mtd: add an ioctl to query the lock status of a flash sector
[linux-2.6.git] / drivers / mtd / chips / cfi_cmdset_0001.c
blob2fadb0239ba32ba1c6f9c33bb69cc0756f3831a2
1 /*
2 * Common Flash Interface support:
3 * Intel Extended Vendor Command Set (ID 0x0001)
5 * (C) 2000 Red Hat. GPL'd
8 * 10/10/2000 Nicolas Pitre <nico@fluxnic.net>
9 * - completely revamped method functions so they are aware and
10 * independent of the flash geometry (buswidth, interleave, etc.)
11 * - scalability vs code size is completely set at compile-time
12 * (see include/linux/mtd/cfi.h for selection)
13 * - optimized write buffer method
14 * 02/05/2002 Christopher Hoover <ch@hpl.hp.com>/<ch@murgatroid.com>
15 * - reworked lock/unlock/erase support for var size flash
16 * 21/03/2007 Rodolfo Giometti <giometti@linux.it>
17 * - auto unlock sectors on resume for auto locking flash on power up
20 #include <linux/module.h>
21 #include <linux/types.h>
22 #include <linux/kernel.h>
23 #include <linux/sched.h>
24 #include <linux/init.h>
25 #include <asm/io.h>
26 #include <asm/byteorder.h>
28 #include <linux/errno.h>
29 #include <linux/slab.h>
30 #include <linux/delay.h>
31 #include <linux/interrupt.h>
32 #include <linux/reboot.h>
33 #include <linux/bitmap.h>
34 #include <linux/mtd/xip.h>
35 #include <linux/mtd/map.h>
36 #include <linux/mtd/mtd.h>
37 #include <linux/mtd/compatmac.h>
38 #include <linux/mtd/cfi.h>
40 /* #define CMDSET0001_DISABLE_ERASE_SUSPEND_ON_WRITE */
41 /* #define CMDSET0001_DISABLE_WRITE_SUSPEND */
43 // debugging, turns off buffer write mode if set to 1
44 #define FORCE_WORD_WRITE 0
46 /* Intel chips */
47 #define I82802AB 0x00ad
48 #define I82802AC 0x00ac
49 #define PF38F4476 0x881c
50 /* STMicroelectronics chips */
51 #define M50LPW080 0x002F
52 #define M50FLW080A 0x0080
53 #define M50FLW080B 0x0081
54 /* Atmel chips */
55 #define AT49BV640D 0x02de
56 #define AT49BV640DT 0x02db
58 static int cfi_intelext_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
59 static int cfi_intelext_write_words(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
60 static int cfi_intelext_write_buffers(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
61 static int cfi_intelext_writev(struct mtd_info *, const struct kvec *, unsigned long, loff_t, size_t *);
62 static int cfi_intelext_erase_varsize(struct mtd_info *, struct erase_info *);
63 static void cfi_intelext_sync (struct mtd_info *);
64 static int cfi_intelext_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
65 static int cfi_intelext_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
66 static int cfi_intelext_is_locked(struct mtd_info *mtd, loff_t ofs,
67 uint64_t len);
68 #ifdef CONFIG_MTD_OTP
69 static int cfi_intelext_read_fact_prot_reg (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
70 static int cfi_intelext_read_user_prot_reg (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
71 static int cfi_intelext_write_user_prot_reg (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
72 static int cfi_intelext_lock_user_prot_reg (struct mtd_info *, loff_t, size_t);
73 static int cfi_intelext_get_fact_prot_info (struct mtd_info *,
74 struct otp_info *, size_t);
75 static int cfi_intelext_get_user_prot_info (struct mtd_info *,
76 struct otp_info *, size_t);
77 #endif
78 static int cfi_intelext_suspend (struct mtd_info *);
79 static void cfi_intelext_resume (struct mtd_info *);
80 static int cfi_intelext_reboot (struct notifier_block *, unsigned long, void *);
82 static void cfi_intelext_destroy(struct mtd_info *);
84 struct mtd_info *cfi_cmdset_0001(struct map_info *, int);
86 static struct mtd_info *cfi_intelext_setup (struct mtd_info *);
87 static int cfi_intelext_partition_fixup(struct mtd_info *, struct cfi_private **);
89 static int cfi_intelext_point (struct mtd_info *mtd, loff_t from, size_t len,
90 size_t *retlen, void **virt, resource_size_t *phys);
91 static void cfi_intelext_unpoint(struct mtd_info *mtd, loff_t from, size_t len);
93 static int chip_ready (struct map_info *map, struct flchip *chip, unsigned long adr, int mode);
94 static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode);
95 static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr);
96 #include "fwh_lock.h"
101 * *********** SETUP AND PROBE BITS ***********
104 static struct mtd_chip_driver cfi_intelext_chipdrv = {
105 .probe = NULL, /* Not usable directly */
106 .destroy = cfi_intelext_destroy,
107 .name = "cfi_cmdset_0001",
108 .module = THIS_MODULE
111 /* #define DEBUG_LOCK_BITS */
112 /* #define DEBUG_CFI_FEATURES */
114 #ifdef DEBUG_CFI_FEATURES
115 static void cfi_tell_features(struct cfi_pri_intelext *extp)
117 int i;
118 printk(" Extended Query version %c.%c\n", extp->MajorVersion, extp->MinorVersion);
119 printk(" Feature/Command Support: %4.4X\n", extp->FeatureSupport);
120 printk(" - Chip Erase: %s\n", extp->FeatureSupport&1?"supported":"unsupported");
121 printk(" - Suspend Erase: %s\n", extp->FeatureSupport&2?"supported":"unsupported");
122 printk(" - Suspend Program: %s\n", extp->FeatureSupport&4?"supported":"unsupported");
123 printk(" - Legacy Lock/Unlock: %s\n", extp->FeatureSupport&8?"supported":"unsupported");
124 printk(" - Queued Erase: %s\n", extp->FeatureSupport&16?"supported":"unsupported");
125 printk(" - Instant block lock: %s\n", extp->FeatureSupport&32?"supported":"unsupported");
126 printk(" - Protection Bits: %s\n", extp->FeatureSupport&64?"supported":"unsupported");
127 printk(" - Page-mode read: %s\n", extp->FeatureSupport&128?"supported":"unsupported");
128 printk(" - Synchronous read: %s\n", extp->FeatureSupport&256?"supported":"unsupported");
129 printk(" - Simultaneous operations: %s\n", extp->FeatureSupport&512?"supported":"unsupported");
130 printk(" - Extended Flash Array: %s\n", extp->FeatureSupport&1024?"supported":"unsupported");
131 for (i=11; i<32; i++) {
132 if (extp->FeatureSupport & (1<<i))
133 printk(" - Unknown Bit %X: supported\n", i);
136 printk(" Supported functions after Suspend: %2.2X\n", extp->SuspendCmdSupport);
137 printk(" - Program after Erase Suspend: %s\n", extp->SuspendCmdSupport&1?"supported":"unsupported");
138 for (i=1; i<8; i++) {
139 if (extp->SuspendCmdSupport & (1<<i))
140 printk(" - Unknown Bit %X: supported\n", i);
143 printk(" Block Status Register Mask: %4.4X\n", extp->BlkStatusRegMask);
144 printk(" - Lock Bit Active: %s\n", extp->BlkStatusRegMask&1?"yes":"no");
145 printk(" - Lock-Down Bit Active: %s\n", extp->BlkStatusRegMask&2?"yes":"no");
146 for (i=2; i<3; i++) {
147 if (extp->BlkStatusRegMask & (1<<i))
148 printk(" - Unknown Bit %X Active: yes\n",i);
150 printk(" - EFA Lock Bit: %s\n", extp->BlkStatusRegMask&16?"yes":"no");
151 printk(" - EFA Lock-Down Bit: %s\n", extp->BlkStatusRegMask&32?"yes":"no");
152 for (i=6; i<16; i++) {
153 if (extp->BlkStatusRegMask & (1<<i))
154 printk(" - Unknown Bit %X Active: yes\n",i);
157 printk(" Vcc Logic Supply Optimum Program/Erase Voltage: %d.%d V\n",
158 extp->VccOptimal >> 4, extp->VccOptimal & 0xf);
159 if (extp->VppOptimal)
160 printk(" Vpp Programming Supply Optimum Program/Erase Voltage: %d.%d V\n",
161 extp->VppOptimal >> 4, extp->VppOptimal & 0xf);
163 #endif
165 /* Atmel chips don't use the same PRI format as Intel chips */
166 static void fixup_convert_atmel_pri(struct mtd_info *mtd, void *param)
168 struct map_info *map = mtd->priv;
169 struct cfi_private *cfi = map->fldrv_priv;
170 struct cfi_pri_intelext *extp = cfi->cmdset_priv;
171 struct cfi_pri_atmel atmel_pri;
172 uint32_t features = 0;
174 /* Reverse byteswapping */
175 extp->FeatureSupport = cpu_to_le32(extp->FeatureSupport);
176 extp->BlkStatusRegMask = cpu_to_le16(extp->BlkStatusRegMask);
177 extp->ProtRegAddr = cpu_to_le16(extp->ProtRegAddr);
179 memcpy(&atmel_pri, extp, sizeof(atmel_pri));
180 memset((char *)extp + 5, 0, sizeof(*extp) - 5);
182 printk(KERN_ERR "atmel Features: %02x\n", atmel_pri.Features);
184 if (atmel_pri.Features & 0x01) /* chip erase supported */
185 features |= (1<<0);
186 if (atmel_pri.Features & 0x02) /* erase suspend supported */
187 features |= (1<<1);
188 if (atmel_pri.Features & 0x04) /* program suspend supported */
189 features |= (1<<2);
190 if (atmel_pri.Features & 0x08) /* simultaneous operations supported */
191 features |= (1<<9);
192 if (atmel_pri.Features & 0x20) /* page mode read supported */
193 features |= (1<<7);
194 if (atmel_pri.Features & 0x40) /* queued erase supported */
195 features |= (1<<4);
196 if (atmel_pri.Features & 0x80) /* Protection bits supported */
197 features |= (1<<6);
199 extp->FeatureSupport = features;
201 /* burst write mode not supported */
202 cfi->cfiq->BufWriteTimeoutTyp = 0;
203 cfi->cfiq->BufWriteTimeoutMax = 0;
206 static void fixup_at49bv640dx_lock(struct mtd_info *mtd, void *param)
208 struct map_info *map = mtd->priv;
209 struct cfi_private *cfi = map->fldrv_priv;
210 struct cfi_pri_intelext *cfip = cfi->cmdset_priv;
212 cfip->FeatureSupport |= (1 << 5);
213 mtd->flags |= MTD_POWERUP_LOCK;
216 #ifdef CMDSET0001_DISABLE_ERASE_SUSPEND_ON_WRITE
217 /* Some Intel Strata Flash prior to FPO revision C has bugs in this area */
218 static void fixup_intel_strataflash(struct mtd_info *mtd, void* param)
220 struct map_info *map = mtd->priv;
221 struct cfi_private *cfi = map->fldrv_priv;
222 struct cfi_pri_intelext *extp = cfi->cmdset_priv;
224 printk(KERN_WARNING "cfi_cmdset_0001: Suspend "
225 "erase on write disabled.\n");
226 extp->SuspendCmdSupport &= ~1;
228 #endif
230 #ifdef CMDSET0001_DISABLE_WRITE_SUSPEND
231 static void fixup_no_write_suspend(struct mtd_info *mtd, void* param)
233 struct map_info *map = mtd->priv;
234 struct cfi_private *cfi = map->fldrv_priv;
235 struct cfi_pri_intelext *cfip = cfi->cmdset_priv;
237 if (cfip && (cfip->FeatureSupport&4)) {
238 cfip->FeatureSupport &= ~4;
239 printk(KERN_WARNING "cfi_cmdset_0001: write suspend disabled\n");
242 #endif
244 static void fixup_st_m28w320ct(struct mtd_info *mtd, void* param)
246 struct map_info *map = mtd->priv;
247 struct cfi_private *cfi = map->fldrv_priv;
249 cfi->cfiq->BufWriteTimeoutTyp = 0; /* Not supported */
250 cfi->cfiq->BufWriteTimeoutMax = 0; /* Not supported */
253 static void fixup_st_m28w320cb(struct mtd_info *mtd, void* param)
255 struct map_info *map = mtd->priv;
256 struct cfi_private *cfi = map->fldrv_priv;
258 /* Note this is done after the region info is endian swapped */
259 cfi->cfiq->EraseRegionInfo[1] =
260 (cfi->cfiq->EraseRegionInfo[1] & 0xffff0000) | 0x3e;
263 static void fixup_use_point(struct mtd_info *mtd, void *param)
265 struct map_info *map = mtd->priv;
266 if (!mtd->point && map_is_linear(map)) {
267 mtd->point = cfi_intelext_point;
268 mtd->unpoint = cfi_intelext_unpoint;
272 static void fixup_use_write_buffers(struct mtd_info *mtd, void *param)
274 struct map_info *map = mtd->priv;
275 struct cfi_private *cfi = map->fldrv_priv;
276 if (cfi->cfiq->BufWriteTimeoutTyp) {
277 printk(KERN_INFO "Using buffer write method\n" );
278 mtd->write = cfi_intelext_write_buffers;
279 mtd->writev = cfi_intelext_writev;
284 * Some chips power-up with all sectors locked by default.
286 static void fixup_unlock_powerup_lock(struct mtd_info *mtd, void *param)
288 struct map_info *map = mtd->priv;
289 struct cfi_private *cfi = map->fldrv_priv;
290 struct cfi_pri_intelext *cfip = cfi->cmdset_priv;
292 if (cfip->FeatureSupport&32) {
293 printk(KERN_INFO "Using auto-unlock on power-up/resume\n" );
294 mtd->flags |= MTD_POWERUP_LOCK;
298 static struct cfi_fixup cfi_fixup_table[] = {
299 { CFI_MFR_ATMEL, CFI_ID_ANY, fixup_convert_atmel_pri, NULL },
300 { CFI_MFR_ATMEL, AT49BV640D, fixup_at49bv640dx_lock, NULL },
301 { CFI_MFR_ATMEL, AT49BV640DT, fixup_at49bv640dx_lock, NULL },
302 #ifdef CMDSET0001_DISABLE_ERASE_SUSPEND_ON_WRITE
303 { CFI_MFR_ANY, CFI_ID_ANY, fixup_intel_strataflash, NULL },
304 #endif
305 #ifdef CMDSET0001_DISABLE_WRITE_SUSPEND
306 { CFI_MFR_ANY, CFI_ID_ANY, fixup_no_write_suspend, NULL },
307 #endif
308 #if !FORCE_WORD_WRITE
309 { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_write_buffers, NULL },
310 #endif
311 { CFI_MFR_ST, 0x00ba, /* M28W320CT */ fixup_st_m28w320ct, NULL },
312 { CFI_MFR_ST, 0x00bb, /* M28W320CB */ fixup_st_m28w320cb, NULL },
313 { CFI_MFR_INTEL, CFI_ID_ANY, fixup_unlock_powerup_lock, NULL, },
314 { 0, 0, NULL, NULL }
317 static struct cfi_fixup jedec_fixup_table[] = {
318 { CFI_MFR_INTEL, I82802AB, fixup_use_fwh_lock, NULL, },
319 { CFI_MFR_INTEL, I82802AC, fixup_use_fwh_lock, NULL, },
320 { CFI_MFR_ST, M50LPW080, fixup_use_fwh_lock, NULL, },
321 { CFI_MFR_ST, M50FLW080A, fixup_use_fwh_lock, NULL, },
322 { CFI_MFR_ST, M50FLW080B, fixup_use_fwh_lock, NULL, },
323 { 0, 0, NULL, NULL }
325 static struct cfi_fixup fixup_table[] = {
326 /* The CFI vendor ids and the JEDEC vendor IDs appear
327 * to be common. It is like the devices id's are as
328 * well. This table is to pick all cases where
329 * we know that is the case.
331 { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_point, NULL },
332 { 0, 0, NULL, NULL }
335 static void cfi_fixup_major_minor(struct cfi_private *cfi,
336 struct cfi_pri_intelext *extp)
338 if (cfi->mfr == CFI_MFR_INTEL &&
339 cfi->id == PF38F4476 && extp->MinorVersion == '3')
340 extp->MinorVersion = '1';
343 static inline struct cfi_pri_intelext *
344 read_pri_intelext(struct map_info *map, __u16 adr)
346 struct cfi_private *cfi = map->fldrv_priv;
347 struct cfi_pri_intelext *extp;
348 unsigned int extra_size = 0;
349 unsigned int extp_size = sizeof(*extp);
351 again:
352 extp = (struct cfi_pri_intelext *)cfi_read_pri(map, adr, extp_size, "Intel/Sharp");
353 if (!extp)
354 return NULL;
356 cfi_fixup_major_minor(cfi, extp);
358 if (extp->MajorVersion != '1' ||
359 (extp->MinorVersion < '0' || extp->MinorVersion > '5')) {
360 printk(KERN_ERR " Unknown Intel/Sharp Extended Query "
361 "version %c.%c.\n", extp->MajorVersion,
362 extp->MinorVersion);
363 kfree(extp);
364 return NULL;
367 /* Do some byteswapping if necessary */
368 extp->FeatureSupport = le32_to_cpu(extp->FeatureSupport);
369 extp->BlkStatusRegMask = le16_to_cpu(extp->BlkStatusRegMask);
370 extp->ProtRegAddr = le16_to_cpu(extp->ProtRegAddr);
372 if (extp->MinorVersion >= '0') {
373 extra_size = 0;
375 /* Protection Register info */
376 extra_size += (extp->NumProtectionFields - 1) *
377 sizeof(struct cfi_intelext_otpinfo);
380 if (extp->MinorVersion >= '1') {
381 /* Burst Read info */
382 extra_size += 2;
383 if (extp_size < sizeof(*extp) + extra_size)
384 goto need_more;
385 extra_size += extp->extra[extra_size - 1];
388 if (extp->MinorVersion >= '3') {
389 int nb_parts, i;
391 /* Number of hardware-partitions */
392 extra_size += 1;
393 if (extp_size < sizeof(*extp) + extra_size)
394 goto need_more;
395 nb_parts = extp->extra[extra_size - 1];
397 /* skip the sizeof(partregion) field in CFI 1.4 */
398 if (extp->MinorVersion >= '4')
399 extra_size += 2;
401 for (i = 0; i < nb_parts; i++) {
402 struct cfi_intelext_regioninfo *rinfo;
403 rinfo = (struct cfi_intelext_regioninfo *)&extp->extra[extra_size];
404 extra_size += sizeof(*rinfo);
405 if (extp_size < sizeof(*extp) + extra_size)
406 goto need_more;
407 rinfo->NumIdentPartitions=le16_to_cpu(rinfo->NumIdentPartitions);
408 extra_size += (rinfo->NumBlockTypes - 1)
409 * sizeof(struct cfi_intelext_blockinfo);
412 if (extp->MinorVersion >= '4')
413 extra_size += sizeof(struct cfi_intelext_programming_regioninfo);
415 if (extp_size < sizeof(*extp) + extra_size) {
416 need_more:
417 extp_size = sizeof(*extp) + extra_size;
418 kfree(extp);
419 if (extp_size > 4096) {
420 printk(KERN_ERR
421 "%s: cfi_pri_intelext is too fat\n",
422 __func__);
423 return NULL;
425 goto again;
429 return extp;
432 struct mtd_info *cfi_cmdset_0001(struct map_info *map, int primary)
434 struct cfi_private *cfi = map->fldrv_priv;
435 struct mtd_info *mtd;
436 int i;
438 mtd = kzalloc(sizeof(*mtd), GFP_KERNEL);
439 if (!mtd) {
440 printk(KERN_ERR "Failed to allocate memory for MTD device\n");
441 return NULL;
443 mtd->priv = map;
444 mtd->type = MTD_NORFLASH;
446 /* Fill in the default mtd operations */
447 mtd->erase = cfi_intelext_erase_varsize;
448 mtd->read = cfi_intelext_read;
449 mtd->write = cfi_intelext_write_words;
450 mtd->sync = cfi_intelext_sync;
451 mtd->lock = cfi_intelext_lock;
452 mtd->unlock = cfi_intelext_unlock;
453 mtd->is_locked = cfi_intelext_is_locked;
454 mtd->suspend = cfi_intelext_suspend;
455 mtd->resume = cfi_intelext_resume;
456 mtd->flags = MTD_CAP_NORFLASH;
457 mtd->name = map->name;
458 mtd->writesize = 1;
460 mtd->reboot_notifier.notifier_call = cfi_intelext_reboot;
462 if (cfi->cfi_mode == CFI_MODE_CFI) {
464 * It's a real CFI chip, not one for which the probe
465 * routine faked a CFI structure. So we read the feature
466 * table from it.
468 __u16 adr = primary?cfi->cfiq->P_ADR:cfi->cfiq->A_ADR;
469 struct cfi_pri_intelext *extp;
471 extp = read_pri_intelext(map, adr);
472 if (!extp) {
473 kfree(mtd);
474 return NULL;
477 /* Install our own private info structure */
478 cfi->cmdset_priv = extp;
480 cfi_fixup(mtd, cfi_fixup_table);
482 #ifdef DEBUG_CFI_FEATURES
483 /* Tell the user about it in lots of lovely detail */
484 cfi_tell_features(extp);
485 #endif
487 if(extp->SuspendCmdSupport & 1) {
488 printk(KERN_NOTICE "cfi_cmdset_0001: Erase suspend on write enabled\n");
491 else if (cfi->cfi_mode == CFI_MODE_JEDEC) {
492 /* Apply jedec specific fixups */
493 cfi_fixup(mtd, jedec_fixup_table);
495 /* Apply generic fixups */
496 cfi_fixup(mtd, fixup_table);
498 for (i=0; i< cfi->numchips; i++) {
499 if (cfi->cfiq->WordWriteTimeoutTyp)
500 cfi->chips[i].word_write_time =
501 1<<cfi->cfiq->WordWriteTimeoutTyp;
502 else
503 cfi->chips[i].word_write_time = 50000;
505 if (cfi->cfiq->BufWriteTimeoutTyp)
506 cfi->chips[i].buffer_write_time =
507 1<<cfi->cfiq->BufWriteTimeoutTyp;
508 /* No default; if it isn't specified, we won't use it */
510 if (cfi->cfiq->BlockEraseTimeoutTyp)
511 cfi->chips[i].erase_time =
512 1000<<cfi->cfiq->BlockEraseTimeoutTyp;
513 else
514 cfi->chips[i].erase_time = 2000000;
516 if (cfi->cfiq->WordWriteTimeoutTyp &&
517 cfi->cfiq->WordWriteTimeoutMax)
518 cfi->chips[i].word_write_time_max =
519 1<<(cfi->cfiq->WordWriteTimeoutTyp +
520 cfi->cfiq->WordWriteTimeoutMax);
521 else
522 cfi->chips[i].word_write_time_max = 50000 * 8;
524 if (cfi->cfiq->BufWriteTimeoutTyp &&
525 cfi->cfiq->BufWriteTimeoutMax)
526 cfi->chips[i].buffer_write_time_max =
527 1<<(cfi->cfiq->BufWriteTimeoutTyp +
528 cfi->cfiq->BufWriteTimeoutMax);
530 if (cfi->cfiq->BlockEraseTimeoutTyp &&
531 cfi->cfiq->BlockEraseTimeoutMax)
532 cfi->chips[i].erase_time_max =
533 1000<<(cfi->cfiq->BlockEraseTimeoutTyp +
534 cfi->cfiq->BlockEraseTimeoutMax);
535 else
536 cfi->chips[i].erase_time_max = 2000000 * 8;
538 cfi->chips[i].ref_point_counter = 0;
539 init_waitqueue_head(&(cfi->chips[i].wq));
542 map->fldrv = &cfi_intelext_chipdrv;
544 return cfi_intelext_setup(mtd);
546 struct mtd_info *cfi_cmdset_0003(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0001")));
547 struct mtd_info *cfi_cmdset_0200(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0001")));
548 EXPORT_SYMBOL_GPL(cfi_cmdset_0001);
549 EXPORT_SYMBOL_GPL(cfi_cmdset_0003);
550 EXPORT_SYMBOL_GPL(cfi_cmdset_0200);
552 static struct mtd_info *cfi_intelext_setup(struct mtd_info *mtd)
554 struct map_info *map = mtd->priv;
555 struct cfi_private *cfi = map->fldrv_priv;
556 unsigned long offset = 0;
557 int i,j;
558 unsigned long devsize = (1<<cfi->cfiq->DevSize) * cfi->interleave;
560 //printk(KERN_DEBUG "number of CFI chips: %d\n", cfi->numchips);
562 mtd->size = devsize * cfi->numchips;
564 mtd->numeraseregions = cfi->cfiq->NumEraseRegions * cfi->numchips;
565 mtd->eraseregions = kmalloc(sizeof(struct mtd_erase_region_info)
566 * mtd->numeraseregions, GFP_KERNEL);
567 if (!mtd->eraseregions) {
568 printk(KERN_ERR "Failed to allocate memory for MTD erase region info\n");
569 goto setup_err;
572 for (i=0; i<cfi->cfiq->NumEraseRegions; i++) {
573 unsigned long ernum, ersize;
574 ersize = ((cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff) * cfi->interleave;
575 ernum = (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1;
577 if (mtd->erasesize < ersize) {
578 mtd->erasesize = ersize;
580 for (j=0; j<cfi->numchips; j++) {
581 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].offset = (j*devsize)+offset;
582 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].erasesize = ersize;
583 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].numblocks = ernum;
584 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].lockmap = kmalloc(ernum / 8 + 1, GFP_KERNEL);
586 offset += (ersize * ernum);
589 if (offset != devsize) {
590 /* Argh */
591 printk(KERN_WARNING "Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset, devsize);
592 goto setup_err;
595 for (i=0; i<mtd->numeraseregions;i++){
596 printk(KERN_DEBUG "erase region %d: offset=0x%llx,size=0x%x,blocks=%d\n",
597 i,(unsigned long long)mtd->eraseregions[i].offset,
598 mtd->eraseregions[i].erasesize,
599 mtd->eraseregions[i].numblocks);
602 #ifdef CONFIG_MTD_OTP
603 mtd->read_fact_prot_reg = cfi_intelext_read_fact_prot_reg;
604 mtd->read_user_prot_reg = cfi_intelext_read_user_prot_reg;
605 mtd->write_user_prot_reg = cfi_intelext_write_user_prot_reg;
606 mtd->lock_user_prot_reg = cfi_intelext_lock_user_prot_reg;
607 mtd->get_fact_prot_info = cfi_intelext_get_fact_prot_info;
608 mtd->get_user_prot_info = cfi_intelext_get_user_prot_info;
609 #endif
611 /* This function has the potential to distort the reality
612 a bit and therefore should be called last. */
613 if (cfi_intelext_partition_fixup(mtd, &cfi) != 0)
614 goto setup_err;
616 __module_get(THIS_MODULE);
617 register_reboot_notifier(&mtd->reboot_notifier);
618 return mtd;
620 setup_err:
621 kfree(mtd->eraseregions);
622 kfree(mtd);
623 kfree(cfi->cmdset_priv);
624 return NULL;
627 static int cfi_intelext_partition_fixup(struct mtd_info *mtd,
628 struct cfi_private **pcfi)
630 struct map_info *map = mtd->priv;
631 struct cfi_private *cfi = *pcfi;
632 struct cfi_pri_intelext *extp = cfi->cmdset_priv;
635 * Probing of multi-partition flash chips.
637 * To support multiple partitions when available, we simply arrange
638 * for each of them to have their own flchip structure even if they
639 * are on the same physical chip. This means completely recreating
640 * a new cfi_private structure right here which is a blatent code
641 * layering violation, but this is still the least intrusive
642 * arrangement at this point. This can be rearranged in the future
643 * if someone feels motivated enough. --nico
645 if (extp && extp->MajorVersion == '1' && extp->MinorVersion >= '3'
646 && extp->FeatureSupport & (1 << 9)) {
647 struct cfi_private *newcfi;
648 struct flchip *chip;
649 struct flchip_shared *shared;
650 int offs, numregions, numparts, partshift, numvirtchips, i, j;
652 /* Protection Register info */
653 offs = (extp->NumProtectionFields - 1) *
654 sizeof(struct cfi_intelext_otpinfo);
656 /* Burst Read info */
657 offs += extp->extra[offs+1]+2;
659 /* Number of partition regions */
660 numregions = extp->extra[offs];
661 offs += 1;
663 /* skip the sizeof(partregion) field in CFI 1.4 */
664 if (extp->MinorVersion >= '4')
665 offs += 2;
667 /* Number of hardware partitions */
668 numparts = 0;
669 for (i = 0; i < numregions; i++) {
670 struct cfi_intelext_regioninfo *rinfo;
671 rinfo = (struct cfi_intelext_regioninfo *)&extp->extra[offs];
672 numparts += rinfo->NumIdentPartitions;
673 offs += sizeof(*rinfo)
674 + (rinfo->NumBlockTypes - 1) *
675 sizeof(struct cfi_intelext_blockinfo);
678 if (!numparts)
679 numparts = 1;
681 /* Programming Region info */
682 if (extp->MinorVersion >= '4') {
683 struct cfi_intelext_programming_regioninfo *prinfo;
684 prinfo = (struct cfi_intelext_programming_regioninfo *)&extp->extra[offs];
685 mtd->writesize = cfi->interleave << prinfo->ProgRegShift;
686 mtd->flags &= ~MTD_BIT_WRITEABLE;
687 printk(KERN_DEBUG "%s: program region size/ctrl_valid/ctrl_inval = %d/%d/%d\n",
688 map->name, mtd->writesize,
689 cfi->interleave * prinfo->ControlValid,
690 cfi->interleave * prinfo->ControlInvalid);
694 * All functions below currently rely on all chips having
695 * the same geometry so we'll just assume that all hardware
696 * partitions are of the same size too.
698 partshift = cfi->chipshift - __ffs(numparts);
700 if ((1 << partshift) < mtd->erasesize) {
701 printk( KERN_ERR
702 "%s: bad number of hw partitions (%d)\n",
703 __func__, numparts);
704 return -EINVAL;
707 numvirtchips = cfi->numchips * numparts;
708 newcfi = kmalloc(sizeof(struct cfi_private) + numvirtchips * sizeof(struct flchip), GFP_KERNEL);
709 if (!newcfi)
710 return -ENOMEM;
711 shared = kmalloc(sizeof(struct flchip_shared) * cfi->numchips, GFP_KERNEL);
712 if (!shared) {
713 kfree(newcfi);
714 return -ENOMEM;
716 memcpy(newcfi, cfi, sizeof(struct cfi_private));
717 newcfi->numchips = numvirtchips;
718 newcfi->chipshift = partshift;
720 chip = &newcfi->chips[0];
721 for (i = 0; i < cfi->numchips; i++) {
722 shared[i].writing = shared[i].erasing = NULL;
723 spin_lock_init(&shared[i].lock);
724 for (j = 0; j < numparts; j++) {
725 *chip = cfi->chips[i];
726 chip->start += j << partshift;
727 chip->priv = &shared[i];
728 /* those should be reset too since
729 they create memory references. */
730 init_waitqueue_head(&chip->wq);
731 mutex_init(&chip->mutex);
732 chip++;
736 printk(KERN_DEBUG "%s: %d set(s) of %d interleaved chips "
737 "--> %d partitions of %d KiB\n",
738 map->name, cfi->numchips, cfi->interleave,
739 newcfi->numchips, 1<<(newcfi->chipshift-10));
741 map->fldrv_priv = newcfi;
742 *pcfi = newcfi;
743 kfree(cfi);
746 return 0;
750 * *********** CHIP ACCESS FUNCTIONS ***********
752 static int chip_ready (struct map_info *map, struct flchip *chip, unsigned long adr, int mode)
754 DECLARE_WAITQUEUE(wait, current);
755 struct cfi_private *cfi = map->fldrv_priv;
756 map_word status, status_OK = CMD(0x80), status_PWS = CMD(0x01);
757 struct cfi_pri_intelext *cfip = cfi->cmdset_priv;
758 unsigned long timeo = jiffies + HZ;
760 /* Prevent setting state FL_SYNCING for chip in suspended state. */
761 if (mode == FL_SYNCING && chip->oldstate != FL_READY)
762 goto sleep;
764 switch (chip->state) {
766 case FL_STATUS:
767 for (;;) {
768 status = map_read(map, adr);
769 if (map_word_andequal(map, status, status_OK, status_OK))
770 break;
772 /* At this point we're fine with write operations
773 in other partitions as they don't conflict. */
774 if (chip->priv && map_word_andequal(map, status, status_PWS, status_PWS))
775 break;
777 mutex_unlock(&chip->mutex);
778 cfi_udelay(1);
779 mutex_lock(&chip->mutex);
780 /* Someone else might have been playing with it. */
781 return -EAGAIN;
783 /* Fall through */
784 case FL_READY:
785 case FL_CFI_QUERY:
786 case FL_JEDEC_QUERY:
787 return 0;
789 case FL_ERASING:
790 if (!cfip ||
791 !(cfip->FeatureSupport & 2) ||
792 !(mode == FL_READY || mode == FL_POINT ||
793 (mode == FL_WRITING && (cfip->SuspendCmdSupport & 1))))
794 goto sleep;
797 /* Erase suspend */
798 map_write(map, CMD(0xB0), adr);
800 /* If the flash has finished erasing, then 'erase suspend'
801 * appears to make some (28F320) flash devices switch to
802 * 'read' mode. Make sure that we switch to 'read status'
803 * mode so we get the right data. --rmk
805 map_write(map, CMD(0x70), adr);
806 chip->oldstate = FL_ERASING;
807 chip->state = FL_ERASE_SUSPENDING;
808 chip->erase_suspended = 1;
809 for (;;) {
810 status = map_read(map, adr);
811 if (map_word_andequal(map, status, status_OK, status_OK))
812 break;
814 if (time_after(jiffies, timeo)) {
815 /* Urgh. Resume and pretend we weren't here. */
816 map_write(map, CMD(0xd0), adr);
817 /* Make sure we're in 'read status' mode if it had finished */
818 map_write(map, CMD(0x70), adr);
819 chip->state = FL_ERASING;
820 chip->oldstate = FL_READY;
821 printk(KERN_ERR "%s: Chip not ready after erase "
822 "suspended: status = 0x%lx\n", map->name, status.x[0]);
823 return -EIO;
826 mutex_unlock(&chip->mutex);
827 cfi_udelay(1);
828 mutex_lock(&chip->mutex);
829 /* Nobody will touch it while it's in state FL_ERASE_SUSPENDING.
830 So we can just loop here. */
832 chip->state = FL_STATUS;
833 return 0;
835 case FL_XIP_WHILE_ERASING:
836 if (mode != FL_READY && mode != FL_POINT &&
837 (mode != FL_WRITING || !cfip || !(cfip->SuspendCmdSupport&1)))
838 goto sleep;
839 chip->oldstate = chip->state;
840 chip->state = FL_READY;
841 return 0;
843 case FL_SHUTDOWN:
844 /* The machine is rebooting now,so no one can get chip anymore */
845 return -EIO;
846 case FL_POINT:
847 /* Only if there's no operation suspended... */
848 if (mode == FL_READY && chip->oldstate == FL_READY)
849 return 0;
850 /* Fall through */
851 default:
852 sleep:
853 set_current_state(TASK_UNINTERRUPTIBLE);
854 add_wait_queue(&chip->wq, &wait);
855 mutex_unlock(&chip->mutex);
856 schedule();
857 remove_wait_queue(&chip->wq, &wait);
858 mutex_lock(&chip->mutex);
859 return -EAGAIN;
863 static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode)
865 int ret;
866 DECLARE_WAITQUEUE(wait, current);
868 retry:
869 if (chip->priv &&
870 (mode == FL_WRITING || mode == FL_ERASING || mode == FL_OTP_WRITE
871 || mode == FL_SHUTDOWN) && chip->state != FL_SYNCING) {
873 * OK. We have possibility for contention on the write/erase
874 * operations which are global to the real chip and not per
875 * partition. So let's fight it over in the partition which
876 * currently has authority on the operation.
878 * The rules are as follows:
880 * - any write operation must own shared->writing.
882 * - any erase operation must own _both_ shared->writing and
883 * shared->erasing.
885 * - contention arbitration is handled in the owner's context.
887 * The 'shared' struct can be read and/or written only when
888 * its lock is taken.
890 struct flchip_shared *shared = chip->priv;
891 struct flchip *contender;
892 spin_lock(&shared->lock);
893 contender = shared->writing;
894 if (contender && contender != chip) {
896 * The engine to perform desired operation on this
897 * partition is already in use by someone else.
898 * Let's fight over it in the context of the chip
899 * currently using it. If it is possible to suspend,
900 * that other partition will do just that, otherwise
901 * it'll happily send us to sleep. In any case, when
902 * get_chip returns success we're clear to go ahead.
904 ret = mutex_trylock(&contender->mutex);
905 spin_unlock(&shared->lock);
906 if (!ret)
907 goto retry;
908 mutex_unlock(&chip->mutex);
909 ret = chip_ready(map, contender, contender->start, mode);
910 mutex_lock(&chip->mutex);
912 if (ret == -EAGAIN) {
913 mutex_unlock(&contender->mutex);
914 goto retry;
916 if (ret) {
917 mutex_unlock(&contender->mutex);
918 return ret;
920 spin_lock(&shared->lock);
922 /* We should not own chip if it is already
923 * in FL_SYNCING state. Put contender and retry. */
924 if (chip->state == FL_SYNCING) {
925 put_chip(map, contender, contender->start);
926 mutex_unlock(&contender->mutex);
927 goto retry;
929 mutex_unlock(&contender->mutex);
932 /* Check if we already have suspended erase
933 * on this chip. Sleep. */
934 if (mode == FL_ERASING && shared->erasing
935 && shared->erasing->oldstate == FL_ERASING) {
936 spin_unlock(&shared->lock);
937 set_current_state(TASK_UNINTERRUPTIBLE);
938 add_wait_queue(&chip->wq, &wait);
939 mutex_unlock(&chip->mutex);
940 schedule();
941 remove_wait_queue(&chip->wq, &wait);
942 mutex_lock(&chip->mutex);
943 goto retry;
946 /* We now own it */
947 shared->writing = chip;
948 if (mode == FL_ERASING)
949 shared->erasing = chip;
950 spin_unlock(&shared->lock);
952 ret = chip_ready(map, chip, adr, mode);
953 if (ret == -EAGAIN)
954 goto retry;
956 return ret;
959 static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr)
961 struct cfi_private *cfi = map->fldrv_priv;
963 if (chip->priv) {
964 struct flchip_shared *shared = chip->priv;
965 spin_lock(&shared->lock);
966 if (shared->writing == chip && chip->oldstate == FL_READY) {
967 /* We own the ability to write, but we're done */
968 shared->writing = shared->erasing;
969 if (shared->writing && shared->writing != chip) {
970 /* give back ownership to who we loaned it from */
971 struct flchip *loaner = shared->writing;
972 mutex_lock(&loaner->mutex);
973 spin_unlock(&shared->lock);
974 mutex_unlock(&chip->mutex);
975 put_chip(map, loaner, loaner->start);
976 mutex_lock(&chip->mutex);
977 mutex_unlock(&loaner->mutex);
978 wake_up(&chip->wq);
979 return;
981 shared->erasing = NULL;
982 shared->writing = NULL;
983 } else if (shared->erasing == chip && shared->writing != chip) {
985 * We own the ability to erase without the ability
986 * to write, which means the erase was suspended
987 * and some other partition is currently writing.
988 * Don't let the switch below mess things up since
989 * we don't have ownership to resume anything.
991 spin_unlock(&shared->lock);
992 wake_up(&chip->wq);
993 return;
995 spin_unlock(&shared->lock);
998 switch(chip->oldstate) {
999 case FL_ERASING:
1000 chip->state = chip->oldstate;
1001 /* What if one interleaved chip has finished and the
1002 other hasn't? The old code would leave the finished
1003 one in READY mode. That's bad, and caused -EROFS
1004 errors to be returned from do_erase_oneblock because
1005 that's the only bit it checked for at the time.
1006 As the state machine appears to explicitly allow
1007 sending the 0x70 (Read Status) command to an erasing
1008 chip and expecting it to be ignored, that's what we
1009 do. */
1010 map_write(map, CMD(0xd0), adr);
1011 map_write(map, CMD(0x70), adr);
1012 chip->oldstate = FL_READY;
1013 chip->state = FL_ERASING;
1014 break;
1016 case FL_XIP_WHILE_ERASING:
1017 chip->state = chip->oldstate;
1018 chip->oldstate = FL_READY;
1019 break;
1021 case FL_READY:
1022 case FL_STATUS:
1023 case FL_JEDEC_QUERY:
1024 /* We should really make set_vpp() count, rather than doing this */
1025 DISABLE_VPP(map);
1026 break;
1027 default:
1028 printk(KERN_ERR "%s: put_chip() called with oldstate %d!!\n", map->name, chip->oldstate);
1030 wake_up(&chip->wq);
1033 #ifdef CONFIG_MTD_XIP
1036 * No interrupt what so ever can be serviced while the flash isn't in array
1037 * mode. This is ensured by the xip_disable() and xip_enable() functions
1038 * enclosing any code path where the flash is known not to be in array mode.
1039 * And within a XIP disabled code path, only functions marked with __xipram
1040 * may be called and nothing else (it's a good thing to inspect generated
1041 * assembly to make sure inline functions were actually inlined and that gcc
1042 * didn't emit calls to its own support functions). Also configuring MTD CFI
1043 * support to a single buswidth and a single interleave is also recommended.
1046 static void xip_disable(struct map_info *map, struct flchip *chip,
1047 unsigned long adr)
1049 /* TODO: chips with no XIP use should ignore and return */
1050 (void) map_read(map, adr); /* ensure mmu mapping is up to date */
1051 local_irq_disable();
1054 static void __xipram xip_enable(struct map_info *map, struct flchip *chip,
1055 unsigned long adr)
1057 struct cfi_private *cfi = map->fldrv_priv;
1058 if (chip->state != FL_POINT && chip->state != FL_READY) {
1059 map_write(map, CMD(0xff), adr);
1060 chip->state = FL_READY;
1062 (void) map_read(map, adr);
1063 xip_iprefetch();
1064 local_irq_enable();
1068 * When a delay is required for the flash operation to complete, the
1069 * xip_wait_for_operation() function is polling for both the given timeout
1070 * and pending (but still masked) hardware interrupts. Whenever there is an
1071 * interrupt pending then the flash erase or write operation is suspended,
1072 * array mode restored and interrupts unmasked. Task scheduling might also
1073 * happen at that point. The CPU eventually returns from the interrupt or
1074 * the call to schedule() and the suspended flash operation is resumed for
1075 * the remaining of the delay period.
1077 * Warning: this function _will_ fool interrupt latency tracing tools.
1080 static int __xipram xip_wait_for_operation(
1081 struct map_info *map, struct flchip *chip,
1082 unsigned long adr, unsigned int chip_op_time_max)
1084 struct cfi_private *cfi = map->fldrv_priv;
1085 struct cfi_pri_intelext *cfip = cfi->cmdset_priv;
1086 map_word status, OK = CMD(0x80);
1087 unsigned long usec, suspended, start, done;
1088 flstate_t oldstate, newstate;
1090 start = xip_currtime();
1091 usec = chip_op_time_max;
1092 if (usec == 0)
1093 usec = 500000;
1094 done = 0;
1096 do {
1097 cpu_relax();
1098 if (xip_irqpending() && cfip &&
1099 ((chip->state == FL_ERASING && (cfip->FeatureSupport&2)) ||
1100 (chip->state == FL_WRITING && (cfip->FeatureSupport&4))) &&
1101 (cfi_interleave_is_1(cfi) || chip->oldstate == FL_READY)) {
1103 * Let's suspend the erase or write operation when
1104 * supported. Note that we currently don't try to
1105 * suspend interleaved chips if there is already
1106 * another operation suspended (imagine what happens
1107 * when one chip was already done with the current
1108 * operation while another chip suspended it, then
1109 * we resume the whole thing at once). Yes, it
1110 * can happen!
1112 usec -= done;
1113 map_write(map, CMD(0xb0), adr);
1114 map_write(map, CMD(0x70), adr);
1115 suspended = xip_currtime();
1116 do {
1117 if (xip_elapsed_since(suspended) > 100000) {
1119 * The chip doesn't want to suspend
1120 * after waiting for 100 msecs.
1121 * This is a critical error but there
1122 * is not much we can do here.
1124 return -EIO;
1126 status = map_read(map, adr);
1127 } while (!map_word_andequal(map, status, OK, OK));
1129 /* Suspend succeeded */
1130 oldstate = chip->state;
1131 if (oldstate == FL_ERASING) {
1132 if (!map_word_bitsset(map, status, CMD(0x40)))
1133 break;
1134 newstate = FL_XIP_WHILE_ERASING;
1135 chip->erase_suspended = 1;
1136 } else {
1137 if (!map_word_bitsset(map, status, CMD(0x04)))
1138 break;
1139 newstate = FL_XIP_WHILE_WRITING;
1140 chip->write_suspended = 1;
1142 chip->state = newstate;
1143 map_write(map, CMD(0xff), adr);
1144 (void) map_read(map, adr);
1145 xip_iprefetch();
1146 local_irq_enable();
1147 mutex_unlock(&chip->mutex);
1148 xip_iprefetch();
1149 cond_resched();
1152 * We're back. However someone else might have
1153 * decided to go write to the chip if we are in
1154 * a suspended erase state. If so let's wait
1155 * until it's done.
1157 mutex_lock(&chip->mutex);
1158 while (chip->state != newstate) {
1159 DECLARE_WAITQUEUE(wait, current);
1160 set_current_state(TASK_UNINTERRUPTIBLE);
1161 add_wait_queue(&chip->wq, &wait);
1162 mutex_unlock(&chip->mutex);
1163 schedule();
1164 remove_wait_queue(&chip->wq, &wait);
1165 mutex_lock(&chip->mutex);
1167 /* Disallow XIP again */
1168 local_irq_disable();
1170 /* Resume the write or erase operation */
1171 map_write(map, CMD(0xd0), adr);
1172 map_write(map, CMD(0x70), adr);
1173 chip->state = oldstate;
1174 start = xip_currtime();
1175 } else if (usec >= 1000000/HZ) {
1177 * Try to save on CPU power when waiting delay
1178 * is at least a system timer tick period.
1179 * No need to be extremely accurate here.
1181 xip_cpu_idle();
1183 status = map_read(map, adr);
1184 done = xip_elapsed_since(start);
1185 } while (!map_word_andequal(map, status, OK, OK)
1186 && done < usec);
1188 return (done >= usec) ? -ETIME : 0;
1192 * The INVALIDATE_CACHED_RANGE() macro is normally used in parallel while
1193 * the flash is actively programming or erasing since we have to poll for
1194 * the operation to complete anyway. We can't do that in a generic way with
1195 * a XIP setup so do it before the actual flash operation in this case
1196 * and stub it out from INVAL_CACHE_AND_WAIT.
1198 #define XIP_INVAL_CACHED_RANGE(map, from, size) \
1199 INVALIDATE_CACHED_RANGE(map, from, size)
1201 #define INVAL_CACHE_AND_WAIT(map, chip, cmd_adr, inval_adr, inval_len, usec, usec_max) \
1202 xip_wait_for_operation(map, chip, cmd_adr, usec_max)
1204 #else
1206 #define xip_disable(map, chip, adr)
1207 #define xip_enable(map, chip, adr)
1208 #define XIP_INVAL_CACHED_RANGE(x...)
1209 #define INVAL_CACHE_AND_WAIT inval_cache_and_wait_for_operation
1211 static int inval_cache_and_wait_for_operation(
1212 struct map_info *map, struct flchip *chip,
1213 unsigned long cmd_adr, unsigned long inval_adr, int inval_len,
1214 unsigned int chip_op_time, unsigned int chip_op_time_max)
1216 struct cfi_private *cfi = map->fldrv_priv;
1217 map_word status, status_OK = CMD(0x80);
1218 int chip_state = chip->state;
1219 unsigned int timeo, sleep_time, reset_timeo;
1221 mutex_unlock(&chip->mutex);
1222 if (inval_len)
1223 INVALIDATE_CACHED_RANGE(map, inval_adr, inval_len);
1224 mutex_lock(&chip->mutex);
1226 timeo = chip_op_time_max;
1227 if (!timeo)
1228 timeo = 500000;
1229 reset_timeo = timeo;
1230 sleep_time = chip_op_time / 2;
1232 for (;;) {
1233 status = map_read(map, cmd_adr);
1234 if (map_word_andequal(map, status, status_OK, status_OK))
1235 break;
1237 if (!timeo) {
1238 map_write(map, CMD(0x70), cmd_adr);
1239 chip->state = FL_STATUS;
1240 return -ETIME;
1243 /* OK Still waiting. Drop the lock, wait a while and retry. */
1244 mutex_unlock(&chip->mutex);
1245 if (sleep_time >= 1000000/HZ) {
1247 * Half of the normal delay still remaining
1248 * can be performed with a sleeping delay instead
1249 * of busy waiting.
1251 msleep(sleep_time/1000);
1252 timeo -= sleep_time;
1253 sleep_time = 1000000/HZ;
1254 } else {
1255 udelay(1);
1256 cond_resched();
1257 timeo--;
1259 mutex_lock(&chip->mutex);
1261 while (chip->state != chip_state) {
1262 /* Someone's suspended the operation: sleep */
1263 DECLARE_WAITQUEUE(wait, current);
1264 set_current_state(TASK_UNINTERRUPTIBLE);
1265 add_wait_queue(&chip->wq, &wait);
1266 mutex_unlock(&chip->mutex);
1267 schedule();
1268 remove_wait_queue(&chip->wq, &wait);
1269 mutex_lock(&chip->mutex);
1271 if (chip->erase_suspended && chip_state == FL_ERASING) {
1272 /* Erase suspend occured while sleep: reset timeout */
1273 timeo = reset_timeo;
1274 chip->erase_suspended = 0;
1276 if (chip->write_suspended && chip_state == FL_WRITING) {
1277 /* Write suspend occured while sleep: reset timeout */
1278 timeo = reset_timeo;
1279 chip->write_suspended = 0;
1283 /* Done and happy. */
1284 chip->state = FL_STATUS;
1285 return 0;
1288 #endif
1290 #define WAIT_TIMEOUT(map, chip, adr, udelay, udelay_max) \
1291 INVAL_CACHE_AND_WAIT(map, chip, adr, 0, 0, udelay, udelay_max);
1294 static int do_point_onechip (struct map_info *map, struct flchip *chip, loff_t adr, size_t len)
1296 unsigned long cmd_addr;
1297 struct cfi_private *cfi = map->fldrv_priv;
1298 int ret = 0;
1300 adr += chip->start;
1302 /* Ensure cmd read/writes are aligned. */
1303 cmd_addr = adr & ~(map_bankwidth(map)-1);
1305 mutex_lock(&chip->mutex);
1307 ret = get_chip(map, chip, cmd_addr, FL_POINT);
1309 if (!ret) {
1310 if (chip->state != FL_POINT && chip->state != FL_READY)
1311 map_write(map, CMD(0xff), cmd_addr);
1313 chip->state = FL_POINT;
1314 chip->ref_point_counter++;
1316 mutex_unlock(&chip->mutex);
1318 return ret;
1321 static int cfi_intelext_point(struct mtd_info *mtd, loff_t from, size_t len,
1322 size_t *retlen, void **virt, resource_size_t *phys)
1324 struct map_info *map = mtd->priv;
1325 struct cfi_private *cfi = map->fldrv_priv;
1326 unsigned long ofs, last_end = 0;
1327 int chipnum;
1328 int ret = 0;
1330 if (!map->virt || (from + len > mtd->size))
1331 return -EINVAL;
1333 /* Now lock the chip(s) to POINT state */
1335 /* ofs: offset within the first chip that the first read should start */
1336 chipnum = (from >> cfi->chipshift);
1337 ofs = from - (chipnum << cfi->chipshift);
1339 *virt = map->virt + cfi->chips[chipnum].start + ofs;
1340 *retlen = 0;
1341 if (phys)
1342 *phys = map->phys + cfi->chips[chipnum].start + ofs;
1344 while (len) {
1345 unsigned long thislen;
1347 if (chipnum >= cfi->numchips)
1348 break;
1350 /* We cannot point across chips that are virtually disjoint */
1351 if (!last_end)
1352 last_end = cfi->chips[chipnum].start;
1353 else if (cfi->chips[chipnum].start != last_end)
1354 break;
1356 if ((len + ofs -1) >> cfi->chipshift)
1357 thislen = (1<<cfi->chipshift) - ofs;
1358 else
1359 thislen = len;
1361 ret = do_point_onechip(map, &cfi->chips[chipnum], ofs, thislen);
1362 if (ret)
1363 break;
1365 *retlen += thislen;
1366 len -= thislen;
1368 ofs = 0;
1369 last_end += 1 << cfi->chipshift;
1370 chipnum++;
1372 return 0;
1375 static void cfi_intelext_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
1377 struct map_info *map = mtd->priv;
1378 struct cfi_private *cfi = map->fldrv_priv;
1379 unsigned long ofs;
1380 int chipnum;
1382 /* Now unlock the chip(s) POINT state */
1384 /* ofs: offset within the first chip that the first read should start */
1385 chipnum = (from >> cfi->chipshift);
1386 ofs = from - (chipnum << cfi->chipshift);
1388 while (len) {
1389 unsigned long thislen;
1390 struct flchip *chip;
1392 chip = &cfi->chips[chipnum];
1393 if (chipnum >= cfi->numchips)
1394 break;
1396 if ((len + ofs -1) >> cfi->chipshift)
1397 thislen = (1<<cfi->chipshift) - ofs;
1398 else
1399 thislen = len;
1401 mutex_lock(&chip->mutex);
1402 if (chip->state == FL_POINT) {
1403 chip->ref_point_counter--;
1404 if(chip->ref_point_counter == 0)
1405 chip->state = FL_READY;
1406 } else
1407 printk(KERN_ERR "%s: Warning: unpoint called on non pointed region\n", map->name); /* Should this give an error? */
1409 put_chip(map, chip, chip->start);
1410 mutex_unlock(&chip->mutex);
1412 len -= thislen;
1413 ofs = 0;
1414 chipnum++;
1418 static inline int do_read_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf)
1420 unsigned long cmd_addr;
1421 struct cfi_private *cfi = map->fldrv_priv;
1422 int ret;
1424 adr += chip->start;
1426 /* Ensure cmd read/writes are aligned. */
1427 cmd_addr = adr & ~(map_bankwidth(map)-1);
1429 mutex_lock(&chip->mutex);
1430 ret = get_chip(map, chip, cmd_addr, FL_READY);
1431 if (ret) {
1432 mutex_unlock(&chip->mutex);
1433 return ret;
1436 if (chip->state != FL_POINT && chip->state != FL_READY) {
1437 map_write(map, CMD(0xff), cmd_addr);
1439 chip->state = FL_READY;
1442 map_copy_from(map, buf, adr, len);
1444 put_chip(map, chip, cmd_addr);
1446 mutex_unlock(&chip->mutex);
1447 return 0;
1450 static int cfi_intelext_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
1452 struct map_info *map = mtd->priv;
1453 struct cfi_private *cfi = map->fldrv_priv;
1454 unsigned long ofs;
1455 int chipnum;
1456 int ret = 0;
1458 /* ofs: offset within the first chip that the first read should start */
1459 chipnum = (from >> cfi->chipshift);
1460 ofs = from - (chipnum << cfi->chipshift);
1462 *retlen = 0;
1464 while (len) {
1465 unsigned long thislen;
1467 if (chipnum >= cfi->numchips)
1468 break;
1470 if ((len + ofs -1) >> cfi->chipshift)
1471 thislen = (1<<cfi->chipshift) - ofs;
1472 else
1473 thislen = len;
1475 ret = do_read_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf);
1476 if (ret)
1477 break;
1479 *retlen += thislen;
1480 len -= thislen;
1481 buf += thislen;
1483 ofs = 0;
1484 chipnum++;
1486 return ret;
1489 static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip,
1490 unsigned long adr, map_word datum, int mode)
1492 struct cfi_private *cfi = map->fldrv_priv;
1493 map_word status, write_cmd;
1494 int ret=0;
1496 adr += chip->start;
1498 switch (mode) {
1499 case FL_WRITING:
1500 write_cmd = (cfi->cfiq->P_ID != 0x0200) ? CMD(0x40) : CMD(0x41);
1501 break;
1502 case FL_OTP_WRITE:
1503 write_cmd = CMD(0xc0);
1504 break;
1505 default:
1506 return -EINVAL;
1509 mutex_lock(&chip->mutex);
1510 ret = get_chip(map, chip, adr, mode);
1511 if (ret) {
1512 mutex_unlock(&chip->mutex);
1513 return ret;
1516 XIP_INVAL_CACHED_RANGE(map, adr, map_bankwidth(map));
1517 ENABLE_VPP(map);
1518 xip_disable(map, chip, adr);
1519 map_write(map, write_cmd, adr);
1520 map_write(map, datum, adr);
1521 chip->state = mode;
1523 ret = INVAL_CACHE_AND_WAIT(map, chip, adr,
1524 adr, map_bankwidth(map),
1525 chip->word_write_time,
1526 chip->word_write_time_max);
1527 if (ret) {
1528 xip_enable(map, chip, adr);
1529 printk(KERN_ERR "%s: word write error (status timeout)\n", map->name);
1530 goto out;
1533 /* check for errors */
1534 status = map_read(map, adr);
1535 if (map_word_bitsset(map, status, CMD(0x1a))) {
1536 unsigned long chipstatus = MERGESTATUS(status);
1538 /* reset status */
1539 map_write(map, CMD(0x50), adr);
1540 map_write(map, CMD(0x70), adr);
1541 xip_enable(map, chip, adr);
1543 if (chipstatus & 0x02) {
1544 ret = -EROFS;
1545 } else if (chipstatus & 0x08) {
1546 printk(KERN_ERR "%s: word write error (bad VPP)\n", map->name);
1547 ret = -EIO;
1548 } else {
1549 printk(KERN_ERR "%s: word write error (status 0x%lx)\n", map->name, chipstatus);
1550 ret = -EINVAL;
1553 goto out;
1556 xip_enable(map, chip, adr);
1557 out: put_chip(map, chip, adr);
1558 mutex_unlock(&chip->mutex);
1559 return ret;
1563 static int cfi_intelext_write_words (struct mtd_info *mtd, loff_t to , size_t len, size_t *retlen, const u_char *buf)
1565 struct map_info *map = mtd->priv;
1566 struct cfi_private *cfi = map->fldrv_priv;
1567 int ret = 0;
1568 int chipnum;
1569 unsigned long ofs;
1571 *retlen = 0;
1572 if (!len)
1573 return 0;
1575 chipnum = to >> cfi->chipshift;
1576 ofs = to - (chipnum << cfi->chipshift);
1578 /* If it's not bus-aligned, do the first byte write */
1579 if (ofs & (map_bankwidth(map)-1)) {
1580 unsigned long bus_ofs = ofs & ~(map_bankwidth(map)-1);
1581 int gap = ofs - bus_ofs;
1582 int n;
1583 map_word datum;
1585 n = min_t(int, len, map_bankwidth(map)-gap);
1586 datum = map_word_ff(map);
1587 datum = map_word_load_partial(map, datum, buf, gap, n);
1589 ret = do_write_oneword(map, &cfi->chips[chipnum],
1590 bus_ofs, datum, FL_WRITING);
1591 if (ret)
1592 return ret;
1594 len -= n;
1595 ofs += n;
1596 buf += n;
1597 (*retlen) += n;
1599 if (ofs >> cfi->chipshift) {
1600 chipnum ++;
1601 ofs = 0;
1602 if (chipnum == cfi->numchips)
1603 return 0;
1607 while(len >= map_bankwidth(map)) {
1608 map_word datum = map_word_load(map, buf);
1610 ret = do_write_oneword(map, &cfi->chips[chipnum],
1611 ofs, datum, FL_WRITING);
1612 if (ret)
1613 return ret;
1615 ofs += map_bankwidth(map);
1616 buf += map_bankwidth(map);
1617 (*retlen) += map_bankwidth(map);
1618 len -= map_bankwidth(map);
1620 if (ofs >> cfi->chipshift) {
1621 chipnum ++;
1622 ofs = 0;
1623 if (chipnum == cfi->numchips)
1624 return 0;
1628 if (len & (map_bankwidth(map)-1)) {
1629 map_word datum;
1631 datum = map_word_ff(map);
1632 datum = map_word_load_partial(map, datum, buf, 0, len);
1634 ret = do_write_oneword(map, &cfi->chips[chipnum],
1635 ofs, datum, FL_WRITING);
1636 if (ret)
1637 return ret;
1639 (*retlen) += len;
1642 return 0;
1646 static int __xipram do_write_buffer(struct map_info *map, struct flchip *chip,
1647 unsigned long adr, const struct kvec **pvec,
1648 unsigned long *pvec_seek, int len)
1650 struct cfi_private *cfi = map->fldrv_priv;
1651 map_word status, write_cmd, datum;
1652 unsigned long cmd_adr;
1653 int ret, wbufsize, word_gap, words;
1654 const struct kvec *vec;
1655 unsigned long vec_seek;
1656 unsigned long initial_adr;
1657 int initial_len = len;
1659 wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
1660 adr += chip->start;
1661 initial_adr = adr;
1662 cmd_adr = adr & ~(wbufsize-1);
1664 /* Let's determine this according to the interleave only once */
1665 write_cmd = (cfi->cfiq->P_ID != 0x0200) ? CMD(0xe8) : CMD(0xe9);
1667 mutex_lock(&chip->mutex);
1668 ret = get_chip(map, chip, cmd_adr, FL_WRITING);
1669 if (ret) {
1670 mutex_unlock(&chip->mutex);
1671 return ret;
1674 XIP_INVAL_CACHED_RANGE(map, initial_adr, initial_len);
1675 ENABLE_VPP(map);
1676 xip_disable(map, chip, cmd_adr);
1678 /* §4.8 of the 28FxxxJ3A datasheet says "Any time SR.4 and/or SR.5 is set
1679 [...], the device will not accept any more Write to Buffer commands".
1680 So we must check here and reset those bits if they're set. Otherwise
1681 we're just pissing in the wind */
1682 if (chip->state != FL_STATUS) {
1683 map_write(map, CMD(0x70), cmd_adr);
1684 chip->state = FL_STATUS;
1686 status = map_read(map, cmd_adr);
1687 if (map_word_bitsset(map, status, CMD(0x30))) {
1688 xip_enable(map, chip, cmd_adr);
1689 printk(KERN_WARNING "SR.4 or SR.5 bits set in buffer write (status %lx). Clearing.\n", status.x[0]);
1690 xip_disable(map, chip, cmd_adr);
1691 map_write(map, CMD(0x50), cmd_adr);
1692 map_write(map, CMD(0x70), cmd_adr);
1695 chip->state = FL_WRITING_TO_BUFFER;
1696 map_write(map, write_cmd, cmd_adr);
1697 ret = WAIT_TIMEOUT(map, chip, cmd_adr, 0, 0);
1698 if (ret) {
1699 /* Argh. Not ready for write to buffer */
1700 map_word Xstatus = map_read(map, cmd_adr);
1701 map_write(map, CMD(0x70), cmd_adr);
1702 chip->state = FL_STATUS;
1703 status = map_read(map, cmd_adr);
1704 map_write(map, CMD(0x50), cmd_adr);
1705 map_write(map, CMD(0x70), cmd_adr);
1706 xip_enable(map, chip, cmd_adr);
1707 printk(KERN_ERR "%s: Chip not ready for buffer write. Xstatus = %lx, status = %lx\n",
1708 map->name, Xstatus.x[0], status.x[0]);
1709 goto out;
1712 /* Figure out the number of words to write */
1713 word_gap = (-adr & (map_bankwidth(map)-1));
1714 words = DIV_ROUND_UP(len - word_gap, map_bankwidth(map));
1715 if (!word_gap) {
1716 words--;
1717 } else {
1718 word_gap = map_bankwidth(map) - word_gap;
1719 adr -= word_gap;
1720 datum = map_word_ff(map);
1723 /* Write length of data to come */
1724 map_write(map, CMD(words), cmd_adr );
1726 /* Write data */
1727 vec = *pvec;
1728 vec_seek = *pvec_seek;
1729 do {
1730 int n = map_bankwidth(map) - word_gap;
1731 if (n > vec->iov_len - vec_seek)
1732 n = vec->iov_len - vec_seek;
1733 if (n > len)
1734 n = len;
1736 if (!word_gap && len < map_bankwidth(map))
1737 datum = map_word_ff(map);
1739 datum = map_word_load_partial(map, datum,
1740 vec->iov_base + vec_seek,
1741 word_gap, n);
1743 len -= n;
1744 word_gap += n;
1745 if (!len || word_gap == map_bankwidth(map)) {
1746 map_write(map, datum, adr);
1747 adr += map_bankwidth(map);
1748 word_gap = 0;
1751 vec_seek += n;
1752 if (vec_seek == vec->iov_len) {
1753 vec++;
1754 vec_seek = 0;
1756 } while (len);
1757 *pvec = vec;
1758 *pvec_seek = vec_seek;
1760 /* GO GO GO */
1761 map_write(map, CMD(0xd0), cmd_adr);
1762 chip->state = FL_WRITING;
1764 ret = INVAL_CACHE_AND_WAIT(map, chip, cmd_adr,
1765 initial_adr, initial_len,
1766 chip->buffer_write_time,
1767 chip->buffer_write_time_max);
1768 if (ret) {
1769 map_write(map, CMD(0x70), cmd_adr);
1770 chip->state = FL_STATUS;
1771 xip_enable(map, chip, cmd_adr);
1772 printk(KERN_ERR "%s: buffer write error (status timeout)\n", map->name);
1773 goto out;
1776 /* check for errors */
1777 status = map_read(map, cmd_adr);
1778 if (map_word_bitsset(map, status, CMD(0x1a))) {
1779 unsigned long chipstatus = MERGESTATUS(status);
1781 /* reset status */
1782 map_write(map, CMD(0x50), cmd_adr);
1783 map_write(map, CMD(0x70), cmd_adr);
1784 xip_enable(map, chip, cmd_adr);
1786 if (chipstatus & 0x02) {
1787 ret = -EROFS;
1788 } else if (chipstatus & 0x08) {
1789 printk(KERN_ERR "%s: buffer write error (bad VPP)\n", map->name);
1790 ret = -EIO;
1791 } else {
1792 printk(KERN_ERR "%s: buffer write error (status 0x%lx)\n", map->name, chipstatus);
1793 ret = -EINVAL;
1796 goto out;
1799 xip_enable(map, chip, cmd_adr);
1800 out: put_chip(map, chip, cmd_adr);
1801 mutex_unlock(&chip->mutex);
1802 return ret;
1805 static int cfi_intelext_writev (struct mtd_info *mtd, const struct kvec *vecs,
1806 unsigned long count, loff_t to, size_t *retlen)
1808 struct map_info *map = mtd->priv;
1809 struct cfi_private *cfi = map->fldrv_priv;
1810 int wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
1811 int ret = 0;
1812 int chipnum;
1813 unsigned long ofs, vec_seek, i;
1814 size_t len = 0;
1816 for (i = 0; i < count; i++)
1817 len += vecs[i].iov_len;
1819 *retlen = 0;
1820 if (!len)
1821 return 0;
1823 chipnum = to >> cfi->chipshift;
1824 ofs = to - (chipnum << cfi->chipshift);
1825 vec_seek = 0;
1827 do {
1828 /* We must not cross write block boundaries */
1829 int size = wbufsize - (ofs & (wbufsize-1));
1831 if (size > len)
1832 size = len;
1833 ret = do_write_buffer(map, &cfi->chips[chipnum],
1834 ofs, &vecs, &vec_seek, size);
1835 if (ret)
1836 return ret;
1838 ofs += size;
1839 (*retlen) += size;
1840 len -= size;
1842 if (ofs >> cfi->chipshift) {
1843 chipnum ++;
1844 ofs = 0;
1845 if (chipnum == cfi->numchips)
1846 return 0;
1849 /* Be nice and reschedule with the chip in a usable state for other
1850 processes. */
1851 cond_resched();
1853 } while (len);
1855 return 0;
1858 static int cfi_intelext_write_buffers (struct mtd_info *mtd, loff_t to,
1859 size_t len, size_t *retlen, const u_char *buf)
1861 struct kvec vec;
1863 vec.iov_base = (void *) buf;
1864 vec.iov_len = len;
1866 return cfi_intelext_writev(mtd, &vec, 1, to, retlen);
1869 static int __xipram do_erase_oneblock(struct map_info *map, struct flchip *chip,
1870 unsigned long adr, int len, void *thunk)
1872 struct cfi_private *cfi = map->fldrv_priv;
1873 map_word status;
1874 int retries = 3;
1875 int ret;
1877 adr += chip->start;
1879 retry:
1880 mutex_lock(&chip->mutex);
1881 ret = get_chip(map, chip, adr, FL_ERASING);
1882 if (ret) {
1883 mutex_unlock(&chip->mutex);
1884 return ret;
1887 XIP_INVAL_CACHED_RANGE(map, adr, len);
1888 ENABLE_VPP(map);
1889 xip_disable(map, chip, adr);
1891 /* Clear the status register first */
1892 map_write(map, CMD(0x50), adr);
1894 /* Now erase */
1895 map_write(map, CMD(0x20), adr);
1896 map_write(map, CMD(0xD0), adr);
1897 chip->state = FL_ERASING;
1898 chip->erase_suspended = 0;
1900 ret = INVAL_CACHE_AND_WAIT(map, chip, adr,
1901 adr, len,
1902 chip->erase_time,
1903 chip->erase_time_max);
1904 if (ret) {
1905 map_write(map, CMD(0x70), adr);
1906 chip->state = FL_STATUS;
1907 xip_enable(map, chip, adr);
1908 printk(KERN_ERR "%s: block erase error: (status timeout)\n", map->name);
1909 goto out;
1912 /* We've broken this before. It doesn't hurt to be safe */
1913 map_write(map, CMD(0x70), adr);
1914 chip->state = FL_STATUS;
1915 status = map_read(map, adr);
1917 /* check for errors */
1918 if (map_word_bitsset(map, status, CMD(0x3a))) {
1919 unsigned long chipstatus = MERGESTATUS(status);
1921 /* Reset the error bits */
1922 map_write(map, CMD(0x50), adr);
1923 map_write(map, CMD(0x70), adr);
1924 xip_enable(map, chip, adr);
1926 if ((chipstatus & 0x30) == 0x30) {
1927 printk(KERN_ERR "%s: block erase error: (bad command sequence, status 0x%lx)\n", map->name, chipstatus);
1928 ret = -EINVAL;
1929 } else if (chipstatus & 0x02) {
1930 /* Protection bit set */
1931 ret = -EROFS;
1932 } else if (chipstatus & 0x8) {
1933 /* Voltage */
1934 printk(KERN_ERR "%s: block erase error: (bad VPP)\n", map->name);
1935 ret = -EIO;
1936 } else if (chipstatus & 0x20 && retries--) {
1937 printk(KERN_DEBUG "block erase failed at 0x%08lx: status 0x%lx. Retrying...\n", adr, chipstatus);
1938 put_chip(map, chip, adr);
1939 mutex_unlock(&chip->mutex);
1940 goto retry;
1941 } else {
1942 printk(KERN_ERR "%s: block erase failed at 0x%08lx (status 0x%lx)\n", map->name, adr, chipstatus);
1943 ret = -EIO;
1946 goto out;
1949 xip_enable(map, chip, adr);
1950 out: put_chip(map, chip, adr);
1951 mutex_unlock(&chip->mutex);
1952 return ret;
1955 static int cfi_intelext_erase_varsize(struct mtd_info *mtd, struct erase_info *instr)
1957 unsigned long ofs, len;
1958 int ret;
1960 ofs = instr->addr;
1961 len = instr->len;
1963 ret = cfi_varsize_frob(mtd, do_erase_oneblock, ofs, len, NULL);
1964 if (ret)
1965 return ret;
1967 instr->state = MTD_ERASE_DONE;
1968 mtd_erase_callback(instr);
1970 return 0;
1973 static void cfi_intelext_sync (struct mtd_info *mtd)
1975 struct map_info *map = mtd->priv;
1976 struct cfi_private *cfi = map->fldrv_priv;
1977 int i;
1978 struct flchip *chip;
1979 int ret = 0;
1981 for (i=0; !ret && i<cfi->numchips; i++) {
1982 chip = &cfi->chips[i];
1984 mutex_lock(&chip->mutex);
1985 ret = get_chip(map, chip, chip->start, FL_SYNCING);
1987 if (!ret) {
1988 chip->oldstate = chip->state;
1989 chip->state = FL_SYNCING;
1990 /* No need to wake_up() on this state change -
1991 * as the whole point is that nobody can do anything
1992 * with the chip now anyway.
1995 mutex_unlock(&chip->mutex);
1998 /* Unlock the chips again */
2000 for (i--; i >=0; i--) {
2001 chip = &cfi->chips[i];
2003 mutex_lock(&chip->mutex);
2005 if (chip->state == FL_SYNCING) {
2006 chip->state = chip->oldstate;
2007 chip->oldstate = FL_READY;
2008 wake_up(&chip->wq);
2010 mutex_unlock(&chip->mutex);
2014 static int __xipram do_getlockstatus_oneblock(struct map_info *map,
2015 struct flchip *chip,
2016 unsigned long adr,
2017 int len, void *thunk)
2019 struct cfi_private *cfi = map->fldrv_priv;
2020 int status, ofs_factor = cfi->interleave * cfi->device_type;
2022 adr += chip->start;
2023 xip_disable(map, chip, adr+(2*ofs_factor));
2024 map_write(map, CMD(0x90), adr+(2*ofs_factor));
2025 chip->state = FL_JEDEC_QUERY;
2026 status = cfi_read_query(map, adr+(2*ofs_factor));
2027 xip_enable(map, chip, 0);
2028 return status;
2031 #ifdef DEBUG_LOCK_BITS
2032 static int __xipram do_printlockstatus_oneblock(struct map_info *map,
2033 struct flchip *chip,
2034 unsigned long adr,
2035 int len, void *thunk)
2037 printk(KERN_DEBUG "block status register for 0x%08lx is %x\n",
2038 adr, do_getlockstatus_oneblock(map, chip, adr, len, thunk));
2039 return 0;
2041 #endif
2043 #define DO_XXLOCK_ONEBLOCK_LOCK ((void *) 1)
2044 #define DO_XXLOCK_ONEBLOCK_UNLOCK ((void *) 2)
2046 static int __xipram do_xxlock_oneblock(struct map_info *map, struct flchip *chip,
2047 unsigned long adr, int len, void *thunk)
2049 struct cfi_private *cfi = map->fldrv_priv;
2050 struct cfi_pri_intelext *extp = cfi->cmdset_priv;
2051 int udelay;
2052 int ret;
2054 adr += chip->start;
2056 mutex_lock(&chip->mutex);
2057 ret = get_chip(map, chip, adr, FL_LOCKING);
2058 if (ret) {
2059 mutex_unlock(&chip->mutex);
2060 return ret;
2063 ENABLE_VPP(map);
2064 xip_disable(map, chip, adr);
2066 map_write(map, CMD(0x60), adr);
2067 if (thunk == DO_XXLOCK_ONEBLOCK_LOCK) {
2068 map_write(map, CMD(0x01), adr);
2069 chip->state = FL_LOCKING;
2070 } else if (thunk == DO_XXLOCK_ONEBLOCK_UNLOCK) {
2071 map_write(map, CMD(0xD0), adr);
2072 chip->state = FL_UNLOCKING;
2073 } else
2074 BUG();
2077 * If Instant Individual Block Locking supported then no need
2078 * to delay.
2080 udelay = (!extp || !(extp->FeatureSupport & (1 << 5))) ? 1000000/HZ : 0;
2082 ret = WAIT_TIMEOUT(map, chip, adr, udelay, udelay * 100);
2083 if (ret) {
2084 map_write(map, CMD(0x70), adr);
2085 chip->state = FL_STATUS;
2086 xip_enable(map, chip, adr);
2087 printk(KERN_ERR "%s: block unlock error: (status timeout)\n", map->name);
2088 goto out;
2091 xip_enable(map, chip, adr);
2092 out: put_chip(map, chip, adr);
2093 mutex_unlock(&chip->mutex);
2094 return ret;
2097 static int cfi_intelext_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2099 int ret;
2101 #ifdef DEBUG_LOCK_BITS
2102 printk(KERN_DEBUG "%s: lock status before, ofs=0x%08llx, len=0x%08X\n",
2103 __func__, ofs, len);
2104 cfi_varsize_frob(mtd, do_printlockstatus_oneblock,
2105 ofs, len, NULL);
2106 #endif
2108 ret = cfi_varsize_frob(mtd, do_xxlock_oneblock,
2109 ofs, len, DO_XXLOCK_ONEBLOCK_LOCK);
2111 #ifdef DEBUG_LOCK_BITS
2112 printk(KERN_DEBUG "%s: lock status after, ret=%d\n",
2113 __func__, ret);
2114 cfi_varsize_frob(mtd, do_printlockstatus_oneblock,
2115 ofs, len, NULL);
2116 #endif
2118 return ret;
2121 static int cfi_intelext_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2123 int ret;
2125 #ifdef DEBUG_LOCK_BITS
2126 printk(KERN_DEBUG "%s: lock status before, ofs=0x%08llx, len=0x%08X\n",
2127 __func__, ofs, len);
2128 cfi_varsize_frob(mtd, do_printlockstatus_oneblock,
2129 ofs, len, NULL);
2130 #endif
2132 ret = cfi_varsize_frob(mtd, do_xxlock_oneblock,
2133 ofs, len, DO_XXLOCK_ONEBLOCK_UNLOCK);
2135 #ifdef DEBUG_LOCK_BITS
2136 printk(KERN_DEBUG "%s: lock status after, ret=%d\n",
2137 __func__, ret);
2138 cfi_varsize_frob(mtd, do_printlockstatus_oneblock,
2139 ofs, len, NULL);
2140 #endif
2142 return ret;
2145 static int cfi_intelext_is_locked(struct mtd_info *mtd, loff_t ofs,
2146 uint64_t len)
2148 return cfi_varsize_frob(mtd, do_getlockstatus_oneblock,
2149 ofs, len, NULL) ? 1 : 0;
2152 #ifdef CONFIG_MTD_OTP
2154 typedef int (*otp_op_t)(struct map_info *map, struct flchip *chip,
2155 u_long data_offset, u_char *buf, u_int size,
2156 u_long prot_offset, u_int groupno, u_int groupsize);
2158 static int __xipram
2159 do_otp_read(struct map_info *map, struct flchip *chip, u_long offset,
2160 u_char *buf, u_int size, u_long prot, u_int grpno, u_int grpsz)
2162 struct cfi_private *cfi = map->fldrv_priv;
2163 int ret;
2165 mutex_lock(&chip->mutex);
2166 ret = get_chip(map, chip, chip->start, FL_JEDEC_QUERY);
2167 if (ret) {
2168 mutex_unlock(&chip->mutex);
2169 return ret;
2172 /* let's ensure we're not reading back cached data from array mode */
2173 INVALIDATE_CACHED_RANGE(map, chip->start + offset, size);
2175 xip_disable(map, chip, chip->start);
2176 if (chip->state != FL_JEDEC_QUERY) {
2177 map_write(map, CMD(0x90), chip->start);
2178 chip->state = FL_JEDEC_QUERY;
2180 map_copy_from(map, buf, chip->start + offset, size);
2181 xip_enable(map, chip, chip->start);
2183 /* then ensure we don't keep OTP data in the cache */
2184 INVALIDATE_CACHED_RANGE(map, chip->start + offset, size);
2186 put_chip(map, chip, chip->start);
2187 mutex_unlock(&chip->mutex);
2188 return 0;
2191 static int
2192 do_otp_write(struct map_info *map, struct flchip *chip, u_long offset,
2193 u_char *buf, u_int size, u_long prot, u_int grpno, u_int grpsz)
2195 int ret;
2197 while (size) {
2198 unsigned long bus_ofs = offset & ~(map_bankwidth(map)-1);
2199 int gap = offset - bus_ofs;
2200 int n = min_t(int, size, map_bankwidth(map)-gap);
2201 map_word datum = map_word_ff(map);
2203 datum = map_word_load_partial(map, datum, buf, gap, n);
2204 ret = do_write_oneword(map, chip, bus_ofs, datum, FL_OTP_WRITE);
2205 if (ret)
2206 return ret;
2208 offset += n;
2209 buf += n;
2210 size -= n;
2213 return 0;
2216 static int
2217 do_otp_lock(struct map_info *map, struct flchip *chip, u_long offset,
2218 u_char *buf, u_int size, u_long prot, u_int grpno, u_int grpsz)
2220 struct cfi_private *cfi = map->fldrv_priv;
2221 map_word datum;
2223 /* make sure area matches group boundaries */
2224 if (size != grpsz)
2225 return -EXDEV;
2227 datum = map_word_ff(map);
2228 datum = map_word_clr(map, datum, CMD(1 << grpno));
2229 return do_write_oneword(map, chip, prot, datum, FL_OTP_WRITE);
2232 static int cfi_intelext_otp_walk(struct mtd_info *mtd, loff_t from, size_t len,
2233 size_t *retlen, u_char *buf,
2234 otp_op_t action, int user_regs)
2236 struct map_info *map = mtd->priv;
2237 struct cfi_private *cfi = map->fldrv_priv;
2238 struct cfi_pri_intelext *extp = cfi->cmdset_priv;
2239 struct flchip *chip;
2240 struct cfi_intelext_otpinfo *otp;
2241 u_long devsize, reg_prot_offset, data_offset;
2242 u_int chip_num, chip_step, field, reg_fact_size, reg_user_size;
2243 u_int groups, groupno, groupsize, reg_fact_groups, reg_user_groups;
2244 int ret;
2246 *retlen = 0;
2248 /* Check that we actually have some OTP registers */
2249 if (!extp || !(extp->FeatureSupport & 64) || !extp->NumProtectionFields)
2250 return -ENODATA;
2252 /* we need real chips here not virtual ones */
2253 devsize = (1 << cfi->cfiq->DevSize) * cfi->interleave;
2254 chip_step = devsize >> cfi->chipshift;
2255 chip_num = 0;
2257 /* Some chips have OTP located in the _top_ partition only.
2258 For example: Intel 28F256L18T (T means top-parameter device) */
2259 if (cfi->mfr == CFI_MFR_INTEL) {
2260 switch (cfi->id) {
2261 case 0x880b:
2262 case 0x880c:
2263 case 0x880d:
2264 chip_num = chip_step - 1;
2268 for ( ; chip_num < cfi->numchips; chip_num += chip_step) {
2269 chip = &cfi->chips[chip_num];
2270 otp = (struct cfi_intelext_otpinfo *)&extp->extra[0];
2272 /* first OTP region */
2273 field = 0;
2274 reg_prot_offset = extp->ProtRegAddr;
2275 reg_fact_groups = 1;
2276 reg_fact_size = 1 << extp->FactProtRegSize;
2277 reg_user_groups = 1;
2278 reg_user_size = 1 << extp->UserProtRegSize;
2280 while (len > 0) {
2281 /* flash geometry fixup */
2282 data_offset = reg_prot_offset + 1;
2283 data_offset *= cfi->interleave * cfi->device_type;
2284 reg_prot_offset *= cfi->interleave * cfi->device_type;
2285 reg_fact_size *= cfi->interleave;
2286 reg_user_size *= cfi->interleave;
2288 if (user_regs) {
2289 groups = reg_user_groups;
2290 groupsize = reg_user_size;
2291 /* skip over factory reg area */
2292 groupno = reg_fact_groups;
2293 data_offset += reg_fact_groups * reg_fact_size;
2294 } else {
2295 groups = reg_fact_groups;
2296 groupsize = reg_fact_size;
2297 groupno = 0;
2300 while (len > 0 && groups > 0) {
2301 if (!action) {
2303 * Special case: if action is NULL
2304 * we fill buf with otp_info records.
2306 struct otp_info *otpinfo;
2307 map_word lockword;
2308 len -= sizeof(struct otp_info);
2309 if (len <= 0)
2310 return -ENOSPC;
2311 ret = do_otp_read(map, chip,
2312 reg_prot_offset,
2313 (u_char *)&lockword,
2314 map_bankwidth(map),
2315 0, 0, 0);
2316 if (ret)
2317 return ret;
2318 otpinfo = (struct otp_info *)buf;
2319 otpinfo->start = from;
2320 otpinfo->length = groupsize;
2321 otpinfo->locked =
2322 !map_word_bitsset(map, lockword,
2323 CMD(1 << groupno));
2324 from += groupsize;
2325 buf += sizeof(*otpinfo);
2326 *retlen += sizeof(*otpinfo);
2327 } else if (from >= groupsize) {
2328 from -= groupsize;
2329 data_offset += groupsize;
2330 } else {
2331 int size = groupsize;
2332 data_offset += from;
2333 size -= from;
2334 from = 0;
2335 if (size > len)
2336 size = len;
2337 ret = action(map, chip, data_offset,
2338 buf, size, reg_prot_offset,
2339 groupno, groupsize);
2340 if (ret < 0)
2341 return ret;
2342 buf += size;
2343 len -= size;
2344 *retlen += size;
2345 data_offset += size;
2347 groupno++;
2348 groups--;
2351 /* next OTP region */
2352 if (++field == extp->NumProtectionFields)
2353 break;
2354 reg_prot_offset = otp->ProtRegAddr;
2355 reg_fact_groups = otp->FactGroups;
2356 reg_fact_size = 1 << otp->FactProtRegSize;
2357 reg_user_groups = otp->UserGroups;
2358 reg_user_size = 1 << otp->UserProtRegSize;
2359 otp++;
2363 return 0;
2366 static int cfi_intelext_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
2367 size_t len, size_t *retlen,
2368 u_char *buf)
2370 return cfi_intelext_otp_walk(mtd, from, len, retlen,
2371 buf, do_otp_read, 0);
2374 static int cfi_intelext_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
2375 size_t len, size_t *retlen,
2376 u_char *buf)
2378 return cfi_intelext_otp_walk(mtd, from, len, retlen,
2379 buf, do_otp_read, 1);
2382 static int cfi_intelext_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
2383 size_t len, size_t *retlen,
2384 u_char *buf)
2386 return cfi_intelext_otp_walk(mtd, from, len, retlen,
2387 buf, do_otp_write, 1);
2390 static int cfi_intelext_lock_user_prot_reg(struct mtd_info *mtd,
2391 loff_t from, size_t len)
2393 size_t retlen;
2394 return cfi_intelext_otp_walk(mtd, from, len, &retlen,
2395 NULL, do_otp_lock, 1);
2398 static int cfi_intelext_get_fact_prot_info(struct mtd_info *mtd,
2399 struct otp_info *buf, size_t len)
2401 size_t retlen;
2402 int ret;
2404 ret = cfi_intelext_otp_walk(mtd, 0, len, &retlen, (u_char *)buf, NULL, 0);
2405 return ret ? : retlen;
2408 static int cfi_intelext_get_user_prot_info(struct mtd_info *mtd,
2409 struct otp_info *buf, size_t len)
2411 size_t retlen;
2412 int ret;
2414 ret = cfi_intelext_otp_walk(mtd, 0, len, &retlen, (u_char *)buf, NULL, 1);
2415 return ret ? : retlen;
2418 #endif
2420 static void cfi_intelext_save_locks(struct mtd_info *mtd)
2422 struct mtd_erase_region_info *region;
2423 int block, status, i;
2424 unsigned long adr;
2425 size_t len;
2427 for (i = 0; i < mtd->numeraseregions; i++) {
2428 region = &mtd->eraseregions[i];
2429 if (!region->lockmap)
2430 continue;
2432 for (block = 0; block < region->numblocks; block++){
2433 len = region->erasesize;
2434 adr = region->offset + block * len;
2436 status = cfi_varsize_frob(mtd,
2437 do_getlockstatus_oneblock, adr, len, NULL);
2438 if (status)
2439 set_bit(block, region->lockmap);
2440 else
2441 clear_bit(block, region->lockmap);
2446 static int cfi_intelext_suspend(struct mtd_info *mtd)
2448 struct map_info *map = mtd->priv;
2449 struct cfi_private *cfi = map->fldrv_priv;
2450 struct cfi_pri_intelext *extp = cfi->cmdset_priv;
2451 int i;
2452 struct flchip *chip;
2453 int ret = 0;
2455 if ((mtd->flags & MTD_POWERUP_LOCK)
2456 && extp && (extp->FeatureSupport & (1 << 5)))
2457 cfi_intelext_save_locks(mtd);
2459 for (i=0; !ret && i<cfi->numchips; i++) {
2460 chip = &cfi->chips[i];
2462 mutex_lock(&chip->mutex);
2464 switch (chip->state) {
2465 case FL_READY:
2466 case FL_STATUS:
2467 case FL_CFI_QUERY:
2468 case FL_JEDEC_QUERY:
2469 if (chip->oldstate == FL_READY) {
2470 /* place the chip in a known state before suspend */
2471 map_write(map, CMD(0xFF), cfi->chips[i].start);
2472 chip->oldstate = chip->state;
2473 chip->state = FL_PM_SUSPENDED;
2474 /* No need to wake_up() on this state change -
2475 * as the whole point is that nobody can do anything
2476 * with the chip now anyway.
2478 } else {
2479 /* There seems to be an operation pending. We must wait for it. */
2480 printk(KERN_NOTICE "Flash device refused suspend due to pending operation (oldstate %d)\n", chip->oldstate);
2481 ret = -EAGAIN;
2483 break;
2484 default:
2485 /* Should we actually wait? Once upon a time these routines weren't
2486 allowed to. Or should we return -EAGAIN, because the upper layers
2487 ought to have already shut down anything which was using the device
2488 anyway? The latter for now. */
2489 printk(KERN_NOTICE "Flash device refused suspend due to active operation (state %d)\n", chip->oldstate);
2490 ret = -EAGAIN;
2491 case FL_PM_SUSPENDED:
2492 break;
2494 mutex_unlock(&chip->mutex);
2497 /* Unlock the chips again */
2499 if (ret) {
2500 for (i--; i >=0; i--) {
2501 chip = &cfi->chips[i];
2503 mutex_lock(&chip->mutex);
2505 if (chip->state == FL_PM_SUSPENDED) {
2506 /* No need to force it into a known state here,
2507 because we're returning failure, and it didn't
2508 get power cycled */
2509 chip->state = chip->oldstate;
2510 chip->oldstate = FL_READY;
2511 wake_up(&chip->wq);
2513 mutex_unlock(&chip->mutex);
2517 return ret;
2520 static void cfi_intelext_restore_locks(struct mtd_info *mtd)
2522 struct mtd_erase_region_info *region;
2523 int block, i;
2524 unsigned long adr;
2525 size_t len;
2527 for (i = 0; i < mtd->numeraseregions; i++) {
2528 region = &mtd->eraseregions[i];
2529 if (!region->lockmap)
2530 continue;
2532 for (block = 0; block < region->numblocks; block++) {
2533 len = region->erasesize;
2534 adr = region->offset + block * len;
2536 if (!test_bit(block, region->lockmap))
2537 cfi_intelext_unlock(mtd, adr, len);
2542 static void cfi_intelext_resume(struct mtd_info *mtd)
2544 struct map_info *map = mtd->priv;
2545 struct cfi_private *cfi = map->fldrv_priv;
2546 struct cfi_pri_intelext *extp = cfi->cmdset_priv;
2547 int i;
2548 struct flchip *chip;
2550 for (i=0; i<cfi->numchips; i++) {
2552 chip = &cfi->chips[i];
2554 mutex_lock(&chip->mutex);
2556 /* Go to known state. Chip may have been power cycled */
2557 if (chip->state == FL_PM_SUSPENDED) {
2558 map_write(map, CMD(0xFF), cfi->chips[i].start);
2559 chip->oldstate = chip->state = FL_READY;
2560 wake_up(&chip->wq);
2563 mutex_unlock(&chip->mutex);
2566 if ((mtd->flags & MTD_POWERUP_LOCK)
2567 && extp && (extp->FeatureSupport & (1 << 5)))
2568 cfi_intelext_restore_locks(mtd);
2571 static int cfi_intelext_reset(struct mtd_info *mtd)
2573 struct map_info *map = mtd->priv;
2574 struct cfi_private *cfi = map->fldrv_priv;
2575 int i, ret;
2577 for (i=0; i < cfi->numchips; i++) {
2578 struct flchip *chip = &cfi->chips[i];
2580 /* force the completion of any ongoing operation
2581 and switch to array mode so any bootloader in
2582 flash is accessible for soft reboot. */
2583 mutex_lock(&chip->mutex);
2584 ret = get_chip(map, chip, chip->start, FL_SHUTDOWN);
2585 if (!ret) {
2586 map_write(map, CMD(0xff), chip->start);
2587 chip->state = FL_SHUTDOWN;
2588 put_chip(map, chip, chip->start);
2590 mutex_unlock(&chip->mutex);
2593 return 0;
2596 static int cfi_intelext_reboot(struct notifier_block *nb, unsigned long val,
2597 void *v)
2599 struct mtd_info *mtd;
2601 mtd = container_of(nb, struct mtd_info, reboot_notifier);
2602 cfi_intelext_reset(mtd);
2603 return NOTIFY_DONE;
2606 static void cfi_intelext_destroy(struct mtd_info *mtd)
2608 struct map_info *map = mtd->priv;
2609 struct cfi_private *cfi = map->fldrv_priv;
2610 struct mtd_erase_region_info *region;
2611 int i;
2612 cfi_intelext_reset(mtd);
2613 unregister_reboot_notifier(&mtd->reboot_notifier);
2614 kfree(cfi->cmdset_priv);
2615 kfree(cfi->cfiq);
2616 kfree(cfi->chips[0].priv);
2617 kfree(cfi);
2618 for (i = 0; i < mtd->numeraseregions; i++) {
2619 region = &mtd->eraseregions[i];
2620 if (region->lockmap)
2621 kfree(region->lockmap);
2623 kfree(mtd->eraseregions);
2626 MODULE_LICENSE("GPL");
2627 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org> et al.");
2628 MODULE_DESCRIPTION("MTD chip driver for Intel/Sharp flash chips");
2629 MODULE_ALIAS("cfi_cmdset_0003");
2630 MODULE_ALIAS("cfi_cmdset_0200");