2 * Kernel-based Virtual Machine driver for Linux
4 * derived from drivers/kvm/kvm_main.c
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Amit Shah <amit.shah@qumranet.com>
15 * Ben-Ami Yassour <benami@il.ibm.com>
17 * This work is licensed under the terms of the GNU GPL, version 2. See
18 * the COPYING file in the top-level directory.
22 #include <linux/kvm_host.h>
27 #include "kvm_cache_regs.h"
31 #include <linux/clocksource.h>
32 #include <linux/interrupt.h>
33 #include <linux/kvm.h>
35 #include <linux/vmalloc.h>
36 #include <linux/module.h>
37 #include <linux/mman.h>
38 #include <linux/highmem.h>
39 #include <linux/iommu.h>
40 #include <linux/intel-iommu.h>
41 #include <linux/cpufreq.h>
42 #include <linux/user-return-notifier.h>
43 #include <linux/srcu.h>
44 #include <linux/slab.h>
45 #include <linux/perf_event.h>
46 #include <linux/uaccess.h>
47 #include <linux/hash.h>
48 #include <linux/pci.h>
49 #include <trace/events/kvm.h>
51 #define CREATE_TRACE_POINTS
54 #include <asm/debugreg.h>
60 #include <asm/fpu-internal.h> /* Ugh! */
62 #include <asm/pvclock.h>
63 #include <asm/div64.h>
65 #define MAX_IO_MSRS 256
66 #define KVM_MAX_MCE_BANKS 32
67 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
69 #define emul_to_vcpu(ctxt) \
70 container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
73 * - enable syscall per default because its emulated by KVM
74 * - enable LME and LMA per default on 64 bit KVM
78 u64 __read_mostly efer_reserved_bits
= ~((u64
)(EFER_SCE
| EFER_LME
| EFER_LMA
));
80 static u64 __read_mostly efer_reserved_bits
= ~((u64
)EFER_SCE
);
83 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
84 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
86 static void update_cr8_intercept(struct kvm_vcpu
*vcpu
);
87 static void process_nmi(struct kvm_vcpu
*vcpu
);
89 struct kvm_x86_ops
*kvm_x86_ops
;
90 EXPORT_SYMBOL_GPL(kvm_x86_ops
);
92 static bool ignore_msrs
= 0;
93 module_param(ignore_msrs
, bool, S_IRUGO
| S_IWUSR
);
95 bool kvm_has_tsc_control
;
96 EXPORT_SYMBOL_GPL(kvm_has_tsc_control
);
97 u32 kvm_max_guest_tsc_khz
;
98 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz
);
100 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
101 static u32 tsc_tolerance_ppm
= 250;
102 module_param(tsc_tolerance_ppm
, uint
, S_IRUGO
| S_IWUSR
);
104 #define KVM_NR_SHARED_MSRS 16
106 struct kvm_shared_msrs_global
{
108 u32 msrs
[KVM_NR_SHARED_MSRS
];
111 struct kvm_shared_msrs
{
112 struct user_return_notifier urn
;
114 struct kvm_shared_msr_values
{
117 } values
[KVM_NR_SHARED_MSRS
];
120 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global
;
121 static DEFINE_PER_CPU(struct kvm_shared_msrs
, shared_msrs
);
123 struct kvm_stats_debugfs_item debugfs_entries
[] = {
124 { "pf_fixed", VCPU_STAT(pf_fixed
) },
125 { "pf_guest", VCPU_STAT(pf_guest
) },
126 { "tlb_flush", VCPU_STAT(tlb_flush
) },
127 { "invlpg", VCPU_STAT(invlpg
) },
128 { "exits", VCPU_STAT(exits
) },
129 { "io_exits", VCPU_STAT(io_exits
) },
130 { "mmio_exits", VCPU_STAT(mmio_exits
) },
131 { "signal_exits", VCPU_STAT(signal_exits
) },
132 { "irq_window", VCPU_STAT(irq_window_exits
) },
133 { "nmi_window", VCPU_STAT(nmi_window_exits
) },
134 { "halt_exits", VCPU_STAT(halt_exits
) },
135 { "halt_wakeup", VCPU_STAT(halt_wakeup
) },
136 { "hypercalls", VCPU_STAT(hypercalls
) },
137 { "request_irq", VCPU_STAT(request_irq_exits
) },
138 { "irq_exits", VCPU_STAT(irq_exits
) },
139 { "host_state_reload", VCPU_STAT(host_state_reload
) },
140 { "efer_reload", VCPU_STAT(efer_reload
) },
141 { "fpu_reload", VCPU_STAT(fpu_reload
) },
142 { "insn_emulation", VCPU_STAT(insn_emulation
) },
143 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail
) },
144 { "irq_injections", VCPU_STAT(irq_injections
) },
145 { "nmi_injections", VCPU_STAT(nmi_injections
) },
146 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped
) },
147 { "mmu_pte_write", VM_STAT(mmu_pte_write
) },
148 { "mmu_pte_updated", VM_STAT(mmu_pte_updated
) },
149 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped
) },
150 { "mmu_flooded", VM_STAT(mmu_flooded
) },
151 { "mmu_recycled", VM_STAT(mmu_recycled
) },
152 { "mmu_cache_miss", VM_STAT(mmu_cache_miss
) },
153 { "mmu_unsync", VM_STAT(mmu_unsync
) },
154 { "remote_tlb_flush", VM_STAT(remote_tlb_flush
) },
155 { "largepages", VM_STAT(lpages
) },
159 u64 __read_mostly host_xcr0
;
161 int emulator_fix_hypercall(struct x86_emulate_ctxt
*ctxt
);
163 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu
*vcpu
)
166 for (i
= 0; i
< roundup_pow_of_two(ASYNC_PF_PER_VCPU
); i
++)
167 vcpu
->arch
.apf
.gfns
[i
] = ~0;
170 static void kvm_on_user_return(struct user_return_notifier
*urn
)
173 struct kvm_shared_msrs
*locals
174 = container_of(urn
, struct kvm_shared_msrs
, urn
);
175 struct kvm_shared_msr_values
*values
;
177 for (slot
= 0; slot
< shared_msrs_global
.nr
; ++slot
) {
178 values
= &locals
->values
[slot
];
179 if (values
->host
!= values
->curr
) {
180 wrmsrl(shared_msrs_global
.msrs
[slot
], values
->host
);
181 values
->curr
= values
->host
;
184 locals
->registered
= false;
185 user_return_notifier_unregister(urn
);
188 static void shared_msr_update(unsigned slot
, u32 msr
)
190 struct kvm_shared_msrs
*smsr
;
193 smsr
= &__get_cpu_var(shared_msrs
);
194 /* only read, and nobody should modify it at this time,
195 * so don't need lock */
196 if (slot
>= shared_msrs_global
.nr
) {
197 printk(KERN_ERR
"kvm: invalid MSR slot!");
200 rdmsrl_safe(msr
, &value
);
201 smsr
->values
[slot
].host
= value
;
202 smsr
->values
[slot
].curr
= value
;
205 void kvm_define_shared_msr(unsigned slot
, u32 msr
)
207 if (slot
>= shared_msrs_global
.nr
)
208 shared_msrs_global
.nr
= slot
+ 1;
209 shared_msrs_global
.msrs
[slot
] = msr
;
210 /* we need ensured the shared_msr_global have been updated */
213 EXPORT_SYMBOL_GPL(kvm_define_shared_msr
);
215 static void kvm_shared_msr_cpu_online(void)
219 for (i
= 0; i
< shared_msrs_global
.nr
; ++i
)
220 shared_msr_update(i
, shared_msrs_global
.msrs
[i
]);
223 void kvm_set_shared_msr(unsigned slot
, u64 value
, u64 mask
)
225 struct kvm_shared_msrs
*smsr
= &__get_cpu_var(shared_msrs
);
227 if (((value
^ smsr
->values
[slot
].curr
) & mask
) == 0)
229 smsr
->values
[slot
].curr
= value
;
230 wrmsrl(shared_msrs_global
.msrs
[slot
], value
);
231 if (!smsr
->registered
) {
232 smsr
->urn
.on_user_return
= kvm_on_user_return
;
233 user_return_notifier_register(&smsr
->urn
);
234 smsr
->registered
= true;
237 EXPORT_SYMBOL_GPL(kvm_set_shared_msr
);
239 static void drop_user_return_notifiers(void *ignore
)
241 struct kvm_shared_msrs
*smsr
= &__get_cpu_var(shared_msrs
);
243 if (smsr
->registered
)
244 kvm_on_user_return(&smsr
->urn
);
247 u64
kvm_get_apic_base(struct kvm_vcpu
*vcpu
)
249 return vcpu
->arch
.apic_base
;
251 EXPORT_SYMBOL_GPL(kvm_get_apic_base
);
253 void kvm_set_apic_base(struct kvm_vcpu
*vcpu
, u64 data
)
255 /* TODO: reserve bits check */
256 kvm_lapic_set_base(vcpu
, data
);
258 EXPORT_SYMBOL_GPL(kvm_set_apic_base
);
260 #define EXCPT_BENIGN 0
261 #define EXCPT_CONTRIBUTORY 1
264 static int exception_class(int vector
)
274 return EXCPT_CONTRIBUTORY
;
281 static void kvm_multiple_exception(struct kvm_vcpu
*vcpu
,
282 unsigned nr
, bool has_error
, u32 error_code
,
288 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
290 if (!vcpu
->arch
.exception
.pending
) {
292 vcpu
->arch
.exception
.pending
= true;
293 vcpu
->arch
.exception
.has_error_code
= has_error
;
294 vcpu
->arch
.exception
.nr
= nr
;
295 vcpu
->arch
.exception
.error_code
= error_code
;
296 vcpu
->arch
.exception
.reinject
= reinject
;
300 /* to check exception */
301 prev_nr
= vcpu
->arch
.exception
.nr
;
302 if (prev_nr
== DF_VECTOR
) {
303 /* triple fault -> shutdown */
304 kvm_make_request(KVM_REQ_TRIPLE_FAULT
, vcpu
);
307 class1
= exception_class(prev_nr
);
308 class2
= exception_class(nr
);
309 if ((class1
== EXCPT_CONTRIBUTORY
&& class2
== EXCPT_CONTRIBUTORY
)
310 || (class1
== EXCPT_PF
&& class2
!= EXCPT_BENIGN
)) {
311 /* generate double fault per SDM Table 5-5 */
312 vcpu
->arch
.exception
.pending
= true;
313 vcpu
->arch
.exception
.has_error_code
= true;
314 vcpu
->arch
.exception
.nr
= DF_VECTOR
;
315 vcpu
->arch
.exception
.error_code
= 0;
317 /* replace previous exception with a new one in a hope
318 that instruction re-execution will regenerate lost
323 void kvm_queue_exception(struct kvm_vcpu
*vcpu
, unsigned nr
)
325 kvm_multiple_exception(vcpu
, nr
, false, 0, false);
327 EXPORT_SYMBOL_GPL(kvm_queue_exception
);
329 void kvm_requeue_exception(struct kvm_vcpu
*vcpu
, unsigned nr
)
331 kvm_multiple_exception(vcpu
, nr
, false, 0, true);
333 EXPORT_SYMBOL_GPL(kvm_requeue_exception
);
335 void kvm_complete_insn_gp(struct kvm_vcpu
*vcpu
, int err
)
338 kvm_inject_gp(vcpu
, 0);
340 kvm_x86_ops
->skip_emulated_instruction(vcpu
);
342 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp
);
344 void kvm_inject_page_fault(struct kvm_vcpu
*vcpu
, struct x86_exception
*fault
)
346 ++vcpu
->stat
.pf_guest
;
347 vcpu
->arch
.cr2
= fault
->address
;
348 kvm_queue_exception_e(vcpu
, PF_VECTOR
, fault
->error_code
);
350 EXPORT_SYMBOL_GPL(kvm_inject_page_fault
);
352 void kvm_propagate_fault(struct kvm_vcpu
*vcpu
, struct x86_exception
*fault
)
354 if (mmu_is_nested(vcpu
) && !fault
->nested_page_fault
)
355 vcpu
->arch
.nested_mmu
.inject_page_fault(vcpu
, fault
);
357 vcpu
->arch
.mmu
.inject_page_fault(vcpu
, fault
);
360 void kvm_inject_nmi(struct kvm_vcpu
*vcpu
)
362 atomic_inc(&vcpu
->arch
.nmi_queued
);
363 kvm_make_request(KVM_REQ_NMI
, vcpu
);
365 EXPORT_SYMBOL_GPL(kvm_inject_nmi
);
367 void kvm_queue_exception_e(struct kvm_vcpu
*vcpu
, unsigned nr
, u32 error_code
)
369 kvm_multiple_exception(vcpu
, nr
, true, error_code
, false);
371 EXPORT_SYMBOL_GPL(kvm_queue_exception_e
);
373 void kvm_requeue_exception_e(struct kvm_vcpu
*vcpu
, unsigned nr
, u32 error_code
)
375 kvm_multiple_exception(vcpu
, nr
, true, error_code
, true);
377 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e
);
380 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
381 * a #GP and return false.
383 bool kvm_require_cpl(struct kvm_vcpu
*vcpu
, int required_cpl
)
385 if (kvm_x86_ops
->get_cpl(vcpu
) <= required_cpl
)
387 kvm_queue_exception_e(vcpu
, GP_VECTOR
, 0);
390 EXPORT_SYMBOL_GPL(kvm_require_cpl
);
393 * This function will be used to read from the physical memory of the currently
394 * running guest. The difference to kvm_read_guest_page is that this function
395 * can read from guest physical or from the guest's guest physical memory.
397 int kvm_read_guest_page_mmu(struct kvm_vcpu
*vcpu
, struct kvm_mmu
*mmu
,
398 gfn_t ngfn
, void *data
, int offset
, int len
,
404 ngpa
= gfn_to_gpa(ngfn
);
405 real_gfn
= mmu
->translate_gpa(vcpu
, ngpa
, access
);
406 if (real_gfn
== UNMAPPED_GVA
)
409 real_gfn
= gpa_to_gfn(real_gfn
);
411 return kvm_read_guest_page(vcpu
->kvm
, real_gfn
, data
, offset
, len
);
413 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu
);
415 int kvm_read_nested_guest_page(struct kvm_vcpu
*vcpu
, gfn_t gfn
,
416 void *data
, int offset
, int len
, u32 access
)
418 return kvm_read_guest_page_mmu(vcpu
, vcpu
->arch
.walk_mmu
, gfn
,
419 data
, offset
, len
, access
);
423 * Load the pae pdptrs. Return true is they are all valid.
425 int load_pdptrs(struct kvm_vcpu
*vcpu
, struct kvm_mmu
*mmu
, unsigned long cr3
)
427 gfn_t pdpt_gfn
= cr3
>> PAGE_SHIFT
;
428 unsigned offset
= ((cr3
& (PAGE_SIZE
-1)) >> 5) << 2;
431 u64 pdpte
[ARRAY_SIZE(mmu
->pdptrs
)];
433 ret
= kvm_read_guest_page_mmu(vcpu
, mmu
, pdpt_gfn
, pdpte
,
434 offset
* sizeof(u64
), sizeof(pdpte
),
435 PFERR_USER_MASK
|PFERR_WRITE_MASK
);
440 for (i
= 0; i
< ARRAY_SIZE(pdpte
); ++i
) {
441 if (is_present_gpte(pdpte
[i
]) &&
442 (pdpte
[i
] & vcpu
->arch
.mmu
.rsvd_bits_mask
[0][2])) {
449 memcpy(mmu
->pdptrs
, pdpte
, sizeof(mmu
->pdptrs
));
450 __set_bit(VCPU_EXREG_PDPTR
,
451 (unsigned long *)&vcpu
->arch
.regs_avail
);
452 __set_bit(VCPU_EXREG_PDPTR
,
453 (unsigned long *)&vcpu
->arch
.regs_dirty
);
458 EXPORT_SYMBOL_GPL(load_pdptrs
);
460 static bool pdptrs_changed(struct kvm_vcpu
*vcpu
)
462 u64 pdpte
[ARRAY_SIZE(vcpu
->arch
.walk_mmu
->pdptrs
)];
468 if (is_long_mode(vcpu
) || !is_pae(vcpu
))
471 if (!test_bit(VCPU_EXREG_PDPTR
,
472 (unsigned long *)&vcpu
->arch
.regs_avail
))
475 gfn
= (kvm_read_cr3(vcpu
) & ~31u) >> PAGE_SHIFT
;
476 offset
= (kvm_read_cr3(vcpu
) & ~31u) & (PAGE_SIZE
- 1);
477 r
= kvm_read_nested_guest_page(vcpu
, gfn
, pdpte
, offset
, sizeof(pdpte
),
478 PFERR_USER_MASK
| PFERR_WRITE_MASK
);
481 changed
= memcmp(pdpte
, vcpu
->arch
.walk_mmu
->pdptrs
, sizeof(pdpte
)) != 0;
487 int kvm_set_cr0(struct kvm_vcpu
*vcpu
, unsigned long cr0
)
489 unsigned long old_cr0
= kvm_read_cr0(vcpu
);
490 unsigned long update_bits
= X86_CR0_PG
| X86_CR0_WP
|
491 X86_CR0_CD
| X86_CR0_NW
;
496 if (cr0
& 0xffffffff00000000UL
)
500 cr0
&= ~CR0_RESERVED_BITS
;
502 if ((cr0
& X86_CR0_NW
) && !(cr0
& X86_CR0_CD
))
505 if ((cr0
& X86_CR0_PG
) && !(cr0
& X86_CR0_PE
))
508 if (!is_paging(vcpu
) && (cr0
& X86_CR0_PG
)) {
510 if ((vcpu
->arch
.efer
& EFER_LME
)) {
515 kvm_x86_ops
->get_cs_db_l_bits(vcpu
, &cs_db
, &cs_l
);
520 if (is_pae(vcpu
) && !load_pdptrs(vcpu
, vcpu
->arch
.walk_mmu
,
525 if (!(cr0
& X86_CR0_PG
) && kvm_read_cr4_bits(vcpu
, X86_CR4_PCIDE
))
528 kvm_x86_ops
->set_cr0(vcpu
, cr0
);
530 if ((cr0
^ old_cr0
) & X86_CR0_PG
) {
531 kvm_clear_async_pf_completion_queue(vcpu
);
532 kvm_async_pf_hash_reset(vcpu
);
535 if ((cr0
^ old_cr0
) & update_bits
)
536 kvm_mmu_reset_context(vcpu
);
539 EXPORT_SYMBOL_GPL(kvm_set_cr0
);
541 void kvm_lmsw(struct kvm_vcpu
*vcpu
, unsigned long msw
)
543 (void)kvm_set_cr0(vcpu
, kvm_read_cr0_bits(vcpu
, ~0x0eul
) | (msw
& 0x0f));
545 EXPORT_SYMBOL_GPL(kvm_lmsw
);
547 int __kvm_set_xcr(struct kvm_vcpu
*vcpu
, u32 index
, u64 xcr
)
551 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
552 if (index
!= XCR_XFEATURE_ENABLED_MASK
)
555 if (kvm_x86_ops
->get_cpl(vcpu
) != 0)
557 if (!(xcr0
& XSTATE_FP
))
559 if ((xcr0
& XSTATE_YMM
) && !(xcr0
& XSTATE_SSE
))
561 if (xcr0
& ~host_xcr0
)
563 vcpu
->arch
.xcr0
= xcr0
;
564 vcpu
->guest_xcr0_loaded
= 0;
568 int kvm_set_xcr(struct kvm_vcpu
*vcpu
, u32 index
, u64 xcr
)
570 if (__kvm_set_xcr(vcpu
, index
, xcr
)) {
571 kvm_inject_gp(vcpu
, 0);
576 EXPORT_SYMBOL_GPL(kvm_set_xcr
);
578 int kvm_set_cr4(struct kvm_vcpu
*vcpu
, unsigned long cr4
)
580 unsigned long old_cr4
= kvm_read_cr4(vcpu
);
581 unsigned long pdptr_bits
= X86_CR4_PGE
| X86_CR4_PSE
|
582 X86_CR4_PAE
| X86_CR4_SMEP
;
583 if (cr4
& CR4_RESERVED_BITS
)
586 if (!guest_cpuid_has_xsave(vcpu
) && (cr4
& X86_CR4_OSXSAVE
))
589 if (!guest_cpuid_has_smep(vcpu
) && (cr4
& X86_CR4_SMEP
))
592 if (!guest_cpuid_has_fsgsbase(vcpu
) && (cr4
& X86_CR4_RDWRGSFS
))
595 if (is_long_mode(vcpu
)) {
596 if (!(cr4
& X86_CR4_PAE
))
598 } else if (is_paging(vcpu
) && (cr4
& X86_CR4_PAE
)
599 && ((cr4
^ old_cr4
) & pdptr_bits
)
600 && !load_pdptrs(vcpu
, vcpu
->arch
.walk_mmu
,
604 if ((cr4
& X86_CR4_PCIDE
) && !(old_cr4
& X86_CR4_PCIDE
)) {
605 if (!guest_cpuid_has_pcid(vcpu
))
608 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
609 if ((kvm_read_cr3(vcpu
) & X86_CR3_PCID_MASK
) || !is_long_mode(vcpu
))
613 if (kvm_x86_ops
->set_cr4(vcpu
, cr4
))
616 if (((cr4
^ old_cr4
) & pdptr_bits
) ||
617 (!(cr4
& X86_CR4_PCIDE
) && (old_cr4
& X86_CR4_PCIDE
)))
618 kvm_mmu_reset_context(vcpu
);
620 if ((cr4
^ old_cr4
) & X86_CR4_OSXSAVE
)
621 kvm_update_cpuid(vcpu
);
625 EXPORT_SYMBOL_GPL(kvm_set_cr4
);
627 int kvm_set_cr3(struct kvm_vcpu
*vcpu
, unsigned long cr3
)
629 if (cr3
== kvm_read_cr3(vcpu
) && !pdptrs_changed(vcpu
)) {
630 kvm_mmu_sync_roots(vcpu
);
631 kvm_mmu_flush_tlb(vcpu
);
635 if (is_long_mode(vcpu
)) {
636 if (kvm_read_cr4(vcpu
) & X86_CR4_PCIDE
) {
637 if (cr3
& CR3_PCID_ENABLED_RESERVED_BITS
)
640 if (cr3
& CR3_L_MODE_RESERVED_BITS
)
644 if (cr3
& CR3_PAE_RESERVED_BITS
)
646 if (is_paging(vcpu
) &&
647 !load_pdptrs(vcpu
, vcpu
->arch
.walk_mmu
, cr3
))
651 * We don't check reserved bits in nonpae mode, because
652 * this isn't enforced, and VMware depends on this.
657 * Does the new cr3 value map to physical memory? (Note, we
658 * catch an invalid cr3 even in real-mode, because it would
659 * cause trouble later on when we turn on paging anyway.)
661 * A real CPU would silently accept an invalid cr3 and would
662 * attempt to use it - with largely undefined (and often hard
663 * to debug) behavior on the guest side.
665 if (unlikely(!gfn_to_memslot(vcpu
->kvm
, cr3
>> PAGE_SHIFT
)))
667 vcpu
->arch
.cr3
= cr3
;
668 __set_bit(VCPU_EXREG_CR3
, (ulong
*)&vcpu
->arch
.regs_avail
);
669 vcpu
->arch
.mmu
.new_cr3(vcpu
);
672 EXPORT_SYMBOL_GPL(kvm_set_cr3
);
674 int kvm_set_cr8(struct kvm_vcpu
*vcpu
, unsigned long cr8
)
676 if (cr8
& CR8_RESERVED_BITS
)
678 if (irqchip_in_kernel(vcpu
->kvm
))
679 kvm_lapic_set_tpr(vcpu
, cr8
);
681 vcpu
->arch
.cr8
= cr8
;
684 EXPORT_SYMBOL_GPL(kvm_set_cr8
);
686 unsigned long kvm_get_cr8(struct kvm_vcpu
*vcpu
)
688 if (irqchip_in_kernel(vcpu
->kvm
))
689 return kvm_lapic_get_cr8(vcpu
);
691 return vcpu
->arch
.cr8
;
693 EXPORT_SYMBOL_GPL(kvm_get_cr8
);
695 static int __kvm_set_dr(struct kvm_vcpu
*vcpu
, int dr
, unsigned long val
)
699 vcpu
->arch
.db
[dr
] = val
;
700 if (!(vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
))
701 vcpu
->arch
.eff_db
[dr
] = val
;
704 if (kvm_read_cr4_bits(vcpu
, X86_CR4_DE
))
708 if (val
& 0xffffffff00000000ULL
)
710 vcpu
->arch
.dr6
= (val
& DR6_VOLATILE
) | DR6_FIXED_1
;
713 if (kvm_read_cr4_bits(vcpu
, X86_CR4_DE
))
717 if (val
& 0xffffffff00000000ULL
)
719 vcpu
->arch
.dr7
= (val
& DR7_VOLATILE
) | DR7_FIXED_1
;
720 if (!(vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
)) {
721 kvm_x86_ops
->set_dr7(vcpu
, vcpu
->arch
.dr7
);
722 vcpu
->arch
.switch_db_regs
= (val
& DR7_BP_EN_MASK
);
730 int kvm_set_dr(struct kvm_vcpu
*vcpu
, int dr
, unsigned long val
)
734 res
= __kvm_set_dr(vcpu
, dr
, val
);
736 kvm_queue_exception(vcpu
, UD_VECTOR
);
738 kvm_inject_gp(vcpu
, 0);
742 EXPORT_SYMBOL_GPL(kvm_set_dr
);
744 static int _kvm_get_dr(struct kvm_vcpu
*vcpu
, int dr
, unsigned long *val
)
748 *val
= vcpu
->arch
.db
[dr
];
751 if (kvm_read_cr4_bits(vcpu
, X86_CR4_DE
))
755 *val
= vcpu
->arch
.dr6
;
758 if (kvm_read_cr4_bits(vcpu
, X86_CR4_DE
))
762 *val
= vcpu
->arch
.dr7
;
769 int kvm_get_dr(struct kvm_vcpu
*vcpu
, int dr
, unsigned long *val
)
771 if (_kvm_get_dr(vcpu
, dr
, val
)) {
772 kvm_queue_exception(vcpu
, UD_VECTOR
);
777 EXPORT_SYMBOL_GPL(kvm_get_dr
);
779 bool kvm_rdpmc(struct kvm_vcpu
*vcpu
)
781 u32 ecx
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
785 err
= kvm_pmu_read_pmc(vcpu
, ecx
, &data
);
788 kvm_register_write(vcpu
, VCPU_REGS_RAX
, (u32
)data
);
789 kvm_register_write(vcpu
, VCPU_REGS_RDX
, data
>> 32);
792 EXPORT_SYMBOL_GPL(kvm_rdpmc
);
795 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
796 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
798 * This list is modified at module load time to reflect the
799 * capabilities of the host cpu. This capabilities test skips MSRs that are
800 * kvm-specific. Those are put in the beginning of the list.
803 #define KVM_SAVE_MSRS_BEGIN 10
804 static u32 msrs_to_save
[] = {
805 MSR_KVM_SYSTEM_TIME
, MSR_KVM_WALL_CLOCK
,
806 MSR_KVM_SYSTEM_TIME_NEW
, MSR_KVM_WALL_CLOCK_NEW
,
807 HV_X64_MSR_GUEST_OS_ID
, HV_X64_MSR_HYPERCALL
,
808 HV_X64_MSR_APIC_ASSIST_PAGE
, MSR_KVM_ASYNC_PF_EN
, MSR_KVM_STEAL_TIME
,
810 MSR_IA32_SYSENTER_CS
, MSR_IA32_SYSENTER_ESP
, MSR_IA32_SYSENTER_EIP
,
813 MSR_CSTAR
, MSR_KERNEL_GS_BASE
, MSR_SYSCALL_MASK
, MSR_LSTAR
,
815 MSR_IA32_TSC
, MSR_IA32_CR_PAT
, MSR_VM_HSAVE_PA
818 static unsigned num_msrs_to_save
;
820 static const u32 emulated_msrs
[] = {
821 MSR_IA32_TSCDEADLINE
,
822 MSR_IA32_MISC_ENABLE
,
827 static int set_efer(struct kvm_vcpu
*vcpu
, u64 efer
)
829 u64 old_efer
= vcpu
->arch
.efer
;
831 if (efer
& efer_reserved_bits
)
835 && (vcpu
->arch
.efer
& EFER_LME
) != (efer
& EFER_LME
))
838 if (efer
& EFER_FFXSR
) {
839 struct kvm_cpuid_entry2
*feat
;
841 feat
= kvm_find_cpuid_entry(vcpu
, 0x80000001, 0);
842 if (!feat
|| !(feat
->edx
& bit(X86_FEATURE_FXSR_OPT
)))
846 if (efer
& EFER_SVME
) {
847 struct kvm_cpuid_entry2
*feat
;
849 feat
= kvm_find_cpuid_entry(vcpu
, 0x80000001, 0);
850 if (!feat
|| !(feat
->ecx
& bit(X86_FEATURE_SVM
)))
855 efer
|= vcpu
->arch
.efer
& EFER_LMA
;
857 kvm_x86_ops
->set_efer(vcpu
, efer
);
859 vcpu
->arch
.mmu
.base_role
.nxe
= (efer
& EFER_NX
) && !tdp_enabled
;
861 /* Update reserved bits */
862 if ((efer
^ old_efer
) & EFER_NX
)
863 kvm_mmu_reset_context(vcpu
);
868 void kvm_enable_efer_bits(u64 mask
)
870 efer_reserved_bits
&= ~mask
;
872 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits
);
876 * Writes msr value into into the appropriate "register".
877 * Returns 0 on success, non-0 otherwise.
878 * Assumes vcpu_load() was already called.
880 int kvm_set_msr(struct kvm_vcpu
*vcpu
, u32 msr_index
, u64 data
)
882 return kvm_x86_ops
->set_msr(vcpu
, msr_index
, data
);
886 * Adapt set_msr() to msr_io()'s calling convention
888 static int do_set_msr(struct kvm_vcpu
*vcpu
, unsigned index
, u64
*data
)
890 return kvm_set_msr(vcpu
, index
, *data
);
893 static void kvm_write_wall_clock(struct kvm
*kvm
, gpa_t wall_clock
)
897 struct pvclock_wall_clock wc
;
898 struct timespec boot
;
903 r
= kvm_read_guest(kvm
, wall_clock
, &version
, sizeof(version
));
908 ++version
; /* first time write, random junk */
912 kvm_write_guest(kvm
, wall_clock
, &version
, sizeof(version
));
915 * The guest calculates current wall clock time by adding
916 * system time (updated by kvm_guest_time_update below) to the
917 * wall clock specified here. guest system time equals host
918 * system time for us, thus we must fill in host boot time here.
922 if (kvm
->arch
.kvmclock_offset
) {
923 struct timespec ts
= ns_to_timespec(kvm
->arch
.kvmclock_offset
);
924 boot
= timespec_sub(boot
, ts
);
926 wc
.sec
= boot
.tv_sec
;
927 wc
.nsec
= boot
.tv_nsec
;
928 wc
.version
= version
;
930 kvm_write_guest(kvm
, wall_clock
, &wc
, sizeof(wc
));
933 kvm_write_guest(kvm
, wall_clock
, &version
, sizeof(version
));
936 static uint32_t div_frac(uint32_t dividend
, uint32_t divisor
)
938 uint32_t quotient
, remainder
;
940 /* Don't try to replace with do_div(), this one calculates
941 * "(dividend << 32) / divisor" */
943 : "=a" (quotient
), "=d" (remainder
)
944 : "0" (0), "1" (dividend
), "r" (divisor
) );
948 static void kvm_get_time_scale(uint32_t scaled_khz
, uint32_t base_khz
,
949 s8
*pshift
, u32
*pmultiplier
)
956 tps64
= base_khz
* 1000LL;
957 scaled64
= scaled_khz
* 1000LL;
958 while (tps64
> scaled64
*2 || tps64
& 0xffffffff00000000ULL
) {
963 tps32
= (uint32_t)tps64
;
964 while (tps32
<= scaled64
|| scaled64
& 0xffffffff00000000ULL
) {
965 if (scaled64
& 0xffffffff00000000ULL
|| tps32
& 0x80000000)
973 *pmultiplier
= div_frac(scaled64
, tps32
);
975 pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
976 __func__
, base_khz
, scaled_khz
, shift
, *pmultiplier
);
979 static inline u64
get_kernel_ns(void)
983 WARN_ON(preemptible());
985 monotonic_to_bootbased(&ts
);
986 return timespec_to_ns(&ts
);
989 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz
);
990 unsigned long max_tsc_khz
;
992 static inline u64
nsec_to_cycles(struct kvm_vcpu
*vcpu
, u64 nsec
)
994 return pvclock_scale_delta(nsec
, vcpu
->arch
.virtual_tsc_mult
,
995 vcpu
->arch
.virtual_tsc_shift
);
998 static u32
adjust_tsc_khz(u32 khz
, s32 ppm
)
1000 u64 v
= (u64
)khz
* (1000000 + ppm
);
1005 static void kvm_set_tsc_khz(struct kvm_vcpu
*vcpu
, u32 this_tsc_khz
)
1007 u32 thresh_lo
, thresh_hi
;
1008 int use_scaling
= 0;
1010 /* Compute a scale to convert nanoseconds in TSC cycles */
1011 kvm_get_time_scale(this_tsc_khz
, NSEC_PER_SEC
/ 1000,
1012 &vcpu
->arch
.virtual_tsc_shift
,
1013 &vcpu
->arch
.virtual_tsc_mult
);
1014 vcpu
->arch
.virtual_tsc_khz
= this_tsc_khz
;
1017 * Compute the variation in TSC rate which is acceptable
1018 * within the range of tolerance and decide if the
1019 * rate being applied is within that bounds of the hardware
1020 * rate. If so, no scaling or compensation need be done.
1022 thresh_lo
= adjust_tsc_khz(tsc_khz
, -tsc_tolerance_ppm
);
1023 thresh_hi
= adjust_tsc_khz(tsc_khz
, tsc_tolerance_ppm
);
1024 if (this_tsc_khz
< thresh_lo
|| this_tsc_khz
> thresh_hi
) {
1025 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz
, thresh_lo
, thresh_hi
);
1028 kvm_x86_ops
->set_tsc_khz(vcpu
, this_tsc_khz
, use_scaling
);
1031 static u64
compute_guest_tsc(struct kvm_vcpu
*vcpu
, s64 kernel_ns
)
1033 u64 tsc
= pvclock_scale_delta(kernel_ns
-vcpu
->arch
.this_tsc_nsec
,
1034 vcpu
->arch
.virtual_tsc_mult
,
1035 vcpu
->arch
.virtual_tsc_shift
);
1036 tsc
+= vcpu
->arch
.this_tsc_write
;
1040 void kvm_write_tsc(struct kvm_vcpu
*vcpu
, u64 data
)
1042 struct kvm
*kvm
= vcpu
->kvm
;
1043 u64 offset
, ns
, elapsed
;
1044 unsigned long flags
;
1047 raw_spin_lock_irqsave(&kvm
->arch
.tsc_write_lock
, flags
);
1048 offset
= kvm_x86_ops
->compute_tsc_offset(vcpu
, data
);
1049 ns
= get_kernel_ns();
1050 elapsed
= ns
- kvm
->arch
.last_tsc_nsec
;
1052 /* n.b - signed multiplication and division required */
1053 usdiff
= data
- kvm
->arch
.last_tsc_write
;
1054 #ifdef CONFIG_X86_64
1055 usdiff
= (usdiff
* 1000) / vcpu
->arch
.virtual_tsc_khz
;
1057 /* do_div() only does unsigned */
1058 asm("idivl %2; xor %%edx, %%edx"
1060 : "A"(usdiff
* 1000), "rm"(vcpu
->arch
.virtual_tsc_khz
));
1062 do_div(elapsed
, 1000);
1068 * Special case: TSC write with a small delta (1 second) of virtual
1069 * cycle time against real time is interpreted as an attempt to
1070 * synchronize the CPU.
1072 * For a reliable TSC, we can match TSC offsets, and for an unstable
1073 * TSC, we add elapsed time in this computation. We could let the
1074 * compensation code attempt to catch up if we fall behind, but
1075 * it's better to try to match offsets from the beginning.
1077 if (usdiff
< USEC_PER_SEC
&&
1078 vcpu
->arch
.virtual_tsc_khz
== kvm
->arch
.last_tsc_khz
) {
1079 if (!check_tsc_unstable()) {
1080 offset
= kvm
->arch
.cur_tsc_offset
;
1081 pr_debug("kvm: matched tsc offset for %llu\n", data
);
1083 u64 delta
= nsec_to_cycles(vcpu
, elapsed
);
1085 offset
= kvm_x86_ops
->compute_tsc_offset(vcpu
, data
);
1086 pr_debug("kvm: adjusted tsc offset by %llu\n", delta
);
1090 * We split periods of matched TSC writes into generations.
1091 * For each generation, we track the original measured
1092 * nanosecond time, offset, and write, so if TSCs are in
1093 * sync, we can match exact offset, and if not, we can match
1094 * exact software computation in compute_guest_tsc()
1096 * These values are tracked in kvm->arch.cur_xxx variables.
1098 kvm
->arch
.cur_tsc_generation
++;
1099 kvm
->arch
.cur_tsc_nsec
= ns
;
1100 kvm
->arch
.cur_tsc_write
= data
;
1101 kvm
->arch
.cur_tsc_offset
= offset
;
1102 pr_debug("kvm: new tsc generation %u, clock %llu\n",
1103 kvm
->arch
.cur_tsc_generation
, data
);
1107 * We also track th most recent recorded KHZ, write and time to
1108 * allow the matching interval to be extended at each write.
1110 kvm
->arch
.last_tsc_nsec
= ns
;
1111 kvm
->arch
.last_tsc_write
= data
;
1112 kvm
->arch
.last_tsc_khz
= vcpu
->arch
.virtual_tsc_khz
;
1114 /* Reset of TSC must disable overshoot protection below */
1115 vcpu
->arch
.hv_clock
.tsc_timestamp
= 0;
1116 vcpu
->arch
.last_guest_tsc
= data
;
1118 /* Keep track of which generation this VCPU has synchronized to */
1119 vcpu
->arch
.this_tsc_generation
= kvm
->arch
.cur_tsc_generation
;
1120 vcpu
->arch
.this_tsc_nsec
= kvm
->arch
.cur_tsc_nsec
;
1121 vcpu
->arch
.this_tsc_write
= kvm
->arch
.cur_tsc_write
;
1123 kvm_x86_ops
->write_tsc_offset(vcpu
, offset
);
1124 raw_spin_unlock_irqrestore(&kvm
->arch
.tsc_write_lock
, flags
);
1127 EXPORT_SYMBOL_GPL(kvm_write_tsc
);
1129 static int kvm_guest_time_update(struct kvm_vcpu
*v
)
1131 unsigned long flags
;
1132 struct kvm_vcpu_arch
*vcpu
= &v
->arch
;
1134 unsigned long this_tsc_khz
;
1135 s64 kernel_ns
, max_kernel_ns
;
1139 /* Keep irq disabled to prevent changes to the clock */
1140 local_irq_save(flags
);
1141 tsc_timestamp
= kvm_x86_ops
->read_l1_tsc(v
);
1142 kernel_ns
= get_kernel_ns();
1143 this_tsc_khz
= __get_cpu_var(cpu_tsc_khz
);
1144 if (unlikely(this_tsc_khz
== 0)) {
1145 local_irq_restore(flags
);
1146 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, v
);
1151 * We may have to catch up the TSC to match elapsed wall clock
1152 * time for two reasons, even if kvmclock is used.
1153 * 1) CPU could have been running below the maximum TSC rate
1154 * 2) Broken TSC compensation resets the base at each VCPU
1155 * entry to avoid unknown leaps of TSC even when running
1156 * again on the same CPU. This may cause apparent elapsed
1157 * time to disappear, and the guest to stand still or run
1160 if (vcpu
->tsc_catchup
) {
1161 u64 tsc
= compute_guest_tsc(v
, kernel_ns
);
1162 if (tsc
> tsc_timestamp
) {
1163 adjust_tsc_offset_guest(v
, tsc
- tsc_timestamp
);
1164 tsc_timestamp
= tsc
;
1168 local_irq_restore(flags
);
1170 if (!vcpu
->time_page
)
1174 * Time as measured by the TSC may go backwards when resetting the base
1175 * tsc_timestamp. The reason for this is that the TSC resolution is
1176 * higher than the resolution of the other clock scales. Thus, many
1177 * possible measurments of the TSC correspond to one measurement of any
1178 * other clock, and so a spread of values is possible. This is not a
1179 * problem for the computation of the nanosecond clock; with TSC rates
1180 * around 1GHZ, there can only be a few cycles which correspond to one
1181 * nanosecond value, and any path through this code will inevitably
1182 * take longer than that. However, with the kernel_ns value itself,
1183 * the precision may be much lower, down to HZ granularity. If the
1184 * first sampling of TSC against kernel_ns ends in the low part of the
1185 * range, and the second in the high end of the range, we can get:
1187 * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new
1189 * As the sampling errors potentially range in the thousands of cycles,
1190 * it is possible such a time value has already been observed by the
1191 * guest. To protect against this, we must compute the system time as
1192 * observed by the guest and ensure the new system time is greater.
1195 if (vcpu
->hv_clock
.tsc_timestamp
) {
1196 max_kernel_ns
= vcpu
->last_guest_tsc
-
1197 vcpu
->hv_clock
.tsc_timestamp
;
1198 max_kernel_ns
= pvclock_scale_delta(max_kernel_ns
,
1199 vcpu
->hv_clock
.tsc_to_system_mul
,
1200 vcpu
->hv_clock
.tsc_shift
);
1201 max_kernel_ns
+= vcpu
->last_kernel_ns
;
1204 if (unlikely(vcpu
->hw_tsc_khz
!= this_tsc_khz
)) {
1205 kvm_get_time_scale(NSEC_PER_SEC
/ 1000, this_tsc_khz
,
1206 &vcpu
->hv_clock
.tsc_shift
,
1207 &vcpu
->hv_clock
.tsc_to_system_mul
);
1208 vcpu
->hw_tsc_khz
= this_tsc_khz
;
1211 if (max_kernel_ns
> kernel_ns
)
1212 kernel_ns
= max_kernel_ns
;
1214 /* With all the info we got, fill in the values */
1215 vcpu
->hv_clock
.tsc_timestamp
= tsc_timestamp
;
1216 vcpu
->hv_clock
.system_time
= kernel_ns
+ v
->kvm
->arch
.kvmclock_offset
;
1217 vcpu
->last_kernel_ns
= kernel_ns
;
1218 vcpu
->last_guest_tsc
= tsc_timestamp
;
1221 if (vcpu
->pvclock_set_guest_stopped_request
) {
1222 pvclock_flags
|= PVCLOCK_GUEST_STOPPED
;
1223 vcpu
->pvclock_set_guest_stopped_request
= false;
1226 vcpu
->hv_clock
.flags
= pvclock_flags
;
1229 * The interface expects us to write an even number signaling that the
1230 * update is finished. Since the guest won't see the intermediate
1231 * state, we just increase by 2 at the end.
1233 vcpu
->hv_clock
.version
+= 2;
1235 shared_kaddr
= kmap_atomic(vcpu
->time_page
);
1237 memcpy(shared_kaddr
+ vcpu
->time_offset
, &vcpu
->hv_clock
,
1238 sizeof(vcpu
->hv_clock
));
1240 kunmap_atomic(shared_kaddr
);
1242 mark_page_dirty(v
->kvm
, vcpu
->time
>> PAGE_SHIFT
);
1246 static bool msr_mtrr_valid(unsigned msr
)
1249 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR
- 1:
1250 case MSR_MTRRfix64K_00000
:
1251 case MSR_MTRRfix16K_80000
:
1252 case MSR_MTRRfix16K_A0000
:
1253 case MSR_MTRRfix4K_C0000
:
1254 case MSR_MTRRfix4K_C8000
:
1255 case MSR_MTRRfix4K_D0000
:
1256 case MSR_MTRRfix4K_D8000
:
1257 case MSR_MTRRfix4K_E0000
:
1258 case MSR_MTRRfix4K_E8000
:
1259 case MSR_MTRRfix4K_F0000
:
1260 case MSR_MTRRfix4K_F8000
:
1261 case MSR_MTRRdefType
:
1262 case MSR_IA32_CR_PAT
:
1270 static bool valid_pat_type(unsigned t
)
1272 return t
< 8 && (1 << t
) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1275 static bool valid_mtrr_type(unsigned t
)
1277 return t
< 8 && (1 << t
) & 0x73; /* 0, 1, 4, 5, 6 */
1280 static bool mtrr_valid(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
1284 if (!msr_mtrr_valid(msr
))
1287 if (msr
== MSR_IA32_CR_PAT
) {
1288 for (i
= 0; i
< 8; i
++)
1289 if (!valid_pat_type((data
>> (i
* 8)) & 0xff))
1292 } else if (msr
== MSR_MTRRdefType
) {
1295 return valid_mtrr_type(data
& 0xff);
1296 } else if (msr
>= MSR_MTRRfix64K_00000
&& msr
<= MSR_MTRRfix4K_F8000
) {
1297 for (i
= 0; i
< 8 ; i
++)
1298 if (!valid_mtrr_type((data
>> (i
* 8)) & 0xff))
1303 /* variable MTRRs */
1304 return valid_mtrr_type(data
& 0xff);
1307 static int set_msr_mtrr(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
1309 u64
*p
= (u64
*)&vcpu
->arch
.mtrr_state
.fixed_ranges
;
1311 if (!mtrr_valid(vcpu
, msr
, data
))
1314 if (msr
== MSR_MTRRdefType
) {
1315 vcpu
->arch
.mtrr_state
.def_type
= data
;
1316 vcpu
->arch
.mtrr_state
.enabled
= (data
& 0xc00) >> 10;
1317 } else if (msr
== MSR_MTRRfix64K_00000
)
1319 else if (msr
== MSR_MTRRfix16K_80000
|| msr
== MSR_MTRRfix16K_A0000
)
1320 p
[1 + msr
- MSR_MTRRfix16K_80000
] = data
;
1321 else if (msr
>= MSR_MTRRfix4K_C0000
&& msr
<= MSR_MTRRfix4K_F8000
)
1322 p
[3 + msr
- MSR_MTRRfix4K_C0000
] = data
;
1323 else if (msr
== MSR_IA32_CR_PAT
)
1324 vcpu
->arch
.pat
= data
;
1325 else { /* Variable MTRRs */
1326 int idx
, is_mtrr_mask
;
1329 idx
= (msr
- 0x200) / 2;
1330 is_mtrr_mask
= msr
- 0x200 - 2 * idx
;
1333 (u64
*)&vcpu
->arch
.mtrr_state
.var_ranges
[idx
].base_lo
;
1336 (u64
*)&vcpu
->arch
.mtrr_state
.var_ranges
[idx
].mask_lo
;
1340 kvm_mmu_reset_context(vcpu
);
1344 static int set_msr_mce(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
1346 u64 mcg_cap
= vcpu
->arch
.mcg_cap
;
1347 unsigned bank_num
= mcg_cap
& 0xff;
1350 case MSR_IA32_MCG_STATUS
:
1351 vcpu
->arch
.mcg_status
= data
;
1353 case MSR_IA32_MCG_CTL
:
1354 if (!(mcg_cap
& MCG_CTL_P
))
1356 if (data
!= 0 && data
!= ~(u64
)0)
1358 vcpu
->arch
.mcg_ctl
= data
;
1361 if (msr
>= MSR_IA32_MC0_CTL
&&
1362 msr
< MSR_IA32_MC0_CTL
+ 4 * bank_num
) {
1363 u32 offset
= msr
- MSR_IA32_MC0_CTL
;
1364 /* only 0 or all 1s can be written to IA32_MCi_CTL
1365 * some Linux kernels though clear bit 10 in bank 4 to
1366 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1367 * this to avoid an uncatched #GP in the guest
1369 if ((offset
& 0x3) == 0 &&
1370 data
!= 0 && (data
| (1 << 10)) != ~(u64
)0)
1372 vcpu
->arch
.mce_banks
[offset
] = data
;
1380 static int xen_hvm_config(struct kvm_vcpu
*vcpu
, u64 data
)
1382 struct kvm
*kvm
= vcpu
->kvm
;
1383 int lm
= is_long_mode(vcpu
);
1384 u8
*blob_addr
= lm
? (u8
*)(long)kvm
->arch
.xen_hvm_config
.blob_addr_64
1385 : (u8
*)(long)kvm
->arch
.xen_hvm_config
.blob_addr_32
;
1386 u8 blob_size
= lm
? kvm
->arch
.xen_hvm_config
.blob_size_64
1387 : kvm
->arch
.xen_hvm_config
.blob_size_32
;
1388 u32 page_num
= data
& ~PAGE_MASK
;
1389 u64 page_addr
= data
& PAGE_MASK
;
1394 if (page_num
>= blob_size
)
1397 page
= memdup_user(blob_addr
+ (page_num
* PAGE_SIZE
), PAGE_SIZE
);
1402 if (kvm_write_guest(kvm
, page_addr
, page
, PAGE_SIZE
))
1411 static bool kvm_hv_hypercall_enabled(struct kvm
*kvm
)
1413 return kvm
->arch
.hv_hypercall
& HV_X64_MSR_HYPERCALL_ENABLE
;
1416 static bool kvm_hv_msr_partition_wide(u32 msr
)
1420 case HV_X64_MSR_GUEST_OS_ID
:
1421 case HV_X64_MSR_HYPERCALL
:
1429 static int set_msr_hyperv_pw(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
1431 struct kvm
*kvm
= vcpu
->kvm
;
1434 case HV_X64_MSR_GUEST_OS_ID
:
1435 kvm
->arch
.hv_guest_os_id
= data
;
1436 /* setting guest os id to zero disables hypercall page */
1437 if (!kvm
->arch
.hv_guest_os_id
)
1438 kvm
->arch
.hv_hypercall
&= ~HV_X64_MSR_HYPERCALL_ENABLE
;
1440 case HV_X64_MSR_HYPERCALL
: {
1445 /* if guest os id is not set hypercall should remain disabled */
1446 if (!kvm
->arch
.hv_guest_os_id
)
1448 if (!(data
& HV_X64_MSR_HYPERCALL_ENABLE
)) {
1449 kvm
->arch
.hv_hypercall
= data
;
1452 gfn
= data
>> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT
;
1453 addr
= gfn_to_hva(kvm
, gfn
);
1454 if (kvm_is_error_hva(addr
))
1456 kvm_x86_ops
->patch_hypercall(vcpu
, instructions
);
1457 ((unsigned char *)instructions
)[3] = 0xc3; /* ret */
1458 if (__copy_to_user((void __user
*)addr
, instructions
, 4))
1460 kvm
->arch
.hv_hypercall
= data
;
1464 vcpu_unimpl(vcpu
, "HYPER-V unimplemented wrmsr: 0x%x "
1465 "data 0x%llx\n", msr
, data
);
1471 static int set_msr_hyperv(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
1474 case HV_X64_MSR_APIC_ASSIST_PAGE
: {
1477 if (!(data
& HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE
)) {
1478 vcpu
->arch
.hv_vapic
= data
;
1481 addr
= gfn_to_hva(vcpu
->kvm
, data
>>
1482 HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT
);
1483 if (kvm_is_error_hva(addr
))
1485 if (__clear_user((void __user
*)addr
, PAGE_SIZE
))
1487 vcpu
->arch
.hv_vapic
= data
;
1490 case HV_X64_MSR_EOI
:
1491 return kvm_hv_vapic_msr_write(vcpu
, APIC_EOI
, data
);
1492 case HV_X64_MSR_ICR
:
1493 return kvm_hv_vapic_msr_write(vcpu
, APIC_ICR
, data
);
1494 case HV_X64_MSR_TPR
:
1495 return kvm_hv_vapic_msr_write(vcpu
, APIC_TASKPRI
, data
);
1497 vcpu_unimpl(vcpu
, "HYPER-V unimplemented wrmsr: 0x%x "
1498 "data 0x%llx\n", msr
, data
);
1505 static int kvm_pv_enable_async_pf(struct kvm_vcpu
*vcpu
, u64 data
)
1507 gpa_t gpa
= data
& ~0x3f;
1509 /* Bits 2:5 are reserved, Should be zero */
1513 vcpu
->arch
.apf
.msr_val
= data
;
1515 if (!(data
& KVM_ASYNC_PF_ENABLED
)) {
1516 kvm_clear_async_pf_completion_queue(vcpu
);
1517 kvm_async_pf_hash_reset(vcpu
);
1521 if (kvm_gfn_to_hva_cache_init(vcpu
->kvm
, &vcpu
->arch
.apf
.data
, gpa
))
1524 vcpu
->arch
.apf
.send_user_only
= !(data
& KVM_ASYNC_PF_SEND_ALWAYS
);
1525 kvm_async_pf_wakeup_all(vcpu
);
1529 static void kvmclock_reset(struct kvm_vcpu
*vcpu
)
1531 if (vcpu
->arch
.time_page
) {
1532 kvm_release_page_dirty(vcpu
->arch
.time_page
);
1533 vcpu
->arch
.time_page
= NULL
;
1537 static void accumulate_steal_time(struct kvm_vcpu
*vcpu
)
1541 if (!(vcpu
->arch
.st
.msr_val
& KVM_MSR_ENABLED
))
1544 delta
= current
->sched_info
.run_delay
- vcpu
->arch
.st
.last_steal
;
1545 vcpu
->arch
.st
.last_steal
= current
->sched_info
.run_delay
;
1546 vcpu
->arch
.st
.accum_steal
= delta
;
1549 static void record_steal_time(struct kvm_vcpu
*vcpu
)
1551 if (!(vcpu
->arch
.st
.msr_val
& KVM_MSR_ENABLED
))
1554 if (unlikely(kvm_read_guest_cached(vcpu
->kvm
, &vcpu
->arch
.st
.stime
,
1555 &vcpu
->arch
.st
.steal
, sizeof(struct kvm_steal_time
))))
1558 vcpu
->arch
.st
.steal
.steal
+= vcpu
->arch
.st
.accum_steal
;
1559 vcpu
->arch
.st
.steal
.version
+= 2;
1560 vcpu
->arch
.st
.accum_steal
= 0;
1562 kvm_write_guest_cached(vcpu
->kvm
, &vcpu
->arch
.st
.stime
,
1563 &vcpu
->arch
.st
.steal
, sizeof(struct kvm_steal_time
));
1566 int kvm_set_msr_common(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
1572 return set_efer(vcpu
, data
);
1574 data
&= ~(u64
)0x40; /* ignore flush filter disable */
1575 data
&= ~(u64
)0x100; /* ignore ignne emulation enable */
1576 data
&= ~(u64
)0x8; /* ignore TLB cache disable */
1578 vcpu_unimpl(vcpu
, "unimplemented HWCR wrmsr: 0x%llx\n",
1583 case MSR_FAM10H_MMIO_CONF_BASE
:
1585 vcpu_unimpl(vcpu
, "unimplemented MMIO_CONF_BASE wrmsr: "
1590 case MSR_AMD64_NB_CFG
:
1592 case MSR_IA32_DEBUGCTLMSR
:
1594 /* We support the non-activated case already */
1596 } else if (data
& ~(DEBUGCTLMSR_LBR
| DEBUGCTLMSR_BTF
)) {
1597 /* Values other than LBR and BTF are vendor-specific,
1598 thus reserved and should throw a #GP */
1601 vcpu_unimpl(vcpu
, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
1604 case MSR_IA32_UCODE_REV
:
1605 case MSR_IA32_UCODE_WRITE
:
1606 case MSR_VM_HSAVE_PA
:
1607 case MSR_AMD64_PATCH_LOADER
:
1609 case 0x200 ... 0x2ff:
1610 return set_msr_mtrr(vcpu
, msr
, data
);
1611 case MSR_IA32_APICBASE
:
1612 kvm_set_apic_base(vcpu
, data
);
1614 case APIC_BASE_MSR
... APIC_BASE_MSR
+ 0x3ff:
1615 return kvm_x2apic_msr_write(vcpu
, msr
, data
);
1616 case MSR_IA32_TSCDEADLINE
:
1617 kvm_set_lapic_tscdeadline_msr(vcpu
, data
);
1619 case MSR_IA32_MISC_ENABLE
:
1620 vcpu
->arch
.ia32_misc_enable_msr
= data
;
1622 case MSR_KVM_WALL_CLOCK_NEW
:
1623 case MSR_KVM_WALL_CLOCK
:
1624 vcpu
->kvm
->arch
.wall_clock
= data
;
1625 kvm_write_wall_clock(vcpu
->kvm
, data
);
1627 case MSR_KVM_SYSTEM_TIME_NEW
:
1628 case MSR_KVM_SYSTEM_TIME
: {
1629 kvmclock_reset(vcpu
);
1631 vcpu
->arch
.time
= data
;
1632 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
1634 /* we verify if the enable bit is set... */
1638 /* ...but clean it before doing the actual write */
1639 vcpu
->arch
.time_offset
= data
& ~(PAGE_MASK
| 1);
1641 vcpu
->arch
.time_page
=
1642 gfn_to_page(vcpu
->kvm
, data
>> PAGE_SHIFT
);
1644 if (is_error_page(vcpu
->arch
.time_page
))
1645 vcpu
->arch
.time_page
= NULL
;
1649 case MSR_KVM_ASYNC_PF_EN
:
1650 if (kvm_pv_enable_async_pf(vcpu
, data
))
1653 case MSR_KVM_STEAL_TIME
:
1655 if (unlikely(!sched_info_on()))
1658 if (data
& KVM_STEAL_RESERVED_MASK
)
1661 if (kvm_gfn_to_hva_cache_init(vcpu
->kvm
, &vcpu
->arch
.st
.stime
,
1662 data
& KVM_STEAL_VALID_BITS
))
1665 vcpu
->arch
.st
.msr_val
= data
;
1667 if (!(data
& KVM_MSR_ENABLED
))
1670 vcpu
->arch
.st
.last_steal
= current
->sched_info
.run_delay
;
1673 accumulate_steal_time(vcpu
);
1676 kvm_make_request(KVM_REQ_STEAL_UPDATE
, vcpu
);
1679 case MSR_KVM_PV_EOI_EN
:
1680 if (kvm_lapic_enable_pv_eoi(vcpu
, data
))
1684 case MSR_IA32_MCG_CTL
:
1685 case MSR_IA32_MCG_STATUS
:
1686 case MSR_IA32_MC0_CTL
... MSR_IA32_MC0_CTL
+ 4 * KVM_MAX_MCE_BANKS
- 1:
1687 return set_msr_mce(vcpu
, msr
, data
);
1689 /* Performance counters are not protected by a CPUID bit,
1690 * so we should check all of them in the generic path for the sake of
1691 * cross vendor migration.
1692 * Writing a zero into the event select MSRs disables them,
1693 * which we perfectly emulate ;-). Any other value should be at least
1694 * reported, some guests depend on them.
1696 case MSR_K7_EVNTSEL0
:
1697 case MSR_K7_EVNTSEL1
:
1698 case MSR_K7_EVNTSEL2
:
1699 case MSR_K7_EVNTSEL3
:
1701 vcpu_unimpl(vcpu
, "unimplemented perfctr wrmsr: "
1702 "0x%x data 0x%llx\n", msr
, data
);
1704 /* at least RHEL 4 unconditionally writes to the perfctr registers,
1705 * so we ignore writes to make it happy.
1707 case MSR_K7_PERFCTR0
:
1708 case MSR_K7_PERFCTR1
:
1709 case MSR_K7_PERFCTR2
:
1710 case MSR_K7_PERFCTR3
:
1711 vcpu_unimpl(vcpu
, "unimplemented perfctr wrmsr: "
1712 "0x%x data 0x%llx\n", msr
, data
);
1714 case MSR_P6_PERFCTR0
:
1715 case MSR_P6_PERFCTR1
:
1717 case MSR_P6_EVNTSEL0
:
1718 case MSR_P6_EVNTSEL1
:
1719 if (kvm_pmu_msr(vcpu
, msr
))
1720 return kvm_pmu_set_msr(vcpu
, msr
, data
);
1722 if (pr
|| data
!= 0)
1723 vcpu_unimpl(vcpu
, "disabled perfctr wrmsr: "
1724 "0x%x data 0x%llx\n", msr
, data
);
1726 case MSR_K7_CLK_CTL
:
1728 * Ignore all writes to this no longer documented MSR.
1729 * Writes are only relevant for old K7 processors,
1730 * all pre-dating SVM, but a recommended workaround from
1731 * AMD for these chips. It is possible to specify the
1732 * affected processor models on the command line, hence
1733 * the need to ignore the workaround.
1736 case HV_X64_MSR_GUEST_OS_ID
... HV_X64_MSR_SINT15
:
1737 if (kvm_hv_msr_partition_wide(msr
)) {
1739 mutex_lock(&vcpu
->kvm
->lock
);
1740 r
= set_msr_hyperv_pw(vcpu
, msr
, data
);
1741 mutex_unlock(&vcpu
->kvm
->lock
);
1744 return set_msr_hyperv(vcpu
, msr
, data
);
1746 case MSR_IA32_BBL_CR_CTL3
:
1747 /* Drop writes to this legacy MSR -- see rdmsr
1748 * counterpart for further detail.
1750 vcpu_unimpl(vcpu
, "ignored wrmsr: 0x%x data %llx\n", msr
, data
);
1752 case MSR_AMD64_OSVW_ID_LENGTH
:
1753 if (!guest_cpuid_has_osvw(vcpu
))
1755 vcpu
->arch
.osvw
.length
= data
;
1757 case MSR_AMD64_OSVW_STATUS
:
1758 if (!guest_cpuid_has_osvw(vcpu
))
1760 vcpu
->arch
.osvw
.status
= data
;
1763 if (msr
&& (msr
== vcpu
->kvm
->arch
.xen_hvm_config
.msr
))
1764 return xen_hvm_config(vcpu
, data
);
1765 if (kvm_pmu_msr(vcpu
, msr
))
1766 return kvm_pmu_set_msr(vcpu
, msr
, data
);
1768 vcpu_unimpl(vcpu
, "unhandled wrmsr: 0x%x data %llx\n",
1772 vcpu_unimpl(vcpu
, "ignored wrmsr: 0x%x data %llx\n",
1779 EXPORT_SYMBOL_GPL(kvm_set_msr_common
);
1783 * Reads an msr value (of 'msr_index') into 'pdata'.
1784 * Returns 0 on success, non-0 otherwise.
1785 * Assumes vcpu_load() was already called.
1787 int kvm_get_msr(struct kvm_vcpu
*vcpu
, u32 msr_index
, u64
*pdata
)
1789 return kvm_x86_ops
->get_msr(vcpu
, msr_index
, pdata
);
1792 static int get_msr_mtrr(struct kvm_vcpu
*vcpu
, u32 msr
, u64
*pdata
)
1794 u64
*p
= (u64
*)&vcpu
->arch
.mtrr_state
.fixed_ranges
;
1796 if (!msr_mtrr_valid(msr
))
1799 if (msr
== MSR_MTRRdefType
)
1800 *pdata
= vcpu
->arch
.mtrr_state
.def_type
+
1801 (vcpu
->arch
.mtrr_state
.enabled
<< 10);
1802 else if (msr
== MSR_MTRRfix64K_00000
)
1804 else if (msr
== MSR_MTRRfix16K_80000
|| msr
== MSR_MTRRfix16K_A0000
)
1805 *pdata
= p
[1 + msr
- MSR_MTRRfix16K_80000
];
1806 else if (msr
>= MSR_MTRRfix4K_C0000
&& msr
<= MSR_MTRRfix4K_F8000
)
1807 *pdata
= p
[3 + msr
- MSR_MTRRfix4K_C0000
];
1808 else if (msr
== MSR_IA32_CR_PAT
)
1809 *pdata
= vcpu
->arch
.pat
;
1810 else { /* Variable MTRRs */
1811 int idx
, is_mtrr_mask
;
1814 idx
= (msr
- 0x200) / 2;
1815 is_mtrr_mask
= msr
- 0x200 - 2 * idx
;
1818 (u64
*)&vcpu
->arch
.mtrr_state
.var_ranges
[idx
].base_lo
;
1821 (u64
*)&vcpu
->arch
.mtrr_state
.var_ranges
[idx
].mask_lo
;
1828 static int get_msr_mce(struct kvm_vcpu
*vcpu
, u32 msr
, u64
*pdata
)
1831 u64 mcg_cap
= vcpu
->arch
.mcg_cap
;
1832 unsigned bank_num
= mcg_cap
& 0xff;
1835 case MSR_IA32_P5_MC_ADDR
:
1836 case MSR_IA32_P5_MC_TYPE
:
1839 case MSR_IA32_MCG_CAP
:
1840 data
= vcpu
->arch
.mcg_cap
;
1842 case MSR_IA32_MCG_CTL
:
1843 if (!(mcg_cap
& MCG_CTL_P
))
1845 data
= vcpu
->arch
.mcg_ctl
;
1847 case MSR_IA32_MCG_STATUS
:
1848 data
= vcpu
->arch
.mcg_status
;
1851 if (msr
>= MSR_IA32_MC0_CTL
&&
1852 msr
< MSR_IA32_MC0_CTL
+ 4 * bank_num
) {
1853 u32 offset
= msr
- MSR_IA32_MC0_CTL
;
1854 data
= vcpu
->arch
.mce_banks
[offset
];
1863 static int get_msr_hyperv_pw(struct kvm_vcpu
*vcpu
, u32 msr
, u64
*pdata
)
1866 struct kvm
*kvm
= vcpu
->kvm
;
1869 case HV_X64_MSR_GUEST_OS_ID
:
1870 data
= kvm
->arch
.hv_guest_os_id
;
1872 case HV_X64_MSR_HYPERCALL
:
1873 data
= kvm
->arch
.hv_hypercall
;
1876 vcpu_unimpl(vcpu
, "Hyper-V unhandled rdmsr: 0x%x\n", msr
);
1884 static int get_msr_hyperv(struct kvm_vcpu
*vcpu
, u32 msr
, u64
*pdata
)
1889 case HV_X64_MSR_VP_INDEX
: {
1892 kvm_for_each_vcpu(r
, v
, vcpu
->kvm
)
1897 case HV_X64_MSR_EOI
:
1898 return kvm_hv_vapic_msr_read(vcpu
, APIC_EOI
, pdata
);
1899 case HV_X64_MSR_ICR
:
1900 return kvm_hv_vapic_msr_read(vcpu
, APIC_ICR
, pdata
);
1901 case HV_X64_MSR_TPR
:
1902 return kvm_hv_vapic_msr_read(vcpu
, APIC_TASKPRI
, pdata
);
1903 case HV_X64_MSR_APIC_ASSIST_PAGE
:
1904 data
= vcpu
->arch
.hv_vapic
;
1907 vcpu_unimpl(vcpu
, "Hyper-V unhandled rdmsr: 0x%x\n", msr
);
1914 int kvm_get_msr_common(struct kvm_vcpu
*vcpu
, u32 msr
, u64
*pdata
)
1919 case MSR_IA32_PLATFORM_ID
:
1920 case MSR_IA32_EBL_CR_POWERON
:
1921 case MSR_IA32_DEBUGCTLMSR
:
1922 case MSR_IA32_LASTBRANCHFROMIP
:
1923 case MSR_IA32_LASTBRANCHTOIP
:
1924 case MSR_IA32_LASTINTFROMIP
:
1925 case MSR_IA32_LASTINTTOIP
:
1928 case MSR_VM_HSAVE_PA
:
1929 case MSR_K7_EVNTSEL0
:
1930 case MSR_K7_PERFCTR0
:
1931 case MSR_K8_INT_PENDING_MSG
:
1932 case MSR_AMD64_NB_CFG
:
1933 case MSR_FAM10H_MMIO_CONF_BASE
:
1936 case MSR_P6_PERFCTR0
:
1937 case MSR_P6_PERFCTR1
:
1938 case MSR_P6_EVNTSEL0
:
1939 case MSR_P6_EVNTSEL1
:
1940 if (kvm_pmu_msr(vcpu
, msr
))
1941 return kvm_pmu_get_msr(vcpu
, msr
, pdata
);
1944 case MSR_IA32_UCODE_REV
:
1945 data
= 0x100000000ULL
;
1948 data
= 0x500 | KVM_NR_VAR_MTRR
;
1950 case 0x200 ... 0x2ff:
1951 return get_msr_mtrr(vcpu
, msr
, pdata
);
1952 case 0xcd: /* fsb frequency */
1956 * MSR_EBC_FREQUENCY_ID
1957 * Conservative value valid for even the basic CPU models.
1958 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
1959 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
1960 * and 266MHz for model 3, or 4. Set Core Clock
1961 * Frequency to System Bus Frequency Ratio to 1 (bits
1962 * 31:24) even though these are only valid for CPU
1963 * models > 2, however guests may end up dividing or
1964 * multiplying by zero otherwise.
1966 case MSR_EBC_FREQUENCY_ID
:
1969 case MSR_IA32_APICBASE
:
1970 data
= kvm_get_apic_base(vcpu
);
1972 case APIC_BASE_MSR
... APIC_BASE_MSR
+ 0x3ff:
1973 return kvm_x2apic_msr_read(vcpu
, msr
, pdata
);
1975 case MSR_IA32_TSCDEADLINE
:
1976 data
= kvm_get_lapic_tscdeadline_msr(vcpu
);
1978 case MSR_IA32_MISC_ENABLE
:
1979 data
= vcpu
->arch
.ia32_misc_enable_msr
;
1981 case MSR_IA32_PERF_STATUS
:
1982 /* TSC increment by tick */
1984 /* CPU multiplier */
1985 data
|= (((uint64_t)4ULL) << 40);
1988 data
= vcpu
->arch
.efer
;
1990 case MSR_KVM_WALL_CLOCK
:
1991 case MSR_KVM_WALL_CLOCK_NEW
:
1992 data
= vcpu
->kvm
->arch
.wall_clock
;
1994 case MSR_KVM_SYSTEM_TIME
:
1995 case MSR_KVM_SYSTEM_TIME_NEW
:
1996 data
= vcpu
->arch
.time
;
1998 case MSR_KVM_ASYNC_PF_EN
:
1999 data
= vcpu
->arch
.apf
.msr_val
;
2001 case MSR_KVM_STEAL_TIME
:
2002 data
= vcpu
->arch
.st
.msr_val
;
2004 case MSR_IA32_P5_MC_ADDR
:
2005 case MSR_IA32_P5_MC_TYPE
:
2006 case MSR_IA32_MCG_CAP
:
2007 case MSR_IA32_MCG_CTL
:
2008 case MSR_IA32_MCG_STATUS
:
2009 case MSR_IA32_MC0_CTL
... MSR_IA32_MC0_CTL
+ 4 * KVM_MAX_MCE_BANKS
- 1:
2010 return get_msr_mce(vcpu
, msr
, pdata
);
2011 case MSR_K7_CLK_CTL
:
2013 * Provide expected ramp-up count for K7. All other
2014 * are set to zero, indicating minimum divisors for
2017 * This prevents guest kernels on AMD host with CPU
2018 * type 6, model 8 and higher from exploding due to
2019 * the rdmsr failing.
2023 case HV_X64_MSR_GUEST_OS_ID
... HV_X64_MSR_SINT15
:
2024 if (kvm_hv_msr_partition_wide(msr
)) {
2026 mutex_lock(&vcpu
->kvm
->lock
);
2027 r
= get_msr_hyperv_pw(vcpu
, msr
, pdata
);
2028 mutex_unlock(&vcpu
->kvm
->lock
);
2031 return get_msr_hyperv(vcpu
, msr
, pdata
);
2033 case MSR_IA32_BBL_CR_CTL3
:
2034 /* This legacy MSR exists but isn't fully documented in current
2035 * silicon. It is however accessed by winxp in very narrow
2036 * scenarios where it sets bit #19, itself documented as
2037 * a "reserved" bit. Best effort attempt to source coherent
2038 * read data here should the balance of the register be
2039 * interpreted by the guest:
2041 * L2 cache control register 3: 64GB range, 256KB size,
2042 * enabled, latency 0x1, configured
2046 case MSR_AMD64_OSVW_ID_LENGTH
:
2047 if (!guest_cpuid_has_osvw(vcpu
))
2049 data
= vcpu
->arch
.osvw
.length
;
2051 case MSR_AMD64_OSVW_STATUS
:
2052 if (!guest_cpuid_has_osvw(vcpu
))
2054 data
= vcpu
->arch
.osvw
.status
;
2057 if (kvm_pmu_msr(vcpu
, msr
))
2058 return kvm_pmu_get_msr(vcpu
, msr
, pdata
);
2060 vcpu_unimpl(vcpu
, "unhandled rdmsr: 0x%x\n", msr
);
2063 vcpu_unimpl(vcpu
, "ignored rdmsr: 0x%x\n", msr
);
2071 EXPORT_SYMBOL_GPL(kvm_get_msr_common
);
2074 * Read or write a bunch of msrs. All parameters are kernel addresses.
2076 * @return number of msrs set successfully.
2078 static int __msr_io(struct kvm_vcpu
*vcpu
, struct kvm_msrs
*msrs
,
2079 struct kvm_msr_entry
*entries
,
2080 int (*do_msr
)(struct kvm_vcpu
*vcpu
,
2081 unsigned index
, u64
*data
))
2085 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
2086 for (i
= 0; i
< msrs
->nmsrs
; ++i
)
2087 if (do_msr(vcpu
, entries
[i
].index
, &entries
[i
].data
))
2089 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
2095 * Read or write a bunch of msrs. Parameters are user addresses.
2097 * @return number of msrs set successfully.
2099 static int msr_io(struct kvm_vcpu
*vcpu
, struct kvm_msrs __user
*user_msrs
,
2100 int (*do_msr
)(struct kvm_vcpu
*vcpu
,
2101 unsigned index
, u64
*data
),
2104 struct kvm_msrs msrs
;
2105 struct kvm_msr_entry
*entries
;
2110 if (copy_from_user(&msrs
, user_msrs
, sizeof msrs
))
2114 if (msrs
.nmsrs
>= MAX_IO_MSRS
)
2117 size
= sizeof(struct kvm_msr_entry
) * msrs
.nmsrs
;
2118 entries
= memdup_user(user_msrs
->entries
, size
);
2119 if (IS_ERR(entries
)) {
2120 r
= PTR_ERR(entries
);
2124 r
= n
= __msr_io(vcpu
, &msrs
, entries
, do_msr
);
2129 if (writeback
&& copy_to_user(user_msrs
->entries
, entries
, size
))
2140 int kvm_dev_ioctl_check_extension(long ext
)
2145 case KVM_CAP_IRQCHIP
:
2147 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL
:
2148 case KVM_CAP_SET_TSS_ADDR
:
2149 case KVM_CAP_EXT_CPUID
:
2150 case KVM_CAP_CLOCKSOURCE
:
2152 case KVM_CAP_NOP_IO_DELAY
:
2153 case KVM_CAP_MP_STATE
:
2154 case KVM_CAP_SYNC_MMU
:
2155 case KVM_CAP_USER_NMI
:
2156 case KVM_CAP_REINJECT_CONTROL
:
2157 case KVM_CAP_IRQ_INJECT_STATUS
:
2158 case KVM_CAP_ASSIGN_DEV_IRQ
:
2160 case KVM_CAP_IOEVENTFD
:
2162 case KVM_CAP_PIT_STATE2
:
2163 case KVM_CAP_SET_IDENTITY_MAP_ADDR
:
2164 case KVM_CAP_XEN_HVM
:
2165 case KVM_CAP_ADJUST_CLOCK
:
2166 case KVM_CAP_VCPU_EVENTS
:
2167 case KVM_CAP_HYPERV
:
2168 case KVM_CAP_HYPERV_VAPIC
:
2169 case KVM_CAP_HYPERV_SPIN
:
2170 case KVM_CAP_PCI_SEGMENT
:
2171 case KVM_CAP_DEBUGREGS
:
2172 case KVM_CAP_X86_ROBUST_SINGLESTEP
:
2174 case KVM_CAP_ASYNC_PF
:
2175 case KVM_CAP_GET_TSC_KHZ
:
2176 case KVM_CAP_PCI_2_3
:
2177 case KVM_CAP_KVMCLOCK_CTRL
:
2178 case KVM_CAP_READONLY_MEM
:
2181 case KVM_CAP_COALESCED_MMIO
:
2182 r
= KVM_COALESCED_MMIO_PAGE_OFFSET
;
2185 r
= !kvm_x86_ops
->cpu_has_accelerated_tpr();
2187 case KVM_CAP_NR_VCPUS
:
2188 r
= KVM_SOFT_MAX_VCPUS
;
2190 case KVM_CAP_MAX_VCPUS
:
2193 case KVM_CAP_NR_MEMSLOTS
:
2194 r
= KVM_MEMORY_SLOTS
;
2196 case KVM_CAP_PV_MMU
: /* obsolete */
2200 r
= iommu_present(&pci_bus_type
);
2203 r
= KVM_MAX_MCE_BANKS
;
2208 case KVM_CAP_TSC_CONTROL
:
2209 r
= kvm_has_tsc_control
;
2211 case KVM_CAP_TSC_DEADLINE_TIMER
:
2212 r
= boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER
);
2222 long kvm_arch_dev_ioctl(struct file
*filp
,
2223 unsigned int ioctl
, unsigned long arg
)
2225 void __user
*argp
= (void __user
*)arg
;
2229 case KVM_GET_MSR_INDEX_LIST
: {
2230 struct kvm_msr_list __user
*user_msr_list
= argp
;
2231 struct kvm_msr_list msr_list
;
2235 if (copy_from_user(&msr_list
, user_msr_list
, sizeof msr_list
))
2238 msr_list
.nmsrs
= num_msrs_to_save
+ ARRAY_SIZE(emulated_msrs
);
2239 if (copy_to_user(user_msr_list
, &msr_list
, sizeof msr_list
))
2242 if (n
< msr_list
.nmsrs
)
2245 if (copy_to_user(user_msr_list
->indices
, &msrs_to_save
,
2246 num_msrs_to_save
* sizeof(u32
)))
2248 if (copy_to_user(user_msr_list
->indices
+ num_msrs_to_save
,
2250 ARRAY_SIZE(emulated_msrs
) * sizeof(u32
)))
2255 case KVM_GET_SUPPORTED_CPUID
: {
2256 struct kvm_cpuid2 __user
*cpuid_arg
= argp
;
2257 struct kvm_cpuid2 cpuid
;
2260 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
2262 r
= kvm_dev_ioctl_get_supported_cpuid(&cpuid
,
2263 cpuid_arg
->entries
);
2268 if (copy_to_user(cpuid_arg
, &cpuid
, sizeof cpuid
))
2273 case KVM_X86_GET_MCE_CAP_SUPPORTED
: {
2276 mce_cap
= KVM_MCE_CAP_SUPPORTED
;
2278 if (copy_to_user(argp
, &mce_cap
, sizeof mce_cap
))
2290 static void wbinvd_ipi(void *garbage
)
2295 static bool need_emulate_wbinvd(struct kvm_vcpu
*vcpu
)
2297 return vcpu
->kvm
->arch
.iommu_domain
&&
2298 !(vcpu
->kvm
->arch
.iommu_flags
& KVM_IOMMU_CACHE_COHERENCY
);
2301 void kvm_arch_vcpu_load(struct kvm_vcpu
*vcpu
, int cpu
)
2303 /* Address WBINVD may be executed by guest */
2304 if (need_emulate_wbinvd(vcpu
)) {
2305 if (kvm_x86_ops
->has_wbinvd_exit())
2306 cpumask_set_cpu(cpu
, vcpu
->arch
.wbinvd_dirty_mask
);
2307 else if (vcpu
->cpu
!= -1 && vcpu
->cpu
!= cpu
)
2308 smp_call_function_single(vcpu
->cpu
,
2309 wbinvd_ipi
, NULL
, 1);
2312 kvm_x86_ops
->vcpu_load(vcpu
, cpu
);
2314 /* Apply any externally detected TSC adjustments (due to suspend) */
2315 if (unlikely(vcpu
->arch
.tsc_offset_adjustment
)) {
2316 adjust_tsc_offset_host(vcpu
, vcpu
->arch
.tsc_offset_adjustment
);
2317 vcpu
->arch
.tsc_offset_adjustment
= 0;
2318 set_bit(KVM_REQ_CLOCK_UPDATE
, &vcpu
->requests
);
2321 if (unlikely(vcpu
->cpu
!= cpu
) || check_tsc_unstable()) {
2322 s64 tsc_delta
= !vcpu
->arch
.last_host_tsc
? 0 :
2323 native_read_tsc() - vcpu
->arch
.last_host_tsc
;
2325 mark_tsc_unstable("KVM discovered backwards TSC");
2326 if (check_tsc_unstable()) {
2327 u64 offset
= kvm_x86_ops
->compute_tsc_offset(vcpu
,
2328 vcpu
->arch
.last_guest_tsc
);
2329 kvm_x86_ops
->write_tsc_offset(vcpu
, offset
);
2330 vcpu
->arch
.tsc_catchup
= 1;
2332 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
2333 if (vcpu
->cpu
!= cpu
)
2334 kvm_migrate_timers(vcpu
);
2338 accumulate_steal_time(vcpu
);
2339 kvm_make_request(KVM_REQ_STEAL_UPDATE
, vcpu
);
2342 void kvm_arch_vcpu_put(struct kvm_vcpu
*vcpu
)
2344 kvm_x86_ops
->vcpu_put(vcpu
);
2345 kvm_put_guest_fpu(vcpu
);
2346 vcpu
->arch
.last_host_tsc
= native_read_tsc();
2349 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu
*vcpu
,
2350 struct kvm_lapic_state
*s
)
2352 memcpy(s
->regs
, vcpu
->arch
.apic
->regs
, sizeof *s
);
2357 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu
*vcpu
,
2358 struct kvm_lapic_state
*s
)
2360 kvm_apic_post_state_restore(vcpu
, s
);
2361 update_cr8_intercept(vcpu
);
2366 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu
*vcpu
,
2367 struct kvm_interrupt
*irq
)
2369 if (irq
->irq
< 0 || irq
->irq
>= KVM_NR_INTERRUPTS
)
2371 if (irqchip_in_kernel(vcpu
->kvm
))
2374 kvm_queue_interrupt(vcpu
, irq
->irq
, false);
2375 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
2380 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu
*vcpu
)
2382 kvm_inject_nmi(vcpu
);
2387 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu
*vcpu
,
2388 struct kvm_tpr_access_ctl
*tac
)
2392 vcpu
->arch
.tpr_access_reporting
= !!tac
->enabled
;
2396 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu
*vcpu
,
2400 unsigned bank_num
= mcg_cap
& 0xff, bank
;
2403 if (!bank_num
|| bank_num
>= KVM_MAX_MCE_BANKS
)
2405 if (mcg_cap
& ~(KVM_MCE_CAP_SUPPORTED
| 0xff | 0xff0000))
2408 vcpu
->arch
.mcg_cap
= mcg_cap
;
2409 /* Init IA32_MCG_CTL to all 1s */
2410 if (mcg_cap
& MCG_CTL_P
)
2411 vcpu
->arch
.mcg_ctl
= ~(u64
)0;
2412 /* Init IA32_MCi_CTL to all 1s */
2413 for (bank
= 0; bank
< bank_num
; bank
++)
2414 vcpu
->arch
.mce_banks
[bank
*4] = ~(u64
)0;
2419 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu
*vcpu
,
2420 struct kvm_x86_mce
*mce
)
2422 u64 mcg_cap
= vcpu
->arch
.mcg_cap
;
2423 unsigned bank_num
= mcg_cap
& 0xff;
2424 u64
*banks
= vcpu
->arch
.mce_banks
;
2426 if (mce
->bank
>= bank_num
|| !(mce
->status
& MCI_STATUS_VAL
))
2429 * if IA32_MCG_CTL is not all 1s, the uncorrected error
2430 * reporting is disabled
2432 if ((mce
->status
& MCI_STATUS_UC
) && (mcg_cap
& MCG_CTL_P
) &&
2433 vcpu
->arch
.mcg_ctl
!= ~(u64
)0)
2435 banks
+= 4 * mce
->bank
;
2437 * if IA32_MCi_CTL is not all 1s, the uncorrected error
2438 * reporting is disabled for the bank
2440 if ((mce
->status
& MCI_STATUS_UC
) && banks
[0] != ~(u64
)0)
2442 if (mce
->status
& MCI_STATUS_UC
) {
2443 if ((vcpu
->arch
.mcg_status
& MCG_STATUS_MCIP
) ||
2444 !kvm_read_cr4_bits(vcpu
, X86_CR4_MCE
)) {
2445 kvm_make_request(KVM_REQ_TRIPLE_FAULT
, vcpu
);
2448 if (banks
[1] & MCI_STATUS_VAL
)
2449 mce
->status
|= MCI_STATUS_OVER
;
2450 banks
[2] = mce
->addr
;
2451 banks
[3] = mce
->misc
;
2452 vcpu
->arch
.mcg_status
= mce
->mcg_status
;
2453 banks
[1] = mce
->status
;
2454 kvm_queue_exception(vcpu
, MC_VECTOR
);
2455 } else if (!(banks
[1] & MCI_STATUS_VAL
)
2456 || !(banks
[1] & MCI_STATUS_UC
)) {
2457 if (banks
[1] & MCI_STATUS_VAL
)
2458 mce
->status
|= MCI_STATUS_OVER
;
2459 banks
[2] = mce
->addr
;
2460 banks
[3] = mce
->misc
;
2461 banks
[1] = mce
->status
;
2463 banks
[1] |= MCI_STATUS_OVER
;
2467 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu
*vcpu
,
2468 struct kvm_vcpu_events
*events
)
2471 events
->exception
.injected
=
2472 vcpu
->arch
.exception
.pending
&&
2473 !kvm_exception_is_soft(vcpu
->arch
.exception
.nr
);
2474 events
->exception
.nr
= vcpu
->arch
.exception
.nr
;
2475 events
->exception
.has_error_code
= vcpu
->arch
.exception
.has_error_code
;
2476 events
->exception
.pad
= 0;
2477 events
->exception
.error_code
= vcpu
->arch
.exception
.error_code
;
2479 events
->interrupt
.injected
=
2480 vcpu
->arch
.interrupt
.pending
&& !vcpu
->arch
.interrupt
.soft
;
2481 events
->interrupt
.nr
= vcpu
->arch
.interrupt
.nr
;
2482 events
->interrupt
.soft
= 0;
2483 events
->interrupt
.shadow
=
2484 kvm_x86_ops
->get_interrupt_shadow(vcpu
,
2485 KVM_X86_SHADOW_INT_MOV_SS
| KVM_X86_SHADOW_INT_STI
);
2487 events
->nmi
.injected
= vcpu
->arch
.nmi_injected
;
2488 events
->nmi
.pending
= vcpu
->arch
.nmi_pending
!= 0;
2489 events
->nmi
.masked
= kvm_x86_ops
->get_nmi_mask(vcpu
);
2490 events
->nmi
.pad
= 0;
2492 events
->sipi_vector
= vcpu
->arch
.sipi_vector
;
2494 events
->flags
= (KVM_VCPUEVENT_VALID_NMI_PENDING
2495 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2496 | KVM_VCPUEVENT_VALID_SHADOW
);
2497 memset(&events
->reserved
, 0, sizeof(events
->reserved
));
2500 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu
*vcpu
,
2501 struct kvm_vcpu_events
*events
)
2503 if (events
->flags
& ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2504 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2505 | KVM_VCPUEVENT_VALID_SHADOW
))
2509 vcpu
->arch
.exception
.pending
= events
->exception
.injected
;
2510 vcpu
->arch
.exception
.nr
= events
->exception
.nr
;
2511 vcpu
->arch
.exception
.has_error_code
= events
->exception
.has_error_code
;
2512 vcpu
->arch
.exception
.error_code
= events
->exception
.error_code
;
2514 vcpu
->arch
.interrupt
.pending
= events
->interrupt
.injected
;
2515 vcpu
->arch
.interrupt
.nr
= events
->interrupt
.nr
;
2516 vcpu
->arch
.interrupt
.soft
= events
->interrupt
.soft
;
2517 if (events
->flags
& KVM_VCPUEVENT_VALID_SHADOW
)
2518 kvm_x86_ops
->set_interrupt_shadow(vcpu
,
2519 events
->interrupt
.shadow
);
2521 vcpu
->arch
.nmi_injected
= events
->nmi
.injected
;
2522 if (events
->flags
& KVM_VCPUEVENT_VALID_NMI_PENDING
)
2523 vcpu
->arch
.nmi_pending
= events
->nmi
.pending
;
2524 kvm_x86_ops
->set_nmi_mask(vcpu
, events
->nmi
.masked
);
2526 if (events
->flags
& KVM_VCPUEVENT_VALID_SIPI_VECTOR
)
2527 vcpu
->arch
.sipi_vector
= events
->sipi_vector
;
2529 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
2534 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu
*vcpu
,
2535 struct kvm_debugregs
*dbgregs
)
2537 memcpy(dbgregs
->db
, vcpu
->arch
.db
, sizeof(vcpu
->arch
.db
));
2538 dbgregs
->dr6
= vcpu
->arch
.dr6
;
2539 dbgregs
->dr7
= vcpu
->arch
.dr7
;
2541 memset(&dbgregs
->reserved
, 0, sizeof(dbgregs
->reserved
));
2544 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu
*vcpu
,
2545 struct kvm_debugregs
*dbgregs
)
2550 memcpy(vcpu
->arch
.db
, dbgregs
->db
, sizeof(vcpu
->arch
.db
));
2551 vcpu
->arch
.dr6
= dbgregs
->dr6
;
2552 vcpu
->arch
.dr7
= dbgregs
->dr7
;
2557 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu
*vcpu
,
2558 struct kvm_xsave
*guest_xsave
)
2561 memcpy(guest_xsave
->region
,
2562 &vcpu
->arch
.guest_fpu
.state
->xsave
,
2565 memcpy(guest_xsave
->region
,
2566 &vcpu
->arch
.guest_fpu
.state
->fxsave
,
2567 sizeof(struct i387_fxsave_struct
));
2568 *(u64
*)&guest_xsave
->region
[XSAVE_HDR_OFFSET
/ sizeof(u32
)] =
2573 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu
*vcpu
,
2574 struct kvm_xsave
*guest_xsave
)
2577 *(u64
*)&guest_xsave
->region
[XSAVE_HDR_OFFSET
/ sizeof(u32
)];
2580 memcpy(&vcpu
->arch
.guest_fpu
.state
->xsave
,
2581 guest_xsave
->region
, xstate_size
);
2583 if (xstate_bv
& ~XSTATE_FPSSE
)
2585 memcpy(&vcpu
->arch
.guest_fpu
.state
->fxsave
,
2586 guest_xsave
->region
, sizeof(struct i387_fxsave_struct
));
2591 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu
*vcpu
,
2592 struct kvm_xcrs
*guest_xcrs
)
2594 if (!cpu_has_xsave
) {
2595 guest_xcrs
->nr_xcrs
= 0;
2599 guest_xcrs
->nr_xcrs
= 1;
2600 guest_xcrs
->flags
= 0;
2601 guest_xcrs
->xcrs
[0].xcr
= XCR_XFEATURE_ENABLED_MASK
;
2602 guest_xcrs
->xcrs
[0].value
= vcpu
->arch
.xcr0
;
2605 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu
*vcpu
,
2606 struct kvm_xcrs
*guest_xcrs
)
2613 if (guest_xcrs
->nr_xcrs
> KVM_MAX_XCRS
|| guest_xcrs
->flags
)
2616 for (i
= 0; i
< guest_xcrs
->nr_xcrs
; i
++)
2617 /* Only support XCR0 currently */
2618 if (guest_xcrs
->xcrs
[0].xcr
== XCR_XFEATURE_ENABLED_MASK
) {
2619 r
= __kvm_set_xcr(vcpu
, XCR_XFEATURE_ENABLED_MASK
,
2620 guest_xcrs
->xcrs
[0].value
);
2629 * kvm_set_guest_paused() indicates to the guest kernel that it has been
2630 * stopped by the hypervisor. This function will be called from the host only.
2631 * EINVAL is returned when the host attempts to set the flag for a guest that
2632 * does not support pv clocks.
2634 static int kvm_set_guest_paused(struct kvm_vcpu
*vcpu
)
2636 if (!vcpu
->arch
.time_page
)
2638 vcpu
->arch
.pvclock_set_guest_stopped_request
= true;
2639 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
2643 long kvm_arch_vcpu_ioctl(struct file
*filp
,
2644 unsigned int ioctl
, unsigned long arg
)
2646 struct kvm_vcpu
*vcpu
= filp
->private_data
;
2647 void __user
*argp
= (void __user
*)arg
;
2650 struct kvm_lapic_state
*lapic
;
2651 struct kvm_xsave
*xsave
;
2652 struct kvm_xcrs
*xcrs
;
2658 case KVM_GET_LAPIC
: {
2660 if (!vcpu
->arch
.apic
)
2662 u
.lapic
= kzalloc(sizeof(struct kvm_lapic_state
), GFP_KERNEL
);
2667 r
= kvm_vcpu_ioctl_get_lapic(vcpu
, u
.lapic
);
2671 if (copy_to_user(argp
, u
.lapic
, sizeof(struct kvm_lapic_state
)))
2676 case KVM_SET_LAPIC
: {
2678 if (!vcpu
->arch
.apic
)
2680 u
.lapic
= memdup_user(argp
, sizeof(*u
.lapic
));
2681 if (IS_ERR(u
.lapic
)) {
2682 r
= PTR_ERR(u
.lapic
);
2686 r
= kvm_vcpu_ioctl_set_lapic(vcpu
, u
.lapic
);
2692 case KVM_INTERRUPT
: {
2693 struct kvm_interrupt irq
;
2696 if (copy_from_user(&irq
, argp
, sizeof irq
))
2698 r
= kvm_vcpu_ioctl_interrupt(vcpu
, &irq
);
2705 r
= kvm_vcpu_ioctl_nmi(vcpu
);
2711 case KVM_SET_CPUID
: {
2712 struct kvm_cpuid __user
*cpuid_arg
= argp
;
2713 struct kvm_cpuid cpuid
;
2716 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
2718 r
= kvm_vcpu_ioctl_set_cpuid(vcpu
, &cpuid
, cpuid_arg
->entries
);
2723 case KVM_SET_CPUID2
: {
2724 struct kvm_cpuid2 __user
*cpuid_arg
= argp
;
2725 struct kvm_cpuid2 cpuid
;
2728 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
2730 r
= kvm_vcpu_ioctl_set_cpuid2(vcpu
, &cpuid
,
2731 cpuid_arg
->entries
);
2736 case KVM_GET_CPUID2
: {
2737 struct kvm_cpuid2 __user
*cpuid_arg
= argp
;
2738 struct kvm_cpuid2 cpuid
;
2741 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
2743 r
= kvm_vcpu_ioctl_get_cpuid2(vcpu
, &cpuid
,
2744 cpuid_arg
->entries
);
2748 if (copy_to_user(cpuid_arg
, &cpuid
, sizeof cpuid
))
2754 r
= msr_io(vcpu
, argp
, kvm_get_msr
, 1);
2757 r
= msr_io(vcpu
, argp
, do_set_msr
, 0);
2759 case KVM_TPR_ACCESS_REPORTING
: {
2760 struct kvm_tpr_access_ctl tac
;
2763 if (copy_from_user(&tac
, argp
, sizeof tac
))
2765 r
= vcpu_ioctl_tpr_access_reporting(vcpu
, &tac
);
2769 if (copy_to_user(argp
, &tac
, sizeof tac
))
2774 case KVM_SET_VAPIC_ADDR
: {
2775 struct kvm_vapic_addr va
;
2778 if (!irqchip_in_kernel(vcpu
->kvm
))
2781 if (copy_from_user(&va
, argp
, sizeof va
))
2784 kvm_lapic_set_vapic_addr(vcpu
, va
.vapic_addr
);
2787 case KVM_X86_SETUP_MCE
: {
2791 if (copy_from_user(&mcg_cap
, argp
, sizeof mcg_cap
))
2793 r
= kvm_vcpu_ioctl_x86_setup_mce(vcpu
, mcg_cap
);
2796 case KVM_X86_SET_MCE
: {
2797 struct kvm_x86_mce mce
;
2800 if (copy_from_user(&mce
, argp
, sizeof mce
))
2802 r
= kvm_vcpu_ioctl_x86_set_mce(vcpu
, &mce
);
2805 case KVM_GET_VCPU_EVENTS
: {
2806 struct kvm_vcpu_events events
;
2808 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu
, &events
);
2811 if (copy_to_user(argp
, &events
, sizeof(struct kvm_vcpu_events
)))
2816 case KVM_SET_VCPU_EVENTS
: {
2817 struct kvm_vcpu_events events
;
2820 if (copy_from_user(&events
, argp
, sizeof(struct kvm_vcpu_events
)))
2823 r
= kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu
, &events
);
2826 case KVM_GET_DEBUGREGS
: {
2827 struct kvm_debugregs dbgregs
;
2829 kvm_vcpu_ioctl_x86_get_debugregs(vcpu
, &dbgregs
);
2832 if (copy_to_user(argp
, &dbgregs
,
2833 sizeof(struct kvm_debugregs
)))
2838 case KVM_SET_DEBUGREGS
: {
2839 struct kvm_debugregs dbgregs
;
2842 if (copy_from_user(&dbgregs
, argp
,
2843 sizeof(struct kvm_debugregs
)))
2846 r
= kvm_vcpu_ioctl_x86_set_debugregs(vcpu
, &dbgregs
);
2849 case KVM_GET_XSAVE
: {
2850 u
.xsave
= kzalloc(sizeof(struct kvm_xsave
), GFP_KERNEL
);
2855 kvm_vcpu_ioctl_x86_get_xsave(vcpu
, u
.xsave
);
2858 if (copy_to_user(argp
, u
.xsave
, sizeof(struct kvm_xsave
)))
2863 case KVM_SET_XSAVE
: {
2864 u
.xsave
= memdup_user(argp
, sizeof(*u
.xsave
));
2865 if (IS_ERR(u
.xsave
)) {
2866 r
= PTR_ERR(u
.xsave
);
2870 r
= kvm_vcpu_ioctl_x86_set_xsave(vcpu
, u
.xsave
);
2873 case KVM_GET_XCRS
: {
2874 u
.xcrs
= kzalloc(sizeof(struct kvm_xcrs
), GFP_KERNEL
);
2879 kvm_vcpu_ioctl_x86_get_xcrs(vcpu
, u
.xcrs
);
2882 if (copy_to_user(argp
, u
.xcrs
,
2883 sizeof(struct kvm_xcrs
)))
2888 case KVM_SET_XCRS
: {
2889 u
.xcrs
= memdup_user(argp
, sizeof(*u
.xcrs
));
2890 if (IS_ERR(u
.xcrs
)) {
2891 r
= PTR_ERR(u
.xcrs
);
2895 r
= kvm_vcpu_ioctl_x86_set_xcrs(vcpu
, u
.xcrs
);
2898 case KVM_SET_TSC_KHZ
: {
2902 user_tsc_khz
= (u32
)arg
;
2904 if (user_tsc_khz
>= kvm_max_guest_tsc_khz
)
2907 if (user_tsc_khz
== 0)
2908 user_tsc_khz
= tsc_khz
;
2910 kvm_set_tsc_khz(vcpu
, user_tsc_khz
);
2915 case KVM_GET_TSC_KHZ
: {
2916 r
= vcpu
->arch
.virtual_tsc_khz
;
2919 case KVM_KVMCLOCK_CTRL
: {
2920 r
= kvm_set_guest_paused(vcpu
);
2931 int kvm_arch_vcpu_fault(struct kvm_vcpu
*vcpu
, struct vm_fault
*vmf
)
2933 return VM_FAULT_SIGBUS
;
2936 static int kvm_vm_ioctl_set_tss_addr(struct kvm
*kvm
, unsigned long addr
)
2940 if (addr
> (unsigned int)(-3 * PAGE_SIZE
))
2942 ret
= kvm_x86_ops
->set_tss_addr(kvm
, addr
);
2946 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm
*kvm
,
2949 kvm
->arch
.ept_identity_map_addr
= ident_addr
;
2953 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm
*kvm
,
2954 u32 kvm_nr_mmu_pages
)
2956 if (kvm_nr_mmu_pages
< KVM_MIN_ALLOC_MMU_PAGES
)
2959 mutex_lock(&kvm
->slots_lock
);
2960 spin_lock(&kvm
->mmu_lock
);
2962 kvm_mmu_change_mmu_pages(kvm
, kvm_nr_mmu_pages
);
2963 kvm
->arch
.n_requested_mmu_pages
= kvm_nr_mmu_pages
;
2965 spin_unlock(&kvm
->mmu_lock
);
2966 mutex_unlock(&kvm
->slots_lock
);
2970 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm
*kvm
)
2972 return kvm
->arch
.n_max_mmu_pages
;
2975 static int kvm_vm_ioctl_get_irqchip(struct kvm
*kvm
, struct kvm_irqchip
*chip
)
2980 switch (chip
->chip_id
) {
2981 case KVM_IRQCHIP_PIC_MASTER
:
2982 memcpy(&chip
->chip
.pic
,
2983 &pic_irqchip(kvm
)->pics
[0],
2984 sizeof(struct kvm_pic_state
));
2986 case KVM_IRQCHIP_PIC_SLAVE
:
2987 memcpy(&chip
->chip
.pic
,
2988 &pic_irqchip(kvm
)->pics
[1],
2989 sizeof(struct kvm_pic_state
));
2991 case KVM_IRQCHIP_IOAPIC
:
2992 r
= kvm_get_ioapic(kvm
, &chip
->chip
.ioapic
);
3001 static int kvm_vm_ioctl_set_irqchip(struct kvm
*kvm
, struct kvm_irqchip
*chip
)
3006 switch (chip
->chip_id
) {
3007 case KVM_IRQCHIP_PIC_MASTER
:
3008 spin_lock(&pic_irqchip(kvm
)->lock
);
3009 memcpy(&pic_irqchip(kvm
)->pics
[0],
3011 sizeof(struct kvm_pic_state
));
3012 spin_unlock(&pic_irqchip(kvm
)->lock
);
3014 case KVM_IRQCHIP_PIC_SLAVE
:
3015 spin_lock(&pic_irqchip(kvm
)->lock
);
3016 memcpy(&pic_irqchip(kvm
)->pics
[1],
3018 sizeof(struct kvm_pic_state
));
3019 spin_unlock(&pic_irqchip(kvm
)->lock
);
3021 case KVM_IRQCHIP_IOAPIC
:
3022 r
= kvm_set_ioapic(kvm
, &chip
->chip
.ioapic
);
3028 kvm_pic_update_irq(pic_irqchip(kvm
));
3032 static int kvm_vm_ioctl_get_pit(struct kvm
*kvm
, struct kvm_pit_state
*ps
)
3036 mutex_lock(&kvm
->arch
.vpit
->pit_state
.lock
);
3037 memcpy(ps
, &kvm
->arch
.vpit
->pit_state
, sizeof(struct kvm_pit_state
));
3038 mutex_unlock(&kvm
->arch
.vpit
->pit_state
.lock
);
3042 static int kvm_vm_ioctl_set_pit(struct kvm
*kvm
, struct kvm_pit_state
*ps
)
3046 mutex_lock(&kvm
->arch
.vpit
->pit_state
.lock
);
3047 memcpy(&kvm
->arch
.vpit
->pit_state
, ps
, sizeof(struct kvm_pit_state
));
3048 kvm_pit_load_count(kvm
, 0, ps
->channels
[0].count
, 0);
3049 mutex_unlock(&kvm
->arch
.vpit
->pit_state
.lock
);
3053 static int kvm_vm_ioctl_get_pit2(struct kvm
*kvm
, struct kvm_pit_state2
*ps
)
3057 mutex_lock(&kvm
->arch
.vpit
->pit_state
.lock
);
3058 memcpy(ps
->channels
, &kvm
->arch
.vpit
->pit_state
.channels
,
3059 sizeof(ps
->channels
));
3060 ps
->flags
= kvm
->arch
.vpit
->pit_state
.flags
;
3061 mutex_unlock(&kvm
->arch
.vpit
->pit_state
.lock
);
3062 memset(&ps
->reserved
, 0, sizeof(ps
->reserved
));
3066 static int kvm_vm_ioctl_set_pit2(struct kvm
*kvm
, struct kvm_pit_state2
*ps
)
3068 int r
= 0, start
= 0;
3069 u32 prev_legacy
, cur_legacy
;
3070 mutex_lock(&kvm
->arch
.vpit
->pit_state
.lock
);
3071 prev_legacy
= kvm
->arch
.vpit
->pit_state
.flags
& KVM_PIT_FLAGS_HPET_LEGACY
;
3072 cur_legacy
= ps
->flags
& KVM_PIT_FLAGS_HPET_LEGACY
;
3073 if (!prev_legacy
&& cur_legacy
)
3075 memcpy(&kvm
->arch
.vpit
->pit_state
.channels
, &ps
->channels
,
3076 sizeof(kvm
->arch
.vpit
->pit_state
.channels
));
3077 kvm
->arch
.vpit
->pit_state
.flags
= ps
->flags
;
3078 kvm_pit_load_count(kvm
, 0, kvm
->arch
.vpit
->pit_state
.channels
[0].count
, start
);
3079 mutex_unlock(&kvm
->arch
.vpit
->pit_state
.lock
);
3083 static int kvm_vm_ioctl_reinject(struct kvm
*kvm
,
3084 struct kvm_reinject_control
*control
)
3086 if (!kvm
->arch
.vpit
)
3088 mutex_lock(&kvm
->arch
.vpit
->pit_state
.lock
);
3089 kvm
->arch
.vpit
->pit_state
.reinject
= control
->pit_reinject
;
3090 mutex_unlock(&kvm
->arch
.vpit
->pit_state
.lock
);
3095 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3096 * @kvm: kvm instance
3097 * @log: slot id and address to which we copy the log
3099 * We need to keep it in mind that VCPU threads can write to the bitmap
3100 * concurrently. So, to avoid losing data, we keep the following order for
3103 * 1. Take a snapshot of the bit and clear it if needed.
3104 * 2. Write protect the corresponding page.
3105 * 3. Flush TLB's if needed.
3106 * 4. Copy the snapshot to the userspace.
3108 * Between 2 and 3, the guest may write to the page using the remaining TLB
3109 * entry. This is not a problem because the page will be reported dirty at
3110 * step 4 using the snapshot taken before and step 3 ensures that successive
3111 * writes will be logged for the next call.
3113 int kvm_vm_ioctl_get_dirty_log(struct kvm
*kvm
, struct kvm_dirty_log
*log
)
3116 struct kvm_memory_slot
*memslot
;
3118 unsigned long *dirty_bitmap
;
3119 unsigned long *dirty_bitmap_buffer
;
3120 bool is_dirty
= false;
3122 mutex_lock(&kvm
->slots_lock
);
3125 if (log
->slot
>= KVM_MEMORY_SLOTS
)
3128 memslot
= id_to_memslot(kvm
->memslots
, log
->slot
);
3130 dirty_bitmap
= memslot
->dirty_bitmap
;
3135 n
= kvm_dirty_bitmap_bytes(memslot
);
3137 dirty_bitmap_buffer
= dirty_bitmap
+ n
/ sizeof(long);
3138 memset(dirty_bitmap_buffer
, 0, n
);
3140 spin_lock(&kvm
->mmu_lock
);
3142 for (i
= 0; i
< n
/ sizeof(long); i
++) {
3146 if (!dirty_bitmap
[i
])
3151 mask
= xchg(&dirty_bitmap
[i
], 0);
3152 dirty_bitmap_buffer
[i
] = mask
;
3154 offset
= i
* BITS_PER_LONG
;
3155 kvm_mmu_write_protect_pt_masked(kvm
, memslot
, offset
, mask
);
3158 kvm_flush_remote_tlbs(kvm
);
3160 spin_unlock(&kvm
->mmu_lock
);
3163 if (copy_to_user(log
->dirty_bitmap
, dirty_bitmap_buffer
, n
))
3168 mutex_unlock(&kvm
->slots_lock
);
3172 int kvm_vm_ioctl_irq_line(struct kvm
*kvm
, struct kvm_irq_level
*irq_event
)
3174 if (!irqchip_in_kernel(kvm
))
3177 irq_event
->status
= kvm_set_irq(kvm
, KVM_USERSPACE_IRQ_SOURCE_ID
,
3178 irq_event
->irq
, irq_event
->level
);
3182 long kvm_arch_vm_ioctl(struct file
*filp
,
3183 unsigned int ioctl
, unsigned long arg
)
3185 struct kvm
*kvm
= filp
->private_data
;
3186 void __user
*argp
= (void __user
*)arg
;
3189 * This union makes it completely explicit to gcc-3.x
3190 * that these two variables' stack usage should be
3191 * combined, not added together.
3194 struct kvm_pit_state ps
;
3195 struct kvm_pit_state2 ps2
;
3196 struct kvm_pit_config pit_config
;
3200 case KVM_SET_TSS_ADDR
:
3201 r
= kvm_vm_ioctl_set_tss_addr(kvm
, arg
);
3205 case KVM_SET_IDENTITY_MAP_ADDR
: {
3209 if (copy_from_user(&ident_addr
, argp
, sizeof ident_addr
))
3211 r
= kvm_vm_ioctl_set_identity_map_addr(kvm
, ident_addr
);
3216 case KVM_SET_NR_MMU_PAGES
:
3217 r
= kvm_vm_ioctl_set_nr_mmu_pages(kvm
, arg
);
3221 case KVM_GET_NR_MMU_PAGES
:
3222 r
= kvm_vm_ioctl_get_nr_mmu_pages(kvm
);
3224 case KVM_CREATE_IRQCHIP
: {
3225 struct kvm_pic
*vpic
;
3227 mutex_lock(&kvm
->lock
);
3230 goto create_irqchip_unlock
;
3232 if (atomic_read(&kvm
->online_vcpus
))
3233 goto create_irqchip_unlock
;
3235 vpic
= kvm_create_pic(kvm
);
3237 r
= kvm_ioapic_init(kvm
);
3239 mutex_lock(&kvm
->slots_lock
);
3240 kvm_io_bus_unregister_dev(kvm
, KVM_PIO_BUS
,
3242 kvm_io_bus_unregister_dev(kvm
, KVM_PIO_BUS
,
3244 kvm_io_bus_unregister_dev(kvm
, KVM_PIO_BUS
,
3246 mutex_unlock(&kvm
->slots_lock
);
3248 goto create_irqchip_unlock
;
3251 goto create_irqchip_unlock
;
3253 kvm
->arch
.vpic
= vpic
;
3255 r
= kvm_setup_default_irq_routing(kvm
);
3257 mutex_lock(&kvm
->slots_lock
);
3258 mutex_lock(&kvm
->irq_lock
);
3259 kvm_ioapic_destroy(kvm
);
3260 kvm_destroy_pic(kvm
);
3261 mutex_unlock(&kvm
->irq_lock
);
3262 mutex_unlock(&kvm
->slots_lock
);
3264 create_irqchip_unlock
:
3265 mutex_unlock(&kvm
->lock
);
3268 case KVM_CREATE_PIT
:
3269 u
.pit_config
.flags
= KVM_PIT_SPEAKER_DUMMY
;
3271 case KVM_CREATE_PIT2
:
3273 if (copy_from_user(&u
.pit_config
, argp
,
3274 sizeof(struct kvm_pit_config
)))
3277 mutex_lock(&kvm
->slots_lock
);
3280 goto create_pit_unlock
;
3282 kvm
->arch
.vpit
= kvm_create_pit(kvm
, u
.pit_config
.flags
);
3286 mutex_unlock(&kvm
->slots_lock
);
3288 case KVM_GET_IRQCHIP
: {
3289 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3290 struct kvm_irqchip
*chip
;
3292 chip
= memdup_user(argp
, sizeof(*chip
));
3299 if (!irqchip_in_kernel(kvm
))
3300 goto get_irqchip_out
;
3301 r
= kvm_vm_ioctl_get_irqchip(kvm
, chip
);
3303 goto get_irqchip_out
;
3305 if (copy_to_user(argp
, chip
, sizeof *chip
))
3306 goto get_irqchip_out
;
3314 case KVM_SET_IRQCHIP
: {
3315 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3316 struct kvm_irqchip
*chip
;
3318 chip
= memdup_user(argp
, sizeof(*chip
));
3325 if (!irqchip_in_kernel(kvm
))
3326 goto set_irqchip_out
;
3327 r
= kvm_vm_ioctl_set_irqchip(kvm
, chip
);
3329 goto set_irqchip_out
;
3339 if (copy_from_user(&u
.ps
, argp
, sizeof(struct kvm_pit_state
)))
3342 if (!kvm
->arch
.vpit
)
3344 r
= kvm_vm_ioctl_get_pit(kvm
, &u
.ps
);
3348 if (copy_to_user(argp
, &u
.ps
, sizeof(struct kvm_pit_state
)))
3355 if (copy_from_user(&u
.ps
, argp
, sizeof u
.ps
))
3358 if (!kvm
->arch
.vpit
)
3360 r
= kvm_vm_ioctl_set_pit(kvm
, &u
.ps
);
3366 case KVM_GET_PIT2
: {
3368 if (!kvm
->arch
.vpit
)
3370 r
= kvm_vm_ioctl_get_pit2(kvm
, &u
.ps2
);
3374 if (copy_to_user(argp
, &u
.ps2
, sizeof(u
.ps2
)))
3379 case KVM_SET_PIT2
: {
3381 if (copy_from_user(&u
.ps2
, argp
, sizeof(u
.ps2
)))
3384 if (!kvm
->arch
.vpit
)
3386 r
= kvm_vm_ioctl_set_pit2(kvm
, &u
.ps2
);
3392 case KVM_REINJECT_CONTROL
: {
3393 struct kvm_reinject_control control
;
3395 if (copy_from_user(&control
, argp
, sizeof(control
)))
3397 r
= kvm_vm_ioctl_reinject(kvm
, &control
);
3403 case KVM_XEN_HVM_CONFIG
: {
3405 if (copy_from_user(&kvm
->arch
.xen_hvm_config
, argp
,
3406 sizeof(struct kvm_xen_hvm_config
)))
3409 if (kvm
->arch
.xen_hvm_config
.flags
)
3414 case KVM_SET_CLOCK
: {
3415 struct kvm_clock_data user_ns
;
3420 if (copy_from_user(&user_ns
, argp
, sizeof(user_ns
)))
3428 local_irq_disable();
3429 now_ns
= get_kernel_ns();
3430 delta
= user_ns
.clock
- now_ns
;
3432 kvm
->arch
.kvmclock_offset
= delta
;
3435 case KVM_GET_CLOCK
: {
3436 struct kvm_clock_data user_ns
;
3439 local_irq_disable();
3440 now_ns
= get_kernel_ns();
3441 user_ns
.clock
= kvm
->arch
.kvmclock_offset
+ now_ns
;
3444 memset(&user_ns
.pad
, 0, sizeof(user_ns
.pad
));
3447 if (copy_to_user(argp
, &user_ns
, sizeof(user_ns
)))
3460 static void kvm_init_msr_list(void)
3465 /* skip the first msrs in the list. KVM-specific */
3466 for (i
= j
= KVM_SAVE_MSRS_BEGIN
; i
< ARRAY_SIZE(msrs_to_save
); i
++) {
3467 if (rdmsr_safe(msrs_to_save
[i
], &dummy
[0], &dummy
[1]) < 0)
3470 msrs_to_save
[j
] = msrs_to_save
[i
];
3473 num_msrs_to_save
= j
;
3476 static int vcpu_mmio_write(struct kvm_vcpu
*vcpu
, gpa_t addr
, int len
,
3484 if (!(vcpu
->arch
.apic
&&
3485 !kvm_iodevice_write(&vcpu
->arch
.apic
->dev
, addr
, n
, v
))
3486 && kvm_io_bus_write(vcpu
->kvm
, KVM_MMIO_BUS
, addr
, n
, v
))
3497 static int vcpu_mmio_read(struct kvm_vcpu
*vcpu
, gpa_t addr
, int len
, void *v
)
3504 if (!(vcpu
->arch
.apic
&&
3505 !kvm_iodevice_read(&vcpu
->arch
.apic
->dev
, addr
, n
, v
))
3506 && kvm_io_bus_read(vcpu
->kvm
, KVM_MMIO_BUS
, addr
, n
, v
))
3508 trace_kvm_mmio(KVM_TRACE_MMIO_READ
, n
, addr
, *(u64
*)v
);
3518 static void kvm_set_segment(struct kvm_vcpu
*vcpu
,
3519 struct kvm_segment
*var
, int seg
)
3521 kvm_x86_ops
->set_segment(vcpu
, var
, seg
);
3524 void kvm_get_segment(struct kvm_vcpu
*vcpu
,
3525 struct kvm_segment
*var
, int seg
)
3527 kvm_x86_ops
->get_segment(vcpu
, var
, seg
);
3530 gpa_t
translate_nested_gpa(struct kvm_vcpu
*vcpu
, gpa_t gpa
, u32 access
)
3533 struct x86_exception exception
;
3535 BUG_ON(!mmu_is_nested(vcpu
));
3537 /* NPT walks are always user-walks */
3538 access
|= PFERR_USER_MASK
;
3539 t_gpa
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, gpa
, access
, &exception
);
3544 gpa_t
kvm_mmu_gva_to_gpa_read(struct kvm_vcpu
*vcpu
, gva_t gva
,
3545 struct x86_exception
*exception
)
3547 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
3548 return vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, gva
, access
, exception
);
3551 gpa_t
kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu
*vcpu
, gva_t gva
,
3552 struct x86_exception
*exception
)
3554 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
3555 access
|= PFERR_FETCH_MASK
;
3556 return vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, gva
, access
, exception
);
3559 gpa_t
kvm_mmu_gva_to_gpa_write(struct kvm_vcpu
*vcpu
, gva_t gva
,
3560 struct x86_exception
*exception
)
3562 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
3563 access
|= PFERR_WRITE_MASK
;
3564 return vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, gva
, access
, exception
);
3567 /* uses this to access any guest's mapped memory without checking CPL */
3568 gpa_t
kvm_mmu_gva_to_gpa_system(struct kvm_vcpu
*vcpu
, gva_t gva
,
3569 struct x86_exception
*exception
)
3571 return vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, gva
, 0, exception
);
3574 static int kvm_read_guest_virt_helper(gva_t addr
, void *val
, unsigned int bytes
,
3575 struct kvm_vcpu
*vcpu
, u32 access
,
3576 struct x86_exception
*exception
)
3579 int r
= X86EMUL_CONTINUE
;
3582 gpa_t gpa
= vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, addr
, access
,
3584 unsigned offset
= addr
& (PAGE_SIZE
-1);
3585 unsigned toread
= min(bytes
, (unsigned)PAGE_SIZE
- offset
);
3588 if (gpa
== UNMAPPED_GVA
)
3589 return X86EMUL_PROPAGATE_FAULT
;
3590 ret
= kvm_read_guest(vcpu
->kvm
, gpa
, data
, toread
);
3592 r
= X86EMUL_IO_NEEDED
;
3604 /* used for instruction fetching */
3605 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt
*ctxt
,
3606 gva_t addr
, void *val
, unsigned int bytes
,
3607 struct x86_exception
*exception
)
3609 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
3610 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
3612 return kvm_read_guest_virt_helper(addr
, val
, bytes
, vcpu
,
3613 access
| PFERR_FETCH_MASK
,
3617 int kvm_read_guest_virt(struct x86_emulate_ctxt
*ctxt
,
3618 gva_t addr
, void *val
, unsigned int bytes
,
3619 struct x86_exception
*exception
)
3621 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
3622 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
3624 return kvm_read_guest_virt_helper(addr
, val
, bytes
, vcpu
, access
,
3627 EXPORT_SYMBOL_GPL(kvm_read_guest_virt
);
3629 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt
*ctxt
,
3630 gva_t addr
, void *val
, unsigned int bytes
,
3631 struct x86_exception
*exception
)
3633 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
3634 return kvm_read_guest_virt_helper(addr
, val
, bytes
, vcpu
, 0, exception
);
3637 int kvm_write_guest_virt_system(struct x86_emulate_ctxt
*ctxt
,
3638 gva_t addr
, void *val
,
3640 struct x86_exception
*exception
)
3642 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
3644 int r
= X86EMUL_CONTINUE
;
3647 gpa_t gpa
= vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, addr
,
3650 unsigned offset
= addr
& (PAGE_SIZE
-1);
3651 unsigned towrite
= min(bytes
, (unsigned)PAGE_SIZE
- offset
);
3654 if (gpa
== UNMAPPED_GVA
)
3655 return X86EMUL_PROPAGATE_FAULT
;
3656 ret
= kvm_write_guest(vcpu
->kvm
, gpa
, data
, towrite
);
3658 r
= X86EMUL_IO_NEEDED
;
3669 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system
);
3671 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu
*vcpu
, unsigned long gva
,
3672 gpa_t
*gpa
, struct x86_exception
*exception
,
3675 u32 access
= ((kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0)
3676 | (write
? PFERR_WRITE_MASK
: 0);
3678 if (vcpu_match_mmio_gva(vcpu
, gva
)
3679 && !permission_fault(vcpu
->arch
.walk_mmu
, vcpu
->arch
.access
, access
)) {
3680 *gpa
= vcpu
->arch
.mmio_gfn
<< PAGE_SHIFT
|
3681 (gva
& (PAGE_SIZE
- 1));
3682 trace_vcpu_match_mmio(gva
, *gpa
, write
, false);
3686 *gpa
= vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, gva
, access
, exception
);
3688 if (*gpa
== UNMAPPED_GVA
)
3691 /* For APIC access vmexit */
3692 if ((*gpa
& PAGE_MASK
) == APIC_DEFAULT_PHYS_BASE
)
3695 if (vcpu_match_mmio_gpa(vcpu
, *gpa
)) {
3696 trace_vcpu_match_mmio(gva
, *gpa
, write
, true);
3703 int emulator_write_phys(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
3704 const void *val
, int bytes
)
3708 ret
= kvm_write_guest(vcpu
->kvm
, gpa
, val
, bytes
);
3711 kvm_mmu_pte_write(vcpu
, gpa
, val
, bytes
);
3715 struct read_write_emulator_ops
{
3716 int (*read_write_prepare
)(struct kvm_vcpu
*vcpu
, void *val
,
3718 int (*read_write_emulate
)(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
3719 void *val
, int bytes
);
3720 int (*read_write_mmio
)(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
3721 int bytes
, void *val
);
3722 int (*read_write_exit_mmio
)(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
3723 void *val
, int bytes
);
3727 static int read_prepare(struct kvm_vcpu
*vcpu
, void *val
, int bytes
)
3729 if (vcpu
->mmio_read_completed
) {
3730 trace_kvm_mmio(KVM_TRACE_MMIO_READ
, bytes
,
3731 vcpu
->mmio_fragments
[0].gpa
, *(u64
*)val
);
3732 vcpu
->mmio_read_completed
= 0;
3739 static int read_emulate(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
3740 void *val
, int bytes
)
3742 return !kvm_read_guest(vcpu
->kvm
, gpa
, val
, bytes
);
3745 static int write_emulate(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
3746 void *val
, int bytes
)
3748 return emulator_write_phys(vcpu
, gpa
, val
, bytes
);
3751 static int write_mmio(struct kvm_vcpu
*vcpu
, gpa_t gpa
, int bytes
, void *val
)
3753 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE
, bytes
, gpa
, *(u64
*)val
);
3754 return vcpu_mmio_write(vcpu
, gpa
, bytes
, val
);
3757 static int read_exit_mmio(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
3758 void *val
, int bytes
)
3760 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED
, bytes
, gpa
, 0);
3761 return X86EMUL_IO_NEEDED
;
3764 static int write_exit_mmio(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
3765 void *val
, int bytes
)
3767 struct kvm_mmio_fragment
*frag
= &vcpu
->mmio_fragments
[0];
3769 memcpy(vcpu
->run
->mmio
.data
, frag
->data
, frag
->len
);
3770 return X86EMUL_CONTINUE
;
3773 static const struct read_write_emulator_ops read_emultor
= {
3774 .read_write_prepare
= read_prepare
,
3775 .read_write_emulate
= read_emulate
,
3776 .read_write_mmio
= vcpu_mmio_read
,
3777 .read_write_exit_mmio
= read_exit_mmio
,
3780 static const struct read_write_emulator_ops write_emultor
= {
3781 .read_write_emulate
= write_emulate
,
3782 .read_write_mmio
= write_mmio
,
3783 .read_write_exit_mmio
= write_exit_mmio
,
3787 static int emulator_read_write_onepage(unsigned long addr
, void *val
,
3789 struct x86_exception
*exception
,
3790 struct kvm_vcpu
*vcpu
,
3791 const struct read_write_emulator_ops
*ops
)
3795 bool write
= ops
->write
;
3796 struct kvm_mmio_fragment
*frag
;
3798 ret
= vcpu_mmio_gva_to_gpa(vcpu
, addr
, &gpa
, exception
, write
);
3801 return X86EMUL_PROPAGATE_FAULT
;
3803 /* For APIC access vmexit */
3807 if (ops
->read_write_emulate(vcpu
, gpa
, val
, bytes
))
3808 return X86EMUL_CONTINUE
;
3812 * Is this MMIO handled locally?
3814 handled
= ops
->read_write_mmio(vcpu
, gpa
, bytes
, val
);
3815 if (handled
== bytes
)
3816 return X86EMUL_CONTINUE
;
3823 unsigned now
= min(bytes
, 8U);
3825 frag
= &vcpu
->mmio_fragments
[vcpu
->mmio_nr_fragments
++];
3834 return X86EMUL_CONTINUE
;
3837 int emulator_read_write(struct x86_emulate_ctxt
*ctxt
, unsigned long addr
,
3838 void *val
, unsigned int bytes
,
3839 struct x86_exception
*exception
,
3840 const struct read_write_emulator_ops
*ops
)
3842 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
3846 if (ops
->read_write_prepare
&&
3847 ops
->read_write_prepare(vcpu
, val
, bytes
))
3848 return X86EMUL_CONTINUE
;
3850 vcpu
->mmio_nr_fragments
= 0;
3852 /* Crossing a page boundary? */
3853 if (((addr
+ bytes
- 1) ^ addr
) & PAGE_MASK
) {
3856 now
= -addr
& ~PAGE_MASK
;
3857 rc
= emulator_read_write_onepage(addr
, val
, now
, exception
,
3860 if (rc
!= X86EMUL_CONTINUE
)
3867 rc
= emulator_read_write_onepage(addr
, val
, bytes
, exception
,
3869 if (rc
!= X86EMUL_CONTINUE
)
3872 if (!vcpu
->mmio_nr_fragments
)
3875 gpa
= vcpu
->mmio_fragments
[0].gpa
;
3877 vcpu
->mmio_needed
= 1;
3878 vcpu
->mmio_cur_fragment
= 0;
3880 vcpu
->run
->mmio
.len
= vcpu
->mmio_fragments
[0].len
;
3881 vcpu
->run
->mmio
.is_write
= vcpu
->mmio_is_write
= ops
->write
;
3882 vcpu
->run
->exit_reason
= KVM_EXIT_MMIO
;
3883 vcpu
->run
->mmio
.phys_addr
= gpa
;
3885 return ops
->read_write_exit_mmio(vcpu
, gpa
, val
, bytes
);
3888 static int emulator_read_emulated(struct x86_emulate_ctxt
*ctxt
,
3892 struct x86_exception
*exception
)
3894 return emulator_read_write(ctxt
, addr
, val
, bytes
,
3895 exception
, &read_emultor
);
3898 int emulator_write_emulated(struct x86_emulate_ctxt
*ctxt
,
3902 struct x86_exception
*exception
)
3904 return emulator_read_write(ctxt
, addr
, (void *)val
, bytes
,
3905 exception
, &write_emultor
);
3908 #define CMPXCHG_TYPE(t, ptr, old, new) \
3909 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
3911 #ifdef CONFIG_X86_64
3912 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
3914 # define CMPXCHG64(ptr, old, new) \
3915 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
3918 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt
*ctxt
,
3923 struct x86_exception
*exception
)
3925 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
3931 /* guests cmpxchg8b have to be emulated atomically */
3932 if (bytes
> 8 || (bytes
& (bytes
- 1)))
3935 gpa
= kvm_mmu_gva_to_gpa_write(vcpu
, addr
, NULL
);
3937 if (gpa
== UNMAPPED_GVA
||
3938 (gpa
& PAGE_MASK
) == APIC_DEFAULT_PHYS_BASE
)
3941 if (((gpa
+ bytes
- 1) & PAGE_MASK
) != (gpa
& PAGE_MASK
))
3944 page
= gfn_to_page(vcpu
->kvm
, gpa
>> PAGE_SHIFT
);
3945 if (is_error_page(page
))
3948 kaddr
= kmap_atomic(page
);
3949 kaddr
+= offset_in_page(gpa
);
3952 exchanged
= CMPXCHG_TYPE(u8
, kaddr
, old
, new);
3955 exchanged
= CMPXCHG_TYPE(u16
, kaddr
, old
, new);
3958 exchanged
= CMPXCHG_TYPE(u32
, kaddr
, old
, new);
3961 exchanged
= CMPXCHG64(kaddr
, old
, new);
3966 kunmap_atomic(kaddr
);
3967 kvm_release_page_dirty(page
);
3970 return X86EMUL_CMPXCHG_FAILED
;
3972 kvm_mmu_pte_write(vcpu
, gpa
, new, bytes
);
3974 return X86EMUL_CONTINUE
;
3977 printk_once(KERN_WARNING
"kvm: emulating exchange as write\n");
3979 return emulator_write_emulated(ctxt
, addr
, new, bytes
, exception
);
3982 static int kernel_pio(struct kvm_vcpu
*vcpu
, void *pd
)
3984 /* TODO: String I/O for in kernel device */
3987 if (vcpu
->arch
.pio
.in
)
3988 r
= kvm_io_bus_read(vcpu
->kvm
, KVM_PIO_BUS
, vcpu
->arch
.pio
.port
,
3989 vcpu
->arch
.pio
.size
, pd
);
3991 r
= kvm_io_bus_write(vcpu
->kvm
, KVM_PIO_BUS
,
3992 vcpu
->arch
.pio
.port
, vcpu
->arch
.pio
.size
,
3997 static int emulator_pio_in_out(struct kvm_vcpu
*vcpu
, int size
,
3998 unsigned short port
, void *val
,
3999 unsigned int count
, bool in
)
4001 trace_kvm_pio(!in
, port
, size
, count
);
4003 vcpu
->arch
.pio
.port
= port
;
4004 vcpu
->arch
.pio
.in
= in
;
4005 vcpu
->arch
.pio
.count
= count
;
4006 vcpu
->arch
.pio
.size
= size
;
4008 if (!kernel_pio(vcpu
, vcpu
->arch
.pio_data
)) {
4009 vcpu
->arch
.pio
.count
= 0;
4013 vcpu
->run
->exit_reason
= KVM_EXIT_IO
;
4014 vcpu
->run
->io
.direction
= in
? KVM_EXIT_IO_IN
: KVM_EXIT_IO_OUT
;
4015 vcpu
->run
->io
.size
= size
;
4016 vcpu
->run
->io
.data_offset
= KVM_PIO_PAGE_OFFSET
* PAGE_SIZE
;
4017 vcpu
->run
->io
.count
= count
;
4018 vcpu
->run
->io
.port
= port
;
4023 static int emulator_pio_in_emulated(struct x86_emulate_ctxt
*ctxt
,
4024 int size
, unsigned short port
, void *val
,
4027 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4030 if (vcpu
->arch
.pio
.count
)
4033 ret
= emulator_pio_in_out(vcpu
, size
, port
, val
, count
, true);
4036 memcpy(val
, vcpu
->arch
.pio_data
, size
* count
);
4037 vcpu
->arch
.pio
.count
= 0;
4044 static int emulator_pio_out_emulated(struct x86_emulate_ctxt
*ctxt
,
4045 int size
, unsigned short port
,
4046 const void *val
, unsigned int count
)
4048 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4050 memcpy(vcpu
->arch
.pio_data
, val
, size
* count
);
4051 return emulator_pio_in_out(vcpu
, size
, port
, (void *)val
, count
, false);
4054 static unsigned long get_segment_base(struct kvm_vcpu
*vcpu
, int seg
)
4056 return kvm_x86_ops
->get_segment_base(vcpu
, seg
);
4059 static void emulator_invlpg(struct x86_emulate_ctxt
*ctxt
, ulong address
)
4061 kvm_mmu_invlpg(emul_to_vcpu(ctxt
), address
);
4064 int kvm_emulate_wbinvd(struct kvm_vcpu
*vcpu
)
4066 if (!need_emulate_wbinvd(vcpu
))
4067 return X86EMUL_CONTINUE
;
4069 if (kvm_x86_ops
->has_wbinvd_exit()) {
4070 int cpu
= get_cpu();
4072 cpumask_set_cpu(cpu
, vcpu
->arch
.wbinvd_dirty_mask
);
4073 smp_call_function_many(vcpu
->arch
.wbinvd_dirty_mask
,
4074 wbinvd_ipi
, NULL
, 1);
4076 cpumask_clear(vcpu
->arch
.wbinvd_dirty_mask
);
4079 return X86EMUL_CONTINUE
;
4081 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd
);
4083 static void emulator_wbinvd(struct x86_emulate_ctxt
*ctxt
)
4085 kvm_emulate_wbinvd(emul_to_vcpu(ctxt
));
4088 int emulator_get_dr(struct x86_emulate_ctxt
*ctxt
, int dr
, unsigned long *dest
)
4090 return _kvm_get_dr(emul_to_vcpu(ctxt
), dr
, dest
);
4093 int emulator_set_dr(struct x86_emulate_ctxt
*ctxt
, int dr
, unsigned long value
)
4096 return __kvm_set_dr(emul_to_vcpu(ctxt
), dr
, value
);
4099 static u64
mk_cr_64(u64 curr_cr
, u32 new_val
)
4101 return (curr_cr
& ~((1ULL << 32) - 1)) | new_val
;
4104 static unsigned long emulator_get_cr(struct x86_emulate_ctxt
*ctxt
, int cr
)
4106 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4107 unsigned long value
;
4111 value
= kvm_read_cr0(vcpu
);
4114 value
= vcpu
->arch
.cr2
;
4117 value
= kvm_read_cr3(vcpu
);
4120 value
= kvm_read_cr4(vcpu
);
4123 value
= kvm_get_cr8(vcpu
);
4126 kvm_err("%s: unexpected cr %u\n", __func__
, cr
);
4133 static int emulator_set_cr(struct x86_emulate_ctxt
*ctxt
, int cr
, ulong val
)
4135 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4140 res
= kvm_set_cr0(vcpu
, mk_cr_64(kvm_read_cr0(vcpu
), val
));
4143 vcpu
->arch
.cr2
= val
;
4146 res
= kvm_set_cr3(vcpu
, val
);
4149 res
= kvm_set_cr4(vcpu
, mk_cr_64(kvm_read_cr4(vcpu
), val
));
4152 res
= kvm_set_cr8(vcpu
, val
);
4155 kvm_err("%s: unexpected cr %u\n", __func__
, cr
);
4162 static void emulator_set_rflags(struct x86_emulate_ctxt
*ctxt
, ulong val
)
4164 kvm_set_rflags(emul_to_vcpu(ctxt
), val
);
4167 static int emulator_get_cpl(struct x86_emulate_ctxt
*ctxt
)
4169 return kvm_x86_ops
->get_cpl(emul_to_vcpu(ctxt
));
4172 static void emulator_get_gdt(struct x86_emulate_ctxt
*ctxt
, struct desc_ptr
*dt
)
4174 kvm_x86_ops
->get_gdt(emul_to_vcpu(ctxt
), dt
);
4177 static void emulator_get_idt(struct x86_emulate_ctxt
*ctxt
, struct desc_ptr
*dt
)
4179 kvm_x86_ops
->get_idt(emul_to_vcpu(ctxt
), dt
);
4182 static void emulator_set_gdt(struct x86_emulate_ctxt
*ctxt
, struct desc_ptr
*dt
)
4184 kvm_x86_ops
->set_gdt(emul_to_vcpu(ctxt
), dt
);
4187 static void emulator_set_idt(struct x86_emulate_ctxt
*ctxt
, struct desc_ptr
*dt
)
4189 kvm_x86_ops
->set_idt(emul_to_vcpu(ctxt
), dt
);
4192 static unsigned long emulator_get_cached_segment_base(
4193 struct x86_emulate_ctxt
*ctxt
, int seg
)
4195 return get_segment_base(emul_to_vcpu(ctxt
), seg
);
4198 static bool emulator_get_segment(struct x86_emulate_ctxt
*ctxt
, u16
*selector
,
4199 struct desc_struct
*desc
, u32
*base3
,
4202 struct kvm_segment var
;
4204 kvm_get_segment(emul_to_vcpu(ctxt
), &var
, seg
);
4205 *selector
= var
.selector
;
4212 set_desc_limit(desc
, var
.limit
);
4213 set_desc_base(desc
, (unsigned long)var
.base
);
4214 #ifdef CONFIG_X86_64
4216 *base3
= var
.base
>> 32;
4218 desc
->type
= var
.type
;
4220 desc
->dpl
= var
.dpl
;
4221 desc
->p
= var
.present
;
4222 desc
->avl
= var
.avl
;
4230 static void emulator_set_segment(struct x86_emulate_ctxt
*ctxt
, u16 selector
,
4231 struct desc_struct
*desc
, u32 base3
,
4234 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4235 struct kvm_segment var
;
4237 var
.selector
= selector
;
4238 var
.base
= get_desc_base(desc
);
4239 #ifdef CONFIG_X86_64
4240 var
.base
|= ((u64
)base3
) << 32;
4242 var
.limit
= get_desc_limit(desc
);
4244 var
.limit
= (var
.limit
<< 12) | 0xfff;
4245 var
.type
= desc
->type
;
4246 var
.present
= desc
->p
;
4247 var
.dpl
= desc
->dpl
;
4252 var
.avl
= desc
->avl
;
4253 var
.present
= desc
->p
;
4254 var
.unusable
= !var
.present
;
4257 kvm_set_segment(vcpu
, &var
, seg
);
4261 static int emulator_get_msr(struct x86_emulate_ctxt
*ctxt
,
4262 u32 msr_index
, u64
*pdata
)
4264 return kvm_get_msr(emul_to_vcpu(ctxt
), msr_index
, pdata
);
4267 static int emulator_set_msr(struct x86_emulate_ctxt
*ctxt
,
4268 u32 msr_index
, u64 data
)
4270 return kvm_set_msr(emul_to_vcpu(ctxt
), msr_index
, data
);
4273 static int emulator_read_pmc(struct x86_emulate_ctxt
*ctxt
,
4274 u32 pmc
, u64
*pdata
)
4276 return kvm_pmu_read_pmc(emul_to_vcpu(ctxt
), pmc
, pdata
);
4279 static void emulator_halt(struct x86_emulate_ctxt
*ctxt
)
4281 emul_to_vcpu(ctxt
)->arch
.halt_request
= 1;
4284 static void emulator_get_fpu(struct x86_emulate_ctxt
*ctxt
)
4287 kvm_load_guest_fpu(emul_to_vcpu(ctxt
));
4289 * CR0.TS may reference the host fpu state, not the guest fpu state,
4290 * so it may be clear at this point.
4295 static void emulator_put_fpu(struct x86_emulate_ctxt
*ctxt
)
4300 static int emulator_intercept(struct x86_emulate_ctxt
*ctxt
,
4301 struct x86_instruction_info
*info
,
4302 enum x86_intercept_stage stage
)
4304 return kvm_x86_ops
->check_intercept(emul_to_vcpu(ctxt
), info
, stage
);
4307 static void emulator_get_cpuid(struct x86_emulate_ctxt
*ctxt
,
4308 u32
*eax
, u32
*ebx
, u32
*ecx
, u32
*edx
)
4310 kvm_cpuid(emul_to_vcpu(ctxt
), eax
, ebx
, ecx
, edx
);
4313 static ulong
emulator_read_gpr(struct x86_emulate_ctxt
*ctxt
, unsigned reg
)
4315 return kvm_register_read(emul_to_vcpu(ctxt
), reg
);
4318 static void emulator_write_gpr(struct x86_emulate_ctxt
*ctxt
, unsigned reg
, ulong val
)
4320 kvm_register_write(emul_to_vcpu(ctxt
), reg
, val
);
4323 static const struct x86_emulate_ops emulate_ops
= {
4324 .read_gpr
= emulator_read_gpr
,
4325 .write_gpr
= emulator_write_gpr
,
4326 .read_std
= kvm_read_guest_virt_system
,
4327 .write_std
= kvm_write_guest_virt_system
,
4328 .fetch
= kvm_fetch_guest_virt
,
4329 .read_emulated
= emulator_read_emulated
,
4330 .write_emulated
= emulator_write_emulated
,
4331 .cmpxchg_emulated
= emulator_cmpxchg_emulated
,
4332 .invlpg
= emulator_invlpg
,
4333 .pio_in_emulated
= emulator_pio_in_emulated
,
4334 .pio_out_emulated
= emulator_pio_out_emulated
,
4335 .get_segment
= emulator_get_segment
,
4336 .set_segment
= emulator_set_segment
,
4337 .get_cached_segment_base
= emulator_get_cached_segment_base
,
4338 .get_gdt
= emulator_get_gdt
,
4339 .get_idt
= emulator_get_idt
,
4340 .set_gdt
= emulator_set_gdt
,
4341 .set_idt
= emulator_set_idt
,
4342 .get_cr
= emulator_get_cr
,
4343 .set_cr
= emulator_set_cr
,
4344 .set_rflags
= emulator_set_rflags
,
4345 .cpl
= emulator_get_cpl
,
4346 .get_dr
= emulator_get_dr
,
4347 .set_dr
= emulator_set_dr
,
4348 .set_msr
= emulator_set_msr
,
4349 .get_msr
= emulator_get_msr
,
4350 .read_pmc
= emulator_read_pmc
,
4351 .halt
= emulator_halt
,
4352 .wbinvd
= emulator_wbinvd
,
4353 .fix_hypercall
= emulator_fix_hypercall
,
4354 .get_fpu
= emulator_get_fpu
,
4355 .put_fpu
= emulator_put_fpu
,
4356 .intercept
= emulator_intercept
,
4357 .get_cpuid
= emulator_get_cpuid
,
4360 static void toggle_interruptibility(struct kvm_vcpu
*vcpu
, u32 mask
)
4362 u32 int_shadow
= kvm_x86_ops
->get_interrupt_shadow(vcpu
, mask
);
4364 * an sti; sti; sequence only disable interrupts for the first
4365 * instruction. So, if the last instruction, be it emulated or
4366 * not, left the system with the INT_STI flag enabled, it
4367 * means that the last instruction is an sti. We should not
4368 * leave the flag on in this case. The same goes for mov ss
4370 if (!(int_shadow
& mask
))
4371 kvm_x86_ops
->set_interrupt_shadow(vcpu
, mask
);
4374 static void inject_emulated_exception(struct kvm_vcpu
*vcpu
)
4376 struct x86_emulate_ctxt
*ctxt
= &vcpu
->arch
.emulate_ctxt
;
4377 if (ctxt
->exception
.vector
== PF_VECTOR
)
4378 kvm_propagate_fault(vcpu
, &ctxt
->exception
);
4379 else if (ctxt
->exception
.error_code_valid
)
4380 kvm_queue_exception_e(vcpu
, ctxt
->exception
.vector
,
4381 ctxt
->exception
.error_code
);
4383 kvm_queue_exception(vcpu
, ctxt
->exception
.vector
);
4386 static void init_decode_cache(struct x86_emulate_ctxt
*ctxt
)
4388 memset(&ctxt
->twobyte
, 0,
4389 (void *)&ctxt
->_regs
- (void *)&ctxt
->twobyte
);
4391 ctxt
->fetch
.start
= 0;
4392 ctxt
->fetch
.end
= 0;
4393 ctxt
->io_read
.pos
= 0;
4394 ctxt
->io_read
.end
= 0;
4395 ctxt
->mem_read
.pos
= 0;
4396 ctxt
->mem_read
.end
= 0;
4399 static void init_emulate_ctxt(struct kvm_vcpu
*vcpu
)
4401 struct x86_emulate_ctxt
*ctxt
= &vcpu
->arch
.emulate_ctxt
;
4404 kvm_x86_ops
->get_cs_db_l_bits(vcpu
, &cs_db
, &cs_l
);
4406 ctxt
->eflags
= kvm_get_rflags(vcpu
);
4407 ctxt
->eip
= kvm_rip_read(vcpu
);
4408 ctxt
->mode
= (!is_protmode(vcpu
)) ? X86EMUL_MODE_REAL
:
4409 (ctxt
->eflags
& X86_EFLAGS_VM
) ? X86EMUL_MODE_VM86
:
4410 cs_l
? X86EMUL_MODE_PROT64
:
4411 cs_db
? X86EMUL_MODE_PROT32
:
4412 X86EMUL_MODE_PROT16
;
4413 ctxt
->guest_mode
= is_guest_mode(vcpu
);
4415 init_decode_cache(ctxt
);
4416 vcpu
->arch
.emulate_regs_need_sync_from_vcpu
= false;
4419 int kvm_inject_realmode_interrupt(struct kvm_vcpu
*vcpu
, int irq
, int inc_eip
)
4421 struct x86_emulate_ctxt
*ctxt
= &vcpu
->arch
.emulate_ctxt
;
4424 init_emulate_ctxt(vcpu
);
4428 ctxt
->_eip
= ctxt
->eip
+ inc_eip
;
4429 ret
= emulate_int_real(ctxt
, irq
);
4431 if (ret
!= X86EMUL_CONTINUE
)
4432 return EMULATE_FAIL
;
4434 ctxt
->eip
= ctxt
->_eip
;
4435 kvm_rip_write(vcpu
, ctxt
->eip
);
4436 kvm_set_rflags(vcpu
, ctxt
->eflags
);
4438 if (irq
== NMI_VECTOR
)
4439 vcpu
->arch
.nmi_pending
= 0;
4441 vcpu
->arch
.interrupt
.pending
= false;
4443 return EMULATE_DONE
;
4445 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt
);
4447 static int handle_emulation_failure(struct kvm_vcpu
*vcpu
)
4449 int r
= EMULATE_DONE
;
4451 ++vcpu
->stat
.insn_emulation_fail
;
4452 trace_kvm_emulate_insn_failed(vcpu
);
4453 if (!is_guest_mode(vcpu
)) {
4454 vcpu
->run
->exit_reason
= KVM_EXIT_INTERNAL_ERROR
;
4455 vcpu
->run
->internal
.suberror
= KVM_INTERNAL_ERROR_EMULATION
;
4456 vcpu
->run
->internal
.ndata
= 0;
4459 kvm_queue_exception(vcpu
, UD_VECTOR
);
4464 static bool reexecute_instruction(struct kvm_vcpu
*vcpu
, gva_t gva
)
4473 * if emulation was due to access to shadowed page table
4474 * and it failed try to unshadow page and re-enter the
4475 * guest to let CPU execute the instruction.
4477 if (kvm_mmu_unprotect_page_virt(vcpu
, gva
))
4480 gpa
= kvm_mmu_gva_to_gpa_system(vcpu
, gva
, NULL
);
4482 if (gpa
== UNMAPPED_GVA
)
4483 return true; /* let cpu generate fault */
4486 * Do not retry the unhandleable instruction if it faults on the
4487 * readonly host memory, otherwise it will goto a infinite loop:
4488 * retry instruction -> write #PF -> emulation fail -> retry
4489 * instruction -> ...
4491 pfn
= gfn_to_pfn(vcpu
->kvm
, gpa_to_gfn(gpa
));
4492 if (!is_error_pfn(pfn
)) {
4493 kvm_release_pfn_clean(pfn
);
4500 static bool retry_instruction(struct x86_emulate_ctxt
*ctxt
,
4501 unsigned long cr2
, int emulation_type
)
4503 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4504 unsigned long last_retry_eip
, last_retry_addr
, gpa
= cr2
;
4506 last_retry_eip
= vcpu
->arch
.last_retry_eip
;
4507 last_retry_addr
= vcpu
->arch
.last_retry_addr
;
4510 * If the emulation is caused by #PF and it is non-page_table
4511 * writing instruction, it means the VM-EXIT is caused by shadow
4512 * page protected, we can zap the shadow page and retry this
4513 * instruction directly.
4515 * Note: if the guest uses a non-page-table modifying instruction
4516 * on the PDE that points to the instruction, then we will unmap
4517 * the instruction and go to an infinite loop. So, we cache the
4518 * last retried eip and the last fault address, if we meet the eip
4519 * and the address again, we can break out of the potential infinite
4522 vcpu
->arch
.last_retry_eip
= vcpu
->arch
.last_retry_addr
= 0;
4524 if (!(emulation_type
& EMULTYPE_RETRY
))
4527 if (x86_page_table_writing_insn(ctxt
))
4530 if (ctxt
->eip
== last_retry_eip
&& last_retry_addr
== cr2
)
4533 vcpu
->arch
.last_retry_eip
= ctxt
->eip
;
4534 vcpu
->arch
.last_retry_addr
= cr2
;
4536 if (!vcpu
->arch
.mmu
.direct_map
)
4537 gpa
= kvm_mmu_gva_to_gpa_write(vcpu
, cr2
, NULL
);
4539 kvm_mmu_unprotect_page(vcpu
->kvm
, gpa
>> PAGE_SHIFT
);
4544 static int complete_emulated_mmio(struct kvm_vcpu
*vcpu
);
4545 static int complete_emulated_pio(struct kvm_vcpu
*vcpu
);
4547 int x86_emulate_instruction(struct kvm_vcpu
*vcpu
,
4554 struct x86_emulate_ctxt
*ctxt
= &vcpu
->arch
.emulate_ctxt
;
4555 bool writeback
= true;
4557 kvm_clear_exception_queue(vcpu
);
4559 if (!(emulation_type
& EMULTYPE_NO_DECODE
)) {
4560 init_emulate_ctxt(vcpu
);
4561 ctxt
->interruptibility
= 0;
4562 ctxt
->have_exception
= false;
4563 ctxt
->perm_ok
= false;
4565 ctxt
->only_vendor_specific_insn
4566 = emulation_type
& EMULTYPE_TRAP_UD
;
4568 r
= x86_decode_insn(ctxt
, insn
, insn_len
);
4570 trace_kvm_emulate_insn_start(vcpu
);
4571 ++vcpu
->stat
.insn_emulation
;
4572 if (r
!= EMULATION_OK
) {
4573 if (emulation_type
& EMULTYPE_TRAP_UD
)
4574 return EMULATE_FAIL
;
4575 if (reexecute_instruction(vcpu
, cr2
))
4576 return EMULATE_DONE
;
4577 if (emulation_type
& EMULTYPE_SKIP
)
4578 return EMULATE_FAIL
;
4579 return handle_emulation_failure(vcpu
);
4583 if (emulation_type
& EMULTYPE_SKIP
) {
4584 kvm_rip_write(vcpu
, ctxt
->_eip
);
4585 return EMULATE_DONE
;
4588 if (retry_instruction(ctxt
, cr2
, emulation_type
))
4589 return EMULATE_DONE
;
4591 /* this is needed for vmware backdoor interface to work since it
4592 changes registers values during IO operation */
4593 if (vcpu
->arch
.emulate_regs_need_sync_from_vcpu
) {
4594 vcpu
->arch
.emulate_regs_need_sync_from_vcpu
= false;
4595 emulator_invalidate_register_cache(ctxt
);
4599 r
= x86_emulate_insn(ctxt
);
4601 if (r
== EMULATION_INTERCEPTED
)
4602 return EMULATE_DONE
;
4604 if (r
== EMULATION_FAILED
) {
4605 if (reexecute_instruction(vcpu
, cr2
))
4606 return EMULATE_DONE
;
4608 return handle_emulation_failure(vcpu
);
4611 if (ctxt
->have_exception
) {
4612 inject_emulated_exception(vcpu
);
4614 } else if (vcpu
->arch
.pio
.count
) {
4615 if (!vcpu
->arch
.pio
.in
)
4616 vcpu
->arch
.pio
.count
= 0;
4619 vcpu
->arch
.complete_userspace_io
= complete_emulated_pio
;
4621 r
= EMULATE_DO_MMIO
;
4622 } else if (vcpu
->mmio_needed
) {
4623 if (!vcpu
->mmio_is_write
)
4625 r
= EMULATE_DO_MMIO
;
4626 vcpu
->arch
.complete_userspace_io
= complete_emulated_mmio
;
4627 } else if (r
== EMULATION_RESTART
)
4633 toggle_interruptibility(vcpu
, ctxt
->interruptibility
);
4634 kvm_set_rflags(vcpu
, ctxt
->eflags
);
4635 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
4636 vcpu
->arch
.emulate_regs_need_sync_to_vcpu
= false;
4637 kvm_rip_write(vcpu
, ctxt
->eip
);
4639 vcpu
->arch
.emulate_regs_need_sync_to_vcpu
= true;
4643 EXPORT_SYMBOL_GPL(x86_emulate_instruction
);
4645 int kvm_fast_pio_out(struct kvm_vcpu
*vcpu
, int size
, unsigned short port
)
4647 unsigned long val
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
4648 int ret
= emulator_pio_out_emulated(&vcpu
->arch
.emulate_ctxt
,
4649 size
, port
, &val
, 1);
4650 /* do not return to emulator after return from userspace */
4651 vcpu
->arch
.pio
.count
= 0;
4654 EXPORT_SYMBOL_GPL(kvm_fast_pio_out
);
4656 static void tsc_bad(void *info
)
4658 __this_cpu_write(cpu_tsc_khz
, 0);
4661 static void tsc_khz_changed(void *data
)
4663 struct cpufreq_freqs
*freq
= data
;
4664 unsigned long khz
= 0;
4668 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC
))
4669 khz
= cpufreq_quick_get(raw_smp_processor_id());
4672 __this_cpu_write(cpu_tsc_khz
, khz
);
4675 static int kvmclock_cpufreq_notifier(struct notifier_block
*nb
, unsigned long val
,
4678 struct cpufreq_freqs
*freq
= data
;
4680 struct kvm_vcpu
*vcpu
;
4681 int i
, send_ipi
= 0;
4684 * We allow guests to temporarily run on slowing clocks,
4685 * provided we notify them after, or to run on accelerating
4686 * clocks, provided we notify them before. Thus time never
4689 * However, we have a problem. We can't atomically update
4690 * the frequency of a given CPU from this function; it is
4691 * merely a notifier, which can be called from any CPU.
4692 * Changing the TSC frequency at arbitrary points in time
4693 * requires a recomputation of local variables related to
4694 * the TSC for each VCPU. We must flag these local variables
4695 * to be updated and be sure the update takes place with the
4696 * new frequency before any guests proceed.
4698 * Unfortunately, the combination of hotplug CPU and frequency
4699 * change creates an intractable locking scenario; the order
4700 * of when these callouts happen is undefined with respect to
4701 * CPU hotplug, and they can race with each other. As such,
4702 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
4703 * undefined; you can actually have a CPU frequency change take
4704 * place in between the computation of X and the setting of the
4705 * variable. To protect against this problem, all updates of
4706 * the per_cpu tsc_khz variable are done in an interrupt
4707 * protected IPI, and all callers wishing to update the value
4708 * must wait for a synchronous IPI to complete (which is trivial
4709 * if the caller is on the CPU already). This establishes the
4710 * necessary total order on variable updates.
4712 * Note that because a guest time update may take place
4713 * anytime after the setting of the VCPU's request bit, the
4714 * correct TSC value must be set before the request. However,
4715 * to ensure the update actually makes it to any guest which
4716 * starts running in hardware virtualization between the set
4717 * and the acquisition of the spinlock, we must also ping the
4718 * CPU after setting the request bit.
4722 if (val
== CPUFREQ_PRECHANGE
&& freq
->old
> freq
->new)
4724 if (val
== CPUFREQ_POSTCHANGE
&& freq
->old
< freq
->new)
4727 smp_call_function_single(freq
->cpu
, tsc_khz_changed
, freq
, 1);
4729 raw_spin_lock(&kvm_lock
);
4730 list_for_each_entry(kvm
, &vm_list
, vm_list
) {
4731 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
4732 if (vcpu
->cpu
!= freq
->cpu
)
4734 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
4735 if (vcpu
->cpu
!= smp_processor_id())
4739 raw_spin_unlock(&kvm_lock
);
4741 if (freq
->old
< freq
->new && send_ipi
) {
4743 * We upscale the frequency. Must make the guest
4744 * doesn't see old kvmclock values while running with
4745 * the new frequency, otherwise we risk the guest sees
4746 * time go backwards.
4748 * In case we update the frequency for another cpu
4749 * (which might be in guest context) send an interrupt
4750 * to kick the cpu out of guest context. Next time
4751 * guest context is entered kvmclock will be updated,
4752 * so the guest will not see stale values.
4754 smp_call_function_single(freq
->cpu
, tsc_khz_changed
, freq
, 1);
4759 static struct notifier_block kvmclock_cpufreq_notifier_block
= {
4760 .notifier_call
= kvmclock_cpufreq_notifier
4763 static int kvmclock_cpu_notifier(struct notifier_block
*nfb
,
4764 unsigned long action
, void *hcpu
)
4766 unsigned int cpu
= (unsigned long)hcpu
;
4770 case CPU_DOWN_FAILED
:
4771 smp_call_function_single(cpu
, tsc_khz_changed
, NULL
, 1);
4773 case CPU_DOWN_PREPARE
:
4774 smp_call_function_single(cpu
, tsc_bad
, NULL
, 1);
4780 static struct notifier_block kvmclock_cpu_notifier_block
= {
4781 .notifier_call
= kvmclock_cpu_notifier
,
4782 .priority
= -INT_MAX
4785 static void kvm_timer_init(void)
4789 max_tsc_khz
= tsc_khz
;
4790 register_hotcpu_notifier(&kvmclock_cpu_notifier_block
);
4791 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC
)) {
4792 #ifdef CONFIG_CPU_FREQ
4793 struct cpufreq_policy policy
;
4794 memset(&policy
, 0, sizeof(policy
));
4796 cpufreq_get_policy(&policy
, cpu
);
4797 if (policy
.cpuinfo
.max_freq
)
4798 max_tsc_khz
= policy
.cpuinfo
.max_freq
;
4801 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block
,
4802 CPUFREQ_TRANSITION_NOTIFIER
);
4804 pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz
);
4805 for_each_online_cpu(cpu
)
4806 smp_call_function_single(cpu
, tsc_khz_changed
, NULL
, 1);
4809 static DEFINE_PER_CPU(struct kvm_vcpu
*, current_vcpu
);
4811 int kvm_is_in_guest(void)
4813 return __this_cpu_read(current_vcpu
) != NULL
;
4816 static int kvm_is_user_mode(void)
4820 if (__this_cpu_read(current_vcpu
))
4821 user_mode
= kvm_x86_ops
->get_cpl(__this_cpu_read(current_vcpu
));
4823 return user_mode
!= 0;
4826 static unsigned long kvm_get_guest_ip(void)
4828 unsigned long ip
= 0;
4830 if (__this_cpu_read(current_vcpu
))
4831 ip
= kvm_rip_read(__this_cpu_read(current_vcpu
));
4836 static struct perf_guest_info_callbacks kvm_guest_cbs
= {
4837 .is_in_guest
= kvm_is_in_guest
,
4838 .is_user_mode
= kvm_is_user_mode
,
4839 .get_guest_ip
= kvm_get_guest_ip
,
4842 void kvm_before_handle_nmi(struct kvm_vcpu
*vcpu
)
4844 __this_cpu_write(current_vcpu
, vcpu
);
4846 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi
);
4848 void kvm_after_handle_nmi(struct kvm_vcpu
*vcpu
)
4850 __this_cpu_write(current_vcpu
, NULL
);
4852 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi
);
4854 static void kvm_set_mmio_spte_mask(void)
4857 int maxphyaddr
= boot_cpu_data
.x86_phys_bits
;
4860 * Set the reserved bits and the present bit of an paging-structure
4861 * entry to generate page fault with PFER.RSV = 1.
4863 mask
= ((1ull << (62 - maxphyaddr
+ 1)) - 1) << maxphyaddr
;
4866 #ifdef CONFIG_X86_64
4868 * If reserved bit is not supported, clear the present bit to disable
4871 if (maxphyaddr
== 52)
4875 kvm_mmu_set_mmio_spte_mask(mask
);
4878 int kvm_arch_init(void *opaque
)
4881 struct kvm_x86_ops
*ops
= (struct kvm_x86_ops
*)opaque
;
4884 printk(KERN_ERR
"kvm: already loaded the other module\n");
4889 if (!ops
->cpu_has_kvm_support()) {
4890 printk(KERN_ERR
"kvm: no hardware support\n");
4894 if (ops
->disabled_by_bios()) {
4895 printk(KERN_ERR
"kvm: disabled by bios\n");
4900 r
= kvm_mmu_module_init();
4904 kvm_set_mmio_spte_mask();
4905 kvm_init_msr_list();
4908 kvm_mmu_set_mask_ptes(PT_USER_MASK
, PT_ACCESSED_MASK
,
4909 PT_DIRTY_MASK
, PT64_NX_MASK
, 0);
4913 perf_register_guest_info_callbacks(&kvm_guest_cbs
);
4916 host_xcr0
= xgetbv(XCR_XFEATURE_ENABLED_MASK
);
4925 void kvm_arch_exit(void)
4927 perf_unregister_guest_info_callbacks(&kvm_guest_cbs
);
4929 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC
))
4930 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block
,
4931 CPUFREQ_TRANSITION_NOTIFIER
);
4932 unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block
);
4934 kvm_mmu_module_exit();
4937 int kvm_emulate_halt(struct kvm_vcpu
*vcpu
)
4939 ++vcpu
->stat
.halt_exits
;
4940 if (irqchip_in_kernel(vcpu
->kvm
)) {
4941 vcpu
->arch
.mp_state
= KVM_MP_STATE_HALTED
;
4944 vcpu
->run
->exit_reason
= KVM_EXIT_HLT
;
4948 EXPORT_SYMBOL_GPL(kvm_emulate_halt
);
4950 int kvm_hv_hypercall(struct kvm_vcpu
*vcpu
)
4952 u64 param
, ingpa
, outgpa
, ret
;
4953 uint16_t code
, rep_idx
, rep_cnt
, res
= HV_STATUS_SUCCESS
, rep_done
= 0;
4954 bool fast
, longmode
;
4958 * hypercall generates UD from non zero cpl and real mode
4961 if (kvm_x86_ops
->get_cpl(vcpu
) != 0 || !is_protmode(vcpu
)) {
4962 kvm_queue_exception(vcpu
, UD_VECTOR
);
4966 kvm_x86_ops
->get_cs_db_l_bits(vcpu
, &cs_db
, &cs_l
);
4967 longmode
= is_long_mode(vcpu
) && cs_l
== 1;
4970 param
= ((u64
)kvm_register_read(vcpu
, VCPU_REGS_RDX
) << 32) |
4971 (kvm_register_read(vcpu
, VCPU_REGS_RAX
) & 0xffffffff);
4972 ingpa
= ((u64
)kvm_register_read(vcpu
, VCPU_REGS_RBX
) << 32) |
4973 (kvm_register_read(vcpu
, VCPU_REGS_RCX
) & 0xffffffff);
4974 outgpa
= ((u64
)kvm_register_read(vcpu
, VCPU_REGS_RDI
) << 32) |
4975 (kvm_register_read(vcpu
, VCPU_REGS_RSI
) & 0xffffffff);
4977 #ifdef CONFIG_X86_64
4979 param
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
4980 ingpa
= kvm_register_read(vcpu
, VCPU_REGS_RDX
);
4981 outgpa
= kvm_register_read(vcpu
, VCPU_REGS_R8
);
4985 code
= param
& 0xffff;
4986 fast
= (param
>> 16) & 0x1;
4987 rep_cnt
= (param
>> 32) & 0xfff;
4988 rep_idx
= (param
>> 48) & 0xfff;
4990 trace_kvm_hv_hypercall(code
, fast
, rep_cnt
, rep_idx
, ingpa
, outgpa
);
4993 case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT
:
4994 kvm_vcpu_on_spin(vcpu
);
4997 res
= HV_STATUS_INVALID_HYPERCALL_CODE
;
5001 ret
= res
| (((u64
)rep_done
& 0xfff) << 32);
5003 kvm_register_write(vcpu
, VCPU_REGS_RAX
, ret
);
5005 kvm_register_write(vcpu
, VCPU_REGS_RDX
, ret
>> 32);
5006 kvm_register_write(vcpu
, VCPU_REGS_RAX
, ret
& 0xffffffff);
5012 int kvm_emulate_hypercall(struct kvm_vcpu
*vcpu
)
5014 unsigned long nr
, a0
, a1
, a2
, a3
, ret
;
5017 if (kvm_hv_hypercall_enabled(vcpu
->kvm
))
5018 return kvm_hv_hypercall(vcpu
);
5020 nr
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
5021 a0
= kvm_register_read(vcpu
, VCPU_REGS_RBX
);
5022 a1
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
5023 a2
= kvm_register_read(vcpu
, VCPU_REGS_RDX
);
5024 a3
= kvm_register_read(vcpu
, VCPU_REGS_RSI
);
5026 trace_kvm_hypercall(nr
, a0
, a1
, a2
, a3
);
5028 if (!is_long_mode(vcpu
)) {
5036 if (kvm_x86_ops
->get_cpl(vcpu
) != 0) {
5042 case KVM_HC_VAPIC_POLL_IRQ
:
5050 kvm_register_write(vcpu
, VCPU_REGS_RAX
, ret
);
5051 ++vcpu
->stat
.hypercalls
;
5054 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall
);
5056 int emulator_fix_hypercall(struct x86_emulate_ctxt
*ctxt
)
5058 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
5059 char instruction
[3];
5060 unsigned long rip
= kvm_rip_read(vcpu
);
5063 * Blow out the MMU to ensure that no other VCPU has an active mapping
5064 * to ensure that the updated hypercall appears atomically across all
5067 kvm_mmu_zap_all(vcpu
->kvm
);
5069 kvm_x86_ops
->patch_hypercall(vcpu
, instruction
);
5071 return emulator_write_emulated(ctxt
, rip
, instruction
, 3, NULL
);
5075 * Check if userspace requested an interrupt window, and that the
5076 * interrupt window is open.
5078 * No need to exit to userspace if we already have an interrupt queued.
5080 static int dm_request_for_irq_injection(struct kvm_vcpu
*vcpu
)
5082 return (!irqchip_in_kernel(vcpu
->kvm
) && !kvm_cpu_has_interrupt(vcpu
) &&
5083 vcpu
->run
->request_interrupt_window
&&
5084 kvm_arch_interrupt_allowed(vcpu
));
5087 static void post_kvm_run_save(struct kvm_vcpu
*vcpu
)
5089 struct kvm_run
*kvm_run
= vcpu
->run
;
5091 kvm_run
->if_flag
= (kvm_get_rflags(vcpu
) & X86_EFLAGS_IF
) != 0;
5092 kvm_run
->cr8
= kvm_get_cr8(vcpu
);
5093 kvm_run
->apic_base
= kvm_get_apic_base(vcpu
);
5094 if (irqchip_in_kernel(vcpu
->kvm
))
5095 kvm_run
->ready_for_interrupt_injection
= 1;
5097 kvm_run
->ready_for_interrupt_injection
=
5098 kvm_arch_interrupt_allowed(vcpu
) &&
5099 !kvm_cpu_has_interrupt(vcpu
) &&
5100 !kvm_event_needs_reinjection(vcpu
);
5103 static void vapic_enter(struct kvm_vcpu
*vcpu
)
5105 struct kvm_lapic
*apic
= vcpu
->arch
.apic
;
5108 if (!apic
|| !apic
->vapic_addr
)
5111 page
= gfn_to_page(vcpu
->kvm
, apic
->vapic_addr
>> PAGE_SHIFT
);
5113 vcpu
->arch
.apic
->vapic_page
= page
;
5116 static void vapic_exit(struct kvm_vcpu
*vcpu
)
5118 struct kvm_lapic
*apic
= vcpu
->arch
.apic
;
5121 if (!apic
|| !apic
->vapic_addr
)
5124 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
5125 kvm_release_page_dirty(apic
->vapic_page
);
5126 mark_page_dirty(vcpu
->kvm
, apic
->vapic_addr
>> PAGE_SHIFT
);
5127 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
5130 static void update_cr8_intercept(struct kvm_vcpu
*vcpu
)
5134 if (!kvm_x86_ops
->update_cr8_intercept
)
5137 if (!vcpu
->arch
.apic
)
5140 if (!vcpu
->arch
.apic
->vapic_addr
)
5141 max_irr
= kvm_lapic_find_highest_irr(vcpu
);
5148 tpr
= kvm_lapic_get_cr8(vcpu
);
5150 kvm_x86_ops
->update_cr8_intercept(vcpu
, tpr
, max_irr
);
5153 static void inject_pending_event(struct kvm_vcpu
*vcpu
)
5155 /* try to reinject previous events if any */
5156 if (vcpu
->arch
.exception
.pending
) {
5157 trace_kvm_inj_exception(vcpu
->arch
.exception
.nr
,
5158 vcpu
->arch
.exception
.has_error_code
,
5159 vcpu
->arch
.exception
.error_code
);
5160 kvm_x86_ops
->queue_exception(vcpu
, vcpu
->arch
.exception
.nr
,
5161 vcpu
->arch
.exception
.has_error_code
,
5162 vcpu
->arch
.exception
.error_code
,
5163 vcpu
->arch
.exception
.reinject
);
5167 if (vcpu
->arch
.nmi_injected
) {
5168 kvm_x86_ops
->set_nmi(vcpu
);
5172 if (vcpu
->arch
.interrupt
.pending
) {
5173 kvm_x86_ops
->set_irq(vcpu
);
5177 /* try to inject new event if pending */
5178 if (vcpu
->arch
.nmi_pending
) {
5179 if (kvm_x86_ops
->nmi_allowed(vcpu
)) {
5180 --vcpu
->arch
.nmi_pending
;
5181 vcpu
->arch
.nmi_injected
= true;
5182 kvm_x86_ops
->set_nmi(vcpu
);
5184 } else if (kvm_cpu_has_interrupt(vcpu
)) {
5185 if (kvm_x86_ops
->interrupt_allowed(vcpu
)) {
5186 kvm_queue_interrupt(vcpu
, kvm_cpu_get_interrupt(vcpu
),
5188 kvm_x86_ops
->set_irq(vcpu
);
5193 static void kvm_load_guest_xcr0(struct kvm_vcpu
*vcpu
)
5195 if (kvm_read_cr4_bits(vcpu
, X86_CR4_OSXSAVE
) &&
5196 !vcpu
->guest_xcr0_loaded
) {
5197 /* kvm_set_xcr() also depends on this */
5198 xsetbv(XCR_XFEATURE_ENABLED_MASK
, vcpu
->arch
.xcr0
);
5199 vcpu
->guest_xcr0_loaded
= 1;
5203 static void kvm_put_guest_xcr0(struct kvm_vcpu
*vcpu
)
5205 if (vcpu
->guest_xcr0_loaded
) {
5206 if (vcpu
->arch
.xcr0
!= host_xcr0
)
5207 xsetbv(XCR_XFEATURE_ENABLED_MASK
, host_xcr0
);
5208 vcpu
->guest_xcr0_loaded
= 0;
5212 static void process_nmi(struct kvm_vcpu
*vcpu
)
5217 * x86 is limited to one NMI running, and one NMI pending after it.
5218 * If an NMI is already in progress, limit further NMIs to just one.
5219 * Otherwise, allow two (and we'll inject the first one immediately).
5221 if (kvm_x86_ops
->get_nmi_mask(vcpu
) || vcpu
->arch
.nmi_injected
)
5224 vcpu
->arch
.nmi_pending
+= atomic_xchg(&vcpu
->arch
.nmi_queued
, 0);
5225 vcpu
->arch
.nmi_pending
= min(vcpu
->arch
.nmi_pending
, limit
);
5226 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
5229 static int vcpu_enter_guest(struct kvm_vcpu
*vcpu
)
5232 bool req_int_win
= !irqchip_in_kernel(vcpu
->kvm
) &&
5233 vcpu
->run
->request_interrupt_window
;
5234 bool req_immediate_exit
= 0;
5236 if (vcpu
->requests
) {
5237 if (kvm_check_request(KVM_REQ_MMU_RELOAD
, vcpu
))
5238 kvm_mmu_unload(vcpu
);
5239 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER
, vcpu
))
5240 __kvm_migrate_timers(vcpu
);
5241 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE
, vcpu
)) {
5242 r
= kvm_guest_time_update(vcpu
);
5246 if (kvm_check_request(KVM_REQ_MMU_SYNC
, vcpu
))
5247 kvm_mmu_sync_roots(vcpu
);
5248 if (kvm_check_request(KVM_REQ_TLB_FLUSH
, vcpu
))
5249 kvm_x86_ops
->tlb_flush(vcpu
);
5250 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS
, vcpu
)) {
5251 vcpu
->run
->exit_reason
= KVM_EXIT_TPR_ACCESS
;
5255 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT
, vcpu
)) {
5256 vcpu
->run
->exit_reason
= KVM_EXIT_SHUTDOWN
;
5260 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU
, vcpu
)) {
5261 vcpu
->fpu_active
= 0;
5262 kvm_x86_ops
->fpu_deactivate(vcpu
);
5264 if (kvm_check_request(KVM_REQ_APF_HALT
, vcpu
)) {
5265 /* Page is swapped out. Do synthetic halt */
5266 vcpu
->arch
.apf
.halted
= true;
5270 if (kvm_check_request(KVM_REQ_STEAL_UPDATE
, vcpu
))
5271 record_steal_time(vcpu
);
5272 if (kvm_check_request(KVM_REQ_NMI
, vcpu
))
5274 req_immediate_exit
=
5275 kvm_check_request(KVM_REQ_IMMEDIATE_EXIT
, vcpu
);
5276 if (kvm_check_request(KVM_REQ_PMU
, vcpu
))
5277 kvm_handle_pmu_event(vcpu
);
5278 if (kvm_check_request(KVM_REQ_PMI
, vcpu
))
5279 kvm_deliver_pmi(vcpu
);
5282 if (kvm_check_request(KVM_REQ_EVENT
, vcpu
) || req_int_win
) {
5283 inject_pending_event(vcpu
);
5285 /* enable NMI/IRQ window open exits if needed */
5286 if (vcpu
->arch
.nmi_pending
)
5287 kvm_x86_ops
->enable_nmi_window(vcpu
);
5288 else if (kvm_cpu_has_interrupt(vcpu
) || req_int_win
)
5289 kvm_x86_ops
->enable_irq_window(vcpu
);
5291 if (kvm_lapic_enabled(vcpu
)) {
5292 update_cr8_intercept(vcpu
);
5293 kvm_lapic_sync_to_vapic(vcpu
);
5297 r
= kvm_mmu_reload(vcpu
);
5299 goto cancel_injection
;
5304 kvm_x86_ops
->prepare_guest_switch(vcpu
);
5305 if (vcpu
->fpu_active
)
5306 kvm_load_guest_fpu(vcpu
);
5307 kvm_load_guest_xcr0(vcpu
);
5309 vcpu
->mode
= IN_GUEST_MODE
;
5311 /* We should set ->mode before check ->requests,
5312 * see the comment in make_all_cpus_request.
5316 local_irq_disable();
5318 if (vcpu
->mode
== EXITING_GUEST_MODE
|| vcpu
->requests
5319 || need_resched() || signal_pending(current
)) {
5320 vcpu
->mode
= OUTSIDE_GUEST_MODE
;
5325 goto cancel_injection
;
5328 srcu_read_unlock(&vcpu
->kvm
->srcu
, vcpu
->srcu_idx
);
5330 if (req_immediate_exit
)
5331 smp_send_reschedule(vcpu
->cpu
);
5335 if (unlikely(vcpu
->arch
.switch_db_regs
)) {
5337 set_debugreg(vcpu
->arch
.eff_db
[0], 0);
5338 set_debugreg(vcpu
->arch
.eff_db
[1], 1);
5339 set_debugreg(vcpu
->arch
.eff_db
[2], 2);
5340 set_debugreg(vcpu
->arch
.eff_db
[3], 3);
5343 trace_kvm_entry(vcpu
->vcpu_id
);
5344 kvm_x86_ops
->run(vcpu
);
5347 * If the guest has used debug registers, at least dr7
5348 * will be disabled while returning to the host.
5349 * If we don't have active breakpoints in the host, we don't
5350 * care about the messed up debug address registers. But if
5351 * we have some of them active, restore the old state.
5353 if (hw_breakpoint_active())
5354 hw_breakpoint_restore();
5356 vcpu
->arch
.last_guest_tsc
= kvm_x86_ops
->read_l1_tsc(vcpu
);
5358 vcpu
->mode
= OUTSIDE_GUEST_MODE
;
5365 * We must have an instruction between local_irq_enable() and
5366 * kvm_guest_exit(), so the timer interrupt isn't delayed by
5367 * the interrupt shadow. The stat.exits increment will do nicely.
5368 * But we need to prevent reordering, hence this barrier():
5376 vcpu
->srcu_idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
5379 * Profile KVM exit RIPs:
5381 if (unlikely(prof_on
== KVM_PROFILING
)) {
5382 unsigned long rip
= kvm_rip_read(vcpu
);
5383 profile_hit(KVM_PROFILING
, (void *)rip
);
5386 if (unlikely(vcpu
->arch
.tsc_always_catchup
))
5387 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
5389 if (vcpu
->arch
.apic_attention
)
5390 kvm_lapic_sync_from_vapic(vcpu
);
5392 r
= kvm_x86_ops
->handle_exit(vcpu
);
5396 kvm_x86_ops
->cancel_injection(vcpu
);
5397 if (unlikely(vcpu
->arch
.apic_attention
))
5398 kvm_lapic_sync_from_vapic(vcpu
);
5404 static int __vcpu_run(struct kvm_vcpu
*vcpu
)
5407 struct kvm
*kvm
= vcpu
->kvm
;
5409 if (unlikely(vcpu
->arch
.mp_state
== KVM_MP_STATE_SIPI_RECEIVED
)) {
5410 pr_debug("vcpu %d received sipi with vector # %x\n",
5411 vcpu
->vcpu_id
, vcpu
->arch
.sipi_vector
);
5412 kvm_lapic_reset(vcpu
);
5413 r
= kvm_arch_vcpu_reset(vcpu
);
5416 vcpu
->arch
.mp_state
= KVM_MP_STATE_RUNNABLE
;
5419 vcpu
->srcu_idx
= srcu_read_lock(&kvm
->srcu
);
5424 if (vcpu
->arch
.mp_state
== KVM_MP_STATE_RUNNABLE
&&
5425 !vcpu
->arch
.apf
.halted
)
5426 r
= vcpu_enter_guest(vcpu
);
5428 srcu_read_unlock(&kvm
->srcu
, vcpu
->srcu_idx
);
5429 kvm_vcpu_block(vcpu
);
5430 vcpu
->srcu_idx
= srcu_read_lock(&kvm
->srcu
);
5431 if (kvm_check_request(KVM_REQ_UNHALT
, vcpu
))
5433 switch(vcpu
->arch
.mp_state
) {
5434 case KVM_MP_STATE_HALTED
:
5435 vcpu
->arch
.mp_state
=
5436 KVM_MP_STATE_RUNNABLE
;
5437 case KVM_MP_STATE_RUNNABLE
:
5438 vcpu
->arch
.apf
.halted
= false;
5440 case KVM_MP_STATE_SIPI_RECEIVED
:
5451 clear_bit(KVM_REQ_PENDING_TIMER
, &vcpu
->requests
);
5452 if (kvm_cpu_has_pending_timer(vcpu
))
5453 kvm_inject_pending_timer_irqs(vcpu
);
5455 if (dm_request_for_irq_injection(vcpu
)) {
5457 vcpu
->run
->exit_reason
= KVM_EXIT_INTR
;
5458 ++vcpu
->stat
.request_irq_exits
;
5461 kvm_check_async_pf_completion(vcpu
);
5463 if (signal_pending(current
)) {
5465 vcpu
->run
->exit_reason
= KVM_EXIT_INTR
;
5466 ++vcpu
->stat
.signal_exits
;
5468 if (need_resched()) {
5469 srcu_read_unlock(&kvm
->srcu
, vcpu
->srcu_idx
);
5471 vcpu
->srcu_idx
= srcu_read_lock(&kvm
->srcu
);
5475 srcu_read_unlock(&kvm
->srcu
, vcpu
->srcu_idx
);
5482 static inline int complete_emulated_io(struct kvm_vcpu
*vcpu
)
5485 vcpu
->srcu_idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
5486 r
= emulate_instruction(vcpu
, EMULTYPE_NO_DECODE
);
5487 srcu_read_unlock(&vcpu
->kvm
->srcu
, vcpu
->srcu_idx
);
5488 if (r
!= EMULATE_DONE
)
5493 static int complete_emulated_pio(struct kvm_vcpu
*vcpu
)
5495 BUG_ON(!vcpu
->arch
.pio
.count
);
5497 return complete_emulated_io(vcpu
);
5501 * Implements the following, as a state machine:
5516 static int complete_emulated_mmio(struct kvm_vcpu
*vcpu
)
5518 struct kvm_run
*run
= vcpu
->run
;
5519 struct kvm_mmio_fragment
*frag
;
5521 BUG_ON(!vcpu
->mmio_needed
);
5523 /* Complete previous fragment */
5524 frag
= &vcpu
->mmio_fragments
[vcpu
->mmio_cur_fragment
++];
5525 if (!vcpu
->mmio_is_write
)
5526 memcpy(frag
->data
, run
->mmio
.data
, frag
->len
);
5527 if (vcpu
->mmio_cur_fragment
== vcpu
->mmio_nr_fragments
) {
5528 vcpu
->mmio_needed
= 0;
5529 if (vcpu
->mmio_is_write
)
5531 vcpu
->mmio_read_completed
= 1;
5532 return complete_emulated_io(vcpu
);
5534 /* Initiate next fragment */
5536 run
->exit_reason
= KVM_EXIT_MMIO
;
5537 run
->mmio
.phys_addr
= frag
->gpa
;
5538 if (vcpu
->mmio_is_write
)
5539 memcpy(run
->mmio
.data
, frag
->data
, frag
->len
);
5540 run
->mmio
.len
= frag
->len
;
5541 run
->mmio
.is_write
= vcpu
->mmio_is_write
;
5542 vcpu
->arch
.complete_userspace_io
= complete_emulated_mmio
;
5547 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
5552 if (!tsk_used_math(current
) && init_fpu(current
))
5555 if (vcpu
->sigset_active
)
5556 sigprocmask(SIG_SETMASK
, &vcpu
->sigset
, &sigsaved
);
5558 if (unlikely(vcpu
->arch
.mp_state
== KVM_MP_STATE_UNINITIALIZED
)) {
5559 kvm_vcpu_block(vcpu
);
5560 clear_bit(KVM_REQ_UNHALT
, &vcpu
->requests
);
5565 /* re-sync apic's tpr */
5566 if (!irqchip_in_kernel(vcpu
->kvm
)) {
5567 if (kvm_set_cr8(vcpu
, kvm_run
->cr8
) != 0) {
5573 if (unlikely(vcpu
->arch
.complete_userspace_io
)) {
5574 int (*cui
)(struct kvm_vcpu
*) = vcpu
->arch
.complete_userspace_io
;
5575 vcpu
->arch
.complete_userspace_io
= NULL
;
5580 WARN_ON(vcpu
->arch
.pio
.count
|| vcpu
->mmio_needed
);
5582 r
= __vcpu_run(vcpu
);
5585 post_kvm_run_save(vcpu
);
5586 if (vcpu
->sigset_active
)
5587 sigprocmask(SIG_SETMASK
, &sigsaved
, NULL
);
5592 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu
*vcpu
, struct kvm_regs
*regs
)
5594 if (vcpu
->arch
.emulate_regs_need_sync_to_vcpu
) {
5596 * We are here if userspace calls get_regs() in the middle of
5597 * instruction emulation. Registers state needs to be copied
5598 * back from emulation context to vcpu. Userspace shouldn't do
5599 * that usually, but some bad designed PV devices (vmware
5600 * backdoor interface) need this to work
5602 emulator_writeback_register_cache(&vcpu
->arch
.emulate_ctxt
);
5603 vcpu
->arch
.emulate_regs_need_sync_to_vcpu
= false;
5605 regs
->rax
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
5606 regs
->rbx
= kvm_register_read(vcpu
, VCPU_REGS_RBX
);
5607 regs
->rcx
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
5608 regs
->rdx
= kvm_register_read(vcpu
, VCPU_REGS_RDX
);
5609 regs
->rsi
= kvm_register_read(vcpu
, VCPU_REGS_RSI
);
5610 regs
->rdi
= kvm_register_read(vcpu
, VCPU_REGS_RDI
);
5611 regs
->rsp
= kvm_register_read(vcpu
, VCPU_REGS_RSP
);
5612 regs
->rbp
= kvm_register_read(vcpu
, VCPU_REGS_RBP
);
5613 #ifdef CONFIG_X86_64
5614 regs
->r8
= kvm_register_read(vcpu
, VCPU_REGS_R8
);
5615 regs
->r9
= kvm_register_read(vcpu
, VCPU_REGS_R9
);
5616 regs
->r10
= kvm_register_read(vcpu
, VCPU_REGS_R10
);
5617 regs
->r11
= kvm_register_read(vcpu
, VCPU_REGS_R11
);
5618 regs
->r12
= kvm_register_read(vcpu
, VCPU_REGS_R12
);
5619 regs
->r13
= kvm_register_read(vcpu
, VCPU_REGS_R13
);
5620 regs
->r14
= kvm_register_read(vcpu
, VCPU_REGS_R14
);
5621 regs
->r15
= kvm_register_read(vcpu
, VCPU_REGS_R15
);
5624 regs
->rip
= kvm_rip_read(vcpu
);
5625 regs
->rflags
= kvm_get_rflags(vcpu
);
5630 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu
*vcpu
, struct kvm_regs
*regs
)
5632 vcpu
->arch
.emulate_regs_need_sync_from_vcpu
= true;
5633 vcpu
->arch
.emulate_regs_need_sync_to_vcpu
= false;
5635 kvm_register_write(vcpu
, VCPU_REGS_RAX
, regs
->rax
);
5636 kvm_register_write(vcpu
, VCPU_REGS_RBX
, regs
->rbx
);
5637 kvm_register_write(vcpu
, VCPU_REGS_RCX
, regs
->rcx
);
5638 kvm_register_write(vcpu
, VCPU_REGS_RDX
, regs
->rdx
);
5639 kvm_register_write(vcpu
, VCPU_REGS_RSI
, regs
->rsi
);
5640 kvm_register_write(vcpu
, VCPU_REGS_RDI
, regs
->rdi
);
5641 kvm_register_write(vcpu
, VCPU_REGS_RSP
, regs
->rsp
);
5642 kvm_register_write(vcpu
, VCPU_REGS_RBP
, regs
->rbp
);
5643 #ifdef CONFIG_X86_64
5644 kvm_register_write(vcpu
, VCPU_REGS_R8
, regs
->r8
);
5645 kvm_register_write(vcpu
, VCPU_REGS_R9
, regs
->r9
);
5646 kvm_register_write(vcpu
, VCPU_REGS_R10
, regs
->r10
);
5647 kvm_register_write(vcpu
, VCPU_REGS_R11
, regs
->r11
);
5648 kvm_register_write(vcpu
, VCPU_REGS_R12
, regs
->r12
);
5649 kvm_register_write(vcpu
, VCPU_REGS_R13
, regs
->r13
);
5650 kvm_register_write(vcpu
, VCPU_REGS_R14
, regs
->r14
);
5651 kvm_register_write(vcpu
, VCPU_REGS_R15
, regs
->r15
);
5654 kvm_rip_write(vcpu
, regs
->rip
);
5655 kvm_set_rflags(vcpu
, regs
->rflags
);
5657 vcpu
->arch
.exception
.pending
= false;
5659 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
5664 void kvm_get_cs_db_l_bits(struct kvm_vcpu
*vcpu
, int *db
, int *l
)
5666 struct kvm_segment cs
;
5668 kvm_get_segment(vcpu
, &cs
, VCPU_SREG_CS
);
5672 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits
);
5674 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu
*vcpu
,
5675 struct kvm_sregs
*sregs
)
5679 kvm_get_segment(vcpu
, &sregs
->cs
, VCPU_SREG_CS
);
5680 kvm_get_segment(vcpu
, &sregs
->ds
, VCPU_SREG_DS
);
5681 kvm_get_segment(vcpu
, &sregs
->es
, VCPU_SREG_ES
);
5682 kvm_get_segment(vcpu
, &sregs
->fs
, VCPU_SREG_FS
);
5683 kvm_get_segment(vcpu
, &sregs
->gs
, VCPU_SREG_GS
);
5684 kvm_get_segment(vcpu
, &sregs
->ss
, VCPU_SREG_SS
);
5686 kvm_get_segment(vcpu
, &sregs
->tr
, VCPU_SREG_TR
);
5687 kvm_get_segment(vcpu
, &sregs
->ldt
, VCPU_SREG_LDTR
);
5689 kvm_x86_ops
->get_idt(vcpu
, &dt
);
5690 sregs
->idt
.limit
= dt
.size
;
5691 sregs
->idt
.base
= dt
.address
;
5692 kvm_x86_ops
->get_gdt(vcpu
, &dt
);
5693 sregs
->gdt
.limit
= dt
.size
;
5694 sregs
->gdt
.base
= dt
.address
;
5696 sregs
->cr0
= kvm_read_cr0(vcpu
);
5697 sregs
->cr2
= vcpu
->arch
.cr2
;
5698 sregs
->cr3
= kvm_read_cr3(vcpu
);
5699 sregs
->cr4
= kvm_read_cr4(vcpu
);
5700 sregs
->cr8
= kvm_get_cr8(vcpu
);
5701 sregs
->efer
= vcpu
->arch
.efer
;
5702 sregs
->apic_base
= kvm_get_apic_base(vcpu
);
5704 memset(sregs
->interrupt_bitmap
, 0, sizeof sregs
->interrupt_bitmap
);
5706 if (vcpu
->arch
.interrupt
.pending
&& !vcpu
->arch
.interrupt
.soft
)
5707 set_bit(vcpu
->arch
.interrupt
.nr
,
5708 (unsigned long *)sregs
->interrupt_bitmap
);
5713 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu
*vcpu
,
5714 struct kvm_mp_state
*mp_state
)
5716 mp_state
->mp_state
= vcpu
->arch
.mp_state
;
5720 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu
*vcpu
,
5721 struct kvm_mp_state
*mp_state
)
5723 vcpu
->arch
.mp_state
= mp_state
->mp_state
;
5724 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
5728 int kvm_task_switch(struct kvm_vcpu
*vcpu
, u16 tss_selector
, int idt_index
,
5729 int reason
, bool has_error_code
, u32 error_code
)
5731 struct x86_emulate_ctxt
*ctxt
= &vcpu
->arch
.emulate_ctxt
;
5734 init_emulate_ctxt(vcpu
);
5736 ret
= emulator_task_switch(ctxt
, tss_selector
, idt_index
, reason
,
5737 has_error_code
, error_code
);
5740 return EMULATE_FAIL
;
5742 kvm_rip_write(vcpu
, ctxt
->eip
);
5743 kvm_set_rflags(vcpu
, ctxt
->eflags
);
5744 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
5745 return EMULATE_DONE
;
5747 EXPORT_SYMBOL_GPL(kvm_task_switch
);
5749 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu
*vcpu
,
5750 struct kvm_sregs
*sregs
)
5752 int mmu_reset_needed
= 0;
5753 int pending_vec
, max_bits
, idx
;
5756 dt
.size
= sregs
->idt
.limit
;
5757 dt
.address
= sregs
->idt
.base
;
5758 kvm_x86_ops
->set_idt(vcpu
, &dt
);
5759 dt
.size
= sregs
->gdt
.limit
;
5760 dt
.address
= sregs
->gdt
.base
;
5761 kvm_x86_ops
->set_gdt(vcpu
, &dt
);
5763 vcpu
->arch
.cr2
= sregs
->cr2
;
5764 mmu_reset_needed
|= kvm_read_cr3(vcpu
) != sregs
->cr3
;
5765 vcpu
->arch
.cr3
= sregs
->cr3
;
5766 __set_bit(VCPU_EXREG_CR3
, (ulong
*)&vcpu
->arch
.regs_avail
);
5768 kvm_set_cr8(vcpu
, sregs
->cr8
);
5770 mmu_reset_needed
|= vcpu
->arch
.efer
!= sregs
->efer
;
5771 kvm_x86_ops
->set_efer(vcpu
, sregs
->efer
);
5772 kvm_set_apic_base(vcpu
, sregs
->apic_base
);
5774 mmu_reset_needed
|= kvm_read_cr0(vcpu
) != sregs
->cr0
;
5775 kvm_x86_ops
->set_cr0(vcpu
, sregs
->cr0
);
5776 vcpu
->arch
.cr0
= sregs
->cr0
;
5778 mmu_reset_needed
|= kvm_read_cr4(vcpu
) != sregs
->cr4
;
5779 kvm_x86_ops
->set_cr4(vcpu
, sregs
->cr4
);
5780 if (sregs
->cr4
& X86_CR4_OSXSAVE
)
5781 kvm_update_cpuid(vcpu
);
5783 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
5784 if (!is_long_mode(vcpu
) && is_pae(vcpu
)) {
5785 load_pdptrs(vcpu
, vcpu
->arch
.walk_mmu
, kvm_read_cr3(vcpu
));
5786 mmu_reset_needed
= 1;
5788 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
5790 if (mmu_reset_needed
)
5791 kvm_mmu_reset_context(vcpu
);
5793 max_bits
= KVM_NR_INTERRUPTS
;
5794 pending_vec
= find_first_bit(
5795 (const unsigned long *)sregs
->interrupt_bitmap
, max_bits
);
5796 if (pending_vec
< max_bits
) {
5797 kvm_queue_interrupt(vcpu
, pending_vec
, false);
5798 pr_debug("Set back pending irq %d\n", pending_vec
);
5801 kvm_set_segment(vcpu
, &sregs
->cs
, VCPU_SREG_CS
);
5802 kvm_set_segment(vcpu
, &sregs
->ds
, VCPU_SREG_DS
);
5803 kvm_set_segment(vcpu
, &sregs
->es
, VCPU_SREG_ES
);
5804 kvm_set_segment(vcpu
, &sregs
->fs
, VCPU_SREG_FS
);
5805 kvm_set_segment(vcpu
, &sregs
->gs
, VCPU_SREG_GS
);
5806 kvm_set_segment(vcpu
, &sregs
->ss
, VCPU_SREG_SS
);
5808 kvm_set_segment(vcpu
, &sregs
->tr
, VCPU_SREG_TR
);
5809 kvm_set_segment(vcpu
, &sregs
->ldt
, VCPU_SREG_LDTR
);
5811 update_cr8_intercept(vcpu
);
5813 /* Older userspace won't unhalt the vcpu on reset. */
5814 if (kvm_vcpu_is_bsp(vcpu
) && kvm_rip_read(vcpu
) == 0xfff0 &&
5815 sregs
->cs
.selector
== 0xf000 && sregs
->cs
.base
== 0xffff0000 &&
5817 vcpu
->arch
.mp_state
= KVM_MP_STATE_RUNNABLE
;
5819 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
5824 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu
*vcpu
,
5825 struct kvm_guest_debug
*dbg
)
5827 unsigned long rflags
;
5830 if (dbg
->control
& (KVM_GUESTDBG_INJECT_DB
| KVM_GUESTDBG_INJECT_BP
)) {
5832 if (vcpu
->arch
.exception
.pending
)
5834 if (dbg
->control
& KVM_GUESTDBG_INJECT_DB
)
5835 kvm_queue_exception(vcpu
, DB_VECTOR
);
5837 kvm_queue_exception(vcpu
, BP_VECTOR
);
5841 * Read rflags as long as potentially injected trace flags are still
5844 rflags
= kvm_get_rflags(vcpu
);
5846 vcpu
->guest_debug
= dbg
->control
;
5847 if (!(vcpu
->guest_debug
& KVM_GUESTDBG_ENABLE
))
5848 vcpu
->guest_debug
= 0;
5850 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
) {
5851 for (i
= 0; i
< KVM_NR_DB_REGS
; ++i
)
5852 vcpu
->arch
.eff_db
[i
] = dbg
->arch
.debugreg
[i
];
5853 vcpu
->arch
.switch_db_regs
=
5854 (dbg
->arch
.debugreg
[7] & DR7_BP_EN_MASK
);
5856 for (i
= 0; i
< KVM_NR_DB_REGS
; i
++)
5857 vcpu
->arch
.eff_db
[i
] = vcpu
->arch
.db
[i
];
5858 vcpu
->arch
.switch_db_regs
= (vcpu
->arch
.dr7
& DR7_BP_EN_MASK
);
5861 if (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
)
5862 vcpu
->arch
.singlestep_rip
= kvm_rip_read(vcpu
) +
5863 get_segment_base(vcpu
, VCPU_SREG_CS
);
5866 * Trigger an rflags update that will inject or remove the trace
5869 kvm_set_rflags(vcpu
, rflags
);
5871 kvm_x86_ops
->set_guest_debug(vcpu
, dbg
);
5881 * Translate a guest virtual address to a guest physical address.
5883 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu
*vcpu
,
5884 struct kvm_translation
*tr
)
5886 unsigned long vaddr
= tr
->linear_address
;
5890 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
5891 gpa
= kvm_mmu_gva_to_gpa_system(vcpu
, vaddr
, NULL
);
5892 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
5893 tr
->physical_address
= gpa
;
5894 tr
->valid
= gpa
!= UNMAPPED_GVA
;
5901 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu
*vcpu
, struct kvm_fpu
*fpu
)
5903 struct i387_fxsave_struct
*fxsave
=
5904 &vcpu
->arch
.guest_fpu
.state
->fxsave
;
5906 memcpy(fpu
->fpr
, fxsave
->st_space
, 128);
5907 fpu
->fcw
= fxsave
->cwd
;
5908 fpu
->fsw
= fxsave
->swd
;
5909 fpu
->ftwx
= fxsave
->twd
;
5910 fpu
->last_opcode
= fxsave
->fop
;
5911 fpu
->last_ip
= fxsave
->rip
;
5912 fpu
->last_dp
= fxsave
->rdp
;
5913 memcpy(fpu
->xmm
, fxsave
->xmm_space
, sizeof fxsave
->xmm_space
);
5918 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu
*vcpu
, struct kvm_fpu
*fpu
)
5920 struct i387_fxsave_struct
*fxsave
=
5921 &vcpu
->arch
.guest_fpu
.state
->fxsave
;
5923 memcpy(fxsave
->st_space
, fpu
->fpr
, 128);
5924 fxsave
->cwd
= fpu
->fcw
;
5925 fxsave
->swd
= fpu
->fsw
;
5926 fxsave
->twd
= fpu
->ftwx
;
5927 fxsave
->fop
= fpu
->last_opcode
;
5928 fxsave
->rip
= fpu
->last_ip
;
5929 fxsave
->rdp
= fpu
->last_dp
;
5930 memcpy(fxsave
->xmm_space
, fpu
->xmm
, sizeof fxsave
->xmm_space
);
5935 int fx_init(struct kvm_vcpu
*vcpu
)
5939 err
= fpu_alloc(&vcpu
->arch
.guest_fpu
);
5943 fpu_finit(&vcpu
->arch
.guest_fpu
);
5946 * Ensure guest xcr0 is valid for loading
5948 vcpu
->arch
.xcr0
= XSTATE_FP
;
5950 vcpu
->arch
.cr0
|= X86_CR0_ET
;
5954 EXPORT_SYMBOL_GPL(fx_init
);
5956 static void fx_free(struct kvm_vcpu
*vcpu
)
5958 fpu_free(&vcpu
->arch
.guest_fpu
);
5961 void kvm_load_guest_fpu(struct kvm_vcpu
*vcpu
)
5963 if (vcpu
->guest_fpu_loaded
)
5967 * Restore all possible states in the guest,
5968 * and assume host would use all available bits.
5969 * Guest xcr0 would be loaded later.
5971 kvm_put_guest_xcr0(vcpu
);
5972 vcpu
->guest_fpu_loaded
= 1;
5973 unlazy_fpu(current
);
5974 fpu_restore_checking(&vcpu
->arch
.guest_fpu
);
5978 void kvm_put_guest_fpu(struct kvm_vcpu
*vcpu
)
5980 kvm_put_guest_xcr0(vcpu
);
5982 if (!vcpu
->guest_fpu_loaded
)
5985 vcpu
->guest_fpu_loaded
= 0;
5986 fpu_save_init(&vcpu
->arch
.guest_fpu
);
5987 ++vcpu
->stat
.fpu_reload
;
5988 kvm_make_request(KVM_REQ_DEACTIVATE_FPU
, vcpu
);
5992 void kvm_arch_vcpu_free(struct kvm_vcpu
*vcpu
)
5994 kvmclock_reset(vcpu
);
5996 free_cpumask_var(vcpu
->arch
.wbinvd_dirty_mask
);
5998 kvm_x86_ops
->vcpu_free(vcpu
);
6001 struct kvm_vcpu
*kvm_arch_vcpu_create(struct kvm
*kvm
,
6004 if (check_tsc_unstable() && atomic_read(&kvm
->online_vcpus
) != 0)
6005 printk_once(KERN_WARNING
6006 "kvm: SMP vm created on host with unstable TSC; "
6007 "guest TSC will not be reliable\n");
6008 return kvm_x86_ops
->vcpu_create(kvm
, id
);
6011 int kvm_arch_vcpu_setup(struct kvm_vcpu
*vcpu
)
6015 vcpu
->arch
.mtrr_state
.have_fixed
= 1;
6016 r
= vcpu_load(vcpu
);
6019 r
= kvm_arch_vcpu_reset(vcpu
);
6021 r
= kvm_mmu_setup(vcpu
);
6027 void kvm_arch_vcpu_destroy(struct kvm_vcpu
*vcpu
)
6030 vcpu
->arch
.apf
.msr_val
= 0;
6032 r
= vcpu_load(vcpu
);
6034 kvm_mmu_unload(vcpu
);
6038 kvm_x86_ops
->vcpu_free(vcpu
);
6041 int kvm_arch_vcpu_reset(struct kvm_vcpu
*vcpu
)
6043 atomic_set(&vcpu
->arch
.nmi_queued
, 0);
6044 vcpu
->arch
.nmi_pending
= 0;
6045 vcpu
->arch
.nmi_injected
= false;
6047 vcpu
->arch
.switch_db_regs
= 0;
6048 memset(vcpu
->arch
.db
, 0, sizeof(vcpu
->arch
.db
));
6049 vcpu
->arch
.dr6
= DR6_FIXED_1
;
6050 vcpu
->arch
.dr7
= DR7_FIXED_1
;
6052 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
6053 vcpu
->arch
.apf
.msr_val
= 0;
6054 vcpu
->arch
.st
.msr_val
= 0;
6056 kvmclock_reset(vcpu
);
6058 kvm_clear_async_pf_completion_queue(vcpu
);
6059 kvm_async_pf_hash_reset(vcpu
);
6060 vcpu
->arch
.apf
.halted
= false;
6062 kvm_pmu_reset(vcpu
);
6064 return kvm_x86_ops
->vcpu_reset(vcpu
);
6067 int kvm_arch_hardware_enable(void *garbage
)
6070 struct kvm_vcpu
*vcpu
;
6075 bool stable
, backwards_tsc
= false;
6077 kvm_shared_msr_cpu_online();
6078 ret
= kvm_x86_ops
->hardware_enable(garbage
);
6082 local_tsc
= native_read_tsc();
6083 stable
= !check_tsc_unstable();
6084 list_for_each_entry(kvm
, &vm_list
, vm_list
) {
6085 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
6086 if (!stable
&& vcpu
->cpu
== smp_processor_id())
6087 set_bit(KVM_REQ_CLOCK_UPDATE
, &vcpu
->requests
);
6088 if (stable
&& vcpu
->arch
.last_host_tsc
> local_tsc
) {
6089 backwards_tsc
= true;
6090 if (vcpu
->arch
.last_host_tsc
> max_tsc
)
6091 max_tsc
= vcpu
->arch
.last_host_tsc
;
6097 * Sometimes, even reliable TSCs go backwards. This happens on
6098 * platforms that reset TSC during suspend or hibernate actions, but
6099 * maintain synchronization. We must compensate. Fortunately, we can
6100 * detect that condition here, which happens early in CPU bringup,
6101 * before any KVM threads can be running. Unfortunately, we can't
6102 * bring the TSCs fully up to date with real time, as we aren't yet far
6103 * enough into CPU bringup that we know how much real time has actually
6104 * elapsed; our helper function, get_kernel_ns() will be using boot
6105 * variables that haven't been updated yet.
6107 * So we simply find the maximum observed TSC above, then record the
6108 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
6109 * the adjustment will be applied. Note that we accumulate
6110 * adjustments, in case multiple suspend cycles happen before some VCPU
6111 * gets a chance to run again. In the event that no KVM threads get a
6112 * chance to run, we will miss the entire elapsed period, as we'll have
6113 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
6114 * loose cycle time. This isn't too big a deal, since the loss will be
6115 * uniform across all VCPUs (not to mention the scenario is extremely
6116 * unlikely). It is possible that a second hibernate recovery happens
6117 * much faster than a first, causing the observed TSC here to be
6118 * smaller; this would require additional padding adjustment, which is
6119 * why we set last_host_tsc to the local tsc observed here.
6121 * N.B. - this code below runs only on platforms with reliable TSC,
6122 * as that is the only way backwards_tsc is set above. Also note
6123 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
6124 * have the same delta_cyc adjustment applied if backwards_tsc
6125 * is detected. Note further, this adjustment is only done once,
6126 * as we reset last_host_tsc on all VCPUs to stop this from being
6127 * called multiple times (one for each physical CPU bringup).
6129 * Platforms with unreliable TSCs don't have to deal with this, they
6130 * will be compensated by the logic in vcpu_load, which sets the TSC to
6131 * catchup mode. This will catchup all VCPUs to real time, but cannot
6132 * guarantee that they stay in perfect synchronization.
6134 if (backwards_tsc
) {
6135 u64 delta_cyc
= max_tsc
- local_tsc
;
6136 list_for_each_entry(kvm
, &vm_list
, vm_list
) {
6137 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
6138 vcpu
->arch
.tsc_offset_adjustment
+= delta_cyc
;
6139 vcpu
->arch
.last_host_tsc
= local_tsc
;
6143 * We have to disable TSC offset matching.. if you were
6144 * booting a VM while issuing an S4 host suspend....
6145 * you may have some problem. Solving this issue is
6146 * left as an exercise to the reader.
6148 kvm
->arch
.last_tsc_nsec
= 0;
6149 kvm
->arch
.last_tsc_write
= 0;
6156 void kvm_arch_hardware_disable(void *garbage
)
6158 kvm_x86_ops
->hardware_disable(garbage
);
6159 drop_user_return_notifiers(garbage
);
6162 int kvm_arch_hardware_setup(void)
6164 return kvm_x86_ops
->hardware_setup();
6167 void kvm_arch_hardware_unsetup(void)
6169 kvm_x86_ops
->hardware_unsetup();
6172 void kvm_arch_check_processor_compat(void *rtn
)
6174 kvm_x86_ops
->check_processor_compatibility(rtn
);
6177 bool kvm_vcpu_compatible(struct kvm_vcpu
*vcpu
)
6179 return irqchip_in_kernel(vcpu
->kvm
) == (vcpu
->arch
.apic
!= NULL
);
6182 struct static_key kvm_no_apic_vcpu __read_mostly
;
6184 int kvm_arch_vcpu_init(struct kvm_vcpu
*vcpu
)
6190 BUG_ON(vcpu
->kvm
== NULL
);
6193 vcpu
->arch
.emulate_ctxt
.ops
= &emulate_ops
;
6194 if (!irqchip_in_kernel(kvm
) || kvm_vcpu_is_bsp(vcpu
))
6195 vcpu
->arch
.mp_state
= KVM_MP_STATE_RUNNABLE
;
6197 vcpu
->arch
.mp_state
= KVM_MP_STATE_UNINITIALIZED
;
6199 page
= alloc_page(GFP_KERNEL
| __GFP_ZERO
);
6204 vcpu
->arch
.pio_data
= page_address(page
);
6206 kvm_set_tsc_khz(vcpu
, max_tsc_khz
);
6208 r
= kvm_mmu_create(vcpu
);
6210 goto fail_free_pio_data
;
6212 if (irqchip_in_kernel(kvm
)) {
6213 r
= kvm_create_lapic(vcpu
);
6215 goto fail_mmu_destroy
;
6217 static_key_slow_inc(&kvm_no_apic_vcpu
);
6219 vcpu
->arch
.mce_banks
= kzalloc(KVM_MAX_MCE_BANKS
* sizeof(u64
) * 4,
6221 if (!vcpu
->arch
.mce_banks
) {
6223 goto fail_free_lapic
;
6225 vcpu
->arch
.mcg_cap
= KVM_MAX_MCE_BANKS
;
6227 if (!zalloc_cpumask_var(&vcpu
->arch
.wbinvd_dirty_mask
, GFP_KERNEL
))
6228 goto fail_free_mce_banks
;
6230 kvm_async_pf_hash_reset(vcpu
);
6234 fail_free_mce_banks
:
6235 kfree(vcpu
->arch
.mce_banks
);
6237 kvm_free_lapic(vcpu
);
6239 kvm_mmu_destroy(vcpu
);
6241 free_page((unsigned long)vcpu
->arch
.pio_data
);
6246 void kvm_arch_vcpu_uninit(struct kvm_vcpu
*vcpu
)
6250 kvm_pmu_destroy(vcpu
);
6251 kfree(vcpu
->arch
.mce_banks
);
6252 kvm_free_lapic(vcpu
);
6253 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
6254 kvm_mmu_destroy(vcpu
);
6255 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
6256 free_page((unsigned long)vcpu
->arch
.pio_data
);
6257 if (!irqchip_in_kernel(vcpu
->kvm
))
6258 static_key_slow_dec(&kvm_no_apic_vcpu
);
6261 int kvm_arch_init_vm(struct kvm
*kvm
, unsigned long type
)
6266 INIT_LIST_HEAD(&kvm
->arch
.active_mmu_pages
);
6267 INIT_LIST_HEAD(&kvm
->arch
.assigned_dev_head
);
6269 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
6270 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID
, &kvm
->arch
.irq_sources_bitmap
);
6272 raw_spin_lock_init(&kvm
->arch
.tsc_write_lock
);
6277 static void kvm_unload_vcpu_mmu(struct kvm_vcpu
*vcpu
)
6280 r
= vcpu_load(vcpu
);
6282 kvm_mmu_unload(vcpu
);
6286 static void kvm_free_vcpus(struct kvm
*kvm
)
6289 struct kvm_vcpu
*vcpu
;
6292 * Unpin any mmu pages first.
6294 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
6295 kvm_clear_async_pf_completion_queue(vcpu
);
6296 kvm_unload_vcpu_mmu(vcpu
);
6298 kvm_for_each_vcpu(i
, vcpu
, kvm
)
6299 kvm_arch_vcpu_free(vcpu
);
6301 mutex_lock(&kvm
->lock
);
6302 for (i
= 0; i
< atomic_read(&kvm
->online_vcpus
); i
++)
6303 kvm
->vcpus
[i
] = NULL
;
6305 atomic_set(&kvm
->online_vcpus
, 0);
6306 mutex_unlock(&kvm
->lock
);
6309 void kvm_arch_sync_events(struct kvm
*kvm
)
6311 kvm_free_all_assigned_devices(kvm
);
6315 void kvm_arch_destroy_vm(struct kvm
*kvm
)
6317 kvm_iommu_unmap_guest(kvm
);
6318 kfree(kvm
->arch
.vpic
);
6319 kfree(kvm
->arch
.vioapic
);
6320 kvm_free_vcpus(kvm
);
6321 if (kvm
->arch
.apic_access_page
)
6322 put_page(kvm
->arch
.apic_access_page
);
6323 if (kvm
->arch
.ept_identity_pagetable
)
6324 put_page(kvm
->arch
.ept_identity_pagetable
);
6327 void kvm_arch_free_memslot(struct kvm_memory_slot
*free
,
6328 struct kvm_memory_slot
*dont
)
6332 for (i
= 0; i
< KVM_NR_PAGE_SIZES
; ++i
) {
6333 if (!dont
|| free
->arch
.rmap
[i
] != dont
->arch
.rmap
[i
]) {
6334 kvm_kvfree(free
->arch
.rmap
[i
]);
6335 free
->arch
.rmap
[i
] = NULL
;
6340 if (!dont
|| free
->arch
.lpage_info
[i
- 1] !=
6341 dont
->arch
.lpage_info
[i
- 1]) {
6342 kvm_kvfree(free
->arch
.lpage_info
[i
- 1]);
6343 free
->arch
.lpage_info
[i
- 1] = NULL
;
6348 int kvm_arch_create_memslot(struct kvm_memory_slot
*slot
, unsigned long npages
)
6352 for (i
= 0; i
< KVM_NR_PAGE_SIZES
; ++i
) {
6357 lpages
= gfn_to_index(slot
->base_gfn
+ npages
- 1,
6358 slot
->base_gfn
, level
) + 1;
6360 slot
->arch
.rmap
[i
] =
6361 kvm_kvzalloc(lpages
* sizeof(*slot
->arch
.rmap
[i
]));
6362 if (!slot
->arch
.rmap
[i
])
6367 slot
->arch
.lpage_info
[i
- 1] = kvm_kvzalloc(lpages
*
6368 sizeof(*slot
->arch
.lpage_info
[i
- 1]));
6369 if (!slot
->arch
.lpage_info
[i
- 1])
6372 if (slot
->base_gfn
& (KVM_PAGES_PER_HPAGE(level
) - 1))
6373 slot
->arch
.lpage_info
[i
- 1][0].write_count
= 1;
6374 if ((slot
->base_gfn
+ npages
) & (KVM_PAGES_PER_HPAGE(level
) - 1))
6375 slot
->arch
.lpage_info
[i
- 1][lpages
- 1].write_count
= 1;
6376 ugfn
= slot
->userspace_addr
>> PAGE_SHIFT
;
6378 * If the gfn and userspace address are not aligned wrt each
6379 * other, or if explicitly asked to, disable large page
6380 * support for this slot
6382 if ((slot
->base_gfn
^ ugfn
) & (KVM_PAGES_PER_HPAGE(level
) - 1) ||
6383 !kvm_largepages_enabled()) {
6386 for (j
= 0; j
< lpages
; ++j
)
6387 slot
->arch
.lpage_info
[i
- 1][j
].write_count
= 1;
6394 for (i
= 0; i
< KVM_NR_PAGE_SIZES
; ++i
) {
6395 kvm_kvfree(slot
->arch
.rmap
[i
]);
6396 slot
->arch
.rmap
[i
] = NULL
;
6400 kvm_kvfree(slot
->arch
.lpage_info
[i
- 1]);
6401 slot
->arch
.lpage_info
[i
- 1] = NULL
;
6406 int kvm_arch_prepare_memory_region(struct kvm
*kvm
,
6407 struct kvm_memory_slot
*memslot
,
6408 struct kvm_memory_slot old
,
6409 struct kvm_userspace_memory_region
*mem
,
6412 int npages
= memslot
->npages
;
6413 int map_flags
= MAP_PRIVATE
| MAP_ANONYMOUS
;
6415 /* Prevent internal slot pages from being moved by fork()/COW. */
6416 if (memslot
->id
>= KVM_MEMORY_SLOTS
)
6417 map_flags
= MAP_SHARED
| MAP_ANONYMOUS
;
6419 /*To keep backward compatibility with older userspace,
6420 *x86 needs to handle !user_alloc case.
6423 if (npages
&& !old
.npages
) {
6424 unsigned long userspace_addr
;
6426 userspace_addr
= vm_mmap(NULL
, 0,
6428 PROT_READ
| PROT_WRITE
,
6432 if (IS_ERR((void *)userspace_addr
))
6433 return PTR_ERR((void *)userspace_addr
);
6435 memslot
->userspace_addr
= userspace_addr
;
6443 void kvm_arch_commit_memory_region(struct kvm
*kvm
,
6444 struct kvm_userspace_memory_region
*mem
,
6445 struct kvm_memory_slot old
,
6449 int nr_mmu_pages
= 0, npages
= mem
->memory_size
>> PAGE_SHIFT
;
6451 if (!user_alloc
&& !old
.user_alloc
&& old
.npages
&& !npages
) {
6454 ret
= vm_munmap(old
.userspace_addr
,
6455 old
.npages
* PAGE_SIZE
);
6458 "kvm_vm_ioctl_set_memory_region: "
6459 "failed to munmap memory\n");
6462 if (!kvm
->arch
.n_requested_mmu_pages
)
6463 nr_mmu_pages
= kvm_mmu_calculate_mmu_pages(kvm
);
6465 spin_lock(&kvm
->mmu_lock
);
6467 kvm_mmu_change_mmu_pages(kvm
, nr_mmu_pages
);
6468 kvm_mmu_slot_remove_write_access(kvm
, mem
->slot
);
6469 spin_unlock(&kvm
->mmu_lock
);
6471 * If memory slot is created, or moved, we need to clear all
6474 if (npages
&& old
.base_gfn
!= mem
->guest_phys_addr
>> PAGE_SHIFT
) {
6475 kvm_mmu_zap_all(kvm
);
6476 kvm_reload_remote_mmus(kvm
);
6480 void kvm_arch_flush_shadow_all(struct kvm
*kvm
)
6482 kvm_mmu_zap_all(kvm
);
6483 kvm_reload_remote_mmus(kvm
);
6486 void kvm_arch_flush_shadow_memslot(struct kvm
*kvm
,
6487 struct kvm_memory_slot
*slot
)
6489 kvm_arch_flush_shadow_all(kvm
);
6492 int kvm_arch_vcpu_runnable(struct kvm_vcpu
*vcpu
)
6494 return (vcpu
->arch
.mp_state
== KVM_MP_STATE_RUNNABLE
&&
6495 !vcpu
->arch
.apf
.halted
)
6496 || !list_empty_careful(&vcpu
->async_pf
.done
)
6497 || vcpu
->arch
.mp_state
== KVM_MP_STATE_SIPI_RECEIVED
6498 || atomic_read(&vcpu
->arch
.nmi_queued
) ||
6499 (kvm_arch_interrupt_allowed(vcpu
) &&
6500 kvm_cpu_has_interrupt(vcpu
));
6503 int kvm_arch_vcpu_should_kick(struct kvm_vcpu
*vcpu
)
6505 return kvm_vcpu_exiting_guest_mode(vcpu
) == IN_GUEST_MODE
;
6508 int kvm_arch_interrupt_allowed(struct kvm_vcpu
*vcpu
)
6510 return kvm_x86_ops
->interrupt_allowed(vcpu
);
6513 bool kvm_is_linear_rip(struct kvm_vcpu
*vcpu
, unsigned long linear_rip
)
6515 unsigned long current_rip
= kvm_rip_read(vcpu
) +
6516 get_segment_base(vcpu
, VCPU_SREG_CS
);
6518 return current_rip
== linear_rip
;
6520 EXPORT_SYMBOL_GPL(kvm_is_linear_rip
);
6522 unsigned long kvm_get_rflags(struct kvm_vcpu
*vcpu
)
6524 unsigned long rflags
;
6526 rflags
= kvm_x86_ops
->get_rflags(vcpu
);
6527 if (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
)
6528 rflags
&= ~X86_EFLAGS_TF
;
6531 EXPORT_SYMBOL_GPL(kvm_get_rflags
);
6533 void kvm_set_rflags(struct kvm_vcpu
*vcpu
, unsigned long rflags
)
6535 if (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
&&
6536 kvm_is_linear_rip(vcpu
, vcpu
->arch
.singlestep_rip
))
6537 rflags
|= X86_EFLAGS_TF
;
6538 kvm_x86_ops
->set_rflags(vcpu
, rflags
);
6539 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
6541 EXPORT_SYMBOL_GPL(kvm_set_rflags
);
6543 void kvm_arch_async_page_ready(struct kvm_vcpu
*vcpu
, struct kvm_async_pf
*work
)
6547 if ((vcpu
->arch
.mmu
.direct_map
!= work
->arch
.direct_map
) ||
6548 is_error_page(work
->page
))
6551 r
= kvm_mmu_reload(vcpu
);
6555 if (!vcpu
->arch
.mmu
.direct_map
&&
6556 work
->arch
.cr3
!= vcpu
->arch
.mmu
.get_cr3(vcpu
))
6559 vcpu
->arch
.mmu
.page_fault(vcpu
, work
->gva
, 0, true);
6562 static inline u32
kvm_async_pf_hash_fn(gfn_t gfn
)
6564 return hash_32(gfn
& 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU
));
6567 static inline u32
kvm_async_pf_next_probe(u32 key
)
6569 return (key
+ 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU
) - 1);
6572 static void kvm_add_async_pf_gfn(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
6574 u32 key
= kvm_async_pf_hash_fn(gfn
);
6576 while (vcpu
->arch
.apf
.gfns
[key
] != ~0)
6577 key
= kvm_async_pf_next_probe(key
);
6579 vcpu
->arch
.apf
.gfns
[key
] = gfn
;
6582 static u32
kvm_async_pf_gfn_slot(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
6585 u32 key
= kvm_async_pf_hash_fn(gfn
);
6587 for (i
= 0; i
< roundup_pow_of_two(ASYNC_PF_PER_VCPU
) &&
6588 (vcpu
->arch
.apf
.gfns
[key
] != gfn
&&
6589 vcpu
->arch
.apf
.gfns
[key
] != ~0); i
++)
6590 key
= kvm_async_pf_next_probe(key
);
6595 bool kvm_find_async_pf_gfn(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
6597 return vcpu
->arch
.apf
.gfns
[kvm_async_pf_gfn_slot(vcpu
, gfn
)] == gfn
;
6600 static void kvm_del_async_pf_gfn(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
6604 i
= j
= kvm_async_pf_gfn_slot(vcpu
, gfn
);
6606 vcpu
->arch
.apf
.gfns
[i
] = ~0;
6608 j
= kvm_async_pf_next_probe(j
);
6609 if (vcpu
->arch
.apf
.gfns
[j
] == ~0)
6611 k
= kvm_async_pf_hash_fn(vcpu
->arch
.apf
.gfns
[j
]);
6613 * k lies cyclically in ]i,j]
6615 * |....j i.k.| or |.k..j i...|
6617 } while ((i
<= j
) ? (i
< k
&& k
<= j
) : (i
< k
|| k
<= j
));
6618 vcpu
->arch
.apf
.gfns
[i
] = vcpu
->arch
.apf
.gfns
[j
];
6623 static int apf_put_user(struct kvm_vcpu
*vcpu
, u32 val
)
6626 return kvm_write_guest_cached(vcpu
->kvm
, &vcpu
->arch
.apf
.data
, &val
,
6630 void kvm_arch_async_page_not_present(struct kvm_vcpu
*vcpu
,
6631 struct kvm_async_pf
*work
)
6633 struct x86_exception fault
;
6635 trace_kvm_async_pf_not_present(work
->arch
.token
, work
->gva
);
6636 kvm_add_async_pf_gfn(vcpu
, work
->arch
.gfn
);
6638 if (!(vcpu
->arch
.apf
.msr_val
& KVM_ASYNC_PF_ENABLED
) ||
6639 (vcpu
->arch
.apf
.send_user_only
&&
6640 kvm_x86_ops
->get_cpl(vcpu
) == 0))
6641 kvm_make_request(KVM_REQ_APF_HALT
, vcpu
);
6642 else if (!apf_put_user(vcpu
, KVM_PV_REASON_PAGE_NOT_PRESENT
)) {
6643 fault
.vector
= PF_VECTOR
;
6644 fault
.error_code_valid
= true;
6645 fault
.error_code
= 0;
6646 fault
.nested_page_fault
= false;
6647 fault
.address
= work
->arch
.token
;
6648 kvm_inject_page_fault(vcpu
, &fault
);
6652 void kvm_arch_async_page_present(struct kvm_vcpu
*vcpu
,
6653 struct kvm_async_pf
*work
)
6655 struct x86_exception fault
;
6657 trace_kvm_async_pf_ready(work
->arch
.token
, work
->gva
);
6658 if (is_error_page(work
->page
))
6659 work
->arch
.token
= ~0; /* broadcast wakeup */
6661 kvm_del_async_pf_gfn(vcpu
, work
->arch
.gfn
);
6663 if ((vcpu
->arch
.apf
.msr_val
& KVM_ASYNC_PF_ENABLED
) &&
6664 !apf_put_user(vcpu
, KVM_PV_REASON_PAGE_READY
)) {
6665 fault
.vector
= PF_VECTOR
;
6666 fault
.error_code_valid
= true;
6667 fault
.error_code
= 0;
6668 fault
.nested_page_fault
= false;
6669 fault
.address
= work
->arch
.token
;
6670 kvm_inject_page_fault(vcpu
, &fault
);
6672 vcpu
->arch
.apf
.halted
= false;
6673 vcpu
->arch
.mp_state
= KVM_MP_STATE_RUNNABLE
;
6676 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu
*vcpu
)
6678 if (!(vcpu
->arch
.apf
.msr_val
& KVM_ASYNC_PF_ENABLED
))
6681 return !kvm_event_needs_reinjection(vcpu
) &&
6682 kvm_x86_ops
->interrupt_allowed(vcpu
);
6685 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit
);
6686 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq
);
6687 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault
);
6688 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr
);
6689 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr
);
6690 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun
);
6691 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit
);
6692 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject
);
6693 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit
);
6694 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga
);
6695 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit
);
6696 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts
);