRY *td;
1171 func_enter ();
1173 fs_dprintk (FS_DEBUG_TXMEM, "I");
1174 fs_dprintk (FS_DEBUG_SEND, "Send: atm_vcc %p skb %p vcc %p dev %p\n",
1175 atm_vcc, skb, vcc, dev);
1177 fs_dprintk (FS_DEBUG_ALLOC, "Alloc t-skb: %p (atm_send)\n", skb);
1179 ATM_SKB(skb)->vcc = atm_vcc;
1181 vcc->last_skb = skb;
1183 td = kmalloc (sizeof (struct FS_BPENTRY), GFP_ATOMIC);
1184 fs_dprintk (FS_DEBUG_ALLOC, "Alloc transd: %p(%Zd)\n", td, sizeof (struct FS_BPENTRY));
1185 if (!td) {
1186 /* Oops out of mem */
1187 return -ENOMEM;
1190 fs_dprintk (FS_DEBUG_SEND, "first word in buffer: %x\n",
1191 *(int *) skb->data);
1193 td->flags = TD_EPI | TD_DATA | skb->len;
1194 td->next = 0;
1195 td->bsa = virt_to_bus (skb->data);
1196 td->skb = skb;
1197 td->dev = dev;
1198 dev->ntxpckts++;
1200 #ifdef DEBUG_EXTRA
1201 da[qd] = td;
1202 dq[qd].flags = td->flags;
1203 dq[qd].next = td->next;
1204 dq[qd].bsa = td->bsa;
1205 dq[qd].skb = td->skb;
1206 dq[qd].dev = td->dev;
1207 qd++;
1208 if (qd >= 60) qd = 0;
1209 #endif
1211 submit_queue (dev, &dev->hp_txq,
1212 QE_TRANSMIT_DE | vcc->channo,
1213 virt_to_bus (td), 0,
1214 virt_to_bus (td));
1216 fs_dprintk (FS_DEBUG_QUEUE, "in send: txq %d txrq %d\n",
1217 read_fs (dev, Q_EA (dev->hp_txq.offset)) -
1218 read_fs (dev, Q_SA (dev->hp_txq.offset)),
1219 read_fs (dev, Q_EA (dev->tx_relq.offset)) -
1220 read_fs (dev, Q_SA (dev->tx_relq.offset)));
1222 func_exit ();
1223 return 0;
1227 /* Some function placeholders for functions we don't yet support. */
1229 #if 0
1230 static int fs_ioctl(struct atm_dev *dev,unsigned int cmd,void __user *arg)
1232 func_enter ();
1233 func_exit ();
1234 return -ENOIOCTLCMD;
1238 static int fs_getsockopt(struct atm_vcc *vcc,int level,int optname,
1239 void __user *optval,int optlen)
1241 func_enter ();
1242 func_exit ();
1243 return 0;
1247 static int fs_setsockopt(struct atm_vcc *vcc,int level,int optname,
1248 void __user *optval,unsigned int optlen)
1250 func_enter ();
1251 func_exit ();
1252 return 0;
1256 static void fs_phy_put(struct atm_dev *dev,unsigned char value,
1257 unsigned long addr)
1259 func_enter ();
1260 func_exit ();
1264 static unsigned char fs_phy_get(struct atm_dev *dev,unsigned long addr)
1266 func_enter ();
1267 func_exit ();
1268 return 0;
1272 static int fs_change_qos(struct atm_vcc *vcc,struct atm_qos *qos,int flags)
1274 func_enter ();
1275 func_exit ();
1276 return 0;
1279 #endif
1282 static const struct atmdev_ops ops = {
1283 .open = fs_open,
1284 .close = fs_close,
1285 .send = fs_send,
1286 .owner = THIS_MODULE,
1287 /* ioctl: fs_ioctl, */
1288 /* getsockopt: fs_getsockopt, */
1289 /* setsockopt: fs_setsockopt, */
1290 /* change_qos: fs_change_qos, */
1292 /* For now implement these internally here... */
1293 /* phy_put: fs_phy_put, */
1294 /* phy_get: fs_phy_get, */
1298 static void __devinit undocumented_pci_fix (struct pci_dev *pdev)
1300 u32 tint;
1302 /* The Windows driver says: */
1303 /* Switch off FireStream Retry Limit Threshold
1306 /* The register at 0x28 is documented as "reserved", no further
1307 comments. */
1309 pci_read_config_dword (pdev, 0x28, &tint);
1310 if (tint != 0x80) {
1311 tint = 0x80;
1312 pci_write_config_dword (pdev, 0x28, tint);
1318 /**************************************************************************
1319 * PHY routines *
1320 **************************************************************************/
1322 static void __devinit write_phy (struct fs_dev *dev, int regnum, int val)
1324 submit_command (dev, &dev->hp_txq, QE_CMD_PRP_WR | QE_CMD_IMM_INQ,
1325 regnum, val, 0);
1328 static int __devinit init_phy (struct fs_dev *dev, struct reginit_item *reginit)
1330 int i;
1332 func_enter ();
1333 while (reginit->reg != PHY_EOF) {
1334 if (reginit->reg == PHY_CLEARALL) {
1335 /* "PHY_CLEARALL means clear all registers. Numregisters is in "val". */
1336 for (i=0;i<reginit->val;i++) {
1337 write_phy (dev, i, 0);
1339 } else {
1340 write_phy (dev, reginit->reg, reginit->val);
1342 reginit++;
1344 func_exit ();
1345 return 0;
1348 static void reset_chip (struct fs_dev *dev)
1350 int i;
1352 write_fs (dev, SARMODE0, SARMODE0_SRTS0);
1354 /* Undocumented delay */
1355 udelay (128);
1357 /* The "internal registers are documented to all reset to zero, but
1358 comments & code in the Windows driver indicates that the pools are
1359 NOT reset. */
1360 for (i=0;i < FS_NR_FREE_POOLS;i++) {
1361 write_fs (dev, FP_CNF (RXB_FP(i)), 0);
1362 write_fs (dev, FP_SA (RXB_FP(i)), 0);
1363 write_fs (dev, FP_EA (RXB_FP(i)), 0);
1364 write_fs (dev, FP_CNT (RXB_FP(i)), 0);
1365 write_fs (dev, FP_CTU (RXB_FP(i)), 0);
1368 /* The same goes for the match channel registers, although those are
1369 NOT documented that way in the Windows driver. -- REW */
1370 /* The Windows driver DOES write 0 to these registers somewhere in
1371 the init sequence. However, a small hardware-feature, will
1372 prevent reception of data on VPI/VCI = 0/0 (Unless the channel
1373 allocated happens to have no disabled channels that have a lower
1374 number. -- REW */
1376 /* Clear the match channel registers. */
1377 if (IS_FS50 (dev)) {
1378 for (i=0;i<FS50_NR_CHANNELS;i++) {
1379 write_fs (dev, 0x200 + i * 4, -1);
1384 static void __devinit *aligned_kmalloc (int size, gfp_t flags, int alignment)
1386 void *t;
1388 if (alignment <= 0x10) {
1389 t = kmalloc (size, flags);
1390 if ((unsigned long)t & (alignment-1)) {
1391 printk ("Kmalloc doesn't align things correctly! %p\n", t);
1392 kfree (t);
1393 return aligned_kmalloc (size, flags, alignment * 4);
1395 return t;
1397 printk (KERN_ERR "Request for > 0x10 alignment not yet implemented (hard!)\n");
1398 return NULL;
1401 static int __devinit init_q (struct fs_dev *dev,
1402 struct queue *txq, int queue, int nentries, int is_rq)
1404 int sz = nentries * sizeof (struct FS_QENTRY);
1405 struct FS_QENTRY *p;
1407 func_enter ();
1409 fs_dprintk (FS_DEBUG_INIT, "Inititing queue at %x: %d entries:\n",
1410 queue, nentries);
1412 p = aligned_kmalloc (sz, GFP_KERNEL, 0x10);
1413 fs_dprintk (FS_DEBUG_ALLOC, "Alloc queue: %p(%d)\n", p, sz);
1415 if (!p) return 0;
1417 write_fs (dev, Q_SA(queue), virt_to_bus(p));
1418 write_fs (dev, Q_EA(queue), virt_to_bus(p+nentries-1));
1419 write_fs (dev, Q_WP(queue), virt_to_bus(p));
1420 write_fs (dev, Q_RP(queue), virt_to_bus(p));
1421 if (is_rq) {
1422 /* Configuration for the receive queue: 0: interrupt immediately,
1423 no pre-warning to empty queues: We do our best to keep the
1424 queue filled anyway. */
1425 write_fs (dev, Q_CNF(queue), 0 );
1428 txq->sa = p;
1429 txq->ea = p;
1430 txq->offset = queue;
1432 func_exit ();
1433 return 1;
1437 static int __devinit init_fp (struct fs_dev *dev,
1438 struct freepool *fp, int queue, int bufsize, int nr_buffers)
1440 func_enter ();
1442 fs_dprintk (FS_DEBUG_INIT, "Inititing free pool at %x:\n", queue);
1444 write_fs (dev, FP_CNF(queue), (bufsize * RBFP_RBS) | RBFP_RBSVAL | RBFP_CME);
1445 write_fs (dev, FP_SA(queue), 0);
1446 write_fs (dev, FP_EA(queue), 0);
1447 write_fs (dev, FP_CTU(queue), 0);
1448 write_fs (dev, FP_CNT(queue), 0);
1450 fp->offset = queue;
1451 fp->bufsize = bufsize;
1452 fp->nr_buffers = nr_buffers;
1454 func_exit ();
1455 return 1;
1459 static inline int nr_buffers_in_freepool (struct fs_dev *dev, struct freepool *fp)
1461 #if 0
1462 /* This seems to be unreliable.... */
1463 return read_fs (dev, FP_CNT (fp->offset));
1464 #else
1465 return fp->n;
1466 #endif
1470 /* Check if this gets going again if a pool ever runs out. -- Yes, it
1471 does. I've seen "receive abort: no buffers" and things started
1472 working again after that... -- REW */
1474 static void top_off_fp (struct fs_dev *dev, struct freepool *fp,
1475 gfp_t gfp_flags)
1477 struct FS_BPENTRY *qe, *ne;
1478 struct sk_buff *skb;
1479 int n = 0;
1480 u32 qe_tmp;
1482 fs_dprintk (FS_DEBUG_QUEUE, "Topping off queue at %x (%d-%d/%d)\n",
1483 fp->offset, read_fs (dev, FP_CNT (fp->offset)), fp->n,
1484 fp->nr_buffers);
1485 while (nr_buffers_in_freepool(dev, fp) < fp->nr_buffers) {
1487 skb = alloc_skb (fp->bufsize, gfp_flags);
1488 fs_dprintk (FS_DEBUG_ALLOC, "Alloc rec-skb: %p(%d)\n", skb, fp->bufsize);
1489 if (!skb) break;
1490 ne = kmalloc (sizeof (struct FS_BPENTRY), gfp_flags);
1491 fs_dprintk (FS_DEBUG_ALLOC, "Alloc rec-d: %p(%Zd)\n", ne, sizeof (struct FS_BPENTRY));
1492 if (!ne) {
1493 fs_dprintk (FS_DEBUG_ALLOC, "Free rec-skb: %p\n", skb);
1494 dev_kfree_skb_any (skb);
1495 break;
1498 fs_dprintk (FS_DEBUG_QUEUE, "Adding skb %p desc %p -> %p(%p) ",
1499 skb, ne, skb->data, skb->head);
1500 n++;
1501 ne->flags = FP_FLAGS_EPI | fp->bufsize;
1502 ne->next = virt_to_bus (NULL);
1503 ne->bsa = virt_to_bus (skb->data);
1504 ne->aal_bufsize = fp->bufsize;
1505 ne->skb = skb;
1506 ne->fp = fp;
1509 * FIXME: following code encodes and decodes
1510 * machine pointers (could be 64-bit) into a
1511 * 32-bit register.
1514 qe_tmp = read_fs (dev, FP_EA(fp->offset));
1515 fs_dprintk (FS_DEBUG_QUEUE, "link at %x\n", qe_tmp);
1516 if (qe_tmp) {
1517 qe = bus_to_virt ((long) qe_tmp);
1518 qe->next = virt_to_bus(ne);
1519 qe->flags &= ~FP_FLAGS_EPI;
1520 } else
1521 write_fs (dev, FP_SA(fp->offset), virt_to_bus(ne));
1523 write_fs (dev, FP_EA(fp->offset), virt_to_bus (ne));
1524 fp->n++; /* XXX Atomic_inc? */
1525 write_fs (dev, FP_CTU(fp->offset), 1);
1528 fs_dprintk (FS_DEBUG_QUEUE, "Added %d entries. \n", n);
1531 static void __devexit free_queue (struct fs_dev *dev, struct queue *txq)
1533 func_enter ();
1535 write_fs (dev, Q_SA(txq->offset), 0);
1536 write_fs (dev, Q_EA(txq->offset), 0);
1537 write_fs (dev, Q_RP(txq->offset), 0);
1538 write_fs (dev, Q_WP(txq->offset), 0);
1539 /* Configuration ? */
1541 fs_dprintk (FS_DEBUG_ALLOC, "Free queue: %p\n", txq->sa);
1542 kfree (txq->sa);
1544 func_exit ();
1547 static void __devexit free_freepool (struct fs_dev *dev, struct freepool *fp)
1549 func_enter ();
1551 write_fs (dev, FP_CNF(fp->offset), 0);
1552 write_fs (dev, FP_SA (fp->offset), 0);
1553 write_fs (dev, FP_EA (fp->offset), 0);
1554 write_fs (dev, FP_CNT(fp->offset), 0);
1555 write_fs (dev, FP_CTU(fp->offset), 0);
1557 func_exit ();
1562 static irqreturn_t fs_irq (int irq, void *dev_id)
1564 int i;
1565 u32 status;
1566 struct fs_dev *dev = dev_id;
1568 status = read_fs (dev, ISR);
1569 if (!status)
1570 return IRQ_NONE;
1572 func_enter ();
1574 #ifdef IRQ_RATE_LIMIT
1575 /* Aaargh! I'm ashamed. This costs more lines-of-code than the actual
1576 interrupt routine!. (Well, used to when I wrote that comment) -- REW */
1578 static int lastjif;
1579 static int nintr=0;
1581 if (lastjif == jiffies) {
1582 if (++nintr > IRQ_RATE_LIMIT) {
1583 free_irq (dev->irq, dev_id);
1584 printk (KERN_ERR "fs: Too many interrupts. Turning off interrupt %d.\n",
1585 dev->irq);
1587 } else {
1588 lastjif = jiffies;
1589 nintr = 0;
1592 #endif
1593 fs_dprintk (FS_DEBUG_QUEUE, "in intr: txq %d txrq %d\n",
1594 read_fs (dev, Q_EA (dev->hp_txq.offset)) -
1595 read_fs (dev, Q_SA (dev->hp_txq.offset)),
1596 read_fs (dev, Q_EA (dev->tx_relq.offset)) -
1597 read_fs (dev, Q_SA (dev->tx_relq.offset)));
1599 /* print the bits in the ISR register. */
1600 if (fs_debug & FS_DEBUG_IRQ) {
1601 /* The FS_DEBUG things are unnecessary here. But this way it is
1602 clear for grep that these are debug prints. */
1603 fs_dprintk (FS_DEBUG_IRQ, "IRQ status:");
1604 for (i=0;i<27;i++)
1605 if (status & (1 << i))
1606 fs_dprintk (FS_DEBUG_IRQ, " %s", irq_bitname[i]);
1607 fs_dprintk (FS_DEBUG_IRQ, "\n");
1610 if (status & ISR_RBRQ0_W) {
1611 fs_dprintk (FS_DEBUG_IRQ, "Iiiin-coming (0)!!!!\n");
1612 process_incoming (dev, &dev->rx_rq[0]);
1613 /* items mentioned on RBRQ0 are from FP 0 or 1. */
1614 top_off_fp (dev, &dev->rx_fp[0], GFP_ATOMIC);
1615 top_off_fp (dev, &dev->rx_fp[1], GFP_ATOMIC);
1618 if (status & ISR_RBRQ1_W) {
1619 fs_dprintk (FS_DEBUG_IRQ, "Iiiin-coming (1)!!!!\n");
1620 process_incoming (dev, &dev->rx_rq[1]);
1621 top_off_fp (dev, &dev->rx_fp[2], GFP_ATOMIC);
1622 top_off_fp (dev, &dev->rx_fp[3], GFP_ATOMIC);
1625 if (status & ISR_RBRQ2_W) {
1626 fs_dprintk (FS_DEBUG_IRQ, "Iiiin-coming (2)!!!!\n");
1627 process_incoming (dev, &dev->rx_rq[2]);
1628 top_off_fp (dev, &dev->rx_fp[4], GFP_ATOMIC);
1629 top_off_fp (dev, &dev->rx_fp[5], GFP_ATOMIC);
1632 if (status & ISR_RBRQ3_W) {
1633 fs_dprintk (FS_DEBUG_IRQ, "Iiiin-coming (3)!!!!\n");
1634 process_incoming (dev, &dev->rx_rq[3]);
1635 top_off_fp (dev, &dev->rx_fp[6], GFP_ATOMIC);
1636 top_off_fp (dev, &dev->rx_fp[7], GFP_ATOMIC);
1639 if (status & ISR_CSQ_W) {
1640 fs_dprintk (FS_DEBUG_IRQ, "Command executed ok!\n");
1641 process_return_queue (dev, &dev->st_q);
1644 if (status & ISR_TBRQ_W) {
1645 fs_dprintk (FS_DEBUG_IRQ, "Data tramsitted!\n");
1646 process_txdone_queue (dev, &dev->tx_relq);
1649 func_exit ();
1650 return IRQ_HANDLED;
1654 #ifdef FS_POLL_FREQ
1655 static void fs_poll (unsigned long data)
1657 struct fs_dev *dev = (struct fs_dev *) data;
1659 fs_irq (0, dev);
1660 dev->timer.expires = jiffies + FS_POLL_FREQ;
1661 add_timer (&dev->timer);
1663 #endif
1665 static int __devinit fs_init (struct fs_dev *dev)
1667 struct pci_dev *pci_dev;
1668 int isr, to;
1669 int i;
1671 func_enter ();
1672 pci_dev = dev->pci_dev;
1674 printk (KERN_INFO "found a FireStream %d card, base %16llx, irq%d.\n",
1675 IS_FS50(dev)?50:155,
1676 (unsigned long long)pci_resource_start(pci_dev, 0),
1677 dev->pci_dev->irq);
1679 if (fs_debug & FS_DEBUG_INIT)
1680 my_hd ((unsigned char *) dev, sizeof (*dev));
1682 undocumented_pci_fix (pci_dev);
1684 dev->hw_base = pci_resource_start(pci_dev, 0);
1686 dev->base = ioremap(dev->hw_base, 0x1000);
1688 reset_chip (dev);
1690 write_fs (dev, SARMODE0, 0
1691 | (0 * SARMODE0_SHADEN) /* We don't use shadow registers. */
1692 | (1 * SARMODE0_INTMODE_READCLEAR)
1693 | (1 * SARMODE0_CWRE)
1694 | (IS_FS50(dev) ? SARMODE0_PRPWT_FS50_5:
1695 SARMODE0_PRPWT_FS155_3)
1696 | (1 * SARMODE0_CALSUP_1)
1697 | (IS_FS50(dev) ? (0
1698 | SARMODE0_RXVCS_32
1699 | SARMODE0_ABRVCS_32
1700 | SARMODE0_TXVCS_32):
1702 | SARMODE0_RXVCS_1k
1703 | SARMODE0_ABRVCS_1k
1704 | SARMODE0_TXVCS_1k)));
1706 /* 10ms * 100 is 1 second. That should be enough, as AN3:9 says it takes
1707 1ms. */
1708 to = 100;
1709 while (--to) {
1710 isr = read_fs (dev, ISR);
1712 /* This bit is documented as "RESERVED" */
1713 if (isr & ISR_INIT_ERR) {
1714 printk (KERN_ERR "Error initializing the FS... \n");
1715 goto unmap;
1717 if (isr & ISR_INIT) {
1718 fs_dprintk (FS_DEBUG_INIT, "Ha! Initialized OK!\n");
1719 break;
1722 /* Try again after 10ms. */
1723 msleep(10);
1726 if (!to) {
1727 printk (KERN_ERR "timeout initializing the FS... \n");
1728 goto unmap;
1731 /* XXX fix for fs155 */
1732 dev->channel_mask = 0x1f;
1733 dev->channo = 0;
1735 /* AN3: 10 */
1736 write_fs (dev, SARMODE1, 0
1737 | (fs_keystream * SARMODE1_DEFHEC) /* XXX PHY */
1738 | ((loopback == 1) * SARMODE1_TSTLP) /* XXX Loopback mode enable... */
1739 | (1 * SARMODE1_DCRM)
1740 | (1 * SARMODE1_DCOAM)
1741 | (0 * SARMODE1_OAMCRC)
1742 | (0 * SARMODE1_DUMPE)
1743 | (0 * SARMODE1_GPLEN)
1744 | (0 * SARMODE1_GNAM)
1745 | (0 * SARMODE1_GVAS)
1746 | (0 * SARMODE1_GPAS)
1747 | (1 * SARMODE1_GPRI)
1748 | (0 * SARMODE1_PMS)
1749 | (0 * SARMODE1_GFCR)
1750 | (1 * SARMODE1_HECM2)
1751 | (1 * SARMODE1_HECM1)
1752 | (1 * SARMODE1_HECM0)
1753 | (1 << 12) /* That's what hang's driver does. Program to 0 */
1754 | (0 * 0xff) /* XXX FS155 */);
1757 /* Cal prescale etc */
1759 /* AN3: 11 */
1760 write_fs (dev, TMCONF, 0x0000000f);
1761 write_fs (dev, CALPRESCALE, 0x01010101 * num);
1762 write_fs (dev, 0x80, 0x000F00E4);
1764 /* AN3: 12 */
1765 write_fs (dev, CELLOSCONF, 0
1766 | ( 0 * CELLOSCONF_CEN)
1767 | ( CELLOSCONF_SC1)
1768 | (0x80 * CELLOSCONF_COBS)
1769 | (num * CELLOSCONF_COPK) /* Changed from 0xff to 0x5a */
1770 | (num * CELLOSCONF_COST));/* after a hint from Hang.
1771 * performance jumped 50->70... */
1773 /* Magic value by Hang */
1774 write_fs (dev, CELLOSCONF_COST, 0x0B809191);
1776 if (IS_FS50 (dev)) {
1777 write_fs (dev, RAS0, RAS0_DCD_XHLT);
1778 dev->atm_dev->ci_range.vpi_bits = 12;
1779 dev->atm_dev->ci_range.vci_bits = 16;
1780 dev->nchannels = FS50_NR_CHANNELS;
1781 } else {
1782 write_fs (dev, RAS0, RAS0_DCD_XHLT
1783 | (((1 << FS155_VPI_BITS) - 1) * RAS0_VPSEL)
1784 | (((1 << FS155_VCI_BITS) - 1) * RAS0_VCSEL));
1785 /* We can chose the split arbitarily. We might be able to
1786 support more. Whatever. This should do for now. */
1787 dev->atm_dev->ci_range.vpi_bits = FS155_VPI_BITS;
1788 dev->atm_dev->ci_range.vci_bits = FS155_VCI_BITS;
1790 /* Address bits we can't use should be compared to 0. */
1791 write_fs (dev, RAC, 0);
1793 /* Manual (AN9, page 6) says ASF1=0 means compare Utopia address
1794 * too. I can't find ASF1 anywhere. Anyway, we AND with just the
1795 * other bits, then compare with 0, which is exactly what we
1796 * want. */
1797 write_fs (dev, RAM, (1 << (28 - FS155_VPI_BITS - FS155_VCI_BITS)) - 1);
1798 dev->nchannels = FS155_NR_CHANNELS;
1800 dev->atm_vccs = kcalloc (dev->nchannels, sizeof (struct atm_vcc *),
1801 GFP_KERNEL);
1802 fs_dprintk (FS_DEBUG_ALLOC, "Alloc atmvccs: %p(%Zd)\n",
1803 dev->atm_vccs, dev->nchannels * sizeof (struct atm_vcc *));
1805 if (!dev->atm_vccs) {
1806 printk (KERN_WARNING "Couldn't allocate memory for VCC buffers. Woops!\n");
1807 /* XXX Clean up..... */
1808 goto unmap;
1811 dev->tx_inuse = kzalloc (dev->nchannels / 8 /* bits/byte */ , GFP_KERNEL);
1812 fs_dprintk (FS_DEBUG_ALLOC, "Alloc tx_inuse: %p(%d)\n",
1813 dev->atm_vccs, dev->nchannels / 8);
1815 if (!dev->tx_inuse) {
1816 printk (KERN_WARNING "Couldn't allocate memory for tx_inuse bits!\n");
1817 /* XXX Clean up..... */
1818 goto unmap;
1820 /* -- RAS1 : FS155 and 50 differ. Default (0) should be OK for both */
1821 /* -- RAS2 : FS50 only: Default is OK. */
1823 /* DMAMODE, default should be OK. -- REW */
1824 write_fs (dev, DMAMR, DMAMR_TX_MODE_FULL);
1826 init_q (dev, &dev->hp_txq, TX_PQ(TXQ_HP), TXQ_NENTRIES, 0);
1827 init_q (dev, &dev->lp_txq, TX_PQ(TXQ_LP), TXQ_NENTRIES, 0);
1828 init_q (dev, &dev->tx_relq, TXB_RQ, TXQ_NENTRIES, 1);
1829 init_q (dev, &dev->st_q, ST_Q, TXQ_NENTRIES, 1);
1831 for (i=0;i < FS_NR_FREE_POOLS;i++) {
1832 init_fp (dev, &dev->rx_fp[i], RXB_FP(i),
1833 rx_buf_sizes[i], rx_pool_sizes[i]);
1834 top_off_fp (dev, &dev->rx_fp[i], GFP_KERNEL);
1838 for (i=0;i < FS_NR_RX_QUEUES;i++)
1839 init_q (dev, &dev->rx_rq[i], RXB_RQ(i), RXRQ_NENTRIES, 1);
1841 dev->irq = pci_dev->irq;
1842 if (request_irq (dev->irq, fs_irq, IRQF_SHARED, "firestream", dev)) {
1843 printk (KERN_WARNING "couldn't get irq %d for firestream.\n", pci_dev->irq);
1844 /* XXX undo all previous stuff... */
1845 goto unmap;
1847 fs_dprintk (FS_DEBUG_INIT, "Grabbed irq %d for dev at %p.\n", dev->irq, dev);
1849 /* We want to be notified of most things. Just the statistics count
1850 overflows are not interesting */
1851 write_fs (dev, IMR, 0
1852 | ISR_RBRQ0_W
1853 | ISR_RBRQ1_W
1854 | ISR_RBRQ2_W
1855 | ISR_RBRQ3_W
1856 | ISR_TBRQ_W
1857 | ISR_CSQ_W);
1859 write_fs (dev, SARMODE0, 0
1860 | (0 * SARMODE0_SHADEN) /* We don't use shadow registers. */
1861 | (1 * SARMODE0_GINT)
1862 | (1 * SARMODE0_INTMODE_READCLEAR)
1863 | (0 * SARMODE0_CWRE)
1864 | (IS_FS50(dev)?SARMODE0_PRPWT_FS50_5:
1865 SARMODE0_PRPWT_FS155_3)
1866 | (1 * SARMODE0_CALSUP_1)
1867 | (IS_FS50 (dev)?(0
1868 | SARMODE0_RXVCS_32
1869 | SARMODE0_ABRVCS_32
1870 | SARMODE0_TXVCS_32):
1872 | SARMODE0_RXVCS_1k
1873 | SARMODE0_ABRVCS_1k
1874 | SARMODE0_TXVCS_1k))
1875 | (1 * SARMODE0_RUN));
1877 init_phy (dev, PHY_NTC_INIT);
1879 if (loopback == 2) {
1880 write_phy (dev, 0x39, 0x000e);
1883 #ifdef FS_POLL_FREQ
1884 init_timer (&dev->timer);
1885 dev->timer.data = (unsigned long) dev;
1886 dev->timer.function = fs_poll;
1887 dev->timer.expires = jiffies + FS_POLL_FREQ;
1888 add_timer (&dev->timer);
1889 #endif
1891 dev->atm_dev->dev_data = dev;
1893 func_exit ();
1894 return 0;
1895 unmap:
1896 iounmap(dev->base);
1897 return 1;
1900 static int __devinit firestream_init_one (struct pci_dev *pci_dev,
1901 const struct pci_device_id *ent)
1903 struct atm_dev *atm_dev;
1904 struct fs_dev *fs_dev;
1906 if (pci_enable_device(pci_dev))
1907 goto err_out;
1909 fs_dev = kzalloc (sizeof (struct fs_dev), GFP_KERNEL);
1910 fs_dprintk (FS_DEBUG_ALLOC, "Alloc fs-dev: %p(%Zd)\n",
1911 fs_dev, sizeof (struct fs_dev));
1912 if (!fs_dev)
1913 goto err_out;
1914 atm_dev = atm_dev_register("fs", &ops, -1, NULL);
1915 if (!atm_dev)
1916 goto err_out_free_fs_dev;
1918 fs_dev->pci_dev = pci_dev;
1919 fs_dev->atm_dev = atm_dev;
1920 fs_dev->flags = ent->driver_data;
1922 if (fs_init(fs_dev))
1923 goto err_out_free_atm_dev;
1925 fs_dev->next = fs_boards;
1926 fs_boards = fs_dev;
1927 return 0;
1929 err_out_free_atm_dev:
1930 atm_dev_deregister(atm_dev);
1931 err_out_free_fs_dev:
1932 kfree(fs_dev);
1933 err_out:
1934 return -ENODEV;
1937 static void __devexit firestream_remove_one (struct pci_dev *pdev)
1939 int i;
1940 struct fs_dev *dev, *nxtdev;
1941 struct fs_vcc *vcc;
1942 struct FS_BPENTRY *fp, *nxt;
1944 func_enter ();
1946 #if 0
1947 printk ("hptxq:\n");
1948 for (i=0;i<60;i++) {
1949 printk ("%d: %08x %08x %08x %08x \n",
1950 i, pq[qp].cmd, pq[qp].p0, pq[qp].p1, pq[qp].p2);
1951 qp++;
1952 if (qp >= 60) qp = 0;
1955 printk ("descriptors:\n");
1956 for (i=0;i<60;i++) {
1957 printk ("%d: %p: %08x %08x %p %p\n",
1958 i, da[qd], dq[qd].flags, dq[qd].bsa, dq[qd].skb, dq[qd].dev);
1959 qd++;
1960 if (qd >= 60) qd = 0;
1962 #endif
1964 for (dev = fs_boards;dev != NULL;dev=nxtdev) {
1965 fs_dprintk (FS_DEBUG_CLEANUP, "Releasing resources for dev at %p.\n", dev);
1967 /* XXX Hit all the tx channels too! */
1969 for (i=0;i < dev->nchannels;i++) {
1970 if (dev->atm_vccs[i]) {
1971 vcc = FS_VCC (dev->atm_vccs[i]);
1972 submit_command (dev, &dev->hp_txq,
1973 QE_CMD_TX_PURGE_INH | QE_CMD_IMM_INQ | vcc->channo, 0,0,0);
1974 submit_command (dev, &dev->hp_txq,
1975 QE_CMD_RX_PURGE_INH | QE_CMD_IMM_INQ | vcc->channo, 0,0,0);
1980 /* XXX Wait a while for the chip to release all buffers. */
1982 for (i=0;i < FS_NR_FREE_POOLS;i++) {
1983 for (fp=bus_to_virt (read_fs (dev, FP_SA(dev->rx_fp[i].offset)));
1984 !(fp->flags & FP_FLAGS_EPI);fp = nxt) {
1985 fs_dprintk (FS_DEBUG_ALLOC, "Free rec-skb: %p\n", fp->skb);
1986 dev_kfree_skb_any (fp->skb);
1987 nxt = bus_to_virt (fp->next);
1988 fs_dprintk (FS_DEBUG_ALLOC, "Free rec-d: %p\n", fp);
1989 kfree (fp);
1991 fs_dprintk (FS_DEBUG_ALLOC, "Free rec-skb: %p\n", fp->skb);
1992 dev_kfree_skb_any (fp->skb);
1993 fs_dprintk (FS_DEBUG_ALLOC, "Free rec-d: %p\n", fp);
1994 kfree (fp);
1997 /* Hang the chip in "reset", prevent it clobbering memory that is
1998 no longer ours. */
1999 reset_chip (dev);
2001 fs_dprintk (FS_DEBUG_CLEANUP, "Freeing irq%d.\n", dev->irq);
2002 free_irq (dev->irq, dev);
2003 del_timer (&dev->timer);
2005 atm_dev_deregister(dev->atm_dev);
2006 free_queue (dev, &dev->hp_txq);
2007 free_queue (dev, &dev->lp_txq);
2008 free_queue (dev, &dev->tx_relq);
2009 free_queue (dev, &dev->st_q);
2011 fs_dprintk (FS_DEBUG_ALLOC, "Free atmvccs: %p\n", dev->atm_vccs);
2012 kfree (dev->atm_vccs);
2014 for (i=0;i< FS_NR_FREE_POOLS;i++)
2015 free_freepool (dev, &dev->rx_fp[i]);
2017 for (i=0;i < FS_NR_RX_QUEUES;i++)
2018 free_queue (dev, &dev->rx_rq[i]);
2020 iounmap(dev->base);
2021 fs_dprintk (FS_DEBUG_ALLOC, "Free fs-dev: %p\n", dev);
2022 nxtdev = dev->next;
2023 kfree (dev);
2026 func_exit ();
2029 static struct pci_device_id firestream_pci_tbl[] = {
2030 { PCI_VDEVICE(FUJITSU_ME, PCI_DEVICE_ID_FUJITSU_FS50), FS_IS50},
2031 { PCI_VDEVICE(FUJITSU_ME, PCI_DEVICE_ID_FUJITSU_FS155), FS_IS155},
2032 { 0, }
2035 MODULE_DEVICE_TABLE(pci, firestream_pci_tbl);
2037 static struct pci_driver firestream_driver = {
2038 .name = "firestream",
2039 .id_table = firestream_pci_tbl,
2040 .probe = firestream_init_one,
2041 .remove = __devexit_p(firestream_remove_one),
2044 static int __init firestream_init_module (void)
2046 int error;
2048 func_enter ();
2049 error = pci_register_driver(&firestream_driver);
2050 func_exit ();
2051 return error;
2054 static void __exit firestream_cleanup_module(void)
2056 pci_unregister_driver(&firestream_driver);
2059 module_init(firestream_init_module);
2060 module_exit(firestream_cleanup_module);
2062 MODULE_LICENSE("GPL");