2 * SLOB Allocator: Simple List Of Blocks
4 * Matt Mackall <mpm@selenic.com> 12/30/03
6 * NUMA support by Paul Mundt, 2007.
10 * The core of SLOB is a traditional K&R style heap allocator, with
11 * support for returning aligned objects. The granularity of this
12 * allocator is as little as 2 bytes, however typically most architectures
13 * will require 4 bytes on 32-bit and 8 bytes on 64-bit.
15 * The slob heap is a set of linked list of pages from alloc_pages(),
16 * and within each page, there is a singly-linked list of free blocks
17 * (slob_t). The heap is grown on demand. To reduce fragmentation,
18 * heap pages are segregated into three lists, with objects less than
19 * 256 bytes, objects less than 1024 bytes, and all other objects.
21 * Allocation from heap involves first searching for a page with
22 * sufficient free blocks (using a next-fit-like approach) followed by
23 * a first-fit scan of the page. Deallocation inserts objects back
24 * into the free list in address order, so this is effectively an
25 * address-ordered first fit.
27 * Above this is an implementation of kmalloc/kfree. Blocks returned
28 * from kmalloc are prepended with a 4-byte header with the kmalloc size.
29 * If kmalloc is asked for objects of PAGE_SIZE or larger, it calls
30 * alloc_pages() directly, allocating compound pages so the page order
31 * does not have to be separately tracked.
32 * These objects are detected in kfree() because PageSlab()
35 * SLAB is emulated on top of SLOB by simply calling constructors and
36 * destructors for every SLAB allocation. Objects are returned with the
37 * 4-byte alignment unless the SLAB_HWCACHE_ALIGN flag is set, in which
38 * case the low-level allocator will fragment blocks to create the proper
39 * alignment. Again, objects of page-size or greater are allocated by
40 * calling alloc_pages(). As SLAB objects know their size, no separate
41 * size bookkeeping is necessary and there is essentially no allocation
42 * space overhead, and compound pages aren't needed for multi-page
45 * NUMA support in SLOB is fairly simplistic, pushing most of the real
46 * logic down to the page allocator, and simply doing the node accounting
47 * on the upper levels. In the event that a node id is explicitly
48 * provided, alloc_pages_exact_node() with the specified node id is used
49 * instead. The common case (or when the node id isn't explicitly provided)
50 * will default to the current node, as per numa_node_id().
52 * Node aware pages are still inserted in to the global freelist, and
53 * these are scanned for by matching against the node id encoded in the
54 * page flags. As a result, block allocations that can be satisfied from
55 * the freelist will only be done so on pages residing on the same node,
56 * in order to prevent random node placement.
59 #include <linux/kernel.h>
60 #include <linux/slab.h>
63 #include <linux/swap.h> /* struct reclaim_state */
64 #include <linux/cache.h>
65 #include <linux/init.h>
66 #include <linux/export.h>
67 #include <linux/rcupdate.h>
68 #include <linux/list.h>
69 #include <linux/kmemleak.h>
71 #include <trace/events/kmem.h>
73 #include <linux/atomic.h>
77 * slob_block has a field 'units', which indicates size of block if +ve,
78 * or offset of next block if -ve (in SLOB_UNITs).
80 * Free blocks of size 1 unit simply contain the offset of the next block.
81 * Those with larger size contain their size in the first SLOB_UNIT of
82 * memory, and the offset of the next free block in the second SLOB_UNIT.
84 #if PAGE_SIZE <= (32767 * 2)
85 typedef s16 slobidx_t
;
87 typedef s32 slobidx_t
;
93 typedef struct slob_block slob_t
;
96 * All partially free slob pages go on these lists.
98 #define SLOB_BREAK1 256
99 #define SLOB_BREAK2 1024
100 static LIST_HEAD(free_slob_small
);
101 static LIST_HEAD(free_slob_medium
);
102 static LIST_HEAD(free_slob_large
);
105 * slob_page_free: true for pages on free_slob_pages list.
107 static inline int slob_page_free(struct page
*sp
)
109 return PageSlobFree(sp
);
112 static void set_slob_page_free(struct page
*sp
, struct list_head
*list
)
114 list_add(&sp
->list
, list
);
115 __SetPageSlobFree(sp
);
118 static inline void clear_slob_page_free(struct page
*sp
)
121 __ClearPageSlobFree(sp
);
124 #define SLOB_UNIT sizeof(slob_t)
125 #define SLOB_UNITS(size) DIV_ROUND_UP(size, SLOB_UNIT)
128 * struct slob_rcu is inserted at the tail of allocated slob blocks, which
129 * were created with a SLAB_DESTROY_BY_RCU slab. slob_rcu is used to free
130 * the block using call_rcu.
133 struct rcu_head head
;
138 * slob_lock protects all slob allocator structures.
140 static DEFINE_SPINLOCK(slob_lock
);
143 * Encode the given size and next info into a free slob block s.
145 static void set_slob(slob_t
*s
, slobidx_t size
, slob_t
*next
)
147 slob_t
*base
= (slob_t
*)((unsigned long)s
& PAGE_MASK
);
148 slobidx_t offset
= next
- base
;
154 s
[0].units
= -offset
;
158 * Return the size of a slob block.
160 static slobidx_t
slob_units(slob_t
*s
)
168 * Return the next free slob block pointer after this one.
170 static slob_t
*slob_next(slob_t
*s
)
172 slob_t
*base
= (slob_t
*)((unsigned long)s
& PAGE_MASK
);
183 * Returns true if s is the last free block in its page.
185 static int slob_last(slob_t
*s
)
187 return !((unsigned long)slob_next(s
) & ~PAGE_MASK
);
190 static void *slob_new_pages(gfp_t gfp
, int order
, int node
)
195 if (node
!= NUMA_NO_NODE
)
196 page
= alloc_pages_exact_node(node
, gfp
, order
);
199 page
= alloc_pages(gfp
, order
);
204 return page_address(page
);
207 static void slob_free_pages(void *b
, int order
)
209 if (current
->reclaim_state
)
210 current
->reclaim_state
->reclaimed_slab
+= 1 << order
;
211 free_pages((unsigned long)b
, order
);
215 * Allocate a slob block within a given slob_page sp.
217 static void *slob_page_alloc(struct page
*sp
, size_t size
, int align
)
219 slob_t
*prev
, *cur
, *aligned
= NULL
;
220 int delta
= 0, units
= SLOB_UNITS(size
);
222 for (prev
= NULL
, cur
= sp
->freelist
; ; prev
= cur
, cur
= slob_next(cur
)) {
223 slobidx_t avail
= slob_units(cur
);
226 aligned
= (slob_t
*)ALIGN((unsigned long)cur
, align
);
227 delta
= aligned
- cur
;
229 if (avail
>= units
+ delta
) { /* room enough? */
232 if (delta
) { /* need to fragment head to align? */
233 next
= slob_next(cur
);
234 set_slob(aligned
, avail
- delta
, next
);
235 set_slob(cur
, delta
, aligned
);
238 avail
= slob_units(cur
);
241 next
= slob_next(cur
);
242 if (avail
== units
) { /* exact fit? unlink. */
244 set_slob(prev
, slob_units(prev
), next
);
247 } else { /* fragment */
249 set_slob(prev
, slob_units(prev
), cur
+ units
);
251 sp
->freelist
= cur
+ units
;
252 set_slob(cur
+ units
, avail
- units
, next
);
257 clear_slob_page_free(sp
);
266 * slob_alloc: entry point into the slob allocator.
268 static void *slob_alloc(size_t size
, gfp_t gfp
, int align
, int node
)
271 struct list_head
*prev
;
272 struct list_head
*slob_list
;
276 if (size
< SLOB_BREAK1
)
277 slob_list
= &free_slob_small
;
278 else if (size
< SLOB_BREAK2
)
279 slob_list
= &free_slob_medium
;
281 slob_list
= &free_slob_large
;
283 spin_lock_irqsave(&slob_lock
, flags
);
284 /* Iterate through each partially free page, try to find room */
285 list_for_each_entry(sp
, slob_list
, list
) {
288 * If there's a node specification, search for a partial
289 * page with a matching node id in the freelist.
291 if (node
!= NUMA_NO_NODE
&& page_to_nid(sp
) != node
)
294 /* Enough room on this page? */
295 if (sp
->units
< SLOB_UNITS(size
))
298 /* Attempt to alloc */
299 prev
= sp
->list
.prev
;
300 b
= slob_page_alloc(sp
, size
, align
);
304 /* Improve fragment distribution and reduce our average
305 * search time by starting our next search here. (see
306 * Knuth vol 1, sec 2.5, pg 449) */
307 if (prev
!= slob_list
->prev
&&
308 slob_list
->next
!= prev
->next
)
309 list_move_tail(slob_list
, prev
->next
);
312 spin_unlock_irqrestore(&slob_lock
, flags
);
314 /* Not enough space: must allocate a new page */
316 b
= slob_new_pages(gfp
& ~__GFP_ZERO
, 0, node
);
319 sp
= virt_to_page(b
);
322 spin_lock_irqsave(&slob_lock
, flags
);
323 sp
->units
= SLOB_UNITS(PAGE_SIZE
);
325 INIT_LIST_HEAD(&sp
->list
);
326 set_slob(b
, SLOB_UNITS(PAGE_SIZE
), b
+ SLOB_UNITS(PAGE_SIZE
));
327 set_slob_page_free(sp
, slob_list
);
328 b
= slob_page_alloc(sp
, size
, align
);
330 spin_unlock_irqrestore(&slob_lock
, flags
);
332 if (unlikely((gfp
& __GFP_ZERO
) && b
))
338 * slob_free: entry point into the slob allocator.
340 static void slob_free(void *block
, int size
)
343 slob_t
*prev
, *next
, *b
= (slob_t
*)block
;
346 struct list_head
*slob_list
;
348 if (unlikely(ZERO_OR_NULL_PTR(block
)))
352 sp
= virt_to_page(block
);
353 units
= SLOB_UNITS(size
);
355 spin_lock_irqsave(&slob_lock
, flags
);
357 if (sp
->units
+ units
== SLOB_UNITS(PAGE_SIZE
)) {
358 /* Go directly to page allocator. Do not pass slob allocator */
359 if (slob_page_free(sp
))
360 clear_slob_page_free(sp
);
361 spin_unlock_irqrestore(&slob_lock
, flags
);
363 page_mapcount_reset(sp
);
364 slob_free_pages(b
, 0);
368 if (!slob_page_free(sp
)) {
369 /* This slob page is about to become partially free. Easy! */
373 (void *)((unsigned long)(b
+
374 SLOB_UNITS(PAGE_SIZE
)) & PAGE_MASK
));
375 if (size
< SLOB_BREAK1
)
376 slob_list
= &free_slob_small
;
377 else if (size
< SLOB_BREAK2
)
378 slob_list
= &free_slob_medium
;
380 slob_list
= &free_slob_large
;
381 set_slob_page_free(sp
, slob_list
);
386 * Otherwise the page is already partially free, so find reinsertion
391 if (b
< (slob_t
*)sp
->freelist
) {
392 if (b
+ units
== sp
->freelist
) {
393 units
+= slob_units(sp
->freelist
);
394 sp
->freelist
= slob_next(sp
->freelist
);
396 set_slob(b
, units
, sp
->freelist
);
400 next
= slob_next(prev
);
403 next
= slob_next(prev
);
406 if (!slob_last(prev
) && b
+ units
== next
) {
407 units
+= slob_units(next
);
408 set_slob(b
, units
, slob_next(next
));
410 set_slob(b
, units
, next
);
412 if (prev
+ slob_units(prev
) == b
) {
413 units
= slob_units(b
) + slob_units(prev
);
414 set_slob(prev
, units
, slob_next(b
));
416 set_slob(prev
, slob_units(prev
), b
);
419 spin_unlock_irqrestore(&slob_lock
, flags
);
423 * End of slob allocator proper. Begin kmem_cache_alloc and kmalloc frontend.
426 static __always_inline
void *
427 __do_kmalloc_node(size_t size
, gfp_t gfp
, int node
, unsigned long caller
)
430 int align
= max_t(size_t, ARCH_KMALLOC_MINALIGN
, ARCH_SLAB_MINALIGN
);
433 gfp
&= gfp_allowed_mask
;
435 lockdep_trace_alloc(gfp
);
437 if (size
< PAGE_SIZE
- align
) {
439 return ZERO_SIZE_PTR
;
441 m
= slob_alloc(size
+ align
, gfp
, align
, node
);
446 ret
= (void *)m
+ align
;
448 trace_kmalloc_node(caller
, ret
,
449 size
, size
+ align
, gfp
, node
);
451 unsigned int order
= get_order(size
);
455 ret
= slob_new_pages(gfp
, order
, node
);
457 trace_kmalloc_node(caller
, ret
,
458 size
, PAGE_SIZE
<< order
, gfp
, node
);
461 kmemleak_alloc(ret
, size
, 1, gfp
);
465 void *__kmalloc_node(size_t size
, gfp_t gfp
, int node
)
467 return __do_kmalloc_node(size
, gfp
, node
, _RET_IP_
);
469 EXPORT_SYMBOL(__kmalloc_node
);
471 #ifdef CONFIG_TRACING
472 void *__kmalloc_track_caller(size_t size
, gfp_t gfp
, unsigned long caller
)
474 return __do_kmalloc_node(size
, gfp
, NUMA_NO_NODE
, caller
);
478 void *__kmalloc_node_track_caller(size_t size
, gfp_t gfp
,
479 int node
, unsigned long caller
)
481 return __do_kmalloc_node(size
, gfp
, node
, caller
);
486 void kfree(const void *block
)
490 trace_kfree(_RET_IP_
, block
);
492 if (unlikely(ZERO_OR_NULL_PTR(block
)))
494 kmemleak_free(block
);
496 sp
= virt_to_page(block
);
498 int align
= max_t(size_t, ARCH_KMALLOC_MINALIGN
, ARCH_SLAB_MINALIGN
);
499 unsigned int *m
= (unsigned int *)(block
- align
);
500 slob_free(m
, *m
+ align
);
502 __free_pages(sp
, compound_order(sp
));
504 EXPORT_SYMBOL(kfree
);
506 /* can't use ksize for kmem_cache_alloc memory, only kmalloc */
507 size_t ksize(const void *block
)
514 if (unlikely(block
== ZERO_SIZE_PTR
))
517 sp
= virt_to_page(block
);
518 if (unlikely(!PageSlab(sp
)))
519 return PAGE_SIZE
<< compound_order(sp
);
521 align
= max_t(size_t, ARCH_KMALLOC_MINALIGN
, ARCH_SLAB_MINALIGN
);
522 m
= (unsigned int *)(block
- align
);
523 return SLOB_UNITS(*m
) * SLOB_UNIT
;
525 EXPORT_SYMBOL(ksize
);
527 int __kmem_cache_create(struct kmem_cache
*c
, unsigned long flags
)
529 if (flags
& SLAB_DESTROY_BY_RCU
) {
530 /* leave room for rcu footer at the end of object */
531 c
->size
+= sizeof(struct slob_rcu
);
537 void *kmem_cache_alloc_node(struct kmem_cache
*c
, gfp_t flags
, int node
)
541 flags
&= gfp_allowed_mask
;
543 lockdep_trace_alloc(flags
);
545 if (c
->size
< PAGE_SIZE
) {
546 b
= slob_alloc(c
->size
, flags
, c
->align
, node
);
547 trace_kmem_cache_alloc_node(_RET_IP_
, b
, c
->object_size
,
548 SLOB_UNITS(c
->size
) * SLOB_UNIT
,
551 b
= slob_new_pages(flags
, get_order(c
->size
), node
);
552 trace_kmem_cache_alloc_node(_RET_IP_
, b
, c
->object_size
,
553 PAGE_SIZE
<< get_order(c
->size
),
560 kmemleak_alloc_recursive(b
, c
->size
, 1, c
->flags
, flags
);
563 EXPORT_SYMBOL(kmem_cache_alloc_node
);
565 static void __kmem_cache_free(void *b
, int size
)
567 if (size
< PAGE_SIZE
)
570 slob_free_pages(b
, get_order(size
));
573 static void kmem_rcu_free(struct rcu_head
*head
)
575 struct slob_rcu
*slob_rcu
= (struct slob_rcu
*)head
;
576 void *b
= (void *)slob_rcu
- (slob_rcu
->size
- sizeof(struct slob_rcu
));
578 __kmem_cache_free(b
, slob_rcu
->size
);
581 void kmem_cache_free(struct kmem_cache
*c
, void *b
)
583 kmemleak_free_recursive(b
, c
->flags
);
584 if (unlikely(c
->flags
& SLAB_DESTROY_BY_RCU
)) {
585 struct slob_rcu
*slob_rcu
;
586 slob_rcu
= b
+ (c
->size
- sizeof(struct slob_rcu
));
587 slob_rcu
->size
= c
->size
;
588 call_rcu(&slob_rcu
->head
, kmem_rcu_free
);
590 __kmem_cache_free(b
, c
->size
);
593 trace_kmem_cache_free(_RET_IP_
, b
);
595 EXPORT_SYMBOL(kmem_cache_free
);
597 int __kmem_cache_shutdown(struct kmem_cache
*c
)
599 /* No way to check for remaining objects */
603 int kmem_cache_shrink(struct kmem_cache
*d
)
607 EXPORT_SYMBOL(kmem_cache_shrink
);
609 struct kmem_cache kmem_cache_boot
= {
610 .name
= "kmem_cache",
611 .size
= sizeof(struct kmem_cache
),
613 .align
= ARCH_KMALLOC_MINALIGN
,
616 void __init
kmem_cache_init(void)
618 kmem_cache
= &kmem_cache_boot
;
622 void __init
kmem_cache_init_late(void)