blkcg: fix blkg_alloc() failure path
[linux-2.6.git] / drivers / spi / spi-fsl-spi.c
blob6a62934ca74c13b36a01a8e06bbd28c7c275807e
1 /*
2 * Freescale SPI controller driver.
4 * Maintainer: Kumar Gala
6 * Copyright (C) 2006 Polycom, Inc.
7 * Copyright 2010 Freescale Semiconductor, Inc.
9 * CPM SPI and QE buffer descriptors mode support:
10 * Copyright (c) 2009 MontaVista Software, Inc.
11 * Author: Anton Vorontsov <avorontsov@ru.mvista.com>
13 * This program is free software; you can redistribute it and/or modify it
14 * under the terms of the GNU General Public License as published by the
15 * Free Software Foundation; either version 2 of the License, or (at your
16 * option) any later version.
18 #include <linux/module.h>
19 #include <linux/types.h>
20 #include <linux/kernel.h>
21 #include <linux/interrupt.h>
22 #include <linux/delay.h>
23 #include <linux/irq.h>
24 #include <linux/spi/spi.h>
25 #include <linux/spi/spi_bitbang.h>
26 #include <linux/platform_device.h>
27 #include <linux/fsl_devices.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/mm.h>
30 #include <linux/mutex.h>
31 #include <linux/of.h>
32 #include <linux/of_platform.h>
33 #include <linux/gpio.h>
34 #include <linux/of_gpio.h>
36 #include <sysdev/fsl_soc.h>
37 #include <asm/cpm.h>
38 #include <asm/qe.h>
40 #include "spi-fsl-lib.h"
42 /* CPM1 and CPM2 are mutually exclusive. */
43 #ifdef CONFIG_CPM1
44 #include <asm/cpm1.h>
45 #define CPM_SPI_CMD mk_cr_cmd(CPM_CR_CH_SPI, 0)
46 #else
47 #include <asm/cpm2.h>
48 #define CPM_SPI_CMD mk_cr_cmd(CPM_CR_SPI_PAGE, CPM_CR_SPI_SBLOCK, 0, 0)
49 #endif
51 /* SPI Controller registers */
52 struct fsl_spi_reg {
53 u8 res1[0x20];
54 __be32 mode;
55 __be32 event;
56 __be32 mask;
57 __be32 command;
58 __be32 transmit;
59 __be32 receive;
62 /* SPI Controller mode register definitions */
63 #define SPMODE_LOOP (1 << 30)
64 #define SPMODE_CI_INACTIVEHIGH (1 << 29)
65 #define SPMODE_CP_BEGIN_EDGECLK (1 << 28)
66 #define SPMODE_DIV16 (1 << 27)
67 #define SPMODE_REV (1 << 26)
68 #define SPMODE_MS (1 << 25)
69 #define SPMODE_ENABLE (1 << 24)
70 #define SPMODE_LEN(x) ((x) << 20)
71 #define SPMODE_PM(x) ((x) << 16)
72 #define SPMODE_OP (1 << 14)
73 #define SPMODE_CG(x) ((x) << 7)
76 * Default for SPI Mode:
77 * SPI MODE 0 (inactive low, phase middle, MSB, 8-bit length, slow clk
79 #define SPMODE_INIT_VAL (SPMODE_CI_INACTIVEHIGH | SPMODE_DIV16 | SPMODE_REV | \
80 SPMODE_MS | SPMODE_LEN(7) | SPMODE_PM(0xf))
82 /* SPIE register values */
83 #define SPIE_NE 0x00000200 /* Not empty */
84 #define SPIE_NF 0x00000100 /* Not full */
86 /* SPIM register values */
87 #define SPIM_NE 0x00000200 /* Not empty */
88 #define SPIM_NF 0x00000100 /* Not full */
90 #define SPIE_TXB 0x00000200 /* Last char is written to tx fifo */
91 #define SPIE_RXB 0x00000100 /* Last char is written to rx buf */
93 /* SPCOM register values */
94 #define SPCOM_STR (1 << 23) /* Start transmit */
96 #define SPI_PRAM_SIZE 0x100
97 #define SPI_MRBLR ((unsigned int)PAGE_SIZE)
99 static void *fsl_dummy_rx;
100 static DEFINE_MUTEX(fsl_dummy_rx_lock);
101 static int fsl_dummy_rx_refcnt;
103 static void fsl_spi_change_mode(struct spi_device *spi)
105 struct mpc8xxx_spi *mspi = spi_master_get_devdata(spi->master);
106 struct spi_mpc8xxx_cs *cs = spi->controller_state;
107 struct fsl_spi_reg *reg_base = mspi->reg_base;
108 __be32 __iomem *mode = &reg_base->mode;
109 unsigned long flags;
111 if (cs->hw_mode == mpc8xxx_spi_read_reg(mode))
112 return;
114 /* Turn off IRQs locally to minimize time that SPI is disabled. */
115 local_irq_save(flags);
117 /* Turn off SPI unit prior changing mode */
118 mpc8xxx_spi_write_reg(mode, cs->hw_mode & ~SPMODE_ENABLE);
120 /* When in CPM mode, we need to reinit tx and rx. */
121 if (mspi->flags & SPI_CPM_MODE) {
122 if (mspi->flags & SPI_QE) {
123 qe_issue_cmd(QE_INIT_TX_RX, mspi->subblock,
124 QE_CR_PROTOCOL_UNSPECIFIED, 0);
125 } else {
126 cpm_command(CPM_SPI_CMD, CPM_CR_INIT_TRX);
127 if (mspi->flags & SPI_CPM1) {
128 out_be16(&mspi->pram->rbptr,
129 in_be16(&mspi->pram->rbase));
130 out_be16(&mspi->pram->tbptr,
131 in_be16(&mspi->pram->tbase));
135 mpc8xxx_spi_write_reg(mode, cs->hw_mode);
136 local_irq_restore(flags);
139 static void fsl_spi_chipselect(struct spi_device *spi, int value)
141 struct mpc8xxx_spi *mpc8xxx_spi = spi_master_get_devdata(spi->master);
142 struct fsl_spi_platform_data *pdata;
143 bool pol = spi->mode & SPI_CS_HIGH;
144 struct spi_mpc8xxx_cs *cs = spi->controller_state;
146 pdata = spi->dev.parent->parent->platform_data;
148 if (value == BITBANG_CS_INACTIVE) {
149 if (pdata->cs_control)
150 pdata->cs_control(spi, !pol);
153 if (value == BITBANG_CS_ACTIVE) {
154 mpc8xxx_spi->rx_shift = cs->rx_shift;
155 mpc8xxx_spi->tx_shift = cs->tx_shift;
156 mpc8xxx_spi->get_rx = cs->get_rx;
157 mpc8xxx_spi->get_tx = cs->get_tx;
159 fsl_spi_change_mode(spi);
161 if (pdata->cs_control)
162 pdata->cs_control(spi, pol);
166 static int mspi_apply_cpu_mode_quirks(struct spi_mpc8xxx_cs *cs,
167 struct spi_device *spi,
168 struct mpc8xxx_spi *mpc8xxx_spi,
169 int bits_per_word)
171 cs->rx_shift = 0;
172 cs->tx_shift = 0;
173 if (bits_per_word <= 8) {
174 cs->get_rx = mpc8xxx_spi_rx_buf_u8;
175 cs->get_tx = mpc8xxx_spi_tx_buf_u8;
176 if (mpc8xxx_spi->flags & SPI_QE_CPU_MODE) {
177 cs->rx_shift = 16;
178 cs->tx_shift = 24;
180 } else if (bits_per_word <= 16) {
181 cs->get_rx = mpc8xxx_spi_rx_buf_u16;
182 cs->get_tx = mpc8xxx_spi_tx_buf_u16;
183 if (mpc8xxx_spi->flags & SPI_QE_CPU_MODE) {
184 cs->rx_shift = 16;
185 cs->tx_shift = 16;
187 } else if (bits_per_word <= 32) {
188 cs->get_rx = mpc8xxx_spi_rx_buf_u32;
189 cs->get_tx = mpc8xxx_spi_tx_buf_u32;
190 } else
191 return -EINVAL;
193 if (mpc8xxx_spi->flags & SPI_QE_CPU_MODE &&
194 spi->mode & SPI_LSB_FIRST) {
195 cs->tx_shift = 0;
196 if (bits_per_word <= 8)
197 cs->rx_shift = 8;
198 else
199 cs->rx_shift = 0;
201 mpc8xxx_spi->rx_shift = cs->rx_shift;
202 mpc8xxx_spi->tx_shift = cs->tx_shift;
203 mpc8xxx_spi->get_rx = cs->get_rx;
204 mpc8xxx_spi->get_tx = cs->get_tx;
206 return bits_per_word;
209 static int mspi_apply_qe_mode_quirks(struct spi_mpc8xxx_cs *cs,
210 struct spi_device *spi,
211 int bits_per_word)
213 /* QE uses Little Endian for words > 8
214 * so transform all words > 8 into 8 bits
215 * Unfortnatly that doesn't work for LSB so
216 * reject these for now */
217 /* Note: 32 bits word, LSB works iff
218 * tfcr/rfcr is set to CPMFCR_GBL */
219 if (spi->mode & SPI_LSB_FIRST &&
220 bits_per_word > 8)
221 return -EINVAL;
222 if (bits_per_word > 8)
223 return 8; /* pretend its 8 bits */
224 return bits_per_word;
227 static int fsl_spi_setup_transfer(struct spi_device *spi,
228 struct spi_transfer *t)
230 struct mpc8xxx_spi *mpc8xxx_spi;
231 int bits_per_word = 0;
232 u8 pm;
233 u32 hz = 0;
234 struct spi_mpc8xxx_cs *cs = spi->controller_state;
236 mpc8xxx_spi = spi_master_get_devdata(spi->master);
238 if (t) {
239 bits_per_word = t->bits_per_word;
240 hz = t->speed_hz;
243 /* spi_transfer level calls that work per-word */
244 if (!bits_per_word)
245 bits_per_word = spi->bits_per_word;
247 /* Make sure its a bit width we support [4..16, 32] */
248 if ((bits_per_word < 4)
249 || ((bits_per_word > 16) && (bits_per_word != 32)))
250 return -EINVAL;
252 if (!hz)
253 hz = spi->max_speed_hz;
255 if (!(mpc8xxx_spi->flags & SPI_CPM_MODE))
256 bits_per_word = mspi_apply_cpu_mode_quirks(cs, spi,
257 mpc8xxx_spi,
258 bits_per_word);
259 else if (mpc8xxx_spi->flags & SPI_QE)
260 bits_per_word = mspi_apply_qe_mode_quirks(cs, spi,
261 bits_per_word);
263 if (bits_per_word < 0)
264 return bits_per_word;
266 if (bits_per_word == 32)
267 bits_per_word = 0;
268 else
269 bits_per_word = bits_per_word - 1;
271 /* mask out bits we are going to set */
272 cs->hw_mode &= ~(SPMODE_LEN(0xF) | SPMODE_DIV16
273 | SPMODE_PM(0xF));
275 cs->hw_mode |= SPMODE_LEN(bits_per_word);
277 if ((mpc8xxx_spi->spibrg / hz) > 64) {
278 cs->hw_mode |= SPMODE_DIV16;
279 pm = (mpc8xxx_spi->spibrg - 1) / (hz * 64) + 1;
281 WARN_ONCE(pm > 16, "%s: Requested speed is too low: %d Hz. "
282 "Will use %d Hz instead.\n", dev_name(&spi->dev),
283 hz, mpc8xxx_spi->spibrg / 1024);
284 if (pm > 16)
285 pm = 16;
286 } else {
287 pm = (mpc8xxx_spi->spibrg - 1) / (hz * 4) + 1;
289 if (pm)
290 pm--;
292 cs->hw_mode |= SPMODE_PM(pm);
294 fsl_spi_change_mode(spi);
295 return 0;
298 static void fsl_spi_cpm_bufs_start(struct mpc8xxx_spi *mspi)
300 struct cpm_buf_desc __iomem *tx_bd = mspi->tx_bd;
301 struct cpm_buf_desc __iomem *rx_bd = mspi->rx_bd;
302 unsigned int xfer_len = min(mspi->count, SPI_MRBLR);
303 unsigned int xfer_ofs;
304 struct fsl_spi_reg *reg_base = mspi->reg_base;
306 xfer_ofs = mspi->xfer_in_progress->len - mspi->count;
308 if (mspi->rx_dma == mspi->dma_dummy_rx)
309 out_be32(&rx_bd->cbd_bufaddr, mspi->rx_dma);
310 else
311 out_be32(&rx_bd->cbd_bufaddr, mspi->rx_dma + xfer_ofs);
312 out_be16(&rx_bd->cbd_datlen, 0);
313 out_be16(&rx_bd->cbd_sc, BD_SC_EMPTY | BD_SC_INTRPT | BD_SC_WRAP);
315 if (mspi->tx_dma == mspi->dma_dummy_tx)
316 out_be32(&tx_bd->cbd_bufaddr, mspi->tx_dma);
317 else
318 out_be32(&tx_bd->cbd_bufaddr, mspi->tx_dma + xfer_ofs);
319 out_be16(&tx_bd->cbd_datlen, xfer_len);
320 out_be16(&tx_bd->cbd_sc, BD_SC_READY | BD_SC_INTRPT | BD_SC_WRAP |
321 BD_SC_LAST);
323 /* start transfer */
324 mpc8xxx_spi_write_reg(&reg_base->command, SPCOM_STR);
327 static int fsl_spi_cpm_bufs(struct mpc8xxx_spi *mspi,
328 struct spi_transfer *t, bool is_dma_mapped)
330 struct device *dev = mspi->dev;
331 struct fsl_spi_reg *reg_base = mspi->reg_base;
333 if (is_dma_mapped) {
334 mspi->map_tx_dma = 0;
335 mspi->map_rx_dma = 0;
336 } else {
337 mspi->map_tx_dma = 1;
338 mspi->map_rx_dma = 1;
341 if (!t->tx_buf) {
342 mspi->tx_dma = mspi->dma_dummy_tx;
343 mspi->map_tx_dma = 0;
346 if (!t->rx_buf) {
347 mspi->rx_dma = mspi->dma_dummy_rx;
348 mspi->map_rx_dma = 0;
351 if (mspi->map_tx_dma) {
352 void *nonconst_tx = (void *)mspi->tx; /* shut up gcc */
354 mspi->tx_dma = dma_map_single(dev, nonconst_tx, t->len,
355 DMA_TO_DEVICE);
356 if (dma_mapping_error(dev, mspi->tx_dma)) {
357 dev_err(dev, "unable to map tx dma\n");
358 return -ENOMEM;
360 } else if (t->tx_buf) {
361 mspi->tx_dma = t->tx_dma;
364 if (mspi->map_rx_dma) {
365 mspi->rx_dma = dma_map_single(dev, mspi->rx, t->len,
366 DMA_FROM_DEVICE);
367 if (dma_mapping_error(dev, mspi->rx_dma)) {
368 dev_err(dev, "unable to map rx dma\n");
369 goto err_rx_dma;
371 } else if (t->rx_buf) {
372 mspi->rx_dma = t->rx_dma;
375 /* enable rx ints */
376 mpc8xxx_spi_write_reg(&reg_base->mask, SPIE_RXB);
378 mspi->xfer_in_progress = t;
379 mspi->count = t->len;
381 /* start CPM transfers */
382 fsl_spi_cpm_bufs_start(mspi);
384 return 0;
386 err_rx_dma:
387 if (mspi->map_tx_dma)
388 dma_unmap_single(dev, mspi->tx_dma, t->len, DMA_TO_DEVICE);
389 return -ENOMEM;
392 static void fsl_spi_cpm_bufs_complete(struct mpc8xxx_spi *mspi)
394 struct device *dev = mspi->dev;
395 struct spi_transfer *t = mspi->xfer_in_progress;
397 if (mspi->map_tx_dma)
398 dma_unmap_single(dev, mspi->tx_dma, t->len, DMA_TO_DEVICE);
399 if (mspi->map_rx_dma)
400 dma_unmap_single(dev, mspi->rx_dma, t->len, DMA_FROM_DEVICE);
401 mspi->xfer_in_progress = NULL;
404 static int fsl_spi_cpu_bufs(struct mpc8xxx_spi *mspi,
405 struct spi_transfer *t, unsigned int len)
407 u32 word;
408 struct fsl_spi_reg *reg_base = mspi->reg_base;
410 mspi->count = len;
412 /* enable rx ints */
413 mpc8xxx_spi_write_reg(&reg_base->mask, SPIM_NE);
415 /* transmit word */
416 word = mspi->get_tx(mspi);
417 mpc8xxx_spi_write_reg(&reg_base->transmit, word);
419 return 0;
422 static int fsl_spi_bufs(struct spi_device *spi, struct spi_transfer *t,
423 bool is_dma_mapped)
425 struct mpc8xxx_spi *mpc8xxx_spi = spi_master_get_devdata(spi->master);
426 struct fsl_spi_reg *reg_base;
427 unsigned int len = t->len;
428 u8 bits_per_word;
429 int ret;
431 reg_base = mpc8xxx_spi->reg_base;
432 bits_per_word = spi->bits_per_word;
433 if (t->bits_per_word)
434 bits_per_word = t->bits_per_word;
436 if (bits_per_word > 8) {
437 /* invalid length? */
438 if (len & 1)
439 return -EINVAL;
440 len /= 2;
442 if (bits_per_word > 16) {
443 /* invalid length? */
444 if (len & 1)
445 return -EINVAL;
446 len /= 2;
449 mpc8xxx_spi->tx = t->tx_buf;
450 mpc8xxx_spi->rx = t->rx_buf;
452 INIT_COMPLETION(mpc8xxx_spi->done);
454 if (mpc8xxx_spi->flags & SPI_CPM_MODE)
455 ret = fsl_spi_cpm_bufs(mpc8xxx_spi, t, is_dma_mapped);
456 else
457 ret = fsl_spi_cpu_bufs(mpc8xxx_spi, t, len);
458 if (ret)
459 return ret;
461 wait_for_completion(&mpc8xxx_spi->done);
463 /* disable rx ints */
464 mpc8xxx_spi_write_reg(&reg_base->mask, 0);
466 if (mpc8xxx_spi->flags & SPI_CPM_MODE)
467 fsl_spi_cpm_bufs_complete(mpc8xxx_spi);
469 return mpc8xxx_spi->count;
472 static void fsl_spi_do_one_msg(struct spi_message *m)
474 struct spi_device *spi = m->spi;
475 struct spi_transfer *t;
476 unsigned int cs_change;
477 const int nsecs = 50;
478 int status;
480 cs_change = 1;
481 status = 0;
482 list_for_each_entry(t, &m->transfers, transfer_list) {
483 if (t->bits_per_word || t->speed_hz) {
484 /* Don't allow changes if CS is active */
485 status = -EINVAL;
487 if (cs_change)
488 status = fsl_spi_setup_transfer(spi, t);
489 if (status < 0)
490 break;
493 if (cs_change) {
494 fsl_spi_chipselect(spi, BITBANG_CS_ACTIVE);
495 ndelay(nsecs);
497 cs_change = t->cs_change;
498 if (t->len)
499 status = fsl_spi_bufs(spi, t, m->is_dma_mapped);
500 if (status) {
501 status = -EMSGSIZE;
502 break;
504 m->actual_length += t->len;
506 if (t->delay_usecs)
507 udelay(t->delay_usecs);
509 if (cs_change) {
510 ndelay(nsecs);
511 fsl_spi_chipselect(spi, BITBANG_CS_INACTIVE);
512 ndelay(nsecs);
516 m->status = status;
517 m->complete(m->context);
519 if (status || !cs_change) {
520 ndelay(nsecs);
521 fsl_spi_chipselect(spi, BITBANG_CS_INACTIVE);
524 fsl_spi_setup_transfer(spi, NULL);
527 static int fsl_spi_setup(struct spi_device *spi)
529 struct mpc8xxx_spi *mpc8xxx_spi;
530 struct fsl_spi_reg *reg_base;
531 int retval;
532 u32 hw_mode;
533 struct spi_mpc8xxx_cs *cs = spi->controller_state;
535 if (!spi->max_speed_hz)
536 return -EINVAL;
538 if (!cs) {
539 cs = kzalloc(sizeof *cs, GFP_KERNEL);
540 if (!cs)
541 return -ENOMEM;
542 spi->controller_state = cs;
544 mpc8xxx_spi = spi_master_get_devdata(spi->master);
546 reg_base = mpc8xxx_spi->reg_base;
548 hw_mode = cs->hw_mode; /* Save original settings */
549 cs->hw_mode = mpc8xxx_spi_read_reg(&reg_base->mode);
550 /* mask out bits we are going to set */
551 cs->hw_mode &= ~(SPMODE_CP_BEGIN_EDGECLK | SPMODE_CI_INACTIVEHIGH
552 | SPMODE_REV | SPMODE_LOOP);
554 if (spi->mode & SPI_CPHA)
555 cs->hw_mode |= SPMODE_CP_BEGIN_EDGECLK;
556 if (spi->mode & SPI_CPOL)
557 cs->hw_mode |= SPMODE_CI_INACTIVEHIGH;
558 if (!(spi->mode & SPI_LSB_FIRST))
559 cs->hw_mode |= SPMODE_REV;
560 if (spi->mode & SPI_LOOP)
561 cs->hw_mode |= SPMODE_LOOP;
563 retval = fsl_spi_setup_transfer(spi, NULL);
564 if (retval < 0) {
565 cs->hw_mode = hw_mode; /* Restore settings */
566 return retval;
568 return 0;
571 static void fsl_spi_cpm_irq(struct mpc8xxx_spi *mspi, u32 events)
573 u16 len;
574 struct fsl_spi_reg *reg_base = mspi->reg_base;
576 dev_dbg(mspi->dev, "%s: bd datlen %d, count %d\n", __func__,
577 in_be16(&mspi->rx_bd->cbd_datlen), mspi->count);
579 len = in_be16(&mspi->rx_bd->cbd_datlen);
580 if (len > mspi->count) {
581 WARN_ON(1);
582 len = mspi->count;
585 /* Clear the events */
586 mpc8xxx_spi_write_reg(&reg_base->event, events);
588 mspi->count -= len;
589 if (mspi->count)
590 fsl_spi_cpm_bufs_start(mspi);
591 else
592 complete(&mspi->done);
595 static void fsl_spi_cpu_irq(struct mpc8xxx_spi *mspi, u32 events)
597 struct fsl_spi_reg *reg_base = mspi->reg_base;
599 /* We need handle RX first */
600 if (events & SPIE_NE) {
601 u32 rx_data = mpc8xxx_spi_read_reg(&reg_base->receive);
603 if (mspi->rx)
604 mspi->get_rx(rx_data, mspi);
607 if ((events & SPIE_NF) == 0)
608 /* spin until TX is done */
609 while (((events =
610 mpc8xxx_spi_read_reg(&reg_base->event)) &
611 SPIE_NF) == 0)
612 cpu_relax();
614 /* Clear the events */
615 mpc8xxx_spi_write_reg(&reg_base->event, events);
617 mspi->count -= 1;
618 if (mspi->count) {
619 u32 word = mspi->get_tx(mspi);
621 mpc8xxx_spi_write_reg(&reg_base->transmit, word);
622 } else {
623 complete(&mspi->done);
627 static irqreturn_t fsl_spi_irq(s32 irq, void *context_data)
629 struct mpc8xxx_spi *mspi = context_data;
630 irqreturn_t ret = IRQ_NONE;
631 u32 events;
632 struct fsl_spi_reg *reg_base = mspi->reg_base;
634 /* Get interrupt events(tx/rx) */
635 events = mpc8xxx_spi_read_reg(&reg_base->event);
636 if (events)
637 ret = IRQ_HANDLED;
639 dev_dbg(mspi->dev, "%s: events %x\n", __func__, events);
641 if (mspi->flags & SPI_CPM_MODE)
642 fsl_spi_cpm_irq(mspi, events);
643 else
644 fsl_spi_cpu_irq(mspi, events);
646 return ret;
649 static void *fsl_spi_alloc_dummy_rx(void)
651 mutex_lock(&fsl_dummy_rx_lock);
653 if (!fsl_dummy_rx)
654 fsl_dummy_rx = kmalloc(SPI_MRBLR, GFP_KERNEL);
655 if (fsl_dummy_rx)
656 fsl_dummy_rx_refcnt++;
658 mutex_unlock(&fsl_dummy_rx_lock);
660 return fsl_dummy_rx;
663 static void fsl_spi_free_dummy_rx(void)
665 mutex_lock(&fsl_dummy_rx_lock);
667 switch (fsl_dummy_rx_refcnt) {
668 case 0:
669 WARN_ON(1);
670 break;
671 case 1:
672 kfree(fsl_dummy_rx);
673 fsl_dummy_rx = NULL;
674 /* fall through */
675 default:
676 fsl_dummy_rx_refcnt--;
677 break;
680 mutex_unlock(&fsl_dummy_rx_lock);
683 static unsigned long fsl_spi_cpm_get_pram(struct mpc8xxx_spi *mspi)
685 struct device *dev = mspi->dev;
686 struct device_node *np = dev->of_node;
687 const u32 *iprop;
688 int size;
689 void __iomem *spi_base;
690 unsigned long pram_ofs = -ENOMEM;
692 /* Can't use of_address_to_resource(), QE muram isn't at 0. */
693 iprop = of_get_property(np, "reg", &size);
695 /* QE with a fixed pram location? */
696 if (mspi->flags & SPI_QE && iprop && size == sizeof(*iprop) * 4)
697 return cpm_muram_alloc_fixed(iprop[2], SPI_PRAM_SIZE);
699 /* QE but with a dynamic pram location? */
700 if (mspi->flags & SPI_QE) {
701 pram_ofs = cpm_muram_alloc(SPI_PRAM_SIZE, 64);
702 qe_issue_cmd(QE_ASSIGN_PAGE_TO_DEVICE, mspi->subblock,
703 QE_CR_PROTOCOL_UNSPECIFIED, pram_ofs);
704 return pram_ofs;
707 spi_base = of_iomap(np, 1);
708 if (spi_base == NULL)
709 return -EINVAL;
711 if (mspi->flags & SPI_CPM2) {
712 pram_ofs = cpm_muram_alloc(SPI_PRAM_SIZE, 64);
713 out_be16(spi_base, pram_ofs);
714 } else {
715 struct spi_pram __iomem *pram = spi_base;
716 u16 rpbase = in_be16(&pram->rpbase);
718 /* Microcode relocation patch applied? */
719 if (rpbase)
720 pram_ofs = rpbase;
721 else {
722 pram_ofs = cpm_muram_alloc(SPI_PRAM_SIZE, 64);
723 out_be16(spi_base, pram_ofs);
727 iounmap(spi_base);
728 return pram_ofs;
731 static int fsl_spi_cpm_init(struct mpc8xxx_spi *mspi)
733 struct device *dev = mspi->dev;
734 struct device_node *np = dev->of_node;
735 const u32 *iprop;
736 int size;
737 unsigned long pram_ofs;
738 unsigned long bds_ofs;
740 if (!(mspi->flags & SPI_CPM_MODE))
741 return 0;
743 if (!fsl_spi_alloc_dummy_rx())
744 return -ENOMEM;
746 if (mspi->flags & SPI_QE) {
747 iprop = of_get_property(np, "cell-index", &size);
748 if (iprop && size == sizeof(*iprop))
749 mspi->subblock = *iprop;
751 switch (mspi->subblock) {
752 default:
753 dev_warn(dev, "cell-index unspecified, assuming SPI1");
754 /* fall through */
755 case 0:
756 mspi->subblock = QE_CR_SUBBLOCK_SPI1;
757 break;
758 case 1:
759 mspi->subblock = QE_CR_SUBBLOCK_SPI2;
760 break;
764 pram_ofs = fsl_spi_cpm_get_pram(mspi);
765 if (IS_ERR_VALUE(pram_ofs)) {
766 dev_err(dev, "can't allocate spi parameter ram\n");
767 goto err_pram;
770 bds_ofs = cpm_muram_alloc(sizeof(*mspi->tx_bd) +
771 sizeof(*mspi->rx_bd), 8);
772 if (IS_ERR_VALUE(bds_ofs)) {
773 dev_err(dev, "can't allocate bds\n");
774 goto err_bds;
777 mspi->dma_dummy_tx = dma_map_single(dev, empty_zero_page, PAGE_SIZE,
778 DMA_TO_DEVICE);
779 if (dma_mapping_error(dev, mspi->dma_dummy_tx)) {
780 dev_err(dev, "unable to map dummy tx buffer\n");
781 goto err_dummy_tx;
784 mspi->dma_dummy_rx = dma_map_single(dev, fsl_dummy_rx, SPI_MRBLR,
785 DMA_FROM_DEVICE);
786 if (dma_mapping_error(dev, mspi->dma_dummy_rx)) {
787 dev_err(dev, "unable to map dummy rx buffer\n");
788 goto err_dummy_rx;
791 mspi->pram = cpm_muram_addr(pram_ofs);
793 mspi->tx_bd = cpm_muram_addr(bds_ofs);
794 mspi->rx_bd = cpm_muram_addr(bds_ofs + sizeof(*mspi->tx_bd));
796 /* Initialize parameter ram. */
797 out_be16(&mspi->pram->tbase, cpm_muram_offset(mspi->tx_bd));
798 out_be16(&mspi->pram->rbase, cpm_muram_offset(mspi->rx_bd));
799 out_8(&mspi->pram->tfcr, CPMFCR_EB | CPMFCR_GBL);
800 out_8(&mspi->pram->rfcr, CPMFCR_EB | CPMFCR_GBL);
801 out_be16(&mspi->pram->mrblr, SPI_MRBLR);
802 out_be32(&mspi->pram->rstate, 0);
803 out_be32(&mspi->pram->rdp, 0);
804 out_be16(&mspi->pram->rbptr, 0);
805 out_be16(&mspi->pram->rbc, 0);
806 out_be32(&mspi->pram->rxtmp, 0);
807 out_be32(&mspi->pram->tstate, 0);
808 out_be32(&mspi->pram->tdp, 0);
809 out_be16(&mspi->pram->tbptr, 0);
810 out_be16(&mspi->pram->tbc, 0);
811 out_be32(&mspi->pram->txtmp, 0);
813 return 0;
815 err_dummy_rx:
816 dma_unmap_single(dev, mspi->dma_dummy_tx, PAGE_SIZE, DMA_TO_DEVICE);
817 err_dummy_tx:
818 cpm_muram_free(bds_ofs);
819 err_bds:
820 cpm_muram_free(pram_ofs);
821 err_pram:
822 fsl_spi_free_dummy_rx();
823 return -ENOMEM;
826 static void fsl_spi_cpm_free(struct mpc8xxx_spi *mspi)
828 struct device *dev = mspi->dev;
830 if (!(mspi->flags & SPI_CPM_MODE))
831 return;
833 dma_unmap_single(dev, mspi->dma_dummy_rx, SPI_MRBLR, DMA_FROM_DEVICE);
834 dma_unmap_single(dev, mspi->dma_dummy_tx, PAGE_SIZE, DMA_TO_DEVICE);
835 cpm_muram_free(cpm_muram_offset(mspi->tx_bd));
836 cpm_muram_free(cpm_muram_offset(mspi->pram));
837 fsl_spi_free_dummy_rx();
840 static void fsl_spi_remove(struct mpc8xxx_spi *mspi)
842 iounmap(mspi->reg_base);
843 fsl_spi_cpm_free(mspi);
846 static struct spi_master * __devinit fsl_spi_probe(struct device *dev,
847 struct resource *mem, unsigned int irq)
849 struct fsl_spi_platform_data *pdata = dev->platform_data;
850 struct spi_master *master;
851 struct mpc8xxx_spi *mpc8xxx_spi;
852 struct fsl_spi_reg *reg_base;
853 u32 regval;
854 int ret = 0;
856 master = spi_alloc_master(dev, sizeof(struct mpc8xxx_spi));
857 if (master == NULL) {
858 ret = -ENOMEM;
859 goto err;
862 dev_set_drvdata(dev, master);
864 ret = mpc8xxx_spi_probe(dev, mem, irq);
865 if (ret)
866 goto err_probe;
868 master->setup = fsl_spi_setup;
870 mpc8xxx_spi = spi_master_get_devdata(master);
871 mpc8xxx_spi->spi_do_one_msg = fsl_spi_do_one_msg;
872 mpc8xxx_spi->spi_remove = fsl_spi_remove;
875 ret = fsl_spi_cpm_init(mpc8xxx_spi);
876 if (ret)
877 goto err_cpm_init;
879 if (mpc8xxx_spi->flags & SPI_QE_CPU_MODE) {
880 mpc8xxx_spi->rx_shift = 16;
881 mpc8xxx_spi->tx_shift = 24;
884 mpc8xxx_spi->reg_base = ioremap(mem->start, resource_size(mem));
885 if (mpc8xxx_spi->reg_base == NULL) {
886 ret = -ENOMEM;
887 goto err_ioremap;
890 /* Register for SPI Interrupt */
891 ret = request_irq(mpc8xxx_spi->irq, fsl_spi_irq,
892 0, "fsl_spi", mpc8xxx_spi);
894 if (ret != 0)
895 goto free_irq;
897 reg_base = mpc8xxx_spi->reg_base;
899 /* SPI controller initializations */
900 mpc8xxx_spi_write_reg(&reg_base->mode, 0);
901 mpc8xxx_spi_write_reg(&reg_base->mask, 0);
902 mpc8xxx_spi_write_reg(&reg_base->command, 0);
903 mpc8xxx_spi_write_reg(&reg_base->event, 0xffffffff);
905 /* Enable SPI interface */
906 regval = pdata->initial_spmode | SPMODE_INIT_VAL | SPMODE_ENABLE;
907 if (mpc8xxx_spi->flags & SPI_QE_CPU_MODE)
908 regval |= SPMODE_OP;
910 mpc8xxx_spi_write_reg(&reg_base->mode, regval);
912 ret = spi_register_master(master);
913 if (ret < 0)
914 goto unreg_master;
916 dev_info(dev, "at 0x%p (irq = %d), %s mode\n", reg_base,
917 mpc8xxx_spi->irq, mpc8xxx_spi_strmode(mpc8xxx_spi->flags));
919 return master;
921 unreg_master:
922 free_irq(mpc8xxx_spi->irq, mpc8xxx_spi);
923 free_irq:
924 iounmap(mpc8xxx_spi->reg_base);
925 err_ioremap:
926 fsl_spi_cpm_free(mpc8xxx_spi);
927 err_cpm_init:
928 err_probe:
929 spi_master_put(master);
930 err:
931 return ERR_PTR(ret);
934 static void fsl_spi_cs_control(struct spi_device *spi, bool on)
936 struct device *dev = spi->dev.parent->parent;
937 struct mpc8xxx_spi_probe_info *pinfo = to_of_pinfo(dev->platform_data);
938 u16 cs = spi->chip_select;
939 int gpio = pinfo->gpios[cs];
940 bool alow = pinfo->alow_flags[cs];
942 gpio_set_value(gpio, on ^ alow);
945 static int of_fsl_spi_get_chipselects(struct device *dev)
947 struct device_node *np = dev->of_node;
948 struct fsl_spi_platform_data *pdata = dev->platform_data;
949 struct mpc8xxx_spi_probe_info *pinfo = to_of_pinfo(pdata);
950 unsigned int ngpios;
951 int i = 0;
952 int ret;
954 ngpios = of_gpio_count(np);
955 if (!ngpios) {
957 * SPI w/o chip-select line. One SPI device is still permitted
958 * though.
960 pdata->max_chipselect = 1;
961 return 0;
964 pinfo->gpios = kmalloc(ngpios * sizeof(*pinfo->gpios), GFP_KERNEL);
965 if (!pinfo->gpios)
966 return -ENOMEM;
967 memset(pinfo->gpios, -1, ngpios * sizeof(*pinfo->gpios));
969 pinfo->alow_flags = kzalloc(ngpios * sizeof(*pinfo->alow_flags),
970 GFP_KERNEL);
971 if (!pinfo->alow_flags) {
972 ret = -ENOMEM;
973 goto err_alloc_flags;
976 for (; i < ngpios; i++) {
977 int gpio;
978 enum of_gpio_flags flags;
980 gpio = of_get_gpio_flags(np, i, &flags);
981 if (!gpio_is_valid(gpio)) {
982 dev_err(dev, "invalid gpio #%d: %d\n", i, gpio);
983 ret = gpio;
984 goto err_loop;
987 ret = gpio_request(gpio, dev_name(dev));
988 if (ret) {
989 dev_err(dev, "can't request gpio #%d: %d\n", i, ret);
990 goto err_loop;
993 pinfo->gpios[i] = gpio;
994 pinfo->alow_flags[i] = flags & OF_GPIO_ACTIVE_LOW;
996 ret = gpio_direction_output(pinfo->gpios[i],
997 pinfo->alow_flags[i]);
998 if (ret) {
999 dev_err(dev, "can't set output direction for gpio "
1000 "#%d: %d\n", i, ret);
1001 goto err_loop;
1005 pdata->max_chipselect = ngpios;
1006 pdata->cs_control = fsl_spi_cs_control;
1008 return 0;
1010 err_loop:
1011 while (i >= 0) {
1012 if (gpio_is_valid(pinfo->gpios[i]))
1013 gpio_free(pinfo->gpios[i]);
1014 i--;
1017 kfree(pinfo->alow_flags);
1018 pinfo->alow_flags = NULL;
1019 err_alloc_flags:
1020 kfree(pinfo->gpios);
1021 pinfo->gpios = NULL;
1022 return ret;
1025 static int of_fsl_spi_free_chipselects(struct device *dev)
1027 struct fsl_spi_platform_data *pdata = dev->platform_data;
1028 struct mpc8xxx_spi_probe_info *pinfo = to_of_pinfo(pdata);
1029 int i;
1031 if (!pinfo->gpios)
1032 return 0;
1034 for (i = 0; i < pdata->max_chipselect; i++) {
1035 if (gpio_is_valid(pinfo->gpios[i]))
1036 gpio_free(pinfo->gpios[i]);
1039 kfree(pinfo->gpios);
1040 kfree(pinfo->alow_flags);
1041 return 0;
1044 static int __devinit of_fsl_spi_probe(struct platform_device *ofdev)
1046 struct device *dev = &ofdev->dev;
1047 struct device_node *np = ofdev->dev.of_node;
1048 struct spi_master *master;
1049 struct resource mem;
1050 struct resource irq;
1051 int ret = -ENOMEM;
1053 ret = of_mpc8xxx_spi_probe(ofdev);
1054 if (ret)
1055 return ret;
1057 ret = of_fsl_spi_get_chipselects(dev);
1058 if (ret)
1059 goto err;
1061 ret = of_address_to_resource(np, 0, &mem);
1062 if (ret)
1063 goto err;
1065 ret = of_irq_to_resource(np, 0, &irq);
1066 if (!ret) {
1067 ret = -EINVAL;
1068 goto err;
1071 master = fsl_spi_probe(dev, &mem, irq.start);
1072 if (IS_ERR(master)) {
1073 ret = PTR_ERR(master);
1074 goto err;
1077 return 0;
1079 err:
1080 of_fsl_spi_free_chipselects(dev);
1081 return ret;
1084 static int __devexit of_fsl_spi_remove(struct platform_device *ofdev)
1086 int ret;
1088 ret = mpc8xxx_spi_remove(&ofdev->dev);
1089 if (ret)
1090 return ret;
1091 of_fsl_spi_free_chipselects(&ofdev->dev);
1092 return 0;
1095 static const struct of_device_id of_fsl_spi_match[] = {
1096 { .compatible = "fsl,spi" },
1099 MODULE_DEVICE_TABLE(of, of_fsl_spi_match);
1101 static struct platform_driver of_fsl_spi_driver = {
1102 .driver = {
1103 .name = "fsl_spi",
1104 .owner = THIS_MODULE,
1105 .of_match_table = of_fsl_spi_match,
1107 .probe = of_fsl_spi_probe,
1108 .remove = __devexit_p(of_fsl_spi_remove),
1111 #ifdef CONFIG_MPC832x_RDB
1113 * XXX XXX XXX
1114 * This is "legacy" platform driver, was used by the MPC8323E-RDB boards
1115 * only. The driver should go away soon, since newer MPC8323E-RDB's device
1116 * tree can work with OpenFirmware driver. But for now we support old trees
1117 * as well.
1119 static int __devinit plat_mpc8xxx_spi_probe(struct platform_device *pdev)
1121 struct resource *mem;
1122 int irq;
1123 struct spi_master *master;
1125 if (!pdev->dev.platform_data)
1126 return -EINVAL;
1128 mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1129 if (!mem)
1130 return -EINVAL;
1132 irq = platform_get_irq(pdev, 0);
1133 if (irq <= 0)
1134 return -EINVAL;
1136 master = fsl_spi_probe(&pdev->dev, mem, irq);
1137 if (IS_ERR(master))
1138 return PTR_ERR(master);
1139 return 0;
1142 static int __devexit plat_mpc8xxx_spi_remove(struct platform_device *pdev)
1144 return mpc8xxx_spi_remove(&pdev->dev);
1147 MODULE_ALIAS("platform:mpc8xxx_spi");
1148 static struct platform_driver mpc8xxx_spi_driver = {
1149 .probe = plat_mpc8xxx_spi_probe,
1150 .remove = __devexit_p(plat_mpc8xxx_spi_remove),
1151 .driver = {
1152 .name = "mpc8xxx_spi",
1153 .owner = THIS_MODULE,
1157 static bool legacy_driver_failed;
1159 static void __init legacy_driver_register(void)
1161 legacy_driver_failed = platform_driver_register(&mpc8xxx_spi_driver);
1164 static void __exit legacy_driver_unregister(void)
1166 if (legacy_driver_failed)
1167 return;
1168 platform_driver_unregister(&mpc8xxx_spi_driver);
1170 #else
1171 static void __init legacy_driver_register(void) {}
1172 static void __exit legacy_driver_unregister(void) {}
1173 #endif /* CONFIG_MPC832x_RDB */
1175 static int __init fsl_spi_init(void)
1177 legacy_driver_register();
1178 return platform_driver_register(&of_fsl_spi_driver);
1180 module_init(fsl_spi_init);
1182 static void __exit fsl_spi_exit(void)
1184 platform_driver_unregister(&of_fsl_spi_driver);
1185 legacy_driver_unregister();
1187 module_exit(fsl_spi_exit);
1189 MODULE_AUTHOR("Kumar Gala");
1190 MODULE_DESCRIPTION("Simple Freescale SPI Driver");
1191 MODULE_LICENSE("GPL");