4 * Manages VM statistics
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Copyright (C) 2006 Silicon Graphics, Inc.,
9 * Christoph Lameter <christoph@lameter.com>
13 #include <linux/err.h>
14 #include <linux/module.h>
15 #include <linux/slab.h>
16 #include <linux/cpu.h>
17 #include <linux/vmstat.h>
18 #include <linux/sched.h>
19 #include <linux/math64.h>
20 #include <linux/writeback.h>
21 #include <linux/compaction.h>
23 #ifdef CONFIG_VM_EVENT_COUNTERS
24 DEFINE_PER_CPU(struct vm_event_state
, vm_event_states
) = {{0}};
25 EXPORT_PER_CPU_SYMBOL(vm_event_states
);
27 static void sum_vm_events(unsigned long *ret
)
32 memset(ret
, 0, NR_VM_EVENT_ITEMS
* sizeof(unsigned long));
34 for_each_online_cpu(cpu
) {
35 struct vm_event_state
*this = &per_cpu(vm_event_states
, cpu
);
37 for (i
= 0; i
< NR_VM_EVENT_ITEMS
; i
++)
38 ret
[i
] += this->event
[i
];
43 * Accumulate the vm event counters across all CPUs.
44 * The result is unavoidably approximate - it can change
45 * during and after execution of this function.
47 void all_vm_events(unsigned long *ret
)
53 EXPORT_SYMBOL_GPL(all_vm_events
);
57 * Fold the foreign cpu events into our own.
59 * This is adding to the events on one processor
60 * but keeps the global counts constant.
62 void vm_events_fold_cpu(int cpu
)
64 struct vm_event_state
*fold_state
= &per_cpu(vm_event_states
, cpu
);
67 for (i
= 0; i
< NR_VM_EVENT_ITEMS
; i
++) {
68 count_vm_events(i
, fold_state
->event
[i
]);
69 fold_state
->event
[i
] = 0;
72 #endif /* CONFIG_HOTPLUG */
74 #endif /* CONFIG_VM_EVENT_COUNTERS */
77 * Manage combined zone based / global counters
79 * vm_stat contains the global counters
81 atomic_long_t vm_stat
[NR_VM_ZONE_STAT_ITEMS
] __cacheline_aligned_in_smp
;
82 EXPORT_SYMBOL(vm_stat
);
86 int calculate_pressure_threshold(struct zone
*zone
)
89 int watermark_distance
;
92 * As vmstats are not up to date, there is drift between the estimated
93 * and real values. For high thresholds and a high number of CPUs, it
94 * is possible for the min watermark to be breached while the estimated
95 * value looks fine. The pressure threshold is a reduced value such
96 * that even the maximum amount of drift will not accidentally breach
99 watermark_distance
= low_wmark_pages(zone
) - min_wmark_pages(zone
);
100 threshold
= max(1, (int)(watermark_distance
/ num_online_cpus()));
103 * Maximum threshold is 125
105 threshold
= min(125, threshold
);
110 int calculate_normal_threshold(struct zone
*zone
)
113 int mem
; /* memory in 128 MB units */
116 * The threshold scales with the number of processors and the amount
117 * of memory per zone. More memory means that we can defer updates for
118 * longer, more processors could lead to more contention.
119 * fls() is used to have a cheap way of logarithmic scaling.
121 * Some sample thresholds:
123 * Threshold Processors (fls) Zonesize fls(mem+1)
124 * ------------------------------------------------------------------
141 * 125 1024 10 8-16 GB 8
142 * 125 1024 10 16-32 GB 9
145 mem
= zone
->managed_pages
>> (27 - PAGE_SHIFT
);
147 threshold
= 2 * fls(num_online_cpus()) * (1 + fls(mem
));
150 * Maximum threshold is 125
152 threshold
= min(125, threshold
);
158 * Refresh the thresholds for each zone.
160 void refresh_zone_stat_thresholds(void)
166 for_each_populated_zone(zone
) {
167 unsigned long max_drift
, tolerate_drift
;
169 threshold
= calculate_normal_threshold(zone
);
171 for_each_online_cpu(cpu
)
172 per_cpu_ptr(zone
->pageset
, cpu
)->stat_threshold
176 * Only set percpu_drift_mark if there is a danger that
177 * NR_FREE_PAGES reports the low watermark is ok when in fact
178 * the min watermark could be breached by an allocation
180 tolerate_drift
= low_wmark_pages(zone
) - min_wmark_pages(zone
);
181 max_drift
= num_online_cpus() * threshold
;
182 if (max_drift
> tolerate_drift
)
183 zone
->percpu_drift_mark
= high_wmark_pages(zone
) +
188 void set_pgdat_percpu_threshold(pg_data_t
*pgdat
,
189 int (*calculate_pressure
)(struct zone
*))
196 for (i
= 0; i
< pgdat
->nr_zones
; i
++) {
197 zone
= &pgdat
->node_zones
[i
];
198 if (!zone
->percpu_drift_mark
)
201 threshold
= (*calculate_pressure
)(zone
);
202 for_each_possible_cpu(cpu
)
203 per_cpu_ptr(zone
->pageset
, cpu
)->stat_threshold
209 * For use when we know that interrupts are disabled.
211 void __mod_zone_page_state(struct zone
*zone
, enum zone_stat_item item
,
214 struct per_cpu_pageset __percpu
*pcp
= zone
->pageset
;
215 s8 __percpu
*p
= pcp
->vm_stat_diff
+ item
;
219 x
= delta
+ __this_cpu_read(*p
);
221 t
= __this_cpu_read(pcp
->stat_threshold
);
223 if (unlikely(x
> t
|| x
< -t
)) {
224 zone_page_state_add(x
, zone
, item
);
227 __this_cpu_write(*p
, x
);
229 EXPORT_SYMBOL(__mod_zone_page_state
);
232 * Optimized increment and decrement functions.
234 * These are only for a single page and therefore can take a struct page *
235 * argument instead of struct zone *. This allows the inclusion of the code
236 * generated for page_zone(page) into the optimized functions.
238 * No overflow check is necessary and therefore the differential can be
239 * incremented or decremented in place which may allow the compilers to
240 * generate better code.
241 * The increment or decrement is known and therefore one boundary check can
244 * NOTE: These functions are very performance sensitive. Change only
247 * Some processors have inc/dec instructions that are atomic vs an interrupt.
248 * However, the code must first determine the differential location in a zone
249 * based on the processor number and then inc/dec the counter. There is no
250 * guarantee without disabling preemption that the processor will not change
251 * in between and therefore the atomicity vs. interrupt cannot be exploited
252 * in a useful way here.
254 void __inc_zone_state(struct zone
*zone
, enum zone_stat_item item
)
256 struct per_cpu_pageset __percpu
*pcp
= zone
->pageset
;
257 s8 __percpu
*p
= pcp
->vm_stat_diff
+ item
;
260 v
= __this_cpu_inc_return(*p
);
261 t
= __this_cpu_read(pcp
->stat_threshold
);
262 if (unlikely(v
> t
)) {
263 s8 overstep
= t
>> 1;
265 zone_page_state_add(v
+ overstep
, zone
, item
);
266 __this_cpu_write(*p
, -overstep
);
270 void __inc_zone_page_state(struct page
*page
, enum zone_stat_item item
)
272 __inc_zone_state(page_zone(page
), item
);
274 EXPORT_SYMBOL(__inc_zone_page_state
);
276 void __dec_zone_state(struct zone
*zone
, enum zone_stat_item item
)
278 struct per_cpu_pageset __percpu
*pcp
= zone
->pageset
;
279 s8 __percpu
*p
= pcp
->vm_stat_diff
+ item
;
282 v
= __this_cpu_dec_return(*p
);
283 t
= __this_cpu_read(pcp
->stat_threshold
);
284 if (unlikely(v
< - t
)) {
285 s8 overstep
= t
>> 1;
287 zone_page_state_add(v
- overstep
, zone
, item
);
288 __this_cpu_write(*p
, overstep
);
292 void __dec_zone_page_state(struct page
*page
, enum zone_stat_item item
)
294 __dec_zone_state(page_zone(page
), item
);
296 EXPORT_SYMBOL(__dec_zone_page_state
);
298 #ifdef CONFIG_HAVE_CMPXCHG_LOCAL
300 * If we have cmpxchg_local support then we do not need to incur the overhead
301 * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
303 * mod_state() modifies the zone counter state through atomic per cpu
306 * Overstep mode specifies how overstep should handled:
308 * 1 Overstepping half of threshold
309 * -1 Overstepping minus half of threshold
311 static inline void mod_state(struct zone
*zone
,
312 enum zone_stat_item item
, int delta
, int overstep_mode
)
314 struct per_cpu_pageset __percpu
*pcp
= zone
->pageset
;
315 s8 __percpu
*p
= pcp
->vm_stat_diff
+ item
;
319 z
= 0; /* overflow to zone counters */
322 * The fetching of the stat_threshold is racy. We may apply
323 * a counter threshold to the wrong the cpu if we get
324 * rescheduled while executing here. However, the next
325 * counter update will apply the threshold again and
326 * therefore bring the counter under the threshold again.
328 * Most of the time the thresholds are the same anyways
329 * for all cpus in a zone.
331 t
= this_cpu_read(pcp
->stat_threshold
);
333 o
= this_cpu_read(*p
);
336 if (n
> t
|| n
< -t
) {
337 int os
= overstep_mode
* (t
>> 1) ;
339 /* Overflow must be added to zone counters */
343 } while (this_cpu_cmpxchg(*p
, o
, n
) != o
);
346 zone_page_state_add(z
, zone
, item
);
349 void mod_zone_page_state(struct zone
*zone
, enum zone_stat_item item
,
352 mod_state(zone
, item
, delta
, 0);
354 EXPORT_SYMBOL(mod_zone_page_state
);
356 void inc_zone_state(struct zone
*zone
, enum zone_stat_item item
)
358 mod_state(zone
, item
, 1, 1);
361 void inc_zone_page_state(struct page
*page
, enum zone_stat_item item
)
363 mod_state(page_zone(page
), item
, 1, 1);
365 EXPORT_SYMBOL(inc_zone_page_state
);
367 void dec_zone_page_state(struct page
*page
, enum zone_stat_item item
)
369 mod_state(page_zone(page
), item
, -1, -1);
371 EXPORT_SYMBOL(dec_zone_page_state
);
374 * Use interrupt disable to serialize counter updates
376 void mod_zone_page_state(struct zone
*zone
, enum zone_stat_item item
,
381 local_irq_save(flags
);
382 __mod_zone_page_state(zone
, item
, delta
);
383 local_irq_restore(flags
);
385 EXPORT_SYMBOL(mod_zone_page_state
);
387 void inc_zone_state(struct zone
*zone
, enum zone_stat_item item
)
391 local_irq_save(flags
);
392 __inc_zone_state(zone
, item
);
393 local_irq_restore(flags
);
396 void inc_zone_page_state(struct page
*page
, enum zone_stat_item item
)
401 zone
= page_zone(page
);
402 local_irq_save(flags
);
403 __inc_zone_state(zone
, item
);
404 local_irq_restore(flags
);
406 EXPORT_SYMBOL(inc_zone_page_state
);
408 void dec_zone_page_state(struct page
*page
, enum zone_stat_item item
)
412 local_irq_save(flags
);
413 __dec_zone_page_state(page
, item
);
414 local_irq_restore(flags
);
416 EXPORT_SYMBOL(dec_zone_page_state
);
420 * Update the zone counters for one cpu.
422 * The cpu specified must be either the current cpu or a processor that
423 * is not online. If it is the current cpu then the execution thread must
424 * be pinned to the current cpu.
426 * Note that refresh_cpu_vm_stats strives to only access
427 * node local memory. The per cpu pagesets on remote zones are placed
428 * in the memory local to the processor using that pageset. So the
429 * loop over all zones will access a series of cachelines local to
432 * The call to zone_page_state_add updates the cachelines with the
433 * statistics in the remote zone struct as well as the global cachelines
434 * with the global counters. These could cause remote node cache line
435 * bouncing and will have to be only done when necessary.
437 void refresh_cpu_vm_stats(int cpu
)
441 int global_diff
[NR_VM_ZONE_STAT_ITEMS
] = { 0, };
443 for_each_populated_zone(zone
) {
444 struct per_cpu_pageset
*p
;
446 p
= per_cpu_ptr(zone
->pageset
, cpu
);
448 for (i
= 0; i
< NR_VM_ZONE_STAT_ITEMS
; i
++)
449 if (p
->vm_stat_diff
[i
]) {
453 local_irq_save(flags
);
454 v
= p
->vm_stat_diff
[i
];
455 p
->vm_stat_diff
[i
] = 0;
456 local_irq_restore(flags
);
457 atomic_long_add(v
, &zone
->vm_stat
[i
]);
460 /* 3 seconds idle till flush */
467 * Deal with draining the remote pageset of this
470 * Check if there are pages remaining in this pageset
471 * if not then there is nothing to expire.
473 if (!p
->expire
|| !p
->pcp
.count
)
477 * We never drain zones local to this processor.
479 if (zone_to_nid(zone
) == numa_node_id()) {
489 drain_zone_pages(zone
, &p
->pcp
);
493 for (i
= 0; i
< NR_VM_ZONE_STAT_ITEMS
; i
++)
495 atomic_long_add(global_diff
[i
], &vm_stat
[i
]);
498 void drain_zonestat(struct zone
*zone
, struct per_cpu_pageset
*pset
)
502 for (i
= 0; i
< NR_VM_ZONE_STAT_ITEMS
; i
++)
503 if (pset
->vm_stat_diff
[i
]) {
504 int v
= pset
->vm_stat_diff
[i
];
505 pset
->vm_stat_diff
[i
] = 0;
506 atomic_long_add(v
, &zone
->vm_stat
[i
]);
507 atomic_long_add(v
, &vm_stat
[i
]);
514 * zonelist = the list of zones passed to the allocator
515 * z = the zone from which the allocation occurred.
517 * Must be called with interrupts disabled.
519 * When __GFP_OTHER_NODE is set assume the node of the preferred
520 * zone is the local node. This is useful for daemons who allocate
521 * memory on behalf of other processes.
523 void zone_statistics(struct zone
*preferred_zone
, struct zone
*z
, gfp_t flags
)
525 if (z
->zone_pgdat
== preferred_zone
->zone_pgdat
) {
526 __inc_zone_state(z
, NUMA_HIT
);
528 __inc_zone_state(z
, NUMA_MISS
);
529 __inc_zone_state(preferred_zone
, NUMA_FOREIGN
);
531 if (z
->node
== ((flags
& __GFP_OTHER_NODE
) ?
532 preferred_zone
->node
: numa_node_id()))
533 __inc_zone_state(z
, NUMA_LOCAL
);
535 __inc_zone_state(z
, NUMA_OTHER
);
539 #ifdef CONFIG_COMPACTION
541 struct contig_page_info
{
542 unsigned long free_pages
;
543 unsigned long free_blocks_total
;
544 unsigned long free_blocks_suitable
;
548 * Calculate the number of free pages in a zone, how many contiguous
549 * pages are free and how many are large enough to satisfy an allocation of
550 * the target size. Note that this function makes no attempt to estimate
551 * how many suitable free blocks there *might* be if MOVABLE pages were
552 * migrated. Calculating that is possible, but expensive and can be
553 * figured out from userspace
555 static void fill_contig_page_info(struct zone
*zone
,
556 unsigned int suitable_order
,
557 struct contig_page_info
*info
)
561 info
->free_pages
= 0;
562 info
->free_blocks_total
= 0;
563 info
->free_blocks_suitable
= 0;
565 for (order
= 0; order
< MAX_ORDER
; order
++) {
566 unsigned long blocks
;
568 /* Count number of free blocks */
569 blocks
= zone
->free_area
[order
].nr_free
;
570 info
->free_blocks_total
+= blocks
;
572 /* Count free base pages */
573 info
->free_pages
+= blocks
<< order
;
575 /* Count the suitable free blocks */
576 if (order
>= suitable_order
)
577 info
->free_blocks_suitable
+= blocks
<<
578 (order
- suitable_order
);
583 * A fragmentation index only makes sense if an allocation of a requested
584 * size would fail. If that is true, the fragmentation index indicates
585 * whether external fragmentation or a lack of memory was the problem.
586 * The value can be used to determine if page reclaim or compaction
589 static int __fragmentation_index(unsigned int order
, struct contig_page_info
*info
)
591 unsigned long requested
= 1UL << order
;
593 if (!info
->free_blocks_total
)
596 /* Fragmentation index only makes sense when a request would fail */
597 if (info
->free_blocks_suitable
)
601 * Index is between 0 and 1 so return within 3 decimal places
603 * 0 => allocation would fail due to lack of memory
604 * 1 => allocation would fail due to fragmentation
606 return 1000 - div_u64( (1000+(div_u64(info
->free_pages
* 1000ULL, requested
))), info
->free_blocks_total
);
609 /* Same as __fragmentation index but allocs contig_page_info on stack */
610 int fragmentation_index(struct zone
*zone
, unsigned int order
)
612 struct contig_page_info info
;
614 fill_contig_page_info(zone
, order
, &info
);
615 return __fragmentation_index(order
, &info
);
619 #if defined(CONFIG_PROC_FS) || defined(CONFIG_COMPACTION)
620 #include <linux/proc_fs.h>
621 #include <linux/seq_file.h>
623 static char * const migratetype_names
[MIGRATE_TYPES
] = {
631 #ifdef CONFIG_MEMORY_ISOLATION
636 static void *frag_start(struct seq_file
*m
, loff_t
*pos
)
640 for (pgdat
= first_online_pgdat();
642 pgdat
= next_online_pgdat(pgdat
))
648 static void *frag_next(struct seq_file
*m
, void *arg
, loff_t
*pos
)
650 pg_data_t
*pgdat
= (pg_data_t
*)arg
;
653 return next_online_pgdat(pgdat
);
656 static void frag_stop(struct seq_file
*m
, void *arg
)
660 /* Walk all the zones in a node and print using a callback */
661 static void walk_zones_in_node(struct seq_file
*m
, pg_data_t
*pgdat
,
662 void (*print
)(struct seq_file
*m
, pg_data_t
*, struct zone
*))
665 struct zone
*node_zones
= pgdat
->node_zones
;
668 for (zone
= node_zones
; zone
- node_zones
< MAX_NR_ZONES
; ++zone
) {
669 if (!populated_zone(zone
))
672 spin_lock_irqsave(&zone
->lock
, flags
);
673 print(m
, pgdat
, zone
);
674 spin_unlock_irqrestore(&zone
->lock
, flags
);
679 #if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || defined(CONFIG_NUMA)
680 #ifdef CONFIG_ZONE_DMA
681 #define TEXT_FOR_DMA(xx) xx "_dma",
683 #define TEXT_FOR_DMA(xx)
686 #ifdef CONFIG_ZONE_DMA32
687 #define TEXT_FOR_DMA32(xx) xx "_dma32",
689 #define TEXT_FOR_DMA32(xx)
692 #ifdef CONFIG_HIGHMEM
693 #define TEXT_FOR_HIGHMEM(xx) xx "_high",
695 #define TEXT_FOR_HIGHMEM(xx)
698 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
699 TEXT_FOR_HIGHMEM(xx) xx "_movable",
701 const char * const vmstat_text
[] = {
702 /* Zoned VM counters */
715 "nr_slab_reclaimable",
716 "nr_slab_unreclaimable",
717 "nr_page_table_pages",
722 "nr_vmscan_immediate_reclaim",
738 "nr_anon_transparent_hugepages",
740 "nr_dirty_threshold",
741 "nr_dirty_background_threshold",
743 #ifdef CONFIG_VM_EVENT_COUNTERS
749 TEXTS_FOR_ZONES("pgalloc")
758 TEXTS_FOR_ZONES("pgrefill")
759 TEXTS_FOR_ZONES("pgsteal_kswapd")
760 TEXTS_FOR_ZONES("pgsteal_direct")
761 TEXTS_FOR_ZONES("pgscan_kswapd")
762 TEXTS_FOR_ZONES("pgscan_direct")
763 "pgscan_direct_throttle",
766 "zone_reclaim_failed",
771 "kswapd_low_wmark_hit_quickly",
772 "kswapd_high_wmark_hit_quickly",
778 #ifdef CONFIG_NUMA_BALANCING
781 "numa_hint_faults_local",
782 "numa_pages_migrated",
784 #ifdef CONFIG_MIGRATION
788 #ifdef CONFIG_COMPACTION
789 "compact_migrate_scanned",
790 "compact_free_scanned",
797 #ifdef CONFIG_HUGETLB_PAGE
798 "htlb_buddy_alloc_success",
799 "htlb_buddy_alloc_fail",
801 "unevictable_pgs_culled",
802 "unevictable_pgs_scanned",
803 "unevictable_pgs_rescued",
804 "unevictable_pgs_mlocked",
805 "unevictable_pgs_munlocked",
806 "unevictable_pgs_cleared",
807 "unevictable_pgs_stranded",
809 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
811 "thp_fault_fallback",
812 "thp_collapse_alloc",
813 "thp_collapse_alloc_failed",
815 "thp_zero_page_alloc",
816 "thp_zero_page_alloc_failed",
819 #endif /* CONFIG_VM_EVENTS_COUNTERS */
821 #endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA */
824 #ifdef CONFIG_PROC_FS
825 static void frag_show_print(struct seq_file
*m
, pg_data_t
*pgdat
,
830 seq_printf(m
, "Node %d, zone %8s ", pgdat
->node_id
, zone
->name
);
831 for (order
= 0; order
< MAX_ORDER
; ++order
)
832 seq_printf(m
, "%6lu ", zone
->free_area
[order
].nr_free
);
837 * This walks the free areas for each zone.
839 static int frag_show(struct seq_file
*m
, void *arg
)
841 pg_data_t
*pgdat
= (pg_data_t
*)arg
;
842 walk_zones_in_node(m
, pgdat
, frag_show_print
);
846 static void pagetypeinfo_showfree_print(struct seq_file
*m
,
847 pg_data_t
*pgdat
, struct zone
*zone
)
851 for (mtype
= 0; mtype
< MIGRATE_TYPES
; mtype
++) {
852 seq_printf(m
, "Node %4d, zone %8s, type %12s ",
855 migratetype_names
[mtype
]);
856 for (order
= 0; order
< MAX_ORDER
; ++order
) {
857 unsigned long freecount
= 0;
858 struct free_area
*area
;
859 struct list_head
*curr
;
861 area
= &(zone
->free_area
[order
]);
863 list_for_each(curr
, &area
->free_list
[mtype
])
865 seq_printf(m
, "%6lu ", freecount
);
871 /* Print out the free pages at each order for each migatetype */
872 static int pagetypeinfo_showfree(struct seq_file
*m
, void *arg
)
875 pg_data_t
*pgdat
= (pg_data_t
*)arg
;
878 seq_printf(m
, "%-43s ", "Free pages count per migrate type at order");
879 for (order
= 0; order
< MAX_ORDER
; ++order
)
880 seq_printf(m
, "%6d ", order
);
883 walk_zones_in_node(m
, pgdat
, pagetypeinfo_showfree_print
);
888 static void pagetypeinfo_showblockcount_print(struct seq_file
*m
,
889 pg_data_t
*pgdat
, struct zone
*zone
)
893 unsigned long start_pfn
= zone
->zone_start_pfn
;
894 unsigned long end_pfn
= zone_end_pfn(zone
);
895 unsigned long count
[MIGRATE_TYPES
] = { 0, };
897 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= pageblock_nr_pages
) {
903 page
= pfn_to_page(pfn
);
905 /* Watch for unexpected holes punched in the memmap */
906 if (!memmap_valid_within(pfn
, page
, zone
))
909 mtype
= get_pageblock_migratetype(page
);
911 if (mtype
< MIGRATE_TYPES
)
916 seq_printf(m
, "Node %d, zone %8s ", pgdat
->node_id
, zone
->name
);
917 for (mtype
= 0; mtype
< MIGRATE_TYPES
; mtype
++)
918 seq_printf(m
, "%12lu ", count
[mtype
]);
922 /* Print out the free pages at each order for each migratetype */
923 static int pagetypeinfo_showblockcount(struct seq_file
*m
, void *arg
)
926 pg_data_t
*pgdat
= (pg_data_t
*)arg
;
928 seq_printf(m
, "\n%-23s", "Number of blocks type ");
929 for (mtype
= 0; mtype
< MIGRATE_TYPES
; mtype
++)
930 seq_printf(m
, "%12s ", migratetype_names
[mtype
]);
932 walk_zones_in_node(m
, pgdat
, pagetypeinfo_showblockcount_print
);
938 * This prints out statistics in relation to grouping pages by mobility.
939 * It is expensive to collect so do not constantly read the file.
941 static int pagetypeinfo_show(struct seq_file
*m
, void *arg
)
943 pg_data_t
*pgdat
= (pg_data_t
*)arg
;
945 /* check memoryless node */
946 if (!node_state(pgdat
->node_id
, N_MEMORY
))
949 seq_printf(m
, "Page block order: %d\n", pageblock_order
);
950 seq_printf(m
, "Pages per block: %lu\n", pageblock_nr_pages
);
952 pagetypeinfo_showfree(m
, pgdat
);
953 pagetypeinfo_showblockcount(m
, pgdat
);
958 static const struct seq_operations fragmentation_op
= {
965 static int fragmentation_open(struct inode
*inode
, struct file
*file
)
967 return seq_open(file
, &fragmentation_op
);
970 static const struct file_operations fragmentation_file_operations
= {
971 .open
= fragmentation_open
,
974 .release
= seq_release
,
977 static const struct seq_operations pagetypeinfo_op
= {
981 .show
= pagetypeinfo_show
,
984 static int pagetypeinfo_open(struct inode
*inode
, struct file
*file
)
986 return seq_open(file
, &pagetypeinfo_op
);
989 static const struct file_operations pagetypeinfo_file_ops
= {
990 .open
= pagetypeinfo_open
,
993 .release
= seq_release
,
996 static void zoneinfo_show_print(struct seq_file
*m
, pg_data_t
*pgdat
,
1000 seq_printf(m
, "Node %d, zone %8s", pgdat
->node_id
, zone
->name
);
1010 zone_page_state(zone
, NR_FREE_PAGES
),
1011 min_wmark_pages(zone
),
1012 low_wmark_pages(zone
),
1013 high_wmark_pages(zone
),
1014 zone
->pages_scanned
,
1015 zone
->spanned_pages
,
1016 zone
->present_pages
,
1017 zone
->managed_pages
);
1019 for (i
= 0; i
< NR_VM_ZONE_STAT_ITEMS
; i
++)
1020 seq_printf(m
, "\n %-12s %lu", vmstat_text
[i
],
1021 zone_page_state(zone
, i
));
1024 "\n protection: (%lu",
1025 zone
->lowmem_reserve
[0]);
1026 for (i
= 1; i
< ARRAY_SIZE(zone
->lowmem_reserve
); i
++)
1027 seq_printf(m
, ", %lu", zone
->lowmem_reserve
[i
]);
1031 for_each_online_cpu(i
) {
1032 struct per_cpu_pageset
*pageset
;
1034 pageset
= per_cpu_ptr(zone
->pageset
, i
);
1043 pageset
->pcp
.batch
);
1045 seq_printf(m
, "\n vm stats threshold: %d",
1046 pageset
->stat_threshold
);
1050 "\n all_unreclaimable: %u"
1052 "\n inactive_ratio: %u",
1053 zone
->all_unreclaimable
,
1054 zone
->zone_start_pfn
,
1055 zone
->inactive_ratio
);
1060 * Output information about zones in @pgdat.
1062 static int zoneinfo_show(struct seq_file
*m
, void *arg
)
1064 pg_data_t
*pgdat
= (pg_data_t
*)arg
;
1065 walk_zones_in_node(m
, pgdat
, zoneinfo_show_print
);
1069 static const struct seq_operations zoneinfo_op
= {
1070 .start
= frag_start
, /* iterate over all zones. The same as in
1074 .show
= zoneinfo_show
,
1077 static int zoneinfo_open(struct inode
*inode
, struct file
*file
)
1079 return seq_open(file
, &zoneinfo_op
);
1082 static const struct file_operations proc_zoneinfo_file_operations
= {
1083 .open
= zoneinfo_open
,
1085 .llseek
= seq_lseek
,
1086 .release
= seq_release
,
1089 enum writeback_stat_item
{
1091 NR_DIRTY_BG_THRESHOLD
,
1092 NR_VM_WRITEBACK_STAT_ITEMS
,
1095 static void *vmstat_start(struct seq_file
*m
, loff_t
*pos
)
1098 int i
, stat_items_size
;
1100 if (*pos
>= ARRAY_SIZE(vmstat_text
))
1102 stat_items_size
= NR_VM_ZONE_STAT_ITEMS
* sizeof(unsigned long) +
1103 NR_VM_WRITEBACK_STAT_ITEMS
* sizeof(unsigned long);
1105 #ifdef CONFIG_VM_EVENT_COUNTERS
1106 stat_items_size
+= sizeof(struct vm_event_state
);
1109 v
= kmalloc(stat_items_size
, GFP_KERNEL
);
1112 return ERR_PTR(-ENOMEM
);
1113 for (i
= 0; i
< NR_VM_ZONE_STAT_ITEMS
; i
++)
1114 v
[i
] = global_page_state(i
);
1115 v
+= NR_VM_ZONE_STAT_ITEMS
;
1117 global_dirty_limits(v
+ NR_DIRTY_BG_THRESHOLD
,
1118 v
+ NR_DIRTY_THRESHOLD
);
1119 v
+= NR_VM_WRITEBACK_STAT_ITEMS
;
1121 #ifdef CONFIG_VM_EVENT_COUNTERS
1123 v
[PGPGIN
] /= 2; /* sectors -> kbytes */
1126 return (unsigned long *)m
->private + *pos
;
1129 static void *vmstat_next(struct seq_file
*m
, void *arg
, loff_t
*pos
)
1132 if (*pos
>= ARRAY_SIZE(vmstat_text
))
1134 return (unsigned long *)m
->private + *pos
;
1137 static int vmstat_show(struct seq_file
*m
, void *arg
)
1139 unsigned long *l
= arg
;
1140 unsigned long off
= l
- (unsigned long *)m
->private;
1142 seq_printf(m
, "%s %lu\n", vmstat_text
[off
], *l
);
1146 static void vmstat_stop(struct seq_file
*m
, void *arg
)
1152 static const struct seq_operations vmstat_op
= {
1153 .start
= vmstat_start
,
1154 .next
= vmstat_next
,
1155 .stop
= vmstat_stop
,
1156 .show
= vmstat_show
,
1159 static int vmstat_open(struct inode
*inode
, struct file
*file
)
1161 return seq_open(file
, &vmstat_op
);
1164 static const struct file_operations proc_vmstat_file_operations
= {
1165 .open
= vmstat_open
,
1167 .llseek
= seq_lseek
,
1168 .release
= seq_release
,
1170 #endif /* CONFIG_PROC_FS */
1173 static DEFINE_PER_CPU(struct delayed_work
, vmstat_work
);
1174 int sysctl_stat_interval __read_mostly
= HZ
;
1176 static void vmstat_update(struct work_struct
*w
)
1178 refresh_cpu_vm_stats(smp_processor_id());
1179 schedule_delayed_work(&__get_cpu_var(vmstat_work
),
1180 round_jiffies_relative(sysctl_stat_interval
));
1183 static void __cpuinit
start_cpu_timer(int cpu
)
1185 struct delayed_work
*work
= &per_cpu(vmstat_work
, cpu
);
1187 INIT_DEFERRABLE_WORK(work
, vmstat_update
);
1188 schedule_delayed_work_on(cpu
, work
, __round_jiffies_relative(HZ
, cpu
));
1192 * Use the cpu notifier to insure that the thresholds are recalculated
1195 static int __cpuinit
vmstat_cpuup_callback(struct notifier_block
*nfb
,
1196 unsigned long action
,
1199 long cpu
= (long)hcpu
;
1203 case CPU_ONLINE_FROZEN
:
1204 refresh_zone_stat_thresholds();
1205 start_cpu_timer(cpu
);
1206 node_set_state(cpu_to_node(cpu
), N_CPU
);
1208 case CPU_DOWN_PREPARE
:
1209 case CPU_DOWN_PREPARE_FROZEN
:
1210 cancel_delayed_work_sync(&per_cpu(vmstat_work
, cpu
));
1211 per_cpu(vmstat_work
, cpu
).work
.func
= NULL
;
1213 case CPU_DOWN_FAILED
:
1214 case CPU_DOWN_FAILED_FROZEN
:
1215 start_cpu_timer(cpu
);
1218 case CPU_DEAD_FROZEN
:
1219 refresh_zone_stat_thresholds();
1227 static struct notifier_block __cpuinitdata vmstat_notifier
=
1228 { &vmstat_cpuup_callback
, NULL
, 0 };
1231 static int __init
setup_vmstat(void)
1236 register_cpu_notifier(&vmstat_notifier
);
1238 for_each_online_cpu(cpu
)
1239 start_cpu_timer(cpu
);
1241 #ifdef CONFIG_PROC_FS
1242 proc_create("buddyinfo", S_IRUGO
, NULL
, &fragmentation_file_operations
);
1243 proc_create("pagetypeinfo", S_IRUGO
, NULL
, &pagetypeinfo_file_ops
);
1244 proc_create("vmstat", S_IRUGO
, NULL
, &proc_vmstat_file_operations
);
1245 proc_create("zoneinfo", S_IRUGO
, NULL
, &proc_zoneinfo_file_operations
);
1249 module_init(setup_vmstat
)
1251 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
1252 #include <linux/debugfs.h>
1256 * Return an index indicating how much of the available free memory is
1257 * unusable for an allocation of the requested size.
1259 static int unusable_free_index(unsigned int order
,
1260 struct contig_page_info
*info
)
1262 /* No free memory is interpreted as all free memory is unusable */
1263 if (info
->free_pages
== 0)
1267 * Index should be a value between 0 and 1. Return a value to 3
1270 * 0 => no fragmentation
1271 * 1 => high fragmentation
1273 return div_u64((info
->free_pages
- (info
->free_blocks_suitable
<< order
)) * 1000ULL, info
->free_pages
);
1277 static void unusable_show_print(struct seq_file
*m
,
1278 pg_data_t
*pgdat
, struct zone
*zone
)
1282 struct contig_page_info info
;
1284 seq_printf(m
, "Node %d, zone %8s ",
1287 for (order
= 0; order
< MAX_ORDER
; ++order
) {
1288 fill_contig_page_info(zone
, order
, &info
);
1289 index
= unusable_free_index(order
, &info
);
1290 seq_printf(m
, "%d.%03d ", index
/ 1000, index
% 1000);
1297 * Display unusable free space index
1299 * The unusable free space index measures how much of the available free
1300 * memory cannot be used to satisfy an allocation of a given size and is a
1301 * value between 0 and 1. The higher the value, the more of free memory is
1302 * unusable and by implication, the worse the external fragmentation is. This
1303 * can be expressed as a percentage by multiplying by 100.
1305 static int unusable_show(struct seq_file
*m
, void *arg
)
1307 pg_data_t
*pgdat
= (pg_data_t
*)arg
;
1309 /* check memoryless node */
1310 if (!node_state(pgdat
->node_id
, N_MEMORY
))
1313 walk_zones_in_node(m
, pgdat
, unusable_show_print
);
1318 static const struct seq_operations unusable_op
= {
1319 .start
= frag_start
,
1322 .show
= unusable_show
,
1325 static int unusable_open(struct inode
*inode
, struct file
*file
)
1327 return seq_open(file
, &unusable_op
);
1330 static const struct file_operations unusable_file_ops
= {
1331 .open
= unusable_open
,
1333 .llseek
= seq_lseek
,
1334 .release
= seq_release
,
1337 static void extfrag_show_print(struct seq_file
*m
,
1338 pg_data_t
*pgdat
, struct zone
*zone
)
1343 /* Alloc on stack as interrupts are disabled for zone walk */
1344 struct contig_page_info info
;
1346 seq_printf(m
, "Node %d, zone %8s ",
1349 for (order
= 0; order
< MAX_ORDER
; ++order
) {
1350 fill_contig_page_info(zone
, order
, &info
);
1351 index
= __fragmentation_index(order
, &info
);
1352 seq_printf(m
, "%d.%03d ", index
/ 1000, index
% 1000);
1359 * Display fragmentation index for orders that allocations would fail for
1361 static int extfrag_show(struct seq_file
*m
, void *arg
)
1363 pg_data_t
*pgdat
= (pg_data_t
*)arg
;
1365 walk_zones_in_node(m
, pgdat
, extfrag_show_print
);
1370 static const struct seq_operations extfrag_op
= {
1371 .start
= frag_start
,
1374 .show
= extfrag_show
,
1377 static int extfrag_open(struct inode
*inode
, struct file
*file
)
1379 return seq_open(file
, &extfrag_op
);
1382 static const struct file_operations extfrag_file_ops
= {
1383 .open
= extfrag_open
,
1385 .llseek
= seq_lseek
,
1386 .release
= seq_release
,
1389 static int __init
extfrag_debug_init(void)
1391 struct dentry
*extfrag_debug_root
;
1393 extfrag_debug_root
= debugfs_create_dir("extfrag", NULL
);
1394 if (!extfrag_debug_root
)
1397 if (!debugfs_create_file("unusable_index", 0444,
1398 extfrag_debug_root
, NULL
, &unusable_file_ops
))
1401 if (!debugfs_create_file("extfrag_index", 0444,
1402 extfrag_debug_root
, NULL
, &extfrag_file_ops
))
1407 debugfs_remove_recursive(extfrag_debug_root
);
1411 module_init(extfrag_debug_init
);