4 * Copyright (C) 2002, Linus Torvalds.
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
11 * 10Apr2002 Andrew Morton
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
23 #include <linux/pagemap.h>
24 #include <linux/kthread.h>
25 #include <linux/freezer.h>
26 #include <linux/writeback.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/tracepoint.h>
33 * 4MB minimal write chunk size
35 #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_CACHE_SHIFT - 10))
38 * Passed into wb_writeback(), essentially a subset of writeback_control
40 struct wb_writeback_work
{
42 struct super_block
*sb
;
43 unsigned long *older_than_this
;
44 enum writeback_sync_modes sync_mode
;
45 unsigned int tagged_writepages
:1;
46 unsigned int for_kupdate
:1;
47 unsigned int range_cyclic
:1;
48 unsigned int for_background
:1;
49 enum wb_reason reason
; /* why was writeback initiated? */
51 struct list_head list
; /* pending work list */
52 struct completion
*done
; /* set if the caller waits */
56 * writeback_in_progress - determine whether there is writeback in progress
57 * @bdi: the device's backing_dev_info structure.
59 * Determine whether there is writeback waiting to be handled against a
62 int writeback_in_progress(struct backing_dev_info
*bdi
)
64 return test_bit(BDI_writeback_running
, &bdi
->state
);
67 static inline struct backing_dev_info
*inode_to_bdi(struct inode
*inode
)
69 struct super_block
*sb
= inode
->i_sb
;
71 if (strcmp(sb
->s_type
->name
, "bdev") == 0)
72 return inode
->i_mapping
->backing_dev_info
;
77 static inline struct inode
*wb_inode(struct list_head
*head
)
79 return list_entry(head
, struct inode
, i_wb_list
);
83 * Include the creation of the trace points after defining the
84 * wb_writeback_work structure and inline functions so that the definition
85 * remains local to this file.
87 #define CREATE_TRACE_POINTS
88 #include <trace/events/writeback.h>
90 /* Wakeup flusher thread or forker thread to fork it. Requires bdi->wb_lock. */
91 static void bdi_wakeup_flusher(struct backing_dev_info
*bdi
)
94 wake_up_process(bdi
->wb
.task
);
97 * The bdi thread isn't there, wake up the forker thread which
98 * will create and run it.
100 wake_up_process(default_backing_dev_info
.wb
.task
);
104 static void bdi_queue_work(struct backing_dev_info
*bdi
,
105 struct wb_writeback_work
*work
)
107 trace_writeback_queue(bdi
, work
);
109 spin_lock_bh(&bdi
->wb_lock
);
110 list_add_tail(&work
->list
, &bdi
->work_list
);
112 trace_writeback_nothread(bdi
, work
);
113 bdi_wakeup_flusher(bdi
);
114 spin_unlock_bh(&bdi
->wb_lock
);
118 __bdi_start_writeback(struct backing_dev_info
*bdi
, long nr_pages
,
119 bool range_cyclic
, enum wb_reason reason
)
121 struct wb_writeback_work
*work
;
124 * This is WB_SYNC_NONE writeback, so if allocation fails just
125 * wakeup the thread for old dirty data writeback
127 work
= kzalloc(sizeof(*work
), GFP_ATOMIC
);
130 trace_writeback_nowork(bdi
);
131 wake_up_process(bdi
->wb
.task
);
136 work
->sync_mode
= WB_SYNC_NONE
;
137 work
->nr_pages
= nr_pages
;
138 work
->range_cyclic
= range_cyclic
;
139 work
->reason
= reason
;
141 bdi_queue_work(bdi
, work
);
145 * bdi_start_writeback - start writeback
146 * @bdi: the backing device to write from
147 * @nr_pages: the number of pages to write
148 * @reason: reason why some writeback work was initiated
151 * This does WB_SYNC_NONE opportunistic writeback. The IO is only
152 * started when this function returns, we make no guarantees on
153 * completion. Caller need not hold sb s_umount semaphore.
156 void bdi_start_writeback(struct backing_dev_info
*bdi
, long nr_pages
,
157 enum wb_reason reason
)
159 __bdi_start_writeback(bdi
, nr_pages
, true, reason
);
163 * bdi_start_background_writeback - start background writeback
164 * @bdi: the backing device to write from
167 * This makes sure WB_SYNC_NONE background writeback happens. When
168 * this function returns, it is only guaranteed that for given BDI
169 * some IO is happening if we are over background dirty threshold.
170 * Caller need not hold sb s_umount semaphore.
172 void bdi_start_background_writeback(struct backing_dev_info
*bdi
)
175 * We just wake up the flusher thread. It will perform background
176 * writeback as soon as there is no other work to do.
178 trace_writeback_wake_background(bdi
);
179 spin_lock_bh(&bdi
->wb_lock
);
180 bdi_wakeup_flusher(bdi
);
181 spin_unlock_bh(&bdi
->wb_lock
);
185 * Remove the inode from the writeback list it is on.
187 void inode_wb_list_del(struct inode
*inode
)
189 struct backing_dev_info
*bdi
= inode_to_bdi(inode
);
191 spin_lock(&bdi
->wb
.list_lock
);
192 list_del_init(&inode
->i_wb_list
);
193 spin_unlock(&bdi
->wb
.list_lock
);
197 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
198 * furthest end of its superblock's dirty-inode list.
200 * Before stamping the inode's ->dirtied_when, we check to see whether it is
201 * already the most-recently-dirtied inode on the b_dirty list. If that is
202 * the case then the inode must have been redirtied while it was being written
203 * out and we don't reset its dirtied_when.
205 static void redirty_tail(struct inode
*inode
, struct bdi_writeback
*wb
)
207 assert_spin_locked(&wb
->list_lock
);
208 if (!list_empty(&wb
->b_dirty
)) {
211 tail
= wb_inode(wb
->b_dirty
.next
);
212 if (time_before(inode
->dirtied_when
, tail
->dirtied_when
))
213 inode
->dirtied_when
= jiffies
;
215 list_move(&inode
->i_wb_list
, &wb
->b_dirty
);
219 * requeue inode for re-scanning after bdi->b_io list is exhausted.
221 static void requeue_io(struct inode
*inode
, struct bdi_writeback
*wb
)
223 assert_spin_locked(&wb
->list_lock
);
224 list_move(&inode
->i_wb_list
, &wb
->b_more_io
);
227 static void inode_sync_complete(struct inode
*inode
)
229 inode
->i_state
&= ~I_SYNC
;
230 /* Waiters must see I_SYNC cleared before being woken up */
232 wake_up_bit(&inode
->i_state
, __I_SYNC
);
235 static bool inode_dirtied_after(struct inode
*inode
, unsigned long t
)
237 bool ret
= time_after(inode
->dirtied_when
, t
);
240 * For inodes being constantly redirtied, dirtied_when can get stuck.
241 * It _appears_ to be in the future, but is actually in distant past.
242 * This test is necessary to prevent such wrapped-around relative times
243 * from permanently stopping the whole bdi writeback.
245 ret
= ret
&& time_before_eq(inode
->dirtied_when
, jiffies
);
251 * Move expired (dirtied after work->older_than_this) dirty inodes from
252 * @delaying_queue to @dispatch_queue.
254 static int move_expired_inodes(struct list_head
*delaying_queue
,
255 struct list_head
*dispatch_queue
,
256 struct wb_writeback_work
*work
)
259 struct list_head
*pos
, *node
;
260 struct super_block
*sb
= NULL
;
265 while (!list_empty(delaying_queue
)) {
266 inode
= wb_inode(delaying_queue
->prev
);
267 if (work
->older_than_this
&&
268 inode_dirtied_after(inode
, *work
->older_than_this
))
270 if (sb
&& sb
!= inode
->i_sb
)
273 list_move(&inode
->i_wb_list
, &tmp
);
277 /* just one sb in list, splice to dispatch_queue and we're done */
279 list_splice(&tmp
, dispatch_queue
);
283 /* Move inodes from one superblock together */
284 while (!list_empty(&tmp
)) {
285 sb
= wb_inode(tmp
.prev
)->i_sb
;
286 list_for_each_prev_safe(pos
, node
, &tmp
) {
287 inode
= wb_inode(pos
);
288 if (inode
->i_sb
== sb
)
289 list_move(&inode
->i_wb_list
, dispatch_queue
);
297 * Queue all expired dirty inodes for io, eldest first.
299 * newly dirtied b_dirty b_io b_more_io
300 * =============> gf edc BA
302 * newly dirtied b_dirty b_io b_more_io
303 * =============> g fBAedc
305 * +--> dequeue for IO
307 static void queue_io(struct bdi_writeback
*wb
, struct wb_writeback_work
*work
)
310 assert_spin_locked(&wb
->list_lock
);
311 list_splice_init(&wb
->b_more_io
, &wb
->b_io
);
312 moved
= move_expired_inodes(&wb
->b_dirty
, &wb
->b_io
, work
);
313 trace_writeback_queue_io(wb
, work
, moved
);
316 static int write_inode(struct inode
*inode
, struct writeback_control
*wbc
)
318 if (inode
->i_sb
->s_op
->write_inode
&& !is_bad_inode(inode
))
319 return inode
->i_sb
->s_op
->write_inode(inode
, wbc
);
324 * Wait for writeback on an inode to complete. Called with i_lock held.
325 * Caller must make sure inode cannot go away when we drop i_lock.
327 static void __inode_wait_for_writeback(struct inode
*inode
)
328 __releases(inode
->i_lock
)
329 __acquires(inode
->i_lock
)
331 DEFINE_WAIT_BIT(wq
, &inode
->i_state
, __I_SYNC
);
332 wait_queue_head_t
*wqh
;
334 wqh
= bit_waitqueue(&inode
->i_state
, __I_SYNC
);
335 while (inode
->i_state
& I_SYNC
) {
336 spin_unlock(&inode
->i_lock
);
337 __wait_on_bit(wqh
, &wq
, inode_wait
, TASK_UNINTERRUPTIBLE
);
338 spin_lock(&inode
->i_lock
);
343 * Wait for writeback on an inode to complete. Caller must have inode pinned.
345 void inode_wait_for_writeback(struct inode
*inode
)
347 spin_lock(&inode
->i_lock
);
348 __inode_wait_for_writeback(inode
);
349 spin_unlock(&inode
->i_lock
);
353 * Sleep until I_SYNC is cleared. This function must be called with i_lock
354 * held and drops it. It is aimed for callers not holding any inode reference
355 * so once i_lock is dropped, inode can go away.
357 static void inode_sleep_on_writeback(struct inode
*inode
)
358 __releases(inode
->i_lock
)
361 wait_queue_head_t
*wqh
= bit_waitqueue(&inode
->i_state
, __I_SYNC
);
364 prepare_to_wait(wqh
, &wait
, TASK_UNINTERRUPTIBLE
);
365 sleep
= inode
->i_state
& I_SYNC
;
366 spin_unlock(&inode
->i_lock
);
369 finish_wait(wqh
, &wait
);
373 * Find proper writeback list for the inode depending on its current state and
374 * possibly also change of its state while we were doing writeback. Here we
375 * handle things such as livelock prevention or fairness of writeback among
376 * inodes. This function can be called only by flusher thread - noone else
377 * processes all inodes in writeback lists and requeueing inodes behind flusher
378 * thread's back can have unexpected consequences.
380 static void requeue_inode(struct inode
*inode
, struct bdi_writeback
*wb
,
381 struct writeback_control
*wbc
)
383 if (inode
->i_state
& I_FREEING
)
387 * Sync livelock prevention. Each inode is tagged and synced in one
388 * shot. If still dirty, it will be redirty_tail()'ed below. Update
389 * the dirty time to prevent enqueue and sync it again.
391 if ((inode
->i_state
& I_DIRTY
) &&
392 (wbc
->sync_mode
== WB_SYNC_ALL
|| wbc
->tagged_writepages
))
393 inode
->dirtied_when
= jiffies
;
395 if (wbc
->pages_skipped
) {
397 * writeback is not making progress due to locked
398 * buffers. Skip this inode for now.
400 redirty_tail(inode
, wb
);
404 if (mapping_tagged(inode
->i_mapping
, PAGECACHE_TAG_DIRTY
)) {
406 * We didn't write back all the pages. nfs_writepages()
407 * sometimes bales out without doing anything.
409 if (wbc
->nr_to_write
<= 0) {
410 /* Slice used up. Queue for next turn. */
411 requeue_io(inode
, wb
);
414 * Writeback blocked by something other than
415 * congestion. Delay the inode for some time to
416 * avoid spinning on the CPU (100% iowait)
417 * retrying writeback of the dirty page/inode
418 * that cannot be performed immediately.
420 redirty_tail(inode
, wb
);
422 } else if (inode
->i_state
& I_DIRTY
) {
424 * Filesystems can dirty the inode during writeback operations,
425 * such as delayed allocation during submission or metadata
426 * updates after data IO completion.
428 redirty_tail(inode
, wb
);
430 /* The inode is clean. Remove from writeback lists. */
431 list_del_init(&inode
->i_wb_list
);
436 * Write out an inode and its dirty pages. Do not update the writeback list
437 * linkage. That is left to the caller. The caller is also responsible for
438 * setting I_SYNC flag and calling inode_sync_complete() to clear it.
441 __writeback_single_inode(struct inode
*inode
, struct bdi_writeback
*wb
,
442 struct writeback_control
*wbc
)
444 struct address_space
*mapping
= inode
->i_mapping
;
445 long nr_to_write
= wbc
->nr_to_write
;
449 WARN_ON(!(inode
->i_state
& I_SYNC
));
451 ret
= do_writepages(mapping
, wbc
);
454 * Make sure to wait on the data before writing out the metadata.
455 * This is important for filesystems that modify metadata on data
458 if (wbc
->sync_mode
== WB_SYNC_ALL
) {
459 int err
= filemap_fdatawait(mapping
);
465 * Some filesystems may redirty the inode during the writeback
466 * due to delalloc, clear dirty metadata flags right before
469 spin_lock(&inode
->i_lock
);
470 /* Clear I_DIRTY_PAGES if we've written out all dirty pages */
471 if (!mapping_tagged(mapping
, PAGECACHE_TAG_DIRTY
))
472 inode
->i_state
&= ~I_DIRTY_PAGES
;
473 dirty
= inode
->i_state
& I_DIRTY
;
474 inode
->i_state
&= ~(I_DIRTY_SYNC
| I_DIRTY_DATASYNC
);
475 spin_unlock(&inode
->i_lock
);
476 /* Don't write the inode if only I_DIRTY_PAGES was set */
477 if (dirty
& (I_DIRTY_SYNC
| I_DIRTY_DATASYNC
)) {
478 int err
= write_inode(inode
, wbc
);
482 trace_writeback_single_inode(inode
, wbc
, nr_to_write
);
487 * Write out an inode's dirty pages. Either the caller has an active reference
488 * on the inode or the inode has I_WILL_FREE set.
490 * This function is designed to be called for writing back one inode which
491 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
492 * and does more profound writeback list handling in writeback_sb_inodes().
495 writeback_single_inode(struct inode
*inode
, struct bdi_writeback
*wb
,
496 struct writeback_control
*wbc
)
500 spin_lock(&inode
->i_lock
);
501 if (!atomic_read(&inode
->i_count
))
502 WARN_ON(!(inode
->i_state
& (I_WILL_FREE
|I_FREEING
)));
504 WARN_ON(inode
->i_state
& I_WILL_FREE
);
506 if (inode
->i_state
& I_SYNC
) {
507 if (wbc
->sync_mode
!= WB_SYNC_ALL
)
510 * It's a data-integrity sync. We must wait. Since callers hold
511 * inode reference or inode has I_WILL_FREE set, it cannot go
514 __inode_wait_for_writeback(inode
);
516 WARN_ON(inode
->i_state
& I_SYNC
);
518 * Skip inode if it is clean. We don't want to mess with writeback
519 * lists in this function since flusher thread may be doing for example
520 * sync in parallel and if we move the inode, it could get skipped. So
521 * here we make sure inode is on some writeback list and leave it there
522 * unless we have completely cleaned the inode.
524 if (!(inode
->i_state
& I_DIRTY
))
526 inode
->i_state
|= I_SYNC
;
527 spin_unlock(&inode
->i_lock
);
529 ret
= __writeback_single_inode(inode
, wb
, wbc
);
531 spin_lock(&wb
->list_lock
);
532 spin_lock(&inode
->i_lock
);
534 * If inode is clean, remove it from writeback lists. Otherwise don't
535 * touch it. See comment above for explanation.
537 if (!(inode
->i_state
& I_DIRTY
))
538 list_del_init(&inode
->i_wb_list
);
539 spin_unlock(&wb
->list_lock
);
540 inode_sync_complete(inode
);
542 spin_unlock(&inode
->i_lock
);
546 static long writeback_chunk_size(struct backing_dev_info
*bdi
,
547 struct wb_writeback_work
*work
)
552 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
553 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
554 * here avoids calling into writeback_inodes_wb() more than once.
556 * The intended call sequence for WB_SYNC_ALL writeback is:
559 * writeback_sb_inodes() <== called only once
560 * write_cache_pages() <== called once for each inode
561 * (quickly) tag currently dirty pages
562 * (maybe slowly) sync all tagged pages
564 if (work
->sync_mode
== WB_SYNC_ALL
|| work
->tagged_writepages
)
567 pages
= min(bdi
->avg_write_bandwidth
/ 2,
568 global_dirty_limit
/ DIRTY_SCOPE
);
569 pages
= min(pages
, work
->nr_pages
);
570 pages
= round_down(pages
+ MIN_WRITEBACK_PAGES
,
571 MIN_WRITEBACK_PAGES
);
578 * Write a portion of b_io inodes which belong to @sb.
580 * If @only_this_sb is true, then find and write all such
581 * inodes. Otherwise write only ones which go sequentially
584 * Return the number of pages and/or inodes written.
586 static long writeback_sb_inodes(struct super_block
*sb
,
587 struct bdi_writeback
*wb
,
588 struct wb_writeback_work
*work
)
590 struct writeback_control wbc
= {
591 .sync_mode
= work
->sync_mode
,
592 .tagged_writepages
= work
->tagged_writepages
,
593 .for_kupdate
= work
->for_kupdate
,
594 .for_background
= work
->for_background
,
595 .range_cyclic
= work
->range_cyclic
,
597 .range_end
= LLONG_MAX
,
599 unsigned long start_time
= jiffies
;
601 long wrote
= 0; /* count both pages and inodes */
603 while (!list_empty(&wb
->b_io
)) {
604 struct inode
*inode
= wb_inode(wb
->b_io
.prev
);
606 if (inode
->i_sb
!= sb
) {
609 * We only want to write back data for this
610 * superblock, move all inodes not belonging
611 * to it back onto the dirty list.
613 redirty_tail(inode
, wb
);
618 * The inode belongs to a different superblock.
619 * Bounce back to the caller to unpin this and
620 * pin the next superblock.
626 * Don't bother with new inodes or inodes being freed, first
627 * kind does not need periodic writeout yet, and for the latter
628 * kind writeout is handled by the freer.
630 spin_lock(&inode
->i_lock
);
631 if (inode
->i_state
& (I_NEW
| I_FREEING
| I_WILL_FREE
)) {
632 spin_unlock(&inode
->i_lock
);
633 redirty_tail(inode
, wb
);
636 if ((inode
->i_state
& I_SYNC
) && wbc
.sync_mode
!= WB_SYNC_ALL
) {
638 * If this inode is locked for writeback and we are not
639 * doing writeback-for-data-integrity, move it to
640 * b_more_io so that writeback can proceed with the
641 * other inodes on s_io.
643 * We'll have another go at writing back this inode
644 * when we completed a full scan of b_io.
646 spin_unlock(&inode
->i_lock
);
647 requeue_io(inode
, wb
);
648 trace_writeback_sb_inodes_requeue(inode
);
651 spin_unlock(&wb
->list_lock
);
654 * We already requeued the inode if it had I_SYNC set and we
655 * are doing WB_SYNC_NONE writeback. So this catches only the
658 if (inode
->i_state
& I_SYNC
) {
659 /* Wait for I_SYNC. This function drops i_lock... */
660 inode_sleep_on_writeback(inode
);
661 /* Inode may be gone, start again */
662 spin_lock(&wb
->list_lock
);
665 inode
->i_state
|= I_SYNC
;
666 spin_unlock(&inode
->i_lock
);
668 write_chunk
= writeback_chunk_size(wb
->bdi
, work
);
669 wbc
.nr_to_write
= write_chunk
;
670 wbc
.pages_skipped
= 0;
673 * We use I_SYNC to pin the inode in memory. While it is set
674 * evict_inode() will wait so the inode cannot be freed.
676 __writeback_single_inode(inode
, wb
, &wbc
);
678 work
->nr_pages
-= write_chunk
- wbc
.nr_to_write
;
679 wrote
+= write_chunk
- wbc
.nr_to_write
;
680 spin_lock(&wb
->list_lock
);
681 spin_lock(&inode
->i_lock
);
682 if (!(inode
->i_state
& I_DIRTY
))
684 requeue_inode(inode
, wb
, &wbc
);
685 inode_sync_complete(inode
);
686 spin_unlock(&inode
->i_lock
);
687 cond_resched_lock(&wb
->list_lock
);
689 * bail out to wb_writeback() often enough to check
690 * background threshold and other termination conditions.
693 if (time_is_before_jiffies(start_time
+ HZ
/ 10UL))
695 if (work
->nr_pages
<= 0)
702 static long __writeback_inodes_wb(struct bdi_writeback
*wb
,
703 struct wb_writeback_work
*work
)
705 unsigned long start_time
= jiffies
;
708 while (!list_empty(&wb
->b_io
)) {
709 struct inode
*inode
= wb_inode(wb
->b_io
.prev
);
710 struct super_block
*sb
= inode
->i_sb
;
712 if (!grab_super_passive(sb
)) {
714 * grab_super_passive() may fail consistently due to
715 * s_umount being grabbed by someone else. Don't use
716 * requeue_io() to avoid busy retrying the inode/sb.
718 redirty_tail(inode
, wb
);
721 wrote
+= writeback_sb_inodes(sb
, wb
, work
);
724 /* refer to the same tests at the end of writeback_sb_inodes */
726 if (time_is_before_jiffies(start_time
+ HZ
/ 10UL))
728 if (work
->nr_pages
<= 0)
732 /* Leave any unwritten inodes on b_io */
736 long writeback_inodes_wb(struct bdi_writeback
*wb
, long nr_pages
,
737 enum wb_reason reason
)
739 struct wb_writeback_work work
= {
740 .nr_pages
= nr_pages
,
741 .sync_mode
= WB_SYNC_NONE
,
746 spin_lock(&wb
->list_lock
);
747 if (list_empty(&wb
->b_io
))
749 __writeback_inodes_wb(wb
, &work
);
750 spin_unlock(&wb
->list_lock
);
752 return nr_pages
- work
.nr_pages
;
755 static bool over_bground_thresh(struct backing_dev_info
*bdi
)
757 unsigned long background_thresh
, dirty_thresh
;
759 global_dirty_limits(&background_thresh
, &dirty_thresh
);
761 if (global_page_state(NR_FILE_DIRTY
) +
762 global_page_state(NR_UNSTABLE_NFS
) > background_thresh
)
765 if (bdi_stat(bdi
, BDI_RECLAIMABLE
) >
766 bdi_dirty_limit(bdi
, background_thresh
))
773 * Called under wb->list_lock. If there are multiple wb per bdi,
774 * only the flusher working on the first wb should do it.
776 static void wb_update_bandwidth(struct bdi_writeback
*wb
,
777 unsigned long start_time
)
779 __bdi_update_bandwidth(wb
->bdi
, 0, 0, 0, 0, 0, start_time
);
783 * Explicit flushing or periodic writeback of "old" data.
785 * Define "old": the first time one of an inode's pages is dirtied, we mark the
786 * dirtying-time in the inode's address_space. So this periodic writeback code
787 * just walks the superblock inode list, writing back any inodes which are
788 * older than a specific point in time.
790 * Try to run once per dirty_writeback_interval. But if a writeback event
791 * takes longer than a dirty_writeback_interval interval, then leave a
794 * older_than_this takes precedence over nr_to_write. So we'll only write back
795 * all dirty pages if they are all attached to "old" mappings.
797 static long wb_writeback(struct bdi_writeback
*wb
,
798 struct wb_writeback_work
*work
)
800 unsigned long wb_start
= jiffies
;
801 long nr_pages
= work
->nr_pages
;
802 unsigned long oldest_jif
;
806 oldest_jif
= jiffies
;
807 work
->older_than_this
= &oldest_jif
;
809 spin_lock(&wb
->list_lock
);
812 * Stop writeback when nr_pages has been consumed
814 if (work
->nr_pages
<= 0)
818 * Background writeout and kupdate-style writeback may
819 * run forever. Stop them if there is other work to do
820 * so that e.g. sync can proceed. They'll be restarted
821 * after the other works are all done.
823 if ((work
->for_background
|| work
->for_kupdate
) &&
824 !list_empty(&wb
->bdi
->work_list
))
828 * For background writeout, stop when we are below the
829 * background dirty threshold
831 if (work
->for_background
&& !over_bground_thresh(wb
->bdi
))
835 * Kupdate and background works are special and we want to
836 * include all inodes that need writing. Livelock avoidance is
837 * handled by these works yielding to any other work so we are
840 if (work
->for_kupdate
) {
841 oldest_jif
= jiffies
-
842 msecs_to_jiffies(dirty_expire_interval
* 10);
843 } else if (work
->for_background
)
844 oldest_jif
= jiffies
;
846 trace_writeback_start(wb
->bdi
, work
);
847 if (list_empty(&wb
->b_io
))
850 progress
= writeback_sb_inodes(work
->sb
, wb
, work
);
852 progress
= __writeback_inodes_wb(wb
, work
);
853 trace_writeback_written(wb
->bdi
, work
);
855 wb_update_bandwidth(wb
, wb_start
);
858 * Did we write something? Try for more
860 * Dirty inodes are moved to b_io for writeback in batches.
861 * The completion of the current batch does not necessarily
862 * mean the overall work is done. So we keep looping as long
863 * as made some progress on cleaning pages or inodes.
868 * No more inodes for IO, bail
870 if (list_empty(&wb
->b_more_io
))
873 * Nothing written. Wait for some inode to
874 * become available for writeback. Otherwise
875 * we'll just busyloop.
877 if (!list_empty(&wb
->b_more_io
)) {
878 trace_writeback_wait(wb
->bdi
, work
);
879 inode
= wb_inode(wb
->b_more_io
.prev
);
880 spin_lock(&inode
->i_lock
);
881 spin_unlock(&wb
->list_lock
);
882 /* This function drops i_lock... */
883 inode_sleep_on_writeback(inode
);
884 spin_lock(&wb
->list_lock
);
887 spin_unlock(&wb
->list_lock
);
889 return nr_pages
- work
->nr_pages
;
893 * Return the next wb_writeback_work struct that hasn't been processed yet.
895 static struct wb_writeback_work
*
896 get_next_work_item(struct backing_dev_info
*bdi
)
898 struct wb_writeback_work
*work
= NULL
;
900 spin_lock_bh(&bdi
->wb_lock
);
901 if (!list_empty(&bdi
->work_list
)) {
902 work
= list_entry(bdi
->work_list
.next
,
903 struct wb_writeback_work
, list
);
904 list_del_init(&work
->list
);
906 spin_unlock_bh(&bdi
->wb_lock
);
911 * Add in the number of potentially dirty inodes, because each inode
912 * write can dirty pagecache in the underlying blockdev.
914 static unsigned long get_nr_dirty_pages(void)
916 return global_page_state(NR_FILE_DIRTY
) +
917 global_page_state(NR_UNSTABLE_NFS
) +
918 get_nr_dirty_inodes();
921 static long wb_check_background_flush(struct bdi_writeback
*wb
)
923 if (over_bground_thresh(wb
->bdi
)) {
925 struct wb_writeback_work work
= {
926 .nr_pages
= LONG_MAX
,
927 .sync_mode
= WB_SYNC_NONE
,
930 .reason
= WB_REASON_BACKGROUND
,
933 return wb_writeback(wb
, &work
);
939 static long wb_check_old_data_flush(struct bdi_writeback
*wb
)
941 unsigned long expired
;
945 * When set to zero, disable periodic writeback
947 if (!dirty_writeback_interval
)
950 expired
= wb
->last_old_flush
+
951 msecs_to_jiffies(dirty_writeback_interval
* 10);
952 if (time_before(jiffies
, expired
))
955 wb
->last_old_flush
= jiffies
;
956 nr_pages
= get_nr_dirty_pages();
959 struct wb_writeback_work work
= {
960 .nr_pages
= nr_pages
,
961 .sync_mode
= WB_SYNC_NONE
,
964 .reason
= WB_REASON_PERIODIC
,
967 return wb_writeback(wb
, &work
);
974 * Retrieve work items and do the writeback they describe
976 long wb_do_writeback(struct bdi_writeback
*wb
, int force_wait
)
978 struct backing_dev_info
*bdi
= wb
->bdi
;
979 struct wb_writeback_work
*work
;
982 set_bit(BDI_writeback_running
, &wb
->bdi
->state
);
983 while ((work
= get_next_work_item(bdi
)) != NULL
) {
985 * Override sync mode, in case we must wait for completion
986 * because this thread is exiting now.
989 work
->sync_mode
= WB_SYNC_ALL
;
991 trace_writeback_exec(bdi
, work
);
993 wrote
+= wb_writeback(wb
, work
);
996 * Notify the caller of completion if this is a synchronous
997 * work item, otherwise just free it.
1000 complete(work
->done
);
1006 * Check for periodic writeback, kupdated() style
1008 wrote
+= wb_check_old_data_flush(wb
);
1009 wrote
+= wb_check_background_flush(wb
);
1010 clear_bit(BDI_writeback_running
, &wb
->bdi
->state
);
1016 * Handle writeback of dirty data for the device backed by this bdi. Also
1017 * wakes up periodically and does kupdated style flushing.
1019 int bdi_writeback_thread(void *data
)
1021 struct bdi_writeback
*wb
= data
;
1022 struct backing_dev_info
*bdi
= wb
->bdi
;
1025 current
->flags
|= PF_SWAPWRITE
;
1027 wb
->last_active
= jiffies
;
1030 * Our parent may run at a different priority, just set us to normal
1032 set_user_nice(current
, 0);
1034 trace_writeback_thread_start(bdi
);
1036 while (!kthread_freezable_should_stop(NULL
)) {
1038 * Remove own delayed wake-up timer, since we are already awake
1039 * and we'll take care of the preriodic write-back.
1041 del_timer(&wb
->wakeup_timer
);
1043 pages_written
= wb_do_writeback(wb
, 0);
1045 trace_writeback_pages_written(pages_written
);
1048 wb
->last_active
= jiffies
;
1050 set_current_state(TASK_INTERRUPTIBLE
);
1051 if (!list_empty(&bdi
->work_list
) || kthread_should_stop()) {
1052 __set_current_state(TASK_RUNNING
);
1056 if (wb_has_dirty_io(wb
) && dirty_writeback_interval
)
1057 schedule_timeout(msecs_to_jiffies(dirty_writeback_interval
* 10));
1060 * We have nothing to do, so can go sleep without any
1061 * timeout and save power. When a work is queued or
1062 * something is made dirty - we will be woken up.
1068 /* Flush any work that raced with us exiting */
1069 if (!list_empty(&bdi
->work_list
))
1070 wb_do_writeback(wb
, 1);
1072 trace_writeback_thread_stop(bdi
);
1078 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
1081 void wakeup_flusher_threads(long nr_pages
, enum wb_reason reason
)
1083 struct backing_dev_info
*bdi
;
1086 nr_pages
= global_page_state(NR_FILE_DIRTY
) +
1087 global_page_state(NR_UNSTABLE_NFS
);
1091 list_for_each_entry_rcu(bdi
, &bdi_list
, bdi_list
) {
1092 if (!bdi_has_dirty_io(bdi
))
1094 __bdi_start_writeback(bdi
, nr_pages
, false, reason
);
1099 static noinline
void block_dump___mark_inode_dirty(struct inode
*inode
)
1101 if (inode
->i_ino
|| strcmp(inode
->i_sb
->s_id
, "bdev")) {
1102 struct dentry
*dentry
;
1103 const char *name
= "?";
1105 dentry
= d_find_alias(inode
);
1107 spin_lock(&dentry
->d_lock
);
1108 name
= (const char *) dentry
->d_name
.name
;
1111 "%s(%d): dirtied inode %lu (%s) on %s\n",
1112 current
->comm
, task_pid_nr(current
), inode
->i_ino
,
1113 name
, inode
->i_sb
->s_id
);
1115 spin_unlock(&dentry
->d_lock
);
1122 * __mark_inode_dirty - internal function
1123 * @inode: inode to mark
1124 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1125 * Mark an inode as dirty. Callers should use mark_inode_dirty or
1126 * mark_inode_dirty_sync.
1128 * Put the inode on the super block's dirty list.
1130 * CAREFUL! We mark it dirty unconditionally, but move it onto the
1131 * dirty list only if it is hashed or if it refers to a blockdev.
1132 * If it was not hashed, it will never be added to the dirty list
1133 * even if it is later hashed, as it will have been marked dirty already.
1135 * In short, make sure you hash any inodes _before_ you start marking
1138 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1139 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
1140 * the kernel-internal blockdev inode represents the dirtying time of the
1141 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
1142 * page->mapping->host, so the page-dirtying time is recorded in the internal
1145 void __mark_inode_dirty(struct inode
*inode
, int flags
)
1147 struct super_block
*sb
= inode
->i_sb
;
1148 struct backing_dev_info
*bdi
= NULL
;
1151 * Don't do this for I_DIRTY_PAGES - that doesn't actually
1152 * dirty the inode itself
1154 if (flags
& (I_DIRTY_SYNC
| I_DIRTY_DATASYNC
)) {
1155 if (sb
->s_op
->dirty_inode
)
1156 sb
->s_op
->dirty_inode(inode
, flags
);
1160 * make sure that changes are seen by all cpus before we test i_state
1165 /* avoid the locking if we can */
1166 if ((inode
->i_state
& flags
) == flags
)
1169 if (unlikely(block_dump
))
1170 block_dump___mark_inode_dirty(inode
);
1172 spin_lock(&inode
->i_lock
);
1173 if ((inode
->i_state
& flags
) != flags
) {
1174 const int was_dirty
= inode
->i_state
& I_DIRTY
;
1176 inode
->i_state
|= flags
;
1179 * If the inode is being synced, just update its dirty state.
1180 * The unlocker will place the inode on the appropriate
1181 * superblock list, based upon its state.
1183 if (inode
->i_state
& I_SYNC
)
1184 goto out_unlock_inode
;
1187 * Only add valid (hashed) inodes to the superblock's
1188 * dirty list. Add blockdev inodes as well.
1190 if (!S_ISBLK(inode
->i_mode
)) {
1191 if (inode_unhashed(inode
))
1192 goto out_unlock_inode
;
1194 if (inode
->i_state
& I_FREEING
)
1195 goto out_unlock_inode
;
1198 * If the inode was already on b_dirty/b_io/b_more_io, don't
1199 * reposition it (that would break b_dirty time-ordering).
1202 bool wakeup_bdi
= false;
1203 bdi
= inode_to_bdi(inode
);
1205 if (bdi_cap_writeback_dirty(bdi
)) {
1206 WARN(!test_bit(BDI_registered
, &bdi
->state
),
1207 "bdi-%s not registered\n", bdi
->name
);
1210 * If this is the first dirty inode for this
1211 * bdi, we have to wake-up the corresponding
1212 * bdi thread to make sure background
1213 * write-back happens later.
1215 if (!wb_has_dirty_io(&bdi
->wb
))
1219 spin_unlock(&inode
->i_lock
);
1220 spin_lock(&bdi
->wb
.list_lock
);
1221 inode
->dirtied_when
= jiffies
;
1222 list_move(&inode
->i_wb_list
, &bdi
->wb
.b_dirty
);
1223 spin_unlock(&bdi
->wb
.list_lock
);
1226 bdi_wakeup_thread_delayed(bdi
);
1231 spin_unlock(&inode
->i_lock
);
1234 EXPORT_SYMBOL(__mark_inode_dirty
);
1236 static void wait_sb_inodes(struct super_block
*sb
)
1238 struct inode
*inode
, *old_inode
= NULL
;
1241 * We need to be protected against the filesystem going from
1242 * r/o to r/w or vice versa.
1244 WARN_ON(!rwsem_is_locked(&sb
->s_umount
));
1246 spin_lock(&inode_sb_list_lock
);
1249 * Data integrity sync. Must wait for all pages under writeback,
1250 * because there may have been pages dirtied before our sync
1251 * call, but which had writeout started before we write it out.
1252 * In which case, the inode may not be on the dirty list, but
1253 * we still have to wait for that writeout.
1255 list_for_each_entry(inode
, &sb
->s_inodes
, i_sb_list
) {
1256 struct address_space
*mapping
= inode
->i_mapping
;
1258 spin_lock(&inode
->i_lock
);
1259 if ((inode
->i_state
& (I_FREEING
|I_WILL_FREE
|I_NEW
)) ||
1260 (mapping
->nrpages
== 0)) {
1261 spin_unlock(&inode
->i_lock
);
1265 spin_unlock(&inode
->i_lock
);
1266 spin_unlock(&inode_sb_list_lock
);
1269 * We hold a reference to 'inode' so it couldn't have been
1270 * removed from s_inodes list while we dropped the
1271 * inode_sb_list_lock. We cannot iput the inode now as we can
1272 * be holding the last reference and we cannot iput it under
1273 * inode_sb_list_lock. So we keep the reference and iput it
1279 filemap_fdatawait(mapping
);
1283 spin_lock(&inode_sb_list_lock
);
1285 spin_unlock(&inode_sb_list_lock
);
1290 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
1291 * @sb: the superblock
1292 * @nr: the number of pages to write
1293 * @reason: reason why some writeback work initiated
1295 * Start writeback on some inodes on this super_block. No guarantees are made
1296 * on how many (if any) will be written, and this function does not wait
1297 * for IO completion of submitted IO.
1299 void writeback_inodes_sb_nr(struct super_block
*sb
,
1301 enum wb_reason reason
)
1303 DECLARE_COMPLETION_ONSTACK(done
);
1304 struct wb_writeback_work work
= {
1306 .sync_mode
= WB_SYNC_NONE
,
1307 .tagged_writepages
= 1,
1313 if (sb
->s_bdi
== &noop_backing_dev_info
)
1315 WARN_ON(!rwsem_is_locked(&sb
->s_umount
));
1316 bdi_queue_work(sb
->s_bdi
, &work
);
1317 wait_for_completion(&done
);
1319 EXPORT_SYMBOL(writeback_inodes_sb_nr
);
1322 * writeback_inodes_sb - writeback dirty inodes from given super_block
1323 * @sb: the superblock
1324 * @reason: reason why some writeback work was initiated
1326 * Start writeback on some inodes on this super_block. No guarantees are made
1327 * on how many (if any) will be written, and this function does not wait
1328 * for IO completion of submitted IO.
1330 void writeback_inodes_sb(struct super_block
*sb
, enum wb_reason reason
)
1332 return writeback_inodes_sb_nr(sb
, get_nr_dirty_pages(), reason
);
1334 EXPORT_SYMBOL(writeback_inodes_sb
);
1337 * writeback_inodes_sb_if_idle - start writeback if none underway
1338 * @sb: the superblock
1339 * @reason: reason why some writeback work was initiated
1341 * Invoke writeback_inodes_sb if no writeback is currently underway.
1342 * Returns 1 if writeback was started, 0 if not.
1344 int writeback_inodes_sb_if_idle(struct super_block
*sb
, enum wb_reason reason
)
1346 if (!writeback_in_progress(sb
->s_bdi
)) {
1347 down_read(&sb
->s_umount
);
1348 writeback_inodes_sb(sb
, reason
);
1349 up_read(&sb
->s_umount
);
1354 EXPORT_SYMBOL(writeback_inodes_sb_if_idle
);
1357 * writeback_inodes_sb_nr_if_idle - start writeback if none underway
1358 * @sb: the superblock
1359 * @nr: the number of pages to write
1360 * @reason: reason why some writeback work was initiated
1362 * Invoke writeback_inodes_sb if no writeback is currently underway.
1363 * Returns 1 if writeback was started, 0 if not.
1365 int writeback_inodes_sb_nr_if_idle(struct super_block
*sb
,
1367 enum wb_reason reason
)
1369 if (!writeback_in_progress(sb
->s_bdi
)) {
1370 down_read(&sb
->s_umount
);
1371 writeback_inodes_sb_nr(sb
, nr
, reason
);
1372 up_read(&sb
->s_umount
);
1377 EXPORT_SYMBOL(writeback_inodes_sb_nr_if_idle
);
1380 * sync_inodes_sb - sync sb inode pages
1381 * @sb: the superblock
1383 * This function writes and waits on any dirty inode belonging to this
1386 void sync_inodes_sb(struct super_block
*sb
)
1388 DECLARE_COMPLETION_ONSTACK(done
);
1389 struct wb_writeback_work work
= {
1391 .sync_mode
= WB_SYNC_ALL
,
1392 .nr_pages
= LONG_MAX
,
1395 .reason
= WB_REASON_SYNC
,
1398 /* Nothing to do? */
1399 if (sb
->s_bdi
== &noop_backing_dev_info
)
1401 WARN_ON(!rwsem_is_locked(&sb
->s_umount
));
1403 bdi_queue_work(sb
->s_bdi
, &work
);
1404 wait_for_completion(&done
);
1408 EXPORT_SYMBOL(sync_inodes_sb
);
1411 * write_inode_now - write an inode to disk
1412 * @inode: inode to write to disk
1413 * @sync: whether the write should be synchronous or not
1415 * This function commits an inode to disk immediately if it is dirty. This is
1416 * primarily needed by knfsd.
1418 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1420 int write_inode_now(struct inode
*inode
, int sync
)
1422 struct bdi_writeback
*wb
= &inode_to_bdi(inode
)->wb
;
1423 struct writeback_control wbc
= {
1424 .nr_to_write
= LONG_MAX
,
1425 .sync_mode
= sync
? WB_SYNC_ALL
: WB_SYNC_NONE
,
1427 .range_end
= LLONG_MAX
,
1430 if (!mapping_cap_writeback_dirty(inode
->i_mapping
))
1431 wbc
.nr_to_write
= 0;
1434 return writeback_single_inode(inode
, wb
, &wbc
);
1436 EXPORT_SYMBOL(write_inode_now
);
1439 * sync_inode - write an inode and its pages to disk.
1440 * @inode: the inode to sync
1441 * @wbc: controls the writeback mode
1443 * sync_inode() will write an inode and its pages to disk. It will also
1444 * correctly update the inode on its superblock's dirty inode lists and will
1445 * update inode->i_state.
1447 * The caller must have a ref on the inode.
1449 int sync_inode(struct inode
*inode
, struct writeback_control
*wbc
)
1451 return writeback_single_inode(inode
, &inode_to_bdi(inode
)->wb
, wbc
);
1453 EXPORT_SYMBOL(sync_inode
);
1456 * sync_inode_metadata - write an inode to disk
1457 * @inode: the inode to sync
1458 * @wait: wait for I/O to complete.
1460 * Write an inode to disk and adjust its dirty state after completion.
1462 * Note: only writes the actual inode, no associated data or other metadata.
1464 int sync_inode_metadata(struct inode
*inode
, int wait
)
1466 struct writeback_control wbc
= {
1467 .sync_mode
= wait
? WB_SYNC_ALL
: WB_SYNC_NONE
,
1468 .nr_to_write
= 0, /* metadata-only */
1471 return sync_inode(inode
, &wbc
);
1473 EXPORT_SYMBOL(sync_inode_metadata
);