Merge branch 'master' of master.kernel.org:/pub/scm/linux/kernel/git/davem/net-2.6
[linux-2.6.git] / drivers / net / igb / e1000_82575.c
blobe8e9e9194a8825c29cb9008e49c566b8e873be12
1 /*******************************************************************************
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007-2009 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 *******************************************************************************/
28 /* e1000_82575
29 * e1000_82576
32 #include <linux/types.h>
33 #include <linux/slab.h>
34 #include <linux/if_ether.h>
36 #include "e1000_mac.h"
37 #include "e1000_82575.h"
39 static s32 igb_get_invariants_82575(struct e1000_hw *);
40 static s32 igb_acquire_phy_82575(struct e1000_hw *);
41 static void igb_release_phy_82575(struct e1000_hw *);
42 static s32 igb_acquire_nvm_82575(struct e1000_hw *);
43 static void igb_release_nvm_82575(struct e1000_hw *);
44 static s32 igb_check_for_link_82575(struct e1000_hw *);
45 static s32 igb_get_cfg_done_82575(struct e1000_hw *);
46 static s32 igb_init_hw_82575(struct e1000_hw *);
47 static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *);
48 static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16 *);
49 static s32 igb_read_phy_reg_82580(struct e1000_hw *, u32, u16 *);
50 static s32 igb_write_phy_reg_82580(struct e1000_hw *, u32, u16);
51 static s32 igb_reset_hw_82575(struct e1000_hw *);
52 static s32 igb_reset_hw_82580(struct e1000_hw *);
53 static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *, bool);
54 static s32 igb_setup_copper_link_82575(struct e1000_hw *);
55 static s32 igb_setup_serdes_link_82575(struct e1000_hw *);
56 static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16);
57 static void igb_clear_hw_cntrs_82575(struct e1000_hw *);
58 static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *, u16);
59 static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *, u16 *,
60 u16 *);
61 static s32 igb_get_phy_id_82575(struct e1000_hw *);
62 static void igb_release_swfw_sync_82575(struct e1000_hw *, u16);
63 static bool igb_sgmii_active_82575(struct e1000_hw *);
64 static s32 igb_reset_init_script_82575(struct e1000_hw *);
65 static s32 igb_read_mac_addr_82575(struct e1000_hw *);
66 static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw);
68 static const u16 e1000_82580_rxpbs_table[] =
69 { 36, 72, 144, 1, 2, 4, 8, 16,
70 35, 70, 140 };
71 #define E1000_82580_RXPBS_TABLE_SIZE \
72 (sizeof(e1000_82580_rxpbs_table)/sizeof(u16))
74 static s32 igb_get_invariants_82575(struct e1000_hw *hw)
76 struct e1000_phy_info *phy = &hw->phy;
77 struct e1000_nvm_info *nvm = &hw->nvm;
78 struct e1000_mac_info *mac = &hw->mac;
79 struct e1000_dev_spec_82575 * dev_spec = &hw->dev_spec._82575;
80 u32 eecd;
81 s32 ret_val;
82 u16 size;
83 u32 ctrl_ext = 0;
85 switch (hw->device_id) {
86 case E1000_DEV_ID_82575EB_COPPER:
87 case E1000_DEV_ID_82575EB_FIBER_SERDES:
88 case E1000_DEV_ID_82575GB_QUAD_COPPER:
89 mac->type = e1000_82575;
90 break;
91 case E1000_DEV_ID_82576:
92 case E1000_DEV_ID_82576_NS:
93 case E1000_DEV_ID_82576_NS_SERDES:
94 case E1000_DEV_ID_82576_FIBER:
95 case E1000_DEV_ID_82576_SERDES:
96 case E1000_DEV_ID_82576_QUAD_COPPER:
97 case E1000_DEV_ID_82576_SERDES_QUAD:
98 mac->type = e1000_82576;
99 break;
100 case E1000_DEV_ID_82580_COPPER:
101 case E1000_DEV_ID_82580_FIBER:
102 case E1000_DEV_ID_82580_SERDES:
103 case E1000_DEV_ID_82580_SGMII:
104 case E1000_DEV_ID_82580_COPPER_DUAL:
105 mac->type = e1000_82580;
106 break;
107 default:
108 return -E1000_ERR_MAC_INIT;
109 break;
112 /* Set media type */
114 * The 82575 uses bits 22:23 for link mode. The mode can be changed
115 * based on the EEPROM. We cannot rely upon device ID. There
116 * is no distinguishable difference between fiber and internal
117 * SerDes mode on the 82575. There can be an external PHY attached
118 * on the SGMII interface. For this, we'll set sgmii_active to true.
120 phy->media_type = e1000_media_type_copper;
121 dev_spec->sgmii_active = false;
123 ctrl_ext = rd32(E1000_CTRL_EXT);
124 switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
125 case E1000_CTRL_EXT_LINK_MODE_SGMII:
126 dev_spec->sgmii_active = true;
127 ctrl_ext |= E1000_CTRL_I2C_ENA;
128 break;
129 case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
130 case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES:
131 hw->phy.media_type = e1000_media_type_internal_serdes;
132 ctrl_ext |= E1000_CTRL_I2C_ENA;
133 break;
134 default:
135 ctrl_ext &= ~E1000_CTRL_I2C_ENA;
136 break;
139 wr32(E1000_CTRL_EXT, ctrl_ext);
142 * if using i2c make certain the MDICNFG register is cleared to prevent
143 * communications from being misrouted to the mdic registers
145 if ((ctrl_ext & E1000_CTRL_I2C_ENA) && (hw->mac.type == e1000_82580))
146 wr32(E1000_MDICNFG, 0);
148 /* Set mta register count */
149 mac->mta_reg_count = 128;
150 /* Set rar entry count */
151 mac->rar_entry_count = E1000_RAR_ENTRIES_82575;
152 if (mac->type == e1000_82576)
153 mac->rar_entry_count = E1000_RAR_ENTRIES_82576;
154 if (mac->type == e1000_82580)
155 mac->rar_entry_count = E1000_RAR_ENTRIES_82580;
156 /* reset */
157 if (mac->type == e1000_82580)
158 mac->ops.reset_hw = igb_reset_hw_82580;
159 else
160 mac->ops.reset_hw = igb_reset_hw_82575;
161 /* Set if part includes ASF firmware */
162 mac->asf_firmware_present = true;
163 /* Set if manageability features are enabled. */
164 mac->arc_subsystem_valid =
165 (rd32(E1000_FWSM) & E1000_FWSM_MODE_MASK)
166 ? true : false;
168 /* physical interface link setup */
169 mac->ops.setup_physical_interface =
170 (hw->phy.media_type == e1000_media_type_copper)
171 ? igb_setup_copper_link_82575
172 : igb_setup_serdes_link_82575;
174 /* NVM initialization */
175 eecd = rd32(E1000_EECD);
177 nvm->opcode_bits = 8;
178 nvm->delay_usec = 1;
179 switch (nvm->override) {
180 case e1000_nvm_override_spi_large:
181 nvm->page_size = 32;
182 nvm->address_bits = 16;
183 break;
184 case e1000_nvm_override_spi_small:
185 nvm->page_size = 8;
186 nvm->address_bits = 8;
187 break;
188 default:
189 nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
190 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
191 break;
194 nvm->type = e1000_nvm_eeprom_spi;
196 size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
197 E1000_EECD_SIZE_EX_SHIFT);
200 * Added to a constant, "size" becomes the left-shift value
201 * for setting word_size.
203 size += NVM_WORD_SIZE_BASE_SHIFT;
205 /* EEPROM access above 16k is unsupported */
206 if (size > 14)
207 size = 14;
208 nvm->word_size = 1 << size;
210 /* if 82576 then initialize mailbox parameters */
211 if (mac->type == e1000_82576)
212 igb_init_mbx_params_pf(hw);
214 /* setup PHY parameters */
215 if (phy->media_type != e1000_media_type_copper) {
216 phy->type = e1000_phy_none;
217 return 0;
220 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
221 phy->reset_delay_us = 100;
223 /* PHY function pointers */
224 if (igb_sgmii_active_82575(hw)) {
225 phy->ops.reset = igb_phy_hw_reset_sgmii_82575;
226 phy->ops.read_reg = igb_read_phy_reg_sgmii_82575;
227 phy->ops.write_reg = igb_write_phy_reg_sgmii_82575;
228 } else if (hw->mac.type == e1000_82580) {
229 phy->ops.reset = igb_phy_hw_reset;
230 phy->ops.read_reg = igb_read_phy_reg_82580;
231 phy->ops.write_reg = igb_write_phy_reg_82580;
232 } else {
233 phy->ops.reset = igb_phy_hw_reset;
234 phy->ops.read_reg = igb_read_phy_reg_igp;
235 phy->ops.write_reg = igb_write_phy_reg_igp;
238 /* set lan id */
239 hw->bus.func = (rd32(E1000_STATUS) & E1000_STATUS_FUNC_MASK) >>
240 E1000_STATUS_FUNC_SHIFT;
242 /* Set phy->phy_addr and phy->id. */
243 ret_val = igb_get_phy_id_82575(hw);
244 if (ret_val)
245 return ret_val;
247 /* Verify phy id and set remaining function pointers */
248 switch (phy->id) {
249 case M88E1111_I_PHY_ID:
250 phy->type = e1000_phy_m88;
251 phy->ops.get_phy_info = igb_get_phy_info_m88;
252 phy->ops.get_cable_length = igb_get_cable_length_m88;
253 phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
254 break;
255 case IGP03E1000_E_PHY_ID:
256 phy->type = e1000_phy_igp_3;
257 phy->ops.get_phy_info = igb_get_phy_info_igp;
258 phy->ops.get_cable_length = igb_get_cable_length_igp_2;
259 phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_igp;
260 phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82575;
261 phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state;
262 break;
263 case I82580_I_PHY_ID:
264 phy->type = e1000_phy_82580;
265 phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_82580;
266 phy->ops.get_cable_length = igb_get_cable_length_82580;
267 phy->ops.get_phy_info = igb_get_phy_info_82580;
268 break;
269 default:
270 return -E1000_ERR_PHY;
273 return 0;
277 * igb_acquire_phy_82575 - Acquire rights to access PHY
278 * @hw: pointer to the HW structure
280 * Acquire access rights to the correct PHY. This is a
281 * function pointer entry point called by the api module.
283 static s32 igb_acquire_phy_82575(struct e1000_hw *hw)
285 u16 mask = E1000_SWFW_PHY0_SM;
287 if (hw->bus.func == E1000_FUNC_1)
288 mask = E1000_SWFW_PHY1_SM;
290 return igb_acquire_swfw_sync_82575(hw, mask);
294 * igb_release_phy_82575 - Release rights to access PHY
295 * @hw: pointer to the HW structure
297 * A wrapper to release access rights to the correct PHY. This is a
298 * function pointer entry point called by the api module.
300 static void igb_release_phy_82575(struct e1000_hw *hw)
302 u16 mask = E1000_SWFW_PHY0_SM;
304 if (hw->bus.func == E1000_FUNC_1)
305 mask = E1000_SWFW_PHY1_SM;
307 igb_release_swfw_sync_82575(hw, mask);
311 * igb_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
312 * @hw: pointer to the HW structure
313 * @offset: register offset to be read
314 * @data: pointer to the read data
316 * Reads the PHY register at offset using the serial gigabit media independent
317 * interface and stores the retrieved information in data.
319 static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
320 u16 *data)
322 s32 ret_val = -E1000_ERR_PARAM;
324 if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
325 hw_dbg("PHY Address %u is out of range\n", offset);
326 goto out;
329 ret_val = hw->phy.ops.acquire(hw);
330 if (ret_val)
331 goto out;
333 ret_val = igb_read_phy_reg_i2c(hw, offset, data);
335 hw->phy.ops.release(hw);
337 out:
338 return ret_val;
342 * igb_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
343 * @hw: pointer to the HW structure
344 * @offset: register offset to write to
345 * @data: data to write at register offset
347 * Writes the data to PHY register at the offset using the serial gigabit
348 * media independent interface.
350 static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
351 u16 data)
353 s32 ret_val = -E1000_ERR_PARAM;
356 if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
357 hw_dbg("PHY Address %d is out of range\n", offset);
358 goto out;
361 ret_val = hw->phy.ops.acquire(hw);
362 if (ret_val)
363 goto out;
365 ret_val = igb_write_phy_reg_i2c(hw, offset, data);
367 hw->phy.ops.release(hw);
369 out:
370 return ret_val;
374 * igb_get_phy_id_82575 - Retrieve PHY addr and id
375 * @hw: pointer to the HW structure
377 * Retrieves the PHY address and ID for both PHY's which do and do not use
378 * sgmi interface.
380 static s32 igb_get_phy_id_82575(struct e1000_hw *hw)
382 struct e1000_phy_info *phy = &hw->phy;
383 s32 ret_val = 0;
384 u16 phy_id;
385 u32 ctrl_ext;
388 * For SGMII PHYs, we try the list of possible addresses until
389 * we find one that works. For non-SGMII PHYs
390 * (e.g. integrated copper PHYs), an address of 1 should
391 * work. The result of this function should mean phy->phy_addr
392 * and phy->id are set correctly.
394 if (!(igb_sgmii_active_82575(hw))) {
395 phy->addr = 1;
396 ret_val = igb_get_phy_id(hw);
397 goto out;
400 /* Power on sgmii phy if it is disabled */
401 ctrl_ext = rd32(E1000_CTRL_EXT);
402 wr32(E1000_CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_SDP3_DATA);
403 wrfl();
404 msleep(300);
407 * The address field in the I2CCMD register is 3 bits and 0 is invalid.
408 * Therefore, we need to test 1-7
410 for (phy->addr = 1; phy->addr < 8; phy->addr++) {
411 ret_val = igb_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id);
412 if (ret_val == 0) {
413 hw_dbg("Vendor ID 0x%08X read at address %u\n",
414 phy_id, phy->addr);
416 * At the time of this writing, The M88 part is
417 * the only supported SGMII PHY product.
419 if (phy_id == M88_VENDOR)
420 break;
421 } else {
422 hw_dbg("PHY address %u was unreadable\n", phy->addr);
426 /* A valid PHY type couldn't be found. */
427 if (phy->addr == 8) {
428 phy->addr = 0;
429 ret_val = -E1000_ERR_PHY;
430 goto out;
431 } else {
432 ret_val = igb_get_phy_id(hw);
435 /* restore previous sfp cage power state */
436 wr32(E1000_CTRL_EXT, ctrl_ext);
438 out:
439 return ret_val;
443 * igb_phy_hw_reset_sgmii_82575 - Performs a PHY reset
444 * @hw: pointer to the HW structure
446 * Resets the PHY using the serial gigabit media independent interface.
448 static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *hw)
450 s32 ret_val;
453 * This isn't a true "hard" reset, but is the only reset
454 * available to us at this time.
457 hw_dbg("Soft resetting SGMII attached PHY...\n");
460 * SFP documentation requires the following to configure the SPF module
461 * to work on SGMII. No further documentation is given.
463 ret_val = hw->phy.ops.write_reg(hw, 0x1B, 0x8084);
464 if (ret_val)
465 goto out;
467 ret_val = igb_phy_sw_reset(hw);
469 out:
470 return ret_val;
474 * igb_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
475 * @hw: pointer to the HW structure
476 * @active: true to enable LPLU, false to disable
478 * Sets the LPLU D0 state according to the active flag. When
479 * activating LPLU this function also disables smart speed
480 * and vice versa. LPLU will not be activated unless the
481 * device autonegotiation advertisement meets standards of
482 * either 10 or 10/100 or 10/100/1000 at all duplexes.
483 * This is a function pointer entry point only called by
484 * PHY setup routines.
486 static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active)
488 struct e1000_phy_info *phy = &hw->phy;
489 s32 ret_val;
490 u16 data;
492 ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
493 if (ret_val)
494 goto out;
496 if (active) {
497 data |= IGP02E1000_PM_D0_LPLU;
498 ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
499 data);
500 if (ret_val)
501 goto out;
503 /* When LPLU is enabled, we should disable SmartSpeed */
504 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
505 &data);
506 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
507 ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
508 data);
509 if (ret_val)
510 goto out;
511 } else {
512 data &= ~IGP02E1000_PM_D0_LPLU;
513 ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
514 data);
516 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
517 * during Dx states where the power conservation is most
518 * important. During driver activity we should enable
519 * SmartSpeed, so performance is maintained.
521 if (phy->smart_speed == e1000_smart_speed_on) {
522 ret_val = phy->ops.read_reg(hw,
523 IGP01E1000_PHY_PORT_CONFIG, &data);
524 if (ret_val)
525 goto out;
527 data |= IGP01E1000_PSCFR_SMART_SPEED;
528 ret_val = phy->ops.write_reg(hw,
529 IGP01E1000_PHY_PORT_CONFIG, data);
530 if (ret_val)
531 goto out;
532 } else if (phy->smart_speed == e1000_smart_speed_off) {
533 ret_val = phy->ops.read_reg(hw,
534 IGP01E1000_PHY_PORT_CONFIG, &data);
535 if (ret_val)
536 goto out;
538 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
539 ret_val = phy->ops.write_reg(hw,
540 IGP01E1000_PHY_PORT_CONFIG, data);
541 if (ret_val)
542 goto out;
546 out:
547 return ret_val;
551 * igb_acquire_nvm_82575 - Request for access to EEPROM
552 * @hw: pointer to the HW structure
554 * Acquire the necessary semaphores for exclusive access to the EEPROM.
555 * Set the EEPROM access request bit and wait for EEPROM access grant bit.
556 * Return successful if access grant bit set, else clear the request for
557 * EEPROM access and return -E1000_ERR_NVM (-1).
559 static s32 igb_acquire_nvm_82575(struct e1000_hw *hw)
561 s32 ret_val;
563 ret_val = igb_acquire_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
564 if (ret_val)
565 goto out;
567 ret_val = igb_acquire_nvm(hw);
569 if (ret_val)
570 igb_release_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
572 out:
573 return ret_val;
577 * igb_release_nvm_82575 - Release exclusive access to EEPROM
578 * @hw: pointer to the HW structure
580 * Stop any current commands to the EEPROM and clear the EEPROM request bit,
581 * then release the semaphores acquired.
583 static void igb_release_nvm_82575(struct e1000_hw *hw)
585 igb_release_nvm(hw);
586 igb_release_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
590 * igb_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
591 * @hw: pointer to the HW structure
592 * @mask: specifies which semaphore to acquire
594 * Acquire the SW/FW semaphore to access the PHY or NVM. The mask
595 * will also specify which port we're acquiring the lock for.
597 static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
599 u32 swfw_sync;
600 u32 swmask = mask;
601 u32 fwmask = mask << 16;
602 s32 ret_val = 0;
603 s32 i = 0, timeout = 200; /* FIXME: find real value to use here */
605 while (i < timeout) {
606 if (igb_get_hw_semaphore(hw)) {
607 ret_val = -E1000_ERR_SWFW_SYNC;
608 goto out;
611 swfw_sync = rd32(E1000_SW_FW_SYNC);
612 if (!(swfw_sync & (fwmask | swmask)))
613 break;
616 * Firmware currently using resource (fwmask)
617 * or other software thread using resource (swmask)
619 igb_put_hw_semaphore(hw);
620 mdelay(5);
621 i++;
624 if (i == timeout) {
625 hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
626 ret_val = -E1000_ERR_SWFW_SYNC;
627 goto out;
630 swfw_sync |= swmask;
631 wr32(E1000_SW_FW_SYNC, swfw_sync);
633 igb_put_hw_semaphore(hw);
635 out:
636 return ret_val;
640 * igb_release_swfw_sync_82575 - Release SW/FW semaphore
641 * @hw: pointer to the HW structure
642 * @mask: specifies which semaphore to acquire
644 * Release the SW/FW semaphore used to access the PHY or NVM. The mask
645 * will also specify which port we're releasing the lock for.
647 static void igb_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
649 u32 swfw_sync;
651 while (igb_get_hw_semaphore(hw) != 0);
652 /* Empty */
654 swfw_sync = rd32(E1000_SW_FW_SYNC);
655 swfw_sync &= ~mask;
656 wr32(E1000_SW_FW_SYNC, swfw_sync);
658 igb_put_hw_semaphore(hw);
662 * igb_get_cfg_done_82575 - Read config done bit
663 * @hw: pointer to the HW structure
665 * Read the management control register for the config done bit for
666 * completion status. NOTE: silicon which is EEPROM-less will fail trying
667 * to read the config done bit, so an error is *ONLY* logged and returns
668 * 0. If we were to return with error, EEPROM-less silicon
669 * would not be able to be reset or change link.
671 static s32 igb_get_cfg_done_82575(struct e1000_hw *hw)
673 s32 timeout = PHY_CFG_TIMEOUT;
674 s32 ret_val = 0;
675 u32 mask = E1000_NVM_CFG_DONE_PORT_0;
677 if (hw->bus.func == 1)
678 mask = E1000_NVM_CFG_DONE_PORT_1;
679 else if (hw->bus.func == E1000_FUNC_2)
680 mask = E1000_NVM_CFG_DONE_PORT_2;
681 else if (hw->bus.func == E1000_FUNC_3)
682 mask = E1000_NVM_CFG_DONE_PORT_3;
684 while (timeout) {
685 if (rd32(E1000_EEMNGCTL) & mask)
686 break;
687 msleep(1);
688 timeout--;
690 if (!timeout)
691 hw_dbg("MNG configuration cycle has not completed.\n");
693 /* If EEPROM is not marked present, init the PHY manually */
694 if (((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) &&
695 (hw->phy.type == e1000_phy_igp_3))
696 igb_phy_init_script_igp3(hw);
698 return ret_val;
702 * igb_check_for_link_82575 - Check for link
703 * @hw: pointer to the HW structure
705 * If sgmii is enabled, then use the pcs register to determine link, otherwise
706 * use the generic interface for determining link.
708 static s32 igb_check_for_link_82575(struct e1000_hw *hw)
710 s32 ret_val;
711 u16 speed, duplex;
713 if (hw->phy.media_type != e1000_media_type_copper) {
714 ret_val = igb_get_pcs_speed_and_duplex_82575(hw, &speed,
715 &duplex);
717 * Use this flag to determine if link needs to be checked or
718 * not. If we have link clear the flag so that we do not
719 * continue to check for link.
721 hw->mac.get_link_status = !hw->mac.serdes_has_link;
722 } else {
723 ret_val = igb_check_for_copper_link(hw);
726 return ret_val;
730 * igb_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
731 * @hw: pointer to the HW structure
732 * @speed: stores the current speed
733 * @duplex: stores the current duplex
735 * Using the physical coding sub-layer (PCS), retrieve the current speed and
736 * duplex, then store the values in the pointers provided.
738 static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, u16 *speed,
739 u16 *duplex)
741 struct e1000_mac_info *mac = &hw->mac;
742 u32 pcs;
744 /* Set up defaults for the return values of this function */
745 mac->serdes_has_link = false;
746 *speed = 0;
747 *duplex = 0;
750 * Read the PCS Status register for link state. For non-copper mode,
751 * the status register is not accurate. The PCS status register is
752 * used instead.
754 pcs = rd32(E1000_PCS_LSTAT);
757 * The link up bit determines when link is up on autoneg. The sync ok
758 * gets set once both sides sync up and agree upon link. Stable link
759 * can be determined by checking for both link up and link sync ok
761 if ((pcs & E1000_PCS_LSTS_LINK_OK) && (pcs & E1000_PCS_LSTS_SYNK_OK)) {
762 mac->serdes_has_link = true;
764 /* Detect and store PCS speed */
765 if (pcs & E1000_PCS_LSTS_SPEED_1000) {
766 *speed = SPEED_1000;
767 } else if (pcs & E1000_PCS_LSTS_SPEED_100) {
768 *speed = SPEED_100;
769 } else {
770 *speed = SPEED_10;
773 /* Detect and store PCS duplex */
774 if (pcs & E1000_PCS_LSTS_DUPLEX_FULL) {
775 *duplex = FULL_DUPLEX;
776 } else {
777 *duplex = HALF_DUPLEX;
781 return 0;
785 * igb_shutdown_serdes_link_82575 - Remove link during power down
786 * @hw: pointer to the HW structure
788 * In the case of fiber serdes, shut down optics and PCS on driver unload
789 * when management pass thru is not enabled.
791 void igb_shutdown_serdes_link_82575(struct e1000_hw *hw)
793 u32 reg;
794 u16 eeprom_data = 0;
796 if (hw->phy.media_type != e1000_media_type_internal_serdes ||
797 igb_sgmii_active_82575(hw))
798 return;
800 if (hw->bus.func == E1000_FUNC_0)
801 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
802 else if (hw->mac.type == e1000_82580)
803 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
804 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
805 &eeprom_data);
806 else if (hw->bus.func == E1000_FUNC_1)
807 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
810 * If APM is not enabled in the EEPROM and management interface is
811 * not enabled, then power down.
813 if (!(eeprom_data & E1000_NVM_APME_82575) &&
814 !igb_enable_mng_pass_thru(hw)) {
815 /* Disable PCS to turn off link */
816 reg = rd32(E1000_PCS_CFG0);
817 reg &= ~E1000_PCS_CFG_PCS_EN;
818 wr32(E1000_PCS_CFG0, reg);
820 /* shutdown the laser */
821 reg = rd32(E1000_CTRL_EXT);
822 reg |= E1000_CTRL_EXT_SDP3_DATA;
823 wr32(E1000_CTRL_EXT, reg);
825 /* flush the write to verify completion */
826 wrfl();
827 msleep(1);
830 return;
834 * igb_reset_hw_82575 - Reset hardware
835 * @hw: pointer to the HW structure
837 * This resets the hardware into a known state. This is a
838 * function pointer entry point called by the api module.
840 static s32 igb_reset_hw_82575(struct e1000_hw *hw)
842 u32 ctrl, icr;
843 s32 ret_val;
846 * Prevent the PCI-E bus from sticking if there is no TLP connection
847 * on the last TLP read/write transaction when MAC is reset.
849 ret_val = igb_disable_pcie_master(hw);
850 if (ret_val)
851 hw_dbg("PCI-E Master disable polling has failed.\n");
853 /* set the completion timeout for interface */
854 ret_val = igb_set_pcie_completion_timeout(hw);
855 if (ret_val) {
856 hw_dbg("PCI-E Set completion timeout has failed.\n");
859 hw_dbg("Masking off all interrupts\n");
860 wr32(E1000_IMC, 0xffffffff);
862 wr32(E1000_RCTL, 0);
863 wr32(E1000_TCTL, E1000_TCTL_PSP);
864 wrfl();
866 msleep(10);
868 ctrl = rd32(E1000_CTRL);
870 hw_dbg("Issuing a global reset to MAC\n");
871 wr32(E1000_CTRL, ctrl | E1000_CTRL_RST);
873 ret_val = igb_get_auto_rd_done(hw);
874 if (ret_val) {
876 * When auto config read does not complete, do not
877 * return with an error. This can happen in situations
878 * where there is no eeprom and prevents getting link.
880 hw_dbg("Auto Read Done did not complete\n");
883 /* If EEPROM is not present, run manual init scripts */
884 if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
885 igb_reset_init_script_82575(hw);
887 /* Clear any pending interrupt events. */
888 wr32(E1000_IMC, 0xffffffff);
889 icr = rd32(E1000_ICR);
891 /* Install any alternate MAC address into RAR0 */
892 ret_val = igb_check_alt_mac_addr(hw);
894 return ret_val;
898 * igb_init_hw_82575 - Initialize hardware
899 * @hw: pointer to the HW structure
901 * This inits the hardware readying it for operation.
903 static s32 igb_init_hw_82575(struct e1000_hw *hw)
905 struct e1000_mac_info *mac = &hw->mac;
906 s32 ret_val;
907 u16 i, rar_count = mac->rar_entry_count;
909 /* Initialize identification LED */
910 ret_val = igb_id_led_init(hw);
911 if (ret_val) {
912 hw_dbg("Error initializing identification LED\n");
913 /* This is not fatal and we should not stop init due to this */
916 /* Disabling VLAN filtering */
917 hw_dbg("Initializing the IEEE VLAN\n");
918 igb_clear_vfta(hw);
920 /* Setup the receive address */
921 igb_init_rx_addrs(hw, rar_count);
923 /* Zero out the Multicast HASH table */
924 hw_dbg("Zeroing the MTA\n");
925 for (i = 0; i < mac->mta_reg_count; i++)
926 array_wr32(E1000_MTA, i, 0);
928 /* Zero out the Unicast HASH table */
929 hw_dbg("Zeroing the UTA\n");
930 for (i = 0; i < mac->uta_reg_count; i++)
931 array_wr32(E1000_UTA, i, 0);
933 /* Setup link and flow control */
934 ret_val = igb_setup_link(hw);
937 * Clear all of the statistics registers (clear on read). It is
938 * important that we do this after we have tried to establish link
939 * because the symbol error count will increment wildly if there
940 * is no link.
942 igb_clear_hw_cntrs_82575(hw);
944 return ret_val;
948 * igb_setup_copper_link_82575 - Configure copper link settings
949 * @hw: pointer to the HW structure
951 * Configures the link for auto-neg or forced speed and duplex. Then we check
952 * for link, once link is established calls to configure collision distance
953 * and flow control are called.
955 static s32 igb_setup_copper_link_82575(struct e1000_hw *hw)
957 u32 ctrl;
958 s32 ret_val;
960 ctrl = rd32(E1000_CTRL);
961 ctrl |= E1000_CTRL_SLU;
962 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
963 wr32(E1000_CTRL, ctrl);
965 ret_val = igb_setup_serdes_link_82575(hw);
966 if (ret_val)
967 goto out;
969 if (igb_sgmii_active_82575(hw) && !hw->phy.reset_disable) {
970 /* allow time for SFP cage time to power up phy */
971 msleep(300);
973 ret_val = hw->phy.ops.reset(hw);
974 if (ret_val) {
975 hw_dbg("Error resetting the PHY.\n");
976 goto out;
979 switch (hw->phy.type) {
980 case e1000_phy_m88:
981 ret_val = igb_copper_link_setup_m88(hw);
982 break;
983 case e1000_phy_igp_3:
984 ret_val = igb_copper_link_setup_igp(hw);
985 break;
986 case e1000_phy_82580:
987 ret_val = igb_copper_link_setup_82580(hw);
988 break;
989 default:
990 ret_val = -E1000_ERR_PHY;
991 break;
994 if (ret_val)
995 goto out;
997 ret_val = igb_setup_copper_link(hw);
998 out:
999 return ret_val;
1003 * igb_setup_serdes_link_82575 - Setup link for serdes
1004 * @hw: pointer to the HW structure
1006 * Configure the physical coding sub-layer (PCS) link. The PCS link is
1007 * used on copper connections where the serialized gigabit media independent
1008 * interface (sgmii), or serdes fiber is being used. Configures the link
1009 * for auto-negotiation or forces speed/duplex.
1011 static s32 igb_setup_serdes_link_82575(struct e1000_hw *hw)
1013 u32 ctrl_ext, ctrl_reg, reg;
1014 bool pcs_autoneg;
1016 if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1017 !igb_sgmii_active_82575(hw))
1018 return 0;
1021 * On the 82575, SerDes loopback mode persists until it is
1022 * explicitly turned off or a power cycle is performed. A read to
1023 * the register does not indicate its status. Therefore, we ensure
1024 * loopback mode is disabled during initialization.
1026 wr32(E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1028 /* power on the sfp cage if present */
1029 ctrl_ext = rd32(E1000_CTRL_EXT);
1030 ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
1031 wr32(E1000_CTRL_EXT, ctrl_ext);
1033 ctrl_reg = rd32(E1000_CTRL);
1034 ctrl_reg |= E1000_CTRL_SLU;
1036 if (hw->mac.type == e1000_82575 || hw->mac.type == e1000_82576) {
1037 /* set both sw defined pins */
1038 ctrl_reg |= E1000_CTRL_SWDPIN0 | E1000_CTRL_SWDPIN1;
1040 /* Set switch control to serdes energy detect */
1041 reg = rd32(E1000_CONNSW);
1042 reg |= E1000_CONNSW_ENRGSRC;
1043 wr32(E1000_CONNSW, reg);
1046 reg = rd32(E1000_PCS_LCTL);
1048 /* default pcs_autoneg to the same setting as mac autoneg */
1049 pcs_autoneg = hw->mac.autoneg;
1051 switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
1052 case E1000_CTRL_EXT_LINK_MODE_SGMII:
1053 /* sgmii mode lets the phy handle forcing speed/duplex */
1054 pcs_autoneg = true;
1055 /* autoneg time out should be disabled for SGMII mode */
1056 reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT);
1057 break;
1058 case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
1059 /* disable PCS autoneg and support parallel detect only */
1060 pcs_autoneg = false;
1061 default:
1063 * non-SGMII modes only supports a speed of 1000/Full for the
1064 * link so it is best to just force the MAC and let the pcs
1065 * link either autoneg or be forced to 1000/Full
1067 ctrl_reg |= E1000_CTRL_SPD_1000 | E1000_CTRL_FRCSPD |
1068 E1000_CTRL_FD | E1000_CTRL_FRCDPX;
1070 /* set speed of 1000/Full if speed/duplex is forced */
1071 reg |= E1000_PCS_LCTL_FSV_1000 | E1000_PCS_LCTL_FDV_FULL;
1072 break;
1075 wr32(E1000_CTRL, ctrl_reg);
1078 * New SerDes mode allows for forcing speed or autonegotiating speed
1079 * at 1gb. Autoneg should be default set by most drivers. This is the
1080 * mode that will be compatible with older link partners and switches.
1081 * However, both are supported by the hardware and some drivers/tools.
1083 reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP |
1084 E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
1087 * We force flow control to prevent the CTRL register values from being
1088 * overwritten by the autonegotiated flow control values
1090 reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1092 if (pcs_autoneg) {
1093 /* Set PCS register for autoneg */
1094 reg |= E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */
1095 E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */
1096 hw_dbg("Configuring Autoneg:PCS_LCTL=0x%08X\n", reg);
1097 } else {
1098 /* Set PCS register for forced link */
1099 reg |= E1000_PCS_LCTL_FSD | /* Force Speed */
1100 E1000_PCS_LCTL_FORCE_LINK | /* Force Link */
1101 E1000_PCS_LCTL_FLV_LINK_UP; /* Force link value up */
1103 hw_dbg("Configuring Forced Link:PCS_LCTL=0x%08X\n", reg);
1106 wr32(E1000_PCS_LCTL, reg);
1108 if (!igb_sgmii_active_82575(hw))
1109 igb_force_mac_fc(hw);
1111 return 0;
1115 * igb_sgmii_active_82575 - Return sgmii state
1116 * @hw: pointer to the HW structure
1118 * 82575 silicon has a serialized gigabit media independent interface (sgmii)
1119 * which can be enabled for use in the embedded applications. Simply
1120 * return the current state of the sgmii interface.
1122 static bool igb_sgmii_active_82575(struct e1000_hw *hw)
1124 struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
1125 return dev_spec->sgmii_active;
1129 * igb_reset_init_script_82575 - Inits HW defaults after reset
1130 * @hw: pointer to the HW structure
1132 * Inits recommended HW defaults after a reset when there is no EEPROM
1133 * detected. This is only for the 82575.
1135 static s32 igb_reset_init_script_82575(struct e1000_hw *hw)
1137 if (hw->mac.type == e1000_82575) {
1138 hw_dbg("Running reset init script for 82575\n");
1139 /* SerDes configuration via SERDESCTRL */
1140 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x00, 0x0C);
1141 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x01, 0x78);
1142 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x1B, 0x23);
1143 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x23, 0x15);
1145 /* CCM configuration via CCMCTL register */
1146 igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x14, 0x00);
1147 igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x10, 0x00);
1149 /* PCIe lanes configuration */
1150 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x00, 0xEC);
1151 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x61, 0xDF);
1152 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x34, 0x05);
1153 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x2F, 0x81);
1155 /* PCIe PLL Configuration */
1156 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x02, 0x47);
1157 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x14, 0x00);
1158 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x10, 0x00);
1161 return 0;
1165 * igb_read_mac_addr_82575 - Read device MAC address
1166 * @hw: pointer to the HW structure
1168 static s32 igb_read_mac_addr_82575(struct e1000_hw *hw)
1170 s32 ret_val = 0;
1173 * If there's an alternate MAC address place it in RAR0
1174 * so that it will override the Si installed default perm
1175 * address.
1177 ret_val = igb_check_alt_mac_addr(hw);
1178 if (ret_val)
1179 goto out;
1181 ret_val = igb_read_mac_addr(hw);
1183 out:
1184 return ret_val;
1188 * igb_clear_hw_cntrs_82575 - Clear device specific hardware counters
1189 * @hw: pointer to the HW structure
1191 * Clears the hardware counters by reading the counter registers.
1193 static void igb_clear_hw_cntrs_82575(struct e1000_hw *hw)
1195 igb_clear_hw_cntrs_base(hw);
1197 rd32(E1000_PRC64);
1198 rd32(E1000_PRC127);
1199 rd32(E1000_PRC255);
1200 rd32(E1000_PRC511);
1201 rd32(E1000_PRC1023);
1202 rd32(E1000_PRC1522);
1203 rd32(E1000_PTC64);
1204 rd32(E1000_PTC127);
1205 rd32(E1000_PTC255);
1206 rd32(E1000_PTC511);
1207 rd32(E1000_PTC1023);
1208 rd32(E1000_PTC1522);
1210 rd32(E1000_ALGNERRC);
1211 rd32(E1000_RXERRC);
1212 rd32(E1000_TNCRS);
1213 rd32(E1000_CEXTERR);
1214 rd32(E1000_TSCTC);
1215 rd32(E1000_TSCTFC);
1217 rd32(E1000_MGTPRC);
1218 rd32(E1000_MGTPDC);
1219 rd32(E1000_MGTPTC);
1221 rd32(E1000_IAC);
1222 rd32(E1000_ICRXOC);
1224 rd32(E1000_ICRXPTC);
1225 rd32(E1000_ICRXATC);
1226 rd32(E1000_ICTXPTC);
1227 rd32(E1000_ICTXATC);
1228 rd32(E1000_ICTXQEC);
1229 rd32(E1000_ICTXQMTC);
1230 rd32(E1000_ICRXDMTC);
1232 rd32(E1000_CBTMPC);
1233 rd32(E1000_HTDPMC);
1234 rd32(E1000_CBRMPC);
1235 rd32(E1000_RPTHC);
1236 rd32(E1000_HGPTC);
1237 rd32(E1000_HTCBDPC);
1238 rd32(E1000_HGORCL);
1239 rd32(E1000_HGORCH);
1240 rd32(E1000_HGOTCL);
1241 rd32(E1000_HGOTCH);
1242 rd32(E1000_LENERRS);
1244 /* This register should not be read in copper configurations */
1245 if (hw->phy.media_type == e1000_media_type_internal_serdes ||
1246 igb_sgmii_active_82575(hw))
1247 rd32(E1000_SCVPC);
1251 * igb_rx_fifo_flush_82575 - Clean rx fifo after RX enable
1252 * @hw: pointer to the HW structure
1254 * After rx enable if managability is enabled then there is likely some
1255 * bad data at the start of the fifo and possibly in the DMA fifo. This
1256 * function clears the fifos and flushes any packets that came in as rx was
1257 * being enabled.
1259 void igb_rx_fifo_flush_82575(struct e1000_hw *hw)
1261 u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled;
1262 int i, ms_wait;
1264 if (hw->mac.type != e1000_82575 ||
1265 !(rd32(E1000_MANC) & E1000_MANC_RCV_TCO_EN))
1266 return;
1268 /* Disable all RX queues */
1269 for (i = 0; i < 4; i++) {
1270 rxdctl[i] = rd32(E1000_RXDCTL(i));
1271 wr32(E1000_RXDCTL(i),
1272 rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE);
1274 /* Poll all queues to verify they have shut down */
1275 for (ms_wait = 0; ms_wait < 10; ms_wait++) {
1276 msleep(1);
1277 rx_enabled = 0;
1278 for (i = 0; i < 4; i++)
1279 rx_enabled |= rd32(E1000_RXDCTL(i));
1280 if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE))
1281 break;
1284 if (ms_wait == 10)
1285 hw_dbg("Queue disable timed out after 10ms\n");
1287 /* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all
1288 * incoming packets are rejected. Set enable and wait 2ms so that
1289 * any packet that was coming in as RCTL.EN was set is flushed
1291 rfctl = rd32(E1000_RFCTL);
1292 wr32(E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF);
1294 rlpml = rd32(E1000_RLPML);
1295 wr32(E1000_RLPML, 0);
1297 rctl = rd32(E1000_RCTL);
1298 temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP);
1299 temp_rctl |= E1000_RCTL_LPE;
1301 wr32(E1000_RCTL, temp_rctl);
1302 wr32(E1000_RCTL, temp_rctl | E1000_RCTL_EN);
1303 wrfl();
1304 msleep(2);
1306 /* Enable RX queues that were previously enabled and restore our
1307 * previous state
1309 for (i = 0; i < 4; i++)
1310 wr32(E1000_RXDCTL(i), rxdctl[i]);
1311 wr32(E1000_RCTL, rctl);
1312 wrfl();
1314 wr32(E1000_RLPML, rlpml);
1315 wr32(E1000_RFCTL, rfctl);
1317 /* Flush receive errors generated by workaround */
1318 rd32(E1000_ROC);
1319 rd32(E1000_RNBC);
1320 rd32(E1000_MPC);
1324 * igb_set_pcie_completion_timeout - set pci-e completion timeout
1325 * @hw: pointer to the HW structure
1327 * The defaults for 82575 and 82576 should be in the range of 50us to 50ms,
1328 * however the hardware default for these parts is 500us to 1ms which is less
1329 * than the 10ms recommended by the pci-e spec. To address this we need to
1330 * increase the value to either 10ms to 200ms for capability version 1 config,
1331 * or 16ms to 55ms for version 2.
1333 static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw)
1335 u32 gcr = rd32(E1000_GCR);
1336 s32 ret_val = 0;
1337 u16 pcie_devctl2;
1339 /* only take action if timeout value is defaulted to 0 */
1340 if (gcr & E1000_GCR_CMPL_TMOUT_MASK)
1341 goto out;
1344 * if capababilities version is type 1 we can write the
1345 * timeout of 10ms to 200ms through the GCR register
1347 if (!(gcr & E1000_GCR_CAP_VER2)) {
1348 gcr |= E1000_GCR_CMPL_TMOUT_10ms;
1349 goto out;
1353 * for version 2 capabilities we need to write the config space
1354 * directly in order to set the completion timeout value for
1355 * 16ms to 55ms
1357 ret_val = igb_read_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
1358 &pcie_devctl2);
1359 if (ret_val)
1360 goto out;
1362 pcie_devctl2 |= PCIE_DEVICE_CONTROL2_16ms;
1364 ret_val = igb_write_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
1365 &pcie_devctl2);
1366 out:
1367 /* disable completion timeout resend */
1368 gcr &= ~E1000_GCR_CMPL_TMOUT_RESEND;
1370 wr32(E1000_GCR, gcr);
1371 return ret_val;
1375 * igb_vmdq_set_loopback_pf - enable or disable vmdq loopback
1376 * @hw: pointer to the hardware struct
1377 * @enable: state to enter, either enabled or disabled
1379 * enables/disables L2 switch loopback functionality.
1381 void igb_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable)
1383 u32 dtxswc = rd32(E1000_DTXSWC);
1385 if (enable)
1386 dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1387 else
1388 dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1390 wr32(E1000_DTXSWC, dtxswc);
1394 * igb_vmdq_set_replication_pf - enable or disable vmdq replication
1395 * @hw: pointer to the hardware struct
1396 * @enable: state to enter, either enabled or disabled
1398 * enables/disables replication of packets across multiple pools.
1400 void igb_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable)
1402 u32 vt_ctl = rd32(E1000_VT_CTL);
1404 if (enable)
1405 vt_ctl |= E1000_VT_CTL_VM_REPL_EN;
1406 else
1407 vt_ctl &= ~E1000_VT_CTL_VM_REPL_EN;
1409 wr32(E1000_VT_CTL, vt_ctl);
1413 * igb_read_phy_reg_82580 - Read 82580 MDI control register
1414 * @hw: pointer to the HW structure
1415 * @offset: register offset to be read
1416 * @data: pointer to the read data
1418 * Reads the MDI control register in the PHY at offset and stores the
1419 * information read to data.
1421 static s32 igb_read_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 *data)
1423 u32 mdicnfg = 0;
1424 s32 ret_val;
1427 ret_val = hw->phy.ops.acquire(hw);
1428 if (ret_val)
1429 goto out;
1432 * We config the phy address in MDICNFG register now. Same bits
1433 * as before. The values in MDIC can be written but will be
1434 * ignored. This allows us to call the old function after
1435 * configuring the PHY address in the new register
1437 mdicnfg = (hw->phy.addr << E1000_MDIC_PHY_SHIFT);
1438 wr32(E1000_MDICNFG, mdicnfg);
1440 ret_val = igb_read_phy_reg_mdic(hw, offset, data);
1442 hw->phy.ops.release(hw);
1444 out:
1445 return ret_val;
1449 * igb_write_phy_reg_82580 - Write 82580 MDI control register
1450 * @hw: pointer to the HW structure
1451 * @offset: register offset to write to
1452 * @data: data to write to register at offset
1454 * Writes data to MDI control register in the PHY at offset.
1456 static s32 igb_write_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 data)
1458 u32 mdicnfg = 0;
1459 s32 ret_val;
1462 ret_val = hw->phy.ops.acquire(hw);
1463 if (ret_val)
1464 goto out;
1467 * We config the phy address in MDICNFG register now. Same bits
1468 * as before. The values in MDIC can be written but will be
1469 * ignored. This allows us to call the old function after
1470 * configuring the PHY address in the new register
1472 mdicnfg = (hw->phy.addr << E1000_MDIC_PHY_SHIFT);
1473 wr32(E1000_MDICNFG, mdicnfg);
1475 ret_val = igb_write_phy_reg_mdic(hw, offset, data);
1477 hw->phy.ops.release(hw);
1479 out:
1480 return ret_val;
1484 * igb_reset_hw_82580 - Reset hardware
1485 * @hw: pointer to the HW structure
1487 * This resets function or entire device (all ports, etc.)
1488 * to a known state.
1490 static s32 igb_reset_hw_82580(struct e1000_hw *hw)
1492 s32 ret_val = 0;
1493 /* BH SW mailbox bit in SW_FW_SYNC */
1494 u16 swmbsw_mask = E1000_SW_SYNCH_MB;
1495 u32 ctrl, icr;
1496 bool global_device_reset = hw->dev_spec._82575.global_device_reset;
1499 hw->dev_spec._82575.global_device_reset = false;
1501 /* Get current control state. */
1502 ctrl = rd32(E1000_CTRL);
1505 * Prevent the PCI-E bus from sticking if there is no TLP connection
1506 * on the last TLP read/write transaction when MAC is reset.
1508 ret_val = igb_disable_pcie_master(hw);
1509 if (ret_val)
1510 hw_dbg("PCI-E Master disable polling has failed.\n");
1512 hw_dbg("Masking off all interrupts\n");
1513 wr32(E1000_IMC, 0xffffffff);
1514 wr32(E1000_RCTL, 0);
1515 wr32(E1000_TCTL, E1000_TCTL_PSP);
1516 wrfl();
1518 msleep(10);
1520 /* Determine whether or not a global dev reset is requested */
1521 if (global_device_reset &&
1522 igb_acquire_swfw_sync_82575(hw, swmbsw_mask))
1523 global_device_reset = false;
1525 if (global_device_reset &&
1526 !(rd32(E1000_STATUS) & E1000_STAT_DEV_RST_SET))
1527 ctrl |= E1000_CTRL_DEV_RST;
1528 else
1529 ctrl |= E1000_CTRL_RST;
1531 wr32(E1000_CTRL, ctrl);
1533 /* Add delay to insure DEV_RST has time to complete */
1534 if (global_device_reset)
1535 msleep(5);
1537 ret_val = igb_get_auto_rd_done(hw);
1538 if (ret_val) {
1540 * When auto config read does not complete, do not
1541 * return with an error. This can happen in situations
1542 * where there is no eeprom and prevents getting link.
1544 hw_dbg("Auto Read Done did not complete\n");
1547 /* If EEPROM is not present, run manual init scripts */
1548 if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
1549 igb_reset_init_script_82575(hw);
1551 /* clear global device reset status bit */
1552 wr32(E1000_STATUS, E1000_STAT_DEV_RST_SET);
1554 /* Clear any pending interrupt events. */
1555 wr32(E1000_IMC, 0xffffffff);
1556 icr = rd32(E1000_ICR);
1558 /* Install any alternate MAC address into RAR0 */
1559 ret_val = igb_check_alt_mac_addr(hw);
1561 /* Release semaphore */
1562 if (global_device_reset)
1563 igb_release_swfw_sync_82575(hw, swmbsw_mask);
1565 return ret_val;
1569 * igb_rxpbs_adjust_82580 - adjust RXPBS value to reflect actual RX PBA size
1570 * @data: data received by reading RXPBS register
1572 * The 82580 uses a table based approach for packet buffer allocation sizes.
1573 * This function converts the retrieved value into the correct table value
1574 * 0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7
1575 * 0x0 36 72 144 1 2 4 8 16
1576 * 0x8 35 70 140 rsv rsv rsv rsv rsv
1578 u16 igb_rxpbs_adjust_82580(u32 data)
1580 u16 ret_val = 0;
1582 if (data < E1000_82580_RXPBS_TABLE_SIZE)
1583 ret_val = e1000_82580_rxpbs_table[data];
1585 return ret_val;
1588 static struct e1000_mac_operations e1000_mac_ops_82575 = {
1589 .init_hw = igb_init_hw_82575,
1590 .check_for_link = igb_check_for_link_82575,
1591 .rar_set = igb_rar_set,
1592 .read_mac_addr = igb_read_mac_addr_82575,
1593 .get_speed_and_duplex = igb_get_speed_and_duplex_copper,
1596 static struct e1000_phy_operations e1000_phy_ops_82575 = {
1597 .acquire = igb_acquire_phy_82575,
1598 .get_cfg_done = igb_get_cfg_done_82575,
1599 .release = igb_release_phy_82575,
1602 static struct e1000_nvm_operations e1000_nvm_ops_82575 = {
1603 .acquire = igb_acquire_nvm_82575,
1604 .read = igb_read_nvm_eerd,
1605 .release = igb_release_nvm_82575,
1606 .write = igb_write_nvm_spi,
1609 const struct e1000_info e1000_82575_info = {
1610 .get_invariants = igb_get_invariants_82575,
1611 .mac_ops = &e1000_mac_ops_82575,
1612 .phy_ops = &e1000_phy_ops_82575,
1613 .nvm_ops = &e1000_nvm_ops_82575,