4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmpressure.h>
23 #include <linux/vmstat.h>
24 #include <linux/file.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/buffer_head.h> /* for try_to_release_page(),
28 buffer_heads_over_limit */
29 #include <linux/mm_inline.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/compaction.h>
36 #include <linux/notifier.h>
37 #include <linux/rwsem.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41 #include <linux/memcontrol.h>
42 #include <linux/delayacct.h>
43 #include <linux/sysctl.h>
44 #include <linux/oom.h>
45 #include <linux/prefetch.h>
47 #include <asm/tlbflush.h>
48 #include <asm/div64.h>
50 #include <linux/swapops.h>
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/vmscan.h>
58 /* Incremented by the number of inactive pages that were scanned */
59 unsigned long nr_scanned
;
61 /* Number of pages freed so far during a call to shrink_zones() */
62 unsigned long nr_reclaimed
;
64 /* How many pages shrink_list() should reclaim */
65 unsigned long nr_to_reclaim
;
67 unsigned long hibernation_mode
;
69 /* This context's GFP mask */
74 /* Can mapped pages be reclaimed? */
77 /* Can pages be swapped as part of reclaim? */
82 /* Scan (total_size >> priority) pages at once */
86 * The memory cgroup that hit its limit and as a result is the
87 * primary target of this reclaim invocation.
89 struct mem_cgroup
*target_mem_cgroup
;
92 * Nodemask of nodes allowed by the caller. If NULL, all nodes
98 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
100 #ifdef ARCH_HAS_PREFETCH
101 #define prefetch_prev_lru_page(_page, _base, _field) \
103 if ((_page)->lru.prev != _base) { \
106 prev = lru_to_page(&(_page->lru)); \
107 prefetch(&prev->_field); \
111 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
114 #ifdef ARCH_HAS_PREFETCHW
115 #define prefetchw_prev_lru_page(_page, _base, _field) \
117 if ((_page)->lru.prev != _base) { \
120 prev = lru_to_page(&(_page->lru)); \
121 prefetchw(&prev->_field); \
125 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
129 * From 0 .. 100. Higher means more swappy.
131 int vm_swappiness
= 60;
132 unsigned long vm_total_pages
; /* The total number of pages which the VM controls */
134 static LIST_HEAD(shrinker_list
);
135 static DECLARE_RWSEM(shrinker_rwsem
);
138 static bool global_reclaim(struct scan_control
*sc
)
140 return !sc
->target_mem_cgroup
;
143 static bool global_reclaim(struct scan_control
*sc
)
149 static unsigned long get_lru_size(struct lruvec
*lruvec
, enum lru_list lru
)
151 if (!mem_cgroup_disabled())
152 return mem_cgroup_get_lru_size(lruvec
, lru
);
154 return zone_page_state(lruvec_zone(lruvec
), NR_LRU_BASE
+ lru
);
158 * Add a shrinker callback to be called from the vm
160 void register_shrinker(struct shrinker
*shrinker
)
162 atomic_long_set(&shrinker
->nr_in_batch
, 0);
163 down_write(&shrinker_rwsem
);
164 list_add_tail(&shrinker
->list
, &shrinker_list
);
165 up_write(&shrinker_rwsem
);
167 EXPORT_SYMBOL(register_shrinker
);
172 void unregister_shrinker(struct shrinker
*shrinker
)
174 down_write(&shrinker_rwsem
);
175 list_del(&shrinker
->list
);
176 up_write(&shrinker_rwsem
);
178 EXPORT_SYMBOL(unregister_shrinker
);
180 static inline int do_shrinker_shrink(struct shrinker
*shrinker
,
181 struct shrink_control
*sc
,
182 unsigned long nr_to_scan
)
184 sc
->nr_to_scan
= nr_to_scan
;
185 return (*shrinker
->shrink
)(shrinker
, sc
);
188 #define SHRINK_BATCH 128
190 * Call the shrink functions to age shrinkable caches
192 * Here we assume it costs one seek to replace a lru page and that it also
193 * takes a seek to recreate a cache object. With this in mind we age equal
194 * percentages of the lru and ageable caches. This should balance the seeks
195 * generated by these structures.
197 * If the vm encountered mapped pages on the LRU it increase the pressure on
198 * slab to avoid swapping.
200 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
202 * `lru_pages' represents the number of on-LRU pages in all the zones which
203 * are eligible for the caller's allocation attempt. It is used for balancing
204 * slab reclaim versus page reclaim.
206 * Returns the number of slab objects which we shrunk.
208 unsigned long shrink_slab(struct shrink_control
*shrink
,
209 unsigned long nr_pages_scanned
,
210 unsigned long lru_pages
)
212 struct shrinker
*shrinker
;
213 unsigned long ret
= 0;
215 if (nr_pages_scanned
== 0)
216 nr_pages_scanned
= SWAP_CLUSTER_MAX
;
218 if (!down_read_trylock(&shrinker_rwsem
)) {
219 /* Assume we'll be able to shrink next time */
224 list_for_each_entry(shrinker
, &shrinker_list
, list
) {
225 unsigned long long delta
;
231 long batch_size
= shrinker
->batch
? shrinker
->batch
234 max_pass
= do_shrinker_shrink(shrinker
, shrink
, 0);
239 * copy the current shrinker scan count into a local variable
240 * and zero it so that other concurrent shrinker invocations
241 * don't also do this scanning work.
243 nr
= atomic_long_xchg(&shrinker
->nr_in_batch
, 0);
246 delta
= (4 * nr_pages_scanned
) / shrinker
->seeks
;
248 do_div(delta
, lru_pages
+ 1);
250 if (total_scan
< 0) {
251 printk(KERN_ERR
"shrink_slab: %pF negative objects to "
253 shrinker
->shrink
, total_scan
);
254 total_scan
= max_pass
;
258 * We need to avoid excessive windup on filesystem shrinkers
259 * due to large numbers of GFP_NOFS allocations causing the
260 * shrinkers to return -1 all the time. This results in a large
261 * nr being built up so when a shrink that can do some work
262 * comes along it empties the entire cache due to nr >>>
263 * max_pass. This is bad for sustaining a working set in
266 * Hence only allow the shrinker to scan the entire cache when
267 * a large delta change is calculated directly.
269 if (delta
< max_pass
/ 4)
270 total_scan
= min(total_scan
, max_pass
/ 2);
273 * Avoid risking looping forever due to too large nr value:
274 * never try to free more than twice the estimate number of
277 if (total_scan
> max_pass
* 2)
278 total_scan
= max_pass
* 2;
280 trace_mm_shrink_slab_start(shrinker
, shrink
, nr
,
281 nr_pages_scanned
, lru_pages
,
282 max_pass
, delta
, total_scan
);
284 while (total_scan
>= batch_size
) {
287 nr_before
= do_shrinker_shrink(shrinker
, shrink
, 0);
288 shrink_ret
= do_shrinker_shrink(shrinker
, shrink
,
290 if (shrink_ret
== -1)
292 if (shrink_ret
< nr_before
)
293 ret
+= nr_before
- shrink_ret
;
294 count_vm_events(SLABS_SCANNED
, batch_size
);
295 total_scan
-= batch_size
;
301 * move the unused scan count back into the shrinker in a
302 * manner that handles concurrent updates. If we exhausted the
303 * scan, there is no need to do an update.
306 new_nr
= atomic_long_add_return(total_scan
,
307 &shrinker
->nr_in_batch
);
309 new_nr
= atomic_long_read(&shrinker
->nr_in_batch
);
311 trace_mm_shrink_slab_end(shrinker
, shrink_ret
, nr
, new_nr
);
313 up_read(&shrinker_rwsem
);
319 static inline int is_page_cache_freeable(struct page
*page
)
322 * A freeable page cache page is referenced only by the caller
323 * that isolated the page, the page cache radix tree and
324 * optional buffer heads at page->private.
326 return page_count(page
) - page_has_private(page
) == 2;
329 static int may_write_to_queue(struct backing_dev_info
*bdi
,
330 struct scan_control
*sc
)
332 if (current
->flags
& PF_SWAPWRITE
)
334 if (!bdi_write_congested(bdi
))
336 if (bdi
== current
->backing_dev_info
)
342 * We detected a synchronous write error writing a page out. Probably
343 * -ENOSPC. We need to propagate that into the address_space for a subsequent
344 * fsync(), msync() or close().
346 * The tricky part is that after writepage we cannot touch the mapping: nothing
347 * prevents it from being freed up. But we have a ref on the page and once
348 * that page is locked, the mapping is pinned.
350 * We're allowed to run sleeping lock_page() here because we know the caller has
353 static void handle_write_error(struct address_space
*mapping
,
354 struct page
*page
, int error
)
357 if (page_mapping(page
) == mapping
)
358 mapping_set_error(mapping
, error
);
362 /* possible outcome of pageout() */
364 /* failed to write page out, page is locked */
366 /* move page to the active list, page is locked */
368 /* page has been sent to the disk successfully, page is unlocked */
370 /* page is clean and locked */
375 * pageout is called by shrink_page_list() for each dirty page.
376 * Calls ->writepage().
378 static pageout_t
pageout(struct page
*page
, struct address_space
*mapping
,
379 struct scan_control
*sc
)
382 * If the page is dirty, only perform writeback if that write
383 * will be non-blocking. To prevent this allocation from being
384 * stalled by pagecache activity. But note that there may be
385 * stalls if we need to run get_block(). We could test
386 * PagePrivate for that.
388 * If this process is currently in __generic_file_aio_write() against
389 * this page's queue, we can perform writeback even if that
392 * If the page is swapcache, write it back even if that would
393 * block, for some throttling. This happens by accident, because
394 * swap_backing_dev_info is bust: it doesn't reflect the
395 * congestion state of the swapdevs. Easy to fix, if needed.
397 if (!is_page_cache_freeable(page
))
401 * Some data journaling orphaned pages can have
402 * page->mapping == NULL while being dirty with clean buffers.
404 if (page_has_private(page
)) {
405 if (try_to_free_buffers(page
)) {
406 ClearPageDirty(page
);
407 printk("%s: orphaned page\n", __func__
);
413 if (mapping
->a_ops
->writepage
== NULL
)
414 return PAGE_ACTIVATE
;
415 if (!may_write_to_queue(mapping
->backing_dev_info
, sc
))
418 if (clear_page_dirty_for_io(page
)) {
420 struct writeback_control wbc
= {
421 .sync_mode
= WB_SYNC_NONE
,
422 .nr_to_write
= SWAP_CLUSTER_MAX
,
424 .range_end
= LLONG_MAX
,
428 SetPageReclaim(page
);
429 res
= mapping
->a_ops
->writepage(page
, &wbc
);
431 handle_write_error(mapping
, page
, res
);
432 if (res
== AOP_WRITEPAGE_ACTIVATE
) {
433 ClearPageReclaim(page
);
434 return PAGE_ACTIVATE
;
437 if (!PageWriteback(page
)) {
438 /* synchronous write or broken a_ops? */
439 ClearPageReclaim(page
);
441 trace_mm_vmscan_writepage(page
, trace_reclaim_flags(page
));
442 inc_zone_page_state(page
, NR_VMSCAN_WRITE
);
450 * Same as remove_mapping, but if the page is removed from the mapping, it
451 * gets returned with a refcount of 0.
453 static int __remove_mapping(struct address_space
*mapping
, struct page
*page
)
455 BUG_ON(!PageLocked(page
));
456 BUG_ON(mapping
!= page_mapping(page
));
458 spin_lock_irq(&mapping
->tree_lock
);
460 * The non racy check for a busy page.
462 * Must be careful with the order of the tests. When someone has
463 * a ref to the page, it may be possible that they dirty it then
464 * drop the reference. So if PageDirty is tested before page_count
465 * here, then the following race may occur:
467 * get_user_pages(&page);
468 * [user mapping goes away]
470 * !PageDirty(page) [good]
471 * SetPageDirty(page);
473 * !page_count(page) [good, discard it]
475 * [oops, our write_to data is lost]
477 * Reversing the order of the tests ensures such a situation cannot
478 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
479 * load is not satisfied before that of page->_count.
481 * Note that if SetPageDirty is always performed via set_page_dirty,
482 * and thus under tree_lock, then this ordering is not required.
484 if (!page_freeze_refs(page
, 2))
486 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
487 if (unlikely(PageDirty(page
))) {
488 page_unfreeze_refs(page
, 2);
492 if (PageSwapCache(page
)) {
493 swp_entry_t swap
= { .val
= page_private(page
) };
494 __delete_from_swap_cache(page
);
495 spin_unlock_irq(&mapping
->tree_lock
);
496 swapcache_free(swap
, page
);
498 void (*freepage
)(struct page
*);
500 freepage
= mapping
->a_ops
->freepage
;
502 __delete_from_page_cache(page
);
503 spin_unlock_irq(&mapping
->tree_lock
);
504 mem_cgroup_uncharge_cache_page(page
);
506 if (freepage
!= NULL
)
513 spin_unlock_irq(&mapping
->tree_lock
);
518 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
519 * someone else has a ref on the page, abort and return 0. If it was
520 * successfully detached, return 1. Assumes the caller has a single ref on
523 int remove_mapping(struct address_space
*mapping
, struct page
*page
)
525 if (__remove_mapping(mapping
, page
)) {
527 * Unfreezing the refcount with 1 rather than 2 effectively
528 * drops the pagecache ref for us without requiring another
531 page_unfreeze_refs(page
, 1);
538 * putback_lru_page - put previously isolated page onto appropriate LRU list
539 * @page: page to be put back to appropriate lru list
541 * Add previously isolated @page to appropriate LRU list.
542 * Page may still be unevictable for other reasons.
544 * lru_lock must not be held, interrupts must be enabled.
546 void putback_lru_page(struct page
*page
)
549 int was_unevictable
= PageUnevictable(page
);
551 VM_BUG_ON(PageLRU(page
));
554 ClearPageUnevictable(page
);
556 if (page_evictable(page
)) {
558 * For evictable pages, we can use the cache.
559 * In event of a race, worst case is we end up with an
560 * unevictable page on [in]active list.
561 * We know how to handle that.
563 lru
= page_lru_base_type(page
);
567 * Put unevictable pages directly on zone's unevictable
570 lru
= LRU_UNEVICTABLE
;
571 add_page_to_unevictable_list(page
);
573 * When racing with an mlock or AS_UNEVICTABLE clearing
574 * (page is unlocked) make sure that if the other thread
575 * does not observe our setting of PG_lru and fails
576 * isolation/check_move_unevictable_pages,
577 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
578 * the page back to the evictable list.
580 * The other side is TestClearPageMlocked() or shmem_lock().
586 * page's status can change while we move it among lru. If an evictable
587 * page is on unevictable list, it never be freed. To avoid that,
588 * check after we added it to the list, again.
590 if (lru
== LRU_UNEVICTABLE
&& page_evictable(page
)) {
591 if (!isolate_lru_page(page
)) {
595 /* This means someone else dropped this page from LRU
596 * So, it will be freed or putback to LRU again. There is
597 * nothing to do here.
601 if (was_unevictable
&& lru
!= LRU_UNEVICTABLE
)
602 count_vm_event(UNEVICTABLE_PGRESCUED
);
603 else if (!was_unevictable
&& lru
== LRU_UNEVICTABLE
)
604 count_vm_event(UNEVICTABLE_PGCULLED
);
606 put_page(page
); /* drop ref from isolate */
609 enum page_references
{
611 PAGEREF_RECLAIM_CLEAN
,
616 static enum page_references
page_check_references(struct page
*page
,
617 struct scan_control
*sc
)
619 int referenced_ptes
, referenced_page
;
620 unsigned long vm_flags
;
622 referenced_ptes
= page_referenced(page
, 1, sc
->target_mem_cgroup
,
624 referenced_page
= TestClearPageReferenced(page
);
627 * Mlock lost the isolation race with us. Let try_to_unmap()
628 * move the page to the unevictable list.
630 if (vm_flags
& VM_LOCKED
)
631 return PAGEREF_RECLAIM
;
633 if (referenced_ptes
) {
634 if (PageSwapBacked(page
))
635 return PAGEREF_ACTIVATE
;
637 * All mapped pages start out with page table
638 * references from the instantiating fault, so we need
639 * to look twice if a mapped file page is used more
642 * Mark it and spare it for another trip around the
643 * inactive list. Another page table reference will
644 * lead to its activation.
646 * Note: the mark is set for activated pages as well
647 * so that recently deactivated but used pages are
650 SetPageReferenced(page
);
652 if (referenced_page
|| referenced_ptes
> 1)
653 return PAGEREF_ACTIVATE
;
656 * Activate file-backed executable pages after first usage.
658 if (vm_flags
& VM_EXEC
)
659 return PAGEREF_ACTIVATE
;
664 /* Reclaim if clean, defer dirty pages to writeback */
665 if (referenced_page
&& !PageSwapBacked(page
))
666 return PAGEREF_RECLAIM_CLEAN
;
668 return PAGEREF_RECLAIM
;
671 /* Check if a page is dirty or under writeback */
672 static void page_check_dirty_writeback(struct page
*page
,
673 bool *dirty
, bool *writeback
)
675 struct address_space
*mapping
;
678 * Anonymous pages are not handled by flushers and must be written
679 * from reclaim context. Do not stall reclaim based on them
681 if (!page_is_file_cache(page
)) {
687 /* By default assume that the page flags are accurate */
688 *dirty
= PageDirty(page
);
689 *writeback
= PageWriteback(page
);
691 /* Verify dirty/writeback state if the filesystem supports it */
692 if (!page_has_private(page
))
695 mapping
= page_mapping(page
);
696 if (mapping
&& mapping
->a_ops
->is_dirty_writeback
)
697 mapping
->a_ops
->is_dirty_writeback(page
, dirty
, writeback
);
701 * shrink_page_list() returns the number of reclaimed pages
703 static unsigned long shrink_page_list(struct list_head
*page_list
,
705 struct scan_control
*sc
,
706 enum ttu_flags ttu_flags
,
707 unsigned long *ret_nr_dirty
,
708 unsigned long *ret_nr_unqueued_dirty
,
709 unsigned long *ret_nr_congested
,
710 unsigned long *ret_nr_writeback
,
711 unsigned long *ret_nr_immediate
,
714 LIST_HEAD(ret_pages
);
715 LIST_HEAD(free_pages
);
717 unsigned long nr_unqueued_dirty
= 0;
718 unsigned long nr_dirty
= 0;
719 unsigned long nr_congested
= 0;
720 unsigned long nr_reclaimed
= 0;
721 unsigned long nr_writeback
= 0;
722 unsigned long nr_immediate
= 0;
726 mem_cgroup_uncharge_start();
727 while (!list_empty(page_list
)) {
728 struct address_space
*mapping
;
731 enum page_references references
= PAGEREF_RECLAIM_CLEAN
;
732 bool dirty
, writeback
;
736 page
= lru_to_page(page_list
);
737 list_del(&page
->lru
);
739 if (!trylock_page(page
))
742 VM_BUG_ON(PageActive(page
));
743 VM_BUG_ON(page_zone(page
) != zone
);
747 if (unlikely(!page_evictable(page
)))
750 if (!sc
->may_unmap
&& page_mapped(page
))
753 /* Double the slab pressure for mapped and swapcache pages */
754 if (page_mapped(page
) || PageSwapCache(page
))
757 may_enter_fs
= (sc
->gfp_mask
& __GFP_FS
) ||
758 (PageSwapCache(page
) && (sc
->gfp_mask
& __GFP_IO
));
761 * The number of dirty pages determines if a zone is marked
762 * reclaim_congested which affects wait_iff_congested. kswapd
763 * will stall and start writing pages if the tail of the LRU
764 * is all dirty unqueued pages.
766 page_check_dirty_writeback(page
, &dirty
, &writeback
);
767 if (dirty
|| writeback
)
770 if (dirty
&& !writeback
)
774 * Treat this page as congested if the underlying BDI is or if
775 * pages are cycling through the LRU so quickly that the
776 * pages marked for immediate reclaim are making it to the
777 * end of the LRU a second time.
779 mapping
= page_mapping(page
);
780 if ((mapping
&& bdi_write_congested(mapping
->backing_dev_info
)) ||
781 (writeback
&& PageReclaim(page
)))
785 * If a page at the tail of the LRU is under writeback, there
786 * are three cases to consider.
788 * 1) If reclaim is encountering an excessive number of pages
789 * under writeback and this page is both under writeback and
790 * PageReclaim then it indicates that pages are being queued
791 * for IO but are being recycled through the LRU before the
792 * IO can complete. Waiting on the page itself risks an
793 * indefinite stall if it is impossible to writeback the
794 * page due to IO error or disconnected storage so instead
795 * note that the LRU is being scanned too quickly and the
796 * caller can stall after page list has been processed.
798 * 2) Global reclaim encounters a page, memcg encounters a
799 * page that is not marked for immediate reclaim or
800 * the caller does not have __GFP_IO. In this case mark
801 * the page for immediate reclaim and continue scanning.
803 * __GFP_IO is checked because a loop driver thread might
804 * enter reclaim, and deadlock if it waits on a page for
805 * which it is needed to do the write (loop masks off
806 * __GFP_IO|__GFP_FS for this reason); but more thought
807 * would probably show more reasons.
809 * Don't require __GFP_FS, since we're not going into the
810 * FS, just waiting on its writeback completion. Worryingly,
811 * ext4 gfs2 and xfs allocate pages with
812 * grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so testing
813 * may_enter_fs here is liable to OOM on them.
815 * 3) memcg encounters a page that is not already marked
816 * PageReclaim. memcg does not have any dirty pages
817 * throttling so we could easily OOM just because too many
818 * pages are in writeback and there is nothing else to
819 * reclaim. Wait for the writeback to complete.
821 if (PageWriteback(page
)) {
823 if (current_is_kswapd() &&
825 zone_is_reclaim_writeback(zone
)) {
830 } else if (global_reclaim(sc
) ||
831 !PageReclaim(page
) || !(sc
->gfp_mask
& __GFP_IO
)) {
833 * This is slightly racy - end_page_writeback()
834 * might have just cleared PageReclaim, then
835 * setting PageReclaim here end up interpreted
836 * as PageReadahead - but that does not matter
837 * enough to care. What we do want is for this
838 * page to have PageReclaim set next time memcg
839 * reclaim reaches the tests above, so it will
840 * then wait_on_page_writeback() to avoid OOM;
841 * and it's also appropriate in global reclaim.
843 SetPageReclaim(page
);
850 wait_on_page_writeback(page
);
855 references
= page_check_references(page
, sc
);
857 switch (references
) {
858 case PAGEREF_ACTIVATE
:
859 goto activate_locked
;
862 case PAGEREF_RECLAIM
:
863 case PAGEREF_RECLAIM_CLEAN
:
864 ; /* try to reclaim the page below */
868 * Anonymous process memory has backing store?
869 * Try to allocate it some swap space here.
871 if (PageAnon(page
) && !PageSwapCache(page
)) {
872 if (!(sc
->gfp_mask
& __GFP_IO
))
874 if (!add_to_swap(page
, page_list
))
875 goto activate_locked
;
878 /* Adding to swap updated mapping */
879 mapping
= page_mapping(page
);
883 * The page is mapped into the page tables of one or more
884 * processes. Try to unmap it here.
886 if (page_mapped(page
) && mapping
) {
887 switch (try_to_unmap(page
, ttu_flags
)) {
889 goto activate_locked
;
895 ; /* try to free the page below */
899 if (PageDirty(page
)) {
901 * Only kswapd can writeback filesystem pages to
902 * avoid risk of stack overflow but only writeback
903 * if many dirty pages have been encountered.
905 if (page_is_file_cache(page
) &&
906 (!current_is_kswapd() ||
907 !zone_is_reclaim_dirty(zone
))) {
909 * Immediately reclaim when written back.
910 * Similar in principal to deactivate_page()
911 * except we already have the page isolated
912 * and know it's dirty
914 inc_zone_page_state(page
, NR_VMSCAN_IMMEDIATE
);
915 SetPageReclaim(page
);
920 if (references
== PAGEREF_RECLAIM_CLEAN
)
924 if (!sc
->may_writepage
)
927 /* Page is dirty, try to write it out here */
928 switch (pageout(page
, mapping
, sc
)) {
932 goto activate_locked
;
934 if (PageWriteback(page
))
940 * A synchronous write - probably a ramdisk. Go
941 * ahead and try to reclaim the page.
943 if (!trylock_page(page
))
945 if (PageDirty(page
) || PageWriteback(page
))
947 mapping
= page_mapping(page
);
949 ; /* try to free the page below */
954 * If the page has buffers, try to free the buffer mappings
955 * associated with this page. If we succeed we try to free
958 * We do this even if the page is PageDirty().
959 * try_to_release_page() does not perform I/O, but it is
960 * possible for a page to have PageDirty set, but it is actually
961 * clean (all its buffers are clean). This happens if the
962 * buffers were written out directly, with submit_bh(). ext3
963 * will do this, as well as the blockdev mapping.
964 * try_to_release_page() will discover that cleanness and will
965 * drop the buffers and mark the page clean - it can be freed.
967 * Rarely, pages can have buffers and no ->mapping. These are
968 * the pages which were not successfully invalidated in
969 * truncate_complete_page(). We try to drop those buffers here
970 * and if that worked, and the page is no longer mapped into
971 * process address space (page_count == 1) it can be freed.
972 * Otherwise, leave the page on the LRU so it is swappable.
974 if (page_has_private(page
)) {
975 if (!try_to_release_page(page
, sc
->gfp_mask
))
976 goto activate_locked
;
977 if (!mapping
&& page_count(page
) == 1) {
979 if (put_page_testzero(page
))
983 * rare race with speculative reference.
984 * the speculative reference will free
985 * this page shortly, so we may
986 * increment nr_reclaimed here (and
987 * leave it off the LRU).
995 if (!mapping
|| !__remove_mapping(mapping
, page
))
999 * At this point, we have no other references and there is
1000 * no way to pick any more up (removed from LRU, removed
1001 * from pagecache). Can use non-atomic bitops now (and
1002 * we obviously don't have to worry about waking up a process
1003 * waiting on the page lock, because there are no references.
1005 __clear_page_locked(page
);
1010 * Is there need to periodically free_page_list? It would
1011 * appear not as the counts should be low
1013 list_add(&page
->lru
, &free_pages
);
1017 if (PageSwapCache(page
))
1018 try_to_free_swap(page
);
1020 putback_lru_page(page
);
1024 /* Not a candidate for swapping, so reclaim swap space. */
1025 if (PageSwapCache(page
) && vm_swap_full())
1026 try_to_free_swap(page
);
1027 VM_BUG_ON(PageActive(page
));
1028 SetPageActive(page
);
1033 list_add(&page
->lru
, &ret_pages
);
1034 VM_BUG_ON(PageLRU(page
) || PageUnevictable(page
));
1037 free_hot_cold_page_list(&free_pages
, 1);
1039 list_splice(&ret_pages
, page_list
);
1040 count_vm_events(PGACTIVATE
, pgactivate
);
1041 mem_cgroup_uncharge_end();
1042 *ret_nr_dirty
+= nr_dirty
;
1043 *ret_nr_congested
+= nr_congested
;
1044 *ret_nr_unqueued_dirty
+= nr_unqueued_dirty
;
1045 *ret_nr_writeback
+= nr_writeback
;
1046 *ret_nr_immediate
+= nr_immediate
;
1047 return nr_reclaimed
;
1050 unsigned long reclaim_clean_pages_from_list(struct zone
*zone
,
1051 struct list_head
*page_list
)
1053 struct scan_control sc
= {
1054 .gfp_mask
= GFP_KERNEL
,
1055 .priority
= DEF_PRIORITY
,
1058 unsigned long ret
, dummy1
, dummy2
, dummy3
, dummy4
, dummy5
;
1059 struct page
*page
, *next
;
1060 LIST_HEAD(clean_pages
);
1062 list_for_each_entry_safe(page
, next
, page_list
, lru
) {
1063 if (page_is_file_cache(page
) && !PageDirty(page
)) {
1064 ClearPageActive(page
);
1065 list_move(&page
->lru
, &clean_pages
);
1069 ret
= shrink_page_list(&clean_pages
, zone
, &sc
,
1070 TTU_UNMAP
|TTU_IGNORE_ACCESS
,
1071 &dummy1
, &dummy2
, &dummy3
, &dummy4
, &dummy5
, true);
1072 list_splice(&clean_pages
, page_list
);
1073 __mod_zone_page_state(zone
, NR_ISOLATED_FILE
, -ret
);
1078 * Attempt to remove the specified page from its LRU. Only take this page
1079 * if it is of the appropriate PageActive status. Pages which are being
1080 * freed elsewhere are also ignored.
1082 * page: page to consider
1083 * mode: one of the LRU isolation modes defined above
1085 * returns 0 on success, -ve errno on failure.
1087 int __isolate_lru_page(struct page
*page
, isolate_mode_t mode
)
1091 /* Only take pages on the LRU. */
1095 /* Compaction should not handle unevictable pages but CMA can do so */
1096 if (PageUnevictable(page
) && !(mode
& ISOLATE_UNEVICTABLE
))
1102 * To minimise LRU disruption, the caller can indicate that it only
1103 * wants to isolate pages it will be able to operate on without
1104 * blocking - clean pages for the most part.
1106 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1107 * is used by reclaim when it is cannot write to backing storage
1109 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1110 * that it is possible to migrate without blocking
1112 if (mode
& (ISOLATE_CLEAN
|ISOLATE_ASYNC_MIGRATE
)) {
1113 /* All the caller can do on PageWriteback is block */
1114 if (PageWriteback(page
))
1117 if (PageDirty(page
)) {
1118 struct address_space
*mapping
;
1120 /* ISOLATE_CLEAN means only clean pages */
1121 if (mode
& ISOLATE_CLEAN
)
1125 * Only pages without mappings or that have a
1126 * ->migratepage callback are possible to migrate
1129 mapping
= page_mapping(page
);
1130 if (mapping
&& !mapping
->a_ops
->migratepage
)
1135 if ((mode
& ISOLATE_UNMAPPED
) && page_mapped(page
))
1138 if (likely(get_page_unless_zero(page
))) {
1140 * Be careful not to clear PageLRU until after we're
1141 * sure the page is not being freed elsewhere -- the
1142 * page release code relies on it.
1152 * zone->lru_lock is heavily contended. Some of the functions that
1153 * shrink the lists perform better by taking out a batch of pages
1154 * and working on them outside the LRU lock.
1156 * For pagecache intensive workloads, this function is the hottest
1157 * spot in the kernel (apart from copy_*_user functions).
1159 * Appropriate locks must be held before calling this function.
1161 * @nr_to_scan: The number of pages to look through on the list.
1162 * @lruvec: The LRU vector to pull pages from.
1163 * @dst: The temp list to put pages on to.
1164 * @nr_scanned: The number of pages that were scanned.
1165 * @sc: The scan_control struct for this reclaim session
1166 * @mode: One of the LRU isolation modes
1167 * @lru: LRU list id for isolating
1169 * returns how many pages were moved onto *@dst.
1171 static unsigned long isolate_lru_pages(unsigned long nr_to_scan
,
1172 struct lruvec
*lruvec
, struct list_head
*dst
,
1173 unsigned long *nr_scanned
, struct scan_control
*sc
,
1174 isolate_mode_t mode
, enum lru_list lru
)
1176 struct list_head
*src
= &lruvec
->lists
[lru
];
1177 unsigned long nr_taken
= 0;
1180 for (scan
= 0; scan
< nr_to_scan
&& !list_empty(src
); scan
++) {
1184 page
= lru_to_page(src
);
1185 prefetchw_prev_lru_page(page
, src
, flags
);
1187 VM_BUG_ON(!PageLRU(page
));
1189 switch (__isolate_lru_page(page
, mode
)) {
1191 nr_pages
= hpage_nr_pages(page
);
1192 mem_cgroup_update_lru_size(lruvec
, lru
, -nr_pages
);
1193 list_move(&page
->lru
, dst
);
1194 nr_taken
+= nr_pages
;
1198 /* else it is being freed elsewhere */
1199 list_move(&page
->lru
, src
);
1208 trace_mm_vmscan_lru_isolate(sc
->order
, nr_to_scan
, scan
,
1209 nr_taken
, mode
, is_file_lru(lru
));
1214 * isolate_lru_page - tries to isolate a page from its LRU list
1215 * @page: page to isolate from its LRU list
1217 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1218 * vmstat statistic corresponding to whatever LRU list the page was on.
1220 * Returns 0 if the page was removed from an LRU list.
1221 * Returns -EBUSY if the page was not on an LRU list.
1223 * The returned page will have PageLRU() cleared. If it was found on
1224 * the active list, it will have PageActive set. If it was found on
1225 * the unevictable list, it will have the PageUnevictable bit set. That flag
1226 * may need to be cleared by the caller before letting the page go.
1228 * The vmstat statistic corresponding to the list on which the page was
1229 * found will be decremented.
1232 * (1) Must be called with an elevated refcount on the page. This is a
1233 * fundamentnal difference from isolate_lru_pages (which is called
1234 * without a stable reference).
1235 * (2) the lru_lock must not be held.
1236 * (3) interrupts must be enabled.
1238 int isolate_lru_page(struct page
*page
)
1242 VM_BUG_ON(!page_count(page
));
1244 if (PageLRU(page
)) {
1245 struct zone
*zone
= page_zone(page
);
1246 struct lruvec
*lruvec
;
1248 spin_lock_irq(&zone
->lru_lock
);
1249 lruvec
= mem_cgroup_page_lruvec(page
, zone
);
1250 if (PageLRU(page
)) {
1251 int lru
= page_lru(page
);
1254 del_page_from_lru_list(page
, lruvec
, lru
);
1257 spin_unlock_irq(&zone
->lru_lock
);
1263 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1264 * then get resheduled. When there are massive number of tasks doing page
1265 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1266 * the LRU list will go small and be scanned faster than necessary, leading to
1267 * unnecessary swapping, thrashing and OOM.
1269 static int too_many_isolated(struct zone
*zone
, int file
,
1270 struct scan_control
*sc
)
1272 unsigned long inactive
, isolated
;
1274 if (current_is_kswapd())
1277 if (!global_reclaim(sc
))
1281 inactive
= zone_page_state(zone
, NR_INACTIVE_FILE
);
1282 isolated
= zone_page_state(zone
, NR_ISOLATED_FILE
);
1284 inactive
= zone_page_state(zone
, NR_INACTIVE_ANON
);
1285 isolated
= zone_page_state(zone
, NR_ISOLATED_ANON
);
1289 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1290 * won't get blocked by normal direct-reclaimers, forming a circular
1293 if ((sc
->gfp_mask
& GFP_IOFS
) == GFP_IOFS
)
1296 return isolated
> inactive
;
1299 static noinline_for_stack
void
1300 putback_inactive_pages(struct lruvec
*lruvec
, struct list_head
*page_list
)
1302 struct zone_reclaim_stat
*reclaim_stat
= &lruvec
->reclaim_stat
;
1303 struct zone
*zone
= lruvec_zone(lruvec
);
1304 LIST_HEAD(pages_to_free
);
1307 * Put back any unfreeable pages.
1309 while (!list_empty(page_list
)) {
1310 struct page
*page
= lru_to_page(page_list
);
1313 VM_BUG_ON(PageLRU(page
));
1314 list_del(&page
->lru
);
1315 if (unlikely(!page_evictable(page
))) {
1316 spin_unlock_irq(&zone
->lru_lock
);
1317 putback_lru_page(page
);
1318 spin_lock_irq(&zone
->lru_lock
);
1322 lruvec
= mem_cgroup_page_lruvec(page
, zone
);
1325 lru
= page_lru(page
);
1326 add_page_to_lru_list(page
, lruvec
, lru
);
1328 if (is_active_lru(lru
)) {
1329 int file
= is_file_lru(lru
);
1330 int numpages
= hpage_nr_pages(page
);
1331 reclaim_stat
->recent_rotated
[file
] += numpages
;
1333 if (put_page_testzero(page
)) {
1334 __ClearPageLRU(page
);
1335 __ClearPageActive(page
);
1336 del_page_from_lru_list(page
, lruvec
, lru
);
1338 if (unlikely(PageCompound(page
))) {
1339 spin_unlock_irq(&zone
->lru_lock
);
1340 (*get_compound_page_dtor(page
))(page
);
1341 spin_lock_irq(&zone
->lru_lock
);
1343 list_add(&page
->lru
, &pages_to_free
);
1348 * To save our caller's stack, now use input list for pages to free.
1350 list_splice(&pages_to_free
, page_list
);
1354 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1355 * of reclaimed pages
1357 static noinline_for_stack
unsigned long
1358 shrink_inactive_list(unsigned long nr_to_scan
, struct lruvec
*lruvec
,
1359 struct scan_control
*sc
, enum lru_list lru
)
1361 LIST_HEAD(page_list
);
1362 unsigned long nr_scanned
;
1363 unsigned long nr_reclaimed
= 0;
1364 unsigned long nr_taken
;
1365 unsigned long nr_dirty
= 0;
1366 unsigned long nr_congested
= 0;
1367 unsigned long nr_unqueued_dirty
= 0;
1368 unsigned long nr_writeback
= 0;
1369 unsigned long nr_immediate
= 0;
1370 isolate_mode_t isolate_mode
= 0;
1371 int file
= is_file_lru(lru
);
1372 struct zone
*zone
= lruvec_zone(lruvec
);
1373 struct zone_reclaim_stat
*reclaim_stat
= &lruvec
->reclaim_stat
;
1375 while (unlikely(too_many_isolated(zone
, file
, sc
))) {
1376 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
1378 /* We are about to die and free our memory. Return now. */
1379 if (fatal_signal_pending(current
))
1380 return SWAP_CLUSTER_MAX
;
1386 isolate_mode
|= ISOLATE_UNMAPPED
;
1387 if (!sc
->may_writepage
)
1388 isolate_mode
|= ISOLATE_CLEAN
;
1390 spin_lock_irq(&zone
->lru_lock
);
1392 nr_taken
= isolate_lru_pages(nr_to_scan
, lruvec
, &page_list
,
1393 &nr_scanned
, sc
, isolate_mode
, lru
);
1395 __mod_zone_page_state(zone
, NR_LRU_BASE
+ lru
, -nr_taken
);
1396 __mod_zone_page_state(zone
, NR_ISOLATED_ANON
+ file
, nr_taken
);
1398 if (global_reclaim(sc
)) {
1399 zone
->pages_scanned
+= nr_scanned
;
1400 if (current_is_kswapd())
1401 __count_zone_vm_events(PGSCAN_KSWAPD
, zone
, nr_scanned
);
1403 __count_zone_vm_events(PGSCAN_DIRECT
, zone
, nr_scanned
);
1405 spin_unlock_irq(&zone
->lru_lock
);
1410 nr_reclaimed
= shrink_page_list(&page_list
, zone
, sc
, TTU_UNMAP
,
1411 &nr_dirty
, &nr_unqueued_dirty
, &nr_congested
,
1412 &nr_writeback
, &nr_immediate
,
1415 spin_lock_irq(&zone
->lru_lock
);
1417 reclaim_stat
->recent_scanned
[file
] += nr_taken
;
1419 if (global_reclaim(sc
)) {
1420 if (current_is_kswapd())
1421 __count_zone_vm_events(PGSTEAL_KSWAPD
, zone
,
1424 __count_zone_vm_events(PGSTEAL_DIRECT
, zone
,
1428 putback_inactive_pages(lruvec
, &page_list
);
1430 __mod_zone_page_state(zone
, NR_ISOLATED_ANON
+ file
, -nr_taken
);
1432 spin_unlock_irq(&zone
->lru_lock
);
1434 free_hot_cold_page_list(&page_list
, 1);
1437 * If reclaim is isolating dirty pages under writeback, it implies
1438 * that the long-lived page allocation rate is exceeding the page
1439 * laundering rate. Either the global limits are not being effective
1440 * at throttling processes due to the page distribution throughout
1441 * zones or there is heavy usage of a slow backing device. The
1442 * only option is to throttle from reclaim context which is not ideal
1443 * as there is no guarantee the dirtying process is throttled in the
1444 * same way balance_dirty_pages() manages.
1446 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1447 * of pages under pages flagged for immediate reclaim and stall if any
1448 * are encountered in the nr_immediate check below.
1450 if (nr_writeback
&& nr_writeback
== nr_taken
)
1451 zone_set_flag(zone
, ZONE_WRITEBACK
);
1454 * memcg will stall in page writeback so only consider forcibly
1455 * stalling for global reclaim
1457 if (global_reclaim(sc
)) {
1459 * Tag a zone as congested if all the dirty pages scanned were
1460 * backed by a congested BDI and wait_iff_congested will stall.
1462 if (nr_dirty
&& nr_dirty
== nr_congested
)
1463 zone_set_flag(zone
, ZONE_CONGESTED
);
1466 * If dirty pages are scanned that are not queued for IO, it
1467 * implies that flushers are not keeping up. In this case, flag
1468 * the zone ZONE_TAIL_LRU_DIRTY and kswapd will start writing
1469 * pages from reclaim context. It will forcibly stall in the
1472 if (nr_unqueued_dirty
== nr_taken
)
1473 zone_set_flag(zone
, ZONE_TAIL_LRU_DIRTY
);
1476 * In addition, if kswapd scans pages marked marked for
1477 * immediate reclaim and under writeback (nr_immediate), it
1478 * implies that pages are cycling through the LRU faster than
1479 * they are written so also forcibly stall.
1481 if (nr_unqueued_dirty
== nr_taken
|| nr_immediate
)
1482 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
1486 * Stall direct reclaim for IO completions if underlying BDIs or zone
1487 * is congested. Allow kswapd to continue until it starts encountering
1488 * unqueued dirty pages or cycling through the LRU too quickly.
1490 if (!sc
->hibernation_mode
&& !current_is_kswapd())
1491 wait_iff_congested(zone
, BLK_RW_ASYNC
, HZ
/10);
1493 trace_mm_vmscan_lru_shrink_inactive(zone
->zone_pgdat
->node_id
,
1495 nr_scanned
, nr_reclaimed
,
1497 trace_shrink_flags(file
));
1498 return nr_reclaimed
;
1502 * This moves pages from the active list to the inactive list.
1504 * We move them the other way if the page is referenced by one or more
1505 * processes, from rmap.
1507 * If the pages are mostly unmapped, the processing is fast and it is
1508 * appropriate to hold zone->lru_lock across the whole operation. But if
1509 * the pages are mapped, the processing is slow (page_referenced()) so we
1510 * should drop zone->lru_lock around each page. It's impossible to balance
1511 * this, so instead we remove the pages from the LRU while processing them.
1512 * It is safe to rely on PG_active against the non-LRU pages in here because
1513 * nobody will play with that bit on a non-LRU page.
1515 * The downside is that we have to touch page->_count against each page.
1516 * But we had to alter page->flags anyway.
1519 static void move_active_pages_to_lru(struct lruvec
*lruvec
,
1520 struct list_head
*list
,
1521 struct list_head
*pages_to_free
,
1524 struct zone
*zone
= lruvec_zone(lruvec
);
1525 unsigned long pgmoved
= 0;
1529 while (!list_empty(list
)) {
1530 page
= lru_to_page(list
);
1531 lruvec
= mem_cgroup_page_lruvec(page
, zone
);
1533 VM_BUG_ON(PageLRU(page
));
1536 nr_pages
= hpage_nr_pages(page
);
1537 mem_cgroup_update_lru_size(lruvec
, lru
, nr_pages
);
1538 list_move(&page
->lru
, &lruvec
->lists
[lru
]);
1539 pgmoved
+= nr_pages
;
1541 if (put_page_testzero(page
)) {
1542 __ClearPageLRU(page
);
1543 __ClearPageActive(page
);
1544 del_page_from_lru_list(page
, lruvec
, lru
);
1546 if (unlikely(PageCompound(page
))) {
1547 spin_unlock_irq(&zone
->lru_lock
);
1548 (*get_compound_page_dtor(page
))(page
);
1549 spin_lock_irq(&zone
->lru_lock
);
1551 list_add(&page
->lru
, pages_to_free
);
1554 __mod_zone_page_state(zone
, NR_LRU_BASE
+ lru
, pgmoved
);
1555 if (!is_active_lru(lru
))
1556 __count_vm_events(PGDEACTIVATE
, pgmoved
);
1559 static void shrink_active_list(unsigned long nr_to_scan
,
1560 struct lruvec
*lruvec
,
1561 struct scan_control
*sc
,
1564 unsigned long nr_taken
;
1565 unsigned long nr_scanned
;
1566 unsigned long vm_flags
;
1567 LIST_HEAD(l_hold
); /* The pages which were snipped off */
1568 LIST_HEAD(l_active
);
1569 LIST_HEAD(l_inactive
);
1571 struct zone_reclaim_stat
*reclaim_stat
= &lruvec
->reclaim_stat
;
1572 unsigned long nr_rotated
= 0;
1573 isolate_mode_t isolate_mode
= 0;
1574 int file
= is_file_lru(lru
);
1575 struct zone
*zone
= lruvec_zone(lruvec
);
1580 isolate_mode
|= ISOLATE_UNMAPPED
;
1581 if (!sc
->may_writepage
)
1582 isolate_mode
|= ISOLATE_CLEAN
;
1584 spin_lock_irq(&zone
->lru_lock
);
1586 nr_taken
= isolate_lru_pages(nr_to_scan
, lruvec
, &l_hold
,
1587 &nr_scanned
, sc
, isolate_mode
, lru
);
1588 if (global_reclaim(sc
))
1589 zone
->pages_scanned
+= nr_scanned
;
1591 reclaim_stat
->recent_scanned
[file
] += nr_taken
;
1593 __count_zone_vm_events(PGREFILL
, zone
, nr_scanned
);
1594 __mod_zone_page_state(zone
, NR_LRU_BASE
+ lru
, -nr_taken
);
1595 __mod_zone_page_state(zone
, NR_ISOLATED_ANON
+ file
, nr_taken
);
1596 spin_unlock_irq(&zone
->lru_lock
);
1598 while (!list_empty(&l_hold
)) {
1600 page
= lru_to_page(&l_hold
);
1601 list_del(&page
->lru
);
1603 if (unlikely(!page_evictable(page
))) {
1604 putback_lru_page(page
);
1608 if (unlikely(buffer_heads_over_limit
)) {
1609 if (page_has_private(page
) && trylock_page(page
)) {
1610 if (page_has_private(page
))
1611 try_to_release_page(page
, 0);
1616 if (page_referenced(page
, 0, sc
->target_mem_cgroup
,
1618 nr_rotated
+= hpage_nr_pages(page
);
1620 * Identify referenced, file-backed active pages and
1621 * give them one more trip around the active list. So
1622 * that executable code get better chances to stay in
1623 * memory under moderate memory pressure. Anon pages
1624 * are not likely to be evicted by use-once streaming
1625 * IO, plus JVM can create lots of anon VM_EXEC pages,
1626 * so we ignore them here.
1628 if ((vm_flags
& VM_EXEC
) && page_is_file_cache(page
)) {
1629 list_add(&page
->lru
, &l_active
);
1634 ClearPageActive(page
); /* we are de-activating */
1635 list_add(&page
->lru
, &l_inactive
);
1639 * Move pages back to the lru list.
1641 spin_lock_irq(&zone
->lru_lock
);
1643 * Count referenced pages from currently used mappings as rotated,
1644 * even though only some of them are actually re-activated. This
1645 * helps balance scan pressure between file and anonymous pages in
1648 reclaim_stat
->recent_rotated
[file
] += nr_rotated
;
1650 move_active_pages_to_lru(lruvec
, &l_active
, &l_hold
, lru
);
1651 move_active_pages_to_lru(lruvec
, &l_inactive
, &l_hold
, lru
- LRU_ACTIVE
);
1652 __mod_zone_page_state(zone
, NR_ISOLATED_ANON
+ file
, -nr_taken
);
1653 spin_unlock_irq(&zone
->lru_lock
);
1655 free_hot_cold_page_list(&l_hold
, 1);
1659 static int inactive_anon_is_low_global(struct zone
*zone
)
1661 unsigned long active
, inactive
;
1663 active
= zone_page_state(zone
, NR_ACTIVE_ANON
);
1664 inactive
= zone_page_state(zone
, NR_INACTIVE_ANON
);
1666 if (inactive
* zone
->inactive_ratio
< active
)
1673 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1674 * @lruvec: LRU vector to check
1676 * Returns true if the zone does not have enough inactive anon pages,
1677 * meaning some active anon pages need to be deactivated.
1679 static int inactive_anon_is_low(struct lruvec
*lruvec
)
1682 * If we don't have swap space, anonymous page deactivation
1685 if (!total_swap_pages
)
1688 if (!mem_cgroup_disabled())
1689 return mem_cgroup_inactive_anon_is_low(lruvec
);
1691 return inactive_anon_is_low_global(lruvec_zone(lruvec
));
1694 static inline int inactive_anon_is_low(struct lruvec
*lruvec
)
1701 * inactive_file_is_low - check if file pages need to be deactivated
1702 * @lruvec: LRU vector to check
1704 * When the system is doing streaming IO, memory pressure here
1705 * ensures that active file pages get deactivated, until more
1706 * than half of the file pages are on the inactive list.
1708 * Once we get to that situation, protect the system's working
1709 * set from being evicted by disabling active file page aging.
1711 * This uses a different ratio than the anonymous pages, because
1712 * the page cache uses a use-once replacement algorithm.
1714 static int inactive_file_is_low(struct lruvec
*lruvec
)
1716 unsigned long inactive
;
1717 unsigned long active
;
1719 inactive
= get_lru_size(lruvec
, LRU_INACTIVE_FILE
);
1720 active
= get_lru_size(lruvec
, LRU_ACTIVE_FILE
);
1722 return active
> inactive
;
1725 static int inactive_list_is_low(struct lruvec
*lruvec
, enum lru_list lru
)
1727 if (is_file_lru(lru
))
1728 return inactive_file_is_low(lruvec
);
1730 return inactive_anon_is_low(lruvec
);
1733 static unsigned long shrink_list(enum lru_list lru
, unsigned long nr_to_scan
,
1734 struct lruvec
*lruvec
, struct scan_control
*sc
)
1736 if (is_active_lru(lru
)) {
1737 if (inactive_list_is_low(lruvec
, lru
))
1738 shrink_active_list(nr_to_scan
, lruvec
, sc
, lru
);
1742 return shrink_inactive_list(nr_to_scan
, lruvec
, sc
, lru
);
1745 static int vmscan_swappiness(struct scan_control
*sc
)
1747 if (global_reclaim(sc
))
1748 return vm_swappiness
;
1749 return mem_cgroup_swappiness(sc
->target_mem_cgroup
);
1760 * Determine how aggressively the anon and file LRU lists should be
1761 * scanned. The relative value of each set of LRU lists is determined
1762 * by looking at the fraction of the pages scanned we did rotate back
1763 * onto the active list instead of evict.
1765 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1766 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1768 static void get_scan_count(struct lruvec
*lruvec
, struct scan_control
*sc
,
1771 struct zone_reclaim_stat
*reclaim_stat
= &lruvec
->reclaim_stat
;
1773 u64 denominator
= 0; /* gcc */
1774 struct zone
*zone
= lruvec_zone(lruvec
);
1775 unsigned long anon_prio
, file_prio
;
1776 enum scan_balance scan_balance
;
1777 unsigned long anon
, file
, free
;
1778 bool force_scan
= false;
1779 unsigned long ap
, fp
;
1783 * If the zone or memcg is small, nr[l] can be 0. This
1784 * results in no scanning on this priority and a potential
1785 * priority drop. Global direct reclaim can go to the next
1786 * zone and tends to have no problems. Global kswapd is for
1787 * zone balancing and it needs to scan a minimum amount. When
1788 * reclaiming for a memcg, a priority drop can cause high
1789 * latencies, so it's better to scan a minimum amount there as
1792 if (current_is_kswapd() && zone
->all_unreclaimable
)
1794 if (!global_reclaim(sc
))
1797 /* If we have no swap space, do not bother scanning anon pages. */
1798 if (!sc
->may_swap
|| (get_nr_swap_pages() <= 0)) {
1799 scan_balance
= SCAN_FILE
;
1804 * Global reclaim will swap to prevent OOM even with no
1805 * swappiness, but memcg users want to use this knob to
1806 * disable swapping for individual groups completely when
1807 * using the memory controller's swap limit feature would be
1810 if (!global_reclaim(sc
) && !vmscan_swappiness(sc
)) {
1811 scan_balance
= SCAN_FILE
;
1816 * Do not apply any pressure balancing cleverness when the
1817 * system is close to OOM, scan both anon and file equally
1818 * (unless the swappiness setting disagrees with swapping).
1820 if (!sc
->priority
&& vmscan_swappiness(sc
)) {
1821 scan_balance
= SCAN_EQUAL
;
1825 anon
= get_lru_size(lruvec
, LRU_ACTIVE_ANON
) +
1826 get_lru_size(lruvec
, LRU_INACTIVE_ANON
);
1827 file
= get_lru_size(lruvec
, LRU_ACTIVE_FILE
) +
1828 get_lru_size(lruvec
, LRU_INACTIVE_FILE
);
1831 * If it's foreseeable that reclaiming the file cache won't be
1832 * enough to get the zone back into a desirable shape, we have
1833 * to swap. Better start now and leave the - probably heavily
1834 * thrashing - remaining file pages alone.
1836 if (global_reclaim(sc
)) {
1837 free
= zone_page_state(zone
, NR_FREE_PAGES
);
1838 if (unlikely(file
+ free
<= high_wmark_pages(zone
))) {
1839 scan_balance
= SCAN_ANON
;
1845 * There is enough inactive page cache, do not reclaim
1846 * anything from the anonymous working set right now.
1848 if (!inactive_file_is_low(lruvec
)) {
1849 scan_balance
= SCAN_FILE
;
1853 scan_balance
= SCAN_FRACT
;
1856 * With swappiness at 100, anonymous and file have the same priority.
1857 * This scanning priority is essentially the inverse of IO cost.
1859 anon_prio
= vmscan_swappiness(sc
);
1860 file_prio
= 200 - anon_prio
;
1863 * OK, so we have swap space and a fair amount of page cache
1864 * pages. We use the recently rotated / recently scanned
1865 * ratios to determine how valuable each cache is.
1867 * Because workloads change over time (and to avoid overflow)
1868 * we keep these statistics as a floating average, which ends
1869 * up weighing recent references more than old ones.
1871 * anon in [0], file in [1]
1873 spin_lock_irq(&zone
->lru_lock
);
1874 if (unlikely(reclaim_stat
->recent_scanned
[0] > anon
/ 4)) {
1875 reclaim_stat
->recent_scanned
[0] /= 2;
1876 reclaim_stat
->recent_rotated
[0] /= 2;
1879 if (unlikely(reclaim_stat
->recent_scanned
[1] > file
/ 4)) {
1880 reclaim_stat
->recent_scanned
[1] /= 2;
1881 reclaim_stat
->recent_rotated
[1] /= 2;
1885 * The amount of pressure on anon vs file pages is inversely
1886 * proportional to the fraction of recently scanned pages on
1887 * each list that were recently referenced and in active use.
1889 ap
= anon_prio
* (reclaim_stat
->recent_scanned
[0] + 1);
1890 ap
/= reclaim_stat
->recent_rotated
[0] + 1;
1892 fp
= file_prio
* (reclaim_stat
->recent_scanned
[1] + 1);
1893 fp
/= reclaim_stat
->recent_rotated
[1] + 1;
1894 spin_unlock_irq(&zone
->lru_lock
);
1898 denominator
= ap
+ fp
+ 1;
1900 for_each_evictable_lru(lru
) {
1901 int file
= is_file_lru(lru
);
1905 size
= get_lru_size(lruvec
, lru
);
1906 scan
= size
>> sc
->priority
;
1908 if (!scan
&& force_scan
)
1909 scan
= min(size
, SWAP_CLUSTER_MAX
);
1911 switch (scan_balance
) {
1913 /* Scan lists relative to size */
1917 * Scan types proportional to swappiness and
1918 * their relative recent reclaim efficiency.
1920 scan
= div64_u64(scan
* fraction
[file
], denominator
);
1924 /* Scan one type exclusively */
1925 if ((scan_balance
== SCAN_FILE
) != file
)
1929 /* Look ma, no brain */
1937 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1939 static void shrink_lruvec(struct lruvec
*lruvec
, struct scan_control
*sc
)
1941 unsigned long nr
[NR_LRU_LISTS
];
1942 unsigned long targets
[NR_LRU_LISTS
];
1943 unsigned long nr_to_scan
;
1945 unsigned long nr_reclaimed
= 0;
1946 unsigned long nr_to_reclaim
= sc
->nr_to_reclaim
;
1947 struct blk_plug plug
;
1948 bool scan_adjusted
= false;
1950 get_scan_count(lruvec
, sc
, nr
);
1952 /* Record the original scan target for proportional adjustments later */
1953 memcpy(targets
, nr
, sizeof(nr
));
1955 blk_start_plug(&plug
);
1956 while (nr
[LRU_INACTIVE_ANON
] || nr
[LRU_ACTIVE_FILE
] ||
1957 nr
[LRU_INACTIVE_FILE
]) {
1958 unsigned long nr_anon
, nr_file
, percentage
;
1959 unsigned long nr_scanned
;
1961 for_each_evictable_lru(lru
) {
1963 nr_to_scan
= min(nr
[lru
], SWAP_CLUSTER_MAX
);
1964 nr
[lru
] -= nr_to_scan
;
1966 nr_reclaimed
+= shrink_list(lru
, nr_to_scan
,
1971 if (nr_reclaimed
< nr_to_reclaim
|| scan_adjusted
)
1975 * For global direct reclaim, reclaim only the number of pages
1976 * requested. Less care is taken to scan proportionally as it
1977 * is more important to minimise direct reclaim stall latency
1978 * than it is to properly age the LRU lists.
1980 if (global_reclaim(sc
) && !current_is_kswapd())
1984 * For kswapd and memcg, reclaim at least the number of pages
1985 * requested. Ensure that the anon and file LRUs shrink
1986 * proportionally what was requested by get_scan_count(). We
1987 * stop reclaiming one LRU and reduce the amount scanning
1988 * proportional to the original scan target.
1990 nr_file
= nr
[LRU_INACTIVE_FILE
] + nr
[LRU_ACTIVE_FILE
];
1991 nr_anon
= nr
[LRU_INACTIVE_ANON
] + nr
[LRU_ACTIVE_ANON
];
1993 if (nr_file
> nr_anon
) {
1994 unsigned long scan_target
= targets
[LRU_INACTIVE_ANON
] +
1995 targets
[LRU_ACTIVE_ANON
] + 1;
1997 percentage
= nr_anon
* 100 / scan_target
;
1999 unsigned long scan_target
= targets
[LRU_INACTIVE_FILE
] +
2000 targets
[LRU_ACTIVE_FILE
] + 1;
2002 percentage
= nr_file
* 100 / scan_target
;
2005 /* Stop scanning the smaller of the LRU */
2007 nr
[lru
+ LRU_ACTIVE
] = 0;
2010 * Recalculate the other LRU scan count based on its original
2011 * scan target and the percentage scanning already complete
2013 lru
= (lru
== LRU_FILE
) ? LRU_BASE
: LRU_FILE
;
2014 nr_scanned
= targets
[lru
] - nr
[lru
];
2015 nr
[lru
] = targets
[lru
] * (100 - percentage
) / 100;
2016 nr
[lru
] -= min(nr
[lru
], nr_scanned
);
2019 nr_scanned
= targets
[lru
] - nr
[lru
];
2020 nr
[lru
] = targets
[lru
] * (100 - percentage
) / 100;
2021 nr
[lru
] -= min(nr
[lru
], nr_scanned
);
2023 scan_adjusted
= true;
2025 blk_finish_plug(&plug
);
2026 sc
->nr_reclaimed
+= nr_reclaimed
;
2029 * Even if we did not try to evict anon pages at all, we want to
2030 * rebalance the anon lru active/inactive ratio.
2032 if (inactive_anon_is_low(lruvec
))
2033 shrink_active_list(SWAP_CLUSTER_MAX
, lruvec
,
2034 sc
, LRU_ACTIVE_ANON
);
2036 throttle_vm_writeout(sc
->gfp_mask
);
2039 /* Use reclaim/compaction for costly allocs or under memory pressure */
2040 static bool in_reclaim_compaction(struct scan_control
*sc
)
2042 if (IS_ENABLED(CONFIG_COMPACTION
) && sc
->order
&&
2043 (sc
->order
> PAGE_ALLOC_COSTLY_ORDER
||
2044 sc
->priority
< DEF_PRIORITY
- 2))
2051 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2052 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2053 * true if more pages should be reclaimed such that when the page allocator
2054 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2055 * It will give up earlier than that if there is difficulty reclaiming pages.
2057 static inline bool should_continue_reclaim(struct zone
*zone
,
2058 unsigned long nr_reclaimed
,
2059 unsigned long nr_scanned
,
2060 struct scan_control
*sc
)
2062 unsigned long pages_for_compaction
;
2063 unsigned long inactive_lru_pages
;
2065 /* If not in reclaim/compaction mode, stop */
2066 if (!in_reclaim_compaction(sc
))
2069 /* Consider stopping depending on scan and reclaim activity */
2070 if (sc
->gfp_mask
& __GFP_REPEAT
) {
2072 * For __GFP_REPEAT allocations, stop reclaiming if the
2073 * full LRU list has been scanned and we are still failing
2074 * to reclaim pages. This full LRU scan is potentially
2075 * expensive but a __GFP_REPEAT caller really wants to succeed
2077 if (!nr_reclaimed
&& !nr_scanned
)
2081 * For non-__GFP_REPEAT allocations which can presumably
2082 * fail without consequence, stop if we failed to reclaim
2083 * any pages from the last SWAP_CLUSTER_MAX number of
2084 * pages that were scanned. This will return to the
2085 * caller faster at the risk reclaim/compaction and
2086 * the resulting allocation attempt fails
2093 * If we have not reclaimed enough pages for compaction and the
2094 * inactive lists are large enough, continue reclaiming
2096 pages_for_compaction
= (2UL << sc
->order
);
2097 inactive_lru_pages
= zone_page_state(zone
, NR_INACTIVE_FILE
);
2098 if (get_nr_swap_pages() > 0)
2099 inactive_lru_pages
+= zone_page_state(zone
, NR_INACTIVE_ANON
);
2100 if (sc
->nr_reclaimed
< pages_for_compaction
&&
2101 inactive_lru_pages
> pages_for_compaction
)
2104 /* If compaction would go ahead or the allocation would succeed, stop */
2105 switch (compaction_suitable(zone
, sc
->order
)) {
2106 case COMPACT_PARTIAL
:
2107 case COMPACT_CONTINUE
:
2114 static void shrink_zone(struct zone
*zone
, struct scan_control
*sc
)
2116 unsigned long nr_reclaimed
, nr_scanned
;
2119 struct mem_cgroup
*root
= sc
->target_mem_cgroup
;
2120 struct mem_cgroup_reclaim_cookie reclaim
= {
2122 .priority
= sc
->priority
,
2124 struct mem_cgroup
*memcg
;
2126 nr_reclaimed
= sc
->nr_reclaimed
;
2127 nr_scanned
= sc
->nr_scanned
;
2129 memcg
= mem_cgroup_iter(root
, NULL
, &reclaim
);
2131 struct lruvec
*lruvec
;
2133 lruvec
= mem_cgroup_zone_lruvec(zone
, memcg
);
2135 shrink_lruvec(lruvec
, sc
);
2138 * Direct reclaim and kswapd have to scan all memory
2139 * cgroups to fulfill the overall scan target for the
2142 * Limit reclaim, on the other hand, only cares about
2143 * nr_to_reclaim pages to be reclaimed and it will
2144 * retry with decreasing priority if one round over the
2145 * whole hierarchy is not sufficient.
2147 if (!global_reclaim(sc
) &&
2148 sc
->nr_reclaimed
>= sc
->nr_to_reclaim
) {
2149 mem_cgroup_iter_break(root
, memcg
);
2152 memcg
= mem_cgroup_iter(root
, memcg
, &reclaim
);
2155 vmpressure(sc
->gfp_mask
, sc
->target_mem_cgroup
,
2156 sc
->nr_scanned
- nr_scanned
,
2157 sc
->nr_reclaimed
- nr_reclaimed
);
2159 } while (should_continue_reclaim(zone
, sc
->nr_reclaimed
- nr_reclaimed
,
2160 sc
->nr_scanned
- nr_scanned
, sc
));
2163 /* Returns true if compaction should go ahead for a high-order request */
2164 static inline bool compaction_ready(struct zone
*zone
, struct scan_control
*sc
)
2166 unsigned long balance_gap
, watermark
;
2169 /* Do not consider compaction for orders reclaim is meant to satisfy */
2170 if (sc
->order
<= PAGE_ALLOC_COSTLY_ORDER
)
2174 * Compaction takes time to run and there are potentially other
2175 * callers using the pages just freed. Continue reclaiming until
2176 * there is a buffer of free pages available to give compaction
2177 * a reasonable chance of completing and allocating the page
2179 balance_gap
= min(low_wmark_pages(zone
),
2180 (zone
->managed_pages
+ KSWAPD_ZONE_BALANCE_GAP_RATIO
-1) /
2181 KSWAPD_ZONE_BALANCE_GAP_RATIO
);
2182 watermark
= high_wmark_pages(zone
) + balance_gap
+ (2UL << sc
->order
);
2183 watermark_ok
= zone_watermark_ok_safe(zone
, 0, watermark
, 0, 0);
2186 * If compaction is deferred, reclaim up to a point where
2187 * compaction will have a chance of success when re-enabled
2189 if (compaction_deferred(zone
, sc
->order
))
2190 return watermark_ok
;
2192 /* If compaction is not ready to start, keep reclaiming */
2193 if (!compaction_suitable(zone
, sc
->order
))
2196 return watermark_ok
;
2200 * This is the direct reclaim path, for page-allocating processes. We only
2201 * try to reclaim pages from zones which will satisfy the caller's allocation
2204 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2206 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2208 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2209 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2210 * zone defense algorithm.
2212 * If a zone is deemed to be full of pinned pages then just give it a light
2213 * scan then give up on it.
2215 * This function returns true if a zone is being reclaimed for a costly
2216 * high-order allocation and compaction is ready to begin. This indicates to
2217 * the caller that it should consider retrying the allocation instead of
2220 static bool shrink_zones(struct zonelist
*zonelist
, struct scan_control
*sc
)
2224 unsigned long nr_soft_reclaimed
;
2225 unsigned long nr_soft_scanned
;
2226 bool aborted_reclaim
= false;
2229 * If the number of buffer_heads in the machine exceeds the maximum
2230 * allowed level, force direct reclaim to scan the highmem zone as
2231 * highmem pages could be pinning lowmem pages storing buffer_heads
2233 if (buffer_heads_over_limit
)
2234 sc
->gfp_mask
|= __GFP_HIGHMEM
;
2236 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
2237 gfp_zone(sc
->gfp_mask
), sc
->nodemask
) {
2238 if (!populated_zone(zone
))
2241 * Take care memory controller reclaiming has small influence
2244 if (global_reclaim(sc
)) {
2245 if (!cpuset_zone_allowed_hardwall(zone
, GFP_KERNEL
))
2247 if (zone
->all_unreclaimable
&&
2248 sc
->priority
!= DEF_PRIORITY
)
2249 continue; /* Let kswapd poll it */
2250 if (IS_ENABLED(CONFIG_COMPACTION
)) {
2252 * If we already have plenty of memory free for
2253 * compaction in this zone, don't free any more.
2254 * Even though compaction is invoked for any
2255 * non-zero order, only frequent costly order
2256 * reclamation is disruptive enough to become a
2257 * noticeable problem, like transparent huge
2260 if (compaction_ready(zone
, sc
)) {
2261 aborted_reclaim
= true;
2266 * This steals pages from memory cgroups over softlimit
2267 * and returns the number of reclaimed pages and
2268 * scanned pages. This works for global memory pressure
2269 * and balancing, not for a memcg's limit.
2271 nr_soft_scanned
= 0;
2272 nr_soft_reclaimed
= mem_cgroup_soft_limit_reclaim(zone
,
2273 sc
->order
, sc
->gfp_mask
,
2275 sc
->nr_reclaimed
+= nr_soft_reclaimed
;
2276 sc
->nr_scanned
+= nr_soft_scanned
;
2277 /* need some check for avoid more shrink_zone() */
2280 shrink_zone(zone
, sc
);
2283 return aborted_reclaim
;
2286 static bool zone_reclaimable(struct zone
*zone
)
2288 return zone
->pages_scanned
< zone_reclaimable_pages(zone
) * 6;
2291 /* All zones in zonelist are unreclaimable? */
2292 static bool all_unreclaimable(struct zonelist
*zonelist
,
2293 struct scan_control
*sc
)
2298 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
2299 gfp_zone(sc
->gfp_mask
), sc
->nodemask
) {
2300 if (!populated_zone(zone
))
2302 if (!cpuset_zone_allowed_hardwall(zone
, GFP_KERNEL
))
2304 if (!zone
->all_unreclaimable
)
2312 * This is the main entry point to direct page reclaim.
2314 * If a full scan of the inactive list fails to free enough memory then we
2315 * are "out of memory" and something needs to be killed.
2317 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2318 * high - the zone may be full of dirty or under-writeback pages, which this
2319 * caller can't do much about. We kick the writeback threads and take explicit
2320 * naps in the hope that some of these pages can be written. But if the
2321 * allocating task holds filesystem locks which prevent writeout this might not
2322 * work, and the allocation attempt will fail.
2324 * returns: 0, if no pages reclaimed
2325 * else, the number of pages reclaimed
2327 static unsigned long do_try_to_free_pages(struct zonelist
*zonelist
,
2328 struct scan_control
*sc
,
2329 struct shrink_control
*shrink
)
2331 unsigned long total_scanned
= 0;
2332 struct reclaim_state
*reclaim_state
= current
->reclaim_state
;
2335 unsigned long writeback_threshold
;
2336 bool aborted_reclaim
;
2338 delayacct_freepages_start();
2340 if (global_reclaim(sc
))
2341 count_vm_event(ALLOCSTALL
);
2344 vmpressure_prio(sc
->gfp_mask
, sc
->target_mem_cgroup
,
2347 aborted_reclaim
= shrink_zones(zonelist
, sc
);
2350 * Don't shrink slabs when reclaiming memory from over limit
2351 * cgroups but do shrink slab at least once when aborting
2352 * reclaim for compaction to avoid unevenly scanning file/anon
2353 * LRU pages over slab pages.
2355 if (global_reclaim(sc
)) {
2356 unsigned long lru_pages
= 0;
2357 for_each_zone_zonelist(zone
, z
, zonelist
,
2358 gfp_zone(sc
->gfp_mask
)) {
2359 if (!cpuset_zone_allowed_hardwall(zone
, GFP_KERNEL
))
2362 lru_pages
+= zone_reclaimable_pages(zone
);
2365 shrink_slab(shrink
, sc
->nr_scanned
, lru_pages
);
2366 if (reclaim_state
) {
2367 sc
->nr_reclaimed
+= reclaim_state
->reclaimed_slab
;
2368 reclaim_state
->reclaimed_slab
= 0;
2371 total_scanned
+= sc
->nr_scanned
;
2372 if (sc
->nr_reclaimed
>= sc
->nr_to_reclaim
)
2376 * If we're getting trouble reclaiming, start doing
2377 * writepage even in laptop mode.
2379 if (sc
->priority
< DEF_PRIORITY
- 2)
2380 sc
->may_writepage
= 1;
2383 * Try to write back as many pages as we just scanned. This
2384 * tends to cause slow streaming writers to write data to the
2385 * disk smoothly, at the dirtying rate, which is nice. But
2386 * that's undesirable in laptop mode, where we *want* lumpy
2387 * writeout. So in laptop mode, write out the whole world.
2389 writeback_threshold
= sc
->nr_to_reclaim
+ sc
->nr_to_reclaim
/ 2;
2390 if (total_scanned
> writeback_threshold
) {
2391 wakeup_flusher_threads(laptop_mode
? 0 : total_scanned
,
2392 WB_REASON_TRY_TO_FREE_PAGES
);
2393 sc
->may_writepage
= 1;
2395 } while (--sc
->priority
>= 0 && !aborted_reclaim
);
2398 delayacct_freepages_end();
2400 if (sc
->nr_reclaimed
)
2401 return sc
->nr_reclaimed
;
2404 * As hibernation is going on, kswapd is freezed so that it can't mark
2405 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2408 if (oom_killer_disabled
)
2411 /* Aborted reclaim to try compaction? don't OOM, then */
2412 if (aborted_reclaim
)
2415 /* top priority shrink_zones still had more to do? don't OOM, then */
2416 if (global_reclaim(sc
) && !all_unreclaimable(zonelist
, sc
))
2422 static bool pfmemalloc_watermark_ok(pg_data_t
*pgdat
)
2425 unsigned long pfmemalloc_reserve
= 0;
2426 unsigned long free_pages
= 0;
2430 for (i
= 0; i
<= ZONE_NORMAL
; i
++) {
2431 zone
= &pgdat
->node_zones
[i
];
2432 pfmemalloc_reserve
+= min_wmark_pages(zone
);
2433 free_pages
+= zone_page_state(zone
, NR_FREE_PAGES
);
2436 wmark_ok
= free_pages
> pfmemalloc_reserve
/ 2;
2438 /* kswapd must be awake if processes are being throttled */
2439 if (!wmark_ok
&& waitqueue_active(&pgdat
->kswapd_wait
)) {
2440 pgdat
->classzone_idx
= min(pgdat
->classzone_idx
,
2441 (enum zone_type
)ZONE_NORMAL
);
2442 wake_up_interruptible(&pgdat
->kswapd_wait
);
2449 * Throttle direct reclaimers if backing storage is backed by the network
2450 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2451 * depleted. kswapd will continue to make progress and wake the processes
2452 * when the low watermark is reached.
2454 * Returns true if a fatal signal was delivered during throttling. If this
2455 * happens, the page allocator should not consider triggering the OOM killer.
2457 static bool throttle_direct_reclaim(gfp_t gfp_mask
, struct zonelist
*zonelist
,
2458 nodemask_t
*nodemask
)
2461 int high_zoneidx
= gfp_zone(gfp_mask
);
2465 * Kernel threads should not be throttled as they may be indirectly
2466 * responsible for cleaning pages necessary for reclaim to make forward
2467 * progress. kjournald for example may enter direct reclaim while
2468 * committing a transaction where throttling it could forcing other
2469 * processes to block on log_wait_commit().
2471 if (current
->flags
& PF_KTHREAD
)
2475 * If a fatal signal is pending, this process should not throttle.
2476 * It should return quickly so it can exit and free its memory
2478 if (fatal_signal_pending(current
))
2481 /* Check if the pfmemalloc reserves are ok */
2482 first_zones_zonelist(zonelist
, high_zoneidx
, NULL
, &zone
);
2483 pgdat
= zone
->zone_pgdat
;
2484 if (pfmemalloc_watermark_ok(pgdat
))
2487 /* Account for the throttling */
2488 count_vm_event(PGSCAN_DIRECT_THROTTLE
);
2491 * If the caller cannot enter the filesystem, it's possible that it
2492 * is due to the caller holding an FS lock or performing a journal
2493 * transaction in the case of a filesystem like ext[3|4]. In this case,
2494 * it is not safe to block on pfmemalloc_wait as kswapd could be
2495 * blocked waiting on the same lock. Instead, throttle for up to a
2496 * second before continuing.
2498 if (!(gfp_mask
& __GFP_FS
)) {
2499 wait_event_interruptible_timeout(pgdat
->pfmemalloc_wait
,
2500 pfmemalloc_watermark_ok(pgdat
), HZ
);
2505 /* Throttle until kswapd wakes the process */
2506 wait_event_killable(zone
->zone_pgdat
->pfmemalloc_wait
,
2507 pfmemalloc_watermark_ok(pgdat
));
2510 if (fatal_signal_pending(current
))
2517 unsigned long try_to_free_pages(struct zonelist
*zonelist
, int order
,
2518 gfp_t gfp_mask
, nodemask_t
*nodemask
)
2520 unsigned long nr_reclaimed
;
2521 struct scan_control sc
= {
2522 .gfp_mask
= (gfp_mask
= memalloc_noio_flags(gfp_mask
)),
2523 .may_writepage
= !laptop_mode
,
2524 .nr_to_reclaim
= SWAP_CLUSTER_MAX
,
2528 .priority
= DEF_PRIORITY
,
2529 .target_mem_cgroup
= NULL
,
2530 .nodemask
= nodemask
,
2532 struct shrink_control shrink
= {
2533 .gfp_mask
= sc
.gfp_mask
,
2537 * Do not enter reclaim if fatal signal was delivered while throttled.
2538 * 1 is returned so that the page allocator does not OOM kill at this
2541 if (throttle_direct_reclaim(gfp_mask
, zonelist
, nodemask
))
2544 trace_mm_vmscan_direct_reclaim_begin(order
,
2548 nr_reclaimed
= do_try_to_free_pages(zonelist
, &sc
, &shrink
);
2550 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed
);
2552 return nr_reclaimed
;
2557 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup
*memcg
,
2558 gfp_t gfp_mask
, bool noswap
,
2560 unsigned long *nr_scanned
)
2562 struct scan_control sc
= {
2564 .nr_to_reclaim
= SWAP_CLUSTER_MAX
,
2565 .may_writepage
= !laptop_mode
,
2567 .may_swap
= !noswap
,
2570 .target_mem_cgroup
= memcg
,
2572 struct lruvec
*lruvec
= mem_cgroup_zone_lruvec(zone
, memcg
);
2574 sc
.gfp_mask
= (gfp_mask
& GFP_RECLAIM_MASK
) |
2575 (GFP_HIGHUSER_MOVABLE
& ~GFP_RECLAIM_MASK
);
2577 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc
.order
,
2582 * NOTE: Although we can get the priority field, using it
2583 * here is not a good idea, since it limits the pages we can scan.
2584 * if we don't reclaim here, the shrink_zone from balance_pgdat
2585 * will pick up pages from other mem cgroup's as well. We hack
2586 * the priority and make it zero.
2588 shrink_lruvec(lruvec
, &sc
);
2590 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc
.nr_reclaimed
);
2592 *nr_scanned
= sc
.nr_scanned
;
2593 return sc
.nr_reclaimed
;
2596 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup
*memcg
,
2600 struct zonelist
*zonelist
;
2601 unsigned long nr_reclaimed
;
2603 struct scan_control sc
= {
2604 .may_writepage
= !laptop_mode
,
2606 .may_swap
= !noswap
,
2607 .nr_to_reclaim
= SWAP_CLUSTER_MAX
,
2609 .priority
= DEF_PRIORITY
,
2610 .target_mem_cgroup
= memcg
,
2611 .nodemask
= NULL
, /* we don't care the placement */
2612 .gfp_mask
= (gfp_mask
& GFP_RECLAIM_MASK
) |
2613 (GFP_HIGHUSER_MOVABLE
& ~GFP_RECLAIM_MASK
),
2615 struct shrink_control shrink
= {
2616 .gfp_mask
= sc
.gfp_mask
,
2620 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2621 * take care of from where we get pages. So the node where we start the
2622 * scan does not need to be the current node.
2624 nid
= mem_cgroup_select_victim_node(memcg
);
2626 zonelist
= NODE_DATA(nid
)->node_zonelists
;
2628 trace_mm_vmscan_memcg_reclaim_begin(0,
2632 nr_reclaimed
= do_try_to_free_pages(zonelist
, &sc
, &shrink
);
2634 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed
);
2636 return nr_reclaimed
;
2640 static void age_active_anon(struct zone
*zone
, struct scan_control
*sc
)
2642 struct mem_cgroup
*memcg
;
2644 if (!total_swap_pages
)
2647 memcg
= mem_cgroup_iter(NULL
, NULL
, NULL
);
2649 struct lruvec
*lruvec
= mem_cgroup_zone_lruvec(zone
, memcg
);
2651 if (inactive_anon_is_low(lruvec
))
2652 shrink_active_list(SWAP_CLUSTER_MAX
, lruvec
,
2653 sc
, LRU_ACTIVE_ANON
);
2655 memcg
= mem_cgroup_iter(NULL
, memcg
, NULL
);
2659 static bool zone_balanced(struct zone
*zone
, int order
,
2660 unsigned long balance_gap
, int classzone_idx
)
2662 if (!zone_watermark_ok_safe(zone
, order
, high_wmark_pages(zone
) +
2663 balance_gap
, classzone_idx
, 0))
2666 if (IS_ENABLED(CONFIG_COMPACTION
) && order
&&
2667 !compaction_suitable(zone
, order
))
2674 * pgdat_balanced() is used when checking if a node is balanced.
2676 * For order-0, all zones must be balanced!
2678 * For high-order allocations only zones that meet watermarks and are in a
2679 * zone allowed by the callers classzone_idx are added to balanced_pages. The
2680 * total of balanced pages must be at least 25% of the zones allowed by
2681 * classzone_idx for the node to be considered balanced. Forcing all zones to
2682 * be balanced for high orders can cause excessive reclaim when there are
2684 * The choice of 25% is due to
2685 * o a 16M DMA zone that is balanced will not balance a zone on any
2686 * reasonable sized machine
2687 * o On all other machines, the top zone must be at least a reasonable
2688 * percentage of the middle zones. For example, on 32-bit x86, highmem
2689 * would need to be at least 256M for it to be balance a whole node.
2690 * Similarly, on x86-64 the Normal zone would need to be at least 1G
2691 * to balance a node on its own. These seemed like reasonable ratios.
2693 static bool pgdat_balanced(pg_data_t
*pgdat
, int order
, int classzone_idx
)
2695 unsigned long managed_pages
= 0;
2696 unsigned long balanced_pages
= 0;
2699 /* Check the watermark levels */
2700 for (i
= 0; i
<= classzone_idx
; i
++) {
2701 struct zone
*zone
= pgdat
->node_zones
+ i
;
2703 if (!populated_zone(zone
))
2706 managed_pages
+= zone
->managed_pages
;
2709 * A special case here:
2711 * balance_pgdat() skips over all_unreclaimable after
2712 * DEF_PRIORITY. Effectively, it considers them balanced so
2713 * they must be considered balanced here as well!
2715 if (zone
->all_unreclaimable
) {
2716 balanced_pages
+= zone
->managed_pages
;
2720 if (zone_balanced(zone
, order
, 0, i
))
2721 balanced_pages
+= zone
->managed_pages
;
2727 return balanced_pages
>= (managed_pages
>> 2);
2733 * Prepare kswapd for sleeping. This verifies that there are no processes
2734 * waiting in throttle_direct_reclaim() and that watermarks have been met.
2736 * Returns true if kswapd is ready to sleep
2738 static bool prepare_kswapd_sleep(pg_data_t
*pgdat
, int order
, long remaining
,
2741 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2746 * There is a potential race between when kswapd checks its watermarks
2747 * and a process gets throttled. There is also a potential race if
2748 * processes get throttled, kswapd wakes, a large process exits therby
2749 * balancing the zones that causes kswapd to miss a wakeup. If kswapd
2750 * is going to sleep, no process should be sleeping on pfmemalloc_wait
2751 * so wake them now if necessary. If necessary, processes will wake
2752 * kswapd and get throttled again
2754 if (waitqueue_active(&pgdat
->pfmemalloc_wait
)) {
2755 wake_up(&pgdat
->pfmemalloc_wait
);
2759 return pgdat_balanced(pgdat
, order
, classzone_idx
);
2763 * kswapd shrinks the zone by the number of pages required to reach
2764 * the high watermark.
2766 * Returns true if kswapd scanned at least the requested number of pages to
2767 * reclaim or if the lack of progress was due to pages under writeback.
2768 * This is used to determine if the scanning priority needs to be raised.
2770 static bool kswapd_shrink_zone(struct zone
*zone
,
2772 struct scan_control
*sc
,
2773 unsigned long lru_pages
,
2774 unsigned long *nr_attempted
)
2776 unsigned long nr_slab
;
2777 int testorder
= sc
->order
;
2778 unsigned long balance_gap
;
2779 struct reclaim_state
*reclaim_state
= current
->reclaim_state
;
2780 struct shrink_control shrink
= {
2781 .gfp_mask
= sc
->gfp_mask
,
2783 bool lowmem_pressure
;
2785 /* Reclaim above the high watermark. */
2786 sc
->nr_to_reclaim
= max(SWAP_CLUSTER_MAX
, high_wmark_pages(zone
));
2789 * Kswapd reclaims only single pages with compaction enabled. Trying
2790 * too hard to reclaim until contiguous free pages have become
2791 * available can hurt performance by evicting too much useful data
2792 * from memory. Do not reclaim more than needed for compaction.
2794 if (IS_ENABLED(CONFIG_COMPACTION
) && sc
->order
&&
2795 compaction_suitable(zone
, sc
->order
) !=
2800 * We put equal pressure on every zone, unless one zone has way too
2801 * many pages free already. The "too many pages" is defined as the
2802 * high wmark plus a "gap" where the gap is either the low
2803 * watermark or 1% of the zone, whichever is smaller.
2805 balance_gap
= min(low_wmark_pages(zone
),
2806 (zone
->managed_pages
+ KSWAPD_ZONE_BALANCE_GAP_RATIO
-1) /
2807 KSWAPD_ZONE_BALANCE_GAP_RATIO
);
2810 * If there is no low memory pressure or the zone is balanced then no
2811 * reclaim is necessary
2813 lowmem_pressure
= (buffer_heads_over_limit
&& is_highmem(zone
));
2814 if (!lowmem_pressure
&& zone_balanced(zone
, testorder
,
2815 balance_gap
, classzone_idx
))
2818 shrink_zone(zone
, sc
);
2820 reclaim_state
->reclaimed_slab
= 0;
2821 nr_slab
= shrink_slab(&shrink
, sc
->nr_scanned
, lru_pages
);
2822 sc
->nr_reclaimed
+= reclaim_state
->reclaimed_slab
;
2824 /* Account for the number of pages attempted to reclaim */
2825 *nr_attempted
+= sc
->nr_to_reclaim
;
2827 if (nr_slab
== 0 && !zone_reclaimable(zone
))
2828 zone
->all_unreclaimable
= 1;
2830 zone_clear_flag(zone
, ZONE_WRITEBACK
);
2833 * If a zone reaches its high watermark, consider it to be no longer
2834 * congested. It's possible there are dirty pages backed by congested
2835 * BDIs but as pressure is relieved, speculatively avoid congestion
2838 if (!zone
->all_unreclaimable
&&
2839 zone_balanced(zone
, testorder
, 0, classzone_idx
)) {
2840 zone_clear_flag(zone
, ZONE_CONGESTED
);
2841 zone_clear_flag(zone
, ZONE_TAIL_LRU_DIRTY
);
2844 return sc
->nr_scanned
>= sc
->nr_to_reclaim
;
2848 * For kswapd, balance_pgdat() will work across all this node's zones until
2849 * they are all at high_wmark_pages(zone).
2851 * Returns the final order kswapd was reclaiming at
2853 * There is special handling here for zones which are full of pinned pages.
2854 * This can happen if the pages are all mlocked, or if they are all used by
2855 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
2856 * What we do is to detect the case where all pages in the zone have been
2857 * scanned twice and there has been zero successful reclaim. Mark the zone as
2858 * dead and from now on, only perform a short scan. Basically we're polling
2859 * the zone for when the problem goes away.
2861 * kswapd scans the zones in the highmem->normal->dma direction. It skips
2862 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2863 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2864 * lower zones regardless of the number of free pages in the lower zones. This
2865 * interoperates with the page allocator fallback scheme to ensure that aging
2866 * of pages is balanced across the zones.
2868 static unsigned long balance_pgdat(pg_data_t
*pgdat
, int order
,
2872 int end_zone
= 0; /* Inclusive. 0 = ZONE_DMA */
2873 unsigned long nr_soft_reclaimed
;
2874 unsigned long nr_soft_scanned
;
2875 struct scan_control sc
= {
2876 .gfp_mask
= GFP_KERNEL
,
2877 .priority
= DEF_PRIORITY
,
2880 .may_writepage
= !laptop_mode
,
2882 .target_mem_cgroup
= NULL
,
2884 count_vm_event(PAGEOUTRUN
);
2887 unsigned long lru_pages
= 0;
2888 unsigned long nr_attempted
= 0;
2889 bool raise_priority
= true;
2890 bool pgdat_needs_compaction
= (order
> 0);
2892 sc
.nr_reclaimed
= 0;
2895 * Scan in the highmem->dma direction for the highest
2896 * zone which needs scanning
2898 for (i
= pgdat
->nr_zones
- 1; i
>= 0; i
--) {
2899 struct zone
*zone
= pgdat
->node_zones
+ i
;
2901 if (!populated_zone(zone
))
2904 if (zone
->all_unreclaimable
&&
2905 sc
.priority
!= DEF_PRIORITY
)
2909 * Do some background aging of the anon list, to give
2910 * pages a chance to be referenced before reclaiming.
2912 age_active_anon(zone
, &sc
);
2915 * If the number of buffer_heads in the machine
2916 * exceeds the maximum allowed level and this node
2917 * has a highmem zone, force kswapd to reclaim from
2918 * it to relieve lowmem pressure.
2920 if (buffer_heads_over_limit
&& is_highmem_idx(i
)) {
2925 if (!zone_balanced(zone
, order
, 0, 0)) {
2930 * If balanced, clear the dirty and congested
2933 zone_clear_flag(zone
, ZONE_CONGESTED
);
2934 zone_clear_flag(zone
, ZONE_TAIL_LRU_DIRTY
);
2941 for (i
= 0; i
<= end_zone
; i
++) {
2942 struct zone
*zone
= pgdat
->node_zones
+ i
;
2944 if (!populated_zone(zone
))
2947 lru_pages
+= zone_reclaimable_pages(zone
);
2950 * If any zone is currently balanced then kswapd will
2951 * not call compaction as it is expected that the
2952 * necessary pages are already available.
2954 if (pgdat_needs_compaction
&&
2955 zone_watermark_ok(zone
, order
,
2956 low_wmark_pages(zone
),
2958 pgdat_needs_compaction
= false;
2962 * If we're getting trouble reclaiming, start doing writepage
2963 * even in laptop mode.
2965 if (sc
.priority
< DEF_PRIORITY
- 2)
2966 sc
.may_writepage
= 1;
2969 * Now scan the zone in the dma->highmem direction, stopping
2970 * at the last zone which needs scanning.
2972 * We do this because the page allocator works in the opposite
2973 * direction. This prevents the page allocator from allocating
2974 * pages behind kswapd's direction of progress, which would
2975 * cause too much scanning of the lower zones.
2977 for (i
= 0; i
<= end_zone
; i
++) {
2978 struct zone
*zone
= pgdat
->node_zones
+ i
;
2980 if (!populated_zone(zone
))
2983 if (zone
->all_unreclaimable
&&
2984 sc
.priority
!= DEF_PRIORITY
)
2989 nr_soft_scanned
= 0;
2991 * Call soft limit reclaim before calling shrink_zone.
2993 nr_soft_reclaimed
= mem_cgroup_soft_limit_reclaim(zone
,
2996 sc
.nr_reclaimed
+= nr_soft_reclaimed
;
2999 * There should be no need to raise the scanning
3000 * priority if enough pages are already being scanned
3001 * that that high watermark would be met at 100%
3004 if (kswapd_shrink_zone(zone
, end_zone
, &sc
,
3005 lru_pages
, &nr_attempted
))
3006 raise_priority
= false;
3010 * If the low watermark is met there is no need for processes
3011 * to be throttled on pfmemalloc_wait as they should not be
3012 * able to safely make forward progress. Wake them
3014 if (waitqueue_active(&pgdat
->pfmemalloc_wait
) &&
3015 pfmemalloc_watermark_ok(pgdat
))
3016 wake_up(&pgdat
->pfmemalloc_wait
);
3019 * Fragmentation may mean that the system cannot be rebalanced
3020 * for high-order allocations in all zones. If twice the
3021 * allocation size has been reclaimed and the zones are still
3022 * not balanced then recheck the watermarks at order-0 to
3023 * prevent kswapd reclaiming excessively. Assume that a
3024 * process requested a high-order can direct reclaim/compact.
3026 if (order
&& sc
.nr_reclaimed
>= 2UL << order
)
3027 order
= sc
.order
= 0;
3029 /* Check if kswapd should be suspending */
3030 if (try_to_freeze() || kthread_should_stop())
3034 * Compact if necessary and kswapd is reclaiming at least the
3035 * high watermark number of pages as requsted
3037 if (pgdat_needs_compaction
&& sc
.nr_reclaimed
> nr_attempted
)
3038 compact_pgdat(pgdat
, order
);
3041 * Raise priority if scanning rate is too low or there was no
3042 * progress in reclaiming pages
3044 if (raise_priority
|| !sc
.nr_reclaimed
)
3046 } while (sc
.priority
>= 1 &&
3047 !pgdat_balanced(pgdat
, order
, *classzone_idx
));
3051 * Return the order we were reclaiming at so prepare_kswapd_sleep()
3052 * makes a decision on the order we were last reclaiming at. However,
3053 * if another caller entered the allocator slow path while kswapd
3054 * was awake, order will remain at the higher level
3056 *classzone_idx
= end_zone
;
3060 static void kswapd_try_to_sleep(pg_data_t
*pgdat
, int order
, int classzone_idx
)
3065 if (freezing(current
) || kthread_should_stop())
3068 prepare_to_wait(&pgdat
->kswapd_wait
, &wait
, TASK_INTERRUPTIBLE
);
3070 /* Try to sleep for a short interval */
3071 if (prepare_kswapd_sleep(pgdat
, order
, remaining
, classzone_idx
)) {
3072 remaining
= schedule_timeout(HZ
/10);
3073 finish_wait(&pgdat
->kswapd_wait
, &wait
);
3074 prepare_to_wait(&pgdat
->kswapd_wait
, &wait
, TASK_INTERRUPTIBLE
);
3078 * After a short sleep, check if it was a premature sleep. If not, then
3079 * go fully to sleep until explicitly woken up.
3081 if (prepare_kswapd_sleep(pgdat
, order
, remaining
, classzone_idx
)) {
3082 trace_mm_vmscan_kswapd_sleep(pgdat
->node_id
);
3085 * vmstat counters are not perfectly accurate and the estimated
3086 * value for counters such as NR_FREE_PAGES can deviate from the
3087 * true value by nr_online_cpus * threshold. To avoid the zone
3088 * watermarks being breached while under pressure, we reduce the
3089 * per-cpu vmstat threshold while kswapd is awake and restore
3090 * them before going back to sleep.
3092 set_pgdat_percpu_threshold(pgdat
, calculate_normal_threshold
);
3095 * Compaction records what page blocks it recently failed to
3096 * isolate pages from and skips them in the future scanning.
3097 * When kswapd is going to sleep, it is reasonable to assume
3098 * that pages and compaction may succeed so reset the cache.
3100 reset_isolation_suitable(pgdat
);
3102 if (!kthread_should_stop())
3105 set_pgdat_percpu_threshold(pgdat
, calculate_pressure_threshold
);
3108 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY
);
3110 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY
);
3112 finish_wait(&pgdat
->kswapd_wait
, &wait
);
3116 * The background pageout daemon, started as a kernel thread
3117 * from the init process.
3119 * This basically trickles out pages so that we have _some_
3120 * free memory available even if there is no other activity
3121 * that frees anything up. This is needed for things like routing
3122 * etc, where we otherwise might have all activity going on in
3123 * asynchronous contexts that cannot page things out.
3125 * If there are applications that are active memory-allocators
3126 * (most normal use), this basically shouldn't matter.
3128 static int kswapd(void *p
)
3130 unsigned long order
, new_order
;
3131 unsigned balanced_order
;
3132 int classzone_idx
, new_classzone_idx
;
3133 int balanced_classzone_idx
;
3134 pg_data_t
*pgdat
= (pg_data_t
*)p
;
3135 struct task_struct
*tsk
= current
;
3137 struct reclaim_state reclaim_state
= {
3138 .reclaimed_slab
= 0,
3140 const struct cpumask
*cpumask
= cpumask_of_node(pgdat
->node_id
);
3142 lockdep_set_current_reclaim_state(GFP_KERNEL
);
3144 if (!cpumask_empty(cpumask
))
3145 set_cpus_allowed_ptr(tsk
, cpumask
);
3146 current
->reclaim_state
= &reclaim_state
;
3149 * Tell the memory management that we're a "memory allocator",
3150 * and that if we need more memory we should get access to it
3151 * regardless (see "__alloc_pages()"). "kswapd" should
3152 * never get caught in the normal page freeing logic.
3154 * (Kswapd normally doesn't need memory anyway, but sometimes
3155 * you need a small amount of memory in order to be able to
3156 * page out something else, and this flag essentially protects
3157 * us from recursively trying to free more memory as we're
3158 * trying to free the first piece of memory in the first place).
3160 tsk
->flags
|= PF_MEMALLOC
| PF_SWAPWRITE
| PF_KSWAPD
;
3163 order
= new_order
= 0;
3165 classzone_idx
= new_classzone_idx
= pgdat
->nr_zones
- 1;
3166 balanced_classzone_idx
= classzone_idx
;
3171 * If the last balance_pgdat was unsuccessful it's unlikely a
3172 * new request of a similar or harder type will succeed soon
3173 * so consider going to sleep on the basis we reclaimed at
3175 if (balanced_classzone_idx
>= new_classzone_idx
&&
3176 balanced_order
== new_order
) {
3177 new_order
= pgdat
->kswapd_max_order
;
3178 new_classzone_idx
= pgdat
->classzone_idx
;
3179 pgdat
->kswapd_max_order
= 0;
3180 pgdat
->classzone_idx
= pgdat
->nr_zones
- 1;
3183 if (order
< new_order
|| classzone_idx
> new_classzone_idx
) {
3185 * Don't sleep if someone wants a larger 'order'
3186 * allocation or has tigher zone constraints
3189 classzone_idx
= new_classzone_idx
;
3191 kswapd_try_to_sleep(pgdat
, balanced_order
,
3192 balanced_classzone_idx
);
3193 order
= pgdat
->kswapd_max_order
;
3194 classzone_idx
= pgdat
->classzone_idx
;
3196 new_classzone_idx
= classzone_idx
;
3197 pgdat
->kswapd_max_order
= 0;
3198 pgdat
->classzone_idx
= pgdat
->nr_zones
- 1;
3201 ret
= try_to_freeze();
3202 if (kthread_should_stop())
3206 * We can speed up thawing tasks if we don't call balance_pgdat
3207 * after returning from the refrigerator
3210 trace_mm_vmscan_kswapd_wake(pgdat
->node_id
, order
);
3211 balanced_classzone_idx
= classzone_idx
;
3212 balanced_order
= balance_pgdat(pgdat
, order
,
3213 &balanced_classzone_idx
);
3217 current
->reclaim_state
= NULL
;
3222 * A zone is low on free memory, so wake its kswapd task to service it.
3224 void wakeup_kswapd(struct zone
*zone
, int order
, enum zone_type classzone_idx
)
3228 if (!populated_zone(zone
))
3231 if (!cpuset_zone_allowed_hardwall(zone
, GFP_KERNEL
))
3233 pgdat
= zone
->zone_pgdat
;
3234 if (pgdat
->kswapd_max_order
< order
) {
3235 pgdat
->kswapd_max_order
= order
;
3236 pgdat
->classzone_idx
= min(pgdat
->classzone_idx
, classzone_idx
);
3238 if (!waitqueue_active(&pgdat
->kswapd_wait
))
3240 if (zone_watermark_ok_safe(zone
, order
, low_wmark_pages(zone
), 0, 0))
3243 trace_mm_vmscan_wakeup_kswapd(pgdat
->node_id
, zone_idx(zone
), order
);
3244 wake_up_interruptible(&pgdat
->kswapd_wait
);
3248 * The reclaimable count would be mostly accurate.
3249 * The less reclaimable pages may be
3250 * - mlocked pages, which will be moved to unevictable list when encountered
3251 * - mapped pages, which may require several travels to be reclaimed
3252 * - dirty pages, which is not "instantly" reclaimable
3254 unsigned long global_reclaimable_pages(void)
3258 nr
= global_page_state(NR_ACTIVE_FILE
) +
3259 global_page_state(NR_INACTIVE_FILE
);
3261 if (get_nr_swap_pages() > 0)
3262 nr
+= global_page_state(NR_ACTIVE_ANON
) +
3263 global_page_state(NR_INACTIVE_ANON
);
3268 unsigned long zone_reclaimable_pages(struct zone
*zone
)
3272 nr
= zone_page_state(zone
, NR_ACTIVE_FILE
) +
3273 zone_page_state(zone
, NR_INACTIVE_FILE
);
3275 if (get_nr_swap_pages() > 0)
3276 nr
+= zone_page_state(zone
, NR_ACTIVE_ANON
) +
3277 zone_page_state(zone
, NR_INACTIVE_ANON
);
3282 #ifdef CONFIG_HIBERNATION
3284 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3287 * Rather than trying to age LRUs the aim is to preserve the overall
3288 * LRU order by reclaiming preferentially
3289 * inactive > active > active referenced > active mapped
3291 unsigned long shrink_all_memory(unsigned long nr_to_reclaim
)
3293 struct reclaim_state reclaim_state
;
3294 struct scan_control sc
= {
3295 .gfp_mask
= GFP_HIGHUSER_MOVABLE
,
3299 .nr_to_reclaim
= nr_to_reclaim
,
3300 .hibernation_mode
= 1,
3302 .priority
= DEF_PRIORITY
,
3304 struct shrink_control shrink
= {
3305 .gfp_mask
= sc
.gfp_mask
,
3307 struct zonelist
*zonelist
= node_zonelist(numa_node_id(), sc
.gfp_mask
);
3308 struct task_struct
*p
= current
;
3309 unsigned long nr_reclaimed
;
3311 p
->flags
|= PF_MEMALLOC
;
3312 lockdep_set_current_reclaim_state(sc
.gfp_mask
);
3313 reclaim_state
.reclaimed_slab
= 0;
3314 p
->reclaim_state
= &reclaim_state
;
3316 nr_reclaimed
= do_try_to_free_pages(zonelist
, &sc
, &shrink
);
3318 p
->reclaim_state
= NULL
;
3319 lockdep_clear_current_reclaim_state();
3320 p
->flags
&= ~PF_MEMALLOC
;
3322 return nr_reclaimed
;
3324 #endif /* CONFIG_HIBERNATION */
3326 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3327 not required for correctness. So if the last cpu in a node goes
3328 away, we get changed to run anywhere: as the first one comes back,
3329 restore their cpu bindings. */
3330 static int cpu_callback(struct notifier_block
*nfb
, unsigned long action
,
3335 if (action
== CPU_ONLINE
|| action
== CPU_ONLINE_FROZEN
) {
3336 for_each_node_state(nid
, N_MEMORY
) {
3337 pg_data_t
*pgdat
= NODE_DATA(nid
);
3338 const struct cpumask
*mask
;
3340 mask
= cpumask_of_node(pgdat
->node_id
);
3342 if (cpumask_any_and(cpu_online_mask
, mask
) < nr_cpu_ids
)
3343 /* One of our CPUs online: restore mask */
3344 set_cpus_allowed_ptr(pgdat
->kswapd
, mask
);
3351 * This kswapd start function will be called by init and node-hot-add.
3352 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3354 int kswapd_run(int nid
)
3356 pg_data_t
*pgdat
= NODE_DATA(nid
);
3362 pgdat
->kswapd
= kthread_run(kswapd
, pgdat
, "kswapd%d", nid
);
3363 if (IS_ERR(pgdat
->kswapd
)) {
3364 /* failure at boot is fatal */
3365 BUG_ON(system_state
== SYSTEM_BOOTING
);
3366 pr_err("Failed to start kswapd on node %d\n", nid
);
3367 ret
= PTR_ERR(pgdat
->kswapd
);
3368 pgdat
->kswapd
= NULL
;
3374 * Called by memory hotplug when all memory in a node is offlined. Caller must
3375 * hold lock_memory_hotplug().
3377 void kswapd_stop(int nid
)
3379 struct task_struct
*kswapd
= NODE_DATA(nid
)->kswapd
;
3382 kthread_stop(kswapd
);
3383 NODE_DATA(nid
)->kswapd
= NULL
;
3387 static int __init
kswapd_init(void)
3392 for_each_node_state(nid
, N_MEMORY
)
3394 hotcpu_notifier(cpu_callback
, 0);
3398 module_init(kswapd_init
)
3404 * If non-zero call zone_reclaim when the number of free pages falls below
3407 int zone_reclaim_mode __read_mostly
;
3409 #define RECLAIM_OFF 0
3410 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
3411 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3412 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
3415 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3416 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3419 #define ZONE_RECLAIM_PRIORITY 4
3422 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3425 int sysctl_min_unmapped_ratio
= 1;
3428 * If the number of slab pages in a zone grows beyond this percentage then
3429 * slab reclaim needs to occur.
3431 int sysctl_min_slab_ratio
= 5;
3433 static inline unsigned long zone_unmapped_file_pages(struct zone
*zone
)
3435 unsigned long file_mapped
= zone_page_state(zone
, NR_FILE_MAPPED
);
3436 unsigned long file_lru
= zone_page_state(zone
, NR_INACTIVE_FILE
) +
3437 zone_page_state(zone
, NR_ACTIVE_FILE
);
3440 * It's possible for there to be more file mapped pages than
3441 * accounted for by the pages on the file LRU lists because
3442 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3444 return (file_lru
> file_mapped
) ? (file_lru
- file_mapped
) : 0;
3447 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3448 static long zone_pagecache_reclaimable(struct zone
*zone
)
3450 long nr_pagecache_reclaimable
;
3454 * If RECLAIM_SWAP is set, then all file pages are considered
3455 * potentially reclaimable. Otherwise, we have to worry about
3456 * pages like swapcache and zone_unmapped_file_pages() provides
3459 if (zone_reclaim_mode
& RECLAIM_SWAP
)
3460 nr_pagecache_reclaimable
= zone_page_state(zone
, NR_FILE_PAGES
);
3462 nr_pagecache_reclaimable
= zone_unmapped_file_pages(zone
);
3464 /* If we can't clean pages, remove dirty pages from consideration */
3465 if (!(zone_reclaim_mode
& RECLAIM_WRITE
))
3466 delta
+= zone_page_state(zone
, NR_FILE_DIRTY
);
3468 /* Watch for any possible underflows due to delta */
3469 if (unlikely(delta
> nr_pagecache_reclaimable
))
3470 delta
= nr_pagecache_reclaimable
;
3472 return nr_pagecache_reclaimable
- delta
;
3476 * Try to free up some pages from this zone through reclaim.
3478 static int __zone_reclaim(struct zone
*zone
, gfp_t gfp_mask
, unsigned int order
)
3480 /* Minimum pages needed in order to stay on node */
3481 const unsigned long nr_pages
= 1 << order
;
3482 struct task_struct
*p
= current
;
3483 struct reclaim_state reclaim_state
;
3484 struct scan_control sc
= {
3485 .may_writepage
= !!(zone_reclaim_mode
& RECLAIM_WRITE
),
3486 .may_unmap
= !!(zone_reclaim_mode
& RECLAIM_SWAP
),
3488 .nr_to_reclaim
= max(nr_pages
, SWAP_CLUSTER_MAX
),
3489 .gfp_mask
= (gfp_mask
= memalloc_noio_flags(gfp_mask
)),
3491 .priority
= ZONE_RECLAIM_PRIORITY
,
3493 struct shrink_control shrink
= {
3494 .gfp_mask
= sc
.gfp_mask
,
3496 unsigned long nr_slab_pages0
, nr_slab_pages1
;
3500 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3501 * and we also need to be able to write out pages for RECLAIM_WRITE
3504 p
->flags
|= PF_MEMALLOC
| PF_SWAPWRITE
;
3505 lockdep_set_current_reclaim_state(gfp_mask
);
3506 reclaim_state
.reclaimed_slab
= 0;
3507 p
->reclaim_state
= &reclaim_state
;
3509 if (zone_pagecache_reclaimable(zone
) > zone
->min_unmapped_pages
) {
3511 * Free memory by calling shrink zone with increasing
3512 * priorities until we have enough memory freed.
3515 shrink_zone(zone
, &sc
);
3516 } while (sc
.nr_reclaimed
< nr_pages
&& --sc
.priority
>= 0);
3519 nr_slab_pages0
= zone_page_state(zone
, NR_SLAB_RECLAIMABLE
);
3520 if (nr_slab_pages0
> zone
->min_slab_pages
) {
3522 * shrink_slab() does not currently allow us to determine how
3523 * many pages were freed in this zone. So we take the current
3524 * number of slab pages and shake the slab until it is reduced
3525 * by the same nr_pages that we used for reclaiming unmapped
3528 * Note that shrink_slab will free memory on all zones and may
3532 unsigned long lru_pages
= zone_reclaimable_pages(zone
);
3534 /* No reclaimable slab or very low memory pressure */
3535 if (!shrink_slab(&shrink
, sc
.nr_scanned
, lru_pages
))
3538 /* Freed enough memory */
3539 nr_slab_pages1
= zone_page_state(zone
,
3540 NR_SLAB_RECLAIMABLE
);
3541 if (nr_slab_pages1
+ nr_pages
<= nr_slab_pages0
)
3546 * Update nr_reclaimed by the number of slab pages we
3547 * reclaimed from this zone.
3549 nr_slab_pages1
= zone_page_state(zone
, NR_SLAB_RECLAIMABLE
);
3550 if (nr_slab_pages1
< nr_slab_pages0
)
3551 sc
.nr_reclaimed
+= nr_slab_pages0
- nr_slab_pages1
;
3554 p
->reclaim_state
= NULL
;
3555 current
->flags
&= ~(PF_MEMALLOC
| PF_SWAPWRITE
);
3556 lockdep_clear_current_reclaim_state();
3557 return sc
.nr_reclaimed
>= nr_pages
;
3560 int zone_reclaim(struct zone
*zone
, gfp_t gfp_mask
, unsigned int order
)
3566 * Zone reclaim reclaims unmapped file backed pages and
3567 * slab pages if we are over the defined limits.
3569 * A small portion of unmapped file backed pages is needed for
3570 * file I/O otherwise pages read by file I/O will be immediately
3571 * thrown out if the zone is overallocated. So we do not reclaim
3572 * if less than a specified percentage of the zone is used by
3573 * unmapped file backed pages.
3575 if (zone_pagecache_reclaimable(zone
) <= zone
->min_unmapped_pages
&&
3576 zone_page_state(zone
, NR_SLAB_RECLAIMABLE
) <= zone
->min_slab_pages
)
3577 return ZONE_RECLAIM_FULL
;
3579 if (zone
->all_unreclaimable
)
3580 return ZONE_RECLAIM_FULL
;
3583 * Do not scan if the allocation should not be delayed.
3585 if (!(gfp_mask
& __GFP_WAIT
) || (current
->flags
& PF_MEMALLOC
))
3586 return ZONE_RECLAIM_NOSCAN
;
3589 * Only run zone reclaim on the local zone or on zones that do not
3590 * have associated processors. This will favor the local processor
3591 * over remote processors and spread off node memory allocations
3592 * as wide as possible.
3594 node_id
= zone_to_nid(zone
);
3595 if (node_state(node_id
, N_CPU
) && node_id
!= numa_node_id())
3596 return ZONE_RECLAIM_NOSCAN
;
3598 if (zone_test_and_set_flag(zone
, ZONE_RECLAIM_LOCKED
))
3599 return ZONE_RECLAIM_NOSCAN
;
3601 ret
= __zone_reclaim(zone
, gfp_mask
, order
);
3602 zone_clear_flag(zone
, ZONE_RECLAIM_LOCKED
);
3605 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED
);
3612 * page_evictable - test whether a page is evictable
3613 * @page: the page to test
3615 * Test whether page is evictable--i.e., should be placed on active/inactive
3616 * lists vs unevictable list.
3618 * Reasons page might not be evictable:
3619 * (1) page's mapping marked unevictable
3620 * (2) page is part of an mlocked VMA
3623 int page_evictable(struct page
*page
)
3625 return !mapping_unevictable(page_mapping(page
)) && !PageMlocked(page
);
3630 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3631 * @pages: array of pages to check
3632 * @nr_pages: number of pages to check
3634 * Checks pages for evictability and moves them to the appropriate lru list.
3636 * This function is only used for SysV IPC SHM_UNLOCK.
3638 void check_move_unevictable_pages(struct page
**pages
, int nr_pages
)
3640 struct lruvec
*lruvec
;
3641 struct zone
*zone
= NULL
;
3646 for (i
= 0; i
< nr_pages
; i
++) {
3647 struct page
*page
= pages
[i
];
3648 struct zone
*pagezone
;
3651 pagezone
= page_zone(page
);
3652 if (pagezone
!= zone
) {
3654 spin_unlock_irq(&zone
->lru_lock
);
3656 spin_lock_irq(&zone
->lru_lock
);
3658 lruvec
= mem_cgroup_page_lruvec(page
, zone
);
3660 if (!PageLRU(page
) || !PageUnevictable(page
))
3663 if (page_evictable(page
)) {
3664 enum lru_list lru
= page_lru_base_type(page
);
3666 VM_BUG_ON(PageActive(page
));
3667 ClearPageUnevictable(page
);
3668 del_page_from_lru_list(page
, lruvec
, LRU_UNEVICTABLE
);
3669 add_page_to_lru_list(page
, lruvec
, lru
);
3675 __count_vm_events(UNEVICTABLE_PGRESCUED
, pgrescued
);
3676 __count_vm_events(UNEVICTABLE_PGSCANNED
, pgscanned
);
3677 spin_unlock_irq(&zone
->lru_lock
);
3680 #endif /* CONFIG_SHMEM */
3682 static void warn_scan_unevictable_pages(void)
3684 printk_once(KERN_WARNING
3685 "%s: The scan_unevictable_pages sysctl/node-interface has been "
3686 "disabled for lack of a legitimate use case. If you have "
3687 "one, please send an email to linux-mm@kvack.org.\n",
3692 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
3693 * all nodes' unevictable lists for evictable pages
3695 unsigned long scan_unevictable_pages
;
3697 int scan_unevictable_handler(struct ctl_table
*table
, int write
,
3698 void __user
*buffer
,
3699 size_t *length
, loff_t
*ppos
)
3701 warn_scan_unevictable_pages();
3702 proc_doulongvec_minmax(table
, write
, buffer
, length
, ppos
);
3703 scan_unevictable_pages
= 0;
3709 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
3710 * a specified node's per zone unevictable lists for evictable pages.
3713 static ssize_t
read_scan_unevictable_node(struct device
*dev
,
3714 struct device_attribute
*attr
,
3717 warn_scan_unevictable_pages();
3718 return sprintf(buf
, "0\n"); /* always zero; should fit... */
3721 static ssize_t
write_scan_unevictable_node(struct device
*dev
,
3722 struct device_attribute
*attr
,
3723 const char *buf
, size_t count
)
3725 warn_scan_unevictable_pages();
3730 static DEVICE_ATTR(scan_unevictable_pages
, S_IRUGO
| S_IWUSR
,
3731 read_scan_unevictable_node
,
3732 write_scan_unevictable_node
);
3734 int scan_unevictable_register_node(struct node
*node
)
3736 return device_create_file(&node
->dev
, &dev_attr_scan_unevictable_pages
);
3739 void scan_unevictable_unregister_node(struct node
*node
)
3741 device_remove_file(&node
->dev
, &dev_attr_scan_unevictable_pages
);