1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2011 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
30 * 82562G 10/100 Network Connection
31 * 82562G-2 10/100 Network Connection
32 * 82562GT 10/100 Network Connection
33 * 82562GT-2 10/100 Network Connection
34 * 82562V 10/100 Network Connection
35 * 82562V-2 10/100 Network Connection
36 * 82566DC-2 Gigabit Network Connection
37 * 82566DC Gigabit Network Connection
38 * 82566DM-2 Gigabit Network Connection
39 * 82566DM Gigabit Network Connection
40 * 82566MC Gigabit Network Connection
41 * 82566MM Gigabit Network Connection
42 * 82567LM Gigabit Network Connection
43 * 82567LF Gigabit Network Connection
44 * 82567V Gigabit Network Connection
45 * 82567LM-2 Gigabit Network Connection
46 * 82567LF-2 Gigabit Network Connection
47 * 82567V-2 Gigabit Network Connection
48 * 82567LF-3 Gigabit Network Connection
49 * 82567LM-3 Gigabit Network Connection
50 * 82567LM-4 Gigabit Network Connection
51 * 82577LM Gigabit Network Connection
52 * 82577LC Gigabit Network Connection
53 * 82578DM Gigabit Network Connection
54 * 82578DC Gigabit Network Connection
55 * 82579LM Gigabit Network Connection
56 * 82579V Gigabit Network Connection
61 #define ICH_FLASH_GFPREG 0x0000
62 #define ICH_FLASH_HSFSTS 0x0004
63 #define ICH_FLASH_HSFCTL 0x0006
64 #define ICH_FLASH_FADDR 0x0008
65 #define ICH_FLASH_FDATA0 0x0010
66 #define ICH_FLASH_PR0 0x0074
68 #define ICH_FLASH_READ_COMMAND_TIMEOUT 500
69 #define ICH_FLASH_WRITE_COMMAND_TIMEOUT 500
70 #define ICH_FLASH_ERASE_COMMAND_TIMEOUT 3000000
71 #define ICH_FLASH_LINEAR_ADDR_MASK 0x00FFFFFF
72 #define ICH_FLASH_CYCLE_REPEAT_COUNT 10
74 #define ICH_CYCLE_READ 0
75 #define ICH_CYCLE_WRITE 2
76 #define ICH_CYCLE_ERASE 3
78 #define FLASH_GFPREG_BASE_MASK 0x1FFF
79 #define FLASH_SECTOR_ADDR_SHIFT 12
81 #define ICH_FLASH_SEG_SIZE_256 256
82 #define ICH_FLASH_SEG_SIZE_4K 4096
83 #define ICH_FLASH_SEG_SIZE_8K 8192
84 #define ICH_FLASH_SEG_SIZE_64K 65536
87 #define E1000_ICH_FWSM_RSPCIPHY 0x00000040 /* Reset PHY on PCI Reset */
88 /* FW established a valid mode */
89 #define E1000_ICH_FWSM_FW_VALID 0x00008000
91 #define E1000_ICH_MNG_IAMT_MODE 0x2
93 #define ID_LED_DEFAULT_ICH8LAN ((ID_LED_DEF1_DEF2 << 12) | \
94 (ID_LED_DEF1_OFF2 << 8) | \
95 (ID_LED_DEF1_ON2 << 4) | \
98 #define E1000_ICH_NVM_SIG_WORD 0x13
99 #define E1000_ICH_NVM_SIG_MASK 0xC000
100 #define E1000_ICH_NVM_VALID_SIG_MASK 0xC0
101 #define E1000_ICH_NVM_SIG_VALUE 0x80
103 #define E1000_ICH8_LAN_INIT_TIMEOUT 1500
105 #define E1000_FEXTNVM_SW_CONFIG 1
106 #define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* Bit redefined for ICH8M :/ */
108 #define E1000_FEXTNVM4_BEACON_DURATION_MASK 0x7
109 #define E1000_FEXTNVM4_BEACON_DURATION_8USEC 0x7
110 #define E1000_FEXTNVM4_BEACON_DURATION_16USEC 0x3
112 #define PCIE_ICH8_SNOOP_ALL PCIE_NO_SNOOP_ALL
114 #define E1000_ICH_RAR_ENTRIES 7
116 #define PHY_PAGE_SHIFT 5
117 #define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \
118 ((reg) & MAX_PHY_REG_ADDRESS))
119 #define IGP3_KMRN_DIAG PHY_REG(770, 19) /* KMRN Diagnostic */
120 #define IGP3_VR_CTRL PHY_REG(776, 18) /* Voltage Regulator Control */
122 #define IGP3_KMRN_DIAG_PCS_LOCK_LOSS 0x0002
123 #define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK 0x0300
124 #define IGP3_VR_CTRL_MODE_SHUTDOWN 0x0200
126 #define HV_LED_CONFIG PHY_REG(768, 30) /* LED Configuration */
128 #define SW_FLAG_TIMEOUT 1000 /* SW Semaphore flag timeout in milliseconds */
130 /* SMBus Address Phy Register */
131 #define HV_SMB_ADDR PHY_REG(768, 26)
132 #define HV_SMB_ADDR_MASK 0x007F
133 #define HV_SMB_ADDR_PEC_EN 0x0200
134 #define HV_SMB_ADDR_VALID 0x0080
136 /* PHY Power Management Control */
137 #define HV_PM_CTRL PHY_REG(770, 17)
139 /* PHY Low Power Idle Control */
140 #define I82579_LPI_CTRL PHY_REG(772, 20)
141 #define I82579_LPI_CTRL_ENABLE_MASK 0x6000
144 #define I82579_EMI_ADDR 0x10
145 #define I82579_EMI_DATA 0x11
146 #define I82579_LPI_UPDATE_TIMER 0x4805 /* in 40ns units + 40 ns base value */
148 /* Strapping Option Register - RO */
149 #define E1000_STRAP 0x0000C
150 #define E1000_STRAP_SMBUS_ADDRESS_MASK 0x00FE0000
151 #define E1000_STRAP_SMBUS_ADDRESS_SHIFT 17
153 /* OEM Bits Phy Register */
154 #define HV_OEM_BITS PHY_REG(768, 25)
155 #define HV_OEM_BITS_LPLU 0x0004 /* Low Power Link Up */
156 #define HV_OEM_BITS_GBE_DIS 0x0040 /* Gigabit Disable */
157 #define HV_OEM_BITS_RESTART_AN 0x0400 /* Restart Auto-negotiation */
159 #define E1000_NVM_K1_CONFIG 0x1B /* NVM K1 Config Word */
160 #define E1000_NVM_K1_ENABLE 0x1 /* NVM Enable K1 bit */
162 /* KMRN Mode Control */
163 #define HV_KMRN_MODE_CTRL PHY_REG(769, 16)
164 #define HV_KMRN_MDIO_SLOW 0x0400
166 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
167 /* Offset 04h HSFSTS */
168 union ich8_hws_flash_status
{
170 u16 flcdone
:1; /* bit 0 Flash Cycle Done */
171 u16 flcerr
:1; /* bit 1 Flash Cycle Error */
172 u16 dael
:1; /* bit 2 Direct Access error Log */
173 u16 berasesz
:2; /* bit 4:3 Sector Erase Size */
174 u16 flcinprog
:1; /* bit 5 flash cycle in Progress */
175 u16 reserved1
:2; /* bit 13:6 Reserved */
176 u16 reserved2
:6; /* bit 13:6 Reserved */
177 u16 fldesvalid
:1; /* bit 14 Flash Descriptor Valid */
178 u16 flockdn
:1; /* bit 15 Flash Config Lock-Down */
183 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
184 /* Offset 06h FLCTL */
185 union ich8_hws_flash_ctrl
{
186 struct ich8_hsflctl
{
187 u16 flcgo
:1; /* 0 Flash Cycle Go */
188 u16 flcycle
:2; /* 2:1 Flash Cycle */
189 u16 reserved
:5; /* 7:3 Reserved */
190 u16 fldbcount
:2; /* 9:8 Flash Data Byte Count */
191 u16 flockdn
:6; /* 15:10 Reserved */
196 /* ICH Flash Region Access Permissions */
197 union ich8_hws_flash_regacc
{
199 u32 grra
:8; /* 0:7 GbE region Read Access */
200 u32 grwa
:8; /* 8:15 GbE region Write Access */
201 u32 gmrag
:8; /* 23:16 GbE Master Read Access Grant */
202 u32 gmwag
:8; /* 31:24 GbE Master Write Access Grant */
207 /* ICH Flash Protected Region */
208 union ich8_flash_protected_range
{
210 u32 base
:13; /* 0:12 Protected Range Base */
211 u32 reserved1
:2; /* 13:14 Reserved */
212 u32 rpe
:1; /* 15 Read Protection Enable */
213 u32 limit
:13; /* 16:28 Protected Range Limit */
214 u32 reserved2
:2; /* 29:30 Reserved */
215 u32 wpe
:1; /* 31 Write Protection Enable */
220 static s32
e1000_setup_link_ich8lan(struct e1000_hw
*hw
);
221 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw
*hw
);
222 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw
*hw
);
223 static s32
e1000_erase_flash_bank_ich8lan(struct e1000_hw
*hw
, u32 bank
);
224 static s32
e1000_retry_write_flash_byte_ich8lan(struct e1000_hw
*hw
,
225 u32 offset
, u8 byte
);
226 static s32
e1000_read_flash_byte_ich8lan(struct e1000_hw
*hw
, u32 offset
,
228 static s32
e1000_read_flash_word_ich8lan(struct e1000_hw
*hw
, u32 offset
,
230 static s32
e1000_read_flash_data_ich8lan(struct e1000_hw
*hw
, u32 offset
,
232 static s32
e1000_setup_copper_link_ich8lan(struct e1000_hw
*hw
);
233 static s32
e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw
*hw
);
234 static s32
e1000_get_cfg_done_ich8lan(struct e1000_hw
*hw
);
235 static s32
e1000_cleanup_led_ich8lan(struct e1000_hw
*hw
);
236 static s32
e1000_led_on_ich8lan(struct e1000_hw
*hw
);
237 static s32
e1000_led_off_ich8lan(struct e1000_hw
*hw
);
238 static s32
e1000_id_led_init_pchlan(struct e1000_hw
*hw
);
239 static s32
e1000_setup_led_pchlan(struct e1000_hw
*hw
);
240 static s32
e1000_cleanup_led_pchlan(struct e1000_hw
*hw
);
241 static s32
e1000_led_on_pchlan(struct e1000_hw
*hw
);
242 static s32
e1000_led_off_pchlan(struct e1000_hw
*hw
);
243 static s32
e1000_set_lplu_state_pchlan(struct e1000_hw
*hw
, bool active
);
244 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw
*hw
);
245 static void e1000_lan_init_done_ich8lan(struct e1000_hw
*hw
);
246 static s32
e1000_k1_gig_workaround_hv(struct e1000_hw
*hw
, bool link
);
247 static s32
e1000_set_mdio_slow_mode_hv(struct e1000_hw
*hw
);
248 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw
*hw
);
249 static bool e1000_check_mng_mode_pchlan(struct e1000_hw
*hw
);
250 static s32
e1000_k1_workaround_lv(struct e1000_hw
*hw
);
251 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw
*hw
, bool gate
);
253 static inline u16
__er16flash(struct e1000_hw
*hw
, unsigned long reg
)
255 return readw(hw
->flash_address
+ reg
);
258 static inline u32
__er32flash(struct e1000_hw
*hw
, unsigned long reg
)
260 return readl(hw
->flash_address
+ reg
);
263 static inline void __ew16flash(struct e1000_hw
*hw
, unsigned long reg
, u16 val
)
265 writew(val
, hw
->flash_address
+ reg
);
268 static inline void __ew32flash(struct e1000_hw
*hw
, unsigned long reg
, u32 val
)
270 writel(val
, hw
->flash_address
+ reg
);
273 #define er16flash(reg) __er16flash(hw, (reg))
274 #define er32flash(reg) __er32flash(hw, (reg))
275 #define ew16flash(reg,val) __ew16flash(hw, (reg), (val))
276 #define ew32flash(reg,val) __ew32flash(hw, (reg), (val))
278 static void e1000_toggle_lanphypc_value_ich8lan(struct e1000_hw
*hw
)
283 ctrl
|= E1000_CTRL_LANPHYPC_OVERRIDE
;
284 ctrl
&= ~E1000_CTRL_LANPHYPC_VALUE
;
287 ctrl
&= ~E1000_CTRL_LANPHYPC_OVERRIDE
;
292 * e1000_init_phy_params_pchlan - Initialize PHY function pointers
293 * @hw: pointer to the HW structure
295 * Initialize family-specific PHY parameters and function pointers.
297 static s32
e1000_init_phy_params_pchlan(struct e1000_hw
*hw
)
299 struct e1000_phy_info
*phy
= &hw
->phy
;
304 phy
->reset_delay_us
= 100;
306 phy
->ops
.read_reg
= e1000_read_phy_reg_hv
;
307 phy
->ops
.read_reg_locked
= e1000_read_phy_reg_hv_locked
;
308 phy
->ops
.set_d0_lplu_state
= e1000_set_lplu_state_pchlan
;
309 phy
->ops
.set_d3_lplu_state
= e1000_set_lplu_state_pchlan
;
310 phy
->ops
.write_reg
= e1000_write_phy_reg_hv
;
311 phy
->ops
.write_reg_locked
= e1000_write_phy_reg_hv_locked
;
312 phy
->ops
.power_up
= e1000_power_up_phy_copper
;
313 phy
->ops
.power_down
= e1000_power_down_phy_copper_ich8lan
;
314 phy
->autoneg_mask
= AUTONEG_ADVERTISE_SPEED_DEFAULT
;
317 * The MAC-PHY interconnect may still be in SMBus mode
318 * after Sx->S0. If the manageability engine (ME) is
319 * disabled, then toggle the LANPHYPC Value bit to force
320 * the interconnect to PCIe mode.
323 if (!(fwsm
& E1000_ICH_FWSM_FW_VALID
) && !e1000_check_reset_block(hw
)) {
324 e1000_toggle_lanphypc_value_ich8lan(hw
);
328 * Gate automatic PHY configuration by hardware on
331 if (hw
->mac
.type
== e1000_pch2lan
)
332 e1000_gate_hw_phy_config_ich8lan(hw
, true);
336 * Reset the PHY before any access to it. Doing so, ensures that
337 * the PHY is in a known good state before we read/write PHY registers.
338 * The generic reset is sufficient here, because we haven't determined
341 ret_val
= e1000e_phy_hw_reset_generic(hw
);
345 /* Ungate automatic PHY configuration on non-managed 82579 */
346 if ((hw
->mac
.type
== e1000_pch2lan
) &&
347 !(fwsm
& E1000_ICH_FWSM_FW_VALID
)) {
348 usleep_range(10000, 20000);
349 e1000_gate_hw_phy_config_ich8lan(hw
, false);
352 phy
->id
= e1000_phy_unknown
;
353 switch (hw
->mac
.type
) {
355 ret_val
= e1000e_get_phy_id(hw
);
358 if ((phy
->id
!= 0) && (phy
->id
!= PHY_REVISION_MASK
))
363 * In case the PHY needs to be in mdio slow mode,
364 * set slow mode and try to get the PHY id again.
366 ret_val
= e1000_set_mdio_slow_mode_hv(hw
);
369 ret_val
= e1000e_get_phy_id(hw
);
374 phy
->type
= e1000e_get_phy_type_from_id(phy
->id
);
377 case e1000_phy_82577
:
378 case e1000_phy_82579
:
379 phy
->ops
.check_polarity
= e1000_check_polarity_82577
;
380 phy
->ops
.force_speed_duplex
=
381 e1000_phy_force_speed_duplex_82577
;
382 phy
->ops
.get_cable_length
= e1000_get_cable_length_82577
;
383 phy
->ops
.get_info
= e1000_get_phy_info_82577
;
384 phy
->ops
.commit
= e1000e_phy_sw_reset
;
386 case e1000_phy_82578
:
387 phy
->ops
.check_polarity
= e1000_check_polarity_m88
;
388 phy
->ops
.force_speed_duplex
= e1000e_phy_force_speed_duplex_m88
;
389 phy
->ops
.get_cable_length
= e1000e_get_cable_length_m88
;
390 phy
->ops
.get_info
= e1000e_get_phy_info_m88
;
393 ret_val
= -E1000_ERR_PHY
;
402 * e1000_init_phy_params_ich8lan - Initialize PHY function pointers
403 * @hw: pointer to the HW structure
405 * Initialize family-specific PHY parameters and function pointers.
407 static s32
e1000_init_phy_params_ich8lan(struct e1000_hw
*hw
)
409 struct e1000_phy_info
*phy
= &hw
->phy
;
414 phy
->reset_delay_us
= 100;
416 phy
->ops
.power_up
= e1000_power_up_phy_copper
;
417 phy
->ops
.power_down
= e1000_power_down_phy_copper_ich8lan
;
420 * We may need to do this twice - once for IGP and if that fails,
421 * we'll set BM func pointers and try again
423 ret_val
= e1000e_determine_phy_address(hw
);
425 phy
->ops
.write_reg
= e1000e_write_phy_reg_bm
;
426 phy
->ops
.read_reg
= e1000e_read_phy_reg_bm
;
427 ret_val
= e1000e_determine_phy_address(hw
);
429 e_dbg("Cannot determine PHY addr. Erroring out\n");
435 while ((e1000_phy_unknown
== e1000e_get_phy_type_from_id(phy
->id
)) &&
437 usleep_range(1000, 2000);
438 ret_val
= e1000e_get_phy_id(hw
);
445 case IGP03E1000_E_PHY_ID
:
446 phy
->type
= e1000_phy_igp_3
;
447 phy
->autoneg_mask
= AUTONEG_ADVERTISE_SPEED_DEFAULT
;
448 phy
->ops
.read_reg_locked
= e1000e_read_phy_reg_igp_locked
;
449 phy
->ops
.write_reg_locked
= e1000e_write_phy_reg_igp_locked
;
450 phy
->ops
.get_info
= e1000e_get_phy_info_igp
;
451 phy
->ops
.check_polarity
= e1000_check_polarity_igp
;
452 phy
->ops
.force_speed_duplex
= e1000e_phy_force_speed_duplex_igp
;
455 case IFE_PLUS_E_PHY_ID
:
457 phy
->type
= e1000_phy_ife
;
458 phy
->autoneg_mask
= E1000_ALL_NOT_GIG
;
459 phy
->ops
.get_info
= e1000_get_phy_info_ife
;
460 phy
->ops
.check_polarity
= e1000_check_polarity_ife
;
461 phy
->ops
.force_speed_duplex
= e1000_phy_force_speed_duplex_ife
;
463 case BME1000_E_PHY_ID
:
464 phy
->type
= e1000_phy_bm
;
465 phy
->autoneg_mask
= AUTONEG_ADVERTISE_SPEED_DEFAULT
;
466 phy
->ops
.read_reg
= e1000e_read_phy_reg_bm
;
467 phy
->ops
.write_reg
= e1000e_write_phy_reg_bm
;
468 phy
->ops
.commit
= e1000e_phy_sw_reset
;
469 phy
->ops
.get_info
= e1000e_get_phy_info_m88
;
470 phy
->ops
.check_polarity
= e1000_check_polarity_m88
;
471 phy
->ops
.force_speed_duplex
= e1000e_phy_force_speed_duplex_m88
;
474 return -E1000_ERR_PHY
;
482 * e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
483 * @hw: pointer to the HW structure
485 * Initialize family-specific NVM parameters and function
488 static s32
e1000_init_nvm_params_ich8lan(struct e1000_hw
*hw
)
490 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
491 struct e1000_dev_spec_ich8lan
*dev_spec
= &hw
->dev_spec
.ich8lan
;
492 u32 gfpreg
, sector_base_addr
, sector_end_addr
;
495 /* Can't read flash registers if the register set isn't mapped. */
496 if (!hw
->flash_address
) {
497 e_dbg("ERROR: Flash registers not mapped\n");
498 return -E1000_ERR_CONFIG
;
501 nvm
->type
= e1000_nvm_flash_sw
;
503 gfpreg
= er32flash(ICH_FLASH_GFPREG
);
506 * sector_X_addr is a "sector"-aligned address (4096 bytes)
507 * Add 1 to sector_end_addr since this sector is included in
510 sector_base_addr
= gfpreg
& FLASH_GFPREG_BASE_MASK
;
511 sector_end_addr
= ((gfpreg
>> 16) & FLASH_GFPREG_BASE_MASK
) + 1;
513 /* flash_base_addr is byte-aligned */
514 nvm
->flash_base_addr
= sector_base_addr
<< FLASH_SECTOR_ADDR_SHIFT
;
517 * find total size of the NVM, then cut in half since the total
518 * size represents two separate NVM banks.
520 nvm
->flash_bank_size
= (sector_end_addr
- sector_base_addr
)
521 << FLASH_SECTOR_ADDR_SHIFT
;
522 nvm
->flash_bank_size
/= 2;
523 /* Adjust to word count */
524 nvm
->flash_bank_size
/= sizeof(u16
);
526 nvm
->word_size
= E1000_ICH8_SHADOW_RAM_WORDS
;
528 /* Clear shadow ram */
529 for (i
= 0; i
< nvm
->word_size
; i
++) {
530 dev_spec
->shadow_ram
[i
].modified
= false;
531 dev_spec
->shadow_ram
[i
].value
= 0xFFFF;
538 * e1000_init_mac_params_ich8lan - Initialize MAC function pointers
539 * @hw: pointer to the HW structure
541 * Initialize family-specific MAC parameters and function
544 static s32
e1000_init_mac_params_ich8lan(struct e1000_adapter
*adapter
)
546 struct e1000_hw
*hw
= &adapter
->hw
;
547 struct e1000_mac_info
*mac
= &hw
->mac
;
549 /* Set media type function pointer */
550 hw
->phy
.media_type
= e1000_media_type_copper
;
552 /* Set mta register count */
553 mac
->mta_reg_count
= 32;
554 /* Set rar entry count */
555 mac
->rar_entry_count
= E1000_ICH_RAR_ENTRIES
;
556 if (mac
->type
== e1000_ich8lan
)
557 mac
->rar_entry_count
--;
559 mac
->has_fwsm
= true;
560 /* ARC subsystem not supported */
561 mac
->arc_subsystem_valid
= false;
562 /* Adaptive IFS supported */
563 mac
->adaptive_ifs
= true;
570 /* check management mode */
571 mac
->ops
.check_mng_mode
= e1000_check_mng_mode_ich8lan
;
573 mac
->ops
.id_led_init
= e1000e_id_led_init
;
575 mac
->ops
.blink_led
= e1000e_blink_led_generic
;
577 mac
->ops
.setup_led
= e1000e_setup_led_generic
;
579 mac
->ops
.cleanup_led
= e1000_cleanup_led_ich8lan
;
580 /* turn on/off LED */
581 mac
->ops
.led_on
= e1000_led_on_ich8lan
;
582 mac
->ops
.led_off
= e1000_led_off_ich8lan
;
586 /* check management mode */
587 mac
->ops
.check_mng_mode
= e1000_check_mng_mode_pchlan
;
589 mac
->ops
.id_led_init
= e1000_id_led_init_pchlan
;
591 mac
->ops
.setup_led
= e1000_setup_led_pchlan
;
593 mac
->ops
.cleanup_led
= e1000_cleanup_led_pchlan
;
594 /* turn on/off LED */
595 mac
->ops
.led_on
= e1000_led_on_pchlan
;
596 mac
->ops
.led_off
= e1000_led_off_pchlan
;
602 /* Enable PCS Lock-loss workaround for ICH8 */
603 if (mac
->type
== e1000_ich8lan
)
604 e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw
, true);
606 /* Gate automatic PHY configuration by hardware on managed 82579 */
607 if ((mac
->type
== e1000_pch2lan
) &&
608 (er32(FWSM
) & E1000_ICH_FWSM_FW_VALID
))
609 e1000_gate_hw_phy_config_ich8lan(hw
, true);
615 * e1000_set_eee_pchlan - Enable/disable EEE support
616 * @hw: pointer to the HW structure
618 * Enable/disable EEE based on setting in dev_spec structure. The bits in
619 * the LPI Control register will remain set only if/when link is up.
621 static s32
e1000_set_eee_pchlan(struct e1000_hw
*hw
)
626 if (hw
->phy
.type
!= e1000_phy_82579
)
629 ret_val
= e1e_rphy(hw
, I82579_LPI_CTRL
, &phy_reg
);
633 if (hw
->dev_spec
.ich8lan
.eee_disable
)
634 phy_reg
&= ~I82579_LPI_CTRL_ENABLE_MASK
;
636 phy_reg
|= I82579_LPI_CTRL_ENABLE_MASK
;
638 ret_val
= e1e_wphy(hw
, I82579_LPI_CTRL
, phy_reg
);
644 * e1000_check_for_copper_link_ich8lan - Check for link (Copper)
645 * @hw: pointer to the HW structure
647 * Checks to see of the link status of the hardware has changed. If a
648 * change in link status has been detected, then we read the PHY registers
649 * to get the current speed/duplex if link exists.
651 static s32
e1000_check_for_copper_link_ich8lan(struct e1000_hw
*hw
)
653 struct e1000_mac_info
*mac
= &hw
->mac
;
658 * We only want to go out to the PHY registers to see if Auto-Neg
659 * has completed and/or if our link status has changed. The
660 * get_link_status flag is set upon receiving a Link Status
661 * Change or Rx Sequence Error interrupt.
663 if (!mac
->get_link_status
) {
669 * First we want to see if the MII Status Register reports
670 * link. If so, then we want to get the current speed/duplex
673 ret_val
= e1000e_phy_has_link_generic(hw
, 1, 0, &link
);
677 if (hw
->mac
.type
== e1000_pchlan
) {
678 ret_val
= e1000_k1_gig_workaround_hv(hw
, link
);
684 goto out
; /* No link detected */
686 mac
->get_link_status
= false;
688 if (hw
->phy
.type
== e1000_phy_82578
) {
689 ret_val
= e1000_link_stall_workaround_hv(hw
);
694 if (hw
->mac
.type
== e1000_pch2lan
) {
695 ret_val
= e1000_k1_workaround_lv(hw
);
701 * Check if there was DownShift, must be checked
702 * immediately after link-up
704 e1000e_check_downshift(hw
);
706 /* Enable/Disable EEE after link up */
707 ret_val
= e1000_set_eee_pchlan(hw
);
712 * If we are forcing speed/duplex, then we simply return since
713 * we have already determined whether we have link or not.
716 ret_val
= -E1000_ERR_CONFIG
;
721 * Auto-Neg is enabled. Auto Speed Detection takes care
722 * of MAC speed/duplex configuration. So we only need to
723 * configure Collision Distance in the MAC.
725 e1000e_config_collision_dist(hw
);
728 * Configure Flow Control now that Auto-Neg has completed.
729 * First, we need to restore the desired flow control
730 * settings because we may have had to re-autoneg with a
731 * different link partner.
733 ret_val
= e1000e_config_fc_after_link_up(hw
);
735 e_dbg("Error configuring flow control\n");
741 static s32
e1000_get_variants_ich8lan(struct e1000_adapter
*adapter
)
743 struct e1000_hw
*hw
= &adapter
->hw
;
746 rc
= e1000_init_mac_params_ich8lan(adapter
);
750 rc
= e1000_init_nvm_params_ich8lan(hw
);
754 switch (hw
->mac
.type
) {
758 rc
= e1000_init_phy_params_ich8lan(hw
);
762 rc
= e1000_init_phy_params_pchlan(hw
);
771 * Disable Jumbo Frame support on parts with Intel 10/100 PHY or
772 * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
774 if ((adapter
->hw
.phy
.type
== e1000_phy_ife
) ||
775 ((adapter
->hw
.mac
.type
>= e1000_pch2lan
) &&
776 (!(er32(CTRL_EXT
) & E1000_CTRL_EXT_LSECCK
)))) {
777 adapter
->flags
&= ~FLAG_HAS_JUMBO_FRAMES
;
778 adapter
->max_hw_frame_size
= ETH_FRAME_LEN
+ ETH_FCS_LEN
;
780 hw
->mac
.ops
.blink_led
= NULL
;
783 if ((adapter
->hw
.mac
.type
== e1000_ich8lan
) &&
784 (adapter
->hw
.phy
.type
== e1000_phy_igp_3
))
785 adapter
->flags
|= FLAG_LSC_GIG_SPEED_DROP
;
787 /* Disable EEE by default until IEEE802.3az spec is finalized */
788 if (adapter
->flags2
& FLAG2_HAS_EEE
)
789 adapter
->hw
.dev_spec
.ich8lan
.eee_disable
= true;
794 static DEFINE_MUTEX(nvm_mutex
);
797 * e1000_acquire_nvm_ich8lan - Acquire NVM mutex
798 * @hw: pointer to the HW structure
800 * Acquires the mutex for performing NVM operations.
802 static s32
e1000_acquire_nvm_ich8lan(struct e1000_hw
*hw
)
804 mutex_lock(&nvm_mutex
);
810 * e1000_release_nvm_ich8lan - Release NVM mutex
811 * @hw: pointer to the HW structure
813 * Releases the mutex used while performing NVM operations.
815 static void e1000_release_nvm_ich8lan(struct e1000_hw
*hw
)
817 mutex_unlock(&nvm_mutex
);
820 static DEFINE_MUTEX(swflag_mutex
);
823 * e1000_acquire_swflag_ich8lan - Acquire software control flag
824 * @hw: pointer to the HW structure
826 * Acquires the software control flag for performing PHY and select
829 static s32
e1000_acquire_swflag_ich8lan(struct e1000_hw
*hw
)
831 u32 extcnf_ctrl
, timeout
= PHY_CFG_TIMEOUT
;
834 mutex_lock(&swflag_mutex
);
837 extcnf_ctrl
= er32(EXTCNF_CTRL
);
838 if (!(extcnf_ctrl
& E1000_EXTCNF_CTRL_SWFLAG
))
846 e_dbg("SW/FW/HW has locked the resource for too long.\n");
847 ret_val
= -E1000_ERR_CONFIG
;
851 timeout
= SW_FLAG_TIMEOUT
;
853 extcnf_ctrl
|= E1000_EXTCNF_CTRL_SWFLAG
;
854 ew32(EXTCNF_CTRL
, extcnf_ctrl
);
857 extcnf_ctrl
= er32(EXTCNF_CTRL
);
858 if (extcnf_ctrl
& E1000_EXTCNF_CTRL_SWFLAG
)
866 e_dbg("Failed to acquire the semaphore.\n");
867 extcnf_ctrl
&= ~E1000_EXTCNF_CTRL_SWFLAG
;
868 ew32(EXTCNF_CTRL
, extcnf_ctrl
);
869 ret_val
= -E1000_ERR_CONFIG
;
875 mutex_unlock(&swflag_mutex
);
881 * e1000_release_swflag_ich8lan - Release software control flag
882 * @hw: pointer to the HW structure
884 * Releases the software control flag for performing PHY and select
887 static void e1000_release_swflag_ich8lan(struct e1000_hw
*hw
)
891 extcnf_ctrl
= er32(EXTCNF_CTRL
);
892 extcnf_ctrl
&= ~E1000_EXTCNF_CTRL_SWFLAG
;
893 ew32(EXTCNF_CTRL
, extcnf_ctrl
);
895 mutex_unlock(&swflag_mutex
);
899 * e1000_check_mng_mode_ich8lan - Checks management mode
900 * @hw: pointer to the HW structure
902 * This checks if the adapter has any manageability enabled.
903 * This is a function pointer entry point only called by read/write
904 * routines for the PHY and NVM parts.
906 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw
*hw
)
911 return (fwsm
& E1000_ICH_FWSM_FW_VALID
) &&
912 ((fwsm
& E1000_FWSM_MODE_MASK
) ==
913 (E1000_ICH_MNG_IAMT_MODE
<< E1000_FWSM_MODE_SHIFT
));
917 * e1000_check_mng_mode_pchlan - Checks management mode
918 * @hw: pointer to the HW structure
920 * This checks if the adapter has iAMT enabled.
921 * This is a function pointer entry point only called by read/write
922 * routines for the PHY and NVM parts.
924 static bool e1000_check_mng_mode_pchlan(struct e1000_hw
*hw
)
929 return (fwsm
& E1000_ICH_FWSM_FW_VALID
) &&
930 (fwsm
& (E1000_ICH_MNG_IAMT_MODE
<< E1000_FWSM_MODE_SHIFT
));
934 * e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
935 * @hw: pointer to the HW structure
937 * Checks if firmware is blocking the reset of the PHY.
938 * This is a function pointer entry point only called by
941 static s32
e1000_check_reset_block_ich8lan(struct e1000_hw
*hw
)
947 return (fwsm
& E1000_ICH_FWSM_RSPCIPHY
) ? 0 : E1000_BLK_PHY_RESET
;
951 * e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
952 * @hw: pointer to the HW structure
954 * Assumes semaphore already acquired.
957 static s32
e1000_write_smbus_addr(struct e1000_hw
*hw
)
960 u32 strap
= er32(STRAP
);
963 strap
&= E1000_STRAP_SMBUS_ADDRESS_MASK
;
965 ret_val
= e1000_read_phy_reg_hv_locked(hw
, HV_SMB_ADDR
, &phy_data
);
969 phy_data
&= ~HV_SMB_ADDR_MASK
;
970 phy_data
|= (strap
>> E1000_STRAP_SMBUS_ADDRESS_SHIFT
);
971 phy_data
|= HV_SMB_ADDR_PEC_EN
| HV_SMB_ADDR_VALID
;
972 ret_val
= e1000_write_phy_reg_hv_locked(hw
, HV_SMB_ADDR
, phy_data
);
979 * e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
980 * @hw: pointer to the HW structure
982 * SW should configure the LCD from the NVM extended configuration region
983 * as a workaround for certain parts.
985 static s32
e1000_sw_lcd_config_ich8lan(struct e1000_hw
*hw
)
987 struct e1000_phy_info
*phy
= &hw
->phy
;
988 u32 i
, data
, cnf_size
, cnf_base_addr
, sw_cfg_mask
;
990 u16 word_addr
, reg_data
, reg_addr
, phy_page
= 0;
993 * Initialize the PHY from the NVM on ICH platforms. This
994 * is needed due to an issue where the NVM configuration is
995 * not properly autoloaded after power transitions.
996 * Therefore, after each PHY reset, we will load the
997 * configuration data out of the NVM manually.
999 switch (hw
->mac
.type
) {
1001 if (phy
->type
!= e1000_phy_igp_3
)
1004 if ((hw
->adapter
->pdev
->device
== E1000_DEV_ID_ICH8_IGP_AMT
) ||
1005 (hw
->adapter
->pdev
->device
== E1000_DEV_ID_ICH8_IGP_C
)) {
1006 sw_cfg_mask
= E1000_FEXTNVM_SW_CONFIG
;
1012 sw_cfg_mask
= E1000_FEXTNVM_SW_CONFIG_ICH8M
;
1018 ret_val
= hw
->phy
.ops
.acquire(hw
);
1022 data
= er32(FEXTNVM
);
1023 if (!(data
& sw_cfg_mask
))
1027 * Make sure HW does not configure LCD from PHY
1028 * extended configuration before SW configuration
1030 data
= er32(EXTCNF_CTRL
);
1031 if (!(hw
->mac
.type
== e1000_pch2lan
)) {
1032 if (data
& E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE
)
1036 cnf_size
= er32(EXTCNF_SIZE
);
1037 cnf_size
&= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK
;
1038 cnf_size
>>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT
;
1042 cnf_base_addr
= data
& E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK
;
1043 cnf_base_addr
>>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT
;
1045 if ((!(data
& E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE
) &&
1046 (hw
->mac
.type
== e1000_pchlan
)) ||
1047 (hw
->mac
.type
== e1000_pch2lan
)) {
1049 * HW configures the SMBus address and LEDs when the
1050 * OEM and LCD Write Enable bits are set in the NVM.
1051 * When both NVM bits are cleared, SW will configure
1054 ret_val
= e1000_write_smbus_addr(hw
);
1058 data
= er32(LEDCTL
);
1059 ret_val
= e1000_write_phy_reg_hv_locked(hw
, HV_LED_CONFIG
,
1065 /* Configure LCD from extended configuration region. */
1067 /* cnf_base_addr is in DWORD */
1068 word_addr
= (u16
)(cnf_base_addr
<< 1);
1070 for (i
= 0; i
< cnf_size
; i
++) {
1071 ret_val
= e1000_read_nvm(hw
, (word_addr
+ i
* 2), 1,
1076 ret_val
= e1000_read_nvm(hw
, (word_addr
+ i
* 2 + 1),
1081 /* Save off the PHY page for future writes. */
1082 if (reg_addr
== IGP01E1000_PHY_PAGE_SELECT
) {
1083 phy_page
= reg_data
;
1087 reg_addr
&= PHY_REG_MASK
;
1088 reg_addr
|= phy_page
;
1090 ret_val
= phy
->ops
.write_reg_locked(hw
, (u32
)reg_addr
,
1097 hw
->phy
.ops
.release(hw
);
1102 * e1000_k1_gig_workaround_hv - K1 Si workaround
1103 * @hw: pointer to the HW structure
1104 * @link: link up bool flag
1106 * If K1 is enabled for 1Gbps, the MAC might stall when transitioning
1107 * from a lower speed. This workaround disables K1 whenever link is at 1Gig
1108 * If link is down, the function will restore the default K1 setting located
1111 static s32
e1000_k1_gig_workaround_hv(struct e1000_hw
*hw
, bool link
)
1115 bool k1_enable
= hw
->dev_spec
.ich8lan
.nvm_k1_enabled
;
1117 if (hw
->mac
.type
!= e1000_pchlan
)
1120 /* Wrap the whole flow with the sw flag */
1121 ret_val
= hw
->phy
.ops
.acquire(hw
);
1125 /* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
1127 if (hw
->phy
.type
== e1000_phy_82578
) {
1128 ret_val
= hw
->phy
.ops
.read_reg_locked(hw
, BM_CS_STATUS
,
1133 status_reg
&= BM_CS_STATUS_LINK_UP
|
1134 BM_CS_STATUS_RESOLVED
|
1135 BM_CS_STATUS_SPEED_MASK
;
1137 if (status_reg
== (BM_CS_STATUS_LINK_UP
|
1138 BM_CS_STATUS_RESOLVED
|
1139 BM_CS_STATUS_SPEED_1000
))
1143 if (hw
->phy
.type
== e1000_phy_82577
) {
1144 ret_val
= hw
->phy
.ops
.read_reg_locked(hw
, HV_M_STATUS
,
1149 status_reg
&= HV_M_STATUS_LINK_UP
|
1150 HV_M_STATUS_AUTONEG_COMPLETE
|
1151 HV_M_STATUS_SPEED_MASK
;
1153 if (status_reg
== (HV_M_STATUS_LINK_UP
|
1154 HV_M_STATUS_AUTONEG_COMPLETE
|
1155 HV_M_STATUS_SPEED_1000
))
1159 /* Link stall fix for link up */
1160 ret_val
= hw
->phy
.ops
.write_reg_locked(hw
, PHY_REG(770, 19),
1166 /* Link stall fix for link down */
1167 ret_val
= hw
->phy
.ops
.write_reg_locked(hw
, PHY_REG(770, 19),
1173 ret_val
= e1000_configure_k1_ich8lan(hw
, k1_enable
);
1176 hw
->phy
.ops
.release(hw
);
1182 * e1000_configure_k1_ich8lan - Configure K1 power state
1183 * @hw: pointer to the HW structure
1184 * @enable: K1 state to configure
1186 * Configure the K1 power state based on the provided parameter.
1187 * Assumes semaphore already acquired.
1189 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1191 s32
e1000_configure_k1_ich8lan(struct e1000_hw
*hw
, bool k1_enable
)
1199 ret_val
= e1000e_read_kmrn_reg_locked(hw
,
1200 E1000_KMRNCTRLSTA_K1_CONFIG
,
1206 kmrn_reg
|= E1000_KMRNCTRLSTA_K1_ENABLE
;
1208 kmrn_reg
&= ~E1000_KMRNCTRLSTA_K1_ENABLE
;
1210 ret_val
= e1000e_write_kmrn_reg_locked(hw
,
1211 E1000_KMRNCTRLSTA_K1_CONFIG
,
1217 ctrl_ext
= er32(CTRL_EXT
);
1218 ctrl_reg
= er32(CTRL
);
1220 reg
= ctrl_reg
& ~(E1000_CTRL_SPD_1000
| E1000_CTRL_SPD_100
);
1221 reg
|= E1000_CTRL_FRCSPD
;
1224 ew32(CTRL_EXT
, ctrl_ext
| E1000_CTRL_EXT_SPD_BYPS
);
1226 ew32(CTRL
, ctrl_reg
);
1227 ew32(CTRL_EXT
, ctrl_ext
);
1235 * e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
1236 * @hw: pointer to the HW structure
1237 * @d0_state: boolean if entering d0 or d3 device state
1239 * SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
1240 * collectively called OEM bits. The OEM Write Enable bit and SW Config bit
1241 * in NVM determines whether HW should configure LPLU and Gbe Disable.
1243 static s32
e1000_oem_bits_config_ich8lan(struct e1000_hw
*hw
, bool d0_state
)
1249 if ((hw
->mac
.type
!= e1000_pch2lan
) && (hw
->mac
.type
!= e1000_pchlan
))
1252 ret_val
= hw
->phy
.ops
.acquire(hw
);
1256 if (!(hw
->mac
.type
== e1000_pch2lan
)) {
1257 mac_reg
= er32(EXTCNF_CTRL
);
1258 if (mac_reg
& E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE
)
1262 mac_reg
= er32(FEXTNVM
);
1263 if (!(mac_reg
& E1000_FEXTNVM_SW_CONFIG_ICH8M
))
1266 mac_reg
= er32(PHY_CTRL
);
1268 ret_val
= hw
->phy
.ops
.read_reg_locked(hw
, HV_OEM_BITS
, &oem_reg
);
1272 oem_reg
&= ~(HV_OEM_BITS_GBE_DIS
| HV_OEM_BITS_LPLU
);
1275 if (mac_reg
& E1000_PHY_CTRL_GBE_DISABLE
)
1276 oem_reg
|= HV_OEM_BITS_GBE_DIS
;
1278 if (mac_reg
& E1000_PHY_CTRL_D0A_LPLU
)
1279 oem_reg
|= HV_OEM_BITS_LPLU
;
1281 if (mac_reg
& E1000_PHY_CTRL_NOND0A_GBE_DISABLE
)
1282 oem_reg
|= HV_OEM_BITS_GBE_DIS
;
1284 if (mac_reg
& E1000_PHY_CTRL_NOND0A_LPLU
)
1285 oem_reg
|= HV_OEM_BITS_LPLU
;
1287 /* Restart auto-neg to activate the bits */
1288 if (!e1000_check_reset_block(hw
))
1289 oem_reg
|= HV_OEM_BITS_RESTART_AN
;
1290 ret_val
= hw
->phy
.ops
.write_reg_locked(hw
, HV_OEM_BITS
, oem_reg
);
1293 hw
->phy
.ops
.release(hw
);
1300 * e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
1301 * @hw: pointer to the HW structure
1303 static s32
e1000_set_mdio_slow_mode_hv(struct e1000_hw
*hw
)
1308 ret_val
= e1e_rphy(hw
, HV_KMRN_MODE_CTRL
, &data
);
1312 data
|= HV_KMRN_MDIO_SLOW
;
1314 ret_val
= e1e_wphy(hw
, HV_KMRN_MODE_CTRL
, data
);
1320 * e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
1321 * done after every PHY reset.
1323 static s32
e1000_hv_phy_workarounds_ich8lan(struct e1000_hw
*hw
)
1328 if (hw
->mac
.type
!= e1000_pchlan
)
1331 /* Set MDIO slow mode before any other MDIO access */
1332 if (hw
->phy
.type
== e1000_phy_82577
) {
1333 ret_val
= e1000_set_mdio_slow_mode_hv(hw
);
1338 if (((hw
->phy
.type
== e1000_phy_82577
) &&
1339 ((hw
->phy
.revision
== 1) || (hw
->phy
.revision
== 2))) ||
1340 ((hw
->phy
.type
== e1000_phy_82578
) && (hw
->phy
.revision
== 1))) {
1341 /* Disable generation of early preamble */
1342 ret_val
= e1e_wphy(hw
, PHY_REG(769, 25), 0x4431);
1346 /* Preamble tuning for SSC */
1347 ret_val
= e1e_wphy(hw
, PHY_REG(770, 16), 0xA204);
1352 if (hw
->phy
.type
== e1000_phy_82578
) {
1354 * Return registers to default by doing a soft reset then
1355 * writing 0x3140 to the control register.
1357 if (hw
->phy
.revision
< 2) {
1358 e1000e_phy_sw_reset(hw
);
1359 ret_val
= e1e_wphy(hw
, PHY_CONTROL
, 0x3140);
1364 ret_val
= hw
->phy
.ops
.acquire(hw
);
1369 ret_val
= e1000e_write_phy_reg_mdic(hw
, IGP01E1000_PHY_PAGE_SELECT
, 0);
1370 hw
->phy
.ops
.release(hw
);
1375 * Configure the K1 Si workaround during phy reset assuming there is
1376 * link so that it disables K1 if link is in 1Gbps.
1378 ret_val
= e1000_k1_gig_workaround_hv(hw
, true);
1382 /* Workaround for link disconnects on a busy hub in half duplex */
1383 ret_val
= hw
->phy
.ops
.acquire(hw
);
1386 ret_val
= hw
->phy
.ops
.read_reg_locked(hw
,
1387 PHY_REG(BM_PORT_CTRL_PAGE
, 17),
1391 ret_val
= hw
->phy
.ops
.write_reg_locked(hw
,
1392 PHY_REG(BM_PORT_CTRL_PAGE
, 17),
1395 hw
->phy
.ops
.release(hw
);
1401 * e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
1402 * @hw: pointer to the HW structure
1404 void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw
*hw
)
1409 /* Copy both RAL/H (rar_entry_count) and SHRAL/H (+4) to PHY */
1410 for (i
= 0; i
< (hw
->mac
.rar_entry_count
+ 4); i
++) {
1411 mac_reg
= er32(RAL(i
));
1412 e1e_wphy(hw
, BM_RAR_L(i
), (u16
)(mac_reg
& 0xFFFF));
1413 e1e_wphy(hw
, BM_RAR_M(i
), (u16
)((mac_reg
>> 16) & 0xFFFF));
1414 mac_reg
= er32(RAH(i
));
1415 e1e_wphy(hw
, BM_RAR_H(i
), (u16
)(mac_reg
& 0xFFFF));
1416 e1e_wphy(hw
, BM_RAR_CTRL(i
), (u16
)((mac_reg
>> 16) & 0x8000));
1421 * e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
1423 * @hw: pointer to the HW structure
1424 * @enable: flag to enable/disable workaround when enabling/disabling jumbos
1426 s32
e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw
*hw
, bool enable
)
1433 if (hw
->mac
.type
!= e1000_pch2lan
)
1436 /* disable Rx path while enabling/disabling workaround */
1437 e1e_rphy(hw
, PHY_REG(769, 20), &phy_reg
);
1438 ret_val
= e1e_wphy(hw
, PHY_REG(769, 20), phy_reg
| (1 << 14));
1444 * Write Rx addresses (rar_entry_count for RAL/H, +4 for
1445 * SHRAL/H) and initial CRC values to the MAC
1447 for (i
= 0; i
< (hw
->mac
.rar_entry_count
+ 4); i
++) {
1448 u8 mac_addr
[ETH_ALEN
] = {0};
1449 u32 addr_high
, addr_low
;
1451 addr_high
= er32(RAH(i
));
1452 if (!(addr_high
& E1000_RAH_AV
))
1454 addr_low
= er32(RAL(i
));
1455 mac_addr
[0] = (addr_low
& 0xFF);
1456 mac_addr
[1] = ((addr_low
>> 8) & 0xFF);
1457 mac_addr
[2] = ((addr_low
>> 16) & 0xFF);
1458 mac_addr
[3] = ((addr_low
>> 24) & 0xFF);
1459 mac_addr
[4] = (addr_high
& 0xFF);
1460 mac_addr
[5] = ((addr_high
>> 8) & 0xFF);
1462 ew32(PCH_RAICC(i
), ~ether_crc_le(ETH_ALEN
, mac_addr
));
1465 /* Write Rx addresses to the PHY */
1466 e1000_copy_rx_addrs_to_phy_ich8lan(hw
);
1468 /* Enable jumbo frame workaround in the MAC */
1469 mac_reg
= er32(FFLT_DBG
);
1470 mac_reg
&= ~(1 << 14);
1471 mac_reg
|= (7 << 15);
1472 ew32(FFLT_DBG
, mac_reg
);
1474 mac_reg
= er32(RCTL
);
1475 mac_reg
|= E1000_RCTL_SECRC
;
1476 ew32(RCTL
, mac_reg
);
1478 ret_val
= e1000e_read_kmrn_reg(hw
,
1479 E1000_KMRNCTRLSTA_CTRL_OFFSET
,
1483 ret_val
= e1000e_write_kmrn_reg(hw
,
1484 E1000_KMRNCTRLSTA_CTRL_OFFSET
,
1488 ret_val
= e1000e_read_kmrn_reg(hw
,
1489 E1000_KMRNCTRLSTA_HD_CTRL
,
1493 data
&= ~(0xF << 8);
1495 ret_val
= e1000e_write_kmrn_reg(hw
,
1496 E1000_KMRNCTRLSTA_HD_CTRL
,
1501 /* Enable jumbo frame workaround in the PHY */
1502 e1e_rphy(hw
, PHY_REG(769, 23), &data
);
1503 data
&= ~(0x7F << 5);
1504 data
|= (0x37 << 5);
1505 ret_val
= e1e_wphy(hw
, PHY_REG(769, 23), data
);
1508 e1e_rphy(hw
, PHY_REG(769, 16), &data
);
1510 ret_val
= e1e_wphy(hw
, PHY_REG(769, 16), data
);
1513 e1e_rphy(hw
, PHY_REG(776, 20), &data
);
1514 data
&= ~(0x3FF << 2);
1515 data
|= (0x1A << 2);
1516 ret_val
= e1e_wphy(hw
, PHY_REG(776, 20), data
);
1519 ret_val
= e1e_wphy(hw
, PHY_REG(776, 23), 0xFE00);
1522 e1e_rphy(hw
, HV_PM_CTRL
, &data
);
1523 ret_val
= e1e_wphy(hw
, HV_PM_CTRL
, data
| (1 << 10));
1527 /* Write MAC register values back to h/w defaults */
1528 mac_reg
= er32(FFLT_DBG
);
1529 mac_reg
&= ~(0xF << 14);
1530 ew32(FFLT_DBG
, mac_reg
);
1532 mac_reg
= er32(RCTL
);
1533 mac_reg
&= ~E1000_RCTL_SECRC
;
1534 ew32(RCTL
, mac_reg
);
1536 ret_val
= e1000e_read_kmrn_reg(hw
,
1537 E1000_KMRNCTRLSTA_CTRL_OFFSET
,
1541 ret_val
= e1000e_write_kmrn_reg(hw
,
1542 E1000_KMRNCTRLSTA_CTRL_OFFSET
,
1546 ret_val
= e1000e_read_kmrn_reg(hw
,
1547 E1000_KMRNCTRLSTA_HD_CTRL
,
1551 data
&= ~(0xF << 8);
1553 ret_val
= e1000e_write_kmrn_reg(hw
,
1554 E1000_KMRNCTRLSTA_HD_CTRL
,
1559 /* Write PHY register values back to h/w defaults */
1560 e1e_rphy(hw
, PHY_REG(769, 23), &data
);
1561 data
&= ~(0x7F << 5);
1562 ret_val
= e1e_wphy(hw
, PHY_REG(769, 23), data
);
1565 e1e_rphy(hw
, PHY_REG(769, 16), &data
);
1567 ret_val
= e1e_wphy(hw
, PHY_REG(769, 16), data
);
1570 e1e_rphy(hw
, PHY_REG(776, 20), &data
);
1571 data
&= ~(0x3FF << 2);
1573 ret_val
= e1e_wphy(hw
, PHY_REG(776, 20), data
);
1576 ret_val
= e1e_wphy(hw
, PHY_REG(776, 23), 0x7E00);
1579 e1e_rphy(hw
, HV_PM_CTRL
, &data
);
1580 ret_val
= e1e_wphy(hw
, HV_PM_CTRL
, data
& ~(1 << 10));
1585 /* re-enable Rx path after enabling/disabling workaround */
1586 ret_val
= e1e_wphy(hw
, PHY_REG(769, 20), phy_reg
& ~(1 << 14));
1593 * e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
1594 * done after every PHY reset.
1596 static s32
e1000_lv_phy_workarounds_ich8lan(struct e1000_hw
*hw
)
1600 if (hw
->mac
.type
!= e1000_pch2lan
)
1603 /* Set MDIO slow mode before any other MDIO access */
1604 ret_val
= e1000_set_mdio_slow_mode_hv(hw
);
1611 * e1000_k1_gig_workaround_lv - K1 Si workaround
1612 * @hw: pointer to the HW structure
1614 * Workaround to set the K1 beacon duration for 82579 parts
1616 static s32
e1000_k1_workaround_lv(struct e1000_hw
*hw
)
1622 if (hw
->mac
.type
!= e1000_pch2lan
)
1625 /* Set K1 beacon duration based on 1Gbps speed or otherwise */
1626 ret_val
= e1e_rphy(hw
, HV_M_STATUS
, &status_reg
);
1630 if ((status_reg
& (HV_M_STATUS_LINK_UP
| HV_M_STATUS_AUTONEG_COMPLETE
))
1631 == (HV_M_STATUS_LINK_UP
| HV_M_STATUS_AUTONEG_COMPLETE
)) {
1632 mac_reg
= er32(FEXTNVM4
);
1633 mac_reg
&= ~E1000_FEXTNVM4_BEACON_DURATION_MASK
;
1635 if (status_reg
& HV_M_STATUS_SPEED_1000
)
1636 mac_reg
|= E1000_FEXTNVM4_BEACON_DURATION_8USEC
;
1638 mac_reg
|= E1000_FEXTNVM4_BEACON_DURATION_16USEC
;
1640 ew32(FEXTNVM4
, mac_reg
);
1648 * e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
1649 * @hw: pointer to the HW structure
1650 * @gate: boolean set to true to gate, false to ungate
1652 * Gate/ungate the automatic PHY configuration via hardware; perform
1653 * the configuration via software instead.
1655 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw
*hw
, bool gate
)
1659 if (hw
->mac
.type
!= e1000_pch2lan
)
1662 extcnf_ctrl
= er32(EXTCNF_CTRL
);
1665 extcnf_ctrl
|= E1000_EXTCNF_CTRL_GATE_PHY_CFG
;
1667 extcnf_ctrl
&= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG
;
1669 ew32(EXTCNF_CTRL
, extcnf_ctrl
);
1674 * e1000_lan_init_done_ich8lan - Check for PHY config completion
1675 * @hw: pointer to the HW structure
1677 * Check the appropriate indication the MAC has finished configuring the
1678 * PHY after a software reset.
1680 static void e1000_lan_init_done_ich8lan(struct e1000_hw
*hw
)
1682 u32 data
, loop
= E1000_ICH8_LAN_INIT_TIMEOUT
;
1684 /* Wait for basic configuration completes before proceeding */
1686 data
= er32(STATUS
);
1687 data
&= E1000_STATUS_LAN_INIT_DONE
;
1689 } while ((!data
) && --loop
);
1692 * If basic configuration is incomplete before the above loop
1693 * count reaches 0, loading the configuration from NVM will
1694 * leave the PHY in a bad state possibly resulting in no link.
1697 e_dbg("LAN_INIT_DONE not set, increase timeout\n");
1699 /* Clear the Init Done bit for the next init event */
1700 data
= er32(STATUS
);
1701 data
&= ~E1000_STATUS_LAN_INIT_DONE
;
1706 * e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
1707 * @hw: pointer to the HW structure
1709 static s32
e1000_post_phy_reset_ich8lan(struct e1000_hw
*hw
)
1714 if (e1000_check_reset_block(hw
))
1717 /* Allow time for h/w to get to quiescent state after reset */
1718 usleep_range(10000, 20000);
1720 /* Perform any necessary post-reset workarounds */
1721 switch (hw
->mac
.type
) {
1723 ret_val
= e1000_hv_phy_workarounds_ich8lan(hw
);
1728 ret_val
= e1000_lv_phy_workarounds_ich8lan(hw
);
1736 /* Dummy read to clear the phy wakeup bit after lcd reset */
1737 if (hw
->mac
.type
>= e1000_pchlan
)
1738 e1e_rphy(hw
, BM_WUC
, ®
);
1740 /* Configure the LCD with the extended configuration region in NVM */
1741 ret_val
= e1000_sw_lcd_config_ich8lan(hw
);
1745 /* Configure the LCD with the OEM bits in NVM */
1746 ret_val
= e1000_oem_bits_config_ich8lan(hw
, true);
1748 if (hw
->mac
.type
== e1000_pch2lan
) {
1749 /* Ungate automatic PHY configuration on non-managed 82579 */
1750 if (!(er32(FWSM
) & E1000_ICH_FWSM_FW_VALID
)) {
1751 usleep_range(10000, 20000);
1752 e1000_gate_hw_phy_config_ich8lan(hw
, false);
1755 /* Set EEE LPI Update Timer to 200usec */
1756 ret_val
= hw
->phy
.ops
.acquire(hw
);
1759 ret_val
= hw
->phy
.ops
.write_reg_locked(hw
, I82579_EMI_ADDR
,
1760 I82579_LPI_UPDATE_TIMER
);
1763 ret_val
= hw
->phy
.ops
.write_reg_locked(hw
, I82579_EMI_DATA
,
1766 hw
->phy
.ops
.release(hw
);
1774 * e1000_phy_hw_reset_ich8lan - Performs a PHY reset
1775 * @hw: pointer to the HW structure
1778 * This is a function pointer entry point called by drivers
1779 * or other shared routines.
1781 static s32
e1000_phy_hw_reset_ich8lan(struct e1000_hw
*hw
)
1785 /* Gate automatic PHY configuration by hardware on non-managed 82579 */
1786 if ((hw
->mac
.type
== e1000_pch2lan
) &&
1787 !(er32(FWSM
) & E1000_ICH_FWSM_FW_VALID
))
1788 e1000_gate_hw_phy_config_ich8lan(hw
, true);
1790 ret_val
= e1000e_phy_hw_reset_generic(hw
);
1794 ret_val
= e1000_post_phy_reset_ich8lan(hw
);
1801 * e1000_set_lplu_state_pchlan - Set Low Power Link Up state
1802 * @hw: pointer to the HW structure
1803 * @active: true to enable LPLU, false to disable
1805 * Sets the LPLU state according to the active flag. For PCH, if OEM write
1806 * bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
1807 * the phy speed. This function will manually set the LPLU bit and restart
1808 * auto-neg as hw would do. D3 and D0 LPLU will call the same function
1809 * since it configures the same bit.
1811 static s32
e1000_set_lplu_state_pchlan(struct e1000_hw
*hw
, bool active
)
1816 ret_val
= e1e_rphy(hw
, HV_OEM_BITS
, &oem_reg
);
1821 oem_reg
|= HV_OEM_BITS_LPLU
;
1823 oem_reg
&= ~HV_OEM_BITS_LPLU
;
1825 oem_reg
|= HV_OEM_BITS_RESTART_AN
;
1826 ret_val
= e1e_wphy(hw
, HV_OEM_BITS
, oem_reg
);
1833 * e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
1834 * @hw: pointer to the HW structure
1835 * @active: true to enable LPLU, false to disable
1837 * Sets the LPLU D0 state according to the active flag. When
1838 * activating LPLU this function also disables smart speed
1839 * and vice versa. LPLU will not be activated unless the
1840 * device autonegotiation advertisement meets standards of
1841 * either 10 or 10/100 or 10/100/1000 at all duplexes.
1842 * This is a function pointer entry point only called by
1843 * PHY setup routines.
1845 static s32
e1000_set_d0_lplu_state_ich8lan(struct e1000_hw
*hw
, bool active
)
1847 struct e1000_phy_info
*phy
= &hw
->phy
;
1852 if (phy
->type
== e1000_phy_ife
)
1855 phy_ctrl
= er32(PHY_CTRL
);
1858 phy_ctrl
|= E1000_PHY_CTRL_D0A_LPLU
;
1859 ew32(PHY_CTRL
, phy_ctrl
);
1861 if (phy
->type
!= e1000_phy_igp_3
)
1865 * Call gig speed drop workaround on LPLU before accessing
1868 if (hw
->mac
.type
== e1000_ich8lan
)
1869 e1000e_gig_downshift_workaround_ich8lan(hw
);
1871 /* When LPLU is enabled, we should disable SmartSpeed */
1872 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
, &data
);
1873 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
1874 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
, data
);
1878 phy_ctrl
&= ~E1000_PHY_CTRL_D0A_LPLU
;
1879 ew32(PHY_CTRL
, phy_ctrl
);
1881 if (phy
->type
!= e1000_phy_igp_3
)
1885 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
1886 * during Dx states where the power conservation is most
1887 * important. During driver activity we should enable
1888 * SmartSpeed, so performance is maintained.
1890 if (phy
->smart_speed
== e1000_smart_speed_on
) {
1891 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1896 data
|= IGP01E1000_PSCFR_SMART_SPEED
;
1897 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1901 } else if (phy
->smart_speed
== e1000_smart_speed_off
) {
1902 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1907 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
1908 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1919 * e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
1920 * @hw: pointer to the HW structure
1921 * @active: true to enable LPLU, false to disable
1923 * Sets the LPLU D3 state according to the active flag. When
1924 * activating LPLU this function also disables smart speed
1925 * and vice versa. LPLU will not be activated unless the
1926 * device autonegotiation advertisement meets standards of
1927 * either 10 or 10/100 or 10/100/1000 at all duplexes.
1928 * This is a function pointer entry point only called by
1929 * PHY setup routines.
1931 static s32
e1000_set_d3_lplu_state_ich8lan(struct e1000_hw
*hw
, bool active
)
1933 struct e1000_phy_info
*phy
= &hw
->phy
;
1938 phy_ctrl
= er32(PHY_CTRL
);
1941 phy_ctrl
&= ~E1000_PHY_CTRL_NOND0A_LPLU
;
1942 ew32(PHY_CTRL
, phy_ctrl
);
1944 if (phy
->type
!= e1000_phy_igp_3
)
1948 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
1949 * during Dx states where the power conservation is most
1950 * important. During driver activity we should enable
1951 * SmartSpeed, so performance is maintained.
1953 if (phy
->smart_speed
== e1000_smart_speed_on
) {
1954 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1959 data
|= IGP01E1000_PSCFR_SMART_SPEED
;
1960 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1964 } else if (phy
->smart_speed
== e1000_smart_speed_off
) {
1965 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1970 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
1971 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1976 } else if ((phy
->autoneg_advertised
== E1000_ALL_SPEED_DUPLEX
) ||
1977 (phy
->autoneg_advertised
== E1000_ALL_NOT_GIG
) ||
1978 (phy
->autoneg_advertised
== E1000_ALL_10_SPEED
)) {
1979 phy_ctrl
|= E1000_PHY_CTRL_NOND0A_LPLU
;
1980 ew32(PHY_CTRL
, phy_ctrl
);
1982 if (phy
->type
!= e1000_phy_igp_3
)
1986 * Call gig speed drop workaround on LPLU before accessing
1989 if (hw
->mac
.type
== e1000_ich8lan
)
1990 e1000e_gig_downshift_workaround_ich8lan(hw
);
1992 /* When LPLU is enabled, we should disable SmartSpeed */
1993 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
, &data
);
1997 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
1998 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
, data
);
2005 * e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
2006 * @hw: pointer to the HW structure
2007 * @bank: pointer to the variable that returns the active bank
2009 * Reads signature byte from the NVM using the flash access registers.
2010 * Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
2012 static s32
e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw
*hw
, u32
*bank
)
2015 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
2016 u32 bank1_offset
= nvm
->flash_bank_size
* sizeof(u16
);
2017 u32 act_offset
= E1000_ICH_NVM_SIG_WORD
* 2 + 1;
2021 switch (hw
->mac
.type
) {
2025 if ((eecd
& E1000_EECD_SEC1VAL_VALID_MASK
) ==
2026 E1000_EECD_SEC1VAL_VALID_MASK
) {
2027 if (eecd
& E1000_EECD_SEC1VAL
)
2034 e_dbg("Unable to determine valid NVM bank via EEC - "
2035 "reading flash signature\n");
2038 /* set bank to 0 in case flash read fails */
2042 ret_val
= e1000_read_flash_byte_ich8lan(hw
, act_offset
,
2046 if ((sig_byte
& E1000_ICH_NVM_VALID_SIG_MASK
) ==
2047 E1000_ICH_NVM_SIG_VALUE
) {
2053 ret_val
= e1000_read_flash_byte_ich8lan(hw
, act_offset
+
2058 if ((sig_byte
& E1000_ICH_NVM_VALID_SIG_MASK
) ==
2059 E1000_ICH_NVM_SIG_VALUE
) {
2064 e_dbg("ERROR: No valid NVM bank present\n");
2065 return -E1000_ERR_NVM
;
2072 * e1000_read_nvm_ich8lan - Read word(s) from the NVM
2073 * @hw: pointer to the HW structure
2074 * @offset: The offset (in bytes) of the word(s) to read.
2075 * @words: Size of data to read in words
2076 * @data: Pointer to the word(s) to read at offset.
2078 * Reads a word(s) from the NVM using the flash access registers.
2080 static s32
e1000_read_nvm_ich8lan(struct e1000_hw
*hw
, u16 offset
, u16 words
,
2083 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
2084 struct e1000_dev_spec_ich8lan
*dev_spec
= &hw
->dev_spec
.ich8lan
;
2090 if ((offset
>= nvm
->word_size
) || (words
> nvm
->word_size
- offset
) ||
2092 e_dbg("nvm parameter(s) out of bounds\n");
2093 ret_val
= -E1000_ERR_NVM
;
2097 nvm
->ops
.acquire(hw
);
2099 ret_val
= e1000_valid_nvm_bank_detect_ich8lan(hw
, &bank
);
2101 e_dbg("Could not detect valid bank, assuming bank 0\n");
2105 act_offset
= (bank
) ? nvm
->flash_bank_size
: 0;
2106 act_offset
+= offset
;
2109 for (i
= 0; i
< words
; i
++) {
2110 if ((dev_spec
->shadow_ram
) &&
2111 (dev_spec
->shadow_ram
[offset
+i
].modified
)) {
2112 data
[i
] = dev_spec
->shadow_ram
[offset
+i
].value
;
2114 ret_val
= e1000_read_flash_word_ich8lan(hw
,
2123 nvm
->ops
.release(hw
);
2127 e_dbg("NVM read error: %d\n", ret_val
);
2133 * e1000_flash_cycle_init_ich8lan - Initialize flash
2134 * @hw: pointer to the HW structure
2136 * This function does initial flash setup so that a new read/write/erase cycle
2139 static s32
e1000_flash_cycle_init_ich8lan(struct e1000_hw
*hw
)
2141 union ich8_hws_flash_status hsfsts
;
2142 s32 ret_val
= -E1000_ERR_NVM
;
2144 hsfsts
.regval
= er16flash(ICH_FLASH_HSFSTS
);
2146 /* Check if the flash descriptor is valid */
2147 if (hsfsts
.hsf_status
.fldesvalid
== 0) {
2148 e_dbg("Flash descriptor invalid. "
2149 "SW Sequencing must be used.\n");
2150 return -E1000_ERR_NVM
;
2153 /* Clear FCERR and DAEL in hw status by writing 1 */
2154 hsfsts
.hsf_status
.flcerr
= 1;
2155 hsfsts
.hsf_status
.dael
= 1;
2157 ew16flash(ICH_FLASH_HSFSTS
, hsfsts
.regval
);
2160 * Either we should have a hardware SPI cycle in progress
2161 * bit to check against, in order to start a new cycle or
2162 * FDONE bit should be changed in the hardware so that it
2163 * is 1 after hardware reset, which can then be used as an
2164 * indication whether a cycle is in progress or has been
2168 if (hsfsts
.hsf_status
.flcinprog
== 0) {
2170 * There is no cycle running at present,
2171 * so we can start a cycle.
2172 * Begin by setting Flash Cycle Done.
2174 hsfsts
.hsf_status
.flcdone
= 1;
2175 ew16flash(ICH_FLASH_HSFSTS
, hsfsts
.regval
);
2181 * Otherwise poll for sometime so the current
2182 * cycle has a chance to end before giving up.
2184 for (i
= 0; i
< ICH_FLASH_READ_COMMAND_TIMEOUT
; i
++) {
2185 hsfsts
.regval
= __er16flash(hw
, ICH_FLASH_HSFSTS
);
2186 if (hsfsts
.hsf_status
.flcinprog
== 0) {
2194 * Successful in waiting for previous cycle to timeout,
2195 * now set the Flash Cycle Done.
2197 hsfsts
.hsf_status
.flcdone
= 1;
2198 ew16flash(ICH_FLASH_HSFSTS
, hsfsts
.regval
);
2200 e_dbg("Flash controller busy, cannot get access\n");
2208 * e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
2209 * @hw: pointer to the HW structure
2210 * @timeout: maximum time to wait for completion
2212 * This function starts a flash cycle and waits for its completion.
2214 static s32
e1000_flash_cycle_ich8lan(struct e1000_hw
*hw
, u32 timeout
)
2216 union ich8_hws_flash_ctrl hsflctl
;
2217 union ich8_hws_flash_status hsfsts
;
2218 s32 ret_val
= -E1000_ERR_NVM
;
2221 /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
2222 hsflctl
.regval
= er16flash(ICH_FLASH_HSFCTL
);
2223 hsflctl
.hsf_ctrl
.flcgo
= 1;
2224 ew16flash(ICH_FLASH_HSFCTL
, hsflctl
.regval
);
2226 /* wait till FDONE bit is set to 1 */
2228 hsfsts
.regval
= er16flash(ICH_FLASH_HSFSTS
);
2229 if (hsfsts
.hsf_status
.flcdone
== 1)
2232 } while (i
++ < timeout
);
2234 if (hsfsts
.hsf_status
.flcdone
== 1 && hsfsts
.hsf_status
.flcerr
== 0)
2241 * e1000_read_flash_word_ich8lan - Read word from flash
2242 * @hw: pointer to the HW structure
2243 * @offset: offset to data location
2244 * @data: pointer to the location for storing the data
2246 * Reads the flash word at offset into data. Offset is converted
2247 * to bytes before read.
2249 static s32
e1000_read_flash_word_ich8lan(struct e1000_hw
*hw
, u32 offset
,
2252 /* Must convert offset into bytes. */
2255 return e1000_read_flash_data_ich8lan(hw
, offset
, 2, data
);
2259 * e1000_read_flash_byte_ich8lan - Read byte from flash
2260 * @hw: pointer to the HW structure
2261 * @offset: The offset of the byte to read.
2262 * @data: Pointer to a byte to store the value read.
2264 * Reads a single byte from the NVM using the flash access registers.
2266 static s32
e1000_read_flash_byte_ich8lan(struct e1000_hw
*hw
, u32 offset
,
2272 ret_val
= e1000_read_flash_data_ich8lan(hw
, offset
, 1, &word
);
2282 * e1000_read_flash_data_ich8lan - Read byte or word from NVM
2283 * @hw: pointer to the HW structure
2284 * @offset: The offset (in bytes) of the byte or word to read.
2285 * @size: Size of data to read, 1=byte 2=word
2286 * @data: Pointer to the word to store the value read.
2288 * Reads a byte or word from the NVM using the flash access registers.
2290 static s32
e1000_read_flash_data_ich8lan(struct e1000_hw
*hw
, u32 offset
,
2293 union ich8_hws_flash_status hsfsts
;
2294 union ich8_hws_flash_ctrl hsflctl
;
2295 u32 flash_linear_addr
;
2297 s32 ret_val
= -E1000_ERR_NVM
;
2300 if (size
< 1 || size
> 2 || offset
> ICH_FLASH_LINEAR_ADDR_MASK
)
2301 return -E1000_ERR_NVM
;
2303 flash_linear_addr
= (ICH_FLASH_LINEAR_ADDR_MASK
& offset
) +
2304 hw
->nvm
.flash_base_addr
;
2309 ret_val
= e1000_flash_cycle_init_ich8lan(hw
);
2313 hsflctl
.regval
= er16flash(ICH_FLASH_HSFCTL
);
2314 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
2315 hsflctl
.hsf_ctrl
.fldbcount
= size
- 1;
2316 hsflctl
.hsf_ctrl
.flcycle
= ICH_CYCLE_READ
;
2317 ew16flash(ICH_FLASH_HSFCTL
, hsflctl
.regval
);
2319 ew32flash(ICH_FLASH_FADDR
, flash_linear_addr
);
2321 ret_val
= e1000_flash_cycle_ich8lan(hw
,
2322 ICH_FLASH_READ_COMMAND_TIMEOUT
);
2325 * Check if FCERR is set to 1, if set to 1, clear it
2326 * and try the whole sequence a few more times, else
2327 * read in (shift in) the Flash Data0, the order is
2328 * least significant byte first msb to lsb
2331 flash_data
= er32flash(ICH_FLASH_FDATA0
);
2333 *data
= (u8
)(flash_data
& 0x000000FF);
2335 *data
= (u16
)(flash_data
& 0x0000FFFF);
2339 * If we've gotten here, then things are probably
2340 * completely hosed, but if the error condition is
2341 * detected, it won't hurt to give it another try...
2342 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
2344 hsfsts
.regval
= er16flash(ICH_FLASH_HSFSTS
);
2345 if (hsfsts
.hsf_status
.flcerr
== 1) {
2346 /* Repeat for some time before giving up. */
2348 } else if (hsfsts
.hsf_status
.flcdone
== 0) {
2349 e_dbg("Timeout error - flash cycle "
2350 "did not complete.\n");
2354 } while (count
++ < ICH_FLASH_CYCLE_REPEAT_COUNT
);
2360 * e1000_write_nvm_ich8lan - Write word(s) to the NVM
2361 * @hw: pointer to the HW structure
2362 * @offset: The offset (in bytes) of the word(s) to write.
2363 * @words: Size of data to write in words
2364 * @data: Pointer to the word(s) to write at offset.
2366 * Writes a byte or word to the NVM using the flash access registers.
2368 static s32
e1000_write_nvm_ich8lan(struct e1000_hw
*hw
, u16 offset
, u16 words
,
2371 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
2372 struct e1000_dev_spec_ich8lan
*dev_spec
= &hw
->dev_spec
.ich8lan
;
2375 if ((offset
>= nvm
->word_size
) || (words
> nvm
->word_size
- offset
) ||
2377 e_dbg("nvm parameter(s) out of bounds\n");
2378 return -E1000_ERR_NVM
;
2381 nvm
->ops
.acquire(hw
);
2383 for (i
= 0; i
< words
; i
++) {
2384 dev_spec
->shadow_ram
[offset
+i
].modified
= true;
2385 dev_spec
->shadow_ram
[offset
+i
].value
= data
[i
];
2388 nvm
->ops
.release(hw
);
2394 * e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
2395 * @hw: pointer to the HW structure
2397 * The NVM checksum is updated by calling the generic update_nvm_checksum,
2398 * which writes the checksum to the shadow ram. The changes in the shadow
2399 * ram are then committed to the EEPROM by processing each bank at a time
2400 * checking for the modified bit and writing only the pending changes.
2401 * After a successful commit, the shadow ram is cleared and is ready for
2404 static s32
e1000_update_nvm_checksum_ich8lan(struct e1000_hw
*hw
)
2406 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
2407 struct e1000_dev_spec_ich8lan
*dev_spec
= &hw
->dev_spec
.ich8lan
;
2408 u32 i
, act_offset
, new_bank_offset
, old_bank_offset
, bank
;
2412 ret_val
= e1000e_update_nvm_checksum_generic(hw
);
2416 if (nvm
->type
!= e1000_nvm_flash_sw
)
2419 nvm
->ops
.acquire(hw
);
2422 * We're writing to the opposite bank so if we're on bank 1,
2423 * write to bank 0 etc. We also need to erase the segment that
2424 * is going to be written
2426 ret_val
= e1000_valid_nvm_bank_detect_ich8lan(hw
, &bank
);
2428 e_dbg("Could not detect valid bank, assuming bank 0\n");
2433 new_bank_offset
= nvm
->flash_bank_size
;
2434 old_bank_offset
= 0;
2435 ret_val
= e1000_erase_flash_bank_ich8lan(hw
, 1);
2439 old_bank_offset
= nvm
->flash_bank_size
;
2440 new_bank_offset
= 0;
2441 ret_val
= e1000_erase_flash_bank_ich8lan(hw
, 0);
2446 for (i
= 0; i
< E1000_ICH8_SHADOW_RAM_WORDS
; i
++) {
2448 * Determine whether to write the value stored
2449 * in the other NVM bank or a modified value stored
2452 if (dev_spec
->shadow_ram
[i
].modified
) {
2453 data
= dev_spec
->shadow_ram
[i
].value
;
2455 ret_val
= e1000_read_flash_word_ich8lan(hw
, i
+
2463 * If the word is 0x13, then make sure the signature bits
2464 * (15:14) are 11b until the commit has completed.
2465 * This will allow us to write 10b which indicates the
2466 * signature is valid. We want to do this after the write
2467 * has completed so that we don't mark the segment valid
2468 * while the write is still in progress
2470 if (i
== E1000_ICH_NVM_SIG_WORD
)
2471 data
|= E1000_ICH_NVM_SIG_MASK
;
2473 /* Convert offset to bytes. */
2474 act_offset
= (i
+ new_bank_offset
) << 1;
2477 /* Write the bytes to the new bank. */
2478 ret_val
= e1000_retry_write_flash_byte_ich8lan(hw
,
2485 ret_val
= e1000_retry_write_flash_byte_ich8lan(hw
,
2493 * Don't bother writing the segment valid bits if sector
2494 * programming failed.
2497 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
2498 e_dbg("Flash commit failed.\n");
2503 * Finally validate the new segment by setting bit 15:14
2504 * to 10b in word 0x13 , this can be done without an
2505 * erase as well since these bits are 11 to start with
2506 * and we need to change bit 14 to 0b
2508 act_offset
= new_bank_offset
+ E1000_ICH_NVM_SIG_WORD
;
2509 ret_val
= e1000_read_flash_word_ich8lan(hw
, act_offset
, &data
);
2514 ret_val
= e1000_retry_write_flash_byte_ich8lan(hw
,
2521 * And invalidate the previously valid segment by setting
2522 * its signature word (0x13) high_byte to 0b. This can be
2523 * done without an erase because flash erase sets all bits
2524 * to 1's. We can write 1's to 0's without an erase
2526 act_offset
= (old_bank_offset
+ E1000_ICH_NVM_SIG_WORD
) * 2 + 1;
2527 ret_val
= e1000_retry_write_flash_byte_ich8lan(hw
, act_offset
, 0);
2531 /* Great! Everything worked, we can now clear the cached entries. */
2532 for (i
= 0; i
< E1000_ICH8_SHADOW_RAM_WORDS
; i
++) {
2533 dev_spec
->shadow_ram
[i
].modified
= false;
2534 dev_spec
->shadow_ram
[i
].value
= 0xFFFF;
2538 nvm
->ops
.release(hw
);
2541 * Reload the EEPROM, or else modifications will not appear
2542 * until after the next adapter reset.
2545 e1000e_reload_nvm(hw
);
2546 usleep_range(10000, 20000);
2551 e_dbg("NVM update error: %d\n", ret_val
);
2557 * e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
2558 * @hw: pointer to the HW structure
2560 * Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
2561 * If the bit is 0, that the EEPROM had been modified, but the checksum was not
2562 * calculated, in which case we need to calculate the checksum and set bit 6.
2564 static s32
e1000_validate_nvm_checksum_ich8lan(struct e1000_hw
*hw
)
2570 * Read 0x19 and check bit 6. If this bit is 0, the checksum
2571 * needs to be fixed. This bit is an indication that the NVM
2572 * was prepared by OEM software and did not calculate the
2573 * checksum...a likely scenario.
2575 ret_val
= e1000_read_nvm(hw
, 0x19, 1, &data
);
2579 if ((data
& 0x40) == 0) {
2581 ret_val
= e1000_write_nvm(hw
, 0x19, 1, &data
);
2584 ret_val
= e1000e_update_nvm_checksum(hw
);
2589 return e1000e_validate_nvm_checksum_generic(hw
);
2593 * e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
2594 * @hw: pointer to the HW structure
2596 * To prevent malicious write/erase of the NVM, set it to be read-only
2597 * so that the hardware ignores all write/erase cycles of the NVM via
2598 * the flash control registers. The shadow-ram copy of the NVM will
2599 * still be updated, however any updates to this copy will not stick
2600 * across driver reloads.
2602 void e1000e_write_protect_nvm_ich8lan(struct e1000_hw
*hw
)
2604 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
2605 union ich8_flash_protected_range pr0
;
2606 union ich8_hws_flash_status hsfsts
;
2609 nvm
->ops
.acquire(hw
);
2611 gfpreg
= er32flash(ICH_FLASH_GFPREG
);
2613 /* Write-protect GbE Sector of NVM */
2614 pr0
.regval
= er32flash(ICH_FLASH_PR0
);
2615 pr0
.range
.base
= gfpreg
& FLASH_GFPREG_BASE_MASK
;
2616 pr0
.range
.limit
= ((gfpreg
>> 16) & FLASH_GFPREG_BASE_MASK
);
2617 pr0
.range
.wpe
= true;
2618 ew32flash(ICH_FLASH_PR0
, pr0
.regval
);
2621 * Lock down a subset of GbE Flash Control Registers, e.g.
2622 * PR0 to prevent the write-protection from being lifted.
2623 * Once FLOCKDN is set, the registers protected by it cannot
2624 * be written until FLOCKDN is cleared by a hardware reset.
2626 hsfsts
.regval
= er16flash(ICH_FLASH_HSFSTS
);
2627 hsfsts
.hsf_status
.flockdn
= true;
2628 ew32flash(ICH_FLASH_HSFSTS
, hsfsts
.regval
);
2630 nvm
->ops
.release(hw
);
2634 * e1000_write_flash_data_ich8lan - Writes bytes to the NVM
2635 * @hw: pointer to the HW structure
2636 * @offset: The offset (in bytes) of the byte/word to read.
2637 * @size: Size of data to read, 1=byte 2=word
2638 * @data: The byte(s) to write to the NVM.
2640 * Writes one/two bytes to the NVM using the flash access registers.
2642 static s32
e1000_write_flash_data_ich8lan(struct e1000_hw
*hw
, u32 offset
,
2645 union ich8_hws_flash_status hsfsts
;
2646 union ich8_hws_flash_ctrl hsflctl
;
2647 u32 flash_linear_addr
;
2652 if (size
< 1 || size
> 2 || data
> size
* 0xff ||
2653 offset
> ICH_FLASH_LINEAR_ADDR_MASK
)
2654 return -E1000_ERR_NVM
;
2656 flash_linear_addr
= (ICH_FLASH_LINEAR_ADDR_MASK
& offset
) +
2657 hw
->nvm
.flash_base_addr
;
2662 ret_val
= e1000_flash_cycle_init_ich8lan(hw
);
2666 hsflctl
.regval
= er16flash(ICH_FLASH_HSFCTL
);
2667 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
2668 hsflctl
.hsf_ctrl
.fldbcount
= size
-1;
2669 hsflctl
.hsf_ctrl
.flcycle
= ICH_CYCLE_WRITE
;
2670 ew16flash(ICH_FLASH_HSFCTL
, hsflctl
.regval
);
2672 ew32flash(ICH_FLASH_FADDR
, flash_linear_addr
);
2675 flash_data
= (u32
)data
& 0x00FF;
2677 flash_data
= (u32
)data
;
2679 ew32flash(ICH_FLASH_FDATA0
, flash_data
);
2682 * check if FCERR is set to 1 , if set to 1, clear it
2683 * and try the whole sequence a few more times else done
2685 ret_val
= e1000_flash_cycle_ich8lan(hw
,
2686 ICH_FLASH_WRITE_COMMAND_TIMEOUT
);
2691 * If we're here, then things are most likely
2692 * completely hosed, but if the error condition
2693 * is detected, it won't hurt to give it another
2694 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
2696 hsfsts
.regval
= er16flash(ICH_FLASH_HSFSTS
);
2697 if (hsfsts
.hsf_status
.flcerr
== 1)
2698 /* Repeat for some time before giving up. */
2700 if (hsfsts
.hsf_status
.flcdone
== 0) {
2701 e_dbg("Timeout error - flash cycle "
2702 "did not complete.");
2705 } while (count
++ < ICH_FLASH_CYCLE_REPEAT_COUNT
);
2711 * e1000_write_flash_byte_ich8lan - Write a single byte to NVM
2712 * @hw: pointer to the HW structure
2713 * @offset: The index of the byte to read.
2714 * @data: The byte to write to the NVM.
2716 * Writes a single byte to the NVM using the flash access registers.
2718 static s32
e1000_write_flash_byte_ich8lan(struct e1000_hw
*hw
, u32 offset
,
2721 u16 word
= (u16
)data
;
2723 return e1000_write_flash_data_ich8lan(hw
, offset
, 1, word
);
2727 * e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
2728 * @hw: pointer to the HW structure
2729 * @offset: The offset of the byte to write.
2730 * @byte: The byte to write to the NVM.
2732 * Writes a single byte to the NVM using the flash access registers.
2733 * Goes through a retry algorithm before giving up.
2735 static s32
e1000_retry_write_flash_byte_ich8lan(struct e1000_hw
*hw
,
2736 u32 offset
, u8 byte
)
2739 u16 program_retries
;
2741 ret_val
= e1000_write_flash_byte_ich8lan(hw
, offset
, byte
);
2745 for (program_retries
= 0; program_retries
< 100; program_retries
++) {
2746 e_dbg("Retrying Byte %2.2X at offset %u\n", byte
, offset
);
2748 ret_val
= e1000_write_flash_byte_ich8lan(hw
, offset
, byte
);
2752 if (program_retries
== 100)
2753 return -E1000_ERR_NVM
;
2759 * e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
2760 * @hw: pointer to the HW structure
2761 * @bank: 0 for first bank, 1 for second bank, etc.
2763 * Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
2764 * bank N is 4096 * N + flash_reg_addr.
2766 static s32
e1000_erase_flash_bank_ich8lan(struct e1000_hw
*hw
, u32 bank
)
2768 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
2769 union ich8_hws_flash_status hsfsts
;
2770 union ich8_hws_flash_ctrl hsflctl
;
2771 u32 flash_linear_addr
;
2772 /* bank size is in 16bit words - adjust to bytes */
2773 u32 flash_bank_size
= nvm
->flash_bank_size
* 2;
2776 s32 j
, iteration
, sector_size
;
2778 hsfsts
.regval
= er16flash(ICH_FLASH_HSFSTS
);
2781 * Determine HW Sector size: Read BERASE bits of hw flash status
2783 * 00: The Hw sector is 256 bytes, hence we need to erase 16
2784 * consecutive sectors. The start index for the nth Hw sector
2785 * can be calculated as = bank * 4096 + n * 256
2786 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
2787 * The start index for the nth Hw sector can be calculated
2789 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
2790 * (ich9 only, otherwise error condition)
2791 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
2793 switch (hsfsts
.hsf_status
.berasesz
) {
2795 /* Hw sector size 256 */
2796 sector_size
= ICH_FLASH_SEG_SIZE_256
;
2797 iteration
= flash_bank_size
/ ICH_FLASH_SEG_SIZE_256
;
2800 sector_size
= ICH_FLASH_SEG_SIZE_4K
;
2804 sector_size
= ICH_FLASH_SEG_SIZE_8K
;
2808 sector_size
= ICH_FLASH_SEG_SIZE_64K
;
2812 return -E1000_ERR_NVM
;
2815 /* Start with the base address, then add the sector offset. */
2816 flash_linear_addr
= hw
->nvm
.flash_base_addr
;
2817 flash_linear_addr
+= (bank
) ? flash_bank_size
: 0;
2819 for (j
= 0; j
< iteration
; j
++) {
2822 ret_val
= e1000_flash_cycle_init_ich8lan(hw
);
2827 * Write a value 11 (block Erase) in Flash
2828 * Cycle field in hw flash control
2830 hsflctl
.regval
= er16flash(ICH_FLASH_HSFCTL
);
2831 hsflctl
.hsf_ctrl
.flcycle
= ICH_CYCLE_ERASE
;
2832 ew16flash(ICH_FLASH_HSFCTL
, hsflctl
.regval
);
2835 * Write the last 24 bits of an index within the
2836 * block into Flash Linear address field in Flash
2839 flash_linear_addr
+= (j
* sector_size
);
2840 ew32flash(ICH_FLASH_FADDR
, flash_linear_addr
);
2842 ret_val
= e1000_flash_cycle_ich8lan(hw
,
2843 ICH_FLASH_ERASE_COMMAND_TIMEOUT
);
2848 * Check if FCERR is set to 1. If 1,
2849 * clear it and try the whole sequence
2850 * a few more times else Done
2852 hsfsts
.regval
= er16flash(ICH_FLASH_HSFSTS
);
2853 if (hsfsts
.hsf_status
.flcerr
== 1)
2854 /* repeat for some time before giving up */
2856 else if (hsfsts
.hsf_status
.flcdone
== 0)
2858 } while (++count
< ICH_FLASH_CYCLE_REPEAT_COUNT
);
2865 * e1000_valid_led_default_ich8lan - Set the default LED settings
2866 * @hw: pointer to the HW structure
2867 * @data: Pointer to the LED settings
2869 * Reads the LED default settings from the NVM to data. If the NVM LED
2870 * settings is all 0's or F's, set the LED default to a valid LED default
2873 static s32
e1000_valid_led_default_ich8lan(struct e1000_hw
*hw
, u16
*data
)
2877 ret_val
= e1000_read_nvm(hw
, NVM_ID_LED_SETTINGS
, 1, data
);
2879 e_dbg("NVM Read Error\n");
2883 if (*data
== ID_LED_RESERVED_0000
||
2884 *data
== ID_LED_RESERVED_FFFF
)
2885 *data
= ID_LED_DEFAULT_ICH8LAN
;
2891 * e1000_id_led_init_pchlan - store LED configurations
2892 * @hw: pointer to the HW structure
2894 * PCH does not control LEDs via the LEDCTL register, rather it uses
2895 * the PHY LED configuration register.
2897 * PCH also does not have an "always on" or "always off" mode which
2898 * complicates the ID feature. Instead of using the "on" mode to indicate
2899 * in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init()),
2900 * use "link_up" mode. The LEDs will still ID on request if there is no
2901 * link based on logic in e1000_led_[on|off]_pchlan().
2903 static s32
e1000_id_led_init_pchlan(struct e1000_hw
*hw
)
2905 struct e1000_mac_info
*mac
= &hw
->mac
;
2907 const u32 ledctl_on
= E1000_LEDCTL_MODE_LINK_UP
;
2908 const u32 ledctl_off
= E1000_LEDCTL_MODE_LINK_UP
| E1000_PHY_LED0_IVRT
;
2909 u16 data
, i
, temp
, shift
;
2911 /* Get default ID LED modes */
2912 ret_val
= hw
->nvm
.ops
.valid_led_default(hw
, &data
);
2916 mac
->ledctl_default
= er32(LEDCTL
);
2917 mac
->ledctl_mode1
= mac
->ledctl_default
;
2918 mac
->ledctl_mode2
= mac
->ledctl_default
;
2920 for (i
= 0; i
< 4; i
++) {
2921 temp
= (data
>> (i
<< 2)) & E1000_LEDCTL_LED0_MODE_MASK
;
2924 case ID_LED_ON1_DEF2
:
2925 case ID_LED_ON1_ON2
:
2926 case ID_LED_ON1_OFF2
:
2927 mac
->ledctl_mode1
&= ~(E1000_PHY_LED0_MASK
<< shift
);
2928 mac
->ledctl_mode1
|= (ledctl_on
<< shift
);
2930 case ID_LED_OFF1_DEF2
:
2931 case ID_LED_OFF1_ON2
:
2932 case ID_LED_OFF1_OFF2
:
2933 mac
->ledctl_mode1
&= ~(E1000_PHY_LED0_MASK
<< shift
);
2934 mac
->ledctl_mode1
|= (ledctl_off
<< shift
);
2941 case ID_LED_DEF1_ON2
:
2942 case ID_LED_ON1_ON2
:
2943 case ID_LED_OFF1_ON2
:
2944 mac
->ledctl_mode2
&= ~(E1000_PHY_LED0_MASK
<< shift
);
2945 mac
->ledctl_mode2
|= (ledctl_on
<< shift
);
2947 case ID_LED_DEF1_OFF2
:
2948 case ID_LED_ON1_OFF2
:
2949 case ID_LED_OFF1_OFF2
:
2950 mac
->ledctl_mode2
&= ~(E1000_PHY_LED0_MASK
<< shift
);
2951 mac
->ledctl_mode2
|= (ledctl_off
<< shift
);
2964 * e1000_get_bus_info_ich8lan - Get/Set the bus type and width
2965 * @hw: pointer to the HW structure
2967 * ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
2968 * register, so the the bus width is hard coded.
2970 static s32
e1000_get_bus_info_ich8lan(struct e1000_hw
*hw
)
2972 struct e1000_bus_info
*bus
= &hw
->bus
;
2975 ret_val
= e1000e_get_bus_info_pcie(hw
);
2978 * ICH devices are "PCI Express"-ish. They have
2979 * a configuration space, but do not contain
2980 * PCI Express Capability registers, so bus width
2981 * must be hardcoded.
2983 if (bus
->width
== e1000_bus_width_unknown
)
2984 bus
->width
= e1000_bus_width_pcie_x1
;
2990 * e1000_reset_hw_ich8lan - Reset the hardware
2991 * @hw: pointer to the HW structure
2993 * Does a full reset of the hardware which includes a reset of the PHY and
2996 static s32
e1000_reset_hw_ich8lan(struct e1000_hw
*hw
)
2998 struct e1000_dev_spec_ich8lan
*dev_spec
= &hw
->dev_spec
.ich8lan
;
3004 * Prevent the PCI-E bus from sticking if there is no TLP connection
3005 * on the last TLP read/write transaction when MAC is reset.
3007 ret_val
= e1000e_disable_pcie_master(hw
);
3009 e_dbg("PCI-E Master disable polling has failed.\n");
3011 e_dbg("Masking off all interrupts\n");
3012 ew32(IMC
, 0xffffffff);
3015 * Disable the Transmit and Receive units. Then delay to allow
3016 * any pending transactions to complete before we hit the MAC
3017 * with the global reset.
3020 ew32(TCTL
, E1000_TCTL_PSP
);
3023 usleep_range(10000, 20000);
3025 /* Workaround for ICH8 bit corruption issue in FIFO memory */
3026 if (hw
->mac
.type
== e1000_ich8lan
) {
3027 /* Set Tx and Rx buffer allocation to 8k apiece. */
3028 ew32(PBA
, E1000_PBA_8K
);
3029 /* Set Packet Buffer Size to 16k. */
3030 ew32(PBS
, E1000_PBS_16K
);
3033 if (hw
->mac
.type
== e1000_pchlan
) {
3034 /* Save the NVM K1 bit setting*/
3035 ret_val
= e1000_read_nvm(hw
, E1000_NVM_K1_CONFIG
, 1, ®
);
3039 if (reg
& E1000_NVM_K1_ENABLE
)
3040 dev_spec
->nvm_k1_enabled
= true;
3042 dev_spec
->nvm_k1_enabled
= false;
3047 if (!e1000_check_reset_block(hw
)) {
3049 * Full-chip reset requires MAC and PHY reset at the same
3050 * time to make sure the interface between MAC and the
3051 * external PHY is reset.
3053 ctrl
|= E1000_CTRL_PHY_RST
;
3056 * Gate automatic PHY configuration by hardware on
3059 if ((hw
->mac
.type
== e1000_pch2lan
) &&
3060 !(er32(FWSM
) & E1000_ICH_FWSM_FW_VALID
))
3061 e1000_gate_hw_phy_config_ich8lan(hw
, true);
3063 ret_val
= e1000_acquire_swflag_ich8lan(hw
);
3064 e_dbg("Issuing a global reset to ich8lan\n");
3065 ew32(CTRL
, (ctrl
| E1000_CTRL_RST
));
3069 e1000_release_swflag_ich8lan(hw
);
3071 if (ctrl
& E1000_CTRL_PHY_RST
) {
3072 ret_val
= hw
->phy
.ops
.get_cfg_done(hw
);
3076 ret_val
= e1000_post_phy_reset_ich8lan(hw
);
3082 * For PCH, this write will make sure that any noise
3083 * will be detected as a CRC error and be dropped rather than show up
3084 * as a bad packet to the DMA engine.
3086 if (hw
->mac
.type
== e1000_pchlan
)
3087 ew32(CRC_OFFSET
, 0x65656565);
3089 ew32(IMC
, 0xffffffff);
3092 kab
= er32(KABGTXD
);
3093 kab
|= E1000_KABGTXD_BGSQLBIAS
;
3101 * e1000_init_hw_ich8lan - Initialize the hardware
3102 * @hw: pointer to the HW structure
3104 * Prepares the hardware for transmit and receive by doing the following:
3105 * - initialize hardware bits
3106 * - initialize LED identification
3107 * - setup receive address registers
3108 * - setup flow control
3109 * - setup transmit descriptors
3110 * - clear statistics
3112 static s32
e1000_init_hw_ich8lan(struct e1000_hw
*hw
)
3114 struct e1000_mac_info
*mac
= &hw
->mac
;
3115 u32 ctrl_ext
, txdctl
, snoop
;
3119 e1000_initialize_hw_bits_ich8lan(hw
);
3121 /* Initialize identification LED */
3122 ret_val
= mac
->ops
.id_led_init(hw
);
3124 e_dbg("Error initializing identification LED\n");
3125 /* This is not fatal and we should not stop init due to this */
3127 /* Setup the receive address. */
3128 e1000e_init_rx_addrs(hw
, mac
->rar_entry_count
);
3130 /* Zero out the Multicast HASH table */
3131 e_dbg("Zeroing the MTA\n");
3132 for (i
= 0; i
< mac
->mta_reg_count
; i
++)
3133 E1000_WRITE_REG_ARRAY(hw
, E1000_MTA
, i
, 0);
3136 * The 82578 Rx buffer will stall if wakeup is enabled in host and
3137 * the ME. Reading the BM_WUC register will clear the host wakeup bit.
3138 * Reset the phy after disabling host wakeup to reset the Rx buffer.
3140 if (hw
->phy
.type
== e1000_phy_82578
) {
3141 e1e_rphy(hw
, BM_WUC
, &i
);
3142 ret_val
= e1000_phy_hw_reset_ich8lan(hw
);
3147 /* Setup link and flow control */
3148 ret_val
= e1000_setup_link_ich8lan(hw
);
3150 /* Set the transmit descriptor write-back policy for both queues */
3151 txdctl
= er32(TXDCTL(0));
3152 txdctl
= (txdctl
& ~E1000_TXDCTL_WTHRESH
) |
3153 E1000_TXDCTL_FULL_TX_DESC_WB
;
3154 txdctl
= (txdctl
& ~E1000_TXDCTL_PTHRESH
) |
3155 E1000_TXDCTL_MAX_TX_DESC_PREFETCH
;
3156 ew32(TXDCTL(0), txdctl
);
3157 txdctl
= er32(TXDCTL(1));
3158 txdctl
= (txdctl
& ~E1000_TXDCTL_WTHRESH
) |
3159 E1000_TXDCTL_FULL_TX_DESC_WB
;
3160 txdctl
= (txdctl
& ~E1000_TXDCTL_PTHRESH
) |
3161 E1000_TXDCTL_MAX_TX_DESC_PREFETCH
;
3162 ew32(TXDCTL(1), txdctl
);
3165 * ICH8 has opposite polarity of no_snoop bits.
3166 * By default, we should use snoop behavior.
3168 if (mac
->type
== e1000_ich8lan
)
3169 snoop
= PCIE_ICH8_SNOOP_ALL
;
3171 snoop
= (u32
) ~(PCIE_NO_SNOOP_ALL
);
3172 e1000e_set_pcie_no_snoop(hw
, snoop
);
3174 ctrl_ext
= er32(CTRL_EXT
);
3175 ctrl_ext
|= E1000_CTRL_EXT_RO_DIS
;
3176 ew32(CTRL_EXT
, ctrl_ext
);
3179 * Clear all of the statistics registers (clear on read). It is
3180 * important that we do this after we have tried to establish link
3181 * because the symbol error count will increment wildly if there
3184 e1000_clear_hw_cntrs_ich8lan(hw
);
3189 * e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
3190 * @hw: pointer to the HW structure
3192 * Sets/Clears required hardware bits necessary for correctly setting up the
3193 * hardware for transmit and receive.
3195 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw
*hw
)
3199 /* Extended Device Control */
3200 reg
= er32(CTRL_EXT
);
3202 /* Enable PHY low-power state when MAC is at D3 w/o WoL */
3203 if (hw
->mac
.type
>= e1000_pchlan
)
3204 reg
|= E1000_CTRL_EXT_PHYPDEN
;
3205 ew32(CTRL_EXT
, reg
);
3207 /* Transmit Descriptor Control 0 */
3208 reg
= er32(TXDCTL(0));
3210 ew32(TXDCTL(0), reg
);
3212 /* Transmit Descriptor Control 1 */
3213 reg
= er32(TXDCTL(1));
3215 ew32(TXDCTL(1), reg
);
3217 /* Transmit Arbitration Control 0 */
3218 reg
= er32(TARC(0));
3219 if (hw
->mac
.type
== e1000_ich8lan
)
3220 reg
|= (1 << 28) | (1 << 29);
3221 reg
|= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
3224 /* Transmit Arbitration Control 1 */
3225 reg
= er32(TARC(1));
3226 if (er32(TCTL
) & E1000_TCTL_MULR
)
3230 reg
|= (1 << 24) | (1 << 26) | (1 << 30);
3234 if (hw
->mac
.type
== e1000_ich8lan
) {
3241 * work-around descriptor data corruption issue during nfs v2 udp
3242 * traffic, just disable the nfs filtering capability
3245 reg
|= (E1000_RFCTL_NFSW_DIS
| E1000_RFCTL_NFSR_DIS
);
3250 * e1000_setup_link_ich8lan - Setup flow control and link settings
3251 * @hw: pointer to the HW structure
3253 * Determines which flow control settings to use, then configures flow
3254 * control. Calls the appropriate media-specific link configuration
3255 * function. Assuming the adapter has a valid link partner, a valid link
3256 * should be established. Assumes the hardware has previously been reset
3257 * and the transmitter and receiver are not enabled.
3259 static s32
e1000_setup_link_ich8lan(struct e1000_hw
*hw
)
3263 if (e1000_check_reset_block(hw
))
3267 * ICH parts do not have a word in the NVM to determine
3268 * the default flow control setting, so we explicitly
3271 if (hw
->fc
.requested_mode
== e1000_fc_default
) {
3272 /* Workaround h/w hang when Tx flow control enabled */
3273 if (hw
->mac
.type
== e1000_pchlan
)
3274 hw
->fc
.requested_mode
= e1000_fc_rx_pause
;
3276 hw
->fc
.requested_mode
= e1000_fc_full
;
3280 * Save off the requested flow control mode for use later. Depending
3281 * on the link partner's capabilities, we may or may not use this mode.
3283 hw
->fc
.current_mode
= hw
->fc
.requested_mode
;
3285 e_dbg("After fix-ups FlowControl is now = %x\n",
3286 hw
->fc
.current_mode
);
3288 /* Continue to configure the copper link. */
3289 ret_val
= e1000_setup_copper_link_ich8lan(hw
);
3293 ew32(FCTTV
, hw
->fc
.pause_time
);
3294 if ((hw
->phy
.type
== e1000_phy_82578
) ||
3295 (hw
->phy
.type
== e1000_phy_82579
) ||
3296 (hw
->phy
.type
== e1000_phy_82577
)) {
3297 ew32(FCRTV_PCH
, hw
->fc
.refresh_time
);
3299 ret_val
= e1e_wphy(hw
, PHY_REG(BM_PORT_CTRL_PAGE
, 27),
3305 return e1000e_set_fc_watermarks(hw
);
3309 * e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
3310 * @hw: pointer to the HW structure
3312 * Configures the kumeran interface to the PHY to wait the appropriate time
3313 * when polling the PHY, then call the generic setup_copper_link to finish
3314 * configuring the copper link.
3316 static s32
e1000_setup_copper_link_ich8lan(struct e1000_hw
*hw
)
3323 ctrl
|= E1000_CTRL_SLU
;
3324 ctrl
&= ~(E1000_CTRL_FRCSPD
| E1000_CTRL_FRCDPX
);
3328 * Set the mac to wait the maximum time between each iteration
3329 * and increase the max iterations when polling the phy;
3330 * this fixes erroneous timeouts at 10Mbps.
3332 ret_val
= e1000e_write_kmrn_reg(hw
, E1000_KMRNCTRLSTA_TIMEOUTS
, 0xFFFF);
3335 ret_val
= e1000e_read_kmrn_reg(hw
, E1000_KMRNCTRLSTA_INBAND_PARAM
,
3340 ret_val
= e1000e_write_kmrn_reg(hw
, E1000_KMRNCTRLSTA_INBAND_PARAM
,
3345 switch (hw
->phy
.type
) {
3346 case e1000_phy_igp_3
:
3347 ret_val
= e1000e_copper_link_setup_igp(hw
);
3352 case e1000_phy_82578
:
3353 ret_val
= e1000e_copper_link_setup_m88(hw
);
3357 case e1000_phy_82577
:
3358 case e1000_phy_82579
:
3359 ret_val
= e1000_copper_link_setup_82577(hw
);
3364 ret_val
= e1e_rphy(hw
, IFE_PHY_MDIX_CONTROL
, ®_data
);
3368 reg_data
&= ~IFE_PMC_AUTO_MDIX
;
3370 switch (hw
->phy
.mdix
) {
3372 reg_data
&= ~IFE_PMC_FORCE_MDIX
;
3375 reg_data
|= IFE_PMC_FORCE_MDIX
;
3379 reg_data
|= IFE_PMC_AUTO_MDIX
;
3382 ret_val
= e1e_wphy(hw
, IFE_PHY_MDIX_CONTROL
, reg_data
);
3389 return e1000e_setup_copper_link(hw
);
3393 * e1000_get_link_up_info_ich8lan - Get current link speed and duplex
3394 * @hw: pointer to the HW structure
3395 * @speed: pointer to store current link speed
3396 * @duplex: pointer to store the current link duplex
3398 * Calls the generic get_speed_and_duplex to retrieve the current link
3399 * information and then calls the Kumeran lock loss workaround for links at
3402 static s32
e1000_get_link_up_info_ich8lan(struct e1000_hw
*hw
, u16
*speed
,
3407 ret_val
= e1000e_get_speed_and_duplex_copper(hw
, speed
, duplex
);
3411 if ((hw
->mac
.type
== e1000_ich8lan
) &&
3412 (hw
->phy
.type
== e1000_phy_igp_3
) &&
3413 (*speed
== SPEED_1000
)) {
3414 ret_val
= e1000_kmrn_lock_loss_workaround_ich8lan(hw
);
3421 * e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
3422 * @hw: pointer to the HW structure
3424 * Work-around for 82566 Kumeran PCS lock loss:
3425 * On link status change (i.e. PCI reset, speed change) and link is up and
3427 * 0) if workaround is optionally disabled do nothing
3428 * 1) wait 1ms for Kumeran link to come up
3429 * 2) check Kumeran Diagnostic register PCS lock loss bit
3430 * 3) if not set the link is locked (all is good), otherwise...
3432 * 5) repeat up to 10 times
3433 * Note: this is only called for IGP3 copper when speed is 1gb.
3435 static s32
e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw
*hw
)
3437 struct e1000_dev_spec_ich8lan
*dev_spec
= &hw
->dev_spec
.ich8lan
;
3443 if (!dev_spec
->kmrn_lock_loss_workaround_enabled
)
3447 * Make sure link is up before proceeding. If not just return.
3448 * Attempting this while link is negotiating fouled up link
3451 ret_val
= e1000e_phy_has_link_generic(hw
, 1, 0, &link
);
3455 for (i
= 0; i
< 10; i
++) {
3456 /* read once to clear */
3457 ret_val
= e1e_rphy(hw
, IGP3_KMRN_DIAG
, &data
);
3460 /* and again to get new status */
3461 ret_val
= e1e_rphy(hw
, IGP3_KMRN_DIAG
, &data
);
3465 /* check for PCS lock */
3466 if (!(data
& IGP3_KMRN_DIAG_PCS_LOCK_LOSS
))
3469 /* Issue PHY reset */
3470 e1000_phy_hw_reset(hw
);
3473 /* Disable GigE link negotiation */
3474 phy_ctrl
= er32(PHY_CTRL
);
3475 phy_ctrl
|= (E1000_PHY_CTRL_GBE_DISABLE
|
3476 E1000_PHY_CTRL_NOND0A_GBE_DISABLE
);
3477 ew32(PHY_CTRL
, phy_ctrl
);
3480 * Call gig speed drop workaround on Gig disable before accessing
3483 e1000e_gig_downshift_workaround_ich8lan(hw
);
3485 /* unable to acquire PCS lock */
3486 return -E1000_ERR_PHY
;
3490 * e1000_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
3491 * @hw: pointer to the HW structure
3492 * @state: boolean value used to set the current Kumeran workaround state
3494 * If ICH8, set the current Kumeran workaround state (enabled - true
3495 * /disabled - false).
3497 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw
*hw
,
3500 struct e1000_dev_spec_ich8lan
*dev_spec
= &hw
->dev_spec
.ich8lan
;
3502 if (hw
->mac
.type
!= e1000_ich8lan
) {
3503 e_dbg("Workaround applies to ICH8 only.\n");
3507 dev_spec
->kmrn_lock_loss_workaround_enabled
= state
;
3511 * e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
3512 * @hw: pointer to the HW structure
3514 * Workaround for 82566 power-down on D3 entry:
3515 * 1) disable gigabit link
3516 * 2) write VR power-down enable
3518 * Continue if successful, else issue LCD reset and repeat
3520 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw
*hw
)
3526 if (hw
->phy
.type
!= e1000_phy_igp_3
)
3529 /* Try the workaround twice (if needed) */
3532 reg
= er32(PHY_CTRL
);
3533 reg
|= (E1000_PHY_CTRL_GBE_DISABLE
|
3534 E1000_PHY_CTRL_NOND0A_GBE_DISABLE
);
3535 ew32(PHY_CTRL
, reg
);
3538 * Call gig speed drop workaround on Gig disable before
3539 * accessing any PHY registers
3541 if (hw
->mac
.type
== e1000_ich8lan
)
3542 e1000e_gig_downshift_workaround_ich8lan(hw
);
3544 /* Write VR power-down enable */
3545 e1e_rphy(hw
, IGP3_VR_CTRL
, &data
);
3546 data
&= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK
;
3547 e1e_wphy(hw
, IGP3_VR_CTRL
, data
| IGP3_VR_CTRL_MODE_SHUTDOWN
);
3549 /* Read it back and test */
3550 e1e_rphy(hw
, IGP3_VR_CTRL
, &data
);
3551 data
&= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK
;
3552 if ((data
== IGP3_VR_CTRL_MODE_SHUTDOWN
) || retry
)
3555 /* Issue PHY reset and repeat at most one more time */
3557 ew32(CTRL
, reg
| E1000_CTRL_PHY_RST
);
3563 * e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
3564 * @hw: pointer to the HW structure
3566 * Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
3567 * LPLU, Gig disable, MDIC PHY reset):
3568 * 1) Set Kumeran Near-end loopback
3569 * 2) Clear Kumeran Near-end loopback
3570 * Should only be called for ICH8[m] devices with IGP_3 Phy.
3572 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw
*hw
)
3577 if ((hw
->mac
.type
!= e1000_ich8lan
) ||
3578 (hw
->phy
.type
!= e1000_phy_igp_3
))
3581 ret_val
= e1000e_read_kmrn_reg(hw
, E1000_KMRNCTRLSTA_DIAG_OFFSET
,
3585 reg_data
|= E1000_KMRNCTRLSTA_DIAG_NELPBK
;
3586 ret_val
= e1000e_write_kmrn_reg(hw
, E1000_KMRNCTRLSTA_DIAG_OFFSET
,
3590 reg_data
&= ~E1000_KMRNCTRLSTA_DIAG_NELPBK
;
3591 ret_val
= e1000e_write_kmrn_reg(hw
, E1000_KMRNCTRLSTA_DIAG_OFFSET
,
3596 * e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
3597 * @hw: pointer to the HW structure
3599 * During S0 to Sx transition, it is possible the link remains at gig
3600 * instead of negotiating to a lower speed. Before going to Sx, set
3601 * 'LPLU Enabled' and 'Gig Disable' to force link speed negotiation
3602 * to a lower speed. For PCH and newer parts, the OEM bits PHY register
3603 * (LED, GbE disable and LPLU configurations) also needs to be written.
3605 void e1000_suspend_workarounds_ich8lan(struct e1000_hw
*hw
)
3610 phy_ctrl
= er32(PHY_CTRL
);
3611 phy_ctrl
|= E1000_PHY_CTRL_D0A_LPLU
| E1000_PHY_CTRL_GBE_DISABLE
;
3612 ew32(PHY_CTRL
, phy_ctrl
);
3614 if (hw
->mac
.type
>= e1000_pchlan
) {
3615 e1000_oem_bits_config_ich8lan(hw
, false);
3616 ret_val
= hw
->phy
.ops
.acquire(hw
);
3619 e1000_write_smbus_addr(hw
);
3620 hw
->phy
.ops
.release(hw
);
3625 * e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
3626 * @hw: pointer to the HW structure
3628 * During Sx to S0 transitions on non-managed devices or managed devices
3629 * on which PHY resets are not blocked, if the PHY registers cannot be
3630 * accessed properly by the s/w toggle the LANPHYPC value to power cycle
3633 void e1000_resume_workarounds_pchlan(struct e1000_hw
*hw
)
3637 if (hw
->mac
.type
!= e1000_pch2lan
)
3641 if (!(fwsm
& E1000_ICH_FWSM_FW_VALID
) || !e1000_check_reset_block(hw
)) {
3642 u16 phy_id1
, phy_id2
;
3645 ret_val
= hw
->phy
.ops
.acquire(hw
);
3647 e_dbg("Failed to acquire PHY semaphore in resume\n");
3651 /* Test access to the PHY registers by reading the ID regs */
3652 ret_val
= hw
->phy
.ops
.read_reg_locked(hw
, PHY_ID1
, &phy_id1
);
3655 ret_val
= hw
->phy
.ops
.read_reg_locked(hw
, PHY_ID2
, &phy_id2
);
3659 if (hw
->phy
.id
== ((u32
)(phy_id1
<< 16) |
3660 (u32
)(phy_id2
& PHY_REVISION_MASK
)))
3663 e1000_toggle_lanphypc_value_ich8lan(hw
);
3665 hw
->phy
.ops
.release(hw
);
3667 e1000_phy_hw_reset(hw
);
3673 hw
->phy
.ops
.release(hw
);
3679 * e1000_cleanup_led_ich8lan - Restore the default LED operation
3680 * @hw: pointer to the HW structure
3682 * Return the LED back to the default configuration.
3684 static s32
e1000_cleanup_led_ich8lan(struct e1000_hw
*hw
)
3686 if (hw
->phy
.type
== e1000_phy_ife
)
3687 return e1e_wphy(hw
, IFE_PHY_SPECIAL_CONTROL_LED
, 0);
3689 ew32(LEDCTL
, hw
->mac
.ledctl_default
);
3694 * e1000_led_on_ich8lan - Turn LEDs on
3695 * @hw: pointer to the HW structure
3699 static s32
e1000_led_on_ich8lan(struct e1000_hw
*hw
)
3701 if (hw
->phy
.type
== e1000_phy_ife
)
3702 return e1e_wphy(hw
, IFE_PHY_SPECIAL_CONTROL_LED
,
3703 (IFE_PSCL_PROBE_MODE
| IFE_PSCL_PROBE_LEDS_ON
));
3705 ew32(LEDCTL
, hw
->mac
.ledctl_mode2
);
3710 * e1000_led_off_ich8lan - Turn LEDs off
3711 * @hw: pointer to the HW structure
3713 * Turn off the LEDs.
3715 static s32
e1000_led_off_ich8lan(struct e1000_hw
*hw
)
3717 if (hw
->phy
.type
== e1000_phy_ife
)
3718 return e1e_wphy(hw
, IFE_PHY_SPECIAL_CONTROL_LED
,
3719 (IFE_PSCL_PROBE_MODE
|
3720 IFE_PSCL_PROBE_LEDS_OFF
));
3722 ew32(LEDCTL
, hw
->mac
.ledctl_mode1
);
3727 * e1000_setup_led_pchlan - Configures SW controllable LED
3728 * @hw: pointer to the HW structure
3730 * This prepares the SW controllable LED for use.
3732 static s32
e1000_setup_led_pchlan(struct e1000_hw
*hw
)
3734 return e1e_wphy(hw
, HV_LED_CONFIG
, (u16
)hw
->mac
.ledctl_mode1
);
3738 * e1000_cleanup_led_pchlan - Restore the default LED operation
3739 * @hw: pointer to the HW structure
3741 * Return the LED back to the default configuration.
3743 static s32
e1000_cleanup_led_pchlan(struct e1000_hw
*hw
)
3745 return e1e_wphy(hw
, HV_LED_CONFIG
, (u16
)hw
->mac
.ledctl_default
);
3749 * e1000_led_on_pchlan - Turn LEDs on
3750 * @hw: pointer to the HW structure
3754 static s32
e1000_led_on_pchlan(struct e1000_hw
*hw
)
3756 u16 data
= (u16
)hw
->mac
.ledctl_mode2
;
3760 * If no link, then turn LED on by setting the invert bit
3761 * for each LED that's mode is "link_up" in ledctl_mode2.
3763 if (!(er32(STATUS
) & E1000_STATUS_LU
)) {
3764 for (i
= 0; i
< 3; i
++) {
3765 led
= (data
>> (i
* 5)) & E1000_PHY_LED0_MASK
;
3766 if ((led
& E1000_PHY_LED0_MODE_MASK
) !=
3767 E1000_LEDCTL_MODE_LINK_UP
)
3769 if (led
& E1000_PHY_LED0_IVRT
)
3770 data
&= ~(E1000_PHY_LED0_IVRT
<< (i
* 5));
3772 data
|= (E1000_PHY_LED0_IVRT
<< (i
* 5));
3776 return e1e_wphy(hw
, HV_LED_CONFIG
, data
);
3780 * e1000_led_off_pchlan - Turn LEDs off
3781 * @hw: pointer to the HW structure
3783 * Turn off the LEDs.
3785 static s32
e1000_led_off_pchlan(struct e1000_hw
*hw
)
3787 u16 data
= (u16
)hw
->mac
.ledctl_mode1
;
3791 * If no link, then turn LED off by clearing the invert bit
3792 * for each LED that's mode is "link_up" in ledctl_mode1.
3794 if (!(er32(STATUS
) & E1000_STATUS_LU
)) {
3795 for (i
= 0; i
< 3; i
++) {
3796 led
= (data
>> (i
* 5)) & E1000_PHY_LED0_MASK
;
3797 if ((led
& E1000_PHY_LED0_MODE_MASK
) !=
3798 E1000_LEDCTL_MODE_LINK_UP
)
3800 if (led
& E1000_PHY_LED0_IVRT
)
3801 data
&= ~(E1000_PHY_LED0_IVRT
<< (i
* 5));
3803 data
|= (E1000_PHY_LED0_IVRT
<< (i
* 5));
3807 return e1e_wphy(hw
, HV_LED_CONFIG
, data
);
3811 * e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
3812 * @hw: pointer to the HW structure
3814 * Read appropriate register for the config done bit for completion status
3815 * and configure the PHY through s/w for EEPROM-less parts.
3817 * NOTE: some silicon which is EEPROM-less will fail trying to read the
3818 * config done bit, so only an error is logged and continues. If we were
3819 * to return with error, EEPROM-less silicon would not be able to be reset
3822 static s32
e1000_get_cfg_done_ich8lan(struct e1000_hw
*hw
)
3828 e1000e_get_cfg_done(hw
);
3830 /* Wait for indication from h/w that it has completed basic config */
3831 if (hw
->mac
.type
>= e1000_ich10lan
) {
3832 e1000_lan_init_done_ich8lan(hw
);
3834 ret_val
= e1000e_get_auto_rd_done(hw
);
3837 * When auto config read does not complete, do not
3838 * return with an error. This can happen in situations
3839 * where there is no eeprom and prevents getting link.
3841 e_dbg("Auto Read Done did not complete\n");
3846 /* Clear PHY Reset Asserted bit */
3847 status
= er32(STATUS
);
3848 if (status
& E1000_STATUS_PHYRA
)
3849 ew32(STATUS
, status
& ~E1000_STATUS_PHYRA
);
3851 e_dbg("PHY Reset Asserted not set - needs delay\n");
3853 /* If EEPROM is not marked present, init the IGP 3 PHY manually */
3854 if (hw
->mac
.type
<= e1000_ich9lan
) {
3855 if (((er32(EECD
) & E1000_EECD_PRES
) == 0) &&
3856 (hw
->phy
.type
== e1000_phy_igp_3
)) {
3857 e1000e_phy_init_script_igp3(hw
);
3860 if (e1000_valid_nvm_bank_detect_ich8lan(hw
, &bank
)) {
3861 /* Maybe we should do a basic PHY config */
3862 e_dbg("EEPROM not present\n");
3863 ret_val
= -E1000_ERR_CONFIG
;
3871 * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
3872 * @hw: pointer to the HW structure
3874 * In the case of a PHY power down to save power, or to turn off link during a
3875 * driver unload, or wake on lan is not enabled, remove the link.
3877 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw
*hw
)
3879 /* If the management interface is not enabled, then power down */
3880 if (!(hw
->mac
.ops
.check_mng_mode(hw
) ||
3881 hw
->phy
.ops
.check_reset_block(hw
)))
3882 e1000_power_down_phy_copper(hw
);
3886 * e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
3887 * @hw: pointer to the HW structure
3889 * Clears hardware counters specific to the silicon family and calls
3890 * clear_hw_cntrs_generic to clear all general purpose counters.
3892 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw
*hw
)
3896 e1000e_clear_hw_cntrs_base(hw
);
3912 /* Clear PHY statistics registers */
3913 if ((hw
->phy
.type
== e1000_phy_82578
) ||
3914 (hw
->phy
.type
== e1000_phy_82579
) ||
3915 (hw
->phy
.type
== e1000_phy_82577
)) {
3916 e1e_rphy(hw
, HV_SCC_UPPER
, &phy_data
);
3917 e1e_rphy(hw
, HV_SCC_LOWER
, &phy_data
);
3918 e1e_rphy(hw
, HV_ECOL_UPPER
, &phy_data
);
3919 e1e_rphy(hw
, HV_ECOL_LOWER
, &phy_data
);
3920 e1e_rphy(hw
, HV_MCC_UPPER
, &phy_data
);
3921 e1e_rphy(hw
, HV_MCC_LOWER
, &phy_data
);
3922 e1e_rphy(hw
, HV_LATECOL_UPPER
, &phy_data
);
3923 e1e_rphy(hw
, HV_LATECOL_LOWER
, &phy_data
);
3924 e1e_rphy(hw
, HV_COLC_UPPER
, &phy_data
);
3925 e1e_rphy(hw
, HV_COLC_LOWER
, &phy_data
);
3926 e1e_rphy(hw
, HV_DC_UPPER
, &phy_data
);
3927 e1e_rphy(hw
, HV_DC_LOWER
, &phy_data
);
3928 e1e_rphy(hw
, HV_TNCRS_UPPER
, &phy_data
);
3929 e1e_rphy(hw
, HV_TNCRS_LOWER
, &phy_data
);
3933 static struct e1000_mac_operations ich8_mac_ops
= {
3934 .id_led_init
= e1000e_id_led_init
,
3935 /* check_mng_mode dependent on mac type */
3936 .check_for_link
= e1000_check_for_copper_link_ich8lan
,
3937 /* cleanup_led dependent on mac type */
3938 .clear_hw_cntrs
= e1000_clear_hw_cntrs_ich8lan
,
3939 .get_bus_info
= e1000_get_bus_info_ich8lan
,
3940 .set_lan_id
= e1000_set_lan_id_single_port
,
3941 .get_link_up_info
= e1000_get_link_up_info_ich8lan
,
3942 /* led_on dependent on mac type */
3943 /* led_off dependent on mac type */
3944 .update_mc_addr_list
= e1000e_update_mc_addr_list_generic
,
3945 .reset_hw
= e1000_reset_hw_ich8lan
,
3946 .init_hw
= e1000_init_hw_ich8lan
,
3947 .setup_link
= e1000_setup_link_ich8lan
,
3948 .setup_physical_interface
= e1000_setup_copper_link_ich8lan
,
3949 /* id_led_init dependent on mac type */
3952 static struct e1000_phy_operations ich8_phy_ops
= {
3953 .acquire
= e1000_acquire_swflag_ich8lan
,
3954 .check_reset_block
= e1000_check_reset_block_ich8lan
,
3956 .get_cfg_done
= e1000_get_cfg_done_ich8lan
,
3957 .get_cable_length
= e1000e_get_cable_length_igp_2
,
3958 .read_reg
= e1000e_read_phy_reg_igp
,
3959 .release
= e1000_release_swflag_ich8lan
,
3960 .reset
= e1000_phy_hw_reset_ich8lan
,
3961 .set_d0_lplu_state
= e1000_set_d0_lplu_state_ich8lan
,
3962 .set_d3_lplu_state
= e1000_set_d3_lplu_state_ich8lan
,
3963 .write_reg
= e1000e_write_phy_reg_igp
,
3966 static struct e1000_nvm_operations ich8_nvm_ops
= {
3967 .acquire
= e1000_acquire_nvm_ich8lan
,
3968 .read
= e1000_read_nvm_ich8lan
,
3969 .release
= e1000_release_nvm_ich8lan
,
3970 .update
= e1000_update_nvm_checksum_ich8lan
,
3971 .valid_led_default
= e1000_valid_led_default_ich8lan
,
3972 .validate
= e1000_validate_nvm_checksum_ich8lan
,
3973 .write
= e1000_write_nvm_ich8lan
,
3976 struct e1000_info e1000_ich8_info
= {
3977 .mac
= e1000_ich8lan
,
3978 .flags
= FLAG_HAS_WOL
3980 | FLAG_RX_CSUM_ENABLED
3981 | FLAG_HAS_CTRLEXT_ON_LOAD
3986 .max_hw_frame_size
= ETH_FRAME_LEN
+ ETH_FCS_LEN
,
3987 .get_variants
= e1000_get_variants_ich8lan
,
3988 .mac_ops
= &ich8_mac_ops
,
3989 .phy_ops
= &ich8_phy_ops
,
3990 .nvm_ops
= &ich8_nvm_ops
,
3993 struct e1000_info e1000_ich9_info
= {
3994 .mac
= e1000_ich9lan
,
3995 .flags
= FLAG_HAS_JUMBO_FRAMES
3998 | FLAG_RX_CSUM_ENABLED
3999 | FLAG_HAS_CTRLEXT_ON_LOAD
4005 .max_hw_frame_size
= DEFAULT_JUMBO
,
4006 .get_variants
= e1000_get_variants_ich8lan
,
4007 .mac_ops
= &ich8_mac_ops
,
4008 .phy_ops
= &ich8_phy_ops
,
4009 .nvm_ops
= &ich8_nvm_ops
,
4012 struct e1000_info e1000_ich10_info
= {
4013 .mac
= e1000_ich10lan
,
4014 .flags
= FLAG_HAS_JUMBO_FRAMES
4017 | FLAG_RX_CSUM_ENABLED
4018 | FLAG_HAS_CTRLEXT_ON_LOAD
4024 .max_hw_frame_size
= DEFAULT_JUMBO
,
4025 .get_variants
= e1000_get_variants_ich8lan
,
4026 .mac_ops
= &ich8_mac_ops
,
4027 .phy_ops
= &ich8_phy_ops
,
4028 .nvm_ops
= &ich8_nvm_ops
,
4031 struct e1000_info e1000_pch_info
= {
4032 .mac
= e1000_pchlan
,
4033 .flags
= FLAG_IS_ICH
4035 | FLAG_RX_CSUM_ENABLED
4036 | FLAG_HAS_CTRLEXT_ON_LOAD
4039 | FLAG_HAS_JUMBO_FRAMES
4040 | FLAG_DISABLE_FC_PAUSE_TIME
/* errata */
4042 .flags2
= FLAG2_HAS_PHY_STATS
,
4044 .max_hw_frame_size
= 4096,
4045 .get_variants
= e1000_get_variants_ich8lan
,
4046 .mac_ops
= &ich8_mac_ops
,
4047 .phy_ops
= &ich8_phy_ops
,
4048 .nvm_ops
= &ich8_nvm_ops
,
4051 struct e1000_info e1000_pch2_info
= {
4052 .mac
= e1000_pch2lan
,
4053 .flags
= FLAG_IS_ICH
4055 | FLAG_RX_CSUM_ENABLED
4056 | FLAG_HAS_CTRLEXT_ON_LOAD
4059 | FLAG_HAS_JUMBO_FRAMES
4061 .flags2
= FLAG2_HAS_PHY_STATS
4064 .max_hw_frame_size
= DEFAULT_JUMBO
,
4065 .get_variants
= e1000_get_variants_ich8lan
,
4066 .mac_ops
= &ich8_mac_ops
,
4067 .phy_ops
= &ich8_phy_ops
,
4068 .nvm_ops
= &ich8_nvm_ops
,