Merge tag 'dm-3.11-changes' of git://git.kernel.org/pub/scm/linux/kernel/git/agk...
[linux-2.6.git] / fs / super.c
blob7465d4364208a2e751d2d3a7c8a8c1cc10d2d7c3
1 /*
2 * linux/fs/super.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
6 * super.c contains code to handle: - mount structures
7 * - super-block tables
8 * - filesystem drivers list
9 * - mount system call
10 * - umount system call
11 * - ustat system call
13 * GK 2/5/95 - Changed to support mounting the root fs via NFS
15 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall
16 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96
17 * Added options to /proc/mounts:
18 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
19 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
20 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
23 #include <linux/export.h>
24 #include <linux/slab.h>
25 #include <linux/acct.h>
26 #include <linux/blkdev.h>
27 #include <linux/mount.h>
28 #include <linux/security.h>
29 #include <linux/writeback.h> /* for the emergency remount stuff */
30 #include <linux/idr.h>
31 #include <linux/mutex.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/cleancache.h>
35 #include <linux/fsnotify.h>
36 #include <linux/lockdep.h>
37 #include "internal.h"
40 LIST_HEAD(super_blocks);
41 DEFINE_SPINLOCK(sb_lock);
43 static char *sb_writers_name[SB_FREEZE_LEVELS] = {
44 "sb_writers",
45 "sb_pagefaults",
46 "sb_internal",
50 * One thing we have to be careful of with a per-sb shrinker is that we don't
51 * drop the last active reference to the superblock from within the shrinker.
52 * If that happens we could trigger unregistering the shrinker from within the
53 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
54 * take a passive reference to the superblock to avoid this from occurring.
56 static int prune_super(struct shrinker *shrink, struct shrink_control *sc)
58 struct super_block *sb;
59 int fs_objects = 0;
60 int total_objects;
62 sb = container_of(shrink, struct super_block, s_shrink);
65 * Deadlock avoidance. We may hold various FS locks, and we don't want
66 * to recurse into the FS that called us in clear_inode() and friends..
68 if (sc->nr_to_scan && !(sc->gfp_mask & __GFP_FS))
69 return -1;
71 if (!grab_super_passive(sb))
72 return -1;
74 if (sb->s_op && sb->s_op->nr_cached_objects)
75 fs_objects = sb->s_op->nr_cached_objects(sb);
77 total_objects = sb->s_nr_dentry_unused +
78 sb->s_nr_inodes_unused + fs_objects + 1;
80 if (sc->nr_to_scan) {
81 int dentries;
82 int inodes;
84 /* proportion the scan between the caches */
85 dentries = (sc->nr_to_scan * sb->s_nr_dentry_unused) /
86 total_objects;
87 inodes = (sc->nr_to_scan * sb->s_nr_inodes_unused) /
88 total_objects;
89 if (fs_objects)
90 fs_objects = (sc->nr_to_scan * fs_objects) /
91 total_objects;
93 * prune the dcache first as the icache is pinned by it, then
94 * prune the icache, followed by the filesystem specific caches
96 prune_dcache_sb(sb, dentries);
97 prune_icache_sb(sb, inodes);
99 if (fs_objects && sb->s_op->free_cached_objects) {
100 sb->s_op->free_cached_objects(sb, fs_objects);
101 fs_objects = sb->s_op->nr_cached_objects(sb);
103 total_objects = sb->s_nr_dentry_unused +
104 sb->s_nr_inodes_unused + fs_objects;
107 total_objects = (total_objects / 100) * sysctl_vfs_cache_pressure;
108 drop_super(sb);
109 return total_objects;
112 static int init_sb_writers(struct super_block *s, struct file_system_type *type)
114 int err;
115 int i;
117 for (i = 0; i < SB_FREEZE_LEVELS; i++) {
118 err = percpu_counter_init(&s->s_writers.counter[i], 0);
119 if (err < 0)
120 goto err_out;
121 lockdep_init_map(&s->s_writers.lock_map[i], sb_writers_name[i],
122 &type->s_writers_key[i], 0);
124 init_waitqueue_head(&s->s_writers.wait);
125 init_waitqueue_head(&s->s_writers.wait_unfrozen);
126 return 0;
127 err_out:
128 while (--i >= 0)
129 percpu_counter_destroy(&s->s_writers.counter[i]);
130 return err;
133 static void destroy_sb_writers(struct super_block *s)
135 int i;
137 for (i = 0; i < SB_FREEZE_LEVELS; i++)
138 percpu_counter_destroy(&s->s_writers.counter[i]);
142 * alloc_super - create new superblock
143 * @type: filesystem type superblock should belong to
144 * @flags: the mount flags
146 * Allocates and initializes a new &struct super_block. alloc_super()
147 * returns a pointer new superblock or %NULL if allocation had failed.
149 static struct super_block *alloc_super(struct file_system_type *type, int flags)
151 struct super_block *s = kzalloc(sizeof(struct super_block), GFP_USER);
152 static const struct super_operations default_op;
154 if (s) {
155 if (security_sb_alloc(s)) {
157 * We cannot call security_sb_free() without
158 * security_sb_alloc() succeeding. So bail out manually
160 kfree(s);
161 s = NULL;
162 goto out;
164 #ifdef CONFIG_SMP
165 s->s_files = alloc_percpu(struct list_head);
166 if (!s->s_files)
167 goto err_out;
168 else {
169 int i;
171 for_each_possible_cpu(i)
172 INIT_LIST_HEAD(per_cpu_ptr(s->s_files, i));
174 #else
175 INIT_LIST_HEAD(&s->s_files);
176 #endif
177 if (init_sb_writers(s, type))
178 goto err_out;
179 s->s_flags = flags;
180 s->s_bdi = &default_backing_dev_info;
181 INIT_HLIST_NODE(&s->s_instances);
182 INIT_HLIST_BL_HEAD(&s->s_anon);
183 INIT_LIST_HEAD(&s->s_inodes);
184 INIT_LIST_HEAD(&s->s_dentry_lru);
185 INIT_LIST_HEAD(&s->s_inode_lru);
186 spin_lock_init(&s->s_inode_lru_lock);
187 INIT_LIST_HEAD(&s->s_mounts);
188 init_rwsem(&s->s_umount);
189 lockdep_set_class(&s->s_umount, &type->s_umount_key);
191 * sget() can have s_umount recursion.
193 * When it cannot find a suitable sb, it allocates a new
194 * one (this one), and tries again to find a suitable old
195 * one.
197 * In case that succeeds, it will acquire the s_umount
198 * lock of the old one. Since these are clearly distrinct
199 * locks, and this object isn't exposed yet, there's no
200 * risk of deadlocks.
202 * Annotate this by putting this lock in a different
203 * subclass.
205 down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
206 s->s_count = 1;
207 atomic_set(&s->s_active, 1);
208 mutex_init(&s->s_vfs_rename_mutex);
209 lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
210 mutex_init(&s->s_dquot.dqio_mutex);
211 mutex_init(&s->s_dquot.dqonoff_mutex);
212 init_rwsem(&s->s_dquot.dqptr_sem);
213 s->s_maxbytes = MAX_NON_LFS;
214 s->s_op = &default_op;
215 s->s_time_gran = 1000000000;
216 s->cleancache_poolid = -1;
218 s->s_shrink.seeks = DEFAULT_SEEKS;
219 s->s_shrink.shrink = prune_super;
220 s->s_shrink.batch = 1024;
222 out:
223 return s;
224 err_out:
225 security_sb_free(s);
226 #ifdef CONFIG_SMP
227 if (s->s_files)
228 free_percpu(s->s_files);
229 #endif
230 destroy_sb_writers(s);
231 kfree(s);
232 s = NULL;
233 goto out;
237 * destroy_super - frees a superblock
238 * @s: superblock to free
240 * Frees a superblock.
242 static inline void destroy_super(struct super_block *s)
244 #ifdef CONFIG_SMP
245 free_percpu(s->s_files);
246 #endif
247 destroy_sb_writers(s);
248 security_sb_free(s);
249 WARN_ON(!list_empty(&s->s_mounts));
250 kfree(s->s_subtype);
251 kfree(s->s_options);
252 kfree(s);
255 /* Superblock refcounting */
258 * Drop a superblock's refcount. The caller must hold sb_lock.
260 static void __put_super(struct super_block *sb)
262 if (!--sb->s_count) {
263 list_del_init(&sb->s_list);
264 destroy_super(sb);
269 * put_super - drop a temporary reference to superblock
270 * @sb: superblock in question
272 * Drops a temporary reference, frees superblock if there's no
273 * references left.
275 static void put_super(struct super_block *sb)
277 spin_lock(&sb_lock);
278 __put_super(sb);
279 spin_unlock(&sb_lock);
284 * deactivate_locked_super - drop an active reference to superblock
285 * @s: superblock to deactivate
287 * Drops an active reference to superblock, converting it into a temprory
288 * one if there is no other active references left. In that case we
289 * tell fs driver to shut it down and drop the temporary reference we
290 * had just acquired.
292 * Caller holds exclusive lock on superblock; that lock is released.
294 void deactivate_locked_super(struct super_block *s)
296 struct file_system_type *fs = s->s_type;
297 if (atomic_dec_and_test(&s->s_active)) {
298 cleancache_invalidate_fs(s);
299 fs->kill_sb(s);
301 /* caches are now gone, we can safely kill the shrinker now */
302 unregister_shrinker(&s->s_shrink);
303 put_filesystem(fs);
304 put_super(s);
305 } else {
306 up_write(&s->s_umount);
310 EXPORT_SYMBOL(deactivate_locked_super);
313 * deactivate_super - drop an active reference to superblock
314 * @s: superblock to deactivate
316 * Variant of deactivate_locked_super(), except that superblock is *not*
317 * locked by caller. If we are going to drop the final active reference,
318 * lock will be acquired prior to that.
320 void deactivate_super(struct super_block *s)
322 if (!atomic_add_unless(&s->s_active, -1, 1)) {
323 down_write(&s->s_umount);
324 deactivate_locked_super(s);
328 EXPORT_SYMBOL(deactivate_super);
331 * grab_super - acquire an active reference
332 * @s: reference we are trying to make active
334 * Tries to acquire an active reference. grab_super() is used when we
335 * had just found a superblock in super_blocks or fs_type->fs_supers
336 * and want to turn it into a full-blown active reference. grab_super()
337 * is called with sb_lock held and drops it. Returns 1 in case of
338 * success, 0 if we had failed (superblock contents was already dead or
339 * dying when grab_super() had been called).
341 static int grab_super(struct super_block *s) __releases(sb_lock)
343 if (atomic_inc_not_zero(&s->s_active)) {
344 spin_unlock(&sb_lock);
345 return 1;
347 /* it's going away */
348 s->s_count++;
349 spin_unlock(&sb_lock);
350 /* wait for it to die */
351 down_write(&s->s_umount);
352 up_write(&s->s_umount);
353 put_super(s);
354 return 0;
358 * grab_super_passive - acquire a passive reference
359 * @sb: reference we are trying to grab
361 * Tries to acquire a passive reference. This is used in places where we
362 * cannot take an active reference but we need to ensure that the
363 * superblock does not go away while we are working on it. It returns
364 * false if a reference was not gained, and returns true with the s_umount
365 * lock held in read mode if a reference is gained. On successful return,
366 * the caller must drop the s_umount lock and the passive reference when
367 * done.
369 bool grab_super_passive(struct super_block *sb)
371 spin_lock(&sb_lock);
372 if (hlist_unhashed(&sb->s_instances)) {
373 spin_unlock(&sb_lock);
374 return false;
377 sb->s_count++;
378 spin_unlock(&sb_lock);
380 if (down_read_trylock(&sb->s_umount)) {
381 if (sb->s_root && (sb->s_flags & MS_BORN))
382 return true;
383 up_read(&sb->s_umount);
386 put_super(sb);
387 return false;
391 * generic_shutdown_super - common helper for ->kill_sb()
392 * @sb: superblock to kill
394 * generic_shutdown_super() does all fs-independent work on superblock
395 * shutdown. Typical ->kill_sb() should pick all fs-specific objects
396 * that need destruction out of superblock, call generic_shutdown_super()
397 * and release aforementioned objects. Note: dentries and inodes _are_
398 * taken care of and do not need specific handling.
400 * Upon calling this function, the filesystem may no longer alter or
401 * rearrange the set of dentries belonging to this super_block, nor may it
402 * change the attachments of dentries to inodes.
404 void generic_shutdown_super(struct super_block *sb)
406 const struct super_operations *sop = sb->s_op;
408 if (sb->s_root) {
409 shrink_dcache_for_umount(sb);
410 sync_filesystem(sb);
411 sb->s_flags &= ~MS_ACTIVE;
413 fsnotify_unmount_inodes(&sb->s_inodes);
415 evict_inodes(sb);
417 if (sop->put_super)
418 sop->put_super(sb);
420 if (!list_empty(&sb->s_inodes)) {
421 printk("VFS: Busy inodes after unmount of %s. "
422 "Self-destruct in 5 seconds. Have a nice day...\n",
423 sb->s_id);
426 spin_lock(&sb_lock);
427 /* should be initialized for __put_super_and_need_restart() */
428 hlist_del_init(&sb->s_instances);
429 spin_unlock(&sb_lock);
430 up_write(&sb->s_umount);
433 EXPORT_SYMBOL(generic_shutdown_super);
436 * sget - find or create a superblock
437 * @type: filesystem type superblock should belong to
438 * @test: comparison callback
439 * @set: setup callback
440 * @flags: mount flags
441 * @data: argument to each of them
443 struct super_block *sget(struct file_system_type *type,
444 int (*test)(struct super_block *,void *),
445 int (*set)(struct super_block *,void *),
446 int flags,
447 void *data)
449 struct super_block *s = NULL;
450 struct super_block *old;
451 int err;
453 retry:
454 spin_lock(&sb_lock);
455 if (test) {
456 hlist_for_each_entry(old, &type->fs_supers, s_instances) {
457 if (!test(old, data))
458 continue;
459 if (!grab_super(old))
460 goto retry;
461 if (s) {
462 up_write(&s->s_umount);
463 destroy_super(s);
464 s = NULL;
466 down_write(&old->s_umount);
467 if (unlikely(!(old->s_flags & MS_BORN))) {
468 deactivate_locked_super(old);
469 goto retry;
471 return old;
474 if (!s) {
475 spin_unlock(&sb_lock);
476 s = alloc_super(type, flags);
477 if (!s)
478 return ERR_PTR(-ENOMEM);
479 goto retry;
482 err = set(s, data);
483 if (err) {
484 spin_unlock(&sb_lock);
485 up_write(&s->s_umount);
486 destroy_super(s);
487 return ERR_PTR(err);
489 s->s_type = type;
490 strlcpy(s->s_id, type->name, sizeof(s->s_id));
491 list_add_tail(&s->s_list, &super_blocks);
492 hlist_add_head(&s->s_instances, &type->fs_supers);
493 spin_unlock(&sb_lock);
494 get_filesystem(type);
495 register_shrinker(&s->s_shrink);
496 return s;
499 EXPORT_SYMBOL(sget);
501 void drop_super(struct super_block *sb)
503 up_read(&sb->s_umount);
504 put_super(sb);
507 EXPORT_SYMBOL(drop_super);
510 * iterate_supers - call function for all active superblocks
511 * @f: function to call
512 * @arg: argument to pass to it
514 * Scans the superblock list and calls given function, passing it
515 * locked superblock and given argument.
517 void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
519 struct super_block *sb, *p = NULL;
521 spin_lock(&sb_lock);
522 list_for_each_entry(sb, &super_blocks, s_list) {
523 if (hlist_unhashed(&sb->s_instances))
524 continue;
525 sb->s_count++;
526 spin_unlock(&sb_lock);
528 down_read(&sb->s_umount);
529 if (sb->s_root && (sb->s_flags & MS_BORN))
530 f(sb, arg);
531 up_read(&sb->s_umount);
533 spin_lock(&sb_lock);
534 if (p)
535 __put_super(p);
536 p = sb;
538 if (p)
539 __put_super(p);
540 spin_unlock(&sb_lock);
544 * iterate_supers_type - call function for superblocks of given type
545 * @type: fs type
546 * @f: function to call
547 * @arg: argument to pass to it
549 * Scans the superblock list and calls given function, passing it
550 * locked superblock and given argument.
552 void iterate_supers_type(struct file_system_type *type,
553 void (*f)(struct super_block *, void *), void *arg)
555 struct super_block *sb, *p = NULL;
557 spin_lock(&sb_lock);
558 hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
559 sb->s_count++;
560 spin_unlock(&sb_lock);
562 down_read(&sb->s_umount);
563 if (sb->s_root && (sb->s_flags & MS_BORN))
564 f(sb, arg);
565 up_read(&sb->s_umount);
567 spin_lock(&sb_lock);
568 if (p)
569 __put_super(p);
570 p = sb;
572 if (p)
573 __put_super(p);
574 spin_unlock(&sb_lock);
577 EXPORT_SYMBOL(iterate_supers_type);
580 * get_super - get the superblock of a device
581 * @bdev: device to get the superblock for
583 * Scans the superblock list and finds the superblock of the file system
584 * mounted on the device given. %NULL is returned if no match is found.
587 struct super_block *get_super(struct block_device *bdev)
589 struct super_block *sb;
591 if (!bdev)
592 return NULL;
594 spin_lock(&sb_lock);
595 rescan:
596 list_for_each_entry(sb, &super_blocks, s_list) {
597 if (hlist_unhashed(&sb->s_instances))
598 continue;
599 if (sb->s_bdev == bdev) {
600 sb->s_count++;
601 spin_unlock(&sb_lock);
602 down_read(&sb->s_umount);
603 /* still alive? */
604 if (sb->s_root && (sb->s_flags & MS_BORN))
605 return sb;
606 up_read(&sb->s_umount);
607 /* nope, got unmounted */
608 spin_lock(&sb_lock);
609 __put_super(sb);
610 goto rescan;
613 spin_unlock(&sb_lock);
614 return NULL;
617 EXPORT_SYMBOL(get_super);
620 * get_super_thawed - get thawed superblock of a device
621 * @bdev: device to get the superblock for
623 * Scans the superblock list and finds the superblock of the file system
624 * mounted on the device. The superblock is returned once it is thawed
625 * (or immediately if it was not frozen). %NULL is returned if no match
626 * is found.
628 struct super_block *get_super_thawed(struct block_device *bdev)
630 while (1) {
631 struct super_block *s = get_super(bdev);
632 if (!s || s->s_writers.frozen == SB_UNFROZEN)
633 return s;
634 up_read(&s->s_umount);
635 wait_event(s->s_writers.wait_unfrozen,
636 s->s_writers.frozen == SB_UNFROZEN);
637 put_super(s);
640 EXPORT_SYMBOL(get_super_thawed);
643 * get_active_super - get an active reference to the superblock of a device
644 * @bdev: device to get the superblock for
646 * Scans the superblock list and finds the superblock of the file system
647 * mounted on the device given. Returns the superblock with an active
648 * reference or %NULL if none was found.
650 struct super_block *get_active_super(struct block_device *bdev)
652 struct super_block *sb;
654 if (!bdev)
655 return NULL;
657 restart:
658 spin_lock(&sb_lock);
659 list_for_each_entry(sb, &super_blocks, s_list) {
660 if (hlist_unhashed(&sb->s_instances))
661 continue;
662 if (sb->s_bdev == bdev) {
663 if (grab_super(sb)) /* drops sb_lock */
664 return sb;
665 else
666 goto restart;
669 spin_unlock(&sb_lock);
670 return NULL;
673 struct super_block *user_get_super(dev_t dev)
675 struct super_block *sb;
677 spin_lock(&sb_lock);
678 rescan:
679 list_for_each_entry(sb, &super_blocks, s_list) {
680 if (hlist_unhashed(&sb->s_instances))
681 continue;
682 if (sb->s_dev == dev) {
683 sb->s_count++;
684 spin_unlock(&sb_lock);
685 down_read(&sb->s_umount);
686 /* still alive? */
687 if (sb->s_root && (sb->s_flags & MS_BORN))
688 return sb;
689 up_read(&sb->s_umount);
690 /* nope, got unmounted */
691 spin_lock(&sb_lock);
692 __put_super(sb);
693 goto rescan;
696 spin_unlock(&sb_lock);
697 return NULL;
701 * do_remount_sb - asks filesystem to change mount options.
702 * @sb: superblock in question
703 * @flags: numeric part of options
704 * @data: the rest of options
705 * @force: whether or not to force the change
707 * Alters the mount options of a mounted file system.
709 int do_remount_sb(struct super_block *sb, int flags, void *data, int force)
711 int retval;
712 int remount_ro;
714 if (sb->s_writers.frozen != SB_UNFROZEN)
715 return -EBUSY;
717 #ifdef CONFIG_BLOCK
718 if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev))
719 return -EACCES;
720 #endif
722 if (flags & MS_RDONLY)
723 acct_auto_close(sb);
724 shrink_dcache_sb(sb);
725 sync_filesystem(sb);
727 remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY);
729 /* If we are remounting RDONLY and current sb is read/write,
730 make sure there are no rw files opened */
731 if (remount_ro) {
732 if (force) {
733 mark_files_ro(sb);
734 } else {
735 retval = sb_prepare_remount_readonly(sb);
736 if (retval)
737 return retval;
741 if (sb->s_op->remount_fs) {
742 retval = sb->s_op->remount_fs(sb, &flags, data);
743 if (retval) {
744 if (!force)
745 goto cancel_readonly;
746 /* If forced remount, go ahead despite any errors */
747 WARN(1, "forced remount of a %s fs returned %i\n",
748 sb->s_type->name, retval);
751 sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK);
752 /* Needs to be ordered wrt mnt_is_readonly() */
753 smp_wmb();
754 sb->s_readonly_remount = 0;
757 * Some filesystems modify their metadata via some other path than the
758 * bdev buffer cache (eg. use a private mapping, or directories in
759 * pagecache, etc). Also file data modifications go via their own
760 * mappings. So If we try to mount readonly then copy the filesystem
761 * from bdev, we could get stale data, so invalidate it to give a best
762 * effort at coherency.
764 if (remount_ro && sb->s_bdev)
765 invalidate_bdev(sb->s_bdev);
766 return 0;
768 cancel_readonly:
769 sb->s_readonly_remount = 0;
770 return retval;
773 static void do_emergency_remount(struct work_struct *work)
775 struct super_block *sb, *p = NULL;
777 spin_lock(&sb_lock);
778 list_for_each_entry(sb, &super_blocks, s_list) {
779 if (hlist_unhashed(&sb->s_instances))
780 continue;
781 sb->s_count++;
782 spin_unlock(&sb_lock);
783 down_write(&sb->s_umount);
784 if (sb->s_root && sb->s_bdev && (sb->s_flags & MS_BORN) &&
785 !(sb->s_flags & MS_RDONLY)) {
787 * What lock protects sb->s_flags??
789 do_remount_sb(sb, MS_RDONLY, NULL, 1);
791 up_write(&sb->s_umount);
792 spin_lock(&sb_lock);
793 if (p)
794 __put_super(p);
795 p = sb;
797 if (p)
798 __put_super(p);
799 spin_unlock(&sb_lock);
800 kfree(work);
801 printk("Emergency Remount complete\n");
804 void emergency_remount(void)
806 struct work_struct *work;
808 work = kmalloc(sizeof(*work), GFP_ATOMIC);
809 if (work) {
810 INIT_WORK(work, do_emergency_remount);
811 schedule_work(work);
816 * Unnamed block devices are dummy devices used by virtual
817 * filesystems which don't use real block-devices. -- jrs
820 static DEFINE_IDA(unnamed_dev_ida);
821 static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
822 static int unnamed_dev_start = 0; /* don't bother trying below it */
824 int get_anon_bdev(dev_t *p)
826 int dev;
827 int error;
829 retry:
830 if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0)
831 return -ENOMEM;
832 spin_lock(&unnamed_dev_lock);
833 error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev);
834 if (!error)
835 unnamed_dev_start = dev + 1;
836 spin_unlock(&unnamed_dev_lock);
837 if (error == -EAGAIN)
838 /* We raced and lost with another CPU. */
839 goto retry;
840 else if (error)
841 return -EAGAIN;
843 if (dev == (1 << MINORBITS)) {
844 spin_lock(&unnamed_dev_lock);
845 ida_remove(&unnamed_dev_ida, dev);
846 if (unnamed_dev_start > dev)
847 unnamed_dev_start = dev;
848 spin_unlock(&unnamed_dev_lock);
849 return -EMFILE;
851 *p = MKDEV(0, dev & MINORMASK);
852 return 0;
854 EXPORT_SYMBOL(get_anon_bdev);
856 void free_anon_bdev(dev_t dev)
858 int slot = MINOR(dev);
859 spin_lock(&unnamed_dev_lock);
860 ida_remove(&unnamed_dev_ida, slot);
861 if (slot < unnamed_dev_start)
862 unnamed_dev_start = slot;
863 spin_unlock(&unnamed_dev_lock);
865 EXPORT_SYMBOL(free_anon_bdev);
867 int set_anon_super(struct super_block *s, void *data)
869 int error = get_anon_bdev(&s->s_dev);
870 if (!error)
871 s->s_bdi = &noop_backing_dev_info;
872 return error;
875 EXPORT_SYMBOL(set_anon_super);
877 void kill_anon_super(struct super_block *sb)
879 dev_t dev = sb->s_dev;
880 generic_shutdown_super(sb);
881 free_anon_bdev(dev);
884 EXPORT_SYMBOL(kill_anon_super);
886 void kill_litter_super(struct super_block *sb)
888 if (sb->s_root)
889 d_genocide(sb->s_root);
890 kill_anon_super(sb);
893 EXPORT_SYMBOL(kill_litter_super);
895 static int ns_test_super(struct super_block *sb, void *data)
897 return sb->s_fs_info == data;
900 static int ns_set_super(struct super_block *sb, void *data)
902 sb->s_fs_info = data;
903 return set_anon_super(sb, NULL);
906 struct dentry *mount_ns(struct file_system_type *fs_type, int flags,
907 void *data, int (*fill_super)(struct super_block *, void *, int))
909 struct super_block *sb;
911 sb = sget(fs_type, ns_test_super, ns_set_super, flags, data);
912 if (IS_ERR(sb))
913 return ERR_CAST(sb);
915 if (!sb->s_root) {
916 int err;
917 err = fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
918 if (err) {
919 deactivate_locked_super(sb);
920 return ERR_PTR(err);
923 sb->s_flags |= MS_ACTIVE;
926 return dget(sb->s_root);
929 EXPORT_SYMBOL(mount_ns);
931 #ifdef CONFIG_BLOCK
932 static int set_bdev_super(struct super_block *s, void *data)
934 s->s_bdev = data;
935 s->s_dev = s->s_bdev->bd_dev;
938 * We set the bdi here to the queue backing, file systems can
939 * overwrite this in ->fill_super()
941 s->s_bdi = &bdev_get_queue(s->s_bdev)->backing_dev_info;
942 return 0;
945 static int test_bdev_super(struct super_block *s, void *data)
947 return (void *)s->s_bdev == data;
950 struct dentry *mount_bdev(struct file_system_type *fs_type,
951 int flags, const char *dev_name, void *data,
952 int (*fill_super)(struct super_block *, void *, int))
954 struct block_device *bdev;
955 struct super_block *s;
956 fmode_t mode = FMODE_READ | FMODE_EXCL;
957 int error = 0;
959 if (!(flags & MS_RDONLY))
960 mode |= FMODE_WRITE;
962 bdev = blkdev_get_by_path(dev_name, mode, fs_type);
963 if (IS_ERR(bdev))
964 return ERR_CAST(bdev);
967 * once the super is inserted into the list by sget, s_umount
968 * will protect the lockfs code from trying to start a snapshot
969 * while we are mounting
971 mutex_lock(&bdev->bd_fsfreeze_mutex);
972 if (bdev->bd_fsfreeze_count > 0) {
973 mutex_unlock(&bdev->bd_fsfreeze_mutex);
974 error = -EBUSY;
975 goto error_bdev;
977 s = sget(fs_type, test_bdev_super, set_bdev_super, flags | MS_NOSEC,
978 bdev);
979 mutex_unlock(&bdev->bd_fsfreeze_mutex);
980 if (IS_ERR(s))
981 goto error_s;
983 if (s->s_root) {
984 if ((flags ^ s->s_flags) & MS_RDONLY) {
985 deactivate_locked_super(s);
986 error = -EBUSY;
987 goto error_bdev;
991 * s_umount nests inside bd_mutex during
992 * __invalidate_device(). blkdev_put() acquires
993 * bd_mutex and can't be called under s_umount. Drop
994 * s_umount temporarily. This is safe as we're
995 * holding an active reference.
997 up_write(&s->s_umount);
998 blkdev_put(bdev, mode);
999 down_write(&s->s_umount);
1000 } else {
1001 char b[BDEVNAME_SIZE];
1003 s->s_mode = mode;
1004 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
1005 sb_set_blocksize(s, block_size(bdev));
1006 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1007 if (error) {
1008 deactivate_locked_super(s);
1009 goto error;
1012 s->s_flags |= MS_ACTIVE;
1013 bdev->bd_super = s;
1016 return dget(s->s_root);
1018 error_s:
1019 error = PTR_ERR(s);
1020 error_bdev:
1021 blkdev_put(bdev, mode);
1022 error:
1023 return ERR_PTR(error);
1025 EXPORT_SYMBOL(mount_bdev);
1027 void kill_block_super(struct super_block *sb)
1029 struct block_device *bdev = sb->s_bdev;
1030 fmode_t mode = sb->s_mode;
1032 bdev->bd_super = NULL;
1033 generic_shutdown_super(sb);
1034 sync_blockdev(bdev);
1035 WARN_ON_ONCE(!(mode & FMODE_EXCL));
1036 blkdev_put(bdev, mode | FMODE_EXCL);
1039 EXPORT_SYMBOL(kill_block_super);
1040 #endif
1042 struct dentry *mount_nodev(struct file_system_type *fs_type,
1043 int flags, void *data,
1044 int (*fill_super)(struct super_block *, void *, int))
1046 int error;
1047 struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
1049 if (IS_ERR(s))
1050 return ERR_CAST(s);
1052 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1053 if (error) {
1054 deactivate_locked_super(s);
1055 return ERR_PTR(error);
1057 s->s_flags |= MS_ACTIVE;
1058 return dget(s->s_root);
1060 EXPORT_SYMBOL(mount_nodev);
1062 static int compare_single(struct super_block *s, void *p)
1064 return 1;
1067 struct dentry *mount_single(struct file_system_type *fs_type,
1068 int flags, void *data,
1069 int (*fill_super)(struct super_block *, void *, int))
1071 struct super_block *s;
1072 int error;
1074 s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
1075 if (IS_ERR(s))
1076 return ERR_CAST(s);
1077 if (!s->s_root) {
1078 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1079 if (error) {
1080 deactivate_locked_super(s);
1081 return ERR_PTR(error);
1083 s->s_flags |= MS_ACTIVE;
1084 } else {
1085 do_remount_sb(s, flags, data, 0);
1087 return dget(s->s_root);
1089 EXPORT_SYMBOL(mount_single);
1091 struct dentry *
1092 mount_fs(struct file_system_type *type, int flags, const char *name, void *data)
1094 struct dentry *root;
1095 struct super_block *sb;
1096 char *secdata = NULL;
1097 int error = -ENOMEM;
1099 if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) {
1100 secdata = alloc_secdata();
1101 if (!secdata)
1102 goto out;
1104 error = security_sb_copy_data(data, secdata);
1105 if (error)
1106 goto out_free_secdata;
1109 root = type->mount(type, flags, name, data);
1110 if (IS_ERR(root)) {
1111 error = PTR_ERR(root);
1112 goto out_free_secdata;
1114 sb = root->d_sb;
1115 BUG_ON(!sb);
1116 WARN_ON(!sb->s_bdi);
1117 WARN_ON(sb->s_bdi == &default_backing_dev_info);
1118 sb->s_flags |= MS_BORN;
1120 error = security_sb_kern_mount(sb, flags, secdata);
1121 if (error)
1122 goto out_sb;
1125 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1126 * but s_maxbytes was an unsigned long long for many releases. Throw
1127 * this warning for a little while to try and catch filesystems that
1128 * violate this rule.
1130 WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1131 "negative value (%lld)\n", type->name, sb->s_maxbytes);
1133 up_write(&sb->s_umount);
1134 free_secdata(secdata);
1135 return root;
1136 out_sb:
1137 dput(root);
1138 deactivate_locked_super(sb);
1139 out_free_secdata:
1140 free_secdata(secdata);
1141 out:
1142 return ERR_PTR(error);
1146 * This is an internal function, please use sb_end_{write,pagefault,intwrite}
1147 * instead.
1149 void __sb_end_write(struct super_block *sb, int level)
1151 percpu_counter_dec(&sb->s_writers.counter[level-1]);
1153 * Make sure s_writers are updated before we wake up waiters in
1154 * freeze_super().
1156 smp_mb();
1157 if (waitqueue_active(&sb->s_writers.wait))
1158 wake_up(&sb->s_writers.wait);
1159 rwsem_release(&sb->s_writers.lock_map[level-1], 1, _RET_IP_);
1161 EXPORT_SYMBOL(__sb_end_write);
1163 #ifdef CONFIG_LOCKDEP
1165 * We want lockdep to tell us about possible deadlocks with freezing but
1166 * it's it bit tricky to properly instrument it. Getting a freeze protection
1167 * works as getting a read lock but there are subtle problems. XFS for example
1168 * gets freeze protection on internal level twice in some cases, which is OK
1169 * only because we already hold a freeze protection also on higher level. Due
1170 * to these cases we have to tell lockdep we are doing trylock when we
1171 * already hold a freeze protection for a higher freeze level.
1173 static void acquire_freeze_lock(struct super_block *sb, int level, bool trylock,
1174 unsigned long ip)
1176 int i;
1178 if (!trylock) {
1179 for (i = 0; i < level - 1; i++)
1180 if (lock_is_held(&sb->s_writers.lock_map[i])) {
1181 trylock = true;
1182 break;
1185 rwsem_acquire_read(&sb->s_writers.lock_map[level-1], 0, trylock, ip);
1187 #endif
1190 * This is an internal function, please use sb_start_{write,pagefault,intwrite}
1191 * instead.
1193 int __sb_start_write(struct super_block *sb, int level, bool wait)
1195 retry:
1196 if (unlikely(sb->s_writers.frozen >= level)) {
1197 if (!wait)
1198 return 0;
1199 wait_event(sb->s_writers.wait_unfrozen,
1200 sb->s_writers.frozen < level);
1203 #ifdef CONFIG_LOCKDEP
1204 acquire_freeze_lock(sb, level, !wait, _RET_IP_);
1205 #endif
1206 percpu_counter_inc(&sb->s_writers.counter[level-1]);
1208 * Make sure counter is updated before we check for frozen.
1209 * freeze_super() first sets frozen and then checks the counter.
1211 smp_mb();
1212 if (unlikely(sb->s_writers.frozen >= level)) {
1213 __sb_end_write(sb, level);
1214 goto retry;
1216 return 1;
1218 EXPORT_SYMBOL(__sb_start_write);
1221 * sb_wait_write - wait until all writers to given file system finish
1222 * @sb: the super for which we wait
1223 * @level: type of writers we wait for (normal vs page fault)
1225 * This function waits until there are no writers of given type to given file
1226 * system. Caller of this function should make sure there can be no new writers
1227 * of type @level before calling this function. Otherwise this function can
1228 * livelock.
1230 static void sb_wait_write(struct super_block *sb, int level)
1232 s64 writers;
1235 * We just cycle-through lockdep here so that it does not complain
1236 * about returning with lock to userspace
1238 rwsem_acquire(&sb->s_writers.lock_map[level-1], 0, 0, _THIS_IP_);
1239 rwsem_release(&sb->s_writers.lock_map[level-1], 1, _THIS_IP_);
1241 do {
1242 DEFINE_WAIT(wait);
1245 * We use a barrier in prepare_to_wait() to separate setting
1246 * of frozen and checking of the counter
1248 prepare_to_wait(&sb->s_writers.wait, &wait,
1249 TASK_UNINTERRUPTIBLE);
1251 writers = percpu_counter_sum(&sb->s_writers.counter[level-1]);
1252 if (writers)
1253 schedule();
1255 finish_wait(&sb->s_writers.wait, &wait);
1256 } while (writers);
1260 * freeze_super - lock the filesystem and force it into a consistent state
1261 * @sb: the super to lock
1263 * Syncs the super to make sure the filesystem is consistent and calls the fs's
1264 * freeze_fs. Subsequent calls to this without first thawing the fs will return
1265 * -EBUSY.
1267 * During this function, sb->s_writers.frozen goes through these values:
1269 * SB_UNFROZEN: File system is normal, all writes progress as usual.
1271 * SB_FREEZE_WRITE: The file system is in the process of being frozen. New
1272 * writes should be blocked, though page faults are still allowed. We wait for
1273 * all writes to complete and then proceed to the next stage.
1275 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1276 * but internal fs threads can still modify the filesystem (although they
1277 * should not dirty new pages or inodes), writeback can run etc. After waiting
1278 * for all running page faults we sync the filesystem which will clean all
1279 * dirty pages and inodes (no new dirty pages or inodes can be created when
1280 * sync is running).
1282 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1283 * modification are blocked (e.g. XFS preallocation truncation on inode
1284 * reclaim). This is usually implemented by blocking new transactions for
1285 * filesystems that have them and need this additional guard. After all
1286 * internal writers are finished we call ->freeze_fs() to finish filesystem
1287 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1288 * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1290 * sb->s_writers.frozen is protected by sb->s_umount.
1292 int freeze_super(struct super_block *sb)
1294 int ret;
1296 atomic_inc(&sb->s_active);
1297 down_write(&sb->s_umount);
1298 if (sb->s_writers.frozen != SB_UNFROZEN) {
1299 deactivate_locked_super(sb);
1300 return -EBUSY;
1303 if (!(sb->s_flags & MS_BORN)) {
1304 up_write(&sb->s_umount);
1305 return 0; /* sic - it's "nothing to do" */
1308 if (sb->s_flags & MS_RDONLY) {
1309 /* Nothing to do really... */
1310 sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1311 up_write(&sb->s_umount);
1312 return 0;
1315 /* From now on, no new normal writers can start */
1316 sb->s_writers.frozen = SB_FREEZE_WRITE;
1317 smp_wmb();
1319 /* Release s_umount to preserve sb_start_write -> s_umount ordering */
1320 up_write(&sb->s_umount);
1322 sb_wait_write(sb, SB_FREEZE_WRITE);
1324 /* Now we go and block page faults... */
1325 down_write(&sb->s_umount);
1326 sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
1327 smp_wmb();
1329 sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
1331 /* All writers are done so after syncing there won't be dirty data */
1332 sync_filesystem(sb);
1334 /* Now wait for internal filesystem counter */
1335 sb->s_writers.frozen = SB_FREEZE_FS;
1336 smp_wmb();
1337 sb_wait_write(sb, SB_FREEZE_FS);
1339 if (sb->s_op->freeze_fs) {
1340 ret = sb->s_op->freeze_fs(sb);
1341 if (ret) {
1342 printk(KERN_ERR
1343 "VFS:Filesystem freeze failed\n");
1344 sb->s_writers.frozen = SB_UNFROZEN;
1345 smp_wmb();
1346 wake_up(&sb->s_writers.wait_unfrozen);
1347 deactivate_locked_super(sb);
1348 return ret;
1352 * This is just for debugging purposes so that fs can warn if it
1353 * sees write activity when frozen is set to SB_FREEZE_COMPLETE.
1355 sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1356 up_write(&sb->s_umount);
1357 return 0;
1359 EXPORT_SYMBOL(freeze_super);
1362 * thaw_super -- unlock filesystem
1363 * @sb: the super to thaw
1365 * Unlocks the filesystem and marks it writeable again after freeze_super().
1367 int thaw_super(struct super_block *sb)
1369 int error;
1371 down_write(&sb->s_umount);
1372 if (sb->s_writers.frozen == SB_UNFROZEN) {
1373 up_write(&sb->s_umount);
1374 return -EINVAL;
1377 if (sb->s_flags & MS_RDONLY)
1378 goto out;
1380 if (sb->s_op->unfreeze_fs) {
1381 error = sb->s_op->unfreeze_fs(sb);
1382 if (error) {
1383 printk(KERN_ERR
1384 "VFS:Filesystem thaw failed\n");
1385 up_write(&sb->s_umount);
1386 return error;
1390 out:
1391 sb->s_writers.frozen = SB_UNFROZEN;
1392 smp_wmb();
1393 wake_up(&sb->s_writers.wait_unfrozen);
1394 deactivate_locked_super(sb);
1396 return 0;
1398 EXPORT_SYMBOL(thaw_super);