blkcg: fix blkg_alloc() failure path
[linux-2.6.git] / include / linux / slub_def.h
blobc2f8c8bc56edd08183dd0dd22b4f7d3b39f1c63d
1 #ifndef _LINUX_SLUB_DEF_H
2 #define _LINUX_SLUB_DEF_H
4 /*
5 * SLUB : A Slab allocator without object queues.
7 * (C) 2007 SGI, Christoph Lameter
8 */
9 #include <linux/types.h>
10 #include <linux/gfp.h>
11 #include <linux/bug.h>
12 #include <linux/workqueue.h>
13 #include <linux/kobject.h>
15 #include <linux/kmemleak.h>
17 enum stat_item {
18 ALLOC_FASTPATH, /* Allocation from cpu slab */
19 ALLOC_SLOWPATH, /* Allocation by getting a new cpu slab */
20 FREE_FASTPATH, /* Free to cpu slub */
21 FREE_SLOWPATH, /* Freeing not to cpu slab */
22 FREE_FROZEN, /* Freeing to frozen slab */
23 FREE_ADD_PARTIAL, /* Freeing moves slab to partial list */
24 FREE_REMOVE_PARTIAL, /* Freeing removes last object */
25 ALLOC_FROM_PARTIAL, /* Cpu slab acquired from node partial list */
26 ALLOC_SLAB, /* Cpu slab acquired from page allocator */
27 ALLOC_REFILL, /* Refill cpu slab from slab freelist */
28 ALLOC_NODE_MISMATCH, /* Switching cpu slab */
29 FREE_SLAB, /* Slab freed to the page allocator */
30 CPUSLAB_FLUSH, /* Abandoning of the cpu slab */
31 DEACTIVATE_FULL, /* Cpu slab was full when deactivated */
32 DEACTIVATE_EMPTY, /* Cpu slab was empty when deactivated */
33 DEACTIVATE_TO_HEAD, /* Cpu slab was moved to the head of partials */
34 DEACTIVATE_TO_TAIL, /* Cpu slab was moved to the tail of partials */
35 DEACTIVATE_REMOTE_FREES,/* Slab contained remotely freed objects */
36 DEACTIVATE_BYPASS, /* Implicit deactivation */
37 ORDER_FALLBACK, /* Number of times fallback was necessary */
38 CMPXCHG_DOUBLE_CPU_FAIL,/* Failure of this_cpu_cmpxchg_double */
39 CMPXCHG_DOUBLE_FAIL, /* Number of times that cmpxchg double did not match */
40 CPU_PARTIAL_ALLOC, /* Used cpu partial on alloc */
41 CPU_PARTIAL_FREE, /* Refill cpu partial on free */
42 CPU_PARTIAL_NODE, /* Refill cpu partial from node partial */
43 CPU_PARTIAL_DRAIN, /* Drain cpu partial to node partial */
44 NR_SLUB_STAT_ITEMS };
46 struct kmem_cache_cpu {
47 void **freelist; /* Pointer to next available object */
48 unsigned long tid; /* Globally unique transaction id */
49 struct page *page; /* The slab from which we are allocating */
50 struct page *partial; /* Partially allocated frozen slabs */
51 int node; /* The node of the page (or -1 for debug) */
52 #ifdef CONFIG_SLUB_STATS
53 unsigned stat[NR_SLUB_STAT_ITEMS];
54 #endif
57 struct kmem_cache_node {
58 spinlock_t list_lock; /* Protect partial list and nr_partial */
59 unsigned long nr_partial;
60 struct list_head partial;
61 #ifdef CONFIG_SLUB_DEBUG
62 atomic_long_t nr_slabs;
63 atomic_long_t total_objects;
64 struct list_head full;
65 #endif
69 * Word size structure that can be atomically updated or read and that
70 * contains both the order and the number of objects that a slab of the
71 * given order would contain.
73 struct kmem_cache_order_objects {
74 unsigned long x;
78 * Slab cache management.
80 struct kmem_cache {
81 struct kmem_cache_cpu __percpu *cpu_slab;
82 /* Used for retriving partial slabs etc */
83 unsigned long flags;
84 unsigned long min_partial;
85 int size; /* The size of an object including meta data */
86 int objsize; /* The size of an object without meta data */
87 int offset; /* Free pointer offset. */
88 int cpu_partial; /* Number of per cpu partial objects to keep around */
89 struct kmem_cache_order_objects oo;
91 /* Allocation and freeing of slabs */
92 struct kmem_cache_order_objects max;
93 struct kmem_cache_order_objects min;
94 gfp_t allocflags; /* gfp flags to use on each alloc */
95 int refcount; /* Refcount for slab cache destroy */
96 void (*ctor)(void *);
97 int inuse; /* Offset to metadata */
98 int align; /* Alignment */
99 int reserved; /* Reserved bytes at the end of slabs */
100 const char *name; /* Name (only for display!) */
101 struct list_head list; /* List of slab caches */
102 #ifdef CONFIG_SYSFS
103 struct kobject kobj; /* For sysfs */
104 #endif
106 #ifdef CONFIG_NUMA
108 * Defragmentation by allocating from a remote node.
110 int remote_node_defrag_ratio;
111 #endif
112 struct kmem_cache_node *node[MAX_NUMNODES];
116 * Kmalloc subsystem.
118 #if defined(ARCH_DMA_MINALIGN) && ARCH_DMA_MINALIGN > 8
119 #define KMALLOC_MIN_SIZE ARCH_DMA_MINALIGN
120 #else
121 #define KMALLOC_MIN_SIZE 8
122 #endif
124 #define KMALLOC_SHIFT_LOW ilog2(KMALLOC_MIN_SIZE)
127 * Maximum kmalloc object size handled by SLUB. Larger object allocations
128 * are passed through to the page allocator. The page allocator "fastpath"
129 * is relatively slow so we need this value sufficiently high so that
130 * performance critical objects are allocated through the SLUB fastpath.
132 * This should be dropped to PAGE_SIZE / 2 once the page allocator
133 * "fastpath" becomes competitive with the slab allocator fastpaths.
135 #define SLUB_MAX_SIZE (2 * PAGE_SIZE)
137 #define SLUB_PAGE_SHIFT (PAGE_SHIFT + 2)
139 #ifdef CONFIG_ZONE_DMA
140 #define SLUB_DMA __GFP_DMA
141 #else
142 /* Disable DMA functionality */
143 #define SLUB_DMA (__force gfp_t)0
144 #endif
147 * We keep the general caches in an array of slab caches that are used for
148 * 2^x bytes of allocations.
150 extern struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
153 * Sorry that the following has to be that ugly but some versions of GCC
154 * have trouble with constant propagation and loops.
156 static __always_inline int kmalloc_index(size_t size)
158 if (!size)
159 return 0;
161 if (size <= KMALLOC_MIN_SIZE)
162 return KMALLOC_SHIFT_LOW;
164 if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96)
165 return 1;
166 if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192)
167 return 2;
168 if (size <= 8) return 3;
169 if (size <= 16) return 4;
170 if (size <= 32) return 5;
171 if (size <= 64) return 6;
172 if (size <= 128) return 7;
173 if (size <= 256) return 8;
174 if (size <= 512) return 9;
175 if (size <= 1024) return 10;
176 if (size <= 2 * 1024) return 11;
177 if (size <= 4 * 1024) return 12;
179 * The following is only needed to support architectures with a larger page
180 * size than 4k. We need to support 2 * PAGE_SIZE here. So for a 64k page
181 * size we would have to go up to 128k.
183 if (size <= 8 * 1024) return 13;
184 if (size <= 16 * 1024) return 14;
185 if (size <= 32 * 1024) return 15;
186 if (size <= 64 * 1024) return 16;
187 if (size <= 128 * 1024) return 17;
188 if (size <= 256 * 1024) return 18;
189 if (size <= 512 * 1024) return 19;
190 if (size <= 1024 * 1024) return 20;
191 if (size <= 2 * 1024 * 1024) return 21;
192 BUG();
193 return -1; /* Will never be reached */
196 * What we really wanted to do and cannot do because of compiler issues is:
197 * int i;
198 * for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++)
199 * if (size <= (1 << i))
200 * return i;
205 * Find the slab cache for a given combination of allocation flags and size.
207 * This ought to end up with a global pointer to the right cache
208 * in kmalloc_caches.
210 static __always_inline struct kmem_cache *kmalloc_slab(size_t size)
212 int index = kmalloc_index(size);
214 if (index == 0)
215 return NULL;
217 return kmalloc_caches[index];
220 void *kmem_cache_alloc(struct kmem_cache *, gfp_t);
221 void *__kmalloc(size_t size, gfp_t flags);
223 static __always_inline void *
224 kmalloc_order(size_t size, gfp_t flags, unsigned int order)
226 void *ret = (void *) __get_free_pages(flags | __GFP_COMP, order);
227 kmemleak_alloc(ret, size, 1, flags);
228 return ret;
232 * Calling this on allocated memory will check that the memory
233 * is expected to be in use, and print warnings if not.
235 #ifdef CONFIG_SLUB_DEBUG
236 extern bool verify_mem_not_deleted(const void *x);
237 #else
238 static inline bool verify_mem_not_deleted(const void *x)
240 return true;
242 #endif
244 #ifdef CONFIG_TRACING
245 extern void *
246 kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size);
247 extern void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order);
248 #else
249 static __always_inline void *
250 kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
252 return kmem_cache_alloc(s, gfpflags);
255 static __always_inline void *
256 kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
258 return kmalloc_order(size, flags, order);
260 #endif
262 static __always_inline void *kmalloc_large(size_t size, gfp_t flags)
264 unsigned int order = get_order(size);
265 return kmalloc_order_trace(size, flags, order);
268 static __always_inline void *kmalloc(size_t size, gfp_t flags)
270 if (__builtin_constant_p(size)) {
271 if (size > SLUB_MAX_SIZE)
272 return kmalloc_large(size, flags);
274 if (!(flags & SLUB_DMA)) {
275 struct kmem_cache *s = kmalloc_slab(size);
277 if (!s)
278 return ZERO_SIZE_PTR;
280 return kmem_cache_alloc_trace(s, flags, size);
283 return __kmalloc(size, flags);
286 #ifdef CONFIG_NUMA
287 void *__kmalloc_node(size_t size, gfp_t flags, int node);
288 void *kmem_cache_alloc_node(struct kmem_cache *, gfp_t flags, int node);
290 #ifdef CONFIG_TRACING
291 extern void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
292 gfp_t gfpflags,
293 int node, size_t size);
294 #else
295 static __always_inline void *
296 kmem_cache_alloc_node_trace(struct kmem_cache *s,
297 gfp_t gfpflags,
298 int node, size_t size)
300 return kmem_cache_alloc_node(s, gfpflags, node);
302 #endif
304 static __always_inline void *kmalloc_node(size_t size, gfp_t flags, int node)
306 if (__builtin_constant_p(size) &&
307 size <= SLUB_MAX_SIZE && !(flags & SLUB_DMA)) {
308 struct kmem_cache *s = kmalloc_slab(size);
310 if (!s)
311 return ZERO_SIZE_PTR;
313 return kmem_cache_alloc_node_trace(s, flags, node, size);
315 return __kmalloc_node(size, flags, node);
317 #endif
319 #endif /* _LINUX_SLUB_DEF_H */