2 * Resizable virtual memory filesystem for Linux.
4 * Copyright (C) 2000 Linus Torvalds.
6 * 2000-2001 Christoph Rohland
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
21 * This file is released under the GPL.
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/pagemap.h>
29 #include <linux/file.h>
31 #include <linux/export.h>
32 #include <linux/swap.h>
34 static struct vfsmount
*shm_mnt
;
38 * This virtual memory filesystem is heavily based on the ramfs. It
39 * extends ramfs by the ability to use swap and honor resource limits
40 * which makes it a completely usable filesystem.
43 #include <linux/xattr.h>
44 #include <linux/exportfs.h>
45 #include <linux/posix_acl.h>
46 #include <linux/generic_acl.h>
47 #include <linux/mman.h>
48 #include <linux/string.h>
49 #include <linux/slab.h>
50 #include <linux/backing-dev.h>
51 #include <linux/shmem_fs.h>
52 #include <linux/writeback.h>
53 #include <linux/blkdev.h>
54 #include <linux/pagevec.h>
55 #include <linux/percpu_counter.h>
56 #include <linux/falloc.h>
57 #include <linux/splice.h>
58 #include <linux/security.h>
59 #include <linux/swapops.h>
60 #include <linux/mempolicy.h>
61 #include <linux/namei.h>
62 #include <linux/ctype.h>
63 #include <linux/migrate.h>
64 #include <linux/highmem.h>
65 #include <linux/seq_file.h>
66 #include <linux/magic.h>
68 #include <asm/uaccess.h>
69 #include <asm/pgtable.h>
71 #define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512)
72 #define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
74 /* Pretend that each entry is of this size in directory's i_size */
75 #define BOGO_DIRENT_SIZE 20
77 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
78 #define SHORT_SYMLINK_LEN 128
81 * shmem_fallocate and shmem_writepage communicate via inode->i_private
82 * (with i_mutex making sure that it has only one user at a time):
83 * we would prefer not to enlarge the shmem inode just for that.
86 pgoff_t start
; /* start of range currently being fallocated */
87 pgoff_t next
; /* the next page offset to be fallocated */
88 pgoff_t nr_falloced
; /* how many new pages have been fallocated */
89 pgoff_t nr_unswapped
; /* how often writepage refused to swap out */
92 /* Flag allocation requirements to shmem_getpage */
94 SGP_READ
, /* don't exceed i_size, don't allocate page */
95 SGP_CACHE
, /* don't exceed i_size, may allocate page */
96 SGP_DIRTY
, /* like SGP_CACHE, but set new page dirty */
97 SGP_WRITE
, /* may exceed i_size, may allocate !Uptodate page */
98 SGP_FALLOC
, /* like SGP_WRITE, but make existing page Uptodate */
102 static unsigned long shmem_default_max_blocks(void)
104 return totalram_pages
/ 2;
107 static unsigned long shmem_default_max_inodes(void)
109 return min(totalram_pages
- totalhigh_pages
, totalram_pages
/ 2);
113 static bool shmem_should_replace_page(struct page
*page
, gfp_t gfp
);
114 static int shmem_replace_page(struct page
**pagep
, gfp_t gfp
,
115 struct shmem_inode_info
*info
, pgoff_t index
);
116 static int shmem_getpage_gfp(struct inode
*inode
, pgoff_t index
,
117 struct page
**pagep
, enum sgp_type sgp
, gfp_t gfp
, int *fault_type
);
119 static inline int shmem_getpage(struct inode
*inode
, pgoff_t index
,
120 struct page
**pagep
, enum sgp_type sgp
, int *fault_type
)
122 return shmem_getpage_gfp(inode
, index
, pagep
, sgp
,
123 mapping_gfp_mask(inode
->i_mapping
), fault_type
);
126 static inline struct shmem_sb_info
*SHMEM_SB(struct super_block
*sb
)
128 return sb
->s_fs_info
;
132 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
133 * for shared memory and for shared anonymous (/dev/zero) mappings
134 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
135 * consistent with the pre-accounting of private mappings ...
137 static inline int shmem_acct_size(unsigned long flags
, loff_t size
)
139 return (flags
& VM_NORESERVE
) ?
140 0 : security_vm_enough_memory_mm(current
->mm
, VM_ACCT(size
));
143 static inline void shmem_unacct_size(unsigned long flags
, loff_t size
)
145 if (!(flags
& VM_NORESERVE
))
146 vm_unacct_memory(VM_ACCT(size
));
150 * ... whereas tmpfs objects are accounted incrementally as
151 * pages are allocated, in order to allow huge sparse files.
152 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
153 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
155 static inline int shmem_acct_block(unsigned long flags
)
157 return (flags
& VM_NORESERVE
) ?
158 security_vm_enough_memory_mm(current
->mm
, VM_ACCT(PAGE_CACHE_SIZE
)) : 0;
161 static inline void shmem_unacct_blocks(unsigned long flags
, long pages
)
163 if (flags
& VM_NORESERVE
)
164 vm_unacct_memory(pages
* VM_ACCT(PAGE_CACHE_SIZE
));
167 static const struct super_operations shmem_ops
;
168 static const struct address_space_operations shmem_aops
;
169 static const struct file_operations shmem_file_operations
;
170 static const struct inode_operations shmem_inode_operations
;
171 static const struct inode_operations shmem_dir_inode_operations
;
172 static const struct inode_operations shmem_special_inode_operations
;
173 static const struct vm_operations_struct shmem_vm_ops
;
175 static struct backing_dev_info shmem_backing_dev_info __read_mostly
= {
176 .ra_pages
= 0, /* No readahead */
177 .capabilities
= BDI_CAP_NO_ACCT_AND_WRITEBACK
| BDI_CAP_SWAP_BACKED
,
180 static LIST_HEAD(shmem_swaplist
);
181 static DEFINE_MUTEX(shmem_swaplist_mutex
);
183 static int shmem_reserve_inode(struct super_block
*sb
)
185 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
186 if (sbinfo
->max_inodes
) {
187 spin_lock(&sbinfo
->stat_lock
);
188 if (!sbinfo
->free_inodes
) {
189 spin_unlock(&sbinfo
->stat_lock
);
192 sbinfo
->free_inodes
--;
193 spin_unlock(&sbinfo
->stat_lock
);
198 static void shmem_free_inode(struct super_block
*sb
)
200 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
201 if (sbinfo
->max_inodes
) {
202 spin_lock(&sbinfo
->stat_lock
);
203 sbinfo
->free_inodes
++;
204 spin_unlock(&sbinfo
->stat_lock
);
209 * shmem_recalc_inode - recalculate the block usage of an inode
210 * @inode: inode to recalc
212 * We have to calculate the free blocks since the mm can drop
213 * undirtied hole pages behind our back.
215 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
216 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
218 * It has to be called with the spinlock held.
220 static void shmem_recalc_inode(struct inode
*inode
)
222 struct shmem_inode_info
*info
= SHMEM_I(inode
);
225 freed
= info
->alloced
- info
->swapped
- inode
->i_mapping
->nrpages
;
227 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
228 if (sbinfo
->max_blocks
)
229 percpu_counter_add(&sbinfo
->used_blocks
, -freed
);
230 info
->alloced
-= freed
;
231 inode
->i_blocks
-= freed
* BLOCKS_PER_PAGE
;
232 shmem_unacct_blocks(info
->flags
, freed
);
237 * Replace item expected in radix tree by a new item, while holding tree lock.
239 static int shmem_radix_tree_replace(struct address_space
*mapping
,
240 pgoff_t index
, void *expected
, void *replacement
)
245 VM_BUG_ON(!expected
);
246 pslot
= radix_tree_lookup_slot(&mapping
->page_tree
, index
);
248 item
= radix_tree_deref_slot_protected(pslot
,
249 &mapping
->tree_lock
);
250 if (item
!= expected
)
253 radix_tree_replace_slot(pslot
, replacement
);
255 radix_tree_delete(&mapping
->page_tree
, index
);
260 * Sometimes, before we decide whether to proceed or to fail, we must check
261 * that an entry was not already brought back from swap by a racing thread.
263 * Checking page is not enough: by the time a SwapCache page is locked, it
264 * might be reused, and again be SwapCache, using the same swap as before.
266 static bool shmem_confirm_swap(struct address_space
*mapping
,
267 pgoff_t index
, swp_entry_t swap
)
272 item
= radix_tree_lookup(&mapping
->page_tree
, index
);
274 return item
== swp_to_radix_entry(swap
);
278 * Like add_to_page_cache_locked, but error if expected item has gone.
280 static int shmem_add_to_page_cache(struct page
*page
,
281 struct address_space
*mapping
,
282 pgoff_t index
, gfp_t gfp
, void *expected
)
286 VM_BUG_ON(!PageLocked(page
));
287 VM_BUG_ON(!PageSwapBacked(page
));
289 page_cache_get(page
);
290 page
->mapping
= mapping
;
293 spin_lock_irq(&mapping
->tree_lock
);
295 error
= radix_tree_insert(&mapping
->page_tree
, index
, page
);
297 error
= shmem_radix_tree_replace(mapping
, index
, expected
,
301 __inc_zone_page_state(page
, NR_FILE_PAGES
);
302 __inc_zone_page_state(page
, NR_SHMEM
);
303 spin_unlock_irq(&mapping
->tree_lock
);
305 page
->mapping
= NULL
;
306 spin_unlock_irq(&mapping
->tree_lock
);
307 page_cache_release(page
);
313 * Like delete_from_page_cache, but substitutes swap for page.
315 static void shmem_delete_from_page_cache(struct page
*page
, void *radswap
)
317 struct address_space
*mapping
= page
->mapping
;
320 spin_lock_irq(&mapping
->tree_lock
);
321 error
= shmem_radix_tree_replace(mapping
, page
->index
, page
, radswap
);
322 page
->mapping
= NULL
;
324 __dec_zone_page_state(page
, NR_FILE_PAGES
);
325 __dec_zone_page_state(page
, NR_SHMEM
);
326 spin_unlock_irq(&mapping
->tree_lock
);
327 page_cache_release(page
);
332 * Like find_get_pages, but collecting swap entries as well as pages.
334 static unsigned shmem_find_get_pages_and_swap(struct address_space
*mapping
,
335 pgoff_t start
, unsigned int nr_pages
,
336 struct page
**pages
, pgoff_t
*indices
)
339 unsigned int ret
= 0;
340 struct radix_tree_iter iter
;
347 radix_tree_for_each_slot(slot
, &mapping
->page_tree
, &iter
, start
) {
350 page
= radix_tree_deref_slot(slot
);
353 if (radix_tree_exception(page
)) {
354 if (radix_tree_deref_retry(page
))
357 * Otherwise, we must be storing a swap entry
358 * here as an exceptional entry: so return it
359 * without attempting to raise page count.
363 if (!page_cache_get_speculative(page
))
366 /* Has the page moved? */
367 if (unlikely(page
!= *slot
)) {
368 page_cache_release(page
);
372 indices
[ret
] = iter
.index
;
374 if (++ret
== nr_pages
)
382 * Remove swap entry from radix tree, free the swap and its page cache.
384 static int shmem_free_swap(struct address_space
*mapping
,
385 pgoff_t index
, void *radswap
)
389 spin_lock_irq(&mapping
->tree_lock
);
390 error
= shmem_radix_tree_replace(mapping
, index
, radswap
, NULL
);
391 spin_unlock_irq(&mapping
->tree_lock
);
393 free_swap_and_cache(radix_to_swp_entry(radswap
));
398 * Pagevec may contain swap entries, so shuffle up pages before releasing.
400 static void shmem_deswap_pagevec(struct pagevec
*pvec
)
404 for (i
= 0, j
= 0; i
< pagevec_count(pvec
); i
++) {
405 struct page
*page
= pvec
->pages
[i
];
406 if (!radix_tree_exceptional_entry(page
))
407 pvec
->pages
[j
++] = page
;
413 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
415 void shmem_unlock_mapping(struct address_space
*mapping
)
418 pgoff_t indices
[PAGEVEC_SIZE
];
421 pagevec_init(&pvec
, 0);
423 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
425 while (!mapping_unevictable(mapping
)) {
427 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
428 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
430 pvec
.nr
= shmem_find_get_pages_and_swap(mapping
, index
,
431 PAGEVEC_SIZE
, pvec
.pages
, indices
);
434 index
= indices
[pvec
.nr
- 1] + 1;
435 shmem_deswap_pagevec(&pvec
);
436 check_move_unevictable_pages(pvec
.pages
, pvec
.nr
);
437 pagevec_release(&pvec
);
443 * Remove range of pages and swap entries from radix tree, and free them.
444 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
446 static void shmem_undo_range(struct inode
*inode
, loff_t lstart
, loff_t lend
,
449 struct address_space
*mapping
= inode
->i_mapping
;
450 struct shmem_inode_info
*info
= SHMEM_I(inode
);
451 pgoff_t start
= (lstart
+ PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
452 pgoff_t end
= (lend
+ 1) >> PAGE_CACHE_SHIFT
;
453 unsigned int partial_start
= lstart
& (PAGE_CACHE_SIZE
- 1);
454 unsigned int partial_end
= (lend
+ 1) & (PAGE_CACHE_SIZE
- 1);
456 pgoff_t indices
[PAGEVEC_SIZE
];
457 long nr_swaps_freed
= 0;
462 end
= -1; /* unsigned, so actually very big */
464 pagevec_init(&pvec
, 0);
466 while (index
< end
) {
467 pvec
.nr
= shmem_find_get_pages_and_swap(mapping
, index
,
468 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
),
469 pvec
.pages
, indices
);
472 mem_cgroup_uncharge_start();
473 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
474 struct page
*page
= pvec
.pages
[i
];
480 if (radix_tree_exceptional_entry(page
)) {
483 nr_swaps_freed
+= !shmem_free_swap(mapping
,
488 if (!trylock_page(page
))
490 if (!unfalloc
|| !PageUptodate(page
)) {
491 if (page
->mapping
== mapping
) {
492 VM_BUG_ON(PageWriteback(page
));
493 truncate_inode_page(mapping
, page
);
498 shmem_deswap_pagevec(&pvec
);
499 pagevec_release(&pvec
);
500 mem_cgroup_uncharge_end();
506 struct page
*page
= NULL
;
507 shmem_getpage(inode
, start
- 1, &page
, SGP_READ
, NULL
);
509 unsigned int top
= PAGE_CACHE_SIZE
;
514 zero_user_segment(page
, partial_start
, top
);
515 set_page_dirty(page
);
517 page_cache_release(page
);
521 struct page
*page
= NULL
;
522 shmem_getpage(inode
, end
, &page
, SGP_READ
, NULL
);
524 zero_user_segment(page
, 0, partial_end
);
525 set_page_dirty(page
);
527 page_cache_release(page
);
536 pvec
.nr
= shmem_find_get_pages_and_swap(mapping
, index
,
537 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
),
538 pvec
.pages
, indices
);
540 if (index
== start
|| unfalloc
)
545 if ((index
== start
|| unfalloc
) && indices
[0] >= end
) {
546 shmem_deswap_pagevec(&pvec
);
547 pagevec_release(&pvec
);
550 mem_cgroup_uncharge_start();
551 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
552 struct page
*page
= pvec
.pages
[i
];
558 if (radix_tree_exceptional_entry(page
)) {
561 nr_swaps_freed
+= !shmem_free_swap(mapping
,
567 if (!unfalloc
|| !PageUptodate(page
)) {
568 if (page
->mapping
== mapping
) {
569 VM_BUG_ON(PageWriteback(page
));
570 truncate_inode_page(mapping
, page
);
575 shmem_deswap_pagevec(&pvec
);
576 pagevec_release(&pvec
);
577 mem_cgroup_uncharge_end();
581 spin_lock(&info
->lock
);
582 info
->swapped
-= nr_swaps_freed
;
583 shmem_recalc_inode(inode
);
584 spin_unlock(&info
->lock
);
587 void shmem_truncate_range(struct inode
*inode
, loff_t lstart
, loff_t lend
)
589 shmem_undo_range(inode
, lstart
, lend
, false);
590 inode
->i_ctime
= inode
->i_mtime
= CURRENT_TIME
;
592 EXPORT_SYMBOL_GPL(shmem_truncate_range
);
594 static int shmem_setattr(struct dentry
*dentry
, struct iattr
*attr
)
596 struct inode
*inode
= dentry
->d_inode
;
599 error
= inode_change_ok(inode
, attr
);
603 if (S_ISREG(inode
->i_mode
) && (attr
->ia_valid
& ATTR_SIZE
)) {
604 loff_t oldsize
= inode
->i_size
;
605 loff_t newsize
= attr
->ia_size
;
607 if (newsize
!= oldsize
) {
608 i_size_write(inode
, newsize
);
609 inode
->i_ctime
= inode
->i_mtime
= CURRENT_TIME
;
611 if (newsize
< oldsize
) {
612 loff_t holebegin
= round_up(newsize
, PAGE_SIZE
);
613 unmap_mapping_range(inode
->i_mapping
, holebegin
, 0, 1);
614 shmem_truncate_range(inode
, newsize
, (loff_t
)-1);
615 /* unmap again to remove racily COWed private pages */
616 unmap_mapping_range(inode
->i_mapping
, holebegin
, 0, 1);
620 setattr_copy(inode
, attr
);
621 #ifdef CONFIG_TMPFS_POSIX_ACL
622 if (attr
->ia_valid
& ATTR_MODE
)
623 error
= generic_acl_chmod(inode
);
628 static void shmem_evict_inode(struct inode
*inode
)
630 struct shmem_inode_info
*info
= SHMEM_I(inode
);
632 if (inode
->i_mapping
->a_ops
== &shmem_aops
) {
633 shmem_unacct_size(info
->flags
, inode
->i_size
);
635 shmem_truncate_range(inode
, 0, (loff_t
)-1);
636 if (!list_empty(&info
->swaplist
)) {
637 mutex_lock(&shmem_swaplist_mutex
);
638 list_del_init(&info
->swaplist
);
639 mutex_unlock(&shmem_swaplist_mutex
);
642 kfree(info
->symlink
);
644 simple_xattrs_free(&info
->xattrs
);
645 WARN_ON(inode
->i_blocks
);
646 shmem_free_inode(inode
->i_sb
);
651 * If swap found in inode, free it and move page from swapcache to filecache.
653 static int shmem_unuse_inode(struct shmem_inode_info
*info
,
654 swp_entry_t swap
, struct page
**pagep
)
656 struct address_space
*mapping
= info
->vfs_inode
.i_mapping
;
662 radswap
= swp_to_radix_entry(swap
);
663 index
= radix_tree_locate_item(&mapping
->page_tree
, radswap
);
668 * Move _head_ to start search for next from here.
669 * But be careful: shmem_evict_inode checks list_empty without taking
670 * mutex, and there's an instant in list_move_tail when info->swaplist
671 * would appear empty, if it were the only one on shmem_swaplist.
673 if (shmem_swaplist
.next
!= &info
->swaplist
)
674 list_move_tail(&shmem_swaplist
, &info
->swaplist
);
676 gfp
= mapping_gfp_mask(mapping
);
677 if (shmem_should_replace_page(*pagep
, gfp
)) {
678 mutex_unlock(&shmem_swaplist_mutex
);
679 error
= shmem_replace_page(pagep
, gfp
, info
, index
);
680 mutex_lock(&shmem_swaplist_mutex
);
682 * We needed to drop mutex to make that restrictive page
683 * allocation, but the inode might have been freed while we
684 * dropped it: although a racing shmem_evict_inode() cannot
685 * complete without emptying the radix_tree, our page lock
686 * on this swapcache page is not enough to prevent that -
687 * free_swap_and_cache() of our swap entry will only
688 * trylock_page(), removing swap from radix_tree whatever.
690 * We must not proceed to shmem_add_to_page_cache() if the
691 * inode has been freed, but of course we cannot rely on
692 * inode or mapping or info to check that. However, we can
693 * safely check if our swap entry is still in use (and here
694 * it can't have got reused for another page): if it's still
695 * in use, then the inode cannot have been freed yet, and we
696 * can safely proceed (if it's no longer in use, that tells
697 * nothing about the inode, but we don't need to unuse swap).
699 if (!page_swapcount(*pagep
))
704 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
705 * but also to hold up shmem_evict_inode(): so inode cannot be freed
706 * beneath us (pagelock doesn't help until the page is in pagecache).
709 error
= shmem_add_to_page_cache(*pagep
, mapping
, index
,
710 GFP_NOWAIT
, radswap
);
711 if (error
!= -ENOMEM
) {
713 * Truncation and eviction use free_swap_and_cache(), which
714 * only does trylock page: if we raced, best clean up here.
716 delete_from_swap_cache(*pagep
);
717 set_page_dirty(*pagep
);
719 spin_lock(&info
->lock
);
721 spin_unlock(&info
->lock
);
724 error
= 1; /* not an error, but entry was found */
730 * Search through swapped inodes to find and replace swap by page.
732 int shmem_unuse(swp_entry_t swap
, struct page
*page
)
734 struct list_head
*this, *next
;
735 struct shmem_inode_info
*info
;
740 * There's a faint possibility that swap page was replaced before
741 * caller locked it: caller will come back later with the right page.
743 if (unlikely(!PageSwapCache(page
) || page_private(page
) != swap
.val
))
747 * Charge page using GFP_KERNEL while we can wait, before taking
748 * the shmem_swaplist_mutex which might hold up shmem_writepage().
749 * Charged back to the user (not to caller) when swap account is used.
751 error
= mem_cgroup_cache_charge(page
, current
->mm
, GFP_KERNEL
);
754 /* No radix_tree_preload: swap entry keeps a place for page in tree */
756 mutex_lock(&shmem_swaplist_mutex
);
757 list_for_each_safe(this, next
, &shmem_swaplist
) {
758 info
= list_entry(this, struct shmem_inode_info
, swaplist
);
760 found
= shmem_unuse_inode(info
, swap
, &page
);
762 list_del_init(&info
->swaplist
);
767 mutex_unlock(&shmem_swaplist_mutex
);
773 page_cache_release(page
);
778 * Move the page from the page cache to the swap cache.
780 static int shmem_writepage(struct page
*page
, struct writeback_control
*wbc
)
782 struct shmem_inode_info
*info
;
783 struct address_space
*mapping
;
788 BUG_ON(!PageLocked(page
));
789 mapping
= page
->mapping
;
791 inode
= mapping
->host
;
792 info
= SHMEM_I(inode
);
793 if (info
->flags
& VM_LOCKED
)
795 if (!total_swap_pages
)
799 * shmem_backing_dev_info's capabilities prevent regular writeback or
800 * sync from ever calling shmem_writepage; but a stacking filesystem
801 * might use ->writepage of its underlying filesystem, in which case
802 * tmpfs should write out to swap only in response to memory pressure,
803 * and not for the writeback threads or sync.
805 if (!wbc
->for_reclaim
) {
806 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
811 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
812 * value into swapfile.c, the only way we can correctly account for a
813 * fallocated page arriving here is now to initialize it and write it.
815 * That's okay for a page already fallocated earlier, but if we have
816 * not yet completed the fallocation, then (a) we want to keep track
817 * of this page in case we have to undo it, and (b) it may not be a
818 * good idea to continue anyway, once we're pushing into swap. So
819 * reactivate the page, and let shmem_fallocate() quit when too many.
821 if (!PageUptodate(page
)) {
822 if (inode
->i_private
) {
823 struct shmem_falloc
*shmem_falloc
;
824 spin_lock(&inode
->i_lock
);
825 shmem_falloc
= inode
->i_private
;
827 index
>= shmem_falloc
->start
&&
828 index
< shmem_falloc
->next
)
829 shmem_falloc
->nr_unswapped
++;
832 spin_unlock(&inode
->i_lock
);
836 clear_highpage(page
);
837 flush_dcache_page(page
);
838 SetPageUptodate(page
);
841 swap
= get_swap_page();
846 * Add inode to shmem_unuse()'s list of swapped-out inodes,
847 * if it's not already there. Do it now before the page is
848 * moved to swap cache, when its pagelock no longer protects
849 * the inode from eviction. But don't unlock the mutex until
850 * we've incremented swapped, because shmem_unuse_inode() will
851 * prune a !swapped inode from the swaplist under this mutex.
853 mutex_lock(&shmem_swaplist_mutex
);
854 if (list_empty(&info
->swaplist
))
855 list_add_tail(&info
->swaplist
, &shmem_swaplist
);
857 if (add_to_swap_cache(page
, swap
, GFP_ATOMIC
) == 0) {
858 swap_shmem_alloc(swap
);
859 shmem_delete_from_page_cache(page
, swp_to_radix_entry(swap
));
861 spin_lock(&info
->lock
);
863 shmem_recalc_inode(inode
);
864 spin_unlock(&info
->lock
);
866 mutex_unlock(&shmem_swaplist_mutex
);
867 BUG_ON(page_mapped(page
));
868 swap_writepage(page
, wbc
);
872 mutex_unlock(&shmem_swaplist_mutex
);
873 swapcache_free(swap
, NULL
);
875 set_page_dirty(page
);
876 if (wbc
->for_reclaim
)
877 return AOP_WRITEPAGE_ACTIVATE
; /* Return with page locked */
884 static void shmem_show_mpol(struct seq_file
*seq
, struct mempolicy
*mpol
)
888 if (!mpol
|| mpol
->mode
== MPOL_DEFAULT
)
889 return; /* show nothing */
891 mpol_to_str(buffer
, sizeof(buffer
), mpol
);
893 seq_printf(seq
, ",mpol=%s", buffer
);
896 static struct mempolicy
*shmem_get_sbmpol(struct shmem_sb_info
*sbinfo
)
898 struct mempolicy
*mpol
= NULL
;
900 spin_lock(&sbinfo
->stat_lock
); /* prevent replace/use races */
903 spin_unlock(&sbinfo
->stat_lock
);
907 #endif /* CONFIG_TMPFS */
909 static struct page
*shmem_swapin(swp_entry_t swap
, gfp_t gfp
,
910 struct shmem_inode_info
*info
, pgoff_t index
)
912 struct vm_area_struct pvma
;
915 /* Create a pseudo vma that just contains the policy */
917 /* Bias interleave by inode number to distribute better across nodes */
918 pvma
.vm_pgoff
= index
+ info
->vfs_inode
.i_ino
;
920 pvma
.vm_policy
= mpol_shared_policy_lookup(&info
->policy
, index
);
922 page
= swapin_readahead(swap
, gfp
, &pvma
, 0);
924 /* Drop reference taken by mpol_shared_policy_lookup() */
925 mpol_cond_put(pvma
.vm_policy
);
930 static struct page
*shmem_alloc_page(gfp_t gfp
,
931 struct shmem_inode_info
*info
, pgoff_t index
)
933 struct vm_area_struct pvma
;
936 /* Create a pseudo vma that just contains the policy */
938 /* Bias interleave by inode number to distribute better across nodes */
939 pvma
.vm_pgoff
= index
+ info
->vfs_inode
.i_ino
;
941 pvma
.vm_policy
= mpol_shared_policy_lookup(&info
->policy
, index
);
943 page
= alloc_page_vma(gfp
, &pvma
, 0);
945 /* Drop reference taken by mpol_shared_policy_lookup() */
946 mpol_cond_put(pvma
.vm_policy
);
950 #else /* !CONFIG_NUMA */
952 static inline void shmem_show_mpol(struct seq_file
*seq
, struct mempolicy
*mpol
)
955 #endif /* CONFIG_TMPFS */
957 static inline struct page
*shmem_swapin(swp_entry_t swap
, gfp_t gfp
,
958 struct shmem_inode_info
*info
, pgoff_t index
)
960 return swapin_readahead(swap
, gfp
, NULL
, 0);
963 static inline struct page
*shmem_alloc_page(gfp_t gfp
,
964 struct shmem_inode_info
*info
, pgoff_t index
)
966 return alloc_page(gfp
);
968 #endif /* CONFIG_NUMA */
970 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
971 static inline struct mempolicy
*shmem_get_sbmpol(struct shmem_sb_info
*sbinfo
)
978 * When a page is moved from swapcache to shmem filecache (either by the
979 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
980 * shmem_unuse_inode()), it may have been read in earlier from swap, in
981 * ignorance of the mapping it belongs to. If that mapping has special
982 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
983 * we may need to copy to a suitable page before moving to filecache.
985 * In a future release, this may well be extended to respect cpuset and
986 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
987 * but for now it is a simple matter of zone.
989 static bool shmem_should_replace_page(struct page
*page
, gfp_t gfp
)
991 return page_zonenum(page
) > gfp_zone(gfp
);
994 static int shmem_replace_page(struct page
**pagep
, gfp_t gfp
,
995 struct shmem_inode_info
*info
, pgoff_t index
)
997 struct page
*oldpage
, *newpage
;
998 struct address_space
*swap_mapping
;
1003 swap_index
= page_private(oldpage
);
1004 swap_mapping
= page_mapping(oldpage
);
1007 * We have arrived here because our zones are constrained, so don't
1008 * limit chance of success by further cpuset and node constraints.
1010 gfp
&= ~GFP_CONSTRAINT_MASK
;
1011 newpage
= shmem_alloc_page(gfp
, info
, index
);
1015 page_cache_get(newpage
);
1016 copy_highpage(newpage
, oldpage
);
1017 flush_dcache_page(newpage
);
1019 __set_page_locked(newpage
);
1020 SetPageUptodate(newpage
);
1021 SetPageSwapBacked(newpage
);
1022 set_page_private(newpage
, swap_index
);
1023 SetPageSwapCache(newpage
);
1026 * Our caller will very soon move newpage out of swapcache, but it's
1027 * a nice clean interface for us to replace oldpage by newpage there.
1029 spin_lock_irq(&swap_mapping
->tree_lock
);
1030 error
= shmem_radix_tree_replace(swap_mapping
, swap_index
, oldpage
,
1033 __inc_zone_page_state(newpage
, NR_FILE_PAGES
);
1034 __dec_zone_page_state(oldpage
, NR_FILE_PAGES
);
1036 spin_unlock_irq(&swap_mapping
->tree_lock
);
1038 if (unlikely(error
)) {
1040 * Is this possible? I think not, now that our callers check
1041 * both PageSwapCache and page_private after getting page lock;
1042 * but be defensive. Reverse old to newpage for clear and free.
1046 mem_cgroup_replace_page_cache(oldpage
, newpage
);
1047 lru_cache_add_anon(newpage
);
1051 ClearPageSwapCache(oldpage
);
1052 set_page_private(oldpage
, 0);
1054 unlock_page(oldpage
);
1055 page_cache_release(oldpage
);
1056 page_cache_release(oldpage
);
1061 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1063 * If we allocate a new one we do not mark it dirty. That's up to the
1064 * vm. If we swap it in we mark it dirty since we also free the swap
1065 * entry since a page cannot live in both the swap and page cache
1067 static int shmem_getpage_gfp(struct inode
*inode
, pgoff_t index
,
1068 struct page
**pagep
, enum sgp_type sgp
, gfp_t gfp
, int *fault_type
)
1070 struct address_space
*mapping
= inode
->i_mapping
;
1071 struct shmem_inode_info
*info
;
1072 struct shmem_sb_info
*sbinfo
;
1079 if (index
> (MAX_LFS_FILESIZE
>> PAGE_CACHE_SHIFT
))
1083 page
= find_lock_page(mapping
, index
);
1084 if (radix_tree_exceptional_entry(page
)) {
1085 swap
= radix_to_swp_entry(page
);
1089 if (sgp
!= SGP_WRITE
&& sgp
!= SGP_FALLOC
&&
1090 ((loff_t
)index
<< PAGE_CACHE_SHIFT
) >= i_size_read(inode
)) {
1095 /* fallocated page? */
1096 if (page
&& !PageUptodate(page
)) {
1097 if (sgp
!= SGP_READ
)
1100 page_cache_release(page
);
1103 if (page
|| (sgp
== SGP_READ
&& !swap
.val
)) {
1109 * Fast cache lookup did not find it:
1110 * bring it back from swap or allocate.
1112 info
= SHMEM_I(inode
);
1113 sbinfo
= SHMEM_SB(inode
->i_sb
);
1116 /* Look it up and read it in.. */
1117 page
= lookup_swap_cache(swap
);
1119 /* here we actually do the io */
1121 *fault_type
|= VM_FAULT_MAJOR
;
1122 page
= shmem_swapin(swap
, gfp
, info
, index
);
1129 /* We have to do this with page locked to prevent races */
1131 if (!PageSwapCache(page
) || page_private(page
) != swap
.val
||
1132 !shmem_confirm_swap(mapping
, index
, swap
)) {
1133 error
= -EEXIST
; /* try again */
1136 if (!PageUptodate(page
)) {
1140 wait_on_page_writeback(page
);
1142 if (shmem_should_replace_page(page
, gfp
)) {
1143 error
= shmem_replace_page(&page
, gfp
, info
, index
);
1148 error
= mem_cgroup_cache_charge(page
, current
->mm
,
1149 gfp
& GFP_RECLAIM_MASK
);
1151 error
= shmem_add_to_page_cache(page
, mapping
, index
,
1152 gfp
, swp_to_radix_entry(swap
));
1154 * We already confirmed swap under page lock, and make
1155 * no memory allocation here, so usually no possibility
1156 * of error; but free_swap_and_cache() only trylocks a
1157 * page, so it is just possible that the entry has been
1158 * truncated or holepunched since swap was confirmed.
1159 * shmem_undo_range() will have done some of the
1160 * unaccounting, now delete_from_swap_cache() will do
1161 * the rest (including mem_cgroup_uncharge_swapcache).
1162 * Reset swap.val? No, leave it so "failed" goes back to
1163 * "repeat": reading a hole and writing should succeed.
1166 delete_from_swap_cache(page
);
1171 spin_lock(&info
->lock
);
1173 shmem_recalc_inode(inode
);
1174 spin_unlock(&info
->lock
);
1176 delete_from_swap_cache(page
);
1177 set_page_dirty(page
);
1181 if (shmem_acct_block(info
->flags
)) {
1185 if (sbinfo
->max_blocks
) {
1186 if (percpu_counter_compare(&sbinfo
->used_blocks
,
1187 sbinfo
->max_blocks
) >= 0) {
1191 percpu_counter_inc(&sbinfo
->used_blocks
);
1194 page
= shmem_alloc_page(gfp
, info
, index
);
1200 SetPageSwapBacked(page
);
1201 __set_page_locked(page
);
1202 error
= mem_cgroup_cache_charge(page
, current
->mm
,
1203 gfp
& GFP_RECLAIM_MASK
);
1206 error
= radix_tree_preload(gfp
& GFP_RECLAIM_MASK
);
1208 error
= shmem_add_to_page_cache(page
, mapping
, index
,
1210 radix_tree_preload_end();
1213 mem_cgroup_uncharge_cache_page(page
);
1216 lru_cache_add_anon(page
);
1218 spin_lock(&info
->lock
);
1220 inode
->i_blocks
+= BLOCKS_PER_PAGE
;
1221 shmem_recalc_inode(inode
);
1222 spin_unlock(&info
->lock
);
1226 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1228 if (sgp
== SGP_FALLOC
)
1232 * Let SGP_WRITE caller clear ends if write does not fill page;
1233 * but SGP_FALLOC on a page fallocated earlier must initialize
1234 * it now, lest undo on failure cancel our earlier guarantee.
1236 if (sgp
!= SGP_WRITE
) {
1237 clear_highpage(page
);
1238 flush_dcache_page(page
);
1239 SetPageUptodate(page
);
1241 if (sgp
== SGP_DIRTY
)
1242 set_page_dirty(page
);
1245 /* Perhaps the file has been truncated since we checked */
1246 if (sgp
!= SGP_WRITE
&& sgp
!= SGP_FALLOC
&&
1247 ((loff_t
)index
<< PAGE_CACHE_SHIFT
) >= i_size_read(inode
)) {
1261 info
= SHMEM_I(inode
);
1262 ClearPageDirty(page
);
1263 delete_from_page_cache(page
);
1264 spin_lock(&info
->lock
);
1266 inode
->i_blocks
-= BLOCKS_PER_PAGE
;
1267 spin_unlock(&info
->lock
);
1269 sbinfo
= SHMEM_SB(inode
->i_sb
);
1270 if (sbinfo
->max_blocks
)
1271 percpu_counter_add(&sbinfo
->used_blocks
, -1);
1273 shmem_unacct_blocks(info
->flags
, 1);
1275 if (swap
.val
&& error
!= -EINVAL
&&
1276 !shmem_confirm_swap(mapping
, index
, swap
))
1281 page_cache_release(page
);
1283 if (error
== -ENOSPC
&& !once
++) {
1284 info
= SHMEM_I(inode
);
1285 spin_lock(&info
->lock
);
1286 shmem_recalc_inode(inode
);
1287 spin_unlock(&info
->lock
);
1290 if (error
== -EEXIST
) /* from above or from radix_tree_insert */
1295 static int shmem_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
1297 struct inode
*inode
= file_inode(vma
->vm_file
);
1299 int ret
= VM_FAULT_LOCKED
;
1301 error
= shmem_getpage(inode
, vmf
->pgoff
, &vmf
->page
, SGP_CACHE
, &ret
);
1303 return ((error
== -ENOMEM
) ? VM_FAULT_OOM
: VM_FAULT_SIGBUS
);
1305 if (ret
& VM_FAULT_MAJOR
) {
1306 count_vm_event(PGMAJFAULT
);
1307 mem_cgroup_count_vm_event(vma
->vm_mm
, PGMAJFAULT
);
1313 static int shmem_set_policy(struct vm_area_struct
*vma
, struct mempolicy
*mpol
)
1315 struct inode
*inode
= file_inode(vma
->vm_file
);
1316 return mpol_set_shared_policy(&SHMEM_I(inode
)->policy
, vma
, mpol
);
1319 static struct mempolicy
*shmem_get_policy(struct vm_area_struct
*vma
,
1322 struct inode
*inode
= file_inode(vma
->vm_file
);
1325 index
= ((addr
- vma
->vm_start
) >> PAGE_SHIFT
) + vma
->vm_pgoff
;
1326 return mpol_shared_policy_lookup(&SHMEM_I(inode
)->policy
, index
);
1330 int shmem_lock(struct file
*file
, int lock
, struct user_struct
*user
)
1332 struct inode
*inode
= file_inode(file
);
1333 struct shmem_inode_info
*info
= SHMEM_I(inode
);
1334 int retval
= -ENOMEM
;
1336 spin_lock(&info
->lock
);
1337 if (lock
&& !(info
->flags
& VM_LOCKED
)) {
1338 if (!user_shm_lock(inode
->i_size
, user
))
1340 info
->flags
|= VM_LOCKED
;
1341 mapping_set_unevictable(file
->f_mapping
);
1343 if (!lock
&& (info
->flags
& VM_LOCKED
) && user
) {
1344 user_shm_unlock(inode
->i_size
, user
);
1345 info
->flags
&= ~VM_LOCKED
;
1346 mapping_clear_unevictable(file
->f_mapping
);
1351 spin_unlock(&info
->lock
);
1355 static int shmem_mmap(struct file
*file
, struct vm_area_struct
*vma
)
1357 file_accessed(file
);
1358 vma
->vm_ops
= &shmem_vm_ops
;
1362 static struct inode
*shmem_get_inode(struct super_block
*sb
, const struct inode
*dir
,
1363 umode_t mode
, dev_t dev
, unsigned long flags
)
1365 struct inode
*inode
;
1366 struct shmem_inode_info
*info
;
1367 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
1369 if (shmem_reserve_inode(sb
))
1372 inode
= new_inode(sb
);
1374 inode
->i_ino
= get_next_ino();
1375 inode_init_owner(inode
, dir
, mode
);
1376 inode
->i_blocks
= 0;
1377 inode
->i_mapping
->backing_dev_info
= &shmem_backing_dev_info
;
1378 inode
->i_atime
= inode
->i_mtime
= inode
->i_ctime
= CURRENT_TIME
;
1379 inode
->i_generation
= get_seconds();
1380 info
= SHMEM_I(inode
);
1381 memset(info
, 0, (char *)inode
- (char *)info
);
1382 spin_lock_init(&info
->lock
);
1383 info
->flags
= flags
& VM_NORESERVE
;
1384 INIT_LIST_HEAD(&info
->swaplist
);
1385 simple_xattrs_init(&info
->xattrs
);
1386 cache_no_acl(inode
);
1388 switch (mode
& S_IFMT
) {
1390 inode
->i_op
= &shmem_special_inode_operations
;
1391 init_special_inode(inode
, mode
, dev
);
1394 inode
->i_mapping
->a_ops
= &shmem_aops
;
1395 inode
->i_op
= &shmem_inode_operations
;
1396 inode
->i_fop
= &shmem_file_operations
;
1397 mpol_shared_policy_init(&info
->policy
,
1398 shmem_get_sbmpol(sbinfo
));
1402 /* Some things misbehave if size == 0 on a directory */
1403 inode
->i_size
= 2 * BOGO_DIRENT_SIZE
;
1404 inode
->i_op
= &shmem_dir_inode_operations
;
1405 inode
->i_fop
= &simple_dir_operations
;
1409 * Must not load anything in the rbtree,
1410 * mpol_free_shared_policy will not be called.
1412 mpol_shared_policy_init(&info
->policy
, NULL
);
1416 shmem_free_inode(sb
);
1421 static const struct inode_operations shmem_symlink_inode_operations
;
1422 static const struct inode_operations shmem_short_symlink_operations
;
1424 #ifdef CONFIG_TMPFS_XATTR
1425 static int shmem_initxattrs(struct inode
*, const struct xattr
*, void *);
1427 #define shmem_initxattrs NULL
1431 shmem_write_begin(struct file
*file
, struct address_space
*mapping
,
1432 loff_t pos
, unsigned len
, unsigned flags
,
1433 struct page
**pagep
, void **fsdata
)
1435 struct inode
*inode
= mapping
->host
;
1436 pgoff_t index
= pos
>> PAGE_CACHE_SHIFT
;
1437 return shmem_getpage(inode
, index
, pagep
, SGP_WRITE
, NULL
);
1441 shmem_write_end(struct file
*file
, struct address_space
*mapping
,
1442 loff_t pos
, unsigned len
, unsigned copied
,
1443 struct page
*page
, void *fsdata
)
1445 struct inode
*inode
= mapping
->host
;
1447 if (pos
+ copied
> inode
->i_size
)
1448 i_size_write(inode
, pos
+ copied
);
1450 if (!PageUptodate(page
)) {
1451 if (copied
< PAGE_CACHE_SIZE
) {
1452 unsigned from
= pos
& (PAGE_CACHE_SIZE
- 1);
1453 zero_user_segments(page
, 0, from
,
1454 from
+ copied
, PAGE_CACHE_SIZE
);
1456 SetPageUptodate(page
);
1458 set_page_dirty(page
);
1460 page_cache_release(page
);
1465 static void do_shmem_file_read(struct file
*filp
, loff_t
*ppos
, read_descriptor_t
*desc
, read_actor_t actor
)
1467 struct inode
*inode
= file_inode(filp
);
1468 struct address_space
*mapping
= inode
->i_mapping
;
1470 unsigned long offset
;
1471 enum sgp_type sgp
= SGP_READ
;
1474 * Might this read be for a stacking filesystem? Then when reading
1475 * holes of a sparse file, we actually need to allocate those pages,
1476 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1478 if (segment_eq(get_fs(), KERNEL_DS
))
1481 index
= *ppos
>> PAGE_CACHE_SHIFT
;
1482 offset
= *ppos
& ~PAGE_CACHE_MASK
;
1485 struct page
*page
= NULL
;
1487 unsigned long nr
, ret
;
1488 loff_t i_size
= i_size_read(inode
);
1490 end_index
= i_size
>> PAGE_CACHE_SHIFT
;
1491 if (index
> end_index
)
1493 if (index
== end_index
) {
1494 nr
= i_size
& ~PAGE_CACHE_MASK
;
1499 desc
->error
= shmem_getpage(inode
, index
, &page
, sgp
, NULL
);
1501 if (desc
->error
== -EINVAL
)
1509 * We must evaluate after, since reads (unlike writes)
1510 * are called without i_mutex protection against truncate
1512 nr
= PAGE_CACHE_SIZE
;
1513 i_size
= i_size_read(inode
);
1514 end_index
= i_size
>> PAGE_CACHE_SHIFT
;
1515 if (index
== end_index
) {
1516 nr
= i_size
& ~PAGE_CACHE_MASK
;
1519 page_cache_release(page
);
1527 * If users can be writing to this page using arbitrary
1528 * virtual addresses, take care about potential aliasing
1529 * before reading the page on the kernel side.
1531 if (mapping_writably_mapped(mapping
))
1532 flush_dcache_page(page
);
1534 * Mark the page accessed if we read the beginning.
1537 mark_page_accessed(page
);
1539 page
= ZERO_PAGE(0);
1540 page_cache_get(page
);
1544 * Ok, we have the page, and it's up-to-date, so
1545 * now we can copy it to user space...
1547 * The actor routine returns how many bytes were actually used..
1548 * NOTE! This may not be the same as how much of a user buffer
1549 * we filled up (we may be padding etc), so we can only update
1550 * "pos" here (the actor routine has to update the user buffer
1551 * pointers and the remaining count).
1553 ret
= actor(desc
, page
, offset
, nr
);
1555 index
+= offset
>> PAGE_CACHE_SHIFT
;
1556 offset
&= ~PAGE_CACHE_MASK
;
1558 page_cache_release(page
);
1559 if (ret
!= nr
|| !desc
->count
)
1565 *ppos
= ((loff_t
) index
<< PAGE_CACHE_SHIFT
) + offset
;
1566 file_accessed(filp
);
1569 static ssize_t
shmem_file_aio_read(struct kiocb
*iocb
,
1570 const struct iovec
*iov
, unsigned long nr_segs
, loff_t pos
)
1572 struct file
*filp
= iocb
->ki_filp
;
1576 loff_t
*ppos
= &iocb
->ki_pos
;
1578 retval
= generic_segment_checks(iov
, &nr_segs
, &count
, VERIFY_WRITE
);
1582 for (seg
= 0; seg
< nr_segs
; seg
++) {
1583 read_descriptor_t desc
;
1586 desc
.arg
.buf
= iov
[seg
].iov_base
;
1587 desc
.count
= iov
[seg
].iov_len
;
1588 if (desc
.count
== 0)
1591 do_shmem_file_read(filp
, ppos
, &desc
, file_read_actor
);
1592 retval
+= desc
.written
;
1594 retval
= retval
?: desc
.error
;
1603 static ssize_t
shmem_file_splice_read(struct file
*in
, loff_t
*ppos
,
1604 struct pipe_inode_info
*pipe
, size_t len
,
1607 struct address_space
*mapping
= in
->f_mapping
;
1608 struct inode
*inode
= mapping
->host
;
1609 unsigned int loff
, nr_pages
, req_pages
;
1610 struct page
*pages
[PIPE_DEF_BUFFERS
];
1611 struct partial_page partial
[PIPE_DEF_BUFFERS
];
1613 pgoff_t index
, end_index
;
1616 struct splice_pipe_desc spd
= {
1619 .nr_pages_max
= PIPE_DEF_BUFFERS
,
1621 .ops
= &page_cache_pipe_buf_ops
,
1622 .spd_release
= spd_release_page
,
1625 isize
= i_size_read(inode
);
1626 if (unlikely(*ppos
>= isize
))
1629 left
= isize
- *ppos
;
1630 if (unlikely(left
< len
))
1633 if (splice_grow_spd(pipe
, &spd
))
1636 index
= *ppos
>> PAGE_CACHE_SHIFT
;
1637 loff
= *ppos
& ~PAGE_CACHE_MASK
;
1638 req_pages
= (len
+ loff
+ PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
1639 nr_pages
= min(req_pages
, pipe
->buffers
);
1641 spd
.nr_pages
= find_get_pages_contig(mapping
, index
,
1642 nr_pages
, spd
.pages
);
1643 index
+= spd
.nr_pages
;
1646 while (spd
.nr_pages
< nr_pages
) {
1647 error
= shmem_getpage(inode
, index
, &page
, SGP_CACHE
, NULL
);
1651 spd
.pages
[spd
.nr_pages
++] = page
;
1655 index
= *ppos
>> PAGE_CACHE_SHIFT
;
1656 nr_pages
= spd
.nr_pages
;
1659 for (page_nr
= 0; page_nr
< nr_pages
; page_nr
++) {
1660 unsigned int this_len
;
1665 this_len
= min_t(unsigned long, len
, PAGE_CACHE_SIZE
- loff
);
1666 page
= spd
.pages
[page_nr
];
1668 if (!PageUptodate(page
) || page
->mapping
!= mapping
) {
1669 error
= shmem_getpage(inode
, index
, &page
,
1674 page_cache_release(spd
.pages
[page_nr
]);
1675 spd
.pages
[page_nr
] = page
;
1678 isize
= i_size_read(inode
);
1679 end_index
= (isize
- 1) >> PAGE_CACHE_SHIFT
;
1680 if (unlikely(!isize
|| index
> end_index
))
1683 if (end_index
== index
) {
1686 plen
= ((isize
- 1) & ~PAGE_CACHE_MASK
) + 1;
1690 this_len
= min(this_len
, plen
- loff
);
1694 spd
.partial
[page_nr
].offset
= loff
;
1695 spd
.partial
[page_nr
].len
= this_len
;
1702 while (page_nr
< nr_pages
)
1703 page_cache_release(spd
.pages
[page_nr
++]);
1706 error
= splice_to_pipe(pipe
, &spd
);
1708 splice_shrink_spd(&spd
);
1718 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
1720 static pgoff_t
shmem_seek_hole_data(struct address_space
*mapping
,
1721 pgoff_t index
, pgoff_t end
, int whence
)
1724 struct pagevec pvec
;
1725 pgoff_t indices
[PAGEVEC_SIZE
];
1729 pagevec_init(&pvec
, 0);
1730 pvec
.nr
= 1; /* start small: we may be there already */
1732 pvec
.nr
= shmem_find_get_pages_and_swap(mapping
, index
,
1733 pvec
.nr
, pvec
.pages
, indices
);
1735 if (whence
== SEEK_DATA
)
1739 for (i
= 0; i
< pvec
.nr
; i
++, index
++) {
1740 if (index
< indices
[i
]) {
1741 if (whence
== SEEK_HOLE
) {
1747 page
= pvec
.pages
[i
];
1748 if (page
&& !radix_tree_exceptional_entry(page
)) {
1749 if (!PageUptodate(page
))
1753 (page
&& whence
== SEEK_DATA
) ||
1754 (!page
&& whence
== SEEK_HOLE
)) {
1759 shmem_deswap_pagevec(&pvec
);
1760 pagevec_release(&pvec
);
1761 pvec
.nr
= PAGEVEC_SIZE
;
1767 static loff_t
shmem_file_llseek(struct file
*file
, loff_t offset
, int whence
)
1769 struct address_space
*mapping
= file
->f_mapping
;
1770 struct inode
*inode
= mapping
->host
;
1774 if (whence
!= SEEK_DATA
&& whence
!= SEEK_HOLE
)
1775 return generic_file_llseek_size(file
, offset
, whence
,
1776 MAX_LFS_FILESIZE
, i_size_read(inode
));
1777 mutex_lock(&inode
->i_mutex
);
1778 /* We're holding i_mutex so we can access i_size directly */
1782 else if (offset
>= inode
->i_size
)
1785 start
= offset
>> PAGE_CACHE_SHIFT
;
1786 end
= (inode
->i_size
+ PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
1787 new_offset
= shmem_seek_hole_data(mapping
, start
, end
, whence
);
1788 new_offset
<<= PAGE_CACHE_SHIFT
;
1789 if (new_offset
> offset
) {
1790 if (new_offset
< inode
->i_size
)
1791 offset
= new_offset
;
1792 else if (whence
== SEEK_DATA
)
1795 offset
= inode
->i_size
;
1799 if (offset
>= 0 && offset
!= file
->f_pos
) {
1800 file
->f_pos
= offset
;
1801 file
->f_version
= 0;
1803 mutex_unlock(&inode
->i_mutex
);
1807 static long shmem_fallocate(struct file
*file
, int mode
, loff_t offset
,
1810 struct inode
*inode
= file_inode(file
);
1811 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
1812 struct shmem_falloc shmem_falloc
;
1813 pgoff_t start
, index
, end
;
1816 mutex_lock(&inode
->i_mutex
);
1818 if (mode
& FALLOC_FL_PUNCH_HOLE
) {
1819 struct address_space
*mapping
= file
->f_mapping
;
1820 loff_t unmap_start
= round_up(offset
, PAGE_SIZE
);
1821 loff_t unmap_end
= round_down(offset
+ len
, PAGE_SIZE
) - 1;
1823 if ((u64
)unmap_end
> (u64
)unmap_start
)
1824 unmap_mapping_range(mapping
, unmap_start
,
1825 1 + unmap_end
- unmap_start
, 0);
1826 shmem_truncate_range(inode
, offset
, offset
+ len
- 1);
1827 /* No need to unmap again: hole-punching leaves COWed pages */
1832 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
1833 error
= inode_newsize_ok(inode
, offset
+ len
);
1837 start
= offset
>> PAGE_CACHE_SHIFT
;
1838 end
= (offset
+ len
+ PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
1839 /* Try to avoid a swapstorm if len is impossible to satisfy */
1840 if (sbinfo
->max_blocks
&& end
- start
> sbinfo
->max_blocks
) {
1845 shmem_falloc
.start
= start
;
1846 shmem_falloc
.next
= start
;
1847 shmem_falloc
.nr_falloced
= 0;
1848 shmem_falloc
.nr_unswapped
= 0;
1849 spin_lock(&inode
->i_lock
);
1850 inode
->i_private
= &shmem_falloc
;
1851 spin_unlock(&inode
->i_lock
);
1853 for (index
= start
; index
< end
; index
++) {
1857 * Good, the fallocate(2) manpage permits EINTR: we may have
1858 * been interrupted because we are using up too much memory.
1860 if (signal_pending(current
))
1862 else if (shmem_falloc
.nr_unswapped
> shmem_falloc
.nr_falloced
)
1865 error
= shmem_getpage(inode
, index
, &page
, SGP_FALLOC
,
1868 /* Remove the !PageUptodate pages we added */
1869 shmem_undo_range(inode
,
1870 (loff_t
)start
<< PAGE_CACHE_SHIFT
,
1871 (loff_t
)index
<< PAGE_CACHE_SHIFT
, true);
1876 * Inform shmem_writepage() how far we have reached.
1877 * No need for lock or barrier: we have the page lock.
1879 shmem_falloc
.next
++;
1880 if (!PageUptodate(page
))
1881 shmem_falloc
.nr_falloced
++;
1884 * If !PageUptodate, leave it that way so that freeable pages
1885 * can be recognized if we need to rollback on error later.
1886 * But set_page_dirty so that memory pressure will swap rather
1887 * than free the pages we are allocating (and SGP_CACHE pages
1888 * might still be clean: we now need to mark those dirty too).
1890 set_page_dirty(page
);
1892 page_cache_release(page
);
1896 if (!(mode
& FALLOC_FL_KEEP_SIZE
) && offset
+ len
> inode
->i_size
)
1897 i_size_write(inode
, offset
+ len
);
1898 inode
->i_ctime
= CURRENT_TIME
;
1900 spin_lock(&inode
->i_lock
);
1901 inode
->i_private
= NULL
;
1902 spin_unlock(&inode
->i_lock
);
1904 mutex_unlock(&inode
->i_mutex
);
1908 static int shmem_statfs(struct dentry
*dentry
, struct kstatfs
*buf
)
1910 struct shmem_sb_info
*sbinfo
= SHMEM_SB(dentry
->d_sb
);
1912 buf
->f_type
= TMPFS_MAGIC
;
1913 buf
->f_bsize
= PAGE_CACHE_SIZE
;
1914 buf
->f_namelen
= NAME_MAX
;
1915 if (sbinfo
->max_blocks
) {
1916 buf
->f_blocks
= sbinfo
->max_blocks
;
1918 buf
->f_bfree
= sbinfo
->max_blocks
-
1919 percpu_counter_sum(&sbinfo
->used_blocks
);
1921 if (sbinfo
->max_inodes
) {
1922 buf
->f_files
= sbinfo
->max_inodes
;
1923 buf
->f_ffree
= sbinfo
->free_inodes
;
1925 /* else leave those fields 0 like simple_statfs */
1930 * File creation. Allocate an inode, and we're done..
1933 shmem_mknod(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
, dev_t dev
)
1935 struct inode
*inode
;
1936 int error
= -ENOSPC
;
1938 inode
= shmem_get_inode(dir
->i_sb
, dir
, mode
, dev
, VM_NORESERVE
);
1940 error
= security_inode_init_security(inode
, dir
,
1942 shmem_initxattrs
, NULL
);
1944 if (error
!= -EOPNOTSUPP
) {
1949 #ifdef CONFIG_TMPFS_POSIX_ACL
1950 error
= generic_acl_init(inode
, dir
);
1958 dir
->i_size
+= BOGO_DIRENT_SIZE
;
1959 dir
->i_ctime
= dir
->i_mtime
= CURRENT_TIME
;
1960 d_instantiate(dentry
, inode
);
1961 dget(dentry
); /* Extra count - pin the dentry in core */
1966 static int shmem_mkdir(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
)
1970 if ((error
= shmem_mknod(dir
, dentry
, mode
| S_IFDIR
, 0)))
1976 static int shmem_create(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
,
1979 return shmem_mknod(dir
, dentry
, mode
| S_IFREG
, 0);
1985 static int shmem_link(struct dentry
*old_dentry
, struct inode
*dir
, struct dentry
*dentry
)
1987 struct inode
*inode
= old_dentry
->d_inode
;
1991 * No ordinary (disk based) filesystem counts links as inodes;
1992 * but each new link needs a new dentry, pinning lowmem, and
1993 * tmpfs dentries cannot be pruned until they are unlinked.
1995 ret
= shmem_reserve_inode(inode
->i_sb
);
1999 dir
->i_size
+= BOGO_DIRENT_SIZE
;
2000 inode
->i_ctime
= dir
->i_ctime
= dir
->i_mtime
= CURRENT_TIME
;
2002 ihold(inode
); /* New dentry reference */
2003 dget(dentry
); /* Extra pinning count for the created dentry */
2004 d_instantiate(dentry
, inode
);
2009 static int shmem_unlink(struct inode
*dir
, struct dentry
*dentry
)
2011 struct inode
*inode
= dentry
->d_inode
;
2013 if (inode
->i_nlink
> 1 && !S_ISDIR(inode
->i_mode
))
2014 shmem_free_inode(inode
->i_sb
);
2016 dir
->i_size
-= BOGO_DIRENT_SIZE
;
2017 inode
->i_ctime
= dir
->i_ctime
= dir
->i_mtime
= CURRENT_TIME
;
2019 dput(dentry
); /* Undo the count from "create" - this does all the work */
2023 static int shmem_rmdir(struct inode
*dir
, struct dentry
*dentry
)
2025 if (!simple_empty(dentry
))
2028 drop_nlink(dentry
->d_inode
);
2030 return shmem_unlink(dir
, dentry
);
2034 * The VFS layer already does all the dentry stuff for rename,
2035 * we just have to decrement the usage count for the target if
2036 * it exists so that the VFS layer correctly free's it when it
2039 static int shmem_rename(struct inode
*old_dir
, struct dentry
*old_dentry
, struct inode
*new_dir
, struct dentry
*new_dentry
)
2041 struct inode
*inode
= old_dentry
->d_inode
;
2042 int they_are_dirs
= S_ISDIR(inode
->i_mode
);
2044 if (!simple_empty(new_dentry
))
2047 if (new_dentry
->d_inode
) {
2048 (void) shmem_unlink(new_dir
, new_dentry
);
2050 drop_nlink(old_dir
);
2051 } else if (they_are_dirs
) {
2052 drop_nlink(old_dir
);
2056 old_dir
->i_size
-= BOGO_DIRENT_SIZE
;
2057 new_dir
->i_size
+= BOGO_DIRENT_SIZE
;
2058 old_dir
->i_ctime
= old_dir
->i_mtime
=
2059 new_dir
->i_ctime
= new_dir
->i_mtime
=
2060 inode
->i_ctime
= CURRENT_TIME
;
2064 static int shmem_symlink(struct inode
*dir
, struct dentry
*dentry
, const char *symname
)
2068 struct inode
*inode
;
2071 struct shmem_inode_info
*info
;
2073 len
= strlen(symname
) + 1;
2074 if (len
> PAGE_CACHE_SIZE
)
2075 return -ENAMETOOLONG
;
2077 inode
= shmem_get_inode(dir
->i_sb
, dir
, S_IFLNK
|S_IRWXUGO
, 0, VM_NORESERVE
);
2081 error
= security_inode_init_security(inode
, dir
, &dentry
->d_name
,
2082 shmem_initxattrs
, NULL
);
2084 if (error
!= -EOPNOTSUPP
) {
2091 info
= SHMEM_I(inode
);
2092 inode
->i_size
= len
-1;
2093 if (len
<= SHORT_SYMLINK_LEN
) {
2094 info
->symlink
= kmemdup(symname
, len
, GFP_KERNEL
);
2095 if (!info
->symlink
) {
2099 inode
->i_op
= &shmem_short_symlink_operations
;
2101 error
= shmem_getpage(inode
, 0, &page
, SGP_WRITE
, NULL
);
2106 inode
->i_mapping
->a_ops
= &shmem_aops
;
2107 inode
->i_op
= &shmem_symlink_inode_operations
;
2108 kaddr
= kmap_atomic(page
);
2109 memcpy(kaddr
, symname
, len
);
2110 kunmap_atomic(kaddr
);
2111 SetPageUptodate(page
);
2112 set_page_dirty(page
);
2114 page_cache_release(page
);
2116 dir
->i_size
+= BOGO_DIRENT_SIZE
;
2117 dir
->i_ctime
= dir
->i_mtime
= CURRENT_TIME
;
2118 d_instantiate(dentry
, inode
);
2123 static void *shmem_follow_short_symlink(struct dentry
*dentry
, struct nameidata
*nd
)
2125 nd_set_link(nd
, SHMEM_I(dentry
->d_inode
)->symlink
);
2129 static void *shmem_follow_link(struct dentry
*dentry
, struct nameidata
*nd
)
2131 struct page
*page
= NULL
;
2132 int error
= shmem_getpage(dentry
->d_inode
, 0, &page
, SGP_READ
, NULL
);
2133 nd_set_link(nd
, error
? ERR_PTR(error
) : kmap(page
));
2139 static void shmem_put_link(struct dentry
*dentry
, struct nameidata
*nd
, void *cookie
)
2141 if (!IS_ERR(nd_get_link(nd
))) {
2142 struct page
*page
= cookie
;
2144 mark_page_accessed(page
);
2145 page_cache_release(page
);
2149 #ifdef CONFIG_TMPFS_XATTR
2151 * Superblocks without xattr inode operations may get some security.* xattr
2152 * support from the LSM "for free". As soon as we have any other xattrs
2153 * like ACLs, we also need to implement the security.* handlers at
2154 * filesystem level, though.
2158 * Callback for security_inode_init_security() for acquiring xattrs.
2160 static int shmem_initxattrs(struct inode
*inode
,
2161 const struct xattr
*xattr_array
,
2164 struct shmem_inode_info
*info
= SHMEM_I(inode
);
2165 const struct xattr
*xattr
;
2166 struct simple_xattr
*new_xattr
;
2169 for (xattr
= xattr_array
; xattr
->name
!= NULL
; xattr
++) {
2170 new_xattr
= simple_xattr_alloc(xattr
->value
, xattr
->value_len
);
2174 len
= strlen(xattr
->name
) + 1;
2175 new_xattr
->name
= kmalloc(XATTR_SECURITY_PREFIX_LEN
+ len
,
2177 if (!new_xattr
->name
) {
2182 memcpy(new_xattr
->name
, XATTR_SECURITY_PREFIX
,
2183 XATTR_SECURITY_PREFIX_LEN
);
2184 memcpy(new_xattr
->name
+ XATTR_SECURITY_PREFIX_LEN
,
2187 simple_xattr_list_add(&info
->xattrs
, new_xattr
);
2193 static const struct xattr_handler
*shmem_xattr_handlers
[] = {
2194 #ifdef CONFIG_TMPFS_POSIX_ACL
2195 &generic_acl_access_handler
,
2196 &generic_acl_default_handler
,
2201 static int shmem_xattr_validate(const char *name
)
2203 struct { const char *prefix
; size_t len
; } arr
[] = {
2204 { XATTR_SECURITY_PREFIX
, XATTR_SECURITY_PREFIX_LEN
},
2205 { XATTR_TRUSTED_PREFIX
, XATTR_TRUSTED_PREFIX_LEN
}
2209 for (i
= 0; i
< ARRAY_SIZE(arr
); i
++) {
2210 size_t preflen
= arr
[i
].len
;
2211 if (strncmp(name
, arr
[i
].prefix
, preflen
) == 0) {
2220 static ssize_t
shmem_getxattr(struct dentry
*dentry
, const char *name
,
2221 void *buffer
, size_t size
)
2223 struct shmem_inode_info
*info
= SHMEM_I(dentry
->d_inode
);
2227 * If this is a request for a synthetic attribute in the system.*
2228 * namespace use the generic infrastructure to resolve a handler
2229 * for it via sb->s_xattr.
2231 if (!strncmp(name
, XATTR_SYSTEM_PREFIX
, XATTR_SYSTEM_PREFIX_LEN
))
2232 return generic_getxattr(dentry
, name
, buffer
, size
);
2234 err
= shmem_xattr_validate(name
);
2238 return simple_xattr_get(&info
->xattrs
, name
, buffer
, size
);
2241 static int shmem_setxattr(struct dentry
*dentry
, const char *name
,
2242 const void *value
, size_t size
, int flags
)
2244 struct shmem_inode_info
*info
= SHMEM_I(dentry
->d_inode
);
2248 * If this is a request for a synthetic attribute in the system.*
2249 * namespace use the generic infrastructure to resolve a handler
2250 * for it via sb->s_xattr.
2252 if (!strncmp(name
, XATTR_SYSTEM_PREFIX
, XATTR_SYSTEM_PREFIX_LEN
))
2253 return generic_setxattr(dentry
, name
, value
, size
, flags
);
2255 err
= shmem_xattr_validate(name
);
2259 return simple_xattr_set(&info
->xattrs
, name
, value
, size
, flags
);
2262 static int shmem_removexattr(struct dentry
*dentry
, const char *name
)
2264 struct shmem_inode_info
*info
= SHMEM_I(dentry
->d_inode
);
2268 * If this is a request for a synthetic attribute in the system.*
2269 * namespace use the generic infrastructure to resolve a handler
2270 * for it via sb->s_xattr.
2272 if (!strncmp(name
, XATTR_SYSTEM_PREFIX
, XATTR_SYSTEM_PREFIX_LEN
))
2273 return generic_removexattr(dentry
, name
);
2275 err
= shmem_xattr_validate(name
);
2279 return simple_xattr_remove(&info
->xattrs
, name
);
2282 static ssize_t
shmem_listxattr(struct dentry
*dentry
, char *buffer
, size_t size
)
2284 struct shmem_inode_info
*info
= SHMEM_I(dentry
->d_inode
);
2285 return simple_xattr_list(&info
->xattrs
, buffer
, size
);
2287 #endif /* CONFIG_TMPFS_XATTR */
2289 static const struct inode_operations shmem_short_symlink_operations
= {
2290 .readlink
= generic_readlink
,
2291 .follow_link
= shmem_follow_short_symlink
,
2292 #ifdef CONFIG_TMPFS_XATTR
2293 .setxattr
= shmem_setxattr
,
2294 .getxattr
= shmem_getxattr
,
2295 .listxattr
= shmem_listxattr
,
2296 .removexattr
= shmem_removexattr
,
2300 static const struct inode_operations shmem_symlink_inode_operations
= {
2301 .readlink
= generic_readlink
,
2302 .follow_link
= shmem_follow_link
,
2303 .put_link
= shmem_put_link
,
2304 #ifdef CONFIG_TMPFS_XATTR
2305 .setxattr
= shmem_setxattr
,
2306 .getxattr
= shmem_getxattr
,
2307 .listxattr
= shmem_listxattr
,
2308 .removexattr
= shmem_removexattr
,
2312 static struct dentry
*shmem_get_parent(struct dentry
*child
)
2314 return ERR_PTR(-ESTALE
);
2317 static int shmem_match(struct inode
*ino
, void *vfh
)
2321 inum
= (inum
<< 32) | fh
[1];
2322 return ino
->i_ino
== inum
&& fh
[0] == ino
->i_generation
;
2325 static struct dentry
*shmem_fh_to_dentry(struct super_block
*sb
,
2326 struct fid
*fid
, int fh_len
, int fh_type
)
2328 struct inode
*inode
;
2329 struct dentry
*dentry
= NULL
;
2336 inum
= (inum
<< 32) | fid
->raw
[1];
2338 inode
= ilookup5(sb
, (unsigned long)(inum
+ fid
->raw
[0]),
2339 shmem_match
, fid
->raw
);
2341 dentry
= d_find_alias(inode
);
2348 static int shmem_encode_fh(struct inode
*inode
, __u32
*fh
, int *len
,
2349 struct inode
*parent
)
2353 return FILEID_INVALID
;
2356 if (inode_unhashed(inode
)) {
2357 /* Unfortunately insert_inode_hash is not idempotent,
2358 * so as we hash inodes here rather than at creation
2359 * time, we need a lock to ensure we only try
2362 static DEFINE_SPINLOCK(lock
);
2364 if (inode_unhashed(inode
))
2365 __insert_inode_hash(inode
,
2366 inode
->i_ino
+ inode
->i_generation
);
2370 fh
[0] = inode
->i_generation
;
2371 fh
[1] = inode
->i_ino
;
2372 fh
[2] = ((__u64
)inode
->i_ino
) >> 32;
2378 static const struct export_operations shmem_export_ops
= {
2379 .get_parent
= shmem_get_parent
,
2380 .encode_fh
= shmem_encode_fh
,
2381 .fh_to_dentry
= shmem_fh_to_dentry
,
2384 static int shmem_parse_options(char *options
, struct shmem_sb_info
*sbinfo
,
2387 char *this_char
, *value
, *rest
;
2388 struct mempolicy
*mpol
= NULL
;
2392 while (options
!= NULL
) {
2393 this_char
= options
;
2396 * NUL-terminate this option: unfortunately,
2397 * mount options form a comma-separated list,
2398 * but mpol's nodelist may also contain commas.
2400 options
= strchr(options
, ',');
2401 if (options
== NULL
)
2404 if (!isdigit(*options
)) {
2411 if ((value
= strchr(this_char
,'=')) != NULL
) {
2415 "tmpfs: No value for mount option '%s'\n",
2420 if (!strcmp(this_char
,"size")) {
2421 unsigned long long size
;
2422 size
= memparse(value
,&rest
);
2424 size
<<= PAGE_SHIFT
;
2425 size
*= totalram_pages
;
2431 sbinfo
->max_blocks
=
2432 DIV_ROUND_UP(size
, PAGE_CACHE_SIZE
);
2433 } else if (!strcmp(this_char
,"nr_blocks")) {
2434 sbinfo
->max_blocks
= memparse(value
, &rest
);
2437 } else if (!strcmp(this_char
,"nr_inodes")) {
2438 sbinfo
->max_inodes
= memparse(value
, &rest
);
2441 } else if (!strcmp(this_char
,"mode")) {
2444 sbinfo
->mode
= simple_strtoul(value
, &rest
, 8) & 07777;
2447 } else if (!strcmp(this_char
,"uid")) {
2450 uid
= simple_strtoul(value
, &rest
, 0);
2453 sbinfo
->uid
= make_kuid(current_user_ns(), uid
);
2454 if (!uid_valid(sbinfo
->uid
))
2456 } else if (!strcmp(this_char
,"gid")) {
2459 gid
= simple_strtoul(value
, &rest
, 0);
2462 sbinfo
->gid
= make_kgid(current_user_ns(), gid
);
2463 if (!gid_valid(sbinfo
->gid
))
2465 } else if (!strcmp(this_char
,"mpol")) {
2468 if (mpol_parse_str(value
, &mpol
))
2471 printk(KERN_ERR
"tmpfs: Bad mount option %s\n",
2476 sbinfo
->mpol
= mpol
;
2480 printk(KERN_ERR
"tmpfs: Bad value '%s' for mount option '%s'\n",
2488 static int shmem_remount_fs(struct super_block
*sb
, int *flags
, char *data
)
2490 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
2491 struct shmem_sb_info config
= *sbinfo
;
2492 unsigned long inodes
;
2493 int error
= -EINVAL
;
2496 if (shmem_parse_options(data
, &config
, true))
2499 spin_lock(&sbinfo
->stat_lock
);
2500 inodes
= sbinfo
->max_inodes
- sbinfo
->free_inodes
;
2501 if (percpu_counter_compare(&sbinfo
->used_blocks
, config
.max_blocks
) > 0)
2503 if (config
.max_inodes
< inodes
)
2506 * Those tests disallow limited->unlimited while any are in use;
2507 * but we must separately disallow unlimited->limited, because
2508 * in that case we have no record of how much is already in use.
2510 if (config
.max_blocks
&& !sbinfo
->max_blocks
)
2512 if (config
.max_inodes
&& !sbinfo
->max_inodes
)
2516 sbinfo
->max_blocks
= config
.max_blocks
;
2517 sbinfo
->max_inodes
= config
.max_inodes
;
2518 sbinfo
->free_inodes
= config
.max_inodes
- inodes
;
2521 * Preserve previous mempolicy unless mpol remount option was specified.
2524 mpol_put(sbinfo
->mpol
);
2525 sbinfo
->mpol
= config
.mpol
; /* transfers initial ref */
2528 spin_unlock(&sbinfo
->stat_lock
);
2532 static int shmem_show_options(struct seq_file
*seq
, struct dentry
*root
)
2534 struct shmem_sb_info
*sbinfo
= SHMEM_SB(root
->d_sb
);
2536 if (sbinfo
->max_blocks
!= shmem_default_max_blocks())
2537 seq_printf(seq
, ",size=%luk",
2538 sbinfo
->max_blocks
<< (PAGE_CACHE_SHIFT
- 10));
2539 if (sbinfo
->max_inodes
!= shmem_default_max_inodes())
2540 seq_printf(seq
, ",nr_inodes=%lu", sbinfo
->max_inodes
);
2541 if (sbinfo
->mode
!= (S_IRWXUGO
| S_ISVTX
))
2542 seq_printf(seq
, ",mode=%03ho", sbinfo
->mode
);
2543 if (!uid_eq(sbinfo
->uid
, GLOBAL_ROOT_UID
))
2544 seq_printf(seq
, ",uid=%u",
2545 from_kuid_munged(&init_user_ns
, sbinfo
->uid
));
2546 if (!gid_eq(sbinfo
->gid
, GLOBAL_ROOT_GID
))
2547 seq_printf(seq
, ",gid=%u",
2548 from_kgid_munged(&init_user_ns
, sbinfo
->gid
));
2549 shmem_show_mpol(seq
, sbinfo
->mpol
);
2552 #endif /* CONFIG_TMPFS */
2554 static void shmem_put_super(struct super_block
*sb
)
2556 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
2558 percpu_counter_destroy(&sbinfo
->used_blocks
);
2559 mpol_put(sbinfo
->mpol
);
2561 sb
->s_fs_info
= NULL
;
2564 int shmem_fill_super(struct super_block
*sb
, void *data
, int silent
)
2566 struct inode
*inode
;
2567 struct shmem_sb_info
*sbinfo
;
2570 /* Round up to L1_CACHE_BYTES to resist false sharing */
2571 sbinfo
= kzalloc(max((int)sizeof(struct shmem_sb_info
),
2572 L1_CACHE_BYTES
), GFP_KERNEL
);
2576 sbinfo
->mode
= S_IRWXUGO
| S_ISVTX
;
2577 sbinfo
->uid
= current_fsuid();
2578 sbinfo
->gid
= current_fsgid();
2579 sb
->s_fs_info
= sbinfo
;
2583 * Per default we only allow half of the physical ram per
2584 * tmpfs instance, limiting inodes to one per page of lowmem;
2585 * but the internal instance is left unlimited.
2587 if (!(sb
->s_flags
& MS_NOUSER
)) {
2588 sbinfo
->max_blocks
= shmem_default_max_blocks();
2589 sbinfo
->max_inodes
= shmem_default_max_inodes();
2590 if (shmem_parse_options(data
, sbinfo
, false)) {
2595 sb
->s_export_op
= &shmem_export_ops
;
2596 sb
->s_flags
|= MS_NOSEC
;
2598 sb
->s_flags
|= MS_NOUSER
;
2601 spin_lock_init(&sbinfo
->stat_lock
);
2602 if (percpu_counter_init(&sbinfo
->used_blocks
, 0))
2604 sbinfo
->free_inodes
= sbinfo
->max_inodes
;
2606 sb
->s_maxbytes
= MAX_LFS_FILESIZE
;
2607 sb
->s_blocksize
= PAGE_CACHE_SIZE
;
2608 sb
->s_blocksize_bits
= PAGE_CACHE_SHIFT
;
2609 sb
->s_magic
= TMPFS_MAGIC
;
2610 sb
->s_op
= &shmem_ops
;
2611 sb
->s_time_gran
= 1;
2612 #ifdef CONFIG_TMPFS_XATTR
2613 sb
->s_xattr
= shmem_xattr_handlers
;
2615 #ifdef CONFIG_TMPFS_POSIX_ACL
2616 sb
->s_flags
|= MS_POSIXACL
;
2619 inode
= shmem_get_inode(sb
, NULL
, S_IFDIR
| sbinfo
->mode
, 0, VM_NORESERVE
);
2622 inode
->i_uid
= sbinfo
->uid
;
2623 inode
->i_gid
= sbinfo
->gid
;
2624 sb
->s_root
= d_make_root(inode
);
2630 shmem_put_super(sb
);
2634 static struct kmem_cache
*shmem_inode_cachep
;
2636 static struct inode
*shmem_alloc_inode(struct super_block
*sb
)
2638 struct shmem_inode_info
*info
;
2639 info
= kmem_cache_alloc(shmem_inode_cachep
, GFP_KERNEL
);
2642 return &info
->vfs_inode
;
2645 static void shmem_destroy_callback(struct rcu_head
*head
)
2647 struct inode
*inode
= container_of(head
, struct inode
, i_rcu
);
2648 kmem_cache_free(shmem_inode_cachep
, SHMEM_I(inode
));
2651 static void shmem_destroy_inode(struct inode
*inode
)
2653 if (S_ISREG(inode
->i_mode
))
2654 mpol_free_shared_policy(&SHMEM_I(inode
)->policy
);
2655 call_rcu(&inode
->i_rcu
, shmem_destroy_callback
);
2658 static void shmem_init_inode(void *foo
)
2660 struct shmem_inode_info
*info
= foo
;
2661 inode_init_once(&info
->vfs_inode
);
2664 static int shmem_init_inodecache(void)
2666 shmem_inode_cachep
= kmem_cache_create("shmem_inode_cache",
2667 sizeof(struct shmem_inode_info
),
2668 0, SLAB_PANIC
, shmem_init_inode
);
2672 static void shmem_destroy_inodecache(void)
2674 kmem_cache_destroy(shmem_inode_cachep
);
2677 static const struct address_space_operations shmem_aops
= {
2678 .writepage
= shmem_writepage
,
2679 .set_page_dirty
= __set_page_dirty_no_writeback
,
2681 .write_begin
= shmem_write_begin
,
2682 .write_end
= shmem_write_end
,
2684 .migratepage
= migrate_page
,
2685 .error_remove_page
= generic_error_remove_page
,
2688 static const struct file_operations shmem_file_operations
= {
2691 .llseek
= shmem_file_llseek
,
2692 .read
= do_sync_read
,
2693 .write
= do_sync_write
,
2694 .aio_read
= shmem_file_aio_read
,
2695 .aio_write
= generic_file_aio_write
,
2696 .fsync
= noop_fsync
,
2697 .splice_read
= shmem_file_splice_read
,
2698 .splice_write
= generic_file_splice_write
,
2699 .fallocate
= shmem_fallocate
,
2703 static const struct inode_operations shmem_inode_operations
= {
2704 .setattr
= shmem_setattr
,
2705 #ifdef CONFIG_TMPFS_XATTR
2706 .setxattr
= shmem_setxattr
,
2707 .getxattr
= shmem_getxattr
,
2708 .listxattr
= shmem_listxattr
,
2709 .removexattr
= shmem_removexattr
,
2713 static const struct inode_operations shmem_dir_inode_operations
= {
2715 .create
= shmem_create
,
2716 .lookup
= simple_lookup
,
2718 .unlink
= shmem_unlink
,
2719 .symlink
= shmem_symlink
,
2720 .mkdir
= shmem_mkdir
,
2721 .rmdir
= shmem_rmdir
,
2722 .mknod
= shmem_mknod
,
2723 .rename
= shmem_rename
,
2725 #ifdef CONFIG_TMPFS_XATTR
2726 .setxattr
= shmem_setxattr
,
2727 .getxattr
= shmem_getxattr
,
2728 .listxattr
= shmem_listxattr
,
2729 .removexattr
= shmem_removexattr
,
2731 #ifdef CONFIG_TMPFS_POSIX_ACL
2732 .setattr
= shmem_setattr
,
2736 static const struct inode_operations shmem_special_inode_operations
= {
2737 #ifdef CONFIG_TMPFS_XATTR
2738 .setxattr
= shmem_setxattr
,
2739 .getxattr
= shmem_getxattr
,
2740 .listxattr
= shmem_listxattr
,
2741 .removexattr
= shmem_removexattr
,
2743 #ifdef CONFIG_TMPFS_POSIX_ACL
2744 .setattr
= shmem_setattr
,
2748 static const struct super_operations shmem_ops
= {
2749 .alloc_inode
= shmem_alloc_inode
,
2750 .destroy_inode
= shmem_destroy_inode
,
2752 .statfs
= shmem_statfs
,
2753 .remount_fs
= shmem_remount_fs
,
2754 .show_options
= shmem_show_options
,
2756 .evict_inode
= shmem_evict_inode
,
2757 .drop_inode
= generic_delete_inode
,
2758 .put_super
= shmem_put_super
,
2761 static const struct vm_operations_struct shmem_vm_ops
= {
2762 .fault
= shmem_fault
,
2764 .set_policy
= shmem_set_policy
,
2765 .get_policy
= shmem_get_policy
,
2767 .remap_pages
= generic_file_remap_pages
,
2770 static struct dentry
*shmem_mount(struct file_system_type
*fs_type
,
2771 int flags
, const char *dev_name
, void *data
)
2773 return mount_nodev(fs_type
, flags
, data
, shmem_fill_super
);
2776 static struct file_system_type shmem_fs_type
= {
2777 .owner
= THIS_MODULE
,
2779 .mount
= shmem_mount
,
2780 .kill_sb
= kill_litter_super
,
2781 .fs_flags
= FS_USERNS_MOUNT
,
2784 int __init
shmem_init(void)
2788 error
= bdi_init(&shmem_backing_dev_info
);
2792 error
= shmem_init_inodecache();
2796 error
= register_filesystem(&shmem_fs_type
);
2798 printk(KERN_ERR
"Could not register tmpfs\n");
2802 shm_mnt
= vfs_kern_mount(&shmem_fs_type
, MS_NOUSER
,
2803 shmem_fs_type
.name
, NULL
);
2804 if (IS_ERR(shm_mnt
)) {
2805 error
= PTR_ERR(shm_mnt
);
2806 printk(KERN_ERR
"Could not kern_mount tmpfs\n");
2812 unregister_filesystem(&shmem_fs_type
);
2814 shmem_destroy_inodecache();
2816 bdi_destroy(&shmem_backing_dev_info
);
2818 shm_mnt
= ERR_PTR(error
);
2822 #else /* !CONFIG_SHMEM */
2825 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2827 * This is intended for small system where the benefits of the full
2828 * shmem code (swap-backed and resource-limited) are outweighed by
2829 * their complexity. On systems without swap this code should be
2830 * effectively equivalent, but much lighter weight.
2833 #include <linux/ramfs.h>
2835 static struct file_system_type shmem_fs_type
= {
2837 .mount
= ramfs_mount
,
2838 .kill_sb
= kill_litter_super
,
2839 .fs_flags
= FS_USERNS_MOUNT
,
2842 int __init
shmem_init(void)
2844 BUG_ON(register_filesystem(&shmem_fs_type
) != 0);
2846 shm_mnt
= kern_mount(&shmem_fs_type
);
2847 BUG_ON(IS_ERR(shm_mnt
));
2852 int shmem_unuse(swp_entry_t swap
, struct page
*page
)
2857 int shmem_lock(struct file
*file
, int lock
, struct user_struct
*user
)
2862 void shmem_unlock_mapping(struct address_space
*mapping
)
2866 void shmem_truncate_range(struct inode
*inode
, loff_t lstart
, loff_t lend
)
2868 truncate_inode_pages_range(inode
->i_mapping
, lstart
, lend
);
2870 EXPORT_SYMBOL_GPL(shmem_truncate_range
);
2872 #define shmem_vm_ops generic_file_vm_ops
2873 #define shmem_file_operations ramfs_file_operations
2874 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
2875 #define shmem_acct_size(flags, size) 0
2876 #define shmem_unacct_size(flags, size) do {} while (0)
2878 #endif /* CONFIG_SHMEM */
2882 static char *shmem_dname(struct dentry
*dentry
, char *buffer
, int buflen
)
2884 return dynamic_dname(dentry
, buffer
, buflen
, "/%s (deleted)",
2885 dentry
->d_name
.name
);
2888 static struct dentry_operations anon_ops
= {
2889 .d_dname
= shmem_dname
2893 * shmem_file_setup - get an unlinked file living in tmpfs
2894 * @name: name for dentry (to be seen in /proc/<pid>/maps
2895 * @size: size to be set for the file
2896 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2898 struct file
*shmem_file_setup(const char *name
, loff_t size
, unsigned long flags
)
2901 struct inode
*inode
;
2903 struct super_block
*sb
;
2906 if (IS_ERR(shm_mnt
))
2907 return ERR_CAST(shm_mnt
);
2909 if (size
< 0 || size
> MAX_LFS_FILESIZE
)
2910 return ERR_PTR(-EINVAL
);
2912 if (shmem_acct_size(flags
, size
))
2913 return ERR_PTR(-ENOMEM
);
2915 res
= ERR_PTR(-ENOMEM
);
2917 this.len
= strlen(name
);
2918 this.hash
= 0; /* will go */
2919 sb
= shm_mnt
->mnt_sb
;
2920 path
.dentry
= d_alloc_pseudo(sb
, &this);
2923 d_set_d_op(path
.dentry
, &anon_ops
);
2924 path
.mnt
= mntget(shm_mnt
);
2926 res
= ERR_PTR(-ENOSPC
);
2927 inode
= shmem_get_inode(sb
, NULL
, S_IFREG
| S_IRWXUGO
, 0, flags
);
2931 d_instantiate(path
.dentry
, inode
);
2932 inode
->i_size
= size
;
2933 clear_nlink(inode
); /* It is unlinked */
2935 res
= ERR_PTR(ramfs_nommu_expand_for_mapping(inode
, size
));
2940 res
= alloc_file(&path
, FMODE_WRITE
| FMODE_READ
,
2941 &shmem_file_operations
);
2950 shmem_unacct_size(flags
, size
);
2953 EXPORT_SYMBOL_GPL(shmem_file_setup
);
2956 * shmem_zero_setup - setup a shared anonymous mapping
2957 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2959 int shmem_zero_setup(struct vm_area_struct
*vma
)
2962 loff_t size
= vma
->vm_end
- vma
->vm_start
;
2964 file
= shmem_file_setup("dev/zero", size
, vma
->vm_flags
);
2966 return PTR_ERR(file
);
2970 vma
->vm_file
= file
;
2971 vma
->vm_ops
= &shmem_vm_ops
;
2976 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
2977 * @mapping: the page's address_space
2978 * @index: the page index
2979 * @gfp: the page allocator flags to use if allocating
2981 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
2982 * with any new page allocations done using the specified allocation flags.
2983 * But read_cache_page_gfp() uses the ->readpage() method: which does not
2984 * suit tmpfs, since it may have pages in swapcache, and needs to find those
2985 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
2987 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
2988 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
2990 struct page
*shmem_read_mapping_page_gfp(struct address_space
*mapping
,
2991 pgoff_t index
, gfp_t gfp
)
2994 struct inode
*inode
= mapping
->host
;
2998 BUG_ON(mapping
->a_ops
!= &shmem_aops
);
2999 error
= shmem_getpage_gfp(inode
, index
, &page
, SGP_CACHE
, gfp
, NULL
);
3001 page
= ERR_PTR(error
);
3007 * The tiny !SHMEM case uses ramfs without swap
3009 return read_cache_page_gfp(mapping
, index
, gfp
);
3012 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp
);