Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/sage/ceph...
[linux-2.6.git] / kernel / sched / rt.c
blob01970c8e64df64def4585bf3bd517c3bdb8a9354
1 /*
2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3 * policies)
4 */
6 #include "sched.h"
8 #include <linux/slab.h>
10 int sched_rr_timeslice = RR_TIMESLICE;
12 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
14 struct rt_bandwidth def_rt_bandwidth;
16 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
18 struct rt_bandwidth *rt_b =
19 container_of(timer, struct rt_bandwidth, rt_period_timer);
20 ktime_t now;
21 int overrun;
22 int idle = 0;
24 for (;;) {
25 now = hrtimer_cb_get_time(timer);
26 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
28 if (!overrun)
29 break;
31 idle = do_sched_rt_period_timer(rt_b, overrun);
34 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
37 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
39 rt_b->rt_period = ns_to_ktime(period);
40 rt_b->rt_runtime = runtime;
42 raw_spin_lock_init(&rt_b->rt_runtime_lock);
44 hrtimer_init(&rt_b->rt_period_timer,
45 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
46 rt_b->rt_period_timer.function = sched_rt_period_timer;
49 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
51 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
52 return;
54 if (hrtimer_active(&rt_b->rt_period_timer))
55 return;
57 raw_spin_lock(&rt_b->rt_runtime_lock);
58 start_bandwidth_timer(&rt_b->rt_period_timer, rt_b->rt_period);
59 raw_spin_unlock(&rt_b->rt_runtime_lock);
62 void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
64 struct rt_prio_array *array;
65 int i;
67 array = &rt_rq->active;
68 for (i = 0; i < MAX_RT_PRIO; i++) {
69 INIT_LIST_HEAD(array->queue + i);
70 __clear_bit(i, array->bitmap);
72 /* delimiter for bitsearch: */
73 __set_bit(MAX_RT_PRIO, array->bitmap);
75 #if defined CONFIG_SMP
76 rt_rq->highest_prio.curr = MAX_RT_PRIO;
77 rt_rq->highest_prio.next = MAX_RT_PRIO;
78 rt_rq->rt_nr_migratory = 0;
79 rt_rq->overloaded = 0;
80 plist_head_init(&rt_rq->pushable_tasks);
81 #endif
83 rt_rq->rt_time = 0;
84 rt_rq->rt_throttled = 0;
85 rt_rq->rt_runtime = 0;
86 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
89 #ifdef CONFIG_RT_GROUP_SCHED
90 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
92 hrtimer_cancel(&rt_b->rt_period_timer);
95 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
97 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
99 #ifdef CONFIG_SCHED_DEBUG
100 WARN_ON_ONCE(!rt_entity_is_task(rt_se));
101 #endif
102 return container_of(rt_se, struct task_struct, rt);
105 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
107 return rt_rq->rq;
110 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
112 return rt_se->rt_rq;
115 void free_rt_sched_group(struct task_group *tg)
117 int i;
119 if (tg->rt_se)
120 destroy_rt_bandwidth(&tg->rt_bandwidth);
122 for_each_possible_cpu(i) {
123 if (tg->rt_rq)
124 kfree(tg->rt_rq[i]);
125 if (tg->rt_se)
126 kfree(tg->rt_se[i]);
129 kfree(tg->rt_rq);
130 kfree(tg->rt_se);
133 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
134 struct sched_rt_entity *rt_se, int cpu,
135 struct sched_rt_entity *parent)
137 struct rq *rq = cpu_rq(cpu);
139 rt_rq->highest_prio.curr = MAX_RT_PRIO;
140 rt_rq->rt_nr_boosted = 0;
141 rt_rq->rq = rq;
142 rt_rq->tg = tg;
144 tg->rt_rq[cpu] = rt_rq;
145 tg->rt_se[cpu] = rt_se;
147 if (!rt_se)
148 return;
150 if (!parent)
151 rt_se->rt_rq = &rq->rt;
152 else
153 rt_se->rt_rq = parent->my_q;
155 rt_se->my_q = rt_rq;
156 rt_se->parent = parent;
157 INIT_LIST_HEAD(&rt_se->run_list);
160 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
162 struct rt_rq *rt_rq;
163 struct sched_rt_entity *rt_se;
164 int i;
166 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
167 if (!tg->rt_rq)
168 goto err;
169 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
170 if (!tg->rt_se)
171 goto err;
173 init_rt_bandwidth(&tg->rt_bandwidth,
174 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
176 for_each_possible_cpu(i) {
177 rt_rq = kzalloc_node(sizeof(struct rt_rq),
178 GFP_KERNEL, cpu_to_node(i));
179 if (!rt_rq)
180 goto err;
182 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
183 GFP_KERNEL, cpu_to_node(i));
184 if (!rt_se)
185 goto err_free_rq;
187 init_rt_rq(rt_rq, cpu_rq(i));
188 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
189 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
192 return 1;
194 err_free_rq:
195 kfree(rt_rq);
196 err:
197 return 0;
200 #else /* CONFIG_RT_GROUP_SCHED */
202 #define rt_entity_is_task(rt_se) (1)
204 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
206 return container_of(rt_se, struct task_struct, rt);
209 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
211 return container_of(rt_rq, struct rq, rt);
214 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
216 struct task_struct *p = rt_task_of(rt_se);
217 struct rq *rq = task_rq(p);
219 return &rq->rt;
222 void free_rt_sched_group(struct task_group *tg) { }
224 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
226 return 1;
228 #endif /* CONFIG_RT_GROUP_SCHED */
230 #ifdef CONFIG_SMP
232 static inline int rt_overloaded(struct rq *rq)
234 return atomic_read(&rq->rd->rto_count);
237 static inline void rt_set_overload(struct rq *rq)
239 if (!rq->online)
240 return;
242 cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
244 * Make sure the mask is visible before we set
245 * the overload count. That is checked to determine
246 * if we should look at the mask. It would be a shame
247 * if we looked at the mask, but the mask was not
248 * updated yet.
250 wmb();
251 atomic_inc(&rq->rd->rto_count);
254 static inline void rt_clear_overload(struct rq *rq)
256 if (!rq->online)
257 return;
259 /* the order here really doesn't matter */
260 atomic_dec(&rq->rd->rto_count);
261 cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
264 static void update_rt_migration(struct rt_rq *rt_rq)
266 if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
267 if (!rt_rq->overloaded) {
268 rt_set_overload(rq_of_rt_rq(rt_rq));
269 rt_rq->overloaded = 1;
271 } else if (rt_rq->overloaded) {
272 rt_clear_overload(rq_of_rt_rq(rt_rq));
273 rt_rq->overloaded = 0;
277 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
279 struct task_struct *p;
281 if (!rt_entity_is_task(rt_se))
282 return;
284 p = rt_task_of(rt_se);
285 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
287 rt_rq->rt_nr_total++;
288 if (p->nr_cpus_allowed > 1)
289 rt_rq->rt_nr_migratory++;
291 update_rt_migration(rt_rq);
294 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
296 struct task_struct *p;
298 if (!rt_entity_is_task(rt_se))
299 return;
301 p = rt_task_of(rt_se);
302 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
304 rt_rq->rt_nr_total--;
305 if (p->nr_cpus_allowed > 1)
306 rt_rq->rt_nr_migratory--;
308 update_rt_migration(rt_rq);
311 static inline int has_pushable_tasks(struct rq *rq)
313 return !plist_head_empty(&rq->rt.pushable_tasks);
316 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
318 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
319 plist_node_init(&p->pushable_tasks, p->prio);
320 plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
322 /* Update the highest prio pushable task */
323 if (p->prio < rq->rt.highest_prio.next)
324 rq->rt.highest_prio.next = p->prio;
327 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
329 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
331 /* Update the new highest prio pushable task */
332 if (has_pushable_tasks(rq)) {
333 p = plist_first_entry(&rq->rt.pushable_tasks,
334 struct task_struct, pushable_tasks);
335 rq->rt.highest_prio.next = p->prio;
336 } else
337 rq->rt.highest_prio.next = MAX_RT_PRIO;
340 #else
342 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
346 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
350 static inline
351 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
355 static inline
356 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
360 #endif /* CONFIG_SMP */
362 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
364 return !list_empty(&rt_se->run_list);
367 #ifdef CONFIG_RT_GROUP_SCHED
369 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
371 if (!rt_rq->tg)
372 return RUNTIME_INF;
374 return rt_rq->rt_runtime;
377 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
379 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
382 typedef struct task_group *rt_rq_iter_t;
384 static inline struct task_group *next_task_group(struct task_group *tg)
386 do {
387 tg = list_entry_rcu(tg->list.next,
388 typeof(struct task_group), list);
389 } while (&tg->list != &task_groups && task_group_is_autogroup(tg));
391 if (&tg->list == &task_groups)
392 tg = NULL;
394 return tg;
397 #define for_each_rt_rq(rt_rq, iter, rq) \
398 for (iter = container_of(&task_groups, typeof(*iter), list); \
399 (iter = next_task_group(iter)) && \
400 (rt_rq = iter->rt_rq[cpu_of(rq)]);)
402 #define for_each_sched_rt_entity(rt_se) \
403 for (; rt_se; rt_se = rt_se->parent)
405 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
407 return rt_se->my_q;
410 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head);
411 static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
413 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
415 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
416 struct sched_rt_entity *rt_se;
418 int cpu = cpu_of(rq_of_rt_rq(rt_rq));
420 rt_se = rt_rq->tg->rt_se[cpu];
422 if (rt_rq->rt_nr_running) {
423 if (rt_se && !on_rt_rq(rt_se))
424 enqueue_rt_entity(rt_se, false);
425 if (rt_rq->highest_prio.curr < curr->prio)
426 resched_task(curr);
430 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
432 struct sched_rt_entity *rt_se;
433 int cpu = cpu_of(rq_of_rt_rq(rt_rq));
435 rt_se = rt_rq->tg->rt_se[cpu];
437 if (rt_se && on_rt_rq(rt_se))
438 dequeue_rt_entity(rt_se);
441 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
443 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
446 static int rt_se_boosted(struct sched_rt_entity *rt_se)
448 struct rt_rq *rt_rq = group_rt_rq(rt_se);
449 struct task_struct *p;
451 if (rt_rq)
452 return !!rt_rq->rt_nr_boosted;
454 p = rt_task_of(rt_se);
455 return p->prio != p->normal_prio;
458 #ifdef CONFIG_SMP
459 static inline const struct cpumask *sched_rt_period_mask(void)
461 return this_rq()->rd->span;
463 #else
464 static inline const struct cpumask *sched_rt_period_mask(void)
466 return cpu_online_mask;
468 #endif
470 static inline
471 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
473 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
476 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
478 return &rt_rq->tg->rt_bandwidth;
481 #else /* !CONFIG_RT_GROUP_SCHED */
483 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
485 return rt_rq->rt_runtime;
488 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
490 return ktime_to_ns(def_rt_bandwidth.rt_period);
493 typedef struct rt_rq *rt_rq_iter_t;
495 #define for_each_rt_rq(rt_rq, iter, rq) \
496 for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
498 #define for_each_sched_rt_entity(rt_se) \
499 for (; rt_se; rt_se = NULL)
501 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
503 return NULL;
506 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
508 if (rt_rq->rt_nr_running)
509 resched_task(rq_of_rt_rq(rt_rq)->curr);
512 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
516 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
518 return rt_rq->rt_throttled;
521 static inline const struct cpumask *sched_rt_period_mask(void)
523 return cpu_online_mask;
526 static inline
527 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
529 return &cpu_rq(cpu)->rt;
532 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
534 return &def_rt_bandwidth;
537 #endif /* CONFIG_RT_GROUP_SCHED */
539 #ifdef CONFIG_SMP
541 * We ran out of runtime, see if we can borrow some from our neighbours.
543 static int do_balance_runtime(struct rt_rq *rt_rq)
545 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
546 struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
547 int i, weight, more = 0;
548 u64 rt_period;
550 weight = cpumask_weight(rd->span);
552 raw_spin_lock(&rt_b->rt_runtime_lock);
553 rt_period = ktime_to_ns(rt_b->rt_period);
554 for_each_cpu(i, rd->span) {
555 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
556 s64 diff;
558 if (iter == rt_rq)
559 continue;
561 raw_spin_lock(&iter->rt_runtime_lock);
563 * Either all rqs have inf runtime and there's nothing to steal
564 * or __disable_runtime() below sets a specific rq to inf to
565 * indicate its been disabled and disalow stealing.
567 if (iter->rt_runtime == RUNTIME_INF)
568 goto next;
571 * From runqueues with spare time, take 1/n part of their
572 * spare time, but no more than our period.
574 diff = iter->rt_runtime - iter->rt_time;
575 if (diff > 0) {
576 diff = div_u64((u64)diff, weight);
577 if (rt_rq->rt_runtime + diff > rt_period)
578 diff = rt_period - rt_rq->rt_runtime;
579 iter->rt_runtime -= diff;
580 rt_rq->rt_runtime += diff;
581 more = 1;
582 if (rt_rq->rt_runtime == rt_period) {
583 raw_spin_unlock(&iter->rt_runtime_lock);
584 break;
587 next:
588 raw_spin_unlock(&iter->rt_runtime_lock);
590 raw_spin_unlock(&rt_b->rt_runtime_lock);
592 return more;
596 * Ensure this RQ takes back all the runtime it lend to its neighbours.
598 static void __disable_runtime(struct rq *rq)
600 struct root_domain *rd = rq->rd;
601 rt_rq_iter_t iter;
602 struct rt_rq *rt_rq;
604 if (unlikely(!scheduler_running))
605 return;
607 for_each_rt_rq(rt_rq, iter, rq) {
608 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
609 s64 want;
610 int i;
612 raw_spin_lock(&rt_b->rt_runtime_lock);
613 raw_spin_lock(&rt_rq->rt_runtime_lock);
615 * Either we're all inf and nobody needs to borrow, or we're
616 * already disabled and thus have nothing to do, or we have
617 * exactly the right amount of runtime to take out.
619 if (rt_rq->rt_runtime == RUNTIME_INF ||
620 rt_rq->rt_runtime == rt_b->rt_runtime)
621 goto balanced;
622 raw_spin_unlock(&rt_rq->rt_runtime_lock);
625 * Calculate the difference between what we started out with
626 * and what we current have, that's the amount of runtime
627 * we lend and now have to reclaim.
629 want = rt_b->rt_runtime - rt_rq->rt_runtime;
632 * Greedy reclaim, take back as much as we can.
634 for_each_cpu(i, rd->span) {
635 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
636 s64 diff;
639 * Can't reclaim from ourselves or disabled runqueues.
641 if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
642 continue;
644 raw_spin_lock(&iter->rt_runtime_lock);
645 if (want > 0) {
646 diff = min_t(s64, iter->rt_runtime, want);
647 iter->rt_runtime -= diff;
648 want -= diff;
649 } else {
650 iter->rt_runtime -= want;
651 want -= want;
653 raw_spin_unlock(&iter->rt_runtime_lock);
655 if (!want)
656 break;
659 raw_spin_lock(&rt_rq->rt_runtime_lock);
661 * We cannot be left wanting - that would mean some runtime
662 * leaked out of the system.
664 BUG_ON(want);
665 balanced:
667 * Disable all the borrow logic by pretending we have inf
668 * runtime - in which case borrowing doesn't make sense.
670 rt_rq->rt_runtime = RUNTIME_INF;
671 rt_rq->rt_throttled = 0;
672 raw_spin_unlock(&rt_rq->rt_runtime_lock);
673 raw_spin_unlock(&rt_b->rt_runtime_lock);
677 static void __enable_runtime(struct rq *rq)
679 rt_rq_iter_t iter;
680 struct rt_rq *rt_rq;
682 if (unlikely(!scheduler_running))
683 return;
686 * Reset each runqueue's bandwidth settings
688 for_each_rt_rq(rt_rq, iter, rq) {
689 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
691 raw_spin_lock(&rt_b->rt_runtime_lock);
692 raw_spin_lock(&rt_rq->rt_runtime_lock);
693 rt_rq->rt_runtime = rt_b->rt_runtime;
694 rt_rq->rt_time = 0;
695 rt_rq->rt_throttled = 0;
696 raw_spin_unlock(&rt_rq->rt_runtime_lock);
697 raw_spin_unlock(&rt_b->rt_runtime_lock);
701 static int balance_runtime(struct rt_rq *rt_rq)
703 int more = 0;
705 if (!sched_feat(RT_RUNTIME_SHARE))
706 return more;
708 if (rt_rq->rt_time > rt_rq->rt_runtime) {
709 raw_spin_unlock(&rt_rq->rt_runtime_lock);
710 more = do_balance_runtime(rt_rq);
711 raw_spin_lock(&rt_rq->rt_runtime_lock);
714 return more;
716 #else /* !CONFIG_SMP */
717 static inline int balance_runtime(struct rt_rq *rt_rq)
719 return 0;
721 #endif /* CONFIG_SMP */
723 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
725 int i, idle = 1, throttled = 0;
726 const struct cpumask *span;
728 span = sched_rt_period_mask();
729 #ifdef CONFIG_RT_GROUP_SCHED
731 * FIXME: isolated CPUs should really leave the root task group,
732 * whether they are isolcpus or were isolated via cpusets, lest
733 * the timer run on a CPU which does not service all runqueues,
734 * potentially leaving other CPUs indefinitely throttled. If
735 * isolation is really required, the user will turn the throttle
736 * off to kill the perturbations it causes anyway. Meanwhile,
737 * this maintains functionality for boot and/or troubleshooting.
739 if (rt_b == &root_task_group.rt_bandwidth)
740 span = cpu_online_mask;
741 #endif
742 for_each_cpu(i, span) {
743 int enqueue = 0;
744 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
745 struct rq *rq = rq_of_rt_rq(rt_rq);
747 raw_spin_lock(&rq->lock);
748 if (rt_rq->rt_time) {
749 u64 runtime;
751 raw_spin_lock(&rt_rq->rt_runtime_lock);
752 if (rt_rq->rt_throttled)
753 balance_runtime(rt_rq);
754 runtime = rt_rq->rt_runtime;
755 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
756 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
757 rt_rq->rt_throttled = 0;
758 enqueue = 1;
761 * Force a clock update if the CPU was idle,
762 * lest wakeup -> unthrottle time accumulate.
764 if (rt_rq->rt_nr_running && rq->curr == rq->idle)
765 rq->skip_clock_update = -1;
767 if (rt_rq->rt_time || rt_rq->rt_nr_running)
768 idle = 0;
769 raw_spin_unlock(&rt_rq->rt_runtime_lock);
770 } else if (rt_rq->rt_nr_running) {
771 idle = 0;
772 if (!rt_rq_throttled(rt_rq))
773 enqueue = 1;
775 if (rt_rq->rt_throttled)
776 throttled = 1;
778 if (enqueue)
779 sched_rt_rq_enqueue(rt_rq);
780 raw_spin_unlock(&rq->lock);
783 if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
784 return 1;
786 return idle;
789 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
791 #ifdef CONFIG_RT_GROUP_SCHED
792 struct rt_rq *rt_rq = group_rt_rq(rt_se);
794 if (rt_rq)
795 return rt_rq->highest_prio.curr;
796 #endif
798 return rt_task_of(rt_se)->prio;
801 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
803 u64 runtime = sched_rt_runtime(rt_rq);
805 if (rt_rq->rt_throttled)
806 return rt_rq_throttled(rt_rq);
808 if (runtime >= sched_rt_period(rt_rq))
809 return 0;
811 balance_runtime(rt_rq);
812 runtime = sched_rt_runtime(rt_rq);
813 if (runtime == RUNTIME_INF)
814 return 0;
816 if (rt_rq->rt_time > runtime) {
817 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
820 * Don't actually throttle groups that have no runtime assigned
821 * but accrue some time due to boosting.
823 if (likely(rt_b->rt_runtime)) {
824 static bool once = false;
826 rt_rq->rt_throttled = 1;
828 if (!once) {
829 once = true;
830 printk_sched("sched: RT throttling activated\n");
832 } else {
834 * In case we did anyway, make it go away,
835 * replenishment is a joke, since it will replenish us
836 * with exactly 0 ns.
838 rt_rq->rt_time = 0;
841 if (rt_rq_throttled(rt_rq)) {
842 sched_rt_rq_dequeue(rt_rq);
843 return 1;
847 return 0;
851 * Update the current task's runtime statistics. Skip current tasks that
852 * are not in our scheduling class.
854 static void update_curr_rt(struct rq *rq)
856 struct task_struct *curr = rq->curr;
857 struct sched_rt_entity *rt_se = &curr->rt;
858 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
859 u64 delta_exec;
861 if (curr->sched_class != &rt_sched_class)
862 return;
864 delta_exec = rq_clock_task(rq) - curr->se.exec_start;
865 if (unlikely((s64)delta_exec <= 0))
866 return;
868 schedstat_set(curr->se.statistics.exec_max,
869 max(curr->se.statistics.exec_max, delta_exec));
871 curr->se.sum_exec_runtime += delta_exec;
872 account_group_exec_runtime(curr, delta_exec);
874 curr->se.exec_start = rq_clock_task(rq);
875 cpuacct_charge(curr, delta_exec);
877 sched_rt_avg_update(rq, delta_exec);
879 if (!rt_bandwidth_enabled())
880 return;
882 for_each_sched_rt_entity(rt_se) {
883 rt_rq = rt_rq_of_se(rt_se);
885 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
886 raw_spin_lock(&rt_rq->rt_runtime_lock);
887 rt_rq->rt_time += delta_exec;
888 if (sched_rt_runtime_exceeded(rt_rq))
889 resched_task(curr);
890 raw_spin_unlock(&rt_rq->rt_runtime_lock);
895 #if defined CONFIG_SMP
897 static void
898 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
900 struct rq *rq = rq_of_rt_rq(rt_rq);
902 if (rq->online && prio < prev_prio)
903 cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
906 static void
907 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
909 struct rq *rq = rq_of_rt_rq(rt_rq);
911 if (rq->online && rt_rq->highest_prio.curr != prev_prio)
912 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
915 #else /* CONFIG_SMP */
917 static inline
918 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
919 static inline
920 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
922 #endif /* CONFIG_SMP */
924 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
925 static void
926 inc_rt_prio(struct rt_rq *rt_rq, int prio)
928 int prev_prio = rt_rq->highest_prio.curr;
930 if (prio < prev_prio)
931 rt_rq->highest_prio.curr = prio;
933 inc_rt_prio_smp(rt_rq, prio, prev_prio);
936 static void
937 dec_rt_prio(struct rt_rq *rt_rq, int prio)
939 int prev_prio = rt_rq->highest_prio.curr;
941 if (rt_rq->rt_nr_running) {
943 WARN_ON(prio < prev_prio);
946 * This may have been our highest task, and therefore
947 * we may have some recomputation to do
949 if (prio == prev_prio) {
950 struct rt_prio_array *array = &rt_rq->active;
952 rt_rq->highest_prio.curr =
953 sched_find_first_bit(array->bitmap);
956 } else
957 rt_rq->highest_prio.curr = MAX_RT_PRIO;
959 dec_rt_prio_smp(rt_rq, prio, prev_prio);
962 #else
964 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
965 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
967 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
969 #ifdef CONFIG_RT_GROUP_SCHED
971 static void
972 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
974 if (rt_se_boosted(rt_se))
975 rt_rq->rt_nr_boosted++;
977 if (rt_rq->tg)
978 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
981 static void
982 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
984 if (rt_se_boosted(rt_se))
985 rt_rq->rt_nr_boosted--;
987 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
990 #else /* CONFIG_RT_GROUP_SCHED */
992 static void
993 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
995 start_rt_bandwidth(&def_rt_bandwidth);
998 static inline
999 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1001 #endif /* CONFIG_RT_GROUP_SCHED */
1003 static inline
1004 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1006 int prio = rt_se_prio(rt_se);
1008 WARN_ON(!rt_prio(prio));
1009 rt_rq->rt_nr_running++;
1011 inc_rt_prio(rt_rq, prio);
1012 inc_rt_migration(rt_se, rt_rq);
1013 inc_rt_group(rt_se, rt_rq);
1016 static inline
1017 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1019 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1020 WARN_ON(!rt_rq->rt_nr_running);
1021 rt_rq->rt_nr_running--;
1023 dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1024 dec_rt_migration(rt_se, rt_rq);
1025 dec_rt_group(rt_se, rt_rq);
1028 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
1030 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1031 struct rt_prio_array *array = &rt_rq->active;
1032 struct rt_rq *group_rq = group_rt_rq(rt_se);
1033 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1036 * Don't enqueue the group if its throttled, or when empty.
1037 * The latter is a consequence of the former when a child group
1038 * get throttled and the current group doesn't have any other
1039 * active members.
1041 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
1042 return;
1044 if (head)
1045 list_add(&rt_se->run_list, queue);
1046 else
1047 list_add_tail(&rt_se->run_list, queue);
1048 __set_bit(rt_se_prio(rt_se), array->bitmap);
1050 inc_rt_tasks(rt_se, rt_rq);
1053 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
1055 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1056 struct rt_prio_array *array = &rt_rq->active;
1058 list_del_init(&rt_se->run_list);
1059 if (list_empty(array->queue + rt_se_prio(rt_se)))
1060 __clear_bit(rt_se_prio(rt_se), array->bitmap);
1062 dec_rt_tasks(rt_se, rt_rq);
1066 * Because the prio of an upper entry depends on the lower
1067 * entries, we must remove entries top - down.
1069 static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
1071 struct sched_rt_entity *back = NULL;
1073 for_each_sched_rt_entity(rt_se) {
1074 rt_se->back = back;
1075 back = rt_se;
1078 for (rt_se = back; rt_se; rt_se = rt_se->back) {
1079 if (on_rt_rq(rt_se))
1080 __dequeue_rt_entity(rt_se);
1084 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
1086 dequeue_rt_stack(rt_se);
1087 for_each_sched_rt_entity(rt_se)
1088 __enqueue_rt_entity(rt_se, head);
1091 static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
1093 dequeue_rt_stack(rt_se);
1095 for_each_sched_rt_entity(rt_se) {
1096 struct rt_rq *rt_rq = group_rt_rq(rt_se);
1098 if (rt_rq && rt_rq->rt_nr_running)
1099 __enqueue_rt_entity(rt_se, false);
1104 * Adding/removing a task to/from a priority array:
1106 static void
1107 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1109 struct sched_rt_entity *rt_se = &p->rt;
1111 if (flags & ENQUEUE_WAKEUP)
1112 rt_se->timeout = 0;
1114 enqueue_rt_entity(rt_se, flags & ENQUEUE_HEAD);
1116 if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1117 enqueue_pushable_task(rq, p);
1119 inc_nr_running(rq);
1122 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1124 struct sched_rt_entity *rt_se = &p->rt;
1126 update_curr_rt(rq);
1127 dequeue_rt_entity(rt_se);
1129 dequeue_pushable_task(rq, p);
1131 dec_nr_running(rq);
1135 * Put task to the head or the end of the run list without the overhead of
1136 * dequeue followed by enqueue.
1138 static void
1139 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1141 if (on_rt_rq(rt_se)) {
1142 struct rt_prio_array *array = &rt_rq->active;
1143 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1145 if (head)
1146 list_move(&rt_se->run_list, queue);
1147 else
1148 list_move_tail(&rt_se->run_list, queue);
1152 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1154 struct sched_rt_entity *rt_se = &p->rt;
1155 struct rt_rq *rt_rq;
1157 for_each_sched_rt_entity(rt_se) {
1158 rt_rq = rt_rq_of_se(rt_se);
1159 requeue_rt_entity(rt_rq, rt_se, head);
1163 static void yield_task_rt(struct rq *rq)
1165 requeue_task_rt(rq, rq->curr, 0);
1168 #ifdef CONFIG_SMP
1169 static int find_lowest_rq(struct task_struct *task);
1171 static int
1172 select_task_rq_rt(struct task_struct *p, int sd_flag, int flags)
1174 struct task_struct *curr;
1175 struct rq *rq;
1176 int cpu;
1178 cpu = task_cpu(p);
1180 if (p->nr_cpus_allowed == 1)
1181 goto out;
1183 /* For anything but wake ups, just return the task_cpu */
1184 if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
1185 goto out;
1187 rq = cpu_rq(cpu);
1189 rcu_read_lock();
1190 curr = ACCESS_ONCE(rq->curr); /* unlocked access */
1193 * If the current task on @p's runqueue is an RT task, then
1194 * try to see if we can wake this RT task up on another
1195 * runqueue. Otherwise simply start this RT task
1196 * on its current runqueue.
1198 * We want to avoid overloading runqueues. If the woken
1199 * task is a higher priority, then it will stay on this CPU
1200 * and the lower prio task should be moved to another CPU.
1201 * Even though this will probably make the lower prio task
1202 * lose its cache, we do not want to bounce a higher task
1203 * around just because it gave up its CPU, perhaps for a
1204 * lock?
1206 * For equal prio tasks, we just let the scheduler sort it out.
1208 * Otherwise, just let it ride on the affined RQ and the
1209 * post-schedule router will push the preempted task away
1211 * This test is optimistic, if we get it wrong the load-balancer
1212 * will have to sort it out.
1214 if (curr && unlikely(rt_task(curr)) &&
1215 (curr->nr_cpus_allowed < 2 ||
1216 curr->prio <= p->prio) &&
1217 (p->nr_cpus_allowed > 1)) {
1218 int target = find_lowest_rq(p);
1220 if (target != -1)
1221 cpu = target;
1223 rcu_read_unlock();
1225 out:
1226 return cpu;
1229 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1231 if (rq->curr->nr_cpus_allowed == 1)
1232 return;
1234 if (p->nr_cpus_allowed != 1
1235 && cpupri_find(&rq->rd->cpupri, p, NULL))
1236 return;
1238 if (!cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1239 return;
1242 * There appears to be other cpus that can accept
1243 * current and none to run 'p', so lets reschedule
1244 * to try and push current away:
1246 requeue_task_rt(rq, p, 1);
1247 resched_task(rq->curr);
1250 #endif /* CONFIG_SMP */
1253 * Preempt the current task with a newly woken task if needed:
1255 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
1257 if (p->prio < rq->curr->prio) {
1258 resched_task(rq->curr);
1259 return;
1262 #ifdef CONFIG_SMP
1264 * If:
1266 * - the newly woken task is of equal priority to the current task
1267 * - the newly woken task is non-migratable while current is migratable
1268 * - current will be preempted on the next reschedule
1270 * we should check to see if current can readily move to a different
1271 * cpu. If so, we will reschedule to allow the push logic to try
1272 * to move current somewhere else, making room for our non-migratable
1273 * task.
1275 if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1276 check_preempt_equal_prio(rq, p);
1277 #endif
1280 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1281 struct rt_rq *rt_rq)
1283 struct rt_prio_array *array = &rt_rq->active;
1284 struct sched_rt_entity *next = NULL;
1285 struct list_head *queue;
1286 int idx;
1288 idx = sched_find_first_bit(array->bitmap);
1289 BUG_ON(idx >= MAX_RT_PRIO);
1291 queue = array->queue + idx;
1292 next = list_entry(queue->next, struct sched_rt_entity, run_list);
1294 return next;
1297 static struct task_struct *_pick_next_task_rt(struct rq *rq)
1299 struct sched_rt_entity *rt_se;
1300 struct task_struct *p;
1301 struct rt_rq *rt_rq;
1303 rt_rq = &rq->rt;
1305 if (!rt_rq->rt_nr_running)
1306 return NULL;
1308 if (rt_rq_throttled(rt_rq))
1309 return NULL;
1311 do {
1312 rt_se = pick_next_rt_entity(rq, rt_rq);
1313 BUG_ON(!rt_se);
1314 rt_rq = group_rt_rq(rt_se);
1315 } while (rt_rq);
1317 p = rt_task_of(rt_se);
1318 p->se.exec_start = rq_clock_task(rq);
1320 return p;
1323 static struct task_struct *pick_next_task_rt(struct rq *rq)
1325 struct task_struct *p = _pick_next_task_rt(rq);
1327 /* The running task is never eligible for pushing */
1328 if (p)
1329 dequeue_pushable_task(rq, p);
1331 #ifdef CONFIG_SMP
1333 * We detect this state here so that we can avoid taking the RQ
1334 * lock again later if there is no need to push
1336 rq->post_schedule = has_pushable_tasks(rq);
1337 #endif
1339 return p;
1342 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1344 update_curr_rt(rq);
1347 * The previous task needs to be made eligible for pushing
1348 * if it is still active
1350 if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
1351 enqueue_pushable_task(rq, p);
1354 #ifdef CONFIG_SMP
1356 /* Only try algorithms three times */
1357 #define RT_MAX_TRIES 3
1359 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1361 if (!task_running(rq, p) &&
1362 cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
1363 return 1;
1364 return 0;
1368 * Return the highest pushable rq's task, which is suitable to be executed
1369 * on the cpu, NULL otherwise
1371 static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
1373 struct plist_head *head = &rq->rt.pushable_tasks;
1374 struct task_struct *p;
1376 if (!has_pushable_tasks(rq))
1377 return NULL;
1379 plist_for_each_entry(p, head, pushable_tasks) {
1380 if (pick_rt_task(rq, p, cpu))
1381 return p;
1384 return NULL;
1387 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1389 static int find_lowest_rq(struct task_struct *task)
1391 struct sched_domain *sd;
1392 struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask);
1393 int this_cpu = smp_processor_id();
1394 int cpu = task_cpu(task);
1396 /* Make sure the mask is initialized first */
1397 if (unlikely(!lowest_mask))
1398 return -1;
1400 if (task->nr_cpus_allowed == 1)
1401 return -1; /* No other targets possible */
1403 if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
1404 return -1; /* No targets found */
1407 * At this point we have built a mask of cpus representing the
1408 * lowest priority tasks in the system. Now we want to elect
1409 * the best one based on our affinity and topology.
1411 * We prioritize the last cpu that the task executed on since
1412 * it is most likely cache-hot in that location.
1414 if (cpumask_test_cpu(cpu, lowest_mask))
1415 return cpu;
1418 * Otherwise, we consult the sched_domains span maps to figure
1419 * out which cpu is logically closest to our hot cache data.
1421 if (!cpumask_test_cpu(this_cpu, lowest_mask))
1422 this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1424 rcu_read_lock();
1425 for_each_domain(cpu, sd) {
1426 if (sd->flags & SD_WAKE_AFFINE) {
1427 int best_cpu;
1430 * "this_cpu" is cheaper to preempt than a
1431 * remote processor.
1433 if (this_cpu != -1 &&
1434 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1435 rcu_read_unlock();
1436 return this_cpu;
1439 best_cpu = cpumask_first_and(lowest_mask,
1440 sched_domain_span(sd));
1441 if (best_cpu < nr_cpu_ids) {
1442 rcu_read_unlock();
1443 return best_cpu;
1447 rcu_read_unlock();
1450 * And finally, if there were no matches within the domains
1451 * just give the caller *something* to work with from the compatible
1452 * locations.
1454 if (this_cpu != -1)
1455 return this_cpu;
1457 cpu = cpumask_any(lowest_mask);
1458 if (cpu < nr_cpu_ids)
1459 return cpu;
1460 return -1;
1463 /* Will lock the rq it finds */
1464 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1466 struct rq *lowest_rq = NULL;
1467 int tries;
1468 int cpu;
1470 for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1471 cpu = find_lowest_rq(task);
1473 if ((cpu == -1) || (cpu == rq->cpu))
1474 break;
1476 lowest_rq = cpu_rq(cpu);
1478 /* if the prio of this runqueue changed, try again */
1479 if (double_lock_balance(rq, lowest_rq)) {
1481 * We had to unlock the run queue. In
1482 * the mean time, task could have
1483 * migrated already or had its affinity changed.
1484 * Also make sure that it wasn't scheduled on its rq.
1486 if (unlikely(task_rq(task) != rq ||
1487 !cpumask_test_cpu(lowest_rq->cpu,
1488 tsk_cpus_allowed(task)) ||
1489 task_running(rq, task) ||
1490 !task->on_rq)) {
1492 double_unlock_balance(rq, lowest_rq);
1493 lowest_rq = NULL;
1494 break;
1498 /* If this rq is still suitable use it. */
1499 if (lowest_rq->rt.highest_prio.curr > task->prio)
1500 break;
1502 /* try again */
1503 double_unlock_balance(rq, lowest_rq);
1504 lowest_rq = NULL;
1507 return lowest_rq;
1510 static struct task_struct *pick_next_pushable_task(struct rq *rq)
1512 struct task_struct *p;
1514 if (!has_pushable_tasks(rq))
1515 return NULL;
1517 p = plist_first_entry(&rq->rt.pushable_tasks,
1518 struct task_struct, pushable_tasks);
1520 BUG_ON(rq->cpu != task_cpu(p));
1521 BUG_ON(task_current(rq, p));
1522 BUG_ON(p->nr_cpus_allowed <= 1);
1524 BUG_ON(!p->on_rq);
1525 BUG_ON(!rt_task(p));
1527 return p;
1531 * If the current CPU has more than one RT task, see if the non
1532 * running task can migrate over to a CPU that is running a task
1533 * of lesser priority.
1535 static int push_rt_task(struct rq *rq)
1537 struct task_struct *next_task;
1538 struct rq *lowest_rq;
1539 int ret = 0;
1541 if (!rq->rt.overloaded)
1542 return 0;
1544 next_task = pick_next_pushable_task(rq);
1545 if (!next_task)
1546 return 0;
1548 retry:
1549 if (unlikely(next_task == rq->curr)) {
1550 WARN_ON(1);
1551 return 0;
1555 * It's possible that the next_task slipped in of
1556 * higher priority than current. If that's the case
1557 * just reschedule current.
1559 if (unlikely(next_task->prio < rq->curr->prio)) {
1560 resched_task(rq->curr);
1561 return 0;
1564 /* We might release rq lock */
1565 get_task_struct(next_task);
1567 /* find_lock_lowest_rq locks the rq if found */
1568 lowest_rq = find_lock_lowest_rq(next_task, rq);
1569 if (!lowest_rq) {
1570 struct task_struct *task;
1572 * find_lock_lowest_rq releases rq->lock
1573 * so it is possible that next_task has migrated.
1575 * We need to make sure that the task is still on the same
1576 * run-queue and is also still the next task eligible for
1577 * pushing.
1579 task = pick_next_pushable_task(rq);
1580 if (task_cpu(next_task) == rq->cpu && task == next_task) {
1582 * The task hasn't migrated, and is still the next
1583 * eligible task, but we failed to find a run-queue
1584 * to push it to. Do not retry in this case, since
1585 * other cpus will pull from us when ready.
1587 goto out;
1590 if (!task)
1591 /* No more tasks, just exit */
1592 goto out;
1595 * Something has shifted, try again.
1597 put_task_struct(next_task);
1598 next_task = task;
1599 goto retry;
1602 deactivate_task(rq, next_task, 0);
1603 set_task_cpu(next_task, lowest_rq->cpu);
1604 activate_task(lowest_rq, next_task, 0);
1605 ret = 1;
1607 resched_task(lowest_rq->curr);
1609 double_unlock_balance(rq, lowest_rq);
1611 out:
1612 put_task_struct(next_task);
1614 return ret;
1617 static void push_rt_tasks(struct rq *rq)
1619 /* push_rt_task will return true if it moved an RT */
1620 while (push_rt_task(rq))
1624 static int pull_rt_task(struct rq *this_rq)
1626 int this_cpu = this_rq->cpu, ret = 0, cpu;
1627 struct task_struct *p;
1628 struct rq *src_rq;
1630 if (likely(!rt_overloaded(this_rq)))
1631 return 0;
1633 for_each_cpu(cpu, this_rq->rd->rto_mask) {
1634 if (this_cpu == cpu)
1635 continue;
1637 src_rq = cpu_rq(cpu);
1640 * Don't bother taking the src_rq->lock if the next highest
1641 * task is known to be lower-priority than our current task.
1642 * This may look racy, but if this value is about to go
1643 * logically higher, the src_rq will push this task away.
1644 * And if its going logically lower, we do not care
1646 if (src_rq->rt.highest_prio.next >=
1647 this_rq->rt.highest_prio.curr)
1648 continue;
1651 * We can potentially drop this_rq's lock in
1652 * double_lock_balance, and another CPU could
1653 * alter this_rq
1655 double_lock_balance(this_rq, src_rq);
1658 * We can pull only a task, which is pushable
1659 * on its rq, and no others.
1661 p = pick_highest_pushable_task(src_rq, this_cpu);
1664 * Do we have an RT task that preempts
1665 * the to-be-scheduled task?
1667 if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
1668 WARN_ON(p == src_rq->curr);
1669 WARN_ON(!p->on_rq);
1672 * There's a chance that p is higher in priority
1673 * than what's currently running on its cpu.
1674 * This is just that p is wakeing up and hasn't
1675 * had a chance to schedule. We only pull
1676 * p if it is lower in priority than the
1677 * current task on the run queue
1679 if (p->prio < src_rq->curr->prio)
1680 goto skip;
1682 ret = 1;
1684 deactivate_task(src_rq, p, 0);
1685 set_task_cpu(p, this_cpu);
1686 activate_task(this_rq, p, 0);
1688 * We continue with the search, just in
1689 * case there's an even higher prio task
1690 * in another runqueue. (low likelihood
1691 * but possible)
1694 skip:
1695 double_unlock_balance(this_rq, src_rq);
1698 return ret;
1701 static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
1703 /* Try to pull RT tasks here if we lower this rq's prio */
1704 if (rq->rt.highest_prio.curr > prev->prio)
1705 pull_rt_task(rq);
1708 static void post_schedule_rt(struct rq *rq)
1710 push_rt_tasks(rq);
1714 * If we are not running and we are not going to reschedule soon, we should
1715 * try to push tasks away now
1717 static void task_woken_rt(struct rq *rq, struct task_struct *p)
1719 if (!task_running(rq, p) &&
1720 !test_tsk_need_resched(rq->curr) &&
1721 has_pushable_tasks(rq) &&
1722 p->nr_cpus_allowed > 1 &&
1723 rt_task(rq->curr) &&
1724 (rq->curr->nr_cpus_allowed < 2 ||
1725 rq->curr->prio <= p->prio))
1726 push_rt_tasks(rq);
1729 static void set_cpus_allowed_rt(struct task_struct *p,
1730 const struct cpumask *new_mask)
1732 struct rq *rq;
1733 int weight;
1735 BUG_ON(!rt_task(p));
1737 if (!p->on_rq)
1738 return;
1740 weight = cpumask_weight(new_mask);
1743 * Only update if the process changes its state from whether it
1744 * can migrate or not.
1746 if ((p->nr_cpus_allowed > 1) == (weight > 1))
1747 return;
1749 rq = task_rq(p);
1752 * The process used to be able to migrate OR it can now migrate
1754 if (weight <= 1) {
1755 if (!task_current(rq, p))
1756 dequeue_pushable_task(rq, p);
1757 BUG_ON(!rq->rt.rt_nr_migratory);
1758 rq->rt.rt_nr_migratory--;
1759 } else {
1760 if (!task_current(rq, p))
1761 enqueue_pushable_task(rq, p);
1762 rq->rt.rt_nr_migratory++;
1765 update_rt_migration(&rq->rt);
1768 /* Assumes rq->lock is held */
1769 static void rq_online_rt(struct rq *rq)
1771 if (rq->rt.overloaded)
1772 rt_set_overload(rq);
1774 __enable_runtime(rq);
1776 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
1779 /* Assumes rq->lock is held */
1780 static void rq_offline_rt(struct rq *rq)
1782 if (rq->rt.overloaded)
1783 rt_clear_overload(rq);
1785 __disable_runtime(rq);
1787 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
1791 * When switch from the rt queue, we bring ourselves to a position
1792 * that we might want to pull RT tasks from other runqueues.
1794 static void switched_from_rt(struct rq *rq, struct task_struct *p)
1797 * If there are other RT tasks then we will reschedule
1798 * and the scheduling of the other RT tasks will handle
1799 * the balancing. But if we are the last RT task
1800 * we may need to handle the pulling of RT tasks
1801 * now.
1803 if (!p->on_rq || rq->rt.rt_nr_running)
1804 return;
1806 if (pull_rt_task(rq))
1807 resched_task(rq->curr);
1810 void init_sched_rt_class(void)
1812 unsigned int i;
1814 for_each_possible_cpu(i) {
1815 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
1816 GFP_KERNEL, cpu_to_node(i));
1819 #endif /* CONFIG_SMP */
1822 * When switching a task to RT, we may overload the runqueue
1823 * with RT tasks. In this case we try to push them off to
1824 * other runqueues.
1826 static void switched_to_rt(struct rq *rq, struct task_struct *p)
1828 int check_resched = 1;
1831 * If we are already running, then there's nothing
1832 * that needs to be done. But if we are not running
1833 * we may need to preempt the current running task.
1834 * If that current running task is also an RT task
1835 * then see if we can move to another run queue.
1837 if (p->on_rq && rq->curr != p) {
1838 #ifdef CONFIG_SMP
1839 if (rq->rt.overloaded && push_rt_task(rq) &&
1840 /* Don't resched if we changed runqueues */
1841 rq != task_rq(p))
1842 check_resched = 0;
1843 #endif /* CONFIG_SMP */
1844 if (check_resched && p->prio < rq->curr->prio)
1845 resched_task(rq->curr);
1850 * Priority of the task has changed. This may cause
1851 * us to initiate a push or pull.
1853 static void
1854 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
1856 if (!p->on_rq)
1857 return;
1859 if (rq->curr == p) {
1860 #ifdef CONFIG_SMP
1862 * If our priority decreases while running, we
1863 * may need to pull tasks to this runqueue.
1865 if (oldprio < p->prio)
1866 pull_rt_task(rq);
1868 * If there's a higher priority task waiting to run
1869 * then reschedule. Note, the above pull_rt_task
1870 * can release the rq lock and p could migrate.
1871 * Only reschedule if p is still on the same runqueue.
1873 if (p->prio > rq->rt.highest_prio.curr && rq->curr == p)
1874 resched_task(p);
1875 #else
1876 /* For UP simply resched on drop of prio */
1877 if (oldprio < p->prio)
1878 resched_task(p);
1879 #endif /* CONFIG_SMP */
1880 } else {
1882 * This task is not running, but if it is
1883 * greater than the current running task
1884 * then reschedule.
1886 if (p->prio < rq->curr->prio)
1887 resched_task(rq->curr);
1891 static void watchdog(struct rq *rq, struct task_struct *p)
1893 unsigned long soft, hard;
1895 /* max may change after cur was read, this will be fixed next tick */
1896 soft = task_rlimit(p, RLIMIT_RTTIME);
1897 hard = task_rlimit_max(p, RLIMIT_RTTIME);
1899 if (soft != RLIM_INFINITY) {
1900 unsigned long next;
1902 if (p->rt.watchdog_stamp != jiffies) {
1903 p->rt.timeout++;
1904 p->rt.watchdog_stamp = jiffies;
1907 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
1908 if (p->rt.timeout > next)
1909 p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
1913 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
1915 struct sched_rt_entity *rt_se = &p->rt;
1917 update_curr_rt(rq);
1919 watchdog(rq, p);
1922 * RR tasks need a special form of timeslice management.
1923 * FIFO tasks have no timeslices.
1925 if (p->policy != SCHED_RR)
1926 return;
1928 if (--p->rt.time_slice)
1929 return;
1931 p->rt.time_slice = sched_rr_timeslice;
1934 * Requeue to the end of queue if we (and all of our ancestors) are the
1935 * only element on the queue
1937 for_each_sched_rt_entity(rt_se) {
1938 if (rt_se->run_list.prev != rt_se->run_list.next) {
1939 requeue_task_rt(rq, p, 0);
1940 set_tsk_need_resched(p);
1941 return;
1946 static void set_curr_task_rt(struct rq *rq)
1948 struct task_struct *p = rq->curr;
1950 p->se.exec_start = rq_clock_task(rq);
1952 /* The running task is never eligible for pushing */
1953 dequeue_pushable_task(rq, p);
1956 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
1959 * Time slice is 0 for SCHED_FIFO tasks
1961 if (task->policy == SCHED_RR)
1962 return sched_rr_timeslice;
1963 else
1964 return 0;
1967 const struct sched_class rt_sched_class = {
1968 .next = &fair_sched_class,
1969 .enqueue_task = enqueue_task_rt,
1970 .dequeue_task = dequeue_task_rt,
1971 .yield_task = yield_task_rt,
1973 .check_preempt_curr = check_preempt_curr_rt,
1975 .pick_next_task = pick_next_task_rt,
1976 .put_prev_task = put_prev_task_rt,
1978 #ifdef CONFIG_SMP
1979 .select_task_rq = select_task_rq_rt,
1981 .set_cpus_allowed = set_cpus_allowed_rt,
1982 .rq_online = rq_online_rt,
1983 .rq_offline = rq_offline_rt,
1984 .pre_schedule = pre_schedule_rt,
1985 .post_schedule = post_schedule_rt,
1986 .task_woken = task_woken_rt,
1987 .switched_from = switched_from_rt,
1988 #endif
1990 .set_curr_task = set_curr_task_rt,
1991 .task_tick = task_tick_rt,
1993 .get_rr_interval = get_rr_interval_rt,
1995 .prio_changed = prio_changed_rt,
1996 .switched_to = switched_to_rt,
1999 #ifdef CONFIG_SCHED_DEBUG
2000 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2002 void print_rt_stats(struct seq_file *m, int cpu)
2004 rt_rq_iter_t iter;
2005 struct rt_rq *rt_rq;
2007 rcu_read_lock();
2008 for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
2009 print_rt_rq(m, cpu, rt_rq);
2010 rcu_read_unlock();
2012 #endif /* CONFIG_SCHED_DEBUG */