[PATCH] md: remove unneeded NULL checks before kfree
[linux-2.6.git] / drivers / md / md.c
blob0c6b5b6baff60ded7fb24d2f71988711d723c604
1 /*
2 md.c : Multiple Devices driver for Linux
3 Copyright (C) 1998, 1999, 2000 Ingo Molnar
5 completely rewritten, based on the MD driver code from Marc Zyngier
7 Changes:
9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13 - kmod support by: Cyrus Durgin
14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
17 - lots of fixes and improvements to the RAID1/RAID5 and generic
18 RAID code (such as request based resynchronization):
20 Neil Brown <neilb@cse.unsw.edu.au>.
22 - persistent bitmap code
23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
25 This program is free software; you can redistribute it and/or modify
26 it under the terms of the GNU General Public License as published by
27 the Free Software Foundation; either version 2, or (at your option)
28 any later version.
30 You should have received a copy of the GNU General Public License
31 (for example /usr/src/linux/COPYING); if not, write to the Free
32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
35 #include <linux/module.h>
36 #include <linux/config.h>
37 #include <linux/linkage.h>
38 #include <linux/raid/md.h>
39 #include <linux/raid/bitmap.h>
40 #include <linux/sysctl.h>
41 #include <linux/devfs_fs_kernel.h>
42 #include <linux/buffer_head.h> /* for invalidate_bdev */
43 #include <linux/suspend.h>
45 #include <linux/init.h>
47 #include <linux/file.h>
49 #ifdef CONFIG_KMOD
50 #include <linux/kmod.h>
51 #endif
53 #include <asm/unaligned.h>
55 #define MAJOR_NR MD_MAJOR
56 #define MD_DRIVER
58 /* 63 partitions with the alternate major number (mdp) */
59 #define MdpMinorShift 6
61 #define DEBUG 0
62 #define dprintk(x...) ((void)(DEBUG && printk(x)))
65 #ifndef MODULE
66 static void autostart_arrays (int part);
67 #endif
69 static mdk_personality_t *pers[MAX_PERSONALITY];
70 static DEFINE_SPINLOCK(pers_lock);
73 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
74 * is 1000 KB/sec, so the extra system load does not show up that much.
75 * Increase it if you want to have more _guaranteed_ speed. Note that
76 * the RAID driver will use the maximum available bandwith if the IO
77 * subsystem is idle. There is also an 'absolute maximum' reconstruction
78 * speed limit - in case reconstruction slows down your system despite
79 * idle IO detection.
81 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
84 static int sysctl_speed_limit_min = 1000;
85 static int sysctl_speed_limit_max = 200000;
87 static struct ctl_table_header *raid_table_header;
89 static ctl_table raid_table[] = {
91 .ctl_name = DEV_RAID_SPEED_LIMIT_MIN,
92 .procname = "speed_limit_min",
93 .data = &sysctl_speed_limit_min,
94 .maxlen = sizeof(int),
95 .mode = 0644,
96 .proc_handler = &proc_dointvec,
99 .ctl_name = DEV_RAID_SPEED_LIMIT_MAX,
100 .procname = "speed_limit_max",
101 .data = &sysctl_speed_limit_max,
102 .maxlen = sizeof(int),
103 .mode = 0644,
104 .proc_handler = &proc_dointvec,
106 { .ctl_name = 0 }
109 static ctl_table raid_dir_table[] = {
111 .ctl_name = DEV_RAID,
112 .procname = "raid",
113 .maxlen = 0,
114 .mode = 0555,
115 .child = raid_table,
117 { .ctl_name = 0 }
120 static ctl_table raid_root_table[] = {
122 .ctl_name = CTL_DEV,
123 .procname = "dev",
124 .maxlen = 0,
125 .mode = 0555,
126 .child = raid_dir_table,
128 { .ctl_name = 0 }
131 static struct block_device_operations md_fops;
134 * Enables to iterate over all existing md arrays
135 * all_mddevs_lock protects this list.
137 static LIST_HEAD(all_mddevs);
138 static DEFINE_SPINLOCK(all_mddevs_lock);
142 * iterates through all used mddevs in the system.
143 * We take care to grab the all_mddevs_lock whenever navigating
144 * the list, and to always hold a refcount when unlocked.
145 * Any code which breaks out of this loop while own
146 * a reference to the current mddev and must mddev_put it.
148 #define ITERATE_MDDEV(mddev,tmp) \
150 for (({ spin_lock(&all_mddevs_lock); \
151 tmp = all_mddevs.next; \
152 mddev = NULL;}); \
153 ({ if (tmp != &all_mddevs) \
154 mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
155 spin_unlock(&all_mddevs_lock); \
156 if (mddev) mddev_put(mddev); \
157 mddev = list_entry(tmp, mddev_t, all_mddevs); \
158 tmp != &all_mddevs;}); \
159 ({ spin_lock(&all_mddevs_lock); \
160 tmp = tmp->next;}) \
164 static int md_fail_request (request_queue_t *q, struct bio *bio)
166 bio_io_error(bio, bio->bi_size);
167 return 0;
170 static inline mddev_t *mddev_get(mddev_t *mddev)
172 atomic_inc(&mddev->active);
173 return mddev;
176 static void mddev_put(mddev_t *mddev)
178 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
179 return;
180 if (!mddev->raid_disks && list_empty(&mddev->disks)) {
181 list_del(&mddev->all_mddevs);
182 blk_put_queue(mddev->queue);
183 kfree(mddev);
185 spin_unlock(&all_mddevs_lock);
188 static mddev_t * mddev_find(dev_t unit)
190 mddev_t *mddev, *new = NULL;
192 retry:
193 spin_lock(&all_mddevs_lock);
194 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
195 if (mddev->unit == unit) {
196 mddev_get(mddev);
197 spin_unlock(&all_mddevs_lock);
198 kfree(new);
199 return mddev;
202 if (new) {
203 list_add(&new->all_mddevs, &all_mddevs);
204 spin_unlock(&all_mddevs_lock);
205 return new;
207 spin_unlock(&all_mddevs_lock);
209 new = (mddev_t *) kmalloc(sizeof(*new), GFP_KERNEL);
210 if (!new)
211 return NULL;
213 memset(new, 0, sizeof(*new));
215 new->unit = unit;
216 if (MAJOR(unit) == MD_MAJOR)
217 new->md_minor = MINOR(unit);
218 else
219 new->md_minor = MINOR(unit) >> MdpMinorShift;
221 init_MUTEX(&new->reconfig_sem);
222 INIT_LIST_HEAD(&new->disks);
223 INIT_LIST_HEAD(&new->all_mddevs);
224 init_timer(&new->safemode_timer);
225 atomic_set(&new->active, 1);
226 spin_lock_init(&new->write_lock);
227 init_waitqueue_head(&new->sb_wait);
229 new->queue = blk_alloc_queue(GFP_KERNEL);
230 if (!new->queue) {
231 kfree(new);
232 return NULL;
235 blk_queue_make_request(new->queue, md_fail_request);
237 goto retry;
240 static inline int mddev_lock(mddev_t * mddev)
242 return down_interruptible(&mddev->reconfig_sem);
245 static inline void mddev_lock_uninterruptible(mddev_t * mddev)
247 down(&mddev->reconfig_sem);
250 static inline int mddev_trylock(mddev_t * mddev)
252 return down_trylock(&mddev->reconfig_sem);
255 static inline void mddev_unlock(mddev_t * mddev)
257 up(&mddev->reconfig_sem);
259 if (mddev->thread)
260 md_wakeup_thread(mddev->thread);
263 mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
265 mdk_rdev_t * rdev;
266 struct list_head *tmp;
268 ITERATE_RDEV(mddev,rdev,tmp) {
269 if (rdev->desc_nr == nr)
270 return rdev;
272 return NULL;
275 static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
277 struct list_head *tmp;
278 mdk_rdev_t *rdev;
280 ITERATE_RDEV(mddev,rdev,tmp) {
281 if (rdev->bdev->bd_dev == dev)
282 return rdev;
284 return NULL;
287 inline static sector_t calc_dev_sboffset(struct block_device *bdev)
289 sector_t size = bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
290 return MD_NEW_SIZE_BLOCKS(size);
293 static sector_t calc_dev_size(mdk_rdev_t *rdev, unsigned chunk_size)
295 sector_t size;
297 size = rdev->sb_offset;
299 if (chunk_size)
300 size &= ~((sector_t)chunk_size/1024 - 1);
301 return size;
304 static int alloc_disk_sb(mdk_rdev_t * rdev)
306 if (rdev->sb_page)
307 MD_BUG();
309 rdev->sb_page = alloc_page(GFP_KERNEL);
310 if (!rdev->sb_page) {
311 printk(KERN_ALERT "md: out of memory.\n");
312 return -EINVAL;
315 return 0;
318 static void free_disk_sb(mdk_rdev_t * rdev)
320 if (rdev->sb_page) {
321 page_cache_release(rdev->sb_page);
322 rdev->sb_loaded = 0;
323 rdev->sb_page = NULL;
324 rdev->sb_offset = 0;
325 rdev->size = 0;
330 static int super_written(struct bio *bio, unsigned int bytes_done, int error)
332 mdk_rdev_t *rdev = bio->bi_private;
333 if (bio->bi_size)
334 return 1;
336 if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags))
337 md_error(rdev->mddev, rdev);
339 if (atomic_dec_and_test(&rdev->mddev->pending_writes))
340 wake_up(&rdev->mddev->sb_wait);
341 return 0;
344 void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
345 sector_t sector, int size, struct page *page)
347 /* write first size bytes of page to sector of rdev
348 * Increment mddev->pending_writes before returning
349 * and decrement it on completion, waking up sb_wait
350 * if zero is reached.
351 * If an error occurred, call md_error
353 struct bio *bio = bio_alloc(GFP_NOIO, 1);
355 bio->bi_bdev = rdev->bdev;
356 bio->bi_sector = sector;
357 bio_add_page(bio, page, size, 0);
358 bio->bi_private = rdev;
359 bio->bi_end_io = super_written;
360 atomic_inc(&mddev->pending_writes);
361 submit_bio((1<<BIO_RW)|(1<<BIO_RW_SYNC), bio);
364 static int bi_complete(struct bio *bio, unsigned int bytes_done, int error)
366 if (bio->bi_size)
367 return 1;
369 complete((struct completion*)bio->bi_private);
370 return 0;
373 int sync_page_io(struct block_device *bdev, sector_t sector, int size,
374 struct page *page, int rw)
376 struct bio *bio = bio_alloc(GFP_NOIO, 1);
377 struct completion event;
378 int ret;
380 rw |= (1 << BIO_RW_SYNC);
382 bio->bi_bdev = bdev;
383 bio->bi_sector = sector;
384 bio_add_page(bio, page, size, 0);
385 init_completion(&event);
386 bio->bi_private = &event;
387 bio->bi_end_io = bi_complete;
388 submit_bio(rw, bio);
389 wait_for_completion(&event);
391 ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
392 bio_put(bio);
393 return ret;
396 static int read_disk_sb(mdk_rdev_t * rdev)
398 char b[BDEVNAME_SIZE];
399 if (!rdev->sb_page) {
400 MD_BUG();
401 return -EINVAL;
403 if (rdev->sb_loaded)
404 return 0;
407 if (!sync_page_io(rdev->bdev, rdev->sb_offset<<1, MD_SB_BYTES, rdev->sb_page, READ))
408 goto fail;
409 rdev->sb_loaded = 1;
410 return 0;
412 fail:
413 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
414 bdevname(rdev->bdev,b));
415 return -EINVAL;
418 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
420 if ( (sb1->set_uuid0 == sb2->set_uuid0) &&
421 (sb1->set_uuid1 == sb2->set_uuid1) &&
422 (sb1->set_uuid2 == sb2->set_uuid2) &&
423 (sb1->set_uuid3 == sb2->set_uuid3))
425 return 1;
427 return 0;
431 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
433 int ret;
434 mdp_super_t *tmp1, *tmp2;
436 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
437 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
439 if (!tmp1 || !tmp2) {
440 ret = 0;
441 printk(KERN_INFO "md.c: sb1 is not equal to sb2!\n");
442 goto abort;
445 *tmp1 = *sb1;
446 *tmp2 = *sb2;
449 * nr_disks is not constant
451 tmp1->nr_disks = 0;
452 tmp2->nr_disks = 0;
454 if (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4))
455 ret = 0;
456 else
457 ret = 1;
459 abort:
460 kfree(tmp1);
461 kfree(tmp2);
462 return ret;
465 static unsigned int calc_sb_csum(mdp_super_t * sb)
467 unsigned int disk_csum, csum;
469 disk_csum = sb->sb_csum;
470 sb->sb_csum = 0;
471 csum = csum_partial((void *)sb, MD_SB_BYTES, 0);
472 sb->sb_csum = disk_csum;
473 return csum;
478 * Handle superblock details.
479 * We want to be able to handle multiple superblock formats
480 * so we have a common interface to them all, and an array of
481 * different handlers.
482 * We rely on user-space to write the initial superblock, and support
483 * reading and updating of superblocks.
484 * Interface methods are:
485 * int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
486 * loads and validates a superblock on dev.
487 * if refdev != NULL, compare superblocks on both devices
488 * Return:
489 * 0 - dev has a superblock that is compatible with refdev
490 * 1 - dev has a superblock that is compatible and newer than refdev
491 * so dev should be used as the refdev in future
492 * -EINVAL superblock incompatible or invalid
493 * -othererror e.g. -EIO
495 * int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
496 * Verify that dev is acceptable into mddev.
497 * The first time, mddev->raid_disks will be 0, and data from
498 * dev should be merged in. Subsequent calls check that dev
499 * is new enough. Return 0 or -EINVAL
501 * void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
502 * Update the superblock for rdev with data in mddev
503 * This does not write to disc.
507 struct super_type {
508 char *name;
509 struct module *owner;
510 int (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version);
511 int (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
512 void (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
516 * load_super for 0.90.0
518 static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
520 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
521 mdp_super_t *sb;
522 int ret;
523 sector_t sb_offset;
526 * Calculate the position of the superblock,
527 * it's at the end of the disk.
529 * It also happens to be a multiple of 4Kb.
531 sb_offset = calc_dev_sboffset(rdev->bdev);
532 rdev->sb_offset = sb_offset;
534 ret = read_disk_sb(rdev);
535 if (ret) return ret;
537 ret = -EINVAL;
539 bdevname(rdev->bdev, b);
540 sb = (mdp_super_t*)page_address(rdev->sb_page);
542 if (sb->md_magic != MD_SB_MAGIC) {
543 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
545 goto abort;
548 if (sb->major_version != 0 ||
549 sb->minor_version != 90) {
550 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
551 sb->major_version, sb->minor_version,
553 goto abort;
556 if (sb->raid_disks <= 0)
557 goto abort;
559 if (csum_fold(calc_sb_csum(sb)) != csum_fold(sb->sb_csum)) {
560 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
562 goto abort;
565 rdev->preferred_minor = sb->md_minor;
566 rdev->data_offset = 0;
568 if (sb->level == LEVEL_MULTIPATH)
569 rdev->desc_nr = -1;
570 else
571 rdev->desc_nr = sb->this_disk.number;
573 if (refdev == 0)
574 ret = 1;
575 else {
576 __u64 ev1, ev2;
577 mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
578 if (!uuid_equal(refsb, sb)) {
579 printk(KERN_WARNING "md: %s has different UUID to %s\n",
580 b, bdevname(refdev->bdev,b2));
581 goto abort;
583 if (!sb_equal(refsb, sb)) {
584 printk(KERN_WARNING "md: %s has same UUID"
585 " but different superblock to %s\n",
586 b, bdevname(refdev->bdev, b2));
587 goto abort;
589 ev1 = md_event(sb);
590 ev2 = md_event(refsb);
591 if (ev1 > ev2)
592 ret = 1;
593 else
594 ret = 0;
596 rdev->size = calc_dev_size(rdev, sb->chunk_size);
598 abort:
599 return ret;
603 * validate_super for 0.90.0
605 static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
607 mdp_disk_t *desc;
608 mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
610 rdev->raid_disk = -1;
611 rdev->in_sync = 0;
612 if (mddev->raid_disks == 0) {
613 mddev->major_version = 0;
614 mddev->minor_version = sb->minor_version;
615 mddev->patch_version = sb->patch_version;
616 mddev->persistent = ! sb->not_persistent;
617 mddev->chunk_size = sb->chunk_size;
618 mddev->ctime = sb->ctime;
619 mddev->utime = sb->utime;
620 mddev->level = sb->level;
621 mddev->layout = sb->layout;
622 mddev->raid_disks = sb->raid_disks;
623 mddev->size = sb->size;
624 mddev->events = md_event(sb);
626 if (sb->state & (1<<MD_SB_CLEAN))
627 mddev->recovery_cp = MaxSector;
628 else {
629 if (sb->events_hi == sb->cp_events_hi &&
630 sb->events_lo == sb->cp_events_lo) {
631 mddev->recovery_cp = sb->recovery_cp;
632 } else
633 mddev->recovery_cp = 0;
636 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
637 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
638 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
639 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
641 mddev->max_disks = MD_SB_DISKS;
643 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
644 mddev->bitmap_file == NULL) {
645 if (mddev->level != 1) {
646 /* FIXME use a better test */
647 printk(KERN_WARNING "md: bitmaps only support for raid1\n");
648 return -EINVAL;
650 mddev->bitmap_offset = (MD_SB_BYTES >> 9);
653 } else if (mddev->pers == NULL) {
654 /* Insist on good event counter while assembling */
655 __u64 ev1 = md_event(sb);
656 ++ev1;
657 if (ev1 < mddev->events)
658 return -EINVAL;
659 } else if (mddev->bitmap) {
660 /* if adding to array with a bitmap, then we can accept an
661 * older device ... but not too old.
663 __u64 ev1 = md_event(sb);
664 if (ev1 < mddev->bitmap->events_cleared)
665 return 0;
666 } else /* just a hot-add of a new device, leave raid_disk at -1 */
667 return 0;
669 if (mddev->level != LEVEL_MULTIPATH) {
670 rdev->faulty = 0;
671 desc = sb->disks + rdev->desc_nr;
673 if (desc->state & (1<<MD_DISK_FAULTY))
674 rdev->faulty = 1;
675 else if (desc->state & (1<<MD_DISK_SYNC) &&
676 desc->raid_disk < mddev->raid_disks) {
677 rdev->in_sync = 1;
678 rdev->raid_disk = desc->raid_disk;
680 } else /* MULTIPATH are always insync */
681 rdev->in_sync = 1;
682 return 0;
686 * sync_super for 0.90.0
688 static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
690 mdp_super_t *sb;
691 struct list_head *tmp;
692 mdk_rdev_t *rdev2;
693 int next_spare = mddev->raid_disks;
695 /* make rdev->sb match mddev data..
697 * 1/ zero out disks
698 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
699 * 3/ any empty disks < next_spare become removed
701 * disks[0] gets initialised to REMOVED because
702 * we cannot be sure from other fields if it has
703 * been initialised or not.
705 int i;
706 int active=0, working=0,failed=0,spare=0,nr_disks=0;
708 sb = (mdp_super_t*)page_address(rdev->sb_page);
710 memset(sb, 0, sizeof(*sb));
712 sb->md_magic = MD_SB_MAGIC;
713 sb->major_version = mddev->major_version;
714 sb->minor_version = mddev->minor_version;
715 sb->patch_version = mddev->patch_version;
716 sb->gvalid_words = 0; /* ignored */
717 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
718 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
719 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
720 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
722 sb->ctime = mddev->ctime;
723 sb->level = mddev->level;
724 sb->size = mddev->size;
725 sb->raid_disks = mddev->raid_disks;
726 sb->md_minor = mddev->md_minor;
727 sb->not_persistent = !mddev->persistent;
728 sb->utime = mddev->utime;
729 sb->state = 0;
730 sb->events_hi = (mddev->events>>32);
731 sb->events_lo = (u32)mddev->events;
733 if (mddev->in_sync)
735 sb->recovery_cp = mddev->recovery_cp;
736 sb->cp_events_hi = (mddev->events>>32);
737 sb->cp_events_lo = (u32)mddev->events;
738 if (mddev->recovery_cp == MaxSector)
739 sb->state = (1<< MD_SB_CLEAN);
740 } else
741 sb->recovery_cp = 0;
743 sb->layout = mddev->layout;
744 sb->chunk_size = mddev->chunk_size;
746 if (mddev->bitmap && mddev->bitmap_file == NULL)
747 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
749 sb->disks[0].state = (1<<MD_DISK_REMOVED);
750 ITERATE_RDEV(mddev,rdev2,tmp) {
751 mdp_disk_t *d;
752 if (rdev2->raid_disk >= 0 && rdev2->in_sync && !rdev2->faulty)
753 rdev2->desc_nr = rdev2->raid_disk;
754 else
755 rdev2->desc_nr = next_spare++;
756 d = &sb->disks[rdev2->desc_nr];
757 nr_disks++;
758 d->number = rdev2->desc_nr;
759 d->major = MAJOR(rdev2->bdev->bd_dev);
760 d->minor = MINOR(rdev2->bdev->bd_dev);
761 if (rdev2->raid_disk >= 0 && rdev->in_sync && !rdev2->faulty)
762 d->raid_disk = rdev2->raid_disk;
763 else
764 d->raid_disk = rdev2->desc_nr; /* compatibility */
765 if (rdev2->faulty) {
766 d->state = (1<<MD_DISK_FAULTY);
767 failed++;
768 } else if (rdev2->in_sync) {
769 d->state = (1<<MD_DISK_ACTIVE);
770 d->state |= (1<<MD_DISK_SYNC);
771 active++;
772 working++;
773 } else {
774 d->state = 0;
775 spare++;
776 working++;
780 /* now set the "removed" and "faulty" bits on any missing devices */
781 for (i=0 ; i < mddev->raid_disks ; i++) {
782 mdp_disk_t *d = &sb->disks[i];
783 if (d->state == 0 && d->number == 0) {
784 d->number = i;
785 d->raid_disk = i;
786 d->state = (1<<MD_DISK_REMOVED);
787 d->state |= (1<<MD_DISK_FAULTY);
788 failed++;
791 sb->nr_disks = nr_disks;
792 sb->active_disks = active;
793 sb->working_disks = working;
794 sb->failed_disks = failed;
795 sb->spare_disks = spare;
797 sb->this_disk = sb->disks[rdev->desc_nr];
798 sb->sb_csum = calc_sb_csum(sb);
802 * version 1 superblock
805 static unsigned int calc_sb_1_csum(struct mdp_superblock_1 * sb)
807 unsigned int disk_csum, csum;
808 unsigned long long newcsum;
809 int size = 256 + le32_to_cpu(sb->max_dev)*2;
810 unsigned int *isuper = (unsigned int*)sb;
811 int i;
813 disk_csum = sb->sb_csum;
814 sb->sb_csum = 0;
815 newcsum = 0;
816 for (i=0; size>=4; size -= 4 )
817 newcsum += le32_to_cpu(*isuper++);
819 if (size == 2)
820 newcsum += le16_to_cpu(*(unsigned short*) isuper);
822 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
823 sb->sb_csum = disk_csum;
824 return cpu_to_le32(csum);
827 static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
829 struct mdp_superblock_1 *sb;
830 int ret;
831 sector_t sb_offset;
832 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
835 * Calculate the position of the superblock.
836 * It is always aligned to a 4K boundary and
837 * depeding on minor_version, it can be:
838 * 0: At least 8K, but less than 12K, from end of device
839 * 1: At start of device
840 * 2: 4K from start of device.
842 switch(minor_version) {
843 case 0:
844 sb_offset = rdev->bdev->bd_inode->i_size >> 9;
845 sb_offset -= 8*2;
846 sb_offset &= ~(sector_t)(4*2-1);
847 /* convert from sectors to K */
848 sb_offset /= 2;
849 break;
850 case 1:
851 sb_offset = 0;
852 break;
853 case 2:
854 sb_offset = 4;
855 break;
856 default:
857 return -EINVAL;
859 rdev->sb_offset = sb_offset;
861 ret = read_disk_sb(rdev);
862 if (ret) return ret;
865 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
867 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
868 sb->major_version != cpu_to_le32(1) ||
869 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
870 le64_to_cpu(sb->super_offset) != (rdev->sb_offset<<1) ||
871 sb->feature_map != 0)
872 return -EINVAL;
874 if (calc_sb_1_csum(sb) != sb->sb_csum) {
875 printk("md: invalid superblock checksum on %s\n",
876 bdevname(rdev->bdev,b));
877 return -EINVAL;
879 if (le64_to_cpu(sb->data_size) < 10) {
880 printk("md: data_size too small on %s\n",
881 bdevname(rdev->bdev,b));
882 return -EINVAL;
884 rdev->preferred_minor = 0xffff;
885 rdev->data_offset = le64_to_cpu(sb->data_offset);
887 if (refdev == 0)
888 return 1;
889 else {
890 __u64 ev1, ev2;
891 struct mdp_superblock_1 *refsb =
892 (struct mdp_superblock_1*)page_address(refdev->sb_page);
894 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
895 sb->level != refsb->level ||
896 sb->layout != refsb->layout ||
897 sb->chunksize != refsb->chunksize) {
898 printk(KERN_WARNING "md: %s has strangely different"
899 " superblock to %s\n",
900 bdevname(rdev->bdev,b),
901 bdevname(refdev->bdev,b2));
902 return -EINVAL;
904 ev1 = le64_to_cpu(sb->events);
905 ev2 = le64_to_cpu(refsb->events);
907 if (ev1 > ev2)
908 return 1;
910 if (minor_version)
911 rdev->size = ((rdev->bdev->bd_inode->i_size>>9) - le64_to_cpu(sb->data_offset)) / 2;
912 else
913 rdev->size = rdev->sb_offset;
914 if (rdev->size < le64_to_cpu(sb->data_size)/2)
915 return -EINVAL;
916 rdev->size = le64_to_cpu(sb->data_size)/2;
917 if (le32_to_cpu(sb->chunksize))
918 rdev->size &= ~((sector_t)le32_to_cpu(sb->chunksize)/2 - 1);
919 return 0;
922 static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
924 struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
926 rdev->raid_disk = -1;
927 rdev->in_sync = 0;
928 if (mddev->raid_disks == 0) {
929 mddev->major_version = 1;
930 mddev->patch_version = 0;
931 mddev->persistent = 1;
932 mddev->chunk_size = le32_to_cpu(sb->chunksize) << 9;
933 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
934 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
935 mddev->level = le32_to_cpu(sb->level);
936 mddev->layout = le32_to_cpu(sb->layout);
937 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
938 mddev->size = le64_to_cpu(sb->size)/2;
939 mddev->events = le64_to_cpu(sb->events);
941 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
942 memcpy(mddev->uuid, sb->set_uuid, 16);
944 mddev->max_disks = (4096-256)/2;
946 if ((le32_to_cpu(sb->feature_map) & 1) &&
947 mddev->bitmap_file == NULL ) {
948 if (mddev->level != 1) {
949 printk(KERN_WARNING "md: bitmaps only supported for raid1\n");
950 return -EINVAL;
952 mddev->bitmap_offset = (__s32)le32_to_cpu(sb->bitmap_offset);
954 } else if (mddev->pers == NULL) {
955 /* Insist of good event counter while assembling */
956 __u64 ev1 = le64_to_cpu(sb->events);
957 ++ev1;
958 if (ev1 < mddev->events)
959 return -EINVAL;
960 } else if (mddev->bitmap) {
961 /* If adding to array with a bitmap, then we can accept an
962 * older device, but not too old.
964 __u64 ev1 = le64_to_cpu(sb->events);
965 if (ev1 < mddev->bitmap->events_cleared)
966 return 0;
967 } else /* just a hot-add of a new device, leave raid_disk at -1 */
968 return 0;
970 if (mddev->level != LEVEL_MULTIPATH) {
971 int role;
972 rdev->desc_nr = le32_to_cpu(sb->dev_number);
973 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
974 switch(role) {
975 case 0xffff: /* spare */
976 rdev->faulty = 0;
977 break;
978 case 0xfffe: /* faulty */
979 rdev->faulty = 1;
980 break;
981 default:
982 rdev->in_sync = 1;
983 rdev->faulty = 0;
984 rdev->raid_disk = role;
985 break;
987 } else /* MULTIPATH are always insync */
988 rdev->in_sync = 1;
990 return 0;
993 static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
995 struct mdp_superblock_1 *sb;
996 struct list_head *tmp;
997 mdk_rdev_t *rdev2;
998 int max_dev, i;
999 /* make rdev->sb match mddev and rdev data. */
1001 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1003 sb->feature_map = 0;
1004 sb->pad0 = 0;
1005 memset(sb->pad1, 0, sizeof(sb->pad1));
1006 memset(sb->pad2, 0, sizeof(sb->pad2));
1007 memset(sb->pad3, 0, sizeof(sb->pad3));
1009 sb->utime = cpu_to_le64((__u64)mddev->utime);
1010 sb->events = cpu_to_le64(mddev->events);
1011 if (mddev->in_sync)
1012 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1013 else
1014 sb->resync_offset = cpu_to_le64(0);
1016 if (mddev->bitmap && mddev->bitmap_file == NULL) {
1017 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_offset);
1018 sb->feature_map = cpu_to_le32(1);
1021 max_dev = 0;
1022 ITERATE_RDEV(mddev,rdev2,tmp)
1023 if (rdev2->desc_nr+1 > max_dev)
1024 max_dev = rdev2->desc_nr+1;
1026 sb->max_dev = cpu_to_le32(max_dev);
1027 for (i=0; i<max_dev;i++)
1028 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1030 ITERATE_RDEV(mddev,rdev2,tmp) {
1031 i = rdev2->desc_nr;
1032 if (rdev2->faulty)
1033 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1034 else if (rdev2->in_sync)
1035 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1036 else
1037 sb->dev_roles[i] = cpu_to_le16(0xffff);
1040 sb->recovery_offset = cpu_to_le64(0); /* not supported yet */
1041 sb->sb_csum = calc_sb_1_csum(sb);
1045 static struct super_type super_types[] = {
1046 [0] = {
1047 .name = "0.90.0",
1048 .owner = THIS_MODULE,
1049 .load_super = super_90_load,
1050 .validate_super = super_90_validate,
1051 .sync_super = super_90_sync,
1053 [1] = {
1054 .name = "md-1",
1055 .owner = THIS_MODULE,
1056 .load_super = super_1_load,
1057 .validate_super = super_1_validate,
1058 .sync_super = super_1_sync,
1062 static mdk_rdev_t * match_dev_unit(mddev_t *mddev, mdk_rdev_t *dev)
1064 struct list_head *tmp;
1065 mdk_rdev_t *rdev;
1067 ITERATE_RDEV(mddev,rdev,tmp)
1068 if (rdev->bdev->bd_contains == dev->bdev->bd_contains)
1069 return rdev;
1071 return NULL;
1074 static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
1076 struct list_head *tmp;
1077 mdk_rdev_t *rdev;
1079 ITERATE_RDEV(mddev1,rdev,tmp)
1080 if (match_dev_unit(mddev2, rdev))
1081 return 1;
1083 return 0;
1086 static LIST_HEAD(pending_raid_disks);
1088 static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
1090 mdk_rdev_t *same_pdev;
1091 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1093 if (rdev->mddev) {
1094 MD_BUG();
1095 return -EINVAL;
1097 same_pdev = match_dev_unit(mddev, rdev);
1098 if (same_pdev)
1099 printk(KERN_WARNING
1100 "%s: WARNING: %s appears to be on the same physical"
1101 " disk as %s. True\n protection against single-disk"
1102 " failure might be compromised.\n",
1103 mdname(mddev), bdevname(rdev->bdev,b),
1104 bdevname(same_pdev->bdev,b2));
1106 /* Verify rdev->desc_nr is unique.
1107 * If it is -1, assign a free number, else
1108 * check number is not in use
1110 if (rdev->desc_nr < 0) {
1111 int choice = 0;
1112 if (mddev->pers) choice = mddev->raid_disks;
1113 while (find_rdev_nr(mddev, choice))
1114 choice++;
1115 rdev->desc_nr = choice;
1116 } else {
1117 if (find_rdev_nr(mddev, rdev->desc_nr))
1118 return -EBUSY;
1121 list_add(&rdev->same_set, &mddev->disks);
1122 rdev->mddev = mddev;
1123 printk(KERN_INFO "md: bind<%s>\n", bdevname(rdev->bdev,b));
1124 return 0;
1127 static void unbind_rdev_from_array(mdk_rdev_t * rdev)
1129 char b[BDEVNAME_SIZE];
1130 if (!rdev->mddev) {
1131 MD_BUG();
1132 return;
1134 list_del_init(&rdev->same_set);
1135 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
1136 rdev->mddev = NULL;
1140 * prevent the device from being mounted, repartitioned or
1141 * otherwise reused by a RAID array (or any other kernel
1142 * subsystem), by bd_claiming the device.
1144 static int lock_rdev(mdk_rdev_t *rdev, dev_t dev)
1146 int err = 0;
1147 struct block_device *bdev;
1148 char b[BDEVNAME_SIZE];
1150 bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
1151 if (IS_ERR(bdev)) {
1152 printk(KERN_ERR "md: could not open %s.\n",
1153 __bdevname(dev, b));
1154 return PTR_ERR(bdev);
1156 err = bd_claim(bdev, rdev);
1157 if (err) {
1158 printk(KERN_ERR "md: could not bd_claim %s.\n",
1159 bdevname(bdev, b));
1160 blkdev_put(bdev);
1161 return err;
1163 rdev->bdev = bdev;
1164 return err;
1167 static void unlock_rdev(mdk_rdev_t *rdev)
1169 struct block_device *bdev = rdev->bdev;
1170 rdev->bdev = NULL;
1171 if (!bdev)
1172 MD_BUG();
1173 bd_release(bdev);
1174 blkdev_put(bdev);
1177 void md_autodetect_dev(dev_t dev);
1179 static void export_rdev(mdk_rdev_t * rdev)
1181 char b[BDEVNAME_SIZE];
1182 printk(KERN_INFO "md: export_rdev(%s)\n",
1183 bdevname(rdev->bdev,b));
1184 if (rdev->mddev)
1185 MD_BUG();
1186 free_disk_sb(rdev);
1187 list_del_init(&rdev->same_set);
1188 #ifndef MODULE
1189 md_autodetect_dev(rdev->bdev->bd_dev);
1190 #endif
1191 unlock_rdev(rdev);
1192 kfree(rdev);
1195 static void kick_rdev_from_array(mdk_rdev_t * rdev)
1197 unbind_rdev_from_array(rdev);
1198 export_rdev(rdev);
1201 static void export_array(mddev_t *mddev)
1203 struct list_head *tmp;
1204 mdk_rdev_t *rdev;
1206 ITERATE_RDEV(mddev,rdev,tmp) {
1207 if (!rdev->mddev) {
1208 MD_BUG();
1209 continue;
1211 kick_rdev_from_array(rdev);
1213 if (!list_empty(&mddev->disks))
1214 MD_BUG();
1215 mddev->raid_disks = 0;
1216 mddev->major_version = 0;
1219 static void print_desc(mdp_disk_t *desc)
1221 printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
1222 desc->major,desc->minor,desc->raid_disk,desc->state);
1225 static void print_sb(mdp_super_t *sb)
1227 int i;
1229 printk(KERN_INFO
1230 "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
1231 sb->major_version, sb->minor_version, sb->patch_version,
1232 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
1233 sb->ctime);
1234 printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
1235 sb->level, sb->size, sb->nr_disks, sb->raid_disks,
1236 sb->md_minor, sb->layout, sb->chunk_size);
1237 printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
1238 " FD:%d SD:%d CSUM:%08x E:%08lx\n",
1239 sb->utime, sb->state, sb->active_disks, sb->working_disks,
1240 sb->failed_disks, sb->spare_disks,
1241 sb->sb_csum, (unsigned long)sb->events_lo);
1243 printk(KERN_INFO);
1244 for (i = 0; i < MD_SB_DISKS; i++) {
1245 mdp_disk_t *desc;
1247 desc = sb->disks + i;
1248 if (desc->number || desc->major || desc->minor ||
1249 desc->raid_disk || (desc->state && (desc->state != 4))) {
1250 printk(" D %2d: ", i);
1251 print_desc(desc);
1254 printk(KERN_INFO "md: THIS: ");
1255 print_desc(&sb->this_disk);
1259 static void print_rdev(mdk_rdev_t *rdev)
1261 char b[BDEVNAME_SIZE];
1262 printk(KERN_INFO "md: rdev %s, SZ:%08llu F:%d S:%d DN:%u\n",
1263 bdevname(rdev->bdev,b), (unsigned long long)rdev->size,
1264 rdev->faulty, rdev->in_sync, rdev->desc_nr);
1265 if (rdev->sb_loaded) {
1266 printk(KERN_INFO "md: rdev superblock:\n");
1267 print_sb((mdp_super_t*)page_address(rdev->sb_page));
1268 } else
1269 printk(KERN_INFO "md: no rdev superblock!\n");
1272 void md_print_devices(void)
1274 struct list_head *tmp, *tmp2;
1275 mdk_rdev_t *rdev;
1276 mddev_t *mddev;
1277 char b[BDEVNAME_SIZE];
1279 printk("\n");
1280 printk("md: **********************************\n");
1281 printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
1282 printk("md: **********************************\n");
1283 ITERATE_MDDEV(mddev,tmp) {
1285 if (mddev->bitmap)
1286 bitmap_print_sb(mddev->bitmap);
1287 else
1288 printk("%s: ", mdname(mddev));
1289 ITERATE_RDEV(mddev,rdev,tmp2)
1290 printk("<%s>", bdevname(rdev->bdev,b));
1291 printk("\n");
1293 ITERATE_RDEV(mddev,rdev,tmp2)
1294 print_rdev(rdev);
1296 printk("md: **********************************\n");
1297 printk("\n");
1301 static void sync_sbs(mddev_t * mddev)
1303 mdk_rdev_t *rdev;
1304 struct list_head *tmp;
1306 ITERATE_RDEV(mddev,rdev,tmp) {
1307 super_types[mddev->major_version].
1308 sync_super(mddev, rdev);
1309 rdev->sb_loaded = 1;
1313 static void md_update_sb(mddev_t * mddev)
1315 int err;
1316 struct list_head *tmp;
1317 mdk_rdev_t *rdev;
1318 int sync_req;
1320 repeat:
1321 spin_lock(&mddev->write_lock);
1322 sync_req = mddev->in_sync;
1323 mddev->utime = get_seconds();
1324 mddev->events ++;
1326 if (!mddev->events) {
1328 * oops, this 64-bit counter should never wrap.
1329 * Either we are in around ~1 trillion A.C., assuming
1330 * 1 reboot per second, or we have a bug:
1332 MD_BUG();
1333 mddev->events --;
1335 mddev->sb_dirty = 2;
1336 sync_sbs(mddev);
1339 * do not write anything to disk if using
1340 * nonpersistent superblocks
1342 if (!mddev->persistent) {
1343 mddev->sb_dirty = 0;
1344 spin_unlock(&mddev->write_lock);
1345 wake_up(&mddev->sb_wait);
1346 return;
1348 spin_unlock(&mddev->write_lock);
1350 dprintk(KERN_INFO
1351 "md: updating %s RAID superblock on device (in sync %d)\n",
1352 mdname(mddev),mddev->in_sync);
1354 err = bitmap_update_sb(mddev->bitmap);
1355 ITERATE_RDEV(mddev,rdev,tmp) {
1356 char b[BDEVNAME_SIZE];
1357 dprintk(KERN_INFO "md: ");
1358 if (rdev->faulty)
1359 dprintk("(skipping faulty ");
1361 dprintk("%s ", bdevname(rdev->bdev,b));
1362 if (!rdev->faulty) {
1363 md_super_write(mddev,rdev,
1364 rdev->sb_offset<<1, MD_SB_BYTES,
1365 rdev->sb_page);
1366 dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
1367 bdevname(rdev->bdev,b),
1368 (unsigned long long)rdev->sb_offset);
1370 } else
1371 dprintk(")\n");
1372 if (mddev->level == LEVEL_MULTIPATH)
1373 /* only need to write one superblock... */
1374 break;
1376 wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
1377 /* if there was a failure, sb_dirty was set to 1, and we re-write super */
1379 spin_lock(&mddev->write_lock);
1380 if (mddev->in_sync != sync_req|| mddev->sb_dirty == 1) {
1381 /* have to write it out again */
1382 spin_unlock(&mddev->write_lock);
1383 goto repeat;
1385 mddev->sb_dirty = 0;
1386 spin_unlock(&mddev->write_lock);
1387 wake_up(&mddev->sb_wait);
1392 * Import a device. If 'super_format' >= 0, then sanity check the superblock
1394 * mark the device faulty if:
1396 * - the device is nonexistent (zero size)
1397 * - the device has no valid superblock
1399 * a faulty rdev _never_ has rdev->sb set.
1401 static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
1403 char b[BDEVNAME_SIZE];
1404 int err;
1405 mdk_rdev_t *rdev;
1406 sector_t size;
1408 rdev = (mdk_rdev_t *) kmalloc(sizeof(*rdev), GFP_KERNEL);
1409 if (!rdev) {
1410 printk(KERN_ERR "md: could not alloc mem for new device!\n");
1411 return ERR_PTR(-ENOMEM);
1413 memset(rdev, 0, sizeof(*rdev));
1415 if ((err = alloc_disk_sb(rdev)))
1416 goto abort_free;
1418 err = lock_rdev(rdev, newdev);
1419 if (err)
1420 goto abort_free;
1422 rdev->desc_nr = -1;
1423 rdev->faulty = 0;
1424 rdev->in_sync = 0;
1425 rdev->data_offset = 0;
1426 atomic_set(&rdev->nr_pending, 0);
1428 size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
1429 if (!size) {
1430 printk(KERN_WARNING
1431 "md: %s has zero or unknown size, marking faulty!\n",
1432 bdevname(rdev->bdev,b));
1433 err = -EINVAL;
1434 goto abort_free;
1437 if (super_format >= 0) {
1438 err = super_types[super_format].
1439 load_super(rdev, NULL, super_minor);
1440 if (err == -EINVAL) {
1441 printk(KERN_WARNING
1442 "md: %s has invalid sb, not importing!\n",
1443 bdevname(rdev->bdev,b));
1444 goto abort_free;
1446 if (err < 0) {
1447 printk(KERN_WARNING
1448 "md: could not read %s's sb, not importing!\n",
1449 bdevname(rdev->bdev,b));
1450 goto abort_free;
1453 INIT_LIST_HEAD(&rdev->same_set);
1455 return rdev;
1457 abort_free:
1458 if (rdev->sb_page) {
1459 if (rdev->bdev)
1460 unlock_rdev(rdev);
1461 free_disk_sb(rdev);
1463 kfree(rdev);
1464 return ERR_PTR(err);
1468 * Check a full RAID array for plausibility
1472 static void analyze_sbs(mddev_t * mddev)
1474 int i;
1475 struct list_head *tmp;
1476 mdk_rdev_t *rdev, *freshest;
1477 char b[BDEVNAME_SIZE];
1479 freshest = NULL;
1480 ITERATE_RDEV(mddev,rdev,tmp)
1481 switch (super_types[mddev->major_version].
1482 load_super(rdev, freshest, mddev->minor_version)) {
1483 case 1:
1484 freshest = rdev;
1485 break;
1486 case 0:
1487 break;
1488 default:
1489 printk( KERN_ERR \
1490 "md: fatal superblock inconsistency in %s"
1491 " -- removing from array\n",
1492 bdevname(rdev->bdev,b));
1493 kick_rdev_from_array(rdev);
1497 super_types[mddev->major_version].
1498 validate_super(mddev, freshest);
1500 i = 0;
1501 ITERATE_RDEV(mddev,rdev,tmp) {
1502 if (rdev != freshest)
1503 if (super_types[mddev->major_version].
1504 validate_super(mddev, rdev)) {
1505 printk(KERN_WARNING "md: kicking non-fresh %s"
1506 " from array!\n",
1507 bdevname(rdev->bdev,b));
1508 kick_rdev_from_array(rdev);
1509 continue;
1511 if (mddev->level == LEVEL_MULTIPATH) {
1512 rdev->desc_nr = i++;
1513 rdev->raid_disk = rdev->desc_nr;
1514 rdev->in_sync = 1;
1520 if (mddev->recovery_cp != MaxSector &&
1521 mddev->level >= 1)
1522 printk(KERN_ERR "md: %s: raid array is not clean"
1523 " -- starting background reconstruction\n",
1524 mdname(mddev));
1528 int mdp_major = 0;
1530 static struct kobject *md_probe(dev_t dev, int *part, void *data)
1532 static DECLARE_MUTEX(disks_sem);
1533 mddev_t *mddev = mddev_find(dev);
1534 struct gendisk *disk;
1535 int partitioned = (MAJOR(dev) != MD_MAJOR);
1536 int shift = partitioned ? MdpMinorShift : 0;
1537 int unit = MINOR(dev) >> shift;
1539 if (!mddev)
1540 return NULL;
1542 down(&disks_sem);
1543 if (mddev->gendisk) {
1544 up(&disks_sem);
1545 mddev_put(mddev);
1546 return NULL;
1548 disk = alloc_disk(1 << shift);
1549 if (!disk) {
1550 up(&disks_sem);
1551 mddev_put(mddev);
1552 return NULL;
1554 disk->major = MAJOR(dev);
1555 disk->first_minor = unit << shift;
1556 if (partitioned) {
1557 sprintf(disk->disk_name, "md_d%d", unit);
1558 sprintf(disk->devfs_name, "md/d%d", unit);
1559 } else {
1560 sprintf(disk->disk_name, "md%d", unit);
1561 sprintf(disk->devfs_name, "md/%d", unit);
1563 disk->fops = &md_fops;
1564 disk->private_data = mddev;
1565 disk->queue = mddev->queue;
1566 add_disk(disk);
1567 mddev->gendisk = disk;
1568 up(&disks_sem);
1569 return NULL;
1572 void md_wakeup_thread(mdk_thread_t *thread);
1574 static void md_safemode_timeout(unsigned long data)
1576 mddev_t *mddev = (mddev_t *) data;
1578 mddev->safemode = 1;
1579 md_wakeup_thread(mddev->thread);
1583 static int do_md_run(mddev_t * mddev)
1585 int pnum, err;
1586 int chunk_size;
1587 struct list_head *tmp;
1588 mdk_rdev_t *rdev;
1589 struct gendisk *disk;
1590 char b[BDEVNAME_SIZE];
1592 if (list_empty(&mddev->disks))
1593 /* cannot run an array with no devices.. */
1594 return -EINVAL;
1596 if (mddev->pers)
1597 return -EBUSY;
1600 * Analyze all RAID superblock(s)
1602 if (!mddev->raid_disks)
1603 analyze_sbs(mddev);
1605 chunk_size = mddev->chunk_size;
1606 pnum = level_to_pers(mddev->level);
1608 if ((pnum != MULTIPATH) && (pnum != RAID1)) {
1609 if (!chunk_size) {
1611 * 'default chunksize' in the old md code used to
1612 * be PAGE_SIZE, baaad.
1613 * we abort here to be on the safe side. We don't
1614 * want to continue the bad practice.
1616 printk(KERN_ERR
1617 "no chunksize specified, see 'man raidtab'\n");
1618 return -EINVAL;
1620 if (chunk_size > MAX_CHUNK_SIZE) {
1621 printk(KERN_ERR "too big chunk_size: %d > %d\n",
1622 chunk_size, MAX_CHUNK_SIZE);
1623 return -EINVAL;
1626 * chunk-size has to be a power of 2 and multiples of PAGE_SIZE
1628 if ( (1 << ffz(~chunk_size)) != chunk_size) {
1629 printk(KERN_ERR "chunk_size of %d not valid\n", chunk_size);
1630 return -EINVAL;
1632 if (chunk_size < PAGE_SIZE) {
1633 printk(KERN_ERR "too small chunk_size: %d < %ld\n",
1634 chunk_size, PAGE_SIZE);
1635 return -EINVAL;
1638 /* devices must have minimum size of one chunk */
1639 ITERATE_RDEV(mddev,rdev,tmp) {
1640 if (rdev->faulty)
1641 continue;
1642 if (rdev->size < chunk_size / 1024) {
1643 printk(KERN_WARNING
1644 "md: Dev %s smaller than chunk_size:"
1645 " %lluk < %dk\n",
1646 bdevname(rdev->bdev,b),
1647 (unsigned long long)rdev->size,
1648 chunk_size / 1024);
1649 return -EINVAL;
1654 #ifdef CONFIG_KMOD
1655 if (!pers[pnum])
1657 request_module("md-personality-%d", pnum);
1659 #endif
1662 * Drop all container device buffers, from now on
1663 * the only valid external interface is through the md
1664 * device.
1665 * Also find largest hardsector size
1667 ITERATE_RDEV(mddev,rdev,tmp) {
1668 if (rdev->faulty)
1669 continue;
1670 sync_blockdev(rdev->bdev);
1671 invalidate_bdev(rdev->bdev, 0);
1674 md_probe(mddev->unit, NULL, NULL);
1675 disk = mddev->gendisk;
1676 if (!disk)
1677 return -ENOMEM;
1679 spin_lock(&pers_lock);
1680 if (!pers[pnum] || !try_module_get(pers[pnum]->owner)) {
1681 spin_unlock(&pers_lock);
1682 printk(KERN_WARNING "md: personality %d is not loaded!\n",
1683 pnum);
1684 return -EINVAL;
1687 mddev->pers = pers[pnum];
1688 spin_unlock(&pers_lock);
1690 mddev->resync_max_sectors = mddev->size << 1; /* may be over-ridden by personality */
1692 /* before we start the array running, initialise the bitmap */
1693 err = bitmap_create(mddev);
1694 if (err)
1695 printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
1696 mdname(mddev), err);
1697 else
1698 err = mddev->pers->run(mddev);
1699 if (err) {
1700 printk(KERN_ERR "md: pers->run() failed ...\n");
1701 module_put(mddev->pers->owner);
1702 mddev->pers = NULL;
1703 bitmap_destroy(mddev);
1704 return err;
1706 atomic_set(&mddev->writes_pending,0);
1707 mddev->safemode = 0;
1708 mddev->safemode_timer.function = md_safemode_timeout;
1709 mddev->safemode_timer.data = (unsigned long) mddev;
1710 mddev->safemode_delay = (20 * HZ)/1000 +1; /* 20 msec delay */
1711 mddev->in_sync = 1;
1713 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
1715 if (mddev->sb_dirty)
1716 md_update_sb(mddev);
1718 set_capacity(disk, mddev->array_size<<1);
1720 /* If we call blk_queue_make_request here, it will
1721 * re-initialise max_sectors etc which may have been
1722 * refined inside -> run. So just set the bits we need to set.
1723 * Most initialisation happended when we called
1724 * blk_queue_make_request(..., md_fail_request)
1725 * earlier.
1727 mddev->queue->queuedata = mddev;
1728 mddev->queue->make_request_fn = mddev->pers->make_request;
1730 mddev->changed = 1;
1731 return 0;
1734 static int restart_array(mddev_t *mddev)
1736 struct gendisk *disk = mddev->gendisk;
1737 int err;
1740 * Complain if it has no devices
1742 err = -ENXIO;
1743 if (list_empty(&mddev->disks))
1744 goto out;
1746 if (mddev->pers) {
1747 err = -EBUSY;
1748 if (!mddev->ro)
1749 goto out;
1751 mddev->safemode = 0;
1752 mddev->ro = 0;
1753 set_disk_ro(disk, 0);
1755 printk(KERN_INFO "md: %s switched to read-write mode.\n",
1756 mdname(mddev));
1758 * Kick recovery or resync if necessary
1760 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
1761 md_wakeup_thread(mddev->thread);
1762 err = 0;
1763 } else {
1764 printk(KERN_ERR "md: %s has no personality assigned.\n",
1765 mdname(mddev));
1766 err = -EINVAL;
1769 out:
1770 return err;
1773 static int do_md_stop(mddev_t * mddev, int ro)
1775 int err = 0;
1776 struct gendisk *disk = mddev->gendisk;
1778 if (mddev->pers) {
1779 if (atomic_read(&mddev->active)>2) {
1780 printk("md: %s still in use.\n",mdname(mddev));
1781 return -EBUSY;
1784 if (mddev->sync_thread) {
1785 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1786 md_unregister_thread(mddev->sync_thread);
1787 mddev->sync_thread = NULL;
1790 del_timer_sync(&mddev->safemode_timer);
1792 invalidate_partition(disk, 0);
1794 if (ro) {
1795 err = -ENXIO;
1796 if (mddev->ro)
1797 goto out;
1798 mddev->ro = 1;
1799 } else {
1800 if (mddev->ro)
1801 set_disk_ro(disk, 0);
1802 blk_queue_make_request(mddev->queue, md_fail_request);
1803 mddev->pers->stop(mddev);
1804 module_put(mddev->pers->owner);
1805 mddev->pers = NULL;
1806 if (mddev->ro)
1807 mddev->ro = 0;
1809 if (!mddev->in_sync) {
1810 /* mark array as shutdown cleanly */
1811 mddev->in_sync = 1;
1812 md_update_sb(mddev);
1814 if (ro)
1815 set_disk_ro(disk, 1);
1818 bitmap_destroy(mddev);
1819 if (mddev->bitmap_file) {
1820 atomic_set(&mddev->bitmap_file->f_dentry->d_inode->i_writecount, 1);
1821 fput(mddev->bitmap_file);
1822 mddev->bitmap_file = NULL;
1826 * Free resources if final stop
1828 if (!ro) {
1829 struct gendisk *disk;
1830 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
1832 export_array(mddev);
1834 mddev->array_size = 0;
1835 disk = mddev->gendisk;
1836 if (disk)
1837 set_capacity(disk, 0);
1838 mddev->changed = 1;
1839 } else
1840 printk(KERN_INFO "md: %s switched to read-only mode.\n",
1841 mdname(mddev));
1842 err = 0;
1843 out:
1844 return err;
1847 static void autorun_array(mddev_t *mddev)
1849 mdk_rdev_t *rdev;
1850 struct list_head *tmp;
1851 int err;
1853 if (list_empty(&mddev->disks))
1854 return;
1856 printk(KERN_INFO "md: running: ");
1858 ITERATE_RDEV(mddev,rdev,tmp) {
1859 char b[BDEVNAME_SIZE];
1860 printk("<%s>", bdevname(rdev->bdev,b));
1862 printk("\n");
1864 err = do_md_run (mddev);
1865 if (err) {
1866 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
1867 do_md_stop (mddev, 0);
1872 * lets try to run arrays based on all disks that have arrived
1873 * until now. (those are in pending_raid_disks)
1875 * the method: pick the first pending disk, collect all disks with
1876 * the same UUID, remove all from the pending list and put them into
1877 * the 'same_array' list. Then order this list based on superblock
1878 * update time (freshest comes first), kick out 'old' disks and
1879 * compare superblocks. If everything's fine then run it.
1881 * If "unit" is allocated, then bump its reference count
1883 static void autorun_devices(int part)
1885 struct list_head candidates;
1886 struct list_head *tmp;
1887 mdk_rdev_t *rdev0, *rdev;
1888 mddev_t *mddev;
1889 char b[BDEVNAME_SIZE];
1891 printk(KERN_INFO "md: autorun ...\n");
1892 while (!list_empty(&pending_raid_disks)) {
1893 dev_t dev;
1894 rdev0 = list_entry(pending_raid_disks.next,
1895 mdk_rdev_t, same_set);
1897 printk(KERN_INFO "md: considering %s ...\n",
1898 bdevname(rdev0->bdev,b));
1899 INIT_LIST_HEAD(&candidates);
1900 ITERATE_RDEV_PENDING(rdev,tmp)
1901 if (super_90_load(rdev, rdev0, 0) >= 0) {
1902 printk(KERN_INFO "md: adding %s ...\n",
1903 bdevname(rdev->bdev,b));
1904 list_move(&rdev->same_set, &candidates);
1907 * now we have a set of devices, with all of them having
1908 * mostly sane superblocks. It's time to allocate the
1909 * mddev.
1911 if (rdev0->preferred_minor < 0 || rdev0->preferred_minor >= MAX_MD_DEVS) {
1912 printk(KERN_INFO "md: unit number in %s is bad: %d\n",
1913 bdevname(rdev0->bdev, b), rdev0->preferred_minor);
1914 break;
1916 if (part)
1917 dev = MKDEV(mdp_major,
1918 rdev0->preferred_minor << MdpMinorShift);
1919 else
1920 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
1922 md_probe(dev, NULL, NULL);
1923 mddev = mddev_find(dev);
1924 if (!mddev) {
1925 printk(KERN_ERR
1926 "md: cannot allocate memory for md drive.\n");
1927 break;
1929 if (mddev_lock(mddev))
1930 printk(KERN_WARNING "md: %s locked, cannot run\n",
1931 mdname(mddev));
1932 else if (mddev->raid_disks || mddev->major_version
1933 || !list_empty(&mddev->disks)) {
1934 printk(KERN_WARNING
1935 "md: %s already running, cannot run %s\n",
1936 mdname(mddev), bdevname(rdev0->bdev,b));
1937 mddev_unlock(mddev);
1938 } else {
1939 printk(KERN_INFO "md: created %s\n", mdname(mddev));
1940 ITERATE_RDEV_GENERIC(candidates,rdev,tmp) {
1941 list_del_init(&rdev->same_set);
1942 if (bind_rdev_to_array(rdev, mddev))
1943 export_rdev(rdev);
1945 autorun_array(mddev);
1946 mddev_unlock(mddev);
1948 /* on success, candidates will be empty, on error
1949 * it won't...
1951 ITERATE_RDEV_GENERIC(candidates,rdev,tmp)
1952 export_rdev(rdev);
1953 mddev_put(mddev);
1955 printk(KERN_INFO "md: ... autorun DONE.\n");
1959 * import RAID devices based on one partition
1960 * if possible, the array gets run as well.
1963 static int autostart_array(dev_t startdev)
1965 char b[BDEVNAME_SIZE];
1966 int err = -EINVAL, i;
1967 mdp_super_t *sb = NULL;
1968 mdk_rdev_t *start_rdev = NULL, *rdev;
1970 start_rdev = md_import_device(startdev, 0, 0);
1971 if (IS_ERR(start_rdev))
1972 return err;
1975 /* NOTE: this can only work for 0.90.0 superblocks */
1976 sb = (mdp_super_t*)page_address(start_rdev->sb_page);
1977 if (sb->major_version != 0 ||
1978 sb->minor_version != 90 ) {
1979 printk(KERN_WARNING "md: can only autostart 0.90.0 arrays\n");
1980 export_rdev(start_rdev);
1981 return err;
1984 if (start_rdev->faulty) {
1985 printk(KERN_WARNING
1986 "md: can not autostart based on faulty %s!\n",
1987 bdevname(start_rdev->bdev,b));
1988 export_rdev(start_rdev);
1989 return err;
1991 list_add(&start_rdev->same_set, &pending_raid_disks);
1993 for (i = 0; i < MD_SB_DISKS; i++) {
1994 mdp_disk_t *desc = sb->disks + i;
1995 dev_t dev = MKDEV(desc->major, desc->minor);
1997 if (!dev)
1998 continue;
1999 if (dev == startdev)
2000 continue;
2001 if (MAJOR(dev) != desc->major || MINOR(dev) != desc->minor)
2002 continue;
2003 rdev = md_import_device(dev, 0, 0);
2004 if (IS_ERR(rdev))
2005 continue;
2007 list_add(&rdev->same_set, &pending_raid_disks);
2011 * possibly return codes
2013 autorun_devices(0);
2014 return 0;
2019 static int get_version(void __user * arg)
2021 mdu_version_t ver;
2023 ver.major = MD_MAJOR_VERSION;
2024 ver.minor = MD_MINOR_VERSION;
2025 ver.patchlevel = MD_PATCHLEVEL_VERSION;
2027 if (copy_to_user(arg, &ver, sizeof(ver)))
2028 return -EFAULT;
2030 return 0;
2033 static int get_array_info(mddev_t * mddev, void __user * arg)
2035 mdu_array_info_t info;
2036 int nr,working,active,failed,spare;
2037 mdk_rdev_t *rdev;
2038 struct list_head *tmp;
2040 nr=working=active=failed=spare=0;
2041 ITERATE_RDEV(mddev,rdev,tmp) {
2042 nr++;
2043 if (rdev->faulty)
2044 failed++;
2045 else {
2046 working++;
2047 if (rdev->in_sync)
2048 active++;
2049 else
2050 spare++;
2054 info.major_version = mddev->major_version;
2055 info.minor_version = mddev->minor_version;
2056 info.patch_version = MD_PATCHLEVEL_VERSION;
2057 info.ctime = mddev->ctime;
2058 info.level = mddev->level;
2059 info.size = mddev->size;
2060 info.nr_disks = nr;
2061 info.raid_disks = mddev->raid_disks;
2062 info.md_minor = mddev->md_minor;
2063 info.not_persistent= !mddev->persistent;
2065 info.utime = mddev->utime;
2066 info.state = 0;
2067 if (mddev->in_sync)
2068 info.state = (1<<MD_SB_CLEAN);
2069 info.active_disks = active;
2070 info.working_disks = working;
2071 info.failed_disks = failed;
2072 info.spare_disks = spare;
2074 info.layout = mddev->layout;
2075 info.chunk_size = mddev->chunk_size;
2077 if (copy_to_user(arg, &info, sizeof(info)))
2078 return -EFAULT;
2080 return 0;
2083 static int get_bitmap_file(mddev_t * mddev, void * arg)
2085 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
2086 char *ptr, *buf = NULL;
2087 int err = -ENOMEM;
2089 file = kmalloc(sizeof(*file), GFP_KERNEL);
2090 if (!file)
2091 goto out;
2093 /* bitmap disabled, zero the first byte and copy out */
2094 if (!mddev->bitmap || !mddev->bitmap->file) {
2095 file->pathname[0] = '\0';
2096 goto copy_out;
2099 buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
2100 if (!buf)
2101 goto out;
2103 ptr = file_path(mddev->bitmap->file, buf, sizeof(file->pathname));
2104 if (!ptr)
2105 goto out;
2107 strcpy(file->pathname, ptr);
2109 copy_out:
2110 err = 0;
2111 if (copy_to_user(arg, file, sizeof(*file)))
2112 err = -EFAULT;
2113 out:
2114 kfree(buf);
2115 kfree(file);
2116 return err;
2119 static int get_disk_info(mddev_t * mddev, void __user * arg)
2121 mdu_disk_info_t info;
2122 unsigned int nr;
2123 mdk_rdev_t *rdev;
2125 if (copy_from_user(&info, arg, sizeof(info)))
2126 return -EFAULT;
2128 nr = info.number;
2130 rdev = find_rdev_nr(mddev, nr);
2131 if (rdev) {
2132 info.major = MAJOR(rdev->bdev->bd_dev);
2133 info.minor = MINOR(rdev->bdev->bd_dev);
2134 info.raid_disk = rdev->raid_disk;
2135 info.state = 0;
2136 if (rdev->faulty)
2137 info.state |= (1<<MD_DISK_FAULTY);
2138 else if (rdev->in_sync) {
2139 info.state |= (1<<MD_DISK_ACTIVE);
2140 info.state |= (1<<MD_DISK_SYNC);
2142 } else {
2143 info.major = info.minor = 0;
2144 info.raid_disk = -1;
2145 info.state = (1<<MD_DISK_REMOVED);
2148 if (copy_to_user(arg, &info, sizeof(info)))
2149 return -EFAULT;
2151 return 0;
2154 static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
2156 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
2157 mdk_rdev_t *rdev;
2158 dev_t dev = MKDEV(info->major,info->minor);
2160 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
2161 return -EOVERFLOW;
2163 if (!mddev->raid_disks) {
2164 int err;
2165 /* expecting a device which has a superblock */
2166 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
2167 if (IS_ERR(rdev)) {
2168 printk(KERN_WARNING
2169 "md: md_import_device returned %ld\n",
2170 PTR_ERR(rdev));
2171 return PTR_ERR(rdev);
2173 if (!list_empty(&mddev->disks)) {
2174 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
2175 mdk_rdev_t, same_set);
2176 int err = super_types[mddev->major_version]
2177 .load_super(rdev, rdev0, mddev->minor_version);
2178 if (err < 0) {
2179 printk(KERN_WARNING
2180 "md: %s has different UUID to %s\n",
2181 bdevname(rdev->bdev,b),
2182 bdevname(rdev0->bdev,b2));
2183 export_rdev(rdev);
2184 return -EINVAL;
2187 err = bind_rdev_to_array(rdev, mddev);
2188 if (err)
2189 export_rdev(rdev);
2190 return err;
2194 * add_new_disk can be used once the array is assembled
2195 * to add "hot spares". They must already have a superblock
2196 * written
2198 if (mddev->pers) {
2199 int err;
2200 if (!mddev->pers->hot_add_disk) {
2201 printk(KERN_WARNING
2202 "%s: personality does not support diskops!\n",
2203 mdname(mddev));
2204 return -EINVAL;
2206 rdev = md_import_device(dev, mddev->major_version,
2207 mddev->minor_version);
2208 if (IS_ERR(rdev)) {
2209 printk(KERN_WARNING
2210 "md: md_import_device returned %ld\n",
2211 PTR_ERR(rdev));
2212 return PTR_ERR(rdev);
2214 /* set save_raid_disk if appropriate */
2215 if (!mddev->persistent) {
2216 if (info->state & (1<<MD_DISK_SYNC) &&
2217 info->raid_disk < mddev->raid_disks)
2218 rdev->raid_disk = info->raid_disk;
2219 else
2220 rdev->raid_disk = -1;
2221 } else
2222 super_types[mddev->major_version].
2223 validate_super(mddev, rdev);
2224 rdev->saved_raid_disk = rdev->raid_disk;
2226 rdev->in_sync = 0; /* just to be sure */
2227 rdev->raid_disk = -1;
2228 err = bind_rdev_to_array(rdev, mddev);
2229 if (err)
2230 export_rdev(rdev);
2232 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2233 if (mddev->thread)
2234 md_wakeup_thread(mddev->thread);
2235 return err;
2238 /* otherwise, add_new_disk is only allowed
2239 * for major_version==0 superblocks
2241 if (mddev->major_version != 0) {
2242 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
2243 mdname(mddev));
2244 return -EINVAL;
2247 if (!(info->state & (1<<MD_DISK_FAULTY))) {
2248 int err;
2249 rdev = md_import_device (dev, -1, 0);
2250 if (IS_ERR(rdev)) {
2251 printk(KERN_WARNING
2252 "md: error, md_import_device() returned %ld\n",
2253 PTR_ERR(rdev));
2254 return PTR_ERR(rdev);
2256 rdev->desc_nr = info->number;
2257 if (info->raid_disk < mddev->raid_disks)
2258 rdev->raid_disk = info->raid_disk;
2259 else
2260 rdev->raid_disk = -1;
2262 rdev->faulty = 0;
2263 if (rdev->raid_disk < mddev->raid_disks)
2264 rdev->in_sync = (info->state & (1<<MD_DISK_SYNC));
2265 else
2266 rdev->in_sync = 0;
2268 err = bind_rdev_to_array(rdev, mddev);
2269 if (err) {
2270 export_rdev(rdev);
2271 return err;
2274 if (!mddev->persistent) {
2275 printk(KERN_INFO "md: nonpersistent superblock ...\n");
2276 rdev->sb_offset = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
2277 } else
2278 rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
2279 rdev->size = calc_dev_size(rdev, mddev->chunk_size);
2281 if (!mddev->size || (mddev->size > rdev->size))
2282 mddev->size = rdev->size;
2285 return 0;
2288 static int hot_remove_disk(mddev_t * mddev, dev_t dev)
2290 char b[BDEVNAME_SIZE];
2291 mdk_rdev_t *rdev;
2293 if (!mddev->pers)
2294 return -ENODEV;
2296 rdev = find_rdev(mddev, dev);
2297 if (!rdev)
2298 return -ENXIO;
2300 if (rdev->raid_disk >= 0)
2301 goto busy;
2303 kick_rdev_from_array(rdev);
2304 md_update_sb(mddev);
2306 return 0;
2307 busy:
2308 printk(KERN_WARNING "md: cannot remove active disk %s from %s ... \n",
2309 bdevname(rdev->bdev,b), mdname(mddev));
2310 return -EBUSY;
2313 static int hot_add_disk(mddev_t * mddev, dev_t dev)
2315 char b[BDEVNAME_SIZE];
2316 int err;
2317 unsigned int size;
2318 mdk_rdev_t *rdev;
2320 if (!mddev->pers)
2321 return -ENODEV;
2323 if (mddev->major_version != 0) {
2324 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
2325 " version-0 superblocks.\n",
2326 mdname(mddev));
2327 return -EINVAL;
2329 if (!mddev->pers->hot_add_disk) {
2330 printk(KERN_WARNING
2331 "%s: personality does not support diskops!\n",
2332 mdname(mddev));
2333 return -EINVAL;
2336 rdev = md_import_device (dev, -1, 0);
2337 if (IS_ERR(rdev)) {
2338 printk(KERN_WARNING
2339 "md: error, md_import_device() returned %ld\n",
2340 PTR_ERR(rdev));
2341 return -EINVAL;
2344 if (mddev->persistent)
2345 rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
2346 else
2347 rdev->sb_offset =
2348 rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
2350 size = calc_dev_size(rdev, mddev->chunk_size);
2351 rdev->size = size;
2353 if (size < mddev->size) {
2354 printk(KERN_WARNING
2355 "%s: disk size %llu blocks < array size %llu\n",
2356 mdname(mddev), (unsigned long long)size,
2357 (unsigned long long)mddev->size);
2358 err = -ENOSPC;
2359 goto abort_export;
2362 if (rdev->faulty) {
2363 printk(KERN_WARNING
2364 "md: can not hot-add faulty %s disk to %s!\n",
2365 bdevname(rdev->bdev,b), mdname(mddev));
2366 err = -EINVAL;
2367 goto abort_export;
2369 rdev->in_sync = 0;
2370 rdev->desc_nr = -1;
2371 bind_rdev_to_array(rdev, mddev);
2374 * The rest should better be atomic, we can have disk failures
2375 * noticed in interrupt contexts ...
2378 if (rdev->desc_nr == mddev->max_disks) {
2379 printk(KERN_WARNING "%s: can not hot-add to full array!\n",
2380 mdname(mddev));
2381 err = -EBUSY;
2382 goto abort_unbind_export;
2385 rdev->raid_disk = -1;
2387 md_update_sb(mddev);
2390 * Kick recovery, maybe this spare has to be added to the
2391 * array immediately.
2393 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2394 md_wakeup_thread(mddev->thread);
2396 return 0;
2398 abort_unbind_export:
2399 unbind_rdev_from_array(rdev);
2401 abort_export:
2402 export_rdev(rdev);
2403 return err;
2406 /* similar to deny_write_access, but accounts for our holding a reference
2407 * to the file ourselves */
2408 static int deny_bitmap_write_access(struct file * file)
2410 struct inode *inode = file->f_mapping->host;
2412 spin_lock(&inode->i_lock);
2413 if (atomic_read(&inode->i_writecount) > 1) {
2414 spin_unlock(&inode->i_lock);
2415 return -ETXTBSY;
2417 atomic_set(&inode->i_writecount, -1);
2418 spin_unlock(&inode->i_lock);
2420 return 0;
2423 static int set_bitmap_file(mddev_t *mddev, int fd)
2425 int err;
2427 if (mddev->pers)
2428 return -EBUSY;
2430 mddev->bitmap_file = fget(fd);
2432 if (mddev->bitmap_file == NULL) {
2433 printk(KERN_ERR "%s: error: failed to get bitmap file\n",
2434 mdname(mddev));
2435 return -EBADF;
2438 err = deny_bitmap_write_access(mddev->bitmap_file);
2439 if (err) {
2440 printk(KERN_ERR "%s: error: bitmap file is already in use\n",
2441 mdname(mddev));
2442 fput(mddev->bitmap_file);
2443 mddev->bitmap_file = NULL;
2444 } else
2445 mddev->bitmap_offset = 0; /* file overrides offset */
2446 return err;
2450 * set_array_info is used two different ways
2451 * The original usage is when creating a new array.
2452 * In this usage, raid_disks is > 0 and it together with
2453 * level, size, not_persistent,layout,chunksize determine the
2454 * shape of the array.
2455 * This will always create an array with a type-0.90.0 superblock.
2456 * The newer usage is when assembling an array.
2457 * In this case raid_disks will be 0, and the major_version field is
2458 * use to determine which style super-blocks are to be found on the devices.
2459 * The minor and patch _version numbers are also kept incase the
2460 * super_block handler wishes to interpret them.
2462 static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
2465 if (info->raid_disks == 0) {
2466 /* just setting version number for superblock loading */
2467 if (info->major_version < 0 ||
2468 info->major_version >= sizeof(super_types)/sizeof(super_types[0]) ||
2469 super_types[info->major_version].name == NULL) {
2470 /* maybe try to auto-load a module? */
2471 printk(KERN_INFO
2472 "md: superblock version %d not known\n",
2473 info->major_version);
2474 return -EINVAL;
2476 mddev->major_version = info->major_version;
2477 mddev->minor_version = info->minor_version;
2478 mddev->patch_version = info->patch_version;
2479 return 0;
2481 mddev->major_version = MD_MAJOR_VERSION;
2482 mddev->minor_version = MD_MINOR_VERSION;
2483 mddev->patch_version = MD_PATCHLEVEL_VERSION;
2484 mddev->ctime = get_seconds();
2486 mddev->level = info->level;
2487 mddev->size = info->size;
2488 mddev->raid_disks = info->raid_disks;
2489 /* don't set md_minor, it is determined by which /dev/md* was
2490 * openned
2492 if (info->state & (1<<MD_SB_CLEAN))
2493 mddev->recovery_cp = MaxSector;
2494 else
2495 mddev->recovery_cp = 0;
2496 mddev->persistent = ! info->not_persistent;
2498 mddev->layout = info->layout;
2499 mddev->chunk_size = info->chunk_size;
2501 mddev->max_disks = MD_SB_DISKS;
2503 mddev->sb_dirty = 1;
2506 * Generate a 128 bit UUID
2508 get_random_bytes(mddev->uuid, 16);
2510 return 0;
2514 * update_array_info is used to change the configuration of an
2515 * on-line array.
2516 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
2517 * fields in the info are checked against the array.
2518 * Any differences that cannot be handled will cause an error.
2519 * Normally, only one change can be managed at a time.
2521 static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
2523 int rv = 0;
2524 int cnt = 0;
2526 if (mddev->major_version != info->major_version ||
2527 mddev->minor_version != info->minor_version ||
2528 /* mddev->patch_version != info->patch_version || */
2529 mddev->ctime != info->ctime ||
2530 mddev->level != info->level ||
2531 /* mddev->layout != info->layout || */
2532 !mddev->persistent != info->not_persistent||
2533 mddev->chunk_size != info->chunk_size )
2534 return -EINVAL;
2535 /* Check there is only one change */
2536 if (mddev->size != info->size) cnt++;
2537 if (mddev->raid_disks != info->raid_disks) cnt++;
2538 if (mddev->layout != info->layout) cnt++;
2539 if (cnt == 0) return 0;
2540 if (cnt > 1) return -EINVAL;
2542 if (mddev->layout != info->layout) {
2543 /* Change layout
2544 * we don't need to do anything at the md level, the
2545 * personality will take care of it all.
2547 if (mddev->pers->reconfig == NULL)
2548 return -EINVAL;
2549 else
2550 return mddev->pers->reconfig(mddev, info->layout, -1);
2552 if (mddev->size != info->size) {
2553 mdk_rdev_t * rdev;
2554 struct list_head *tmp;
2555 if (mddev->pers->resize == NULL)
2556 return -EINVAL;
2557 /* The "size" is the amount of each device that is used.
2558 * This can only make sense for arrays with redundancy.
2559 * linear and raid0 always use whatever space is available
2560 * We can only consider changing the size if no resync
2561 * or reconstruction is happening, and if the new size
2562 * is acceptable. It must fit before the sb_offset or,
2563 * if that is <data_offset, it must fit before the
2564 * size of each device.
2565 * If size is zero, we find the largest size that fits.
2567 if (mddev->sync_thread)
2568 return -EBUSY;
2569 ITERATE_RDEV(mddev,rdev,tmp) {
2570 sector_t avail;
2571 int fit = (info->size == 0);
2572 if (rdev->sb_offset > rdev->data_offset)
2573 avail = (rdev->sb_offset*2) - rdev->data_offset;
2574 else
2575 avail = get_capacity(rdev->bdev->bd_disk)
2576 - rdev->data_offset;
2577 if (fit && (info->size == 0 || info->size > avail/2))
2578 info->size = avail/2;
2579 if (avail < ((sector_t)info->size << 1))
2580 return -ENOSPC;
2582 rv = mddev->pers->resize(mddev, (sector_t)info->size *2);
2583 if (!rv) {
2584 struct block_device *bdev;
2586 bdev = bdget_disk(mddev->gendisk, 0);
2587 if (bdev) {
2588 down(&bdev->bd_inode->i_sem);
2589 i_size_write(bdev->bd_inode, mddev->array_size << 10);
2590 up(&bdev->bd_inode->i_sem);
2591 bdput(bdev);
2595 if (mddev->raid_disks != info->raid_disks) {
2596 /* change the number of raid disks */
2597 if (mddev->pers->reshape == NULL)
2598 return -EINVAL;
2599 if (info->raid_disks <= 0 ||
2600 info->raid_disks >= mddev->max_disks)
2601 return -EINVAL;
2602 if (mddev->sync_thread)
2603 return -EBUSY;
2604 rv = mddev->pers->reshape(mddev, info->raid_disks);
2605 if (!rv) {
2606 struct block_device *bdev;
2608 bdev = bdget_disk(mddev->gendisk, 0);
2609 if (bdev) {
2610 down(&bdev->bd_inode->i_sem);
2611 i_size_write(bdev->bd_inode, mddev->array_size << 10);
2612 up(&bdev->bd_inode->i_sem);
2613 bdput(bdev);
2617 md_update_sb(mddev);
2618 return rv;
2621 static int set_disk_faulty(mddev_t *mddev, dev_t dev)
2623 mdk_rdev_t *rdev;
2625 if (mddev->pers == NULL)
2626 return -ENODEV;
2628 rdev = find_rdev(mddev, dev);
2629 if (!rdev)
2630 return -ENODEV;
2632 md_error(mddev, rdev);
2633 return 0;
2636 static int md_ioctl(struct inode *inode, struct file *file,
2637 unsigned int cmd, unsigned long arg)
2639 int err = 0;
2640 void __user *argp = (void __user *)arg;
2641 struct hd_geometry __user *loc = argp;
2642 mddev_t *mddev = NULL;
2644 if (!capable(CAP_SYS_ADMIN))
2645 return -EACCES;
2648 * Commands dealing with the RAID driver but not any
2649 * particular array:
2651 switch (cmd)
2653 case RAID_VERSION:
2654 err = get_version(argp);
2655 goto done;
2657 case PRINT_RAID_DEBUG:
2658 err = 0;
2659 md_print_devices();
2660 goto done;
2662 #ifndef MODULE
2663 case RAID_AUTORUN:
2664 err = 0;
2665 autostart_arrays(arg);
2666 goto done;
2667 #endif
2668 default:;
2672 * Commands creating/starting a new array:
2675 mddev = inode->i_bdev->bd_disk->private_data;
2677 if (!mddev) {
2678 BUG();
2679 goto abort;
2683 if (cmd == START_ARRAY) {
2684 /* START_ARRAY doesn't need to lock the array as autostart_array
2685 * does the locking, and it could even be a different array
2687 static int cnt = 3;
2688 if (cnt > 0 ) {
2689 printk(KERN_WARNING
2690 "md: %s(pid %d) used deprecated START_ARRAY ioctl. "
2691 "This will not be supported beyond 2.6\n",
2692 current->comm, current->pid);
2693 cnt--;
2695 err = autostart_array(new_decode_dev(arg));
2696 if (err) {
2697 printk(KERN_WARNING "md: autostart failed!\n");
2698 goto abort;
2700 goto done;
2703 err = mddev_lock(mddev);
2704 if (err) {
2705 printk(KERN_INFO
2706 "md: ioctl lock interrupted, reason %d, cmd %d\n",
2707 err, cmd);
2708 goto abort;
2711 switch (cmd)
2713 case SET_ARRAY_INFO:
2715 mdu_array_info_t info;
2716 if (!arg)
2717 memset(&info, 0, sizeof(info));
2718 else if (copy_from_user(&info, argp, sizeof(info))) {
2719 err = -EFAULT;
2720 goto abort_unlock;
2722 if (mddev->pers) {
2723 err = update_array_info(mddev, &info);
2724 if (err) {
2725 printk(KERN_WARNING "md: couldn't update"
2726 " array info. %d\n", err);
2727 goto abort_unlock;
2729 goto done_unlock;
2731 if (!list_empty(&mddev->disks)) {
2732 printk(KERN_WARNING
2733 "md: array %s already has disks!\n",
2734 mdname(mddev));
2735 err = -EBUSY;
2736 goto abort_unlock;
2738 if (mddev->raid_disks) {
2739 printk(KERN_WARNING
2740 "md: array %s already initialised!\n",
2741 mdname(mddev));
2742 err = -EBUSY;
2743 goto abort_unlock;
2745 err = set_array_info(mddev, &info);
2746 if (err) {
2747 printk(KERN_WARNING "md: couldn't set"
2748 " array info. %d\n", err);
2749 goto abort_unlock;
2752 goto done_unlock;
2754 default:;
2758 * Commands querying/configuring an existing array:
2760 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
2761 * RUN_ARRAY, and SET_BITMAP_FILE are allowed */
2762 if (!mddev->raid_disks && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
2763 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE) {
2764 err = -ENODEV;
2765 goto abort_unlock;
2769 * Commands even a read-only array can execute:
2771 switch (cmd)
2773 case GET_ARRAY_INFO:
2774 err = get_array_info(mddev, argp);
2775 goto done_unlock;
2777 case GET_BITMAP_FILE:
2778 err = get_bitmap_file(mddev, (void *)arg);
2779 goto done_unlock;
2781 case GET_DISK_INFO:
2782 err = get_disk_info(mddev, argp);
2783 goto done_unlock;
2785 case RESTART_ARRAY_RW:
2786 err = restart_array(mddev);
2787 goto done_unlock;
2789 case STOP_ARRAY:
2790 err = do_md_stop (mddev, 0);
2791 goto done_unlock;
2793 case STOP_ARRAY_RO:
2794 err = do_md_stop (mddev, 1);
2795 goto done_unlock;
2798 * We have a problem here : there is no easy way to give a CHS
2799 * virtual geometry. We currently pretend that we have a 2 heads
2800 * 4 sectors (with a BIG number of cylinders...). This drives
2801 * dosfs just mad... ;-)
2803 case HDIO_GETGEO:
2804 if (!loc) {
2805 err = -EINVAL;
2806 goto abort_unlock;
2808 err = put_user (2, (char __user *) &loc->heads);
2809 if (err)
2810 goto abort_unlock;
2811 err = put_user (4, (char __user *) &loc->sectors);
2812 if (err)
2813 goto abort_unlock;
2814 err = put_user(get_capacity(mddev->gendisk)/8,
2815 (short __user *) &loc->cylinders);
2816 if (err)
2817 goto abort_unlock;
2818 err = put_user (get_start_sect(inode->i_bdev),
2819 (long __user *) &loc->start);
2820 goto done_unlock;
2824 * The remaining ioctls are changing the state of the
2825 * superblock, so we do not allow read-only arrays
2826 * here:
2828 if (mddev->ro) {
2829 err = -EROFS;
2830 goto abort_unlock;
2833 switch (cmd)
2835 case ADD_NEW_DISK:
2837 mdu_disk_info_t info;
2838 if (copy_from_user(&info, argp, sizeof(info)))
2839 err = -EFAULT;
2840 else
2841 err = add_new_disk(mddev, &info);
2842 goto done_unlock;
2845 case HOT_REMOVE_DISK:
2846 err = hot_remove_disk(mddev, new_decode_dev(arg));
2847 goto done_unlock;
2849 case HOT_ADD_DISK:
2850 err = hot_add_disk(mddev, new_decode_dev(arg));
2851 goto done_unlock;
2853 case SET_DISK_FAULTY:
2854 err = set_disk_faulty(mddev, new_decode_dev(arg));
2855 goto done_unlock;
2857 case RUN_ARRAY:
2858 err = do_md_run (mddev);
2859 goto done_unlock;
2861 case SET_BITMAP_FILE:
2862 err = set_bitmap_file(mddev, (int)arg);
2863 goto done_unlock;
2865 default:
2866 if (_IOC_TYPE(cmd) == MD_MAJOR)
2867 printk(KERN_WARNING "md: %s(pid %d) used"
2868 " obsolete MD ioctl, upgrade your"
2869 " software to use new ictls.\n",
2870 current->comm, current->pid);
2871 err = -EINVAL;
2872 goto abort_unlock;
2875 done_unlock:
2876 abort_unlock:
2877 mddev_unlock(mddev);
2879 return err;
2880 done:
2881 if (err)
2882 MD_BUG();
2883 abort:
2884 return err;
2887 static int md_open(struct inode *inode, struct file *file)
2890 * Succeed if we can lock the mddev, which confirms that
2891 * it isn't being stopped right now.
2893 mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
2894 int err;
2896 if ((err = mddev_lock(mddev)))
2897 goto out;
2899 err = 0;
2900 mddev_get(mddev);
2901 mddev_unlock(mddev);
2903 check_disk_change(inode->i_bdev);
2904 out:
2905 return err;
2908 static int md_release(struct inode *inode, struct file * file)
2910 mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
2912 if (!mddev)
2913 BUG();
2914 mddev_put(mddev);
2916 return 0;
2919 static int md_media_changed(struct gendisk *disk)
2921 mddev_t *mddev = disk->private_data;
2923 return mddev->changed;
2926 static int md_revalidate(struct gendisk *disk)
2928 mddev_t *mddev = disk->private_data;
2930 mddev->changed = 0;
2931 return 0;
2933 static struct block_device_operations md_fops =
2935 .owner = THIS_MODULE,
2936 .open = md_open,
2937 .release = md_release,
2938 .ioctl = md_ioctl,
2939 .media_changed = md_media_changed,
2940 .revalidate_disk= md_revalidate,
2943 static int md_thread(void * arg)
2945 mdk_thread_t *thread = arg;
2947 lock_kernel();
2950 * Detach thread
2953 daemonize(thread->name, mdname(thread->mddev));
2955 current->exit_signal = SIGCHLD;
2956 allow_signal(SIGKILL);
2957 thread->tsk = current;
2960 * md_thread is a 'system-thread', it's priority should be very
2961 * high. We avoid resource deadlocks individually in each
2962 * raid personality. (RAID5 does preallocation) We also use RR and
2963 * the very same RT priority as kswapd, thus we will never get
2964 * into a priority inversion deadlock.
2966 * we definitely have to have equal or higher priority than
2967 * bdflush, otherwise bdflush will deadlock if there are too
2968 * many dirty RAID5 blocks.
2970 unlock_kernel();
2972 complete(thread->event);
2973 while (thread->run) {
2974 void (*run)(mddev_t *);
2976 wait_event_interruptible_timeout(thread->wqueue,
2977 test_bit(THREAD_WAKEUP, &thread->flags),
2978 thread->timeout);
2979 if (current->flags & PF_FREEZE)
2980 refrigerator(PF_FREEZE);
2982 clear_bit(THREAD_WAKEUP, &thread->flags);
2984 run = thread->run;
2985 if (run)
2986 run(thread->mddev);
2988 if (signal_pending(current))
2989 flush_signals(current);
2991 complete(thread->event);
2992 return 0;
2995 void md_wakeup_thread(mdk_thread_t *thread)
2997 if (thread) {
2998 dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
2999 set_bit(THREAD_WAKEUP, &thread->flags);
3000 wake_up(&thread->wqueue);
3004 mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
3005 const char *name)
3007 mdk_thread_t *thread;
3008 int ret;
3009 struct completion event;
3011 thread = (mdk_thread_t *) kmalloc
3012 (sizeof(mdk_thread_t), GFP_KERNEL);
3013 if (!thread)
3014 return NULL;
3016 memset(thread, 0, sizeof(mdk_thread_t));
3017 init_waitqueue_head(&thread->wqueue);
3019 init_completion(&event);
3020 thread->event = &event;
3021 thread->run = run;
3022 thread->mddev = mddev;
3023 thread->name = name;
3024 thread->timeout = MAX_SCHEDULE_TIMEOUT;
3025 ret = kernel_thread(md_thread, thread, 0);
3026 if (ret < 0) {
3027 kfree(thread);
3028 return NULL;
3030 wait_for_completion(&event);
3031 return thread;
3034 void md_unregister_thread(mdk_thread_t *thread)
3036 struct completion event;
3038 init_completion(&event);
3040 thread->event = &event;
3042 /* As soon as ->run is set to NULL, the task could disappear,
3043 * so we need to hold tasklist_lock until we have sent the signal
3045 dprintk("interrupting MD-thread pid %d\n", thread->tsk->pid);
3046 read_lock(&tasklist_lock);
3047 thread->run = NULL;
3048 send_sig(SIGKILL, thread->tsk, 1);
3049 read_unlock(&tasklist_lock);
3050 wait_for_completion(&event);
3051 kfree(thread);
3054 void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
3056 if (!mddev) {
3057 MD_BUG();
3058 return;
3061 if (!rdev || rdev->faulty)
3062 return;
3064 dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
3065 mdname(mddev),
3066 MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
3067 __builtin_return_address(0),__builtin_return_address(1),
3068 __builtin_return_address(2),__builtin_return_address(3));
3070 if (!mddev->pers->error_handler)
3071 return;
3072 mddev->pers->error_handler(mddev,rdev);
3073 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3074 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3075 md_wakeup_thread(mddev->thread);
3078 /* seq_file implementation /proc/mdstat */
3080 static void status_unused(struct seq_file *seq)
3082 int i = 0;
3083 mdk_rdev_t *rdev;
3084 struct list_head *tmp;
3086 seq_printf(seq, "unused devices: ");
3088 ITERATE_RDEV_PENDING(rdev,tmp) {
3089 char b[BDEVNAME_SIZE];
3090 i++;
3091 seq_printf(seq, "%s ",
3092 bdevname(rdev->bdev,b));
3094 if (!i)
3095 seq_printf(seq, "<none>");
3097 seq_printf(seq, "\n");
3101 static void status_resync(struct seq_file *seq, mddev_t * mddev)
3103 unsigned long max_blocks, resync, res, dt, db, rt;
3105 resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active))/2;
3107 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3108 max_blocks = mddev->resync_max_sectors >> 1;
3109 else
3110 max_blocks = mddev->size;
3113 * Should not happen.
3115 if (!max_blocks) {
3116 MD_BUG();
3117 return;
3119 res = (resync/1024)*1000/(max_blocks/1024 + 1);
3121 int i, x = res/50, y = 20-x;
3122 seq_printf(seq, "[");
3123 for (i = 0; i < x; i++)
3124 seq_printf(seq, "=");
3125 seq_printf(seq, ">");
3126 for (i = 0; i < y; i++)
3127 seq_printf(seq, ".");
3128 seq_printf(seq, "] ");
3130 seq_printf(seq, " %s =%3lu.%lu%% (%lu/%lu)",
3131 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
3132 "resync" : "recovery"),
3133 res/10, res % 10, resync, max_blocks);
3136 * We do not want to overflow, so the order of operands and
3137 * the * 100 / 100 trick are important. We do a +1 to be
3138 * safe against division by zero. We only estimate anyway.
3140 * dt: time from mark until now
3141 * db: blocks written from mark until now
3142 * rt: remaining time
3144 dt = ((jiffies - mddev->resync_mark) / HZ);
3145 if (!dt) dt++;
3146 db = resync - (mddev->resync_mark_cnt/2);
3147 rt = (dt * ((max_blocks-resync) / (db/100+1)))/100;
3149 seq_printf(seq, " finish=%lu.%lumin", rt / 60, (rt % 60)/6);
3151 seq_printf(seq, " speed=%ldK/sec", db/dt);
3154 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
3156 struct list_head *tmp;
3157 loff_t l = *pos;
3158 mddev_t *mddev;
3160 if (l >= 0x10000)
3161 return NULL;
3162 if (!l--)
3163 /* header */
3164 return (void*)1;
3166 spin_lock(&all_mddevs_lock);
3167 list_for_each(tmp,&all_mddevs)
3168 if (!l--) {
3169 mddev = list_entry(tmp, mddev_t, all_mddevs);
3170 mddev_get(mddev);
3171 spin_unlock(&all_mddevs_lock);
3172 return mddev;
3174 spin_unlock(&all_mddevs_lock);
3175 if (!l--)
3176 return (void*)2;/* tail */
3177 return NULL;
3180 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3182 struct list_head *tmp;
3183 mddev_t *next_mddev, *mddev = v;
3185 ++*pos;
3186 if (v == (void*)2)
3187 return NULL;
3189 spin_lock(&all_mddevs_lock);
3190 if (v == (void*)1)
3191 tmp = all_mddevs.next;
3192 else
3193 tmp = mddev->all_mddevs.next;
3194 if (tmp != &all_mddevs)
3195 next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
3196 else {
3197 next_mddev = (void*)2;
3198 *pos = 0x10000;
3200 spin_unlock(&all_mddevs_lock);
3202 if (v != (void*)1)
3203 mddev_put(mddev);
3204 return next_mddev;
3208 static void md_seq_stop(struct seq_file *seq, void *v)
3210 mddev_t *mddev = v;
3212 if (mddev && v != (void*)1 && v != (void*)2)
3213 mddev_put(mddev);
3216 static int md_seq_show(struct seq_file *seq, void *v)
3218 mddev_t *mddev = v;
3219 sector_t size;
3220 struct list_head *tmp2;
3221 mdk_rdev_t *rdev;
3222 int i;
3223 struct bitmap *bitmap;
3225 if (v == (void*)1) {
3226 seq_printf(seq, "Personalities : ");
3227 spin_lock(&pers_lock);
3228 for (i = 0; i < MAX_PERSONALITY; i++)
3229 if (pers[i])
3230 seq_printf(seq, "[%s] ", pers[i]->name);
3232 spin_unlock(&pers_lock);
3233 seq_printf(seq, "\n");
3234 return 0;
3236 if (v == (void*)2) {
3237 status_unused(seq);
3238 return 0;
3241 if (mddev_lock(mddev)!=0)
3242 return -EINTR;
3243 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
3244 seq_printf(seq, "%s : %sactive", mdname(mddev),
3245 mddev->pers ? "" : "in");
3246 if (mddev->pers) {
3247 if (mddev->ro)
3248 seq_printf(seq, " (read-only)");
3249 seq_printf(seq, " %s", mddev->pers->name);
3252 size = 0;
3253 ITERATE_RDEV(mddev,rdev,tmp2) {
3254 char b[BDEVNAME_SIZE];
3255 seq_printf(seq, " %s[%d]",
3256 bdevname(rdev->bdev,b), rdev->desc_nr);
3257 if (rdev->faulty) {
3258 seq_printf(seq, "(F)");
3259 continue;
3261 size += rdev->size;
3264 if (!list_empty(&mddev->disks)) {
3265 if (mddev->pers)
3266 seq_printf(seq, "\n %llu blocks",
3267 (unsigned long long)mddev->array_size);
3268 else
3269 seq_printf(seq, "\n %llu blocks",
3270 (unsigned long long)size);
3273 if (mddev->pers) {
3274 mddev->pers->status (seq, mddev);
3275 seq_printf(seq, "\n ");
3276 if (mddev->curr_resync > 2) {
3277 status_resync (seq, mddev);
3278 seq_printf(seq, "\n ");
3279 } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
3280 seq_printf(seq, " resync=DELAYED\n ");
3281 } else
3282 seq_printf(seq, "\n ");
3284 if ((bitmap = mddev->bitmap)) {
3285 unsigned long chunk_kb;
3286 unsigned long flags;
3287 spin_lock_irqsave(&bitmap->lock, flags);
3288 chunk_kb = bitmap->chunksize >> 10;
3289 seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
3290 "%lu%s chunk",
3291 bitmap->pages - bitmap->missing_pages,
3292 bitmap->pages,
3293 (bitmap->pages - bitmap->missing_pages)
3294 << (PAGE_SHIFT - 10),
3295 chunk_kb ? chunk_kb : bitmap->chunksize,
3296 chunk_kb ? "KB" : "B");
3297 if (bitmap->file) {
3298 seq_printf(seq, ", file: ");
3299 seq_path(seq, bitmap->file->f_vfsmnt,
3300 bitmap->file->f_dentry," \t\n");
3303 seq_printf(seq, "\n");
3304 spin_unlock_irqrestore(&bitmap->lock, flags);
3307 seq_printf(seq, "\n");
3309 mddev_unlock(mddev);
3311 return 0;
3314 static struct seq_operations md_seq_ops = {
3315 .start = md_seq_start,
3316 .next = md_seq_next,
3317 .stop = md_seq_stop,
3318 .show = md_seq_show,
3321 static int md_seq_open(struct inode *inode, struct file *file)
3323 int error;
3325 error = seq_open(file, &md_seq_ops);
3326 return error;
3329 static struct file_operations md_seq_fops = {
3330 .open = md_seq_open,
3331 .read = seq_read,
3332 .llseek = seq_lseek,
3333 .release = seq_release,
3336 int register_md_personality(int pnum, mdk_personality_t *p)
3338 if (pnum >= MAX_PERSONALITY) {
3339 printk(KERN_ERR
3340 "md: tried to install personality %s as nr %d, but max is %lu\n",
3341 p->name, pnum, MAX_PERSONALITY-1);
3342 return -EINVAL;
3345 spin_lock(&pers_lock);
3346 if (pers[pnum]) {
3347 spin_unlock(&pers_lock);
3348 return -EBUSY;
3351 pers[pnum] = p;
3352 printk(KERN_INFO "md: %s personality registered as nr %d\n", p->name, pnum);
3353 spin_unlock(&pers_lock);
3354 return 0;
3357 int unregister_md_personality(int pnum)
3359 if (pnum >= MAX_PERSONALITY)
3360 return -EINVAL;
3362 printk(KERN_INFO "md: %s personality unregistered\n", pers[pnum]->name);
3363 spin_lock(&pers_lock);
3364 pers[pnum] = NULL;
3365 spin_unlock(&pers_lock);
3366 return 0;
3369 static int is_mddev_idle(mddev_t *mddev)
3371 mdk_rdev_t * rdev;
3372 struct list_head *tmp;
3373 int idle;
3374 unsigned long curr_events;
3376 idle = 1;
3377 ITERATE_RDEV(mddev,rdev,tmp) {
3378 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
3379 curr_events = disk_stat_read(disk, read_sectors) +
3380 disk_stat_read(disk, write_sectors) -
3381 atomic_read(&disk->sync_io);
3382 /* Allow some slack between valud of curr_events and last_events,
3383 * as there are some uninteresting races.
3384 * Note: the following is an unsigned comparison.
3386 if ((curr_events - rdev->last_events + 32) > 64) {
3387 rdev->last_events = curr_events;
3388 idle = 0;
3391 return idle;
3394 void md_done_sync(mddev_t *mddev, int blocks, int ok)
3396 /* another "blocks" (512byte) blocks have been synced */
3397 atomic_sub(blocks, &mddev->recovery_active);
3398 wake_up(&mddev->recovery_wait);
3399 if (!ok) {
3400 set_bit(MD_RECOVERY_ERR, &mddev->recovery);
3401 md_wakeup_thread(mddev->thread);
3402 // stop recovery, signal do_sync ....
3407 /* md_write_start(mddev, bi)
3408 * If we need to update some array metadata (e.g. 'active' flag
3409 * in superblock) before writing, schedule a superblock update
3410 * and wait for it to complete.
3412 void md_write_start(mddev_t *mddev, struct bio *bi)
3414 DEFINE_WAIT(w);
3415 if (bio_data_dir(bi) != WRITE)
3416 return;
3418 atomic_inc(&mddev->writes_pending);
3419 if (mddev->in_sync) {
3420 spin_lock(&mddev->write_lock);
3421 if (mddev->in_sync) {
3422 mddev->in_sync = 0;
3423 mddev->sb_dirty = 1;
3424 md_wakeup_thread(mddev->thread);
3426 spin_unlock(&mddev->write_lock);
3428 wait_event(mddev->sb_wait, mddev->sb_dirty==0);
3431 void md_write_end(mddev_t *mddev)
3433 if (atomic_dec_and_test(&mddev->writes_pending)) {
3434 if (mddev->safemode == 2)
3435 md_wakeup_thread(mddev->thread);
3436 else
3437 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
3441 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
3443 #define SYNC_MARKS 10
3444 #define SYNC_MARK_STEP (3*HZ)
3445 static void md_do_sync(mddev_t *mddev)
3447 mddev_t *mddev2;
3448 unsigned int currspeed = 0,
3449 window;
3450 sector_t max_sectors,j, io_sectors;
3451 unsigned long mark[SYNC_MARKS];
3452 sector_t mark_cnt[SYNC_MARKS];
3453 int last_mark,m;
3454 struct list_head *tmp;
3455 sector_t last_check;
3456 int skipped = 0;
3458 /* just incase thread restarts... */
3459 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
3460 return;
3462 /* we overload curr_resync somewhat here.
3463 * 0 == not engaged in resync at all
3464 * 2 == checking that there is no conflict with another sync
3465 * 1 == like 2, but have yielded to allow conflicting resync to
3466 * commense
3467 * other == active in resync - this many blocks
3469 * Before starting a resync we must have set curr_resync to
3470 * 2, and then checked that every "conflicting" array has curr_resync
3471 * less than ours. When we find one that is the same or higher
3472 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
3473 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
3474 * This will mean we have to start checking from the beginning again.
3478 do {
3479 mddev->curr_resync = 2;
3481 try_again:
3482 if (signal_pending(current)) {
3483 flush_signals(current);
3484 goto skip;
3486 ITERATE_MDDEV(mddev2,tmp) {
3487 printk(".");
3488 if (mddev2 == mddev)
3489 continue;
3490 if (mddev2->curr_resync &&
3491 match_mddev_units(mddev,mddev2)) {
3492 DEFINE_WAIT(wq);
3493 if (mddev < mddev2 && mddev->curr_resync == 2) {
3494 /* arbitrarily yield */
3495 mddev->curr_resync = 1;
3496 wake_up(&resync_wait);
3498 if (mddev > mddev2 && mddev->curr_resync == 1)
3499 /* no need to wait here, we can wait the next
3500 * time 'round when curr_resync == 2
3502 continue;
3503 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
3504 if (!signal_pending(current)
3505 && mddev2->curr_resync >= mddev->curr_resync) {
3506 printk(KERN_INFO "md: delaying resync of %s"
3507 " until %s has finished resync (they"
3508 " share one or more physical units)\n",
3509 mdname(mddev), mdname(mddev2));
3510 mddev_put(mddev2);
3511 schedule();
3512 finish_wait(&resync_wait, &wq);
3513 goto try_again;
3515 finish_wait(&resync_wait, &wq);
3518 } while (mddev->curr_resync < 2);
3520 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3521 /* resync follows the size requested by the personality,
3522 * which defaults to physical size, but can be virtual size
3524 max_sectors = mddev->resync_max_sectors;
3525 else
3526 /* recovery follows the physical size of devices */
3527 max_sectors = mddev->size << 1;
3529 printk(KERN_INFO "md: syncing RAID array %s\n", mdname(mddev));
3530 printk(KERN_INFO "md: minimum _guaranteed_ reconstruction speed:"
3531 " %d KB/sec/disc.\n", sysctl_speed_limit_min);
3532 printk(KERN_INFO "md: using maximum available idle IO bandwith "
3533 "(but not more than %d KB/sec) for reconstruction.\n",
3534 sysctl_speed_limit_max);
3536 is_mddev_idle(mddev); /* this also initializes IO event counters */
3537 /* we don't use the checkpoint if there's a bitmap */
3538 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && !mddev->bitmap)
3539 j = mddev->recovery_cp;
3540 else
3541 j = 0;
3542 io_sectors = 0;
3543 for (m = 0; m < SYNC_MARKS; m++) {
3544 mark[m] = jiffies;
3545 mark_cnt[m] = io_sectors;
3547 last_mark = 0;
3548 mddev->resync_mark = mark[last_mark];
3549 mddev->resync_mark_cnt = mark_cnt[last_mark];
3552 * Tune reconstruction:
3554 window = 32*(PAGE_SIZE/512);
3555 printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
3556 window/2,(unsigned long long) max_sectors/2);
3558 atomic_set(&mddev->recovery_active, 0);
3559 init_waitqueue_head(&mddev->recovery_wait);
3560 last_check = 0;
3562 if (j>2) {
3563 printk(KERN_INFO
3564 "md: resuming recovery of %s from checkpoint.\n",
3565 mdname(mddev));
3566 mddev->curr_resync = j;
3569 while (j < max_sectors) {
3570 sector_t sectors;
3572 skipped = 0;
3573 sectors = mddev->pers->sync_request(mddev, j, &skipped,
3574 currspeed < sysctl_speed_limit_min);
3575 if (sectors == 0) {
3576 set_bit(MD_RECOVERY_ERR, &mddev->recovery);
3577 goto out;
3580 if (!skipped) { /* actual IO requested */
3581 io_sectors += sectors;
3582 atomic_add(sectors, &mddev->recovery_active);
3585 j += sectors;
3586 if (j>1) mddev->curr_resync = j;
3589 if (last_check + window > io_sectors || j == max_sectors)
3590 continue;
3592 last_check = io_sectors;
3594 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery) ||
3595 test_bit(MD_RECOVERY_ERR, &mddev->recovery))
3596 break;
3598 repeat:
3599 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
3600 /* step marks */
3601 int next = (last_mark+1) % SYNC_MARKS;
3603 mddev->resync_mark = mark[next];
3604 mddev->resync_mark_cnt = mark_cnt[next];
3605 mark[next] = jiffies;
3606 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
3607 last_mark = next;
3611 if (signal_pending(current)) {
3613 * got a signal, exit.
3615 printk(KERN_INFO
3616 "md: md_do_sync() got signal ... exiting\n");
3617 flush_signals(current);
3618 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3619 goto out;
3623 * this loop exits only if either when we are slower than
3624 * the 'hard' speed limit, or the system was IO-idle for
3625 * a jiffy.
3626 * the system might be non-idle CPU-wise, but we only care
3627 * about not overloading the IO subsystem. (things like an
3628 * e2fsck being done on the RAID array should execute fast)
3630 mddev->queue->unplug_fn(mddev->queue);
3631 cond_resched();
3633 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
3634 /((jiffies-mddev->resync_mark)/HZ +1) +1;
3636 if (currspeed > sysctl_speed_limit_min) {
3637 if ((currspeed > sysctl_speed_limit_max) ||
3638 !is_mddev_idle(mddev)) {
3639 msleep_interruptible(250);
3640 goto repeat;
3644 printk(KERN_INFO "md: %s: sync done.\n",mdname(mddev));
3646 * this also signals 'finished resyncing' to md_stop
3648 out:
3649 mddev->queue->unplug_fn(mddev->queue);
3651 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
3653 /* tell personality that we are finished */
3654 mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
3656 if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
3657 mddev->curr_resync > 2 &&
3658 mddev->curr_resync >= mddev->recovery_cp) {
3659 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
3660 printk(KERN_INFO
3661 "md: checkpointing recovery of %s.\n",
3662 mdname(mddev));
3663 mddev->recovery_cp = mddev->curr_resync;
3664 } else
3665 mddev->recovery_cp = MaxSector;
3668 skip:
3669 mddev->curr_resync = 0;
3670 wake_up(&resync_wait);
3671 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
3672 md_wakeup_thread(mddev->thread);
3677 * This routine is regularly called by all per-raid-array threads to
3678 * deal with generic issues like resync and super-block update.
3679 * Raid personalities that don't have a thread (linear/raid0) do not
3680 * need this as they never do any recovery or update the superblock.
3682 * It does not do any resync itself, but rather "forks" off other threads
3683 * to do that as needed.
3684 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
3685 * "->recovery" and create a thread at ->sync_thread.
3686 * When the thread finishes it sets MD_RECOVERY_DONE (and might set MD_RECOVERY_ERR)
3687 * and wakeups up this thread which will reap the thread and finish up.
3688 * This thread also removes any faulty devices (with nr_pending == 0).
3690 * The overall approach is:
3691 * 1/ if the superblock needs updating, update it.
3692 * 2/ If a recovery thread is running, don't do anything else.
3693 * 3/ If recovery has finished, clean up, possibly marking spares active.
3694 * 4/ If there are any faulty devices, remove them.
3695 * 5/ If array is degraded, try to add spares devices
3696 * 6/ If array has spares or is not in-sync, start a resync thread.
3698 void md_check_recovery(mddev_t *mddev)
3700 mdk_rdev_t *rdev;
3701 struct list_head *rtmp;
3704 if (mddev->bitmap)
3705 bitmap_daemon_work(mddev->bitmap);
3707 if (mddev->ro)
3708 return;
3710 if (signal_pending(current)) {
3711 if (mddev->pers->sync_request) {
3712 printk(KERN_INFO "md: %s in immediate safe mode\n",
3713 mdname(mddev));
3714 mddev->safemode = 2;
3716 flush_signals(current);
3719 if ( ! (
3720 mddev->sb_dirty ||
3721 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
3722 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
3723 (mddev->safemode == 1) ||
3724 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
3725 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
3727 return;
3729 if (mddev_trylock(mddev)==0) {
3730 int spares =0;
3732 spin_lock(&mddev->write_lock);
3733 if (mddev->safemode && !atomic_read(&mddev->writes_pending) &&
3734 !mddev->in_sync && mddev->recovery_cp == MaxSector) {
3735 mddev->in_sync = 1;
3736 mddev->sb_dirty = 1;
3738 if (mddev->safemode == 1)
3739 mddev->safemode = 0;
3740 spin_unlock(&mddev->write_lock);
3742 if (mddev->sb_dirty)
3743 md_update_sb(mddev);
3746 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
3747 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
3748 /* resync/recovery still happening */
3749 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3750 goto unlock;
3752 if (mddev->sync_thread) {
3753 /* resync has finished, collect result */
3754 md_unregister_thread(mddev->sync_thread);
3755 mddev->sync_thread = NULL;
3756 if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
3757 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
3758 /* success...*/
3759 /* activate any spares */
3760 mddev->pers->spare_active(mddev);
3762 md_update_sb(mddev);
3764 /* if array is no-longer degraded, then any saved_raid_disk
3765 * information must be scrapped
3767 if (!mddev->degraded)
3768 ITERATE_RDEV(mddev,rdev,rtmp)
3769 rdev->saved_raid_disk = -1;
3771 mddev->recovery = 0;
3772 /* flag recovery needed just to double check */
3773 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3774 goto unlock;
3776 if (mddev->recovery)
3777 /* probably just the RECOVERY_NEEDED flag */
3778 mddev->recovery = 0;
3780 /* no recovery is running.
3781 * remove any failed drives, then
3782 * add spares if possible.
3783 * Spare are also removed and re-added, to allow
3784 * the personality to fail the re-add.
3786 ITERATE_RDEV(mddev,rdev,rtmp)
3787 if (rdev->raid_disk >= 0 &&
3788 (rdev->faulty || ! rdev->in_sync) &&
3789 atomic_read(&rdev->nr_pending)==0) {
3790 if (mddev->pers->hot_remove_disk(mddev, rdev->raid_disk)==0)
3791 rdev->raid_disk = -1;
3794 if (mddev->degraded) {
3795 ITERATE_RDEV(mddev,rdev,rtmp)
3796 if (rdev->raid_disk < 0
3797 && !rdev->faulty) {
3798 if (mddev->pers->hot_add_disk(mddev,rdev))
3799 spares++;
3800 else
3801 break;
3805 if (!spares && (mddev->recovery_cp == MaxSector )) {
3806 /* nothing we can do ... */
3807 goto unlock;
3809 if (mddev->pers->sync_request) {
3810 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3811 if (!spares)
3812 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3813 if (spares && mddev->bitmap && ! mddev->bitmap->file) {
3814 /* We are adding a device or devices to an array
3815 * which has the bitmap stored on all devices.
3816 * So make sure all bitmap pages get written
3818 bitmap_write_all(mddev->bitmap);
3820 mddev->sync_thread = md_register_thread(md_do_sync,
3821 mddev,
3822 "%s_resync");
3823 if (!mddev->sync_thread) {
3824 printk(KERN_ERR "%s: could not start resync"
3825 " thread...\n",
3826 mdname(mddev));
3827 /* leave the spares where they are, it shouldn't hurt */
3828 mddev->recovery = 0;
3829 } else {
3830 md_wakeup_thread(mddev->sync_thread);
3833 unlock:
3834 mddev_unlock(mddev);
3838 static int md_notify_reboot(struct notifier_block *this,
3839 unsigned long code, void *x)
3841 struct list_head *tmp;
3842 mddev_t *mddev;
3844 if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
3846 printk(KERN_INFO "md: stopping all md devices.\n");
3848 ITERATE_MDDEV(mddev,tmp)
3849 if (mddev_trylock(mddev)==0)
3850 do_md_stop (mddev, 1);
3852 * certain more exotic SCSI devices are known to be
3853 * volatile wrt too early system reboots. While the
3854 * right place to handle this issue is the given
3855 * driver, we do want to have a safe RAID driver ...
3857 mdelay(1000*1);
3859 return NOTIFY_DONE;
3862 static struct notifier_block md_notifier = {
3863 .notifier_call = md_notify_reboot,
3864 .next = NULL,
3865 .priority = INT_MAX, /* before any real devices */
3868 static void md_geninit(void)
3870 struct proc_dir_entry *p;
3872 dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
3874 p = create_proc_entry("mdstat", S_IRUGO, NULL);
3875 if (p)
3876 p->proc_fops = &md_seq_fops;
3879 static int __init md_init(void)
3881 int minor;
3883 printk(KERN_INFO "md: md driver %d.%d.%d MAX_MD_DEVS=%d,"
3884 " MD_SB_DISKS=%d\n",
3885 MD_MAJOR_VERSION, MD_MINOR_VERSION,
3886 MD_PATCHLEVEL_VERSION, MAX_MD_DEVS, MD_SB_DISKS);
3887 printk(KERN_INFO "md: bitmap version %d.%d\n", BITMAP_MAJOR,
3888 BITMAP_MINOR);
3890 if (register_blkdev(MAJOR_NR, "md"))
3891 return -1;
3892 if ((mdp_major=register_blkdev(0, "mdp"))<=0) {
3893 unregister_blkdev(MAJOR_NR, "md");
3894 return -1;
3896 devfs_mk_dir("md");
3897 blk_register_region(MKDEV(MAJOR_NR, 0), MAX_MD_DEVS, THIS_MODULE,
3898 md_probe, NULL, NULL);
3899 blk_register_region(MKDEV(mdp_major, 0), MAX_MD_DEVS<<MdpMinorShift, THIS_MODULE,
3900 md_probe, NULL, NULL);
3902 for (minor=0; minor < MAX_MD_DEVS; ++minor)
3903 devfs_mk_bdev(MKDEV(MAJOR_NR, minor),
3904 S_IFBLK|S_IRUSR|S_IWUSR,
3905 "md/%d", minor);
3907 for (minor=0; minor < MAX_MD_DEVS; ++minor)
3908 devfs_mk_bdev(MKDEV(mdp_major, minor<<MdpMinorShift),
3909 S_IFBLK|S_IRUSR|S_IWUSR,
3910 "md/mdp%d", minor);
3913 register_reboot_notifier(&md_notifier);
3914 raid_table_header = register_sysctl_table(raid_root_table, 1);
3916 md_geninit();
3917 return (0);
3921 #ifndef MODULE
3924 * Searches all registered partitions for autorun RAID arrays
3925 * at boot time.
3927 static dev_t detected_devices[128];
3928 static int dev_cnt;
3930 void md_autodetect_dev(dev_t dev)
3932 if (dev_cnt >= 0 && dev_cnt < 127)
3933 detected_devices[dev_cnt++] = dev;
3937 static void autostart_arrays(int part)
3939 mdk_rdev_t *rdev;
3940 int i;
3942 printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
3944 for (i = 0; i < dev_cnt; i++) {
3945 dev_t dev = detected_devices[i];
3947 rdev = md_import_device(dev,0, 0);
3948 if (IS_ERR(rdev))
3949 continue;
3951 if (rdev->faulty) {
3952 MD_BUG();
3953 continue;
3955 list_add(&rdev->same_set, &pending_raid_disks);
3957 dev_cnt = 0;
3959 autorun_devices(part);
3962 #endif
3964 static __exit void md_exit(void)
3966 mddev_t *mddev;
3967 struct list_head *tmp;
3968 int i;
3969 blk_unregister_region(MKDEV(MAJOR_NR,0), MAX_MD_DEVS);
3970 blk_unregister_region(MKDEV(mdp_major,0), MAX_MD_DEVS << MdpMinorShift);
3971 for (i=0; i < MAX_MD_DEVS; i++)
3972 devfs_remove("md/%d", i);
3973 for (i=0; i < MAX_MD_DEVS; i++)
3974 devfs_remove("md/d%d", i);
3976 devfs_remove("md");
3978 unregister_blkdev(MAJOR_NR,"md");
3979 unregister_blkdev(mdp_major, "mdp");
3980 unregister_reboot_notifier(&md_notifier);
3981 unregister_sysctl_table(raid_table_header);
3982 remove_proc_entry("mdstat", NULL);
3983 ITERATE_MDDEV(mddev,tmp) {
3984 struct gendisk *disk = mddev->gendisk;
3985 if (!disk)
3986 continue;
3987 export_array(mddev);
3988 del_gendisk(disk);
3989 put_disk(disk);
3990 mddev->gendisk = NULL;
3991 mddev_put(mddev);
3995 module_init(md_init)
3996 module_exit(md_exit)
3998 EXPORT_SYMBOL(register_md_personality);
3999 EXPORT_SYMBOL(unregister_md_personality);
4000 EXPORT_SYMBOL(md_error);
4001 EXPORT_SYMBOL(md_done_sync);
4002 EXPORT_SYMBOL(md_write_start);
4003 EXPORT_SYMBOL(md_write_end);
4004 EXPORT_SYMBOL(md_register_thread);
4005 EXPORT_SYMBOL(md_unregister_thread);
4006 EXPORT_SYMBOL(md_wakeup_thread);
4007 EXPORT_SYMBOL(md_print_devices);
4008 EXPORT_SYMBOL(md_check_recovery);
4009 MODULE_LICENSE("GPL");