Merge branch 'master' of master.kernel.org:/pub/scm/linux/kernel/git/davem/net-2.6
[linux-2.6.git] / drivers / net / fs_enet / fs_enet-main.c
blobec2f5034457f7b58099906633928456f91fabf05
1 /*
2 * Combined Ethernet driver for Motorola MPC8xx and MPC82xx.
4 * Copyright (c) 2003 Intracom S.A.
5 * by Pantelis Antoniou <panto@intracom.gr>
7 * 2005 (c) MontaVista Software, Inc.
8 * Vitaly Bordug <vbordug@ru.mvista.com>
10 * Heavily based on original FEC driver by Dan Malek <dan@embeddededge.com>
11 * and modifications by Joakim Tjernlund <joakim.tjernlund@lumentis.se>
13 * This file is licensed under the terms of the GNU General Public License
14 * version 2. This program is licensed "as is" without any warranty of any
15 * kind, whether express or implied.
18 #include <linux/module.h>
19 #include <linux/kernel.h>
20 #include <linux/types.h>
21 #include <linux/string.h>
22 #include <linux/ptrace.h>
23 #include <linux/errno.h>
24 #include <linux/ioport.h>
25 #include <linux/slab.h>
26 #include <linux/interrupt.h>
27 #include <linux/init.h>
28 #include <linux/delay.h>
29 #include <linux/netdevice.h>
30 #include <linux/etherdevice.h>
31 #include <linux/skbuff.h>
32 #include <linux/spinlock.h>
33 #include <linux/mii.h>
34 #include <linux/ethtool.h>
35 #include <linux/bitops.h>
36 #include <linux/fs.h>
37 #include <linux/platform_device.h>
38 #include <linux/phy.h>
39 #include <linux/of.h>
40 #include <linux/of_mdio.h>
41 #include <linux/of_platform.h>
42 #include <linux/of_gpio.h>
44 #include <linux/vmalloc.h>
45 #include <asm/pgtable.h>
46 #include <asm/irq.h>
47 #include <asm/uaccess.h>
49 #include "fs_enet.h"
51 /*************************************************/
53 MODULE_AUTHOR("Pantelis Antoniou <panto@intracom.gr>");
54 MODULE_DESCRIPTION("Freescale Ethernet Driver");
55 MODULE_LICENSE("GPL");
56 MODULE_VERSION(DRV_MODULE_VERSION);
58 static int fs_enet_debug = -1; /* -1 == use FS_ENET_DEF_MSG_ENABLE as value */
59 module_param(fs_enet_debug, int, 0);
60 MODULE_PARM_DESC(fs_enet_debug,
61 "Freescale bitmapped debugging message enable value");
63 #ifdef CONFIG_NET_POLL_CONTROLLER
64 static void fs_enet_netpoll(struct net_device *dev);
65 #endif
67 static void fs_set_multicast_list(struct net_device *dev)
69 struct fs_enet_private *fep = netdev_priv(dev);
71 (*fep->ops->set_multicast_list)(dev);
74 static void skb_align(struct sk_buff *skb, int align)
76 int off = ((unsigned long)skb->data) & (align - 1);
78 if (off)
79 skb_reserve(skb, align - off);
82 /* NAPI receive function */
83 static int fs_enet_rx_napi(struct napi_struct *napi, int budget)
85 struct fs_enet_private *fep = container_of(napi, struct fs_enet_private, napi);
86 struct net_device *dev = fep->ndev;
87 const struct fs_platform_info *fpi = fep->fpi;
88 cbd_t __iomem *bdp;
89 struct sk_buff *skb, *skbn, *skbt;
90 int received = 0;
91 u16 pkt_len, sc;
92 int curidx;
95 * First, grab all of the stats for the incoming packet.
96 * These get messed up if we get called due to a busy condition.
98 bdp = fep->cur_rx;
100 /* clear RX status bits for napi*/
101 (*fep->ops->napi_clear_rx_event)(dev);
103 while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0) {
104 curidx = bdp - fep->rx_bd_base;
107 * Since we have allocated space to hold a complete frame,
108 * the last indicator should be set.
110 if ((sc & BD_ENET_RX_LAST) == 0)
111 printk(KERN_WARNING DRV_MODULE_NAME
112 ": %s rcv is not +last\n",
113 dev->name);
116 * Check for errors.
118 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL |
119 BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) {
120 fep->stats.rx_errors++;
121 /* Frame too long or too short. */
122 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
123 fep->stats.rx_length_errors++;
124 /* Frame alignment */
125 if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL))
126 fep->stats.rx_frame_errors++;
127 /* CRC Error */
128 if (sc & BD_ENET_RX_CR)
129 fep->stats.rx_crc_errors++;
130 /* FIFO overrun */
131 if (sc & BD_ENET_RX_OV)
132 fep->stats.rx_crc_errors++;
134 skb = fep->rx_skbuff[curidx];
136 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
137 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
138 DMA_FROM_DEVICE);
140 skbn = skb;
142 } else {
143 skb = fep->rx_skbuff[curidx];
145 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
146 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
147 DMA_FROM_DEVICE);
150 * Process the incoming frame.
152 fep->stats.rx_packets++;
153 pkt_len = CBDR_DATLEN(bdp) - 4; /* remove CRC */
154 fep->stats.rx_bytes += pkt_len + 4;
156 if (pkt_len <= fpi->rx_copybreak) {
157 /* +2 to make IP header L1 cache aligned */
158 skbn = dev_alloc_skb(pkt_len + 2);
159 if (skbn != NULL) {
160 skb_reserve(skbn, 2); /* align IP header */
161 skb_copy_from_linear_data(skb,
162 skbn->data, pkt_len);
163 /* swap */
164 skbt = skb;
165 skb = skbn;
166 skbn = skbt;
168 } else {
169 skbn = dev_alloc_skb(ENET_RX_FRSIZE);
171 if (skbn)
172 skb_align(skbn, ENET_RX_ALIGN);
175 if (skbn != NULL) {
176 skb_put(skb, pkt_len); /* Make room */
177 skb->protocol = eth_type_trans(skb, dev);
178 received++;
179 netif_receive_skb(skb);
180 } else {
181 printk(KERN_WARNING DRV_MODULE_NAME
182 ": %s Memory squeeze, dropping packet.\n",
183 dev->name);
184 fep->stats.rx_dropped++;
185 skbn = skb;
189 fep->rx_skbuff[curidx] = skbn;
190 CBDW_BUFADDR(bdp, dma_map_single(fep->dev, skbn->data,
191 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
192 DMA_FROM_DEVICE));
193 CBDW_DATLEN(bdp, 0);
194 CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY);
197 * Update BD pointer to next entry.
199 if ((sc & BD_ENET_RX_WRAP) == 0)
200 bdp++;
201 else
202 bdp = fep->rx_bd_base;
204 (*fep->ops->rx_bd_done)(dev);
206 if (received >= budget)
207 break;
210 fep->cur_rx = bdp;
212 if (received < budget) {
213 /* done */
214 napi_complete(napi);
215 (*fep->ops->napi_enable_rx)(dev);
217 return received;
220 /* non NAPI receive function */
221 static int fs_enet_rx_non_napi(struct net_device *dev)
223 struct fs_enet_private *fep = netdev_priv(dev);
224 const struct fs_platform_info *fpi = fep->fpi;
225 cbd_t __iomem *bdp;
226 struct sk_buff *skb, *skbn, *skbt;
227 int received = 0;
228 u16 pkt_len, sc;
229 int curidx;
231 * First, grab all of the stats for the incoming packet.
232 * These get messed up if we get called due to a busy condition.
234 bdp = fep->cur_rx;
236 while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0) {
238 curidx = bdp - fep->rx_bd_base;
241 * Since we have allocated space to hold a complete frame,
242 * the last indicator should be set.
244 if ((sc & BD_ENET_RX_LAST) == 0)
245 printk(KERN_WARNING DRV_MODULE_NAME
246 ": %s rcv is not +last\n",
247 dev->name);
250 * Check for errors.
252 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL |
253 BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) {
254 fep->stats.rx_errors++;
255 /* Frame too long or too short. */
256 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
257 fep->stats.rx_length_errors++;
258 /* Frame alignment */
259 if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL))
260 fep->stats.rx_frame_errors++;
261 /* CRC Error */
262 if (sc & BD_ENET_RX_CR)
263 fep->stats.rx_crc_errors++;
264 /* FIFO overrun */
265 if (sc & BD_ENET_RX_OV)
266 fep->stats.rx_crc_errors++;
268 skb = fep->rx_skbuff[curidx];
270 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
271 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
272 DMA_FROM_DEVICE);
274 skbn = skb;
276 } else {
278 skb = fep->rx_skbuff[curidx];
280 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
281 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
282 DMA_FROM_DEVICE);
285 * Process the incoming frame.
287 fep->stats.rx_packets++;
288 pkt_len = CBDR_DATLEN(bdp) - 4; /* remove CRC */
289 fep->stats.rx_bytes += pkt_len + 4;
291 if (pkt_len <= fpi->rx_copybreak) {
292 /* +2 to make IP header L1 cache aligned */
293 skbn = dev_alloc_skb(pkt_len + 2);
294 if (skbn != NULL) {
295 skb_reserve(skbn, 2); /* align IP header */
296 skb_copy_from_linear_data(skb,
297 skbn->data, pkt_len);
298 /* swap */
299 skbt = skb;
300 skb = skbn;
301 skbn = skbt;
303 } else {
304 skbn = dev_alloc_skb(ENET_RX_FRSIZE);
306 if (skbn)
307 skb_align(skbn, ENET_RX_ALIGN);
310 if (skbn != NULL) {
311 skb_put(skb, pkt_len); /* Make room */
312 skb->protocol = eth_type_trans(skb, dev);
313 received++;
314 netif_rx(skb);
315 } else {
316 printk(KERN_WARNING DRV_MODULE_NAME
317 ": %s Memory squeeze, dropping packet.\n",
318 dev->name);
319 fep->stats.rx_dropped++;
320 skbn = skb;
324 fep->rx_skbuff[curidx] = skbn;
325 CBDW_BUFADDR(bdp, dma_map_single(fep->dev, skbn->data,
326 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
327 DMA_FROM_DEVICE));
328 CBDW_DATLEN(bdp, 0);
329 CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY);
332 * Update BD pointer to next entry.
334 if ((sc & BD_ENET_RX_WRAP) == 0)
335 bdp++;
336 else
337 bdp = fep->rx_bd_base;
339 (*fep->ops->rx_bd_done)(dev);
342 fep->cur_rx = bdp;
344 return 0;
347 static void fs_enet_tx(struct net_device *dev)
349 struct fs_enet_private *fep = netdev_priv(dev);
350 cbd_t __iomem *bdp;
351 struct sk_buff *skb;
352 int dirtyidx, do_wake, do_restart;
353 u16 sc;
355 spin_lock(&fep->tx_lock);
356 bdp = fep->dirty_tx;
358 do_wake = do_restart = 0;
359 while (((sc = CBDR_SC(bdp)) & BD_ENET_TX_READY) == 0) {
360 dirtyidx = bdp - fep->tx_bd_base;
362 if (fep->tx_free == fep->tx_ring)
363 break;
365 skb = fep->tx_skbuff[dirtyidx];
368 * Check for errors.
370 if (sc & (BD_ENET_TX_HB | BD_ENET_TX_LC |
371 BD_ENET_TX_RL | BD_ENET_TX_UN | BD_ENET_TX_CSL)) {
373 if (sc & BD_ENET_TX_HB) /* No heartbeat */
374 fep->stats.tx_heartbeat_errors++;
375 if (sc & BD_ENET_TX_LC) /* Late collision */
376 fep->stats.tx_window_errors++;
377 if (sc & BD_ENET_TX_RL) /* Retrans limit */
378 fep->stats.tx_aborted_errors++;
379 if (sc & BD_ENET_TX_UN) /* Underrun */
380 fep->stats.tx_fifo_errors++;
381 if (sc & BD_ENET_TX_CSL) /* Carrier lost */
382 fep->stats.tx_carrier_errors++;
384 if (sc & (BD_ENET_TX_LC | BD_ENET_TX_RL | BD_ENET_TX_UN)) {
385 fep->stats.tx_errors++;
386 do_restart = 1;
388 } else
389 fep->stats.tx_packets++;
391 if (sc & BD_ENET_TX_READY)
392 printk(KERN_WARNING DRV_MODULE_NAME
393 ": %s HEY! Enet xmit interrupt and TX_READY.\n",
394 dev->name);
397 * Deferred means some collisions occurred during transmit,
398 * but we eventually sent the packet OK.
400 if (sc & BD_ENET_TX_DEF)
401 fep->stats.collisions++;
403 /* unmap */
404 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
405 skb->len, DMA_TO_DEVICE);
408 * Free the sk buffer associated with this last transmit.
410 dev_kfree_skb_irq(skb);
411 fep->tx_skbuff[dirtyidx] = NULL;
414 * Update pointer to next buffer descriptor to be transmitted.
416 if ((sc & BD_ENET_TX_WRAP) == 0)
417 bdp++;
418 else
419 bdp = fep->tx_bd_base;
422 * Since we have freed up a buffer, the ring is no longer
423 * full.
425 if (!fep->tx_free++)
426 do_wake = 1;
429 fep->dirty_tx = bdp;
431 if (do_restart)
432 (*fep->ops->tx_restart)(dev);
434 spin_unlock(&fep->tx_lock);
436 if (do_wake)
437 netif_wake_queue(dev);
441 * The interrupt handler.
442 * This is called from the MPC core interrupt.
444 static irqreturn_t
445 fs_enet_interrupt(int irq, void *dev_id)
447 struct net_device *dev = dev_id;
448 struct fs_enet_private *fep;
449 const struct fs_platform_info *fpi;
450 u32 int_events;
451 u32 int_clr_events;
452 int nr, napi_ok;
453 int handled;
455 fep = netdev_priv(dev);
456 fpi = fep->fpi;
458 nr = 0;
459 while ((int_events = (*fep->ops->get_int_events)(dev)) != 0) {
460 nr++;
462 int_clr_events = int_events;
463 if (fpi->use_napi)
464 int_clr_events &= ~fep->ev_napi_rx;
466 (*fep->ops->clear_int_events)(dev, int_clr_events);
468 if (int_events & fep->ev_err)
469 (*fep->ops->ev_error)(dev, int_events);
471 if (int_events & fep->ev_rx) {
472 if (!fpi->use_napi)
473 fs_enet_rx_non_napi(dev);
474 else {
475 napi_ok = napi_schedule_prep(&fep->napi);
477 (*fep->ops->napi_disable_rx)(dev);
478 (*fep->ops->clear_int_events)(dev, fep->ev_napi_rx);
480 /* NOTE: it is possible for FCCs in NAPI mode */
481 /* to submit a spurious interrupt while in poll */
482 if (napi_ok)
483 __napi_schedule(&fep->napi);
487 if (int_events & fep->ev_tx)
488 fs_enet_tx(dev);
491 handled = nr > 0;
492 return IRQ_RETVAL(handled);
495 void fs_init_bds(struct net_device *dev)
497 struct fs_enet_private *fep = netdev_priv(dev);
498 cbd_t __iomem *bdp;
499 struct sk_buff *skb;
500 int i;
502 fs_cleanup_bds(dev);
504 fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
505 fep->tx_free = fep->tx_ring;
506 fep->cur_rx = fep->rx_bd_base;
509 * Initialize the receive buffer descriptors.
511 for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
512 skb = dev_alloc_skb(ENET_RX_FRSIZE);
513 if (skb == NULL) {
514 printk(KERN_WARNING DRV_MODULE_NAME
515 ": %s Memory squeeze, unable to allocate skb\n",
516 dev->name);
517 break;
519 skb_align(skb, ENET_RX_ALIGN);
520 fep->rx_skbuff[i] = skb;
521 CBDW_BUFADDR(bdp,
522 dma_map_single(fep->dev, skb->data,
523 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
524 DMA_FROM_DEVICE));
525 CBDW_DATLEN(bdp, 0); /* zero */
526 CBDW_SC(bdp, BD_ENET_RX_EMPTY |
527 ((i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP));
530 * if we failed, fillup remainder
532 for (; i < fep->rx_ring; i++, bdp++) {
533 fep->rx_skbuff[i] = NULL;
534 CBDW_SC(bdp, (i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP);
538 * ...and the same for transmit.
540 for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
541 fep->tx_skbuff[i] = NULL;
542 CBDW_BUFADDR(bdp, 0);
543 CBDW_DATLEN(bdp, 0);
544 CBDW_SC(bdp, (i < fep->tx_ring - 1) ? 0 : BD_SC_WRAP);
548 void fs_cleanup_bds(struct net_device *dev)
550 struct fs_enet_private *fep = netdev_priv(dev);
551 struct sk_buff *skb;
552 cbd_t __iomem *bdp;
553 int i;
556 * Reset SKB transmit buffers.
558 for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
559 if ((skb = fep->tx_skbuff[i]) == NULL)
560 continue;
562 /* unmap */
563 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
564 skb->len, DMA_TO_DEVICE);
566 fep->tx_skbuff[i] = NULL;
567 dev_kfree_skb(skb);
571 * Reset SKB receive buffers
573 for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
574 if ((skb = fep->rx_skbuff[i]) == NULL)
575 continue;
577 /* unmap */
578 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
579 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
580 DMA_FROM_DEVICE);
582 fep->rx_skbuff[i] = NULL;
584 dev_kfree_skb(skb);
588 /**********************************************************************************/
590 static int fs_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
592 struct fs_enet_private *fep = netdev_priv(dev);
593 cbd_t __iomem *bdp;
594 int curidx;
595 u16 sc;
596 unsigned long flags;
598 spin_lock_irqsave(&fep->tx_lock, flags);
601 * Fill in a Tx ring entry
603 bdp = fep->cur_tx;
605 if (!fep->tx_free || (CBDR_SC(bdp) & BD_ENET_TX_READY)) {
606 netif_stop_queue(dev);
607 spin_unlock_irqrestore(&fep->tx_lock, flags);
610 * Ooops. All transmit buffers are full. Bail out.
611 * This should not happen, since the tx queue should be stopped.
613 printk(KERN_WARNING DRV_MODULE_NAME
614 ": %s tx queue full!.\n", dev->name);
615 return NETDEV_TX_BUSY;
618 curidx = bdp - fep->tx_bd_base;
620 * Clear all of the status flags.
622 CBDC_SC(bdp, BD_ENET_TX_STATS);
625 * Save skb pointer.
627 fep->tx_skbuff[curidx] = skb;
629 fep->stats.tx_bytes += skb->len;
632 * Push the data cache so the CPM does not get stale memory data.
634 CBDW_BUFADDR(bdp, dma_map_single(fep->dev,
635 skb->data, skb->len, DMA_TO_DEVICE));
636 CBDW_DATLEN(bdp, skb->len);
638 dev->trans_start = jiffies;
641 * If this was the last BD in the ring, start at the beginning again.
643 if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0)
644 fep->cur_tx++;
645 else
646 fep->cur_tx = fep->tx_bd_base;
648 if (!--fep->tx_free)
649 netif_stop_queue(dev);
651 /* Trigger transmission start */
652 sc = BD_ENET_TX_READY | BD_ENET_TX_INTR |
653 BD_ENET_TX_LAST | BD_ENET_TX_TC;
655 /* note that while FEC does not have this bit
656 * it marks it as available for software use
657 * yay for hw reuse :) */
658 if (skb->len <= 60)
659 sc |= BD_ENET_TX_PAD;
660 CBDS_SC(bdp, sc);
662 (*fep->ops->tx_kickstart)(dev);
664 spin_unlock_irqrestore(&fep->tx_lock, flags);
666 return NETDEV_TX_OK;
669 static void fs_timeout(struct net_device *dev)
671 struct fs_enet_private *fep = netdev_priv(dev);
672 unsigned long flags;
673 int wake = 0;
675 fep->stats.tx_errors++;
677 spin_lock_irqsave(&fep->lock, flags);
679 if (dev->flags & IFF_UP) {
680 phy_stop(fep->phydev);
681 (*fep->ops->stop)(dev);
682 (*fep->ops->restart)(dev);
683 phy_start(fep->phydev);
686 phy_start(fep->phydev);
687 wake = fep->tx_free && !(CBDR_SC(fep->cur_tx) & BD_ENET_TX_READY);
688 spin_unlock_irqrestore(&fep->lock, flags);
690 if (wake)
691 netif_wake_queue(dev);
694 /*-----------------------------------------------------------------------------
695 * generic link-change handler - should be sufficient for most cases
696 *-----------------------------------------------------------------------------*/
697 static void generic_adjust_link(struct net_device *dev)
699 struct fs_enet_private *fep = netdev_priv(dev);
700 struct phy_device *phydev = fep->phydev;
701 int new_state = 0;
703 if (phydev->link) {
704 /* adjust to duplex mode */
705 if (phydev->duplex != fep->oldduplex) {
706 new_state = 1;
707 fep->oldduplex = phydev->duplex;
710 if (phydev->speed != fep->oldspeed) {
711 new_state = 1;
712 fep->oldspeed = phydev->speed;
715 if (!fep->oldlink) {
716 new_state = 1;
717 fep->oldlink = 1;
720 if (new_state)
721 fep->ops->restart(dev);
722 } else if (fep->oldlink) {
723 new_state = 1;
724 fep->oldlink = 0;
725 fep->oldspeed = 0;
726 fep->oldduplex = -1;
729 if (new_state && netif_msg_link(fep))
730 phy_print_status(phydev);
734 static void fs_adjust_link(struct net_device *dev)
736 struct fs_enet_private *fep = netdev_priv(dev);
737 unsigned long flags;
739 spin_lock_irqsave(&fep->lock, flags);
741 if(fep->ops->adjust_link)
742 fep->ops->adjust_link(dev);
743 else
744 generic_adjust_link(dev);
746 spin_unlock_irqrestore(&fep->lock, flags);
749 static int fs_init_phy(struct net_device *dev)
751 struct fs_enet_private *fep = netdev_priv(dev);
752 struct phy_device *phydev;
754 fep->oldlink = 0;
755 fep->oldspeed = 0;
756 fep->oldduplex = -1;
758 phydev = of_phy_connect(dev, fep->fpi->phy_node, &fs_adjust_link, 0,
759 PHY_INTERFACE_MODE_MII);
760 if (!phydev) {
761 phydev = of_phy_connect_fixed_link(dev, &fs_adjust_link,
762 PHY_INTERFACE_MODE_MII);
764 if (!phydev) {
765 dev_err(&dev->dev, "Could not attach to PHY\n");
766 return -ENODEV;
769 fep->phydev = phydev;
771 return 0;
774 static int fs_enet_open(struct net_device *dev)
776 struct fs_enet_private *fep = netdev_priv(dev);
777 int r;
778 int err;
780 /* to initialize the fep->cur_rx,... */
781 /* not doing this, will cause a crash in fs_enet_rx_napi */
782 fs_init_bds(fep->ndev);
784 if (fep->fpi->use_napi)
785 napi_enable(&fep->napi);
787 /* Install our interrupt handler. */
788 r = request_irq(fep->interrupt, fs_enet_interrupt, IRQF_SHARED,
789 "fs_enet-mac", dev);
790 if (r != 0) {
791 printk(KERN_ERR DRV_MODULE_NAME
792 ": %s Could not allocate FS_ENET IRQ!", dev->name);
793 if (fep->fpi->use_napi)
794 napi_disable(&fep->napi);
795 return -EINVAL;
798 err = fs_init_phy(dev);
799 if (err) {
800 free_irq(fep->interrupt, dev);
801 if (fep->fpi->use_napi)
802 napi_disable(&fep->napi);
803 return err;
805 phy_start(fep->phydev);
807 netif_start_queue(dev);
809 return 0;
812 static int fs_enet_close(struct net_device *dev)
814 struct fs_enet_private *fep = netdev_priv(dev);
815 unsigned long flags;
817 netif_stop_queue(dev);
818 netif_carrier_off(dev);
819 if (fep->fpi->use_napi)
820 napi_disable(&fep->napi);
821 phy_stop(fep->phydev);
823 spin_lock_irqsave(&fep->lock, flags);
824 spin_lock(&fep->tx_lock);
825 (*fep->ops->stop)(dev);
826 spin_unlock(&fep->tx_lock);
827 spin_unlock_irqrestore(&fep->lock, flags);
829 /* release any irqs */
830 phy_disconnect(fep->phydev);
831 fep->phydev = NULL;
832 free_irq(fep->interrupt, dev);
834 return 0;
837 static struct net_device_stats *fs_enet_get_stats(struct net_device *dev)
839 struct fs_enet_private *fep = netdev_priv(dev);
840 return &fep->stats;
843 /*************************************************************************/
845 static void fs_get_drvinfo(struct net_device *dev,
846 struct ethtool_drvinfo *info)
848 strcpy(info->driver, DRV_MODULE_NAME);
849 strcpy(info->version, DRV_MODULE_VERSION);
852 static int fs_get_regs_len(struct net_device *dev)
854 struct fs_enet_private *fep = netdev_priv(dev);
856 return (*fep->ops->get_regs_len)(dev);
859 static void fs_get_regs(struct net_device *dev, struct ethtool_regs *regs,
860 void *p)
862 struct fs_enet_private *fep = netdev_priv(dev);
863 unsigned long flags;
864 int r, len;
866 len = regs->len;
868 spin_lock_irqsave(&fep->lock, flags);
869 r = (*fep->ops->get_regs)(dev, p, &len);
870 spin_unlock_irqrestore(&fep->lock, flags);
872 if (r == 0)
873 regs->version = 0;
876 static int fs_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
878 struct fs_enet_private *fep = netdev_priv(dev);
880 if (!fep->phydev)
881 return -ENODEV;
883 return phy_ethtool_gset(fep->phydev, cmd);
886 static int fs_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
888 struct fs_enet_private *fep = netdev_priv(dev);
890 if (!fep->phydev)
891 return -ENODEV;
893 return phy_ethtool_sset(fep->phydev, cmd);
896 static int fs_nway_reset(struct net_device *dev)
898 return 0;
901 static u32 fs_get_msglevel(struct net_device *dev)
903 struct fs_enet_private *fep = netdev_priv(dev);
904 return fep->msg_enable;
907 static void fs_set_msglevel(struct net_device *dev, u32 value)
909 struct fs_enet_private *fep = netdev_priv(dev);
910 fep->msg_enable = value;
913 static const struct ethtool_ops fs_ethtool_ops = {
914 .get_drvinfo = fs_get_drvinfo,
915 .get_regs_len = fs_get_regs_len,
916 .get_settings = fs_get_settings,
917 .set_settings = fs_set_settings,
918 .nway_reset = fs_nway_reset,
919 .get_link = ethtool_op_get_link,
920 .get_msglevel = fs_get_msglevel,
921 .set_msglevel = fs_set_msglevel,
922 .set_tx_csum = ethtool_op_set_tx_csum, /* local! */
923 .set_sg = ethtool_op_set_sg,
924 .get_regs = fs_get_regs,
927 static int fs_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
929 struct fs_enet_private *fep = netdev_priv(dev);
930 struct mii_ioctl_data *mii = (struct mii_ioctl_data *)&rq->ifr_data;
932 if (!netif_running(dev))
933 return -EINVAL;
935 return phy_mii_ioctl(fep->phydev, mii, cmd);
938 extern int fs_mii_connect(struct net_device *dev);
939 extern void fs_mii_disconnect(struct net_device *dev);
941 /**************************************************************************************/
943 #ifdef CONFIG_FS_ENET_HAS_FEC
944 #define IS_FEC(match) ((match)->data == &fs_fec_ops)
945 #else
946 #define IS_FEC(match) 0
947 #endif
949 static const struct net_device_ops fs_enet_netdev_ops = {
950 .ndo_open = fs_enet_open,
951 .ndo_stop = fs_enet_close,
952 .ndo_get_stats = fs_enet_get_stats,
953 .ndo_start_xmit = fs_enet_start_xmit,
954 .ndo_tx_timeout = fs_timeout,
955 .ndo_set_multicast_list = fs_set_multicast_list,
956 .ndo_do_ioctl = fs_ioctl,
957 .ndo_validate_addr = eth_validate_addr,
958 .ndo_set_mac_address = eth_mac_addr,
959 .ndo_change_mtu = eth_change_mtu,
960 #ifdef CONFIG_NET_POLL_CONTROLLER
961 .ndo_poll_controller = fs_enet_netpoll,
962 #endif
965 static int __devinit fs_enet_probe(struct of_device *ofdev,
966 const struct of_device_id *match)
968 struct net_device *ndev;
969 struct fs_enet_private *fep;
970 struct fs_platform_info *fpi;
971 const u32 *data;
972 const u8 *mac_addr;
973 int privsize, len, ret = -ENODEV;
975 fpi = kzalloc(sizeof(*fpi), GFP_KERNEL);
976 if (!fpi)
977 return -ENOMEM;
979 if (!IS_FEC(match)) {
980 data = of_get_property(ofdev->node, "fsl,cpm-command", &len);
981 if (!data || len != 4)
982 goto out_free_fpi;
984 fpi->cp_command = *data;
987 fpi->rx_ring = 32;
988 fpi->tx_ring = 32;
989 fpi->rx_copybreak = 240;
990 fpi->use_napi = 1;
991 fpi->napi_weight = 17;
992 fpi->phy_node = of_parse_phandle(ofdev->node, "phy-handle", 0);
993 if ((!fpi->phy_node) && (!of_get_property(ofdev->node, "fixed-link",
994 NULL)))
995 goto out_free_fpi;
997 privsize = sizeof(*fep) +
998 sizeof(struct sk_buff **) *
999 (fpi->rx_ring + fpi->tx_ring);
1001 ndev = alloc_etherdev(privsize);
1002 if (!ndev) {
1003 ret = -ENOMEM;
1004 goto out_free_fpi;
1007 SET_NETDEV_DEV(ndev, &ofdev->dev);
1008 dev_set_drvdata(&ofdev->dev, ndev);
1010 fep = netdev_priv(ndev);
1011 fep->dev = &ofdev->dev;
1012 fep->ndev = ndev;
1013 fep->fpi = fpi;
1014 fep->ops = match->data;
1016 ret = fep->ops->setup_data(ndev);
1017 if (ret)
1018 goto out_free_dev;
1020 fep->rx_skbuff = (struct sk_buff **)&fep[1];
1021 fep->tx_skbuff = fep->rx_skbuff + fpi->rx_ring;
1023 spin_lock_init(&fep->lock);
1024 spin_lock_init(&fep->tx_lock);
1026 mac_addr = of_get_mac_address(ofdev->node);
1027 if (mac_addr)
1028 memcpy(ndev->dev_addr, mac_addr, 6);
1030 ret = fep->ops->allocate_bd(ndev);
1031 if (ret)
1032 goto out_cleanup_data;
1034 fep->rx_bd_base = fep->ring_base;
1035 fep->tx_bd_base = fep->rx_bd_base + fpi->rx_ring;
1037 fep->tx_ring = fpi->tx_ring;
1038 fep->rx_ring = fpi->rx_ring;
1040 ndev->netdev_ops = &fs_enet_netdev_ops;
1041 ndev->watchdog_timeo = 2 * HZ;
1042 if (fpi->use_napi)
1043 netif_napi_add(ndev, &fep->napi, fs_enet_rx_napi,
1044 fpi->napi_weight);
1046 ndev->ethtool_ops = &fs_ethtool_ops;
1048 init_timer(&fep->phy_timer_list);
1050 netif_carrier_off(ndev);
1052 ret = register_netdev(ndev);
1053 if (ret)
1054 goto out_free_bd;
1056 printk(KERN_INFO "%s: fs_enet: %pM\n", ndev->name, ndev->dev_addr);
1058 return 0;
1060 out_free_bd:
1061 fep->ops->free_bd(ndev);
1062 out_cleanup_data:
1063 fep->ops->cleanup_data(ndev);
1064 out_free_dev:
1065 free_netdev(ndev);
1066 dev_set_drvdata(&ofdev->dev, NULL);
1067 of_node_put(fpi->phy_node);
1068 out_free_fpi:
1069 kfree(fpi);
1070 return ret;
1073 static int fs_enet_remove(struct of_device *ofdev)
1075 struct net_device *ndev = dev_get_drvdata(&ofdev->dev);
1076 struct fs_enet_private *fep = netdev_priv(ndev);
1078 unregister_netdev(ndev);
1080 fep->ops->free_bd(ndev);
1081 fep->ops->cleanup_data(ndev);
1082 dev_set_drvdata(fep->dev, NULL);
1083 of_node_put(fep->fpi->phy_node);
1084 free_netdev(ndev);
1085 return 0;
1088 static struct of_device_id fs_enet_match[] = {
1089 #ifdef CONFIG_FS_ENET_HAS_SCC
1091 .compatible = "fsl,cpm1-scc-enet",
1092 .data = (void *)&fs_scc_ops,
1095 .compatible = "fsl,cpm2-scc-enet",
1096 .data = (void *)&fs_scc_ops,
1098 #endif
1099 #ifdef CONFIG_FS_ENET_HAS_FCC
1101 .compatible = "fsl,cpm2-fcc-enet",
1102 .data = (void *)&fs_fcc_ops,
1104 #endif
1105 #ifdef CONFIG_FS_ENET_HAS_FEC
1107 .compatible = "fsl,pq1-fec-enet",
1108 .data = (void *)&fs_fec_ops,
1110 #endif
1113 MODULE_DEVICE_TABLE(of, fs_enet_match);
1115 static struct of_platform_driver fs_enet_driver = {
1116 .name = "fs_enet",
1117 .match_table = fs_enet_match,
1118 .probe = fs_enet_probe,
1119 .remove = fs_enet_remove,
1122 static int __init fs_init(void)
1124 return of_register_platform_driver(&fs_enet_driver);
1127 static void __exit fs_cleanup(void)
1129 of_unregister_platform_driver(&fs_enet_driver);
1132 #ifdef CONFIG_NET_POLL_CONTROLLER
1133 static void fs_enet_netpoll(struct net_device *dev)
1135 disable_irq(dev->irq);
1136 fs_enet_interrupt(dev->irq, dev);
1137 enable_irq(dev->irq);
1139 #endif
1141 /**************************************************************************************/
1143 module_init(fs_init);
1144 module_exit(fs_cleanup);