sh: provide percpu CPU states for hotplug notifiers.
[linux-2.6.git] / kernel / perf_event.c
blob681af806d76b41b38c3f7de775610327ff288ac5
1 /*
2 * Performance events core code:
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9 * For licensing details see kernel-base/COPYING
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/sysfs.h>
19 #include <linux/dcache.h>
20 #include <linux/percpu.h>
21 #include <linux/ptrace.h>
22 #include <linux/vmstat.h>
23 #include <linux/vmalloc.h>
24 #include <linux/hardirq.h>
25 #include <linux/rculist.h>
26 #include <linux/uaccess.h>
27 #include <linux/syscalls.h>
28 #include <linux/anon_inodes.h>
29 #include <linux/kernel_stat.h>
30 #include <linux/perf_event.h>
31 #include <linux/ftrace_event.h>
32 #include <linux/hw_breakpoint.h>
34 #include <asm/irq_regs.h>
37 * Each CPU has a list of per CPU events:
39 static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
41 int perf_max_events __read_mostly = 1;
42 static int perf_reserved_percpu __read_mostly;
43 static int perf_overcommit __read_mostly = 1;
45 static atomic_t nr_events __read_mostly;
46 static atomic_t nr_mmap_events __read_mostly;
47 static atomic_t nr_comm_events __read_mostly;
48 static atomic_t nr_task_events __read_mostly;
51 * perf event paranoia level:
52 * -1 - not paranoid at all
53 * 0 - disallow raw tracepoint access for unpriv
54 * 1 - disallow cpu events for unpriv
55 * 2 - disallow kernel profiling for unpriv
57 int sysctl_perf_event_paranoid __read_mostly = 1;
59 int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
62 * max perf event sample rate
64 int sysctl_perf_event_sample_rate __read_mostly = 100000;
66 static atomic64_t perf_event_id;
69 * Lock for (sysadmin-configurable) event reservations:
71 static DEFINE_SPINLOCK(perf_resource_lock);
74 * Architecture provided APIs - weak aliases:
76 extern __weak const struct pmu *hw_perf_event_init(struct perf_event *event)
78 return NULL;
81 void __weak hw_perf_disable(void) { barrier(); }
82 void __weak hw_perf_enable(void) { barrier(); }
84 int __weak
85 hw_perf_group_sched_in(struct perf_event *group_leader,
86 struct perf_cpu_context *cpuctx,
87 struct perf_event_context *ctx)
89 return 0;
92 void __weak perf_event_print_debug(void) { }
94 static DEFINE_PER_CPU(int, perf_disable_count);
96 void perf_disable(void)
98 if (!__get_cpu_var(perf_disable_count)++)
99 hw_perf_disable();
102 void perf_enable(void)
104 if (!--__get_cpu_var(perf_disable_count))
105 hw_perf_enable();
108 static void get_ctx(struct perf_event_context *ctx)
110 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
113 static void free_ctx(struct rcu_head *head)
115 struct perf_event_context *ctx;
117 ctx = container_of(head, struct perf_event_context, rcu_head);
118 kfree(ctx);
121 static void put_ctx(struct perf_event_context *ctx)
123 if (atomic_dec_and_test(&ctx->refcount)) {
124 if (ctx->parent_ctx)
125 put_ctx(ctx->parent_ctx);
126 if (ctx->task)
127 put_task_struct(ctx->task);
128 call_rcu(&ctx->rcu_head, free_ctx);
132 static void unclone_ctx(struct perf_event_context *ctx)
134 if (ctx->parent_ctx) {
135 put_ctx(ctx->parent_ctx);
136 ctx->parent_ctx = NULL;
141 * If we inherit events we want to return the parent event id
142 * to userspace.
144 static u64 primary_event_id(struct perf_event *event)
146 u64 id = event->id;
148 if (event->parent)
149 id = event->parent->id;
151 return id;
155 * Get the perf_event_context for a task and lock it.
156 * This has to cope with with the fact that until it is locked,
157 * the context could get moved to another task.
159 static struct perf_event_context *
160 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
162 struct perf_event_context *ctx;
164 rcu_read_lock();
165 retry:
166 ctx = rcu_dereference(task->perf_event_ctxp);
167 if (ctx) {
169 * If this context is a clone of another, it might
170 * get swapped for another underneath us by
171 * perf_event_task_sched_out, though the
172 * rcu_read_lock() protects us from any context
173 * getting freed. Lock the context and check if it
174 * got swapped before we could get the lock, and retry
175 * if so. If we locked the right context, then it
176 * can't get swapped on us any more.
178 raw_spin_lock_irqsave(&ctx->lock, *flags);
179 if (ctx != rcu_dereference(task->perf_event_ctxp)) {
180 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
181 goto retry;
184 if (!atomic_inc_not_zero(&ctx->refcount)) {
185 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
186 ctx = NULL;
189 rcu_read_unlock();
190 return ctx;
194 * Get the context for a task and increment its pin_count so it
195 * can't get swapped to another task. This also increments its
196 * reference count so that the context can't get freed.
198 static struct perf_event_context *perf_pin_task_context(struct task_struct *task)
200 struct perf_event_context *ctx;
201 unsigned long flags;
203 ctx = perf_lock_task_context(task, &flags);
204 if (ctx) {
205 ++ctx->pin_count;
206 raw_spin_unlock_irqrestore(&ctx->lock, flags);
208 return ctx;
211 static void perf_unpin_context(struct perf_event_context *ctx)
213 unsigned long flags;
215 raw_spin_lock_irqsave(&ctx->lock, flags);
216 --ctx->pin_count;
217 raw_spin_unlock_irqrestore(&ctx->lock, flags);
218 put_ctx(ctx);
221 static inline u64 perf_clock(void)
223 return cpu_clock(raw_smp_processor_id());
227 * Update the record of the current time in a context.
229 static void update_context_time(struct perf_event_context *ctx)
231 u64 now = perf_clock();
233 ctx->time += now - ctx->timestamp;
234 ctx->timestamp = now;
238 * Update the total_time_enabled and total_time_running fields for a event.
240 static void update_event_times(struct perf_event *event)
242 struct perf_event_context *ctx = event->ctx;
243 u64 run_end;
245 if (event->state < PERF_EVENT_STATE_INACTIVE ||
246 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
247 return;
249 if (ctx->is_active)
250 run_end = ctx->time;
251 else
252 run_end = event->tstamp_stopped;
254 event->total_time_enabled = run_end - event->tstamp_enabled;
256 if (event->state == PERF_EVENT_STATE_INACTIVE)
257 run_end = event->tstamp_stopped;
258 else
259 run_end = ctx->time;
261 event->total_time_running = run_end - event->tstamp_running;
264 static struct list_head *
265 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
267 if (event->attr.pinned)
268 return &ctx->pinned_groups;
269 else
270 return &ctx->flexible_groups;
274 * Add a event from the lists for its context.
275 * Must be called with ctx->mutex and ctx->lock held.
277 static void
278 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
280 struct perf_event *group_leader = event->group_leader;
283 * Depending on whether it is a standalone or sibling event,
284 * add it straight to the context's event list, or to the group
285 * leader's sibling list:
287 if (group_leader == event) {
288 struct list_head *list;
290 if (is_software_event(event))
291 event->group_flags |= PERF_GROUP_SOFTWARE;
293 list = ctx_group_list(event, ctx);
294 list_add_tail(&event->group_entry, list);
295 } else {
296 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
297 !is_software_event(event))
298 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
300 list_add_tail(&event->group_entry, &group_leader->sibling_list);
301 group_leader->nr_siblings++;
304 list_add_rcu(&event->event_entry, &ctx->event_list);
305 ctx->nr_events++;
306 if (event->attr.inherit_stat)
307 ctx->nr_stat++;
311 * Remove a event from the lists for its context.
312 * Must be called with ctx->mutex and ctx->lock held.
314 static void
315 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
317 struct perf_event *sibling, *tmp;
319 if (list_empty(&event->group_entry))
320 return;
321 ctx->nr_events--;
322 if (event->attr.inherit_stat)
323 ctx->nr_stat--;
325 list_del_init(&event->group_entry);
326 list_del_rcu(&event->event_entry);
328 if (event->group_leader != event)
329 event->group_leader->nr_siblings--;
331 update_event_times(event);
334 * If event was in error state, then keep it
335 * that way, otherwise bogus counts will be
336 * returned on read(). The only way to get out
337 * of error state is by explicit re-enabling
338 * of the event
340 if (event->state > PERF_EVENT_STATE_OFF)
341 event->state = PERF_EVENT_STATE_OFF;
344 * If this was a group event with sibling events then
345 * upgrade the siblings to singleton events by adding them
346 * to the context list directly:
348 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
349 struct list_head *list;
351 list = ctx_group_list(event, ctx);
352 list_move_tail(&sibling->group_entry, list);
353 sibling->group_leader = sibling;
355 /* Inherit group flags from the previous leader */
356 sibling->group_flags = event->group_flags;
360 static void
361 event_sched_out(struct perf_event *event,
362 struct perf_cpu_context *cpuctx,
363 struct perf_event_context *ctx)
365 if (event->state != PERF_EVENT_STATE_ACTIVE)
366 return;
368 event->state = PERF_EVENT_STATE_INACTIVE;
369 if (event->pending_disable) {
370 event->pending_disable = 0;
371 event->state = PERF_EVENT_STATE_OFF;
373 event->tstamp_stopped = ctx->time;
374 event->pmu->disable(event);
375 event->oncpu = -1;
377 if (!is_software_event(event))
378 cpuctx->active_oncpu--;
379 ctx->nr_active--;
380 if (event->attr.exclusive || !cpuctx->active_oncpu)
381 cpuctx->exclusive = 0;
384 static void
385 group_sched_out(struct perf_event *group_event,
386 struct perf_cpu_context *cpuctx,
387 struct perf_event_context *ctx)
389 struct perf_event *event;
391 if (group_event->state != PERF_EVENT_STATE_ACTIVE)
392 return;
394 event_sched_out(group_event, cpuctx, ctx);
397 * Schedule out siblings (if any):
399 list_for_each_entry(event, &group_event->sibling_list, group_entry)
400 event_sched_out(event, cpuctx, ctx);
402 if (group_event->attr.exclusive)
403 cpuctx->exclusive = 0;
407 * Cross CPU call to remove a performance event
409 * We disable the event on the hardware level first. After that we
410 * remove it from the context list.
412 static void __perf_event_remove_from_context(void *info)
414 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
415 struct perf_event *event = info;
416 struct perf_event_context *ctx = event->ctx;
419 * If this is a task context, we need to check whether it is
420 * the current task context of this cpu. If not it has been
421 * scheduled out before the smp call arrived.
423 if (ctx->task && cpuctx->task_ctx != ctx)
424 return;
426 raw_spin_lock(&ctx->lock);
428 * Protect the list operation against NMI by disabling the
429 * events on a global level.
431 perf_disable();
433 event_sched_out(event, cpuctx, ctx);
435 list_del_event(event, ctx);
437 if (!ctx->task) {
439 * Allow more per task events with respect to the
440 * reservation:
442 cpuctx->max_pertask =
443 min(perf_max_events - ctx->nr_events,
444 perf_max_events - perf_reserved_percpu);
447 perf_enable();
448 raw_spin_unlock(&ctx->lock);
453 * Remove the event from a task's (or a CPU's) list of events.
455 * Must be called with ctx->mutex held.
457 * CPU events are removed with a smp call. For task events we only
458 * call when the task is on a CPU.
460 * If event->ctx is a cloned context, callers must make sure that
461 * every task struct that event->ctx->task could possibly point to
462 * remains valid. This is OK when called from perf_release since
463 * that only calls us on the top-level context, which can't be a clone.
464 * When called from perf_event_exit_task, it's OK because the
465 * context has been detached from its task.
467 static void perf_event_remove_from_context(struct perf_event *event)
469 struct perf_event_context *ctx = event->ctx;
470 struct task_struct *task = ctx->task;
472 if (!task) {
474 * Per cpu events are removed via an smp call and
475 * the removal is always successful.
477 smp_call_function_single(event->cpu,
478 __perf_event_remove_from_context,
479 event, 1);
480 return;
483 retry:
484 task_oncpu_function_call(task, __perf_event_remove_from_context,
485 event);
487 raw_spin_lock_irq(&ctx->lock);
489 * If the context is active we need to retry the smp call.
491 if (ctx->nr_active && !list_empty(&event->group_entry)) {
492 raw_spin_unlock_irq(&ctx->lock);
493 goto retry;
497 * The lock prevents that this context is scheduled in so we
498 * can remove the event safely, if the call above did not
499 * succeed.
501 if (!list_empty(&event->group_entry))
502 list_del_event(event, ctx);
503 raw_spin_unlock_irq(&ctx->lock);
507 * Update total_time_enabled and total_time_running for all events in a group.
509 static void update_group_times(struct perf_event *leader)
511 struct perf_event *event;
513 update_event_times(leader);
514 list_for_each_entry(event, &leader->sibling_list, group_entry)
515 update_event_times(event);
519 * Cross CPU call to disable a performance event
521 static void __perf_event_disable(void *info)
523 struct perf_event *event = info;
524 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
525 struct perf_event_context *ctx = event->ctx;
528 * If this is a per-task event, need to check whether this
529 * event's task is the current task on this cpu.
531 if (ctx->task && cpuctx->task_ctx != ctx)
532 return;
534 raw_spin_lock(&ctx->lock);
537 * If the event is on, turn it off.
538 * If it is in error state, leave it in error state.
540 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
541 update_context_time(ctx);
542 update_group_times(event);
543 if (event == event->group_leader)
544 group_sched_out(event, cpuctx, ctx);
545 else
546 event_sched_out(event, cpuctx, ctx);
547 event->state = PERF_EVENT_STATE_OFF;
550 raw_spin_unlock(&ctx->lock);
554 * Disable a event.
556 * If event->ctx is a cloned context, callers must make sure that
557 * every task struct that event->ctx->task could possibly point to
558 * remains valid. This condition is satisifed when called through
559 * perf_event_for_each_child or perf_event_for_each because they
560 * hold the top-level event's child_mutex, so any descendant that
561 * goes to exit will block in sync_child_event.
562 * When called from perf_pending_event it's OK because event->ctx
563 * is the current context on this CPU and preemption is disabled,
564 * hence we can't get into perf_event_task_sched_out for this context.
566 void perf_event_disable(struct perf_event *event)
568 struct perf_event_context *ctx = event->ctx;
569 struct task_struct *task = ctx->task;
571 if (!task) {
573 * Disable the event on the cpu that it's on
575 smp_call_function_single(event->cpu, __perf_event_disable,
576 event, 1);
577 return;
580 retry:
581 task_oncpu_function_call(task, __perf_event_disable, event);
583 raw_spin_lock_irq(&ctx->lock);
585 * If the event is still active, we need to retry the cross-call.
587 if (event->state == PERF_EVENT_STATE_ACTIVE) {
588 raw_spin_unlock_irq(&ctx->lock);
589 goto retry;
593 * Since we have the lock this context can't be scheduled
594 * in, so we can change the state safely.
596 if (event->state == PERF_EVENT_STATE_INACTIVE) {
597 update_group_times(event);
598 event->state = PERF_EVENT_STATE_OFF;
601 raw_spin_unlock_irq(&ctx->lock);
604 static int
605 event_sched_in(struct perf_event *event,
606 struct perf_cpu_context *cpuctx,
607 struct perf_event_context *ctx)
609 if (event->state <= PERF_EVENT_STATE_OFF)
610 return 0;
612 event->state = PERF_EVENT_STATE_ACTIVE;
613 event->oncpu = smp_processor_id();
615 * The new state must be visible before we turn it on in the hardware:
617 smp_wmb();
619 if (event->pmu->enable(event)) {
620 event->state = PERF_EVENT_STATE_INACTIVE;
621 event->oncpu = -1;
622 return -EAGAIN;
625 event->tstamp_running += ctx->time - event->tstamp_stopped;
627 if (!is_software_event(event))
628 cpuctx->active_oncpu++;
629 ctx->nr_active++;
631 if (event->attr.exclusive)
632 cpuctx->exclusive = 1;
634 return 0;
637 static int
638 group_sched_in(struct perf_event *group_event,
639 struct perf_cpu_context *cpuctx,
640 struct perf_event_context *ctx)
642 struct perf_event *event, *partial_group;
643 int ret;
645 if (group_event->state == PERF_EVENT_STATE_OFF)
646 return 0;
648 ret = hw_perf_group_sched_in(group_event, cpuctx, ctx);
649 if (ret)
650 return ret < 0 ? ret : 0;
652 if (event_sched_in(group_event, cpuctx, ctx))
653 return -EAGAIN;
656 * Schedule in siblings as one group (if any):
658 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
659 if (event_sched_in(event, cpuctx, ctx)) {
660 partial_group = event;
661 goto group_error;
665 return 0;
667 group_error:
669 * Groups can be scheduled in as one unit only, so undo any
670 * partial group before returning:
672 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
673 if (event == partial_group)
674 break;
675 event_sched_out(event, cpuctx, ctx);
677 event_sched_out(group_event, cpuctx, ctx);
679 return -EAGAIN;
683 * Work out whether we can put this event group on the CPU now.
685 static int group_can_go_on(struct perf_event *event,
686 struct perf_cpu_context *cpuctx,
687 int can_add_hw)
690 * Groups consisting entirely of software events can always go on.
692 if (event->group_flags & PERF_GROUP_SOFTWARE)
693 return 1;
695 * If an exclusive group is already on, no other hardware
696 * events can go on.
698 if (cpuctx->exclusive)
699 return 0;
701 * If this group is exclusive and there are already
702 * events on the CPU, it can't go on.
704 if (event->attr.exclusive && cpuctx->active_oncpu)
705 return 0;
707 * Otherwise, try to add it if all previous groups were able
708 * to go on.
710 return can_add_hw;
713 static void add_event_to_ctx(struct perf_event *event,
714 struct perf_event_context *ctx)
716 list_add_event(event, ctx);
717 event->tstamp_enabled = ctx->time;
718 event->tstamp_running = ctx->time;
719 event->tstamp_stopped = ctx->time;
723 * Cross CPU call to install and enable a performance event
725 * Must be called with ctx->mutex held
727 static void __perf_install_in_context(void *info)
729 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
730 struct perf_event *event = info;
731 struct perf_event_context *ctx = event->ctx;
732 struct perf_event *leader = event->group_leader;
733 int err;
736 * If this is a task context, we need to check whether it is
737 * the current task context of this cpu. If not it has been
738 * scheduled out before the smp call arrived.
739 * Or possibly this is the right context but it isn't
740 * on this cpu because it had no events.
742 if (ctx->task && cpuctx->task_ctx != ctx) {
743 if (cpuctx->task_ctx || ctx->task != current)
744 return;
745 cpuctx->task_ctx = ctx;
748 raw_spin_lock(&ctx->lock);
749 ctx->is_active = 1;
750 update_context_time(ctx);
753 * Protect the list operation against NMI by disabling the
754 * events on a global level. NOP for non NMI based events.
756 perf_disable();
758 add_event_to_ctx(event, ctx);
760 if (event->cpu != -1 && event->cpu != smp_processor_id())
761 goto unlock;
764 * Don't put the event on if it is disabled or if
765 * it is in a group and the group isn't on.
767 if (event->state != PERF_EVENT_STATE_INACTIVE ||
768 (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
769 goto unlock;
772 * An exclusive event can't go on if there are already active
773 * hardware events, and no hardware event can go on if there
774 * is already an exclusive event on.
776 if (!group_can_go_on(event, cpuctx, 1))
777 err = -EEXIST;
778 else
779 err = event_sched_in(event, cpuctx, ctx);
781 if (err) {
783 * This event couldn't go on. If it is in a group
784 * then we have to pull the whole group off.
785 * If the event group is pinned then put it in error state.
787 if (leader != event)
788 group_sched_out(leader, cpuctx, ctx);
789 if (leader->attr.pinned) {
790 update_group_times(leader);
791 leader->state = PERF_EVENT_STATE_ERROR;
795 if (!err && !ctx->task && cpuctx->max_pertask)
796 cpuctx->max_pertask--;
798 unlock:
799 perf_enable();
801 raw_spin_unlock(&ctx->lock);
805 * Attach a performance event to a context
807 * First we add the event to the list with the hardware enable bit
808 * in event->hw_config cleared.
810 * If the event is attached to a task which is on a CPU we use a smp
811 * call to enable it in the task context. The task might have been
812 * scheduled away, but we check this in the smp call again.
814 * Must be called with ctx->mutex held.
816 static void
817 perf_install_in_context(struct perf_event_context *ctx,
818 struct perf_event *event,
819 int cpu)
821 struct task_struct *task = ctx->task;
823 if (!task) {
825 * Per cpu events are installed via an smp call and
826 * the install is always successful.
828 smp_call_function_single(cpu, __perf_install_in_context,
829 event, 1);
830 return;
833 retry:
834 task_oncpu_function_call(task, __perf_install_in_context,
835 event);
837 raw_spin_lock_irq(&ctx->lock);
839 * we need to retry the smp call.
841 if (ctx->is_active && list_empty(&event->group_entry)) {
842 raw_spin_unlock_irq(&ctx->lock);
843 goto retry;
847 * The lock prevents that this context is scheduled in so we
848 * can add the event safely, if it the call above did not
849 * succeed.
851 if (list_empty(&event->group_entry))
852 add_event_to_ctx(event, ctx);
853 raw_spin_unlock_irq(&ctx->lock);
857 * Put a event into inactive state and update time fields.
858 * Enabling the leader of a group effectively enables all
859 * the group members that aren't explicitly disabled, so we
860 * have to update their ->tstamp_enabled also.
861 * Note: this works for group members as well as group leaders
862 * since the non-leader members' sibling_lists will be empty.
864 static void __perf_event_mark_enabled(struct perf_event *event,
865 struct perf_event_context *ctx)
867 struct perf_event *sub;
869 event->state = PERF_EVENT_STATE_INACTIVE;
870 event->tstamp_enabled = ctx->time - event->total_time_enabled;
871 list_for_each_entry(sub, &event->sibling_list, group_entry)
872 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
873 sub->tstamp_enabled =
874 ctx->time - sub->total_time_enabled;
878 * Cross CPU call to enable a performance event
880 static void __perf_event_enable(void *info)
882 struct perf_event *event = info;
883 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
884 struct perf_event_context *ctx = event->ctx;
885 struct perf_event *leader = event->group_leader;
886 int err;
889 * If this is a per-task event, need to check whether this
890 * event's task is the current task on this cpu.
892 if (ctx->task && cpuctx->task_ctx != ctx) {
893 if (cpuctx->task_ctx || ctx->task != current)
894 return;
895 cpuctx->task_ctx = ctx;
898 raw_spin_lock(&ctx->lock);
899 ctx->is_active = 1;
900 update_context_time(ctx);
902 if (event->state >= PERF_EVENT_STATE_INACTIVE)
903 goto unlock;
904 __perf_event_mark_enabled(event, ctx);
906 if (event->cpu != -1 && event->cpu != smp_processor_id())
907 goto unlock;
910 * If the event is in a group and isn't the group leader,
911 * then don't put it on unless the group is on.
913 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
914 goto unlock;
916 if (!group_can_go_on(event, cpuctx, 1)) {
917 err = -EEXIST;
918 } else {
919 perf_disable();
920 if (event == leader)
921 err = group_sched_in(event, cpuctx, ctx);
922 else
923 err = event_sched_in(event, cpuctx, ctx);
924 perf_enable();
927 if (err) {
929 * If this event can't go on and it's part of a
930 * group, then the whole group has to come off.
932 if (leader != event)
933 group_sched_out(leader, cpuctx, ctx);
934 if (leader->attr.pinned) {
935 update_group_times(leader);
936 leader->state = PERF_EVENT_STATE_ERROR;
940 unlock:
941 raw_spin_unlock(&ctx->lock);
945 * Enable a event.
947 * If event->ctx is a cloned context, callers must make sure that
948 * every task struct that event->ctx->task could possibly point to
949 * remains valid. This condition is satisfied when called through
950 * perf_event_for_each_child or perf_event_for_each as described
951 * for perf_event_disable.
953 void perf_event_enable(struct perf_event *event)
955 struct perf_event_context *ctx = event->ctx;
956 struct task_struct *task = ctx->task;
958 if (!task) {
960 * Enable the event on the cpu that it's on
962 smp_call_function_single(event->cpu, __perf_event_enable,
963 event, 1);
964 return;
967 raw_spin_lock_irq(&ctx->lock);
968 if (event->state >= PERF_EVENT_STATE_INACTIVE)
969 goto out;
972 * If the event is in error state, clear that first.
973 * That way, if we see the event in error state below, we
974 * know that it has gone back into error state, as distinct
975 * from the task having been scheduled away before the
976 * cross-call arrived.
978 if (event->state == PERF_EVENT_STATE_ERROR)
979 event->state = PERF_EVENT_STATE_OFF;
981 retry:
982 raw_spin_unlock_irq(&ctx->lock);
983 task_oncpu_function_call(task, __perf_event_enable, event);
985 raw_spin_lock_irq(&ctx->lock);
988 * If the context is active and the event is still off,
989 * we need to retry the cross-call.
991 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
992 goto retry;
995 * Since we have the lock this context can't be scheduled
996 * in, so we can change the state safely.
998 if (event->state == PERF_EVENT_STATE_OFF)
999 __perf_event_mark_enabled(event, ctx);
1001 out:
1002 raw_spin_unlock_irq(&ctx->lock);
1005 static int perf_event_refresh(struct perf_event *event, int refresh)
1008 * not supported on inherited events
1010 if (event->attr.inherit)
1011 return -EINVAL;
1013 atomic_add(refresh, &event->event_limit);
1014 perf_event_enable(event);
1016 return 0;
1019 enum event_type_t {
1020 EVENT_FLEXIBLE = 0x1,
1021 EVENT_PINNED = 0x2,
1022 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
1025 static void ctx_sched_out(struct perf_event_context *ctx,
1026 struct perf_cpu_context *cpuctx,
1027 enum event_type_t event_type)
1029 struct perf_event *event;
1031 raw_spin_lock(&ctx->lock);
1032 ctx->is_active = 0;
1033 if (likely(!ctx->nr_events))
1034 goto out;
1035 update_context_time(ctx);
1037 perf_disable();
1038 if (!ctx->nr_active)
1039 goto out_enable;
1041 if (event_type & EVENT_PINNED)
1042 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1043 group_sched_out(event, cpuctx, ctx);
1045 if (event_type & EVENT_FLEXIBLE)
1046 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1047 group_sched_out(event, cpuctx, ctx);
1049 out_enable:
1050 perf_enable();
1051 out:
1052 raw_spin_unlock(&ctx->lock);
1056 * Test whether two contexts are equivalent, i.e. whether they
1057 * have both been cloned from the same version of the same context
1058 * and they both have the same number of enabled events.
1059 * If the number of enabled events is the same, then the set
1060 * of enabled events should be the same, because these are both
1061 * inherited contexts, therefore we can't access individual events
1062 * in them directly with an fd; we can only enable/disable all
1063 * events via prctl, or enable/disable all events in a family
1064 * via ioctl, which will have the same effect on both contexts.
1066 static int context_equiv(struct perf_event_context *ctx1,
1067 struct perf_event_context *ctx2)
1069 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1070 && ctx1->parent_gen == ctx2->parent_gen
1071 && !ctx1->pin_count && !ctx2->pin_count;
1074 static void __perf_event_sync_stat(struct perf_event *event,
1075 struct perf_event *next_event)
1077 u64 value;
1079 if (!event->attr.inherit_stat)
1080 return;
1083 * Update the event value, we cannot use perf_event_read()
1084 * because we're in the middle of a context switch and have IRQs
1085 * disabled, which upsets smp_call_function_single(), however
1086 * we know the event must be on the current CPU, therefore we
1087 * don't need to use it.
1089 switch (event->state) {
1090 case PERF_EVENT_STATE_ACTIVE:
1091 event->pmu->read(event);
1092 /* fall-through */
1094 case PERF_EVENT_STATE_INACTIVE:
1095 update_event_times(event);
1096 break;
1098 default:
1099 break;
1103 * In order to keep per-task stats reliable we need to flip the event
1104 * values when we flip the contexts.
1106 value = atomic64_read(&next_event->count);
1107 value = atomic64_xchg(&event->count, value);
1108 atomic64_set(&next_event->count, value);
1110 swap(event->total_time_enabled, next_event->total_time_enabled);
1111 swap(event->total_time_running, next_event->total_time_running);
1114 * Since we swizzled the values, update the user visible data too.
1116 perf_event_update_userpage(event);
1117 perf_event_update_userpage(next_event);
1120 #define list_next_entry(pos, member) \
1121 list_entry(pos->member.next, typeof(*pos), member)
1123 static void perf_event_sync_stat(struct perf_event_context *ctx,
1124 struct perf_event_context *next_ctx)
1126 struct perf_event *event, *next_event;
1128 if (!ctx->nr_stat)
1129 return;
1131 update_context_time(ctx);
1133 event = list_first_entry(&ctx->event_list,
1134 struct perf_event, event_entry);
1136 next_event = list_first_entry(&next_ctx->event_list,
1137 struct perf_event, event_entry);
1139 while (&event->event_entry != &ctx->event_list &&
1140 &next_event->event_entry != &next_ctx->event_list) {
1142 __perf_event_sync_stat(event, next_event);
1144 event = list_next_entry(event, event_entry);
1145 next_event = list_next_entry(next_event, event_entry);
1150 * Called from scheduler to remove the events of the current task,
1151 * with interrupts disabled.
1153 * We stop each event and update the event value in event->count.
1155 * This does not protect us against NMI, but disable()
1156 * sets the disabled bit in the control field of event _before_
1157 * accessing the event control register. If a NMI hits, then it will
1158 * not restart the event.
1160 void perf_event_task_sched_out(struct task_struct *task,
1161 struct task_struct *next)
1163 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1164 struct perf_event_context *ctx = task->perf_event_ctxp;
1165 struct perf_event_context *next_ctx;
1166 struct perf_event_context *parent;
1167 int do_switch = 1;
1169 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, NULL, 0);
1171 if (likely(!ctx || !cpuctx->task_ctx))
1172 return;
1174 rcu_read_lock();
1175 parent = rcu_dereference(ctx->parent_ctx);
1176 next_ctx = next->perf_event_ctxp;
1177 if (parent && next_ctx &&
1178 rcu_dereference(next_ctx->parent_ctx) == parent) {
1180 * Looks like the two contexts are clones, so we might be
1181 * able to optimize the context switch. We lock both
1182 * contexts and check that they are clones under the
1183 * lock (including re-checking that neither has been
1184 * uncloned in the meantime). It doesn't matter which
1185 * order we take the locks because no other cpu could
1186 * be trying to lock both of these tasks.
1188 raw_spin_lock(&ctx->lock);
1189 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1190 if (context_equiv(ctx, next_ctx)) {
1192 * XXX do we need a memory barrier of sorts
1193 * wrt to rcu_dereference() of perf_event_ctxp
1195 task->perf_event_ctxp = next_ctx;
1196 next->perf_event_ctxp = ctx;
1197 ctx->task = next;
1198 next_ctx->task = task;
1199 do_switch = 0;
1201 perf_event_sync_stat(ctx, next_ctx);
1203 raw_spin_unlock(&next_ctx->lock);
1204 raw_spin_unlock(&ctx->lock);
1206 rcu_read_unlock();
1208 if (do_switch) {
1209 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1210 cpuctx->task_ctx = NULL;
1214 static void task_ctx_sched_out(struct perf_event_context *ctx,
1215 enum event_type_t event_type)
1217 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1219 if (!cpuctx->task_ctx)
1220 return;
1222 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1223 return;
1225 ctx_sched_out(ctx, cpuctx, event_type);
1226 cpuctx->task_ctx = NULL;
1230 * Called with IRQs disabled
1232 static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1234 task_ctx_sched_out(ctx, EVENT_ALL);
1238 * Called with IRQs disabled
1240 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
1241 enum event_type_t event_type)
1243 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
1246 static void
1247 ctx_pinned_sched_in(struct perf_event_context *ctx,
1248 struct perf_cpu_context *cpuctx)
1250 struct perf_event *event;
1252 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1253 if (event->state <= PERF_EVENT_STATE_OFF)
1254 continue;
1255 if (event->cpu != -1 && event->cpu != smp_processor_id())
1256 continue;
1258 if (group_can_go_on(event, cpuctx, 1))
1259 group_sched_in(event, cpuctx, ctx);
1262 * If this pinned group hasn't been scheduled,
1263 * put it in error state.
1265 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1266 update_group_times(event);
1267 event->state = PERF_EVENT_STATE_ERROR;
1272 static void
1273 ctx_flexible_sched_in(struct perf_event_context *ctx,
1274 struct perf_cpu_context *cpuctx)
1276 struct perf_event *event;
1277 int can_add_hw = 1;
1279 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1280 /* Ignore events in OFF or ERROR state */
1281 if (event->state <= PERF_EVENT_STATE_OFF)
1282 continue;
1284 * Listen to the 'cpu' scheduling filter constraint
1285 * of events:
1287 if (event->cpu != -1 && event->cpu != smp_processor_id())
1288 continue;
1290 if (group_can_go_on(event, cpuctx, can_add_hw))
1291 if (group_sched_in(event, cpuctx, ctx))
1292 can_add_hw = 0;
1296 static void
1297 ctx_sched_in(struct perf_event_context *ctx,
1298 struct perf_cpu_context *cpuctx,
1299 enum event_type_t event_type)
1301 raw_spin_lock(&ctx->lock);
1302 ctx->is_active = 1;
1303 if (likely(!ctx->nr_events))
1304 goto out;
1306 ctx->timestamp = perf_clock();
1308 perf_disable();
1311 * First go through the list and put on any pinned groups
1312 * in order to give them the best chance of going on.
1314 if (event_type & EVENT_PINNED)
1315 ctx_pinned_sched_in(ctx, cpuctx);
1317 /* Then walk through the lower prio flexible groups */
1318 if (event_type & EVENT_FLEXIBLE)
1319 ctx_flexible_sched_in(ctx, cpuctx);
1321 perf_enable();
1322 out:
1323 raw_spin_unlock(&ctx->lock);
1326 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
1327 enum event_type_t event_type)
1329 struct perf_event_context *ctx = &cpuctx->ctx;
1331 ctx_sched_in(ctx, cpuctx, event_type);
1334 static void task_ctx_sched_in(struct task_struct *task,
1335 enum event_type_t event_type)
1337 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1338 struct perf_event_context *ctx = task->perf_event_ctxp;
1340 if (likely(!ctx))
1341 return;
1342 if (cpuctx->task_ctx == ctx)
1343 return;
1344 ctx_sched_in(ctx, cpuctx, event_type);
1345 cpuctx->task_ctx = ctx;
1348 * Called from scheduler to add the events of the current task
1349 * with interrupts disabled.
1351 * We restore the event value and then enable it.
1353 * This does not protect us against NMI, but enable()
1354 * sets the enabled bit in the control field of event _before_
1355 * accessing the event control register. If a NMI hits, then it will
1356 * keep the event running.
1358 void perf_event_task_sched_in(struct task_struct *task)
1360 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1361 struct perf_event_context *ctx = task->perf_event_ctxp;
1363 if (likely(!ctx))
1364 return;
1366 if (cpuctx->task_ctx == ctx)
1367 return;
1370 * We want to keep the following priority order:
1371 * cpu pinned (that don't need to move), task pinned,
1372 * cpu flexible, task flexible.
1374 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1376 ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
1377 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1378 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);
1380 cpuctx->task_ctx = ctx;
1383 #define MAX_INTERRUPTS (~0ULL)
1385 static void perf_log_throttle(struct perf_event *event, int enable);
1387 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
1389 u64 frequency = event->attr.sample_freq;
1390 u64 sec = NSEC_PER_SEC;
1391 u64 divisor, dividend;
1393 int count_fls, nsec_fls, frequency_fls, sec_fls;
1395 count_fls = fls64(count);
1396 nsec_fls = fls64(nsec);
1397 frequency_fls = fls64(frequency);
1398 sec_fls = 30;
1401 * We got @count in @nsec, with a target of sample_freq HZ
1402 * the target period becomes:
1404 * @count * 10^9
1405 * period = -------------------
1406 * @nsec * sample_freq
1411 * Reduce accuracy by one bit such that @a and @b converge
1412 * to a similar magnitude.
1414 #define REDUCE_FLS(a, b) \
1415 do { \
1416 if (a##_fls > b##_fls) { \
1417 a >>= 1; \
1418 a##_fls--; \
1419 } else { \
1420 b >>= 1; \
1421 b##_fls--; \
1423 } while (0)
1426 * Reduce accuracy until either term fits in a u64, then proceed with
1427 * the other, so that finally we can do a u64/u64 division.
1429 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
1430 REDUCE_FLS(nsec, frequency);
1431 REDUCE_FLS(sec, count);
1434 if (count_fls + sec_fls > 64) {
1435 divisor = nsec * frequency;
1437 while (count_fls + sec_fls > 64) {
1438 REDUCE_FLS(count, sec);
1439 divisor >>= 1;
1442 dividend = count * sec;
1443 } else {
1444 dividend = count * sec;
1446 while (nsec_fls + frequency_fls > 64) {
1447 REDUCE_FLS(nsec, frequency);
1448 dividend >>= 1;
1451 divisor = nsec * frequency;
1454 return div64_u64(dividend, divisor);
1457 static void perf_event_stop(struct perf_event *event)
1459 if (!event->pmu->stop)
1460 return event->pmu->disable(event);
1462 return event->pmu->stop(event);
1465 static int perf_event_start(struct perf_event *event)
1467 if (!event->pmu->start)
1468 return event->pmu->enable(event);
1470 return event->pmu->start(event);
1473 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
1475 struct hw_perf_event *hwc = &event->hw;
1476 u64 period, sample_period;
1477 s64 delta;
1479 period = perf_calculate_period(event, nsec, count);
1481 delta = (s64)(period - hwc->sample_period);
1482 delta = (delta + 7) / 8; /* low pass filter */
1484 sample_period = hwc->sample_period + delta;
1486 if (!sample_period)
1487 sample_period = 1;
1489 hwc->sample_period = sample_period;
1491 if (atomic64_read(&hwc->period_left) > 8*sample_period) {
1492 perf_disable();
1493 perf_event_stop(event);
1494 atomic64_set(&hwc->period_left, 0);
1495 perf_event_start(event);
1496 perf_enable();
1500 static void perf_ctx_adjust_freq(struct perf_event_context *ctx)
1502 struct perf_event *event;
1503 struct hw_perf_event *hwc;
1504 u64 interrupts, now;
1505 s64 delta;
1507 raw_spin_lock(&ctx->lock);
1508 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1509 if (event->state != PERF_EVENT_STATE_ACTIVE)
1510 continue;
1512 if (event->cpu != -1 && event->cpu != smp_processor_id())
1513 continue;
1515 hwc = &event->hw;
1517 interrupts = hwc->interrupts;
1518 hwc->interrupts = 0;
1521 * unthrottle events on the tick
1523 if (interrupts == MAX_INTERRUPTS) {
1524 perf_log_throttle(event, 1);
1525 perf_disable();
1526 event->pmu->unthrottle(event);
1527 perf_enable();
1530 if (!event->attr.freq || !event->attr.sample_freq)
1531 continue;
1533 perf_disable();
1534 event->pmu->read(event);
1535 now = atomic64_read(&event->count);
1536 delta = now - hwc->freq_count_stamp;
1537 hwc->freq_count_stamp = now;
1539 if (delta > 0)
1540 perf_adjust_period(event, TICK_NSEC, delta);
1541 perf_enable();
1543 raw_spin_unlock(&ctx->lock);
1547 * Round-robin a context's events:
1549 static void rotate_ctx(struct perf_event_context *ctx)
1551 raw_spin_lock(&ctx->lock);
1553 /* Rotate the first entry last of non-pinned groups */
1554 list_rotate_left(&ctx->flexible_groups);
1556 raw_spin_unlock(&ctx->lock);
1559 void perf_event_task_tick(struct task_struct *curr)
1561 struct perf_cpu_context *cpuctx;
1562 struct perf_event_context *ctx;
1563 int rotate = 0;
1565 if (!atomic_read(&nr_events))
1566 return;
1568 cpuctx = &__get_cpu_var(perf_cpu_context);
1569 if (cpuctx->ctx.nr_events &&
1570 cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
1571 rotate = 1;
1573 ctx = curr->perf_event_ctxp;
1574 if (ctx && ctx->nr_events && ctx->nr_events != ctx->nr_active)
1575 rotate = 1;
1577 perf_ctx_adjust_freq(&cpuctx->ctx);
1578 if (ctx)
1579 perf_ctx_adjust_freq(ctx);
1581 if (!rotate)
1582 return;
1584 perf_disable();
1585 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1586 if (ctx)
1587 task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
1589 rotate_ctx(&cpuctx->ctx);
1590 if (ctx)
1591 rotate_ctx(ctx);
1593 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1594 if (ctx)
1595 task_ctx_sched_in(curr, EVENT_FLEXIBLE);
1596 perf_enable();
1599 static int event_enable_on_exec(struct perf_event *event,
1600 struct perf_event_context *ctx)
1602 if (!event->attr.enable_on_exec)
1603 return 0;
1605 event->attr.enable_on_exec = 0;
1606 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1607 return 0;
1609 __perf_event_mark_enabled(event, ctx);
1611 return 1;
1615 * Enable all of a task's events that have been marked enable-on-exec.
1616 * This expects task == current.
1618 static void perf_event_enable_on_exec(struct task_struct *task)
1620 struct perf_event_context *ctx;
1621 struct perf_event *event;
1622 unsigned long flags;
1623 int enabled = 0;
1624 int ret;
1626 local_irq_save(flags);
1627 ctx = task->perf_event_ctxp;
1628 if (!ctx || !ctx->nr_events)
1629 goto out;
1631 __perf_event_task_sched_out(ctx);
1633 raw_spin_lock(&ctx->lock);
1635 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1636 ret = event_enable_on_exec(event, ctx);
1637 if (ret)
1638 enabled = 1;
1641 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1642 ret = event_enable_on_exec(event, ctx);
1643 if (ret)
1644 enabled = 1;
1648 * Unclone this context if we enabled any event.
1650 if (enabled)
1651 unclone_ctx(ctx);
1653 raw_spin_unlock(&ctx->lock);
1655 perf_event_task_sched_in(task);
1656 out:
1657 local_irq_restore(flags);
1661 * Cross CPU call to read the hardware event
1663 static void __perf_event_read(void *info)
1665 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1666 struct perf_event *event = info;
1667 struct perf_event_context *ctx = event->ctx;
1670 * If this is a task context, we need to check whether it is
1671 * the current task context of this cpu. If not it has been
1672 * scheduled out before the smp call arrived. In that case
1673 * event->count would have been updated to a recent sample
1674 * when the event was scheduled out.
1676 if (ctx->task && cpuctx->task_ctx != ctx)
1677 return;
1679 raw_spin_lock(&ctx->lock);
1680 update_context_time(ctx);
1681 update_event_times(event);
1682 raw_spin_unlock(&ctx->lock);
1684 event->pmu->read(event);
1687 static u64 perf_event_read(struct perf_event *event)
1690 * If event is enabled and currently active on a CPU, update the
1691 * value in the event structure:
1693 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1694 smp_call_function_single(event->oncpu,
1695 __perf_event_read, event, 1);
1696 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
1697 struct perf_event_context *ctx = event->ctx;
1698 unsigned long flags;
1700 raw_spin_lock_irqsave(&ctx->lock, flags);
1701 update_context_time(ctx);
1702 update_event_times(event);
1703 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1706 return atomic64_read(&event->count);
1710 * Initialize the perf_event context in a task_struct:
1712 static void
1713 __perf_event_init_context(struct perf_event_context *ctx,
1714 struct task_struct *task)
1716 raw_spin_lock_init(&ctx->lock);
1717 mutex_init(&ctx->mutex);
1718 INIT_LIST_HEAD(&ctx->pinned_groups);
1719 INIT_LIST_HEAD(&ctx->flexible_groups);
1720 INIT_LIST_HEAD(&ctx->event_list);
1721 atomic_set(&ctx->refcount, 1);
1722 ctx->task = task;
1725 static struct perf_event_context *find_get_context(pid_t pid, int cpu)
1727 struct perf_event_context *ctx;
1728 struct perf_cpu_context *cpuctx;
1729 struct task_struct *task;
1730 unsigned long flags;
1731 int err;
1733 if (pid == -1 && cpu != -1) {
1734 /* Must be root to operate on a CPU event: */
1735 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
1736 return ERR_PTR(-EACCES);
1738 if (cpu < 0 || cpu >= nr_cpumask_bits)
1739 return ERR_PTR(-EINVAL);
1742 * We could be clever and allow to attach a event to an
1743 * offline CPU and activate it when the CPU comes up, but
1744 * that's for later.
1746 if (!cpu_online(cpu))
1747 return ERR_PTR(-ENODEV);
1749 cpuctx = &per_cpu(perf_cpu_context, cpu);
1750 ctx = &cpuctx->ctx;
1751 get_ctx(ctx);
1753 return ctx;
1756 rcu_read_lock();
1757 if (!pid)
1758 task = current;
1759 else
1760 task = find_task_by_vpid(pid);
1761 if (task)
1762 get_task_struct(task);
1763 rcu_read_unlock();
1765 if (!task)
1766 return ERR_PTR(-ESRCH);
1769 * Can't attach events to a dying task.
1771 err = -ESRCH;
1772 if (task->flags & PF_EXITING)
1773 goto errout;
1775 /* Reuse ptrace permission checks for now. */
1776 err = -EACCES;
1777 if (!ptrace_may_access(task, PTRACE_MODE_READ))
1778 goto errout;
1780 retry:
1781 ctx = perf_lock_task_context(task, &flags);
1782 if (ctx) {
1783 unclone_ctx(ctx);
1784 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1787 if (!ctx) {
1788 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
1789 err = -ENOMEM;
1790 if (!ctx)
1791 goto errout;
1792 __perf_event_init_context(ctx, task);
1793 get_ctx(ctx);
1794 if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) {
1796 * We raced with some other task; use
1797 * the context they set.
1799 kfree(ctx);
1800 goto retry;
1802 get_task_struct(task);
1805 put_task_struct(task);
1806 return ctx;
1808 errout:
1809 put_task_struct(task);
1810 return ERR_PTR(err);
1813 static void perf_event_free_filter(struct perf_event *event);
1815 static void free_event_rcu(struct rcu_head *head)
1817 struct perf_event *event;
1819 event = container_of(head, struct perf_event, rcu_head);
1820 if (event->ns)
1821 put_pid_ns(event->ns);
1822 perf_event_free_filter(event);
1823 kfree(event);
1826 static void perf_pending_sync(struct perf_event *event);
1828 static void free_event(struct perf_event *event)
1830 perf_pending_sync(event);
1832 if (!event->parent) {
1833 atomic_dec(&nr_events);
1834 if (event->attr.mmap)
1835 atomic_dec(&nr_mmap_events);
1836 if (event->attr.comm)
1837 atomic_dec(&nr_comm_events);
1838 if (event->attr.task)
1839 atomic_dec(&nr_task_events);
1842 if (event->output) {
1843 fput(event->output->filp);
1844 event->output = NULL;
1847 if (event->destroy)
1848 event->destroy(event);
1850 put_ctx(event->ctx);
1851 call_rcu(&event->rcu_head, free_event_rcu);
1854 int perf_event_release_kernel(struct perf_event *event)
1856 struct perf_event_context *ctx = event->ctx;
1858 WARN_ON_ONCE(ctx->parent_ctx);
1859 mutex_lock(&ctx->mutex);
1860 perf_event_remove_from_context(event);
1861 mutex_unlock(&ctx->mutex);
1863 mutex_lock(&event->owner->perf_event_mutex);
1864 list_del_init(&event->owner_entry);
1865 mutex_unlock(&event->owner->perf_event_mutex);
1866 put_task_struct(event->owner);
1868 free_event(event);
1870 return 0;
1872 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
1875 * Called when the last reference to the file is gone.
1877 static int perf_release(struct inode *inode, struct file *file)
1879 struct perf_event *event = file->private_data;
1881 file->private_data = NULL;
1883 return perf_event_release_kernel(event);
1886 static int perf_event_read_size(struct perf_event *event)
1888 int entry = sizeof(u64); /* value */
1889 int size = 0;
1890 int nr = 1;
1892 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1893 size += sizeof(u64);
1895 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1896 size += sizeof(u64);
1898 if (event->attr.read_format & PERF_FORMAT_ID)
1899 entry += sizeof(u64);
1901 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1902 nr += event->group_leader->nr_siblings;
1903 size += sizeof(u64);
1906 size += entry * nr;
1908 return size;
1911 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
1913 struct perf_event *child;
1914 u64 total = 0;
1916 *enabled = 0;
1917 *running = 0;
1919 mutex_lock(&event->child_mutex);
1920 total += perf_event_read(event);
1921 *enabled += event->total_time_enabled +
1922 atomic64_read(&event->child_total_time_enabled);
1923 *running += event->total_time_running +
1924 atomic64_read(&event->child_total_time_running);
1926 list_for_each_entry(child, &event->child_list, child_list) {
1927 total += perf_event_read(child);
1928 *enabled += child->total_time_enabled;
1929 *running += child->total_time_running;
1931 mutex_unlock(&event->child_mutex);
1933 return total;
1935 EXPORT_SYMBOL_GPL(perf_event_read_value);
1937 static int perf_event_read_group(struct perf_event *event,
1938 u64 read_format, char __user *buf)
1940 struct perf_event *leader = event->group_leader, *sub;
1941 int n = 0, size = 0, ret = -EFAULT;
1942 struct perf_event_context *ctx = leader->ctx;
1943 u64 values[5];
1944 u64 count, enabled, running;
1946 mutex_lock(&ctx->mutex);
1947 count = perf_event_read_value(leader, &enabled, &running);
1949 values[n++] = 1 + leader->nr_siblings;
1950 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1951 values[n++] = enabled;
1952 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1953 values[n++] = running;
1954 values[n++] = count;
1955 if (read_format & PERF_FORMAT_ID)
1956 values[n++] = primary_event_id(leader);
1958 size = n * sizeof(u64);
1960 if (copy_to_user(buf, values, size))
1961 goto unlock;
1963 ret = size;
1965 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
1966 n = 0;
1968 values[n++] = perf_event_read_value(sub, &enabled, &running);
1969 if (read_format & PERF_FORMAT_ID)
1970 values[n++] = primary_event_id(sub);
1972 size = n * sizeof(u64);
1974 if (copy_to_user(buf + ret, values, size)) {
1975 ret = -EFAULT;
1976 goto unlock;
1979 ret += size;
1981 unlock:
1982 mutex_unlock(&ctx->mutex);
1984 return ret;
1987 static int perf_event_read_one(struct perf_event *event,
1988 u64 read_format, char __user *buf)
1990 u64 enabled, running;
1991 u64 values[4];
1992 int n = 0;
1994 values[n++] = perf_event_read_value(event, &enabled, &running);
1995 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1996 values[n++] = enabled;
1997 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1998 values[n++] = running;
1999 if (read_format & PERF_FORMAT_ID)
2000 values[n++] = primary_event_id(event);
2002 if (copy_to_user(buf, values, n * sizeof(u64)))
2003 return -EFAULT;
2005 return n * sizeof(u64);
2009 * Read the performance event - simple non blocking version for now
2011 static ssize_t
2012 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
2014 u64 read_format = event->attr.read_format;
2015 int ret;
2018 * Return end-of-file for a read on a event that is in
2019 * error state (i.e. because it was pinned but it couldn't be
2020 * scheduled on to the CPU at some point).
2022 if (event->state == PERF_EVENT_STATE_ERROR)
2023 return 0;
2025 if (count < perf_event_read_size(event))
2026 return -ENOSPC;
2028 WARN_ON_ONCE(event->ctx->parent_ctx);
2029 if (read_format & PERF_FORMAT_GROUP)
2030 ret = perf_event_read_group(event, read_format, buf);
2031 else
2032 ret = perf_event_read_one(event, read_format, buf);
2034 return ret;
2037 static ssize_t
2038 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
2040 struct perf_event *event = file->private_data;
2042 return perf_read_hw(event, buf, count);
2045 static unsigned int perf_poll(struct file *file, poll_table *wait)
2047 struct perf_event *event = file->private_data;
2048 struct perf_mmap_data *data;
2049 unsigned int events = POLL_HUP;
2051 rcu_read_lock();
2052 data = rcu_dereference(event->data);
2053 if (data)
2054 events = atomic_xchg(&data->poll, 0);
2055 rcu_read_unlock();
2057 poll_wait(file, &event->waitq, wait);
2059 return events;
2062 static void perf_event_reset(struct perf_event *event)
2064 (void)perf_event_read(event);
2065 atomic64_set(&event->count, 0);
2066 perf_event_update_userpage(event);
2070 * Holding the top-level event's child_mutex means that any
2071 * descendant process that has inherited this event will block
2072 * in sync_child_event if it goes to exit, thus satisfying the
2073 * task existence requirements of perf_event_enable/disable.
2075 static void perf_event_for_each_child(struct perf_event *event,
2076 void (*func)(struct perf_event *))
2078 struct perf_event *child;
2080 WARN_ON_ONCE(event->ctx->parent_ctx);
2081 mutex_lock(&event->child_mutex);
2082 func(event);
2083 list_for_each_entry(child, &event->child_list, child_list)
2084 func(child);
2085 mutex_unlock(&event->child_mutex);
2088 static void perf_event_for_each(struct perf_event *event,
2089 void (*func)(struct perf_event *))
2091 struct perf_event_context *ctx = event->ctx;
2092 struct perf_event *sibling;
2094 WARN_ON_ONCE(ctx->parent_ctx);
2095 mutex_lock(&ctx->mutex);
2096 event = event->group_leader;
2098 perf_event_for_each_child(event, func);
2099 func(event);
2100 list_for_each_entry(sibling, &event->sibling_list, group_entry)
2101 perf_event_for_each_child(event, func);
2102 mutex_unlock(&ctx->mutex);
2105 static int perf_event_period(struct perf_event *event, u64 __user *arg)
2107 struct perf_event_context *ctx = event->ctx;
2108 unsigned long size;
2109 int ret = 0;
2110 u64 value;
2112 if (!event->attr.sample_period)
2113 return -EINVAL;
2115 size = copy_from_user(&value, arg, sizeof(value));
2116 if (size != sizeof(value))
2117 return -EFAULT;
2119 if (!value)
2120 return -EINVAL;
2122 raw_spin_lock_irq(&ctx->lock);
2123 if (event->attr.freq) {
2124 if (value > sysctl_perf_event_sample_rate) {
2125 ret = -EINVAL;
2126 goto unlock;
2129 event->attr.sample_freq = value;
2130 } else {
2131 event->attr.sample_period = value;
2132 event->hw.sample_period = value;
2134 unlock:
2135 raw_spin_unlock_irq(&ctx->lock);
2137 return ret;
2140 static int perf_event_set_output(struct perf_event *event, int output_fd);
2141 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2143 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2145 struct perf_event *event = file->private_data;
2146 void (*func)(struct perf_event *);
2147 u32 flags = arg;
2149 switch (cmd) {
2150 case PERF_EVENT_IOC_ENABLE:
2151 func = perf_event_enable;
2152 break;
2153 case PERF_EVENT_IOC_DISABLE:
2154 func = perf_event_disable;
2155 break;
2156 case PERF_EVENT_IOC_RESET:
2157 func = perf_event_reset;
2158 break;
2160 case PERF_EVENT_IOC_REFRESH:
2161 return perf_event_refresh(event, arg);
2163 case PERF_EVENT_IOC_PERIOD:
2164 return perf_event_period(event, (u64 __user *)arg);
2166 case PERF_EVENT_IOC_SET_OUTPUT:
2167 return perf_event_set_output(event, arg);
2169 case PERF_EVENT_IOC_SET_FILTER:
2170 return perf_event_set_filter(event, (void __user *)arg);
2172 default:
2173 return -ENOTTY;
2176 if (flags & PERF_IOC_FLAG_GROUP)
2177 perf_event_for_each(event, func);
2178 else
2179 perf_event_for_each_child(event, func);
2181 return 0;
2184 int perf_event_task_enable(void)
2186 struct perf_event *event;
2188 mutex_lock(&current->perf_event_mutex);
2189 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2190 perf_event_for_each_child(event, perf_event_enable);
2191 mutex_unlock(&current->perf_event_mutex);
2193 return 0;
2196 int perf_event_task_disable(void)
2198 struct perf_event *event;
2200 mutex_lock(&current->perf_event_mutex);
2201 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2202 perf_event_for_each_child(event, perf_event_disable);
2203 mutex_unlock(&current->perf_event_mutex);
2205 return 0;
2208 #ifndef PERF_EVENT_INDEX_OFFSET
2209 # define PERF_EVENT_INDEX_OFFSET 0
2210 #endif
2212 static int perf_event_index(struct perf_event *event)
2214 if (event->state != PERF_EVENT_STATE_ACTIVE)
2215 return 0;
2217 return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2221 * Callers need to ensure there can be no nesting of this function, otherwise
2222 * the seqlock logic goes bad. We can not serialize this because the arch
2223 * code calls this from NMI context.
2225 void perf_event_update_userpage(struct perf_event *event)
2227 struct perf_event_mmap_page *userpg;
2228 struct perf_mmap_data *data;
2230 rcu_read_lock();
2231 data = rcu_dereference(event->data);
2232 if (!data)
2233 goto unlock;
2235 userpg = data->user_page;
2238 * Disable preemption so as to not let the corresponding user-space
2239 * spin too long if we get preempted.
2241 preempt_disable();
2242 ++userpg->lock;
2243 barrier();
2244 userpg->index = perf_event_index(event);
2245 userpg->offset = atomic64_read(&event->count);
2246 if (event->state == PERF_EVENT_STATE_ACTIVE)
2247 userpg->offset -= atomic64_read(&event->hw.prev_count);
2249 userpg->time_enabled = event->total_time_enabled +
2250 atomic64_read(&event->child_total_time_enabled);
2252 userpg->time_running = event->total_time_running +
2253 atomic64_read(&event->child_total_time_running);
2255 barrier();
2256 ++userpg->lock;
2257 preempt_enable();
2258 unlock:
2259 rcu_read_unlock();
2262 static unsigned long perf_data_size(struct perf_mmap_data *data)
2264 return data->nr_pages << (PAGE_SHIFT + data->data_order);
2267 #ifndef CONFIG_PERF_USE_VMALLOC
2270 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2273 static struct page *
2274 perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2276 if (pgoff > data->nr_pages)
2277 return NULL;
2279 if (pgoff == 0)
2280 return virt_to_page(data->user_page);
2282 return virt_to_page(data->data_pages[pgoff - 1]);
2285 static struct perf_mmap_data *
2286 perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2288 struct perf_mmap_data *data;
2289 unsigned long size;
2290 int i;
2292 WARN_ON(atomic_read(&event->mmap_count));
2294 size = sizeof(struct perf_mmap_data);
2295 size += nr_pages * sizeof(void *);
2297 data = kzalloc(size, GFP_KERNEL);
2298 if (!data)
2299 goto fail;
2301 data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
2302 if (!data->user_page)
2303 goto fail_user_page;
2305 for (i = 0; i < nr_pages; i++) {
2306 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
2307 if (!data->data_pages[i])
2308 goto fail_data_pages;
2311 data->data_order = 0;
2312 data->nr_pages = nr_pages;
2314 return data;
2316 fail_data_pages:
2317 for (i--; i >= 0; i--)
2318 free_page((unsigned long)data->data_pages[i]);
2320 free_page((unsigned long)data->user_page);
2322 fail_user_page:
2323 kfree(data);
2325 fail:
2326 return NULL;
2329 static void perf_mmap_free_page(unsigned long addr)
2331 struct page *page = virt_to_page((void *)addr);
2333 page->mapping = NULL;
2334 __free_page(page);
2337 static void perf_mmap_data_free(struct perf_mmap_data *data)
2339 int i;
2341 perf_mmap_free_page((unsigned long)data->user_page);
2342 for (i = 0; i < data->nr_pages; i++)
2343 perf_mmap_free_page((unsigned long)data->data_pages[i]);
2344 kfree(data);
2347 #else
2350 * Back perf_mmap() with vmalloc memory.
2352 * Required for architectures that have d-cache aliasing issues.
2355 static struct page *
2356 perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2358 if (pgoff > (1UL << data->data_order))
2359 return NULL;
2361 return vmalloc_to_page((void *)data->user_page + pgoff * PAGE_SIZE);
2364 static void perf_mmap_unmark_page(void *addr)
2366 struct page *page = vmalloc_to_page(addr);
2368 page->mapping = NULL;
2371 static void perf_mmap_data_free_work(struct work_struct *work)
2373 struct perf_mmap_data *data;
2374 void *base;
2375 int i, nr;
2377 data = container_of(work, struct perf_mmap_data, work);
2378 nr = 1 << data->data_order;
2380 base = data->user_page;
2381 for (i = 0; i < nr + 1; i++)
2382 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
2384 vfree(base);
2385 kfree(data);
2388 static void perf_mmap_data_free(struct perf_mmap_data *data)
2390 schedule_work(&data->work);
2393 static struct perf_mmap_data *
2394 perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2396 struct perf_mmap_data *data;
2397 unsigned long size;
2398 void *all_buf;
2400 WARN_ON(atomic_read(&event->mmap_count));
2402 size = sizeof(struct perf_mmap_data);
2403 size += sizeof(void *);
2405 data = kzalloc(size, GFP_KERNEL);
2406 if (!data)
2407 goto fail;
2409 INIT_WORK(&data->work, perf_mmap_data_free_work);
2411 all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
2412 if (!all_buf)
2413 goto fail_all_buf;
2415 data->user_page = all_buf;
2416 data->data_pages[0] = all_buf + PAGE_SIZE;
2417 data->data_order = ilog2(nr_pages);
2418 data->nr_pages = 1;
2420 return data;
2422 fail_all_buf:
2423 kfree(data);
2425 fail:
2426 return NULL;
2429 #endif
2431 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2433 struct perf_event *event = vma->vm_file->private_data;
2434 struct perf_mmap_data *data;
2435 int ret = VM_FAULT_SIGBUS;
2437 if (vmf->flags & FAULT_FLAG_MKWRITE) {
2438 if (vmf->pgoff == 0)
2439 ret = 0;
2440 return ret;
2443 rcu_read_lock();
2444 data = rcu_dereference(event->data);
2445 if (!data)
2446 goto unlock;
2448 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
2449 goto unlock;
2451 vmf->page = perf_mmap_to_page(data, vmf->pgoff);
2452 if (!vmf->page)
2453 goto unlock;
2455 get_page(vmf->page);
2456 vmf->page->mapping = vma->vm_file->f_mapping;
2457 vmf->page->index = vmf->pgoff;
2459 ret = 0;
2460 unlock:
2461 rcu_read_unlock();
2463 return ret;
2466 static void
2467 perf_mmap_data_init(struct perf_event *event, struct perf_mmap_data *data)
2469 long max_size = perf_data_size(data);
2471 atomic_set(&data->lock, -1);
2473 if (event->attr.watermark) {
2474 data->watermark = min_t(long, max_size,
2475 event->attr.wakeup_watermark);
2478 if (!data->watermark)
2479 data->watermark = max_size / 2;
2482 rcu_assign_pointer(event->data, data);
2485 static void perf_mmap_data_free_rcu(struct rcu_head *rcu_head)
2487 struct perf_mmap_data *data;
2489 data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
2490 perf_mmap_data_free(data);
2493 static void perf_mmap_data_release(struct perf_event *event)
2495 struct perf_mmap_data *data = event->data;
2497 WARN_ON(atomic_read(&event->mmap_count));
2499 rcu_assign_pointer(event->data, NULL);
2500 call_rcu(&data->rcu_head, perf_mmap_data_free_rcu);
2503 static void perf_mmap_open(struct vm_area_struct *vma)
2505 struct perf_event *event = vma->vm_file->private_data;
2507 atomic_inc(&event->mmap_count);
2510 static void perf_mmap_close(struct vm_area_struct *vma)
2512 struct perf_event *event = vma->vm_file->private_data;
2514 WARN_ON_ONCE(event->ctx->parent_ctx);
2515 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
2516 unsigned long size = perf_data_size(event->data);
2517 struct user_struct *user = current_user();
2519 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
2520 vma->vm_mm->locked_vm -= event->data->nr_locked;
2521 perf_mmap_data_release(event);
2522 mutex_unlock(&event->mmap_mutex);
2526 static const struct vm_operations_struct perf_mmap_vmops = {
2527 .open = perf_mmap_open,
2528 .close = perf_mmap_close,
2529 .fault = perf_mmap_fault,
2530 .page_mkwrite = perf_mmap_fault,
2533 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
2535 struct perf_event *event = file->private_data;
2536 unsigned long user_locked, user_lock_limit;
2537 struct user_struct *user = current_user();
2538 unsigned long locked, lock_limit;
2539 struct perf_mmap_data *data;
2540 unsigned long vma_size;
2541 unsigned long nr_pages;
2542 long user_extra, extra;
2543 int ret = 0;
2545 if (!(vma->vm_flags & VM_SHARED))
2546 return -EINVAL;
2548 vma_size = vma->vm_end - vma->vm_start;
2549 nr_pages = (vma_size / PAGE_SIZE) - 1;
2552 * If we have data pages ensure they're a power-of-two number, so we
2553 * can do bitmasks instead of modulo.
2555 if (nr_pages != 0 && !is_power_of_2(nr_pages))
2556 return -EINVAL;
2558 if (vma_size != PAGE_SIZE * (1 + nr_pages))
2559 return -EINVAL;
2561 if (vma->vm_pgoff != 0)
2562 return -EINVAL;
2564 WARN_ON_ONCE(event->ctx->parent_ctx);
2565 mutex_lock(&event->mmap_mutex);
2566 if (event->output) {
2567 ret = -EINVAL;
2568 goto unlock;
2571 if (atomic_inc_not_zero(&event->mmap_count)) {
2572 if (nr_pages != event->data->nr_pages)
2573 ret = -EINVAL;
2574 goto unlock;
2577 user_extra = nr_pages + 1;
2578 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
2581 * Increase the limit linearly with more CPUs:
2583 user_lock_limit *= num_online_cpus();
2585 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2587 extra = 0;
2588 if (user_locked > user_lock_limit)
2589 extra = user_locked - user_lock_limit;
2591 lock_limit = rlimit(RLIMIT_MEMLOCK);
2592 lock_limit >>= PAGE_SHIFT;
2593 locked = vma->vm_mm->locked_vm + extra;
2595 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
2596 !capable(CAP_IPC_LOCK)) {
2597 ret = -EPERM;
2598 goto unlock;
2601 WARN_ON(event->data);
2603 data = perf_mmap_data_alloc(event, nr_pages);
2604 ret = -ENOMEM;
2605 if (!data)
2606 goto unlock;
2608 ret = 0;
2609 perf_mmap_data_init(event, data);
2611 atomic_set(&event->mmap_count, 1);
2612 atomic_long_add(user_extra, &user->locked_vm);
2613 vma->vm_mm->locked_vm += extra;
2614 event->data->nr_locked = extra;
2615 if (vma->vm_flags & VM_WRITE)
2616 event->data->writable = 1;
2618 unlock:
2619 mutex_unlock(&event->mmap_mutex);
2621 vma->vm_flags |= VM_RESERVED;
2622 vma->vm_ops = &perf_mmap_vmops;
2624 return ret;
2627 static int perf_fasync(int fd, struct file *filp, int on)
2629 struct inode *inode = filp->f_path.dentry->d_inode;
2630 struct perf_event *event = filp->private_data;
2631 int retval;
2633 mutex_lock(&inode->i_mutex);
2634 retval = fasync_helper(fd, filp, on, &event->fasync);
2635 mutex_unlock(&inode->i_mutex);
2637 if (retval < 0)
2638 return retval;
2640 return 0;
2643 static const struct file_operations perf_fops = {
2644 .release = perf_release,
2645 .read = perf_read,
2646 .poll = perf_poll,
2647 .unlocked_ioctl = perf_ioctl,
2648 .compat_ioctl = perf_ioctl,
2649 .mmap = perf_mmap,
2650 .fasync = perf_fasync,
2654 * Perf event wakeup
2656 * If there's data, ensure we set the poll() state and publish everything
2657 * to user-space before waking everybody up.
2660 void perf_event_wakeup(struct perf_event *event)
2662 wake_up_all(&event->waitq);
2664 if (event->pending_kill) {
2665 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
2666 event->pending_kill = 0;
2671 * Pending wakeups
2673 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
2675 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
2676 * single linked list and use cmpxchg() to add entries lockless.
2679 static void perf_pending_event(struct perf_pending_entry *entry)
2681 struct perf_event *event = container_of(entry,
2682 struct perf_event, pending);
2684 if (event->pending_disable) {
2685 event->pending_disable = 0;
2686 __perf_event_disable(event);
2689 if (event->pending_wakeup) {
2690 event->pending_wakeup = 0;
2691 perf_event_wakeup(event);
2695 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2697 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2698 PENDING_TAIL,
2701 static void perf_pending_queue(struct perf_pending_entry *entry,
2702 void (*func)(struct perf_pending_entry *))
2704 struct perf_pending_entry **head;
2706 if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2707 return;
2709 entry->func = func;
2711 head = &get_cpu_var(perf_pending_head);
2713 do {
2714 entry->next = *head;
2715 } while (cmpxchg(head, entry->next, entry) != entry->next);
2717 set_perf_event_pending();
2719 put_cpu_var(perf_pending_head);
2722 static int __perf_pending_run(void)
2724 struct perf_pending_entry *list;
2725 int nr = 0;
2727 list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2728 while (list != PENDING_TAIL) {
2729 void (*func)(struct perf_pending_entry *);
2730 struct perf_pending_entry *entry = list;
2732 list = list->next;
2734 func = entry->func;
2735 entry->next = NULL;
2737 * Ensure we observe the unqueue before we issue the wakeup,
2738 * so that we won't be waiting forever.
2739 * -- see perf_not_pending().
2741 smp_wmb();
2743 func(entry);
2744 nr++;
2747 return nr;
2750 static inline int perf_not_pending(struct perf_event *event)
2753 * If we flush on whatever cpu we run, there is a chance we don't
2754 * need to wait.
2756 get_cpu();
2757 __perf_pending_run();
2758 put_cpu();
2761 * Ensure we see the proper queue state before going to sleep
2762 * so that we do not miss the wakeup. -- see perf_pending_handle()
2764 smp_rmb();
2765 return event->pending.next == NULL;
2768 static void perf_pending_sync(struct perf_event *event)
2770 wait_event(event->waitq, perf_not_pending(event));
2773 void perf_event_do_pending(void)
2775 __perf_pending_run();
2779 * Callchain support -- arch specific
2782 __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2784 return NULL;
2787 __weak
2788 void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip, int skip)
2794 * Output
2796 static bool perf_output_space(struct perf_mmap_data *data, unsigned long tail,
2797 unsigned long offset, unsigned long head)
2799 unsigned long mask;
2801 if (!data->writable)
2802 return true;
2804 mask = perf_data_size(data) - 1;
2806 offset = (offset - tail) & mask;
2807 head = (head - tail) & mask;
2809 if ((int)(head - offset) < 0)
2810 return false;
2812 return true;
2815 static void perf_output_wakeup(struct perf_output_handle *handle)
2817 atomic_set(&handle->data->poll, POLL_IN);
2819 if (handle->nmi) {
2820 handle->event->pending_wakeup = 1;
2821 perf_pending_queue(&handle->event->pending,
2822 perf_pending_event);
2823 } else
2824 perf_event_wakeup(handle->event);
2828 * Curious locking construct.
2830 * We need to ensure a later event_id doesn't publish a head when a former
2831 * event_id isn't done writing. However since we need to deal with NMIs we
2832 * cannot fully serialize things.
2834 * What we do is serialize between CPUs so we only have to deal with NMI
2835 * nesting on a single CPU.
2837 * We only publish the head (and generate a wakeup) when the outer-most
2838 * event_id completes.
2840 static void perf_output_lock(struct perf_output_handle *handle)
2842 struct perf_mmap_data *data = handle->data;
2843 int cur, cpu = get_cpu();
2845 handle->locked = 0;
2847 for (;;) {
2848 cur = atomic_cmpxchg(&data->lock, -1, cpu);
2849 if (cur == -1) {
2850 handle->locked = 1;
2851 break;
2853 if (cur == cpu)
2854 break;
2856 cpu_relax();
2860 static void perf_output_unlock(struct perf_output_handle *handle)
2862 struct perf_mmap_data *data = handle->data;
2863 unsigned long head;
2864 int cpu;
2866 data->done_head = data->head;
2868 if (!handle->locked)
2869 goto out;
2871 again:
2873 * The xchg implies a full barrier that ensures all writes are done
2874 * before we publish the new head, matched by a rmb() in userspace when
2875 * reading this position.
2877 while ((head = atomic_long_xchg(&data->done_head, 0)))
2878 data->user_page->data_head = head;
2881 * NMI can happen here, which means we can miss a done_head update.
2884 cpu = atomic_xchg(&data->lock, -1);
2885 WARN_ON_ONCE(cpu != smp_processor_id());
2888 * Therefore we have to validate we did not indeed do so.
2890 if (unlikely(atomic_long_read(&data->done_head))) {
2892 * Since we had it locked, we can lock it again.
2894 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2895 cpu_relax();
2897 goto again;
2900 if (atomic_xchg(&data->wakeup, 0))
2901 perf_output_wakeup(handle);
2902 out:
2903 put_cpu();
2906 void perf_output_copy(struct perf_output_handle *handle,
2907 const void *buf, unsigned int len)
2909 unsigned int pages_mask;
2910 unsigned long offset;
2911 unsigned int size;
2912 void **pages;
2914 offset = handle->offset;
2915 pages_mask = handle->data->nr_pages - 1;
2916 pages = handle->data->data_pages;
2918 do {
2919 unsigned long page_offset;
2920 unsigned long page_size;
2921 int nr;
2923 nr = (offset >> PAGE_SHIFT) & pages_mask;
2924 page_size = 1UL << (handle->data->data_order + PAGE_SHIFT);
2925 page_offset = offset & (page_size - 1);
2926 size = min_t(unsigned int, page_size - page_offset, len);
2928 memcpy(pages[nr] + page_offset, buf, size);
2930 len -= size;
2931 buf += size;
2932 offset += size;
2933 } while (len);
2935 handle->offset = offset;
2938 * Check we didn't copy past our reservation window, taking the
2939 * possible unsigned int wrap into account.
2941 WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0);
2944 int perf_output_begin(struct perf_output_handle *handle,
2945 struct perf_event *event, unsigned int size,
2946 int nmi, int sample)
2948 struct perf_event *output_event;
2949 struct perf_mmap_data *data;
2950 unsigned long tail, offset, head;
2951 int have_lost;
2952 struct {
2953 struct perf_event_header header;
2954 u64 id;
2955 u64 lost;
2956 } lost_event;
2958 rcu_read_lock();
2960 * For inherited events we send all the output towards the parent.
2962 if (event->parent)
2963 event = event->parent;
2965 output_event = rcu_dereference(event->output);
2966 if (output_event)
2967 event = output_event;
2969 data = rcu_dereference(event->data);
2970 if (!data)
2971 goto out;
2973 handle->data = data;
2974 handle->event = event;
2975 handle->nmi = nmi;
2976 handle->sample = sample;
2978 if (!data->nr_pages)
2979 goto fail;
2981 have_lost = atomic_read(&data->lost);
2982 if (have_lost)
2983 size += sizeof(lost_event);
2985 perf_output_lock(handle);
2987 do {
2989 * Userspace could choose to issue a mb() before updating the
2990 * tail pointer. So that all reads will be completed before the
2991 * write is issued.
2993 tail = ACCESS_ONCE(data->user_page->data_tail);
2994 smp_rmb();
2995 offset = head = atomic_long_read(&data->head);
2996 head += size;
2997 if (unlikely(!perf_output_space(data, tail, offset, head)))
2998 goto fail;
2999 } while (atomic_long_cmpxchg(&data->head, offset, head) != offset);
3001 handle->offset = offset;
3002 handle->head = head;
3004 if (head - tail > data->watermark)
3005 atomic_set(&data->wakeup, 1);
3007 if (have_lost) {
3008 lost_event.header.type = PERF_RECORD_LOST;
3009 lost_event.header.misc = 0;
3010 lost_event.header.size = sizeof(lost_event);
3011 lost_event.id = event->id;
3012 lost_event.lost = atomic_xchg(&data->lost, 0);
3014 perf_output_put(handle, lost_event);
3017 return 0;
3019 fail:
3020 atomic_inc(&data->lost);
3021 perf_output_unlock(handle);
3022 out:
3023 rcu_read_unlock();
3025 return -ENOSPC;
3028 void perf_output_end(struct perf_output_handle *handle)
3030 struct perf_event *event = handle->event;
3031 struct perf_mmap_data *data = handle->data;
3033 int wakeup_events = event->attr.wakeup_events;
3035 if (handle->sample && wakeup_events) {
3036 int events = atomic_inc_return(&data->events);
3037 if (events >= wakeup_events) {
3038 atomic_sub(wakeup_events, &data->events);
3039 atomic_set(&data->wakeup, 1);
3043 perf_output_unlock(handle);
3044 rcu_read_unlock();
3047 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
3050 * only top level events have the pid namespace they were created in
3052 if (event->parent)
3053 event = event->parent;
3055 return task_tgid_nr_ns(p, event->ns);
3058 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
3061 * only top level events have the pid namespace they were created in
3063 if (event->parent)
3064 event = event->parent;
3066 return task_pid_nr_ns(p, event->ns);
3069 static void perf_output_read_one(struct perf_output_handle *handle,
3070 struct perf_event *event)
3072 u64 read_format = event->attr.read_format;
3073 u64 values[4];
3074 int n = 0;
3076 values[n++] = atomic64_read(&event->count);
3077 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3078 values[n++] = event->total_time_enabled +
3079 atomic64_read(&event->child_total_time_enabled);
3081 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3082 values[n++] = event->total_time_running +
3083 atomic64_read(&event->child_total_time_running);
3085 if (read_format & PERF_FORMAT_ID)
3086 values[n++] = primary_event_id(event);
3088 perf_output_copy(handle, values, n * sizeof(u64));
3092 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3094 static void perf_output_read_group(struct perf_output_handle *handle,
3095 struct perf_event *event)
3097 struct perf_event *leader = event->group_leader, *sub;
3098 u64 read_format = event->attr.read_format;
3099 u64 values[5];
3100 int n = 0;
3102 values[n++] = 1 + leader->nr_siblings;
3104 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3105 values[n++] = leader->total_time_enabled;
3107 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3108 values[n++] = leader->total_time_running;
3110 if (leader != event)
3111 leader->pmu->read(leader);
3113 values[n++] = atomic64_read(&leader->count);
3114 if (read_format & PERF_FORMAT_ID)
3115 values[n++] = primary_event_id(leader);
3117 perf_output_copy(handle, values, n * sizeof(u64));
3119 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3120 n = 0;
3122 if (sub != event)
3123 sub->pmu->read(sub);
3125 values[n++] = atomic64_read(&sub->count);
3126 if (read_format & PERF_FORMAT_ID)
3127 values[n++] = primary_event_id(sub);
3129 perf_output_copy(handle, values, n * sizeof(u64));
3133 static void perf_output_read(struct perf_output_handle *handle,
3134 struct perf_event *event)
3136 if (event->attr.read_format & PERF_FORMAT_GROUP)
3137 perf_output_read_group(handle, event);
3138 else
3139 perf_output_read_one(handle, event);
3142 void perf_output_sample(struct perf_output_handle *handle,
3143 struct perf_event_header *header,
3144 struct perf_sample_data *data,
3145 struct perf_event *event)
3147 u64 sample_type = data->type;
3149 perf_output_put(handle, *header);
3151 if (sample_type & PERF_SAMPLE_IP)
3152 perf_output_put(handle, data->ip);
3154 if (sample_type & PERF_SAMPLE_TID)
3155 perf_output_put(handle, data->tid_entry);
3157 if (sample_type & PERF_SAMPLE_TIME)
3158 perf_output_put(handle, data->time);
3160 if (sample_type & PERF_SAMPLE_ADDR)
3161 perf_output_put(handle, data->addr);
3163 if (sample_type & PERF_SAMPLE_ID)
3164 perf_output_put(handle, data->id);
3166 if (sample_type & PERF_SAMPLE_STREAM_ID)
3167 perf_output_put(handle, data->stream_id);
3169 if (sample_type & PERF_SAMPLE_CPU)
3170 perf_output_put(handle, data->cpu_entry);
3172 if (sample_type & PERF_SAMPLE_PERIOD)
3173 perf_output_put(handle, data->period);
3175 if (sample_type & PERF_SAMPLE_READ)
3176 perf_output_read(handle, event);
3178 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3179 if (data->callchain) {
3180 int size = 1;
3182 if (data->callchain)
3183 size += data->callchain->nr;
3185 size *= sizeof(u64);
3187 perf_output_copy(handle, data->callchain, size);
3188 } else {
3189 u64 nr = 0;
3190 perf_output_put(handle, nr);
3194 if (sample_type & PERF_SAMPLE_RAW) {
3195 if (data->raw) {
3196 perf_output_put(handle, data->raw->size);
3197 perf_output_copy(handle, data->raw->data,
3198 data->raw->size);
3199 } else {
3200 struct {
3201 u32 size;
3202 u32 data;
3203 } raw = {
3204 .size = sizeof(u32),
3205 .data = 0,
3207 perf_output_put(handle, raw);
3212 void perf_prepare_sample(struct perf_event_header *header,
3213 struct perf_sample_data *data,
3214 struct perf_event *event,
3215 struct pt_regs *regs)
3217 u64 sample_type = event->attr.sample_type;
3219 data->type = sample_type;
3221 header->type = PERF_RECORD_SAMPLE;
3222 header->size = sizeof(*header);
3224 header->misc = 0;
3225 header->misc |= perf_misc_flags(regs);
3227 if (sample_type & PERF_SAMPLE_IP) {
3228 data->ip = perf_instruction_pointer(regs);
3230 header->size += sizeof(data->ip);
3233 if (sample_type & PERF_SAMPLE_TID) {
3234 /* namespace issues */
3235 data->tid_entry.pid = perf_event_pid(event, current);
3236 data->tid_entry.tid = perf_event_tid(event, current);
3238 header->size += sizeof(data->tid_entry);
3241 if (sample_type & PERF_SAMPLE_TIME) {
3242 data->time = perf_clock();
3244 header->size += sizeof(data->time);
3247 if (sample_type & PERF_SAMPLE_ADDR)
3248 header->size += sizeof(data->addr);
3250 if (sample_type & PERF_SAMPLE_ID) {
3251 data->id = primary_event_id(event);
3253 header->size += sizeof(data->id);
3256 if (sample_type & PERF_SAMPLE_STREAM_ID) {
3257 data->stream_id = event->id;
3259 header->size += sizeof(data->stream_id);
3262 if (sample_type & PERF_SAMPLE_CPU) {
3263 data->cpu_entry.cpu = raw_smp_processor_id();
3264 data->cpu_entry.reserved = 0;
3266 header->size += sizeof(data->cpu_entry);
3269 if (sample_type & PERF_SAMPLE_PERIOD)
3270 header->size += sizeof(data->period);
3272 if (sample_type & PERF_SAMPLE_READ)
3273 header->size += perf_event_read_size(event);
3275 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3276 int size = 1;
3278 data->callchain = perf_callchain(regs);
3280 if (data->callchain)
3281 size += data->callchain->nr;
3283 header->size += size * sizeof(u64);
3286 if (sample_type & PERF_SAMPLE_RAW) {
3287 int size = sizeof(u32);
3289 if (data->raw)
3290 size += data->raw->size;
3291 else
3292 size += sizeof(u32);
3294 WARN_ON_ONCE(size & (sizeof(u64)-1));
3295 header->size += size;
3299 static void perf_event_output(struct perf_event *event, int nmi,
3300 struct perf_sample_data *data,
3301 struct pt_regs *regs)
3303 struct perf_output_handle handle;
3304 struct perf_event_header header;
3306 perf_prepare_sample(&header, data, event, regs);
3308 if (perf_output_begin(&handle, event, header.size, nmi, 1))
3309 return;
3311 perf_output_sample(&handle, &header, data, event);
3313 perf_output_end(&handle);
3317 * read event_id
3320 struct perf_read_event {
3321 struct perf_event_header header;
3323 u32 pid;
3324 u32 tid;
3327 static void
3328 perf_event_read_event(struct perf_event *event,
3329 struct task_struct *task)
3331 struct perf_output_handle handle;
3332 struct perf_read_event read_event = {
3333 .header = {
3334 .type = PERF_RECORD_READ,
3335 .misc = 0,
3336 .size = sizeof(read_event) + perf_event_read_size(event),
3338 .pid = perf_event_pid(event, task),
3339 .tid = perf_event_tid(event, task),
3341 int ret;
3343 ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3344 if (ret)
3345 return;
3347 perf_output_put(&handle, read_event);
3348 perf_output_read(&handle, event);
3350 perf_output_end(&handle);
3354 * task tracking -- fork/exit
3356 * enabled by: attr.comm | attr.mmap | attr.task
3359 struct perf_task_event {
3360 struct task_struct *task;
3361 struct perf_event_context *task_ctx;
3363 struct {
3364 struct perf_event_header header;
3366 u32 pid;
3367 u32 ppid;
3368 u32 tid;
3369 u32 ptid;
3370 u64 time;
3371 } event_id;
3374 static void perf_event_task_output(struct perf_event *event,
3375 struct perf_task_event *task_event)
3377 struct perf_output_handle handle;
3378 struct task_struct *task = task_event->task;
3379 unsigned long flags;
3380 int size, ret;
3383 * If this CPU attempts to acquire an rq lock held by a CPU spinning
3384 * in perf_output_lock() from interrupt context, it's game over.
3386 local_irq_save(flags);
3388 size = task_event->event_id.header.size;
3389 ret = perf_output_begin(&handle, event, size, 0, 0);
3391 if (ret) {
3392 local_irq_restore(flags);
3393 return;
3396 task_event->event_id.pid = perf_event_pid(event, task);
3397 task_event->event_id.ppid = perf_event_pid(event, current);
3399 task_event->event_id.tid = perf_event_tid(event, task);
3400 task_event->event_id.ptid = perf_event_tid(event, current);
3402 perf_output_put(&handle, task_event->event_id);
3404 perf_output_end(&handle);
3405 local_irq_restore(flags);
3408 static int perf_event_task_match(struct perf_event *event)
3410 if (event->state < PERF_EVENT_STATE_INACTIVE)
3411 return 0;
3413 if (event->cpu != -1 && event->cpu != smp_processor_id())
3414 return 0;
3416 if (event->attr.comm || event->attr.mmap || event->attr.task)
3417 return 1;
3419 return 0;
3422 static void perf_event_task_ctx(struct perf_event_context *ctx,
3423 struct perf_task_event *task_event)
3425 struct perf_event *event;
3427 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3428 if (perf_event_task_match(event))
3429 perf_event_task_output(event, task_event);
3433 static void perf_event_task_event(struct perf_task_event *task_event)
3435 struct perf_cpu_context *cpuctx;
3436 struct perf_event_context *ctx = task_event->task_ctx;
3438 rcu_read_lock();
3439 cpuctx = &get_cpu_var(perf_cpu_context);
3440 perf_event_task_ctx(&cpuctx->ctx, task_event);
3441 if (!ctx)
3442 ctx = rcu_dereference(current->perf_event_ctxp);
3443 if (ctx)
3444 perf_event_task_ctx(ctx, task_event);
3445 put_cpu_var(perf_cpu_context);
3446 rcu_read_unlock();
3449 static void perf_event_task(struct task_struct *task,
3450 struct perf_event_context *task_ctx,
3451 int new)
3453 struct perf_task_event task_event;
3455 if (!atomic_read(&nr_comm_events) &&
3456 !atomic_read(&nr_mmap_events) &&
3457 !atomic_read(&nr_task_events))
3458 return;
3460 task_event = (struct perf_task_event){
3461 .task = task,
3462 .task_ctx = task_ctx,
3463 .event_id = {
3464 .header = {
3465 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3466 .misc = 0,
3467 .size = sizeof(task_event.event_id),
3469 /* .pid */
3470 /* .ppid */
3471 /* .tid */
3472 /* .ptid */
3473 .time = perf_clock(),
3477 perf_event_task_event(&task_event);
3480 void perf_event_fork(struct task_struct *task)
3482 perf_event_task(task, NULL, 1);
3486 * comm tracking
3489 struct perf_comm_event {
3490 struct task_struct *task;
3491 char *comm;
3492 int comm_size;
3494 struct {
3495 struct perf_event_header header;
3497 u32 pid;
3498 u32 tid;
3499 } event_id;
3502 static void perf_event_comm_output(struct perf_event *event,
3503 struct perf_comm_event *comm_event)
3505 struct perf_output_handle handle;
3506 int size = comm_event->event_id.header.size;
3507 int ret = perf_output_begin(&handle, event, size, 0, 0);
3509 if (ret)
3510 return;
3512 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
3513 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3515 perf_output_put(&handle, comm_event->event_id);
3516 perf_output_copy(&handle, comm_event->comm,
3517 comm_event->comm_size);
3518 perf_output_end(&handle);
3521 static int perf_event_comm_match(struct perf_event *event)
3523 if (event->state < PERF_EVENT_STATE_INACTIVE)
3524 return 0;
3526 if (event->cpu != -1 && event->cpu != smp_processor_id())
3527 return 0;
3529 if (event->attr.comm)
3530 return 1;
3532 return 0;
3535 static void perf_event_comm_ctx(struct perf_event_context *ctx,
3536 struct perf_comm_event *comm_event)
3538 struct perf_event *event;
3540 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3541 if (perf_event_comm_match(event))
3542 perf_event_comm_output(event, comm_event);
3546 static void perf_event_comm_event(struct perf_comm_event *comm_event)
3548 struct perf_cpu_context *cpuctx;
3549 struct perf_event_context *ctx;
3550 unsigned int size;
3551 char comm[TASK_COMM_LEN];
3553 memset(comm, 0, sizeof(comm));
3554 strlcpy(comm, comm_event->task->comm, sizeof(comm));
3555 size = ALIGN(strlen(comm)+1, sizeof(u64));
3557 comm_event->comm = comm;
3558 comm_event->comm_size = size;
3560 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3562 rcu_read_lock();
3563 cpuctx = &get_cpu_var(perf_cpu_context);
3564 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
3565 ctx = rcu_dereference(current->perf_event_ctxp);
3566 if (ctx)
3567 perf_event_comm_ctx(ctx, comm_event);
3568 put_cpu_var(perf_cpu_context);
3569 rcu_read_unlock();
3572 void perf_event_comm(struct task_struct *task)
3574 struct perf_comm_event comm_event;
3576 if (task->perf_event_ctxp)
3577 perf_event_enable_on_exec(task);
3579 if (!atomic_read(&nr_comm_events))
3580 return;
3582 comm_event = (struct perf_comm_event){
3583 .task = task,
3584 /* .comm */
3585 /* .comm_size */
3586 .event_id = {
3587 .header = {
3588 .type = PERF_RECORD_COMM,
3589 .misc = 0,
3590 /* .size */
3592 /* .pid */
3593 /* .tid */
3597 perf_event_comm_event(&comm_event);
3601 * mmap tracking
3604 struct perf_mmap_event {
3605 struct vm_area_struct *vma;
3607 const char *file_name;
3608 int file_size;
3610 struct {
3611 struct perf_event_header header;
3613 u32 pid;
3614 u32 tid;
3615 u64 start;
3616 u64 len;
3617 u64 pgoff;
3618 } event_id;
3621 static void perf_event_mmap_output(struct perf_event *event,
3622 struct perf_mmap_event *mmap_event)
3624 struct perf_output_handle handle;
3625 int size = mmap_event->event_id.header.size;
3626 int ret = perf_output_begin(&handle, event, size, 0, 0);
3628 if (ret)
3629 return;
3631 mmap_event->event_id.pid = perf_event_pid(event, current);
3632 mmap_event->event_id.tid = perf_event_tid(event, current);
3634 perf_output_put(&handle, mmap_event->event_id);
3635 perf_output_copy(&handle, mmap_event->file_name,
3636 mmap_event->file_size);
3637 perf_output_end(&handle);
3640 static int perf_event_mmap_match(struct perf_event *event,
3641 struct perf_mmap_event *mmap_event)
3643 if (event->state < PERF_EVENT_STATE_INACTIVE)
3644 return 0;
3646 if (event->cpu != -1 && event->cpu != smp_processor_id())
3647 return 0;
3649 if (event->attr.mmap)
3650 return 1;
3652 return 0;
3655 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
3656 struct perf_mmap_event *mmap_event)
3658 struct perf_event *event;
3660 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3661 if (perf_event_mmap_match(event, mmap_event))
3662 perf_event_mmap_output(event, mmap_event);
3666 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
3668 struct perf_cpu_context *cpuctx;
3669 struct perf_event_context *ctx;
3670 struct vm_area_struct *vma = mmap_event->vma;
3671 struct file *file = vma->vm_file;
3672 unsigned int size;
3673 char tmp[16];
3674 char *buf = NULL;
3675 const char *name;
3677 memset(tmp, 0, sizeof(tmp));
3679 if (file) {
3681 * d_path works from the end of the buffer backwards, so we
3682 * need to add enough zero bytes after the string to handle
3683 * the 64bit alignment we do later.
3685 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
3686 if (!buf) {
3687 name = strncpy(tmp, "//enomem", sizeof(tmp));
3688 goto got_name;
3690 name = d_path(&file->f_path, buf, PATH_MAX);
3691 if (IS_ERR(name)) {
3692 name = strncpy(tmp, "//toolong", sizeof(tmp));
3693 goto got_name;
3695 } else {
3696 if (arch_vma_name(mmap_event->vma)) {
3697 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
3698 sizeof(tmp));
3699 goto got_name;
3702 if (!vma->vm_mm) {
3703 name = strncpy(tmp, "[vdso]", sizeof(tmp));
3704 goto got_name;
3707 name = strncpy(tmp, "//anon", sizeof(tmp));
3708 goto got_name;
3711 got_name:
3712 size = ALIGN(strlen(name)+1, sizeof(u64));
3714 mmap_event->file_name = name;
3715 mmap_event->file_size = size;
3717 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
3719 rcu_read_lock();
3720 cpuctx = &get_cpu_var(perf_cpu_context);
3721 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event);
3722 ctx = rcu_dereference(current->perf_event_ctxp);
3723 if (ctx)
3724 perf_event_mmap_ctx(ctx, mmap_event);
3725 put_cpu_var(perf_cpu_context);
3726 rcu_read_unlock();
3728 kfree(buf);
3731 void __perf_event_mmap(struct vm_area_struct *vma)
3733 struct perf_mmap_event mmap_event;
3735 if (!atomic_read(&nr_mmap_events))
3736 return;
3738 mmap_event = (struct perf_mmap_event){
3739 .vma = vma,
3740 /* .file_name */
3741 /* .file_size */
3742 .event_id = {
3743 .header = {
3744 .type = PERF_RECORD_MMAP,
3745 .misc = 0,
3746 /* .size */
3748 /* .pid */
3749 /* .tid */
3750 .start = vma->vm_start,
3751 .len = vma->vm_end - vma->vm_start,
3752 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
3756 perf_event_mmap_event(&mmap_event);
3760 * IRQ throttle logging
3763 static void perf_log_throttle(struct perf_event *event, int enable)
3765 struct perf_output_handle handle;
3766 int ret;
3768 struct {
3769 struct perf_event_header header;
3770 u64 time;
3771 u64 id;
3772 u64 stream_id;
3773 } throttle_event = {
3774 .header = {
3775 .type = PERF_RECORD_THROTTLE,
3776 .misc = 0,
3777 .size = sizeof(throttle_event),
3779 .time = perf_clock(),
3780 .id = primary_event_id(event),
3781 .stream_id = event->id,
3784 if (enable)
3785 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
3787 ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
3788 if (ret)
3789 return;
3791 perf_output_put(&handle, throttle_event);
3792 perf_output_end(&handle);
3796 * Generic event overflow handling, sampling.
3799 static int __perf_event_overflow(struct perf_event *event, int nmi,
3800 int throttle, struct perf_sample_data *data,
3801 struct pt_regs *regs)
3803 int events = atomic_read(&event->event_limit);
3804 struct hw_perf_event *hwc = &event->hw;
3805 int ret = 0;
3807 throttle = (throttle && event->pmu->unthrottle != NULL);
3809 if (!throttle) {
3810 hwc->interrupts++;
3811 } else {
3812 if (hwc->interrupts != MAX_INTERRUPTS) {
3813 hwc->interrupts++;
3814 if (HZ * hwc->interrupts >
3815 (u64)sysctl_perf_event_sample_rate) {
3816 hwc->interrupts = MAX_INTERRUPTS;
3817 perf_log_throttle(event, 0);
3818 ret = 1;
3820 } else {
3822 * Keep re-disabling events even though on the previous
3823 * pass we disabled it - just in case we raced with a
3824 * sched-in and the event got enabled again:
3826 ret = 1;
3830 if (event->attr.freq) {
3831 u64 now = perf_clock();
3832 s64 delta = now - hwc->freq_time_stamp;
3834 hwc->freq_time_stamp = now;
3836 if (delta > 0 && delta < 2*TICK_NSEC)
3837 perf_adjust_period(event, delta, hwc->last_period);
3841 * XXX event_limit might not quite work as expected on inherited
3842 * events
3845 event->pending_kill = POLL_IN;
3846 if (events && atomic_dec_and_test(&event->event_limit)) {
3847 ret = 1;
3848 event->pending_kill = POLL_HUP;
3849 if (nmi) {
3850 event->pending_disable = 1;
3851 perf_pending_queue(&event->pending,
3852 perf_pending_event);
3853 } else
3854 perf_event_disable(event);
3857 if (event->overflow_handler)
3858 event->overflow_handler(event, nmi, data, regs);
3859 else
3860 perf_event_output(event, nmi, data, regs);
3862 return ret;
3865 int perf_event_overflow(struct perf_event *event, int nmi,
3866 struct perf_sample_data *data,
3867 struct pt_regs *regs)
3869 return __perf_event_overflow(event, nmi, 1, data, regs);
3873 * Generic software event infrastructure
3877 * We directly increment event->count and keep a second value in
3878 * event->hw.period_left to count intervals. This period event
3879 * is kept in the range [-sample_period, 0] so that we can use the
3880 * sign as trigger.
3883 static u64 perf_swevent_set_period(struct perf_event *event)
3885 struct hw_perf_event *hwc = &event->hw;
3886 u64 period = hwc->last_period;
3887 u64 nr, offset;
3888 s64 old, val;
3890 hwc->last_period = hwc->sample_period;
3892 again:
3893 old = val = atomic64_read(&hwc->period_left);
3894 if (val < 0)
3895 return 0;
3897 nr = div64_u64(period + val, period);
3898 offset = nr * period;
3899 val -= offset;
3900 if (atomic64_cmpxchg(&hwc->period_left, old, val) != old)
3901 goto again;
3903 return nr;
3906 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
3907 int nmi, struct perf_sample_data *data,
3908 struct pt_regs *regs)
3910 struct hw_perf_event *hwc = &event->hw;
3911 int throttle = 0;
3913 data->period = event->hw.last_period;
3914 if (!overflow)
3915 overflow = perf_swevent_set_period(event);
3917 if (hwc->interrupts == MAX_INTERRUPTS)
3918 return;
3920 for (; overflow; overflow--) {
3921 if (__perf_event_overflow(event, nmi, throttle,
3922 data, regs)) {
3924 * We inhibit the overflow from happening when
3925 * hwc->interrupts == MAX_INTERRUPTS.
3927 break;
3929 throttle = 1;
3933 static void perf_swevent_unthrottle(struct perf_event *event)
3936 * Nothing to do, we already reset hwc->interrupts.
3940 static void perf_swevent_add(struct perf_event *event, u64 nr,
3941 int nmi, struct perf_sample_data *data,
3942 struct pt_regs *regs)
3944 struct hw_perf_event *hwc = &event->hw;
3946 atomic64_add(nr, &event->count);
3948 if (!regs)
3949 return;
3951 if (!hwc->sample_period)
3952 return;
3954 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
3955 return perf_swevent_overflow(event, 1, nmi, data, regs);
3957 if (atomic64_add_negative(nr, &hwc->period_left))
3958 return;
3960 perf_swevent_overflow(event, 0, nmi, data, regs);
3963 static int perf_swevent_is_counting(struct perf_event *event)
3966 * The event is active, we're good!
3968 if (event->state == PERF_EVENT_STATE_ACTIVE)
3969 return 1;
3972 * The event is off/error, not counting.
3974 if (event->state != PERF_EVENT_STATE_INACTIVE)
3975 return 0;
3978 * The event is inactive, if the context is active
3979 * we're part of a group that didn't make it on the 'pmu',
3980 * not counting.
3982 if (event->ctx->is_active)
3983 return 0;
3986 * We're inactive and the context is too, this means the
3987 * task is scheduled out, we're counting events that happen
3988 * to us, like migration events.
3990 return 1;
3993 static int perf_tp_event_match(struct perf_event *event,
3994 struct perf_sample_data *data);
3996 static int perf_exclude_event(struct perf_event *event,
3997 struct pt_regs *regs)
3999 if (regs) {
4000 if (event->attr.exclude_user && user_mode(regs))
4001 return 1;
4003 if (event->attr.exclude_kernel && !user_mode(regs))
4004 return 1;
4007 return 0;
4010 static int perf_swevent_match(struct perf_event *event,
4011 enum perf_type_id type,
4012 u32 event_id,
4013 struct perf_sample_data *data,
4014 struct pt_regs *regs)
4016 if (event->cpu != -1 && event->cpu != smp_processor_id())
4017 return 0;
4019 if (!perf_swevent_is_counting(event))
4020 return 0;
4022 if (event->attr.type != type)
4023 return 0;
4025 if (event->attr.config != event_id)
4026 return 0;
4028 if (perf_exclude_event(event, regs))
4029 return 0;
4031 if (event->attr.type == PERF_TYPE_TRACEPOINT &&
4032 !perf_tp_event_match(event, data))
4033 return 0;
4035 return 1;
4038 static void perf_swevent_ctx_event(struct perf_event_context *ctx,
4039 enum perf_type_id type,
4040 u32 event_id, u64 nr, int nmi,
4041 struct perf_sample_data *data,
4042 struct pt_regs *regs)
4044 struct perf_event *event;
4046 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4047 if (perf_swevent_match(event, type, event_id, data, regs))
4048 perf_swevent_add(event, nr, nmi, data, regs);
4052 int perf_swevent_get_recursion_context(void)
4054 struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
4055 int rctx;
4057 if (in_nmi())
4058 rctx = 3;
4059 else if (in_irq())
4060 rctx = 2;
4061 else if (in_softirq())
4062 rctx = 1;
4063 else
4064 rctx = 0;
4066 if (cpuctx->recursion[rctx]) {
4067 put_cpu_var(perf_cpu_context);
4068 return -1;
4071 cpuctx->recursion[rctx]++;
4072 barrier();
4074 return rctx;
4076 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
4078 void perf_swevent_put_recursion_context(int rctx)
4080 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
4081 barrier();
4082 cpuctx->recursion[rctx]--;
4083 put_cpu_var(perf_cpu_context);
4085 EXPORT_SYMBOL_GPL(perf_swevent_put_recursion_context);
4087 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4088 u64 nr, int nmi,
4089 struct perf_sample_data *data,
4090 struct pt_regs *regs)
4092 struct perf_cpu_context *cpuctx;
4093 struct perf_event_context *ctx;
4095 cpuctx = &__get_cpu_var(perf_cpu_context);
4096 rcu_read_lock();
4097 perf_swevent_ctx_event(&cpuctx->ctx, type, event_id,
4098 nr, nmi, data, regs);
4100 * doesn't really matter which of the child contexts the
4101 * events ends up in.
4103 ctx = rcu_dereference(current->perf_event_ctxp);
4104 if (ctx)
4105 perf_swevent_ctx_event(ctx, type, event_id, nr, nmi, data, regs);
4106 rcu_read_unlock();
4109 void __perf_sw_event(u32 event_id, u64 nr, int nmi,
4110 struct pt_regs *regs, u64 addr)
4112 struct perf_sample_data data;
4113 int rctx;
4115 rctx = perf_swevent_get_recursion_context();
4116 if (rctx < 0)
4117 return;
4119 perf_sample_data_init(&data, addr);
4121 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
4123 perf_swevent_put_recursion_context(rctx);
4126 static void perf_swevent_read(struct perf_event *event)
4130 static int perf_swevent_enable(struct perf_event *event)
4132 struct hw_perf_event *hwc = &event->hw;
4134 if (hwc->sample_period) {
4135 hwc->last_period = hwc->sample_period;
4136 perf_swevent_set_period(event);
4138 return 0;
4141 static void perf_swevent_disable(struct perf_event *event)
4145 static const struct pmu perf_ops_generic = {
4146 .enable = perf_swevent_enable,
4147 .disable = perf_swevent_disable,
4148 .read = perf_swevent_read,
4149 .unthrottle = perf_swevent_unthrottle,
4153 * hrtimer based swevent callback
4156 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4158 enum hrtimer_restart ret = HRTIMER_RESTART;
4159 struct perf_sample_data data;
4160 struct pt_regs *regs;
4161 struct perf_event *event;
4162 u64 period;
4164 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
4165 event->pmu->read(event);
4167 perf_sample_data_init(&data, 0);
4168 data.period = event->hw.last_period;
4169 regs = get_irq_regs();
4171 * In case we exclude kernel IPs or are somehow not in interrupt
4172 * context, provide the next best thing, the user IP.
4174 if ((event->attr.exclude_kernel || !regs) &&
4175 !event->attr.exclude_user)
4176 regs = task_pt_regs(current);
4178 if (regs) {
4179 if (!(event->attr.exclude_idle && current->pid == 0))
4180 if (perf_event_overflow(event, 0, &data, regs))
4181 ret = HRTIMER_NORESTART;
4184 period = max_t(u64, 10000, event->hw.sample_period);
4185 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
4187 return ret;
4190 static void perf_swevent_start_hrtimer(struct perf_event *event)
4192 struct hw_perf_event *hwc = &event->hw;
4194 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4195 hwc->hrtimer.function = perf_swevent_hrtimer;
4196 if (hwc->sample_period) {
4197 u64 period;
4199 if (hwc->remaining) {
4200 if (hwc->remaining < 0)
4201 period = 10000;
4202 else
4203 period = hwc->remaining;
4204 hwc->remaining = 0;
4205 } else {
4206 period = max_t(u64, 10000, hwc->sample_period);
4208 __hrtimer_start_range_ns(&hwc->hrtimer,
4209 ns_to_ktime(period), 0,
4210 HRTIMER_MODE_REL, 0);
4214 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
4216 struct hw_perf_event *hwc = &event->hw;
4218 if (hwc->sample_period) {
4219 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
4220 hwc->remaining = ktime_to_ns(remaining);
4222 hrtimer_cancel(&hwc->hrtimer);
4227 * Software event: cpu wall time clock
4230 static void cpu_clock_perf_event_update(struct perf_event *event)
4232 int cpu = raw_smp_processor_id();
4233 s64 prev;
4234 u64 now;
4236 now = cpu_clock(cpu);
4237 prev = atomic64_xchg(&event->hw.prev_count, now);
4238 atomic64_add(now - prev, &event->count);
4241 static int cpu_clock_perf_event_enable(struct perf_event *event)
4243 struct hw_perf_event *hwc = &event->hw;
4244 int cpu = raw_smp_processor_id();
4246 atomic64_set(&hwc->prev_count, cpu_clock(cpu));
4247 perf_swevent_start_hrtimer(event);
4249 return 0;
4252 static void cpu_clock_perf_event_disable(struct perf_event *event)
4254 perf_swevent_cancel_hrtimer(event);
4255 cpu_clock_perf_event_update(event);
4258 static void cpu_clock_perf_event_read(struct perf_event *event)
4260 cpu_clock_perf_event_update(event);
4263 static const struct pmu perf_ops_cpu_clock = {
4264 .enable = cpu_clock_perf_event_enable,
4265 .disable = cpu_clock_perf_event_disable,
4266 .read = cpu_clock_perf_event_read,
4270 * Software event: task time clock
4273 static void task_clock_perf_event_update(struct perf_event *event, u64 now)
4275 u64 prev;
4276 s64 delta;
4278 prev = atomic64_xchg(&event->hw.prev_count, now);
4279 delta = now - prev;
4280 atomic64_add(delta, &event->count);
4283 static int task_clock_perf_event_enable(struct perf_event *event)
4285 struct hw_perf_event *hwc = &event->hw;
4286 u64 now;
4288 now = event->ctx->time;
4290 atomic64_set(&hwc->prev_count, now);
4292 perf_swevent_start_hrtimer(event);
4294 return 0;
4297 static void task_clock_perf_event_disable(struct perf_event *event)
4299 perf_swevent_cancel_hrtimer(event);
4300 task_clock_perf_event_update(event, event->ctx->time);
4304 static void task_clock_perf_event_read(struct perf_event *event)
4306 u64 time;
4308 if (!in_nmi()) {
4309 update_context_time(event->ctx);
4310 time = event->ctx->time;
4311 } else {
4312 u64 now = perf_clock();
4313 u64 delta = now - event->ctx->timestamp;
4314 time = event->ctx->time + delta;
4317 task_clock_perf_event_update(event, time);
4320 static const struct pmu perf_ops_task_clock = {
4321 .enable = task_clock_perf_event_enable,
4322 .disable = task_clock_perf_event_disable,
4323 .read = task_clock_perf_event_read,
4326 #ifdef CONFIG_EVENT_TRACING
4328 void perf_tp_event(int event_id, u64 addr, u64 count, void *record,
4329 int entry_size, struct pt_regs *regs)
4331 struct perf_sample_data data;
4332 struct perf_raw_record raw = {
4333 .size = entry_size,
4334 .data = record,
4337 perf_sample_data_init(&data, addr);
4338 data.raw = &raw;
4340 /* Trace events already protected against recursion */
4341 do_perf_sw_event(PERF_TYPE_TRACEPOINT, event_id, count, 1,
4342 &data, regs);
4344 EXPORT_SYMBOL_GPL(perf_tp_event);
4346 static int perf_tp_event_match(struct perf_event *event,
4347 struct perf_sample_data *data)
4349 void *record = data->raw->data;
4351 if (likely(!event->filter) || filter_match_preds(event->filter, record))
4352 return 1;
4353 return 0;
4356 static void tp_perf_event_destroy(struct perf_event *event)
4358 perf_trace_disable(event->attr.config);
4361 static const struct pmu *tp_perf_event_init(struct perf_event *event)
4364 * Raw tracepoint data is a severe data leak, only allow root to
4365 * have these.
4367 if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4368 perf_paranoid_tracepoint_raw() &&
4369 !capable(CAP_SYS_ADMIN))
4370 return ERR_PTR(-EPERM);
4372 if (perf_trace_enable(event->attr.config))
4373 return NULL;
4375 event->destroy = tp_perf_event_destroy;
4377 return &perf_ops_generic;
4380 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4382 char *filter_str;
4383 int ret;
4385 if (event->attr.type != PERF_TYPE_TRACEPOINT)
4386 return -EINVAL;
4388 filter_str = strndup_user(arg, PAGE_SIZE);
4389 if (IS_ERR(filter_str))
4390 return PTR_ERR(filter_str);
4392 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
4394 kfree(filter_str);
4395 return ret;
4398 static void perf_event_free_filter(struct perf_event *event)
4400 ftrace_profile_free_filter(event);
4403 #else
4405 static int perf_tp_event_match(struct perf_event *event,
4406 struct perf_sample_data *data)
4408 return 1;
4411 static const struct pmu *tp_perf_event_init(struct perf_event *event)
4413 return NULL;
4416 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4418 return -ENOENT;
4421 static void perf_event_free_filter(struct perf_event *event)
4425 #endif /* CONFIG_EVENT_TRACING */
4427 #ifdef CONFIG_HAVE_HW_BREAKPOINT
4428 static void bp_perf_event_destroy(struct perf_event *event)
4430 release_bp_slot(event);
4433 static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4435 int err;
4437 err = register_perf_hw_breakpoint(bp);
4438 if (err)
4439 return ERR_PTR(err);
4441 bp->destroy = bp_perf_event_destroy;
4443 return &perf_ops_bp;
4446 void perf_bp_event(struct perf_event *bp, void *data)
4448 struct perf_sample_data sample;
4449 struct pt_regs *regs = data;
4451 perf_sample_data_init(&sample, bp->attr.bp_addr);
4453 if (!perf_exclude_event(bp, regs))
4454 perf_swevent_add(bp, 1, 1, &sample, regs);
4456 #else
4457 static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4459 return NULL;
4462 void perf_bp_event(struct perf_event *bp, void *regs)
4465 #endif
4467 atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4469 static void sw_perf_event_destroy(struct perf_event *event)
4471 u64 event_id = event->attr.config;
4473 WARN_ON(event->parent);
4475 atomic_dec(&perf_swevent_enabled[event_id]);
4478 static const struct pmu *sw_perf_event_init(struct perf_event *event)
4480 const struct pmu *pmu = NULL;
4481 u64 event_id = event->attr.config;
4484 * Software events (currently) can't in general distinguish
4485 * between user, kernel and hypervisor events.
4486 * However, context switches and cpu migrations are considered
4487 * to be kernel events, and page faults are never hypervisor
4488 * events.
4490 switch (event_id) {
4491 case PERF_COUNT_SW_CPU_CLOCK:
4492 pmu = &perf_ops_cpu_clock;
4494 break;
4495 case PERF_COUNT_SW_TASK_CLOCK:
4497 * If the user instantiates this as a per-cpu event,
4498 * use the cpu_clock event instead.
4500 if (event->ctx->task)
4501 pmu = &perf_ops_task_clock;
4502 else
4503 pmu = &perf_ops_cpu_clock;
4505 break;
4506 case PERF_COUNT_SW_PAGE_FAULTS:
4507 case PERF_COUNT_SW_PAGE_FAULTS_MIN:
4508 case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
4509 case PERF_COUNT_SW_CONTEXT_SWITCHES:
4510 case PERF_COUNT_SW_CPU_MIGRATIONS:
4511 case PERF_COUNT_SW_ALIGNMENT_FAULTS:
4512 case PERF_COUNT_SW_EMULATION_FAULTS:
4513 if (!event->parent) {
4514 atomic_inc(&perf_swevent_enabled[event_id]);
4515 event->destroy = sw_perf_event_destroy;
4517 pmu = &perf_ops_generic;
4518 break;
4521 return pmu;
4525 * Allocate and initialize a event structure
4527 static struct perf_event *
4528 perf_event_alloc(struct perf_event_attr *attr,
4529 int cpu,
4530 struct perf_event_context *ctx,
4531 struct perf_event *group_leader,
4532 struct perf_event *parent_event,
4533 perf_overflow_handler_t overflow_handler,
4534 gfp_t gfpflags)
4536 const struct pmu *pmu;
4537 struct perf_event *event;
4538 struct hw_perf_event *hwc;
4539 long err;
4541 event = kzalloc(sizeof(*event), gfpflags);
4542 if (!event)
4543 return ERR_PTR(-ENOMEM);
4546 * Single events are their own group leaders, with an
4547 * empty sibling list:
4549 if (!group_leader)
4550 group_leader = event;
4552 mutex_init(&event->child_mutex);
4553 INIT_LIST_HEAD(&event->child_list);
4555 INIT_LIST_HEAD(&event->group_entry);
4556 INIT_LIST_HEAD(&event->event_entry);
4557 INIT_LIST_HEAD(&event->sibling_list);
4558 init_waitqueue_head(&event->waitq);
4560 mutex_init(&event->mmap_mutex);
4562 event->cpu = cpu;
4563 event->attr = *attr;
4564 event->group_leader = group_leader;
4565 event->pmu = NULL;
4566 event->ctx = ctx;
4567 event->oncpu = -1;
4569 event->parent = parent_event;
4571 event->ns = get_pid_ns(current->nsproxy->pid_ns);
4572 event->id = atomic64_inc_return(&perf_event_id);
4574 event->state = PERF_EVENT_STATE_INACTIVE;
4576 if (!overflow_handler && parent_event)
4577 overflow_handler = parent_event->overflow_handler;
4579 event->overflow_handler = overflow_handler;
4581 if (attr->disabled)
4582 event->state = PERF_EVENT_STATE_OFF;
4584 pmu = NULL;
4586 hwc = &event->hw;
4587 hwc->sample_period = attr->sample_period;
4588 if (attr->freq && attr->sample_freq)
4589 hwc->sample_period = 1;
4590 hwc->last_period = hwc->sample_period;
4592 atomic64_set(&hwc->period_left, hwc->sample_period);
4595 * we currently do not support PERF_FORMAT_GROUP on inherited events
4597 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
4598 goto done;
4600 switch (attr->type) {
4601 case PERF_TYPE_RAW:
4602 case PERF_TYPE_HARDWARE:
4603 case PERF_TYPE_HW_CACHE:
4604 pmu = hw_perf_event_init(event);
4605 break;
4607 case PERF_TYPE_SOFTWARE:
4608 pmu = sw_perf_event_init(event);
4609 break;
4611 case PERF_TYPE_TRACEPOINT:
4612 pmu = tp_perf_event_init(event);
4613 break;
4615 case PERF_TYPE_BREAKPOINT:
4616 pmu = bp_perf_event_init(event);
4617 break;
4620 default:
4621 break;
4623 done:
4624 err = 0;
4625 if (!pmu)
4626 err = -EINVAL;
4627 else if (IS_ERR(pmu))
4628 err = PTR_ERR(pmu);
4630 if (err) {
4631 if (event->ns)
4632 put_pid_ns(event->ns);
4633 kfree(event);
4634 return ERR_PTR(err);
4637 event->pmu = pmu;
4639 if (!event->parent) {
4640 atomic_inc(&nr_events);
4641 if (event->attr.mmap)
4642 atomic_inc(&nr_mmap_events);
4643 if (event->attr.comm)
4644 atomic_inc(&nr_comm_events);
4645 if (event->attr.task)
4646 atomic_inc(&nr_task_events);
4649 return event;
4652 static int perf_copy_attr(struct perf_event_attr __user *uattr,
4653 struct perf_event_attr *attr)
4655 u32 size;
4656 int ret;
4658 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
4659 return -EFAULT;
4662 * zero the full structure, so that a short copy will be nice.
4664 memset(attr, 0, sizeof(*attr));
4666 ret = get_user(size, &uattr->size);
4667 if (ret)
4668 return ret;
4670 if (size > PAGE_SIZE) /* silly large */
4671 goto err_size;
4673 if (!size) /* abi compat */
4674 size = PERF_ATTR_SIZE_VER0;
4676 if (size < PERF_ATTR_SIZE_VER0)
4677 goto err_size;
4680 * If we're handed a bigger struct than we know of,
4681 * ensure all the unknown bits are 0 - i.e. new
4682 * user-space does not rely on any kernel feature
4683 * extensions we dont know about yet.
4685 if (size > sizeof(*attr)) {
4686 unsigned char __user *addr;
4687 unsigned char __user *end;
4688 unsigned char val;
4690 addr = (void __user *)uattr + sizeof(*attr);
4691 end = (void __user *)uattr + size;
4693 for (; addr < end; addr++) {
4694 ret = get_user(val, addr);
4695 if (ret)
4696 return ret;
4697 if (val)
4698 goto err_size;
4700 size = sizeof(*attr);
4703 ret = copy_from_user(attr, uattr, size);
4704 if (ret)
4705 return -EFAULT;
4708 * If the type exists, the corresponding creation will verify
4709 * the attr->config.
4711 if (attr->type >= PERF_TYPE_MAX)
4712 return -EINVAL;
4714 if (attr->__reserved_1)
4715 return -EINVAL;
4717 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
4718 return -EINVAL;
4720 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
4721 return -EINVAL;
4723 out:
4724 return ret;
4726 err_size:
4727 put_user(sizeof(*attr), &uattr->size);
4728 ret = -E2BIG;
4729 goto out;
4732 static int perf_event_set_output(struct perf_event *event, int output_fd)
4734 struct perf_event *output_event = NULL;
4735 struct file *output_file = NULL;
4736 struct perf_event *old_output;
4737 int fput_needed = 0;
4738 int ret = -EINVAL;
4740 if (!output_fd)
4741 goto set;
4743 output_file = fget_light(output_fd, &fput_needed);
4744 if (!output_file)
4745 return -EBADF;
4747 if (output_file->f_op != &perf_fops)
4748 goto out;
4750 output_event = output_file->private_data;
4752 /* Don't chain output fds */
4753 if (output_event->output)
4754 goto out;
4756 /* Don't set an output fd when we already have an output channel */
4757 if (event->data)
4758 goto out;
4760 atomic_long_inc(&output_file->f_count);
4762 set:
4763 mutex_lock(&event->mmap_mutex);
4764 old_output = event->output;
4765 rcu_assign_pointer(event->output, output_event);
4766 mutex_unlock(&event->mmap_mutex);
4768 if (old_output) {
4770 * we need to make sure no existing perf_output_*()
4771 * is still referencing this event.
4773 synchronize_rcu();
4774 fput(old_output->filp);
4777 ret = 0;
4778 out:
4779 fput_light(output_file, fput_needed);
4780 return ret;
4784 * sys_perf_event_open - open a performance event, associate it to a task/cpu
4786 * @attr_uptr: event_id type attributes for monitoring/sampling
4787 * @pid: target pid
4788 * @cpu: target cpu
4789 * @group_fd: group leader event fd
4791 SYSCALL_DEFINE5(perf_event_open,
4792 struct perf_event_attr __user *, attr_uptr,
4793 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
4795 struct perf_event *event, *group_leader;
4796 struct perf_event_attr attr;
4797 struct perf_event_context *ctx;
4798 struct file *event_file = NULL;
4799 struct file *group_file = NULL;
4800 int fput_needed = 0;
4801 int fput_needed2 = 0;
4802 int err;
4804 /* for future expandability... */
4805 if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
4806 return -EINVAL;
4808 err = perf_copy_attr(attr_uptr, &attr);
4809 if (err)
4810 return err;
4812 if (!attr.exclude_kernel) {
4813 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
4814 return -EACCES;
4817 if (attr.freq) {
4818 if (attr.sample_freq > sysctl_perf_event_sample_rate)
4819 return -EINVAL;
4823 * Get the target context (task or percpu):
4825 ctx = find_get_context(pid, cpu);
4826 if (IS_ERR(ctx))
4827 return PTR_ERR(ctx);
4830 * Look up the group leader (we will attach this event to it):
4832 group_leader = NULL;
4833 if (group_fd != -1 && !(flags & PERF_FLAG_FD_NO_GROUP)) {
4834 err = -EINVAL;
4835 group_file = fget_light(group_fd, &fput_needed);
4836 if (!group_file)
4837 goto err_put_context;
4838 if (group_file->f_op != &perf_fops)
4839 goto err_put_context;
4841 group_leader = group_file->private_data;
4843 * Do not allow a recursive hierarchy (this new sibling
4844 * becoming part of another group-sibling):
4846 if (group_leader->group_leader != group_leader)
4847 goto err_put_context;
4849 * Do not allow to attach to a group in a different
4850 * task or CPU context:
4852 if (group_leader->ctx != ctx)
4853 goto err_put_context;
4855 * Only a group leader can be exclusive or pinned
4857 if (attr.exclusive || attr.pinned)
4858 goto err_put_context;
4861 event = perf_event_alloc(&attr, cpu, ctx, group_leader,
4862 NULL, NULL, GFP_KERNEL);
4863 err = PTR_ERR(event);
4864 if (IS_ERR(event))
4865 goto err_put_context;
4867 err = anon_inode_getfd("[perf_event]", &perf_fops, event, O_RDWR);
4868 if (err < 0)
4869 goto err_free_put_context;
4871 event_file = fget_light(err, &fput_needed2);
4872 if (!event_file)
4873 goto err_free_put_context;
4875 if (flags & PERF_FLAG_FD_OUTPUT) {
4876 err = perf_event_set_output(event, group_fd);
4877 if (err)
4878 goto err_fput_free_put_context;
4881 event->filp = event_file;
4882 WARN_ON_ONCE(ctx->parent_ctx);
4883 mutex_lock(&ctx->mutex);
4884 perf_install_in_context(ctx, event, cpu);
4885 ++ctx->generation;
4886 mutex_unlock(&ctx->mutex);
4888 event->owner = current;
4889 get_task_struct(current);
4890 mutex_lock(&current->perf_event_mutex);
4891 list_add_tail(&event->owner_entry, &current->perf_event_list);
4892 mutex_unlock(&current->perf_event_mutex);
4894 err_fput_free_put_context:
4895 fput_light(event_file, fput_needed2);
4897 err_free_put_context:
4898 if (err < 0)
4899 kfree(event);
4901 err_put_context:
4902 if (err < 0)
4903 put_ctx(ctx);
4905 fput_light(group_file, fput_needed);
4907 return err;
4911 * perf_event_create_kernel_counter
4913 * @attr: attributes of the counter to create
4914 * @cpu: cpu in which the counter is bound
4915 * @pid: task to profile
4917 struct perf_event *
4918 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
4919 pid_t pid,
4920 perf_overflow_handler_t overflow_handler)
4922 struct perf_event *event;
4923 struct perf_event_context *ctx;
4924 int err;
4927 * Get the target context (task or percpu):
4930 ctx = find_get_context(pid, cpu);
4931 if (IS_ERR(ctx)) {
4932 err = PTR_ERR(ctx);
4933 goto err_exit;
4936 event = perf_event_alloc(attr, cpu, ctx, NULL,
4937 NULL, overflow_handler, GFP_KERNEL);
4938 if (IS_ERR(event)) {
4939 err = PTR_ERR(event);
4940 goto err_put_context;
4943 event->filp = NULL;
4944 WARN_ON_ONCE(ctx->parent_ctx);
4945 mutex_lock(&ctx->mutex);
4946 perf_install_in_context(ctx, event, cpu);
4947 ++ctx->generation;
4948 mutex_unlock(&ctx->mutex);
4950 event->owner = current;
4951 get_task_struct(current);
4952 mutex_lock(&current->perf_event_mutex);
4953 list_add_tail(&event->owner_entry, &current->perf_event_list);
4954 mutex_unlock(&current->perf_event_mutex);
4956 return event;
4958 err_put_context:
4959 put_ctx(ctx);
4960 err_exit:
4961 return ERR_PTR(err);
4963 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
4966 * inherit a event from parent task to child task:
4968 static struct perf_event *
4969 inherit_event(struct perf_event *parent_event,
4970 struct task_struct *parent,
4971 struct perf_event_context *parent_ctx,
4972 struct task_struct *child,
4973 struct perf_event *group_leader,
4974 struct perf_event_context *child_ctx)
4976 struct perf_event *child_event;
4979 * Instead of creating recursive hierarchies of events,
4980 * we link inherited events back to the original parent,
4981 * which has a filp for sure, which we use as the reference
4982 * count:
4984 if (parent_event->parent)
4985 parent_event = parent_event->parent;
4987 child_event = perf_event_alloc(&parent_event->attr,
4988 parent_event->cpu, child_ctx,
4989 group_leader, parent_event,
4990 NULL, GFP_KERNEL);
4991 if (IS_ERR(child_event))
4992 return child_event;
4993 get_ctx(child_ctx);
4996 * Make the child state follow the state of the parent event,
4997 * not its attr.disabled bit. We hold the parent's mutex,
4998 * so we won't race with perf_event_{en, dis}able_family.
5000 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
5001 child_event->state = PERF_EVENT_STATE_INACTIVE;
5002 else
5003 child_event->state = PERF_EVENT_STATE_OFF;
5005 if (parent_event->attr.freq) {
5006 u64 sample_period = parent_event->hw.sample_period;
5007 struct hw_perf_event *hwc = &child_event->hw;
5009 hwc->sample_period = sample_period;
5010 hwc->last_period = sample_period;
5012 atomic64_set(&hwc->period_left, sample_period);
5015 child_event->overflow_handler = parent_event->overflow_handler;
5018 * Link it up in the child's context:
5020 add_event_to_ctx(child_event, child_ctx);
5023 * Get a reference to the parent filp - we will fput it
5024 * when the child event exits. This is safe to do because
5025 * we are in the parent and we know that the filp still
5026 * exists and has a nonzero count:
5028 atomic_long_inc(&parent_event->filp->f_count);
5031 * Link this into the parent event's child list
5033 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5034 mutex_lock(&parent_event->child_mutex);
5035 list_add_tail(&child_event->child_list, &parent_event->child_list);
5036 mutex_unlock(&parent_event->child_mutex);
5038 return child_event;
5041 static int inherit_group(struct perf_event *parent_event,
5042 struct task_struct *parent,
5043 struct perf_event_context *parent_ctx,
5044 struct task_struct *child,
5045 struct perf_event_context *child_ctx)
5047 struct perf_event *leader;
5048 struct perf_event *sub;
5049 struct perf_event *child_ctr;
5051 leader = inherit_event(parent_event, parent, parent_ctx,
5052 child, NULL, child_ctx);
5053 if (IS_ERR(leader))
5054 return PTR_ERR(leader);
5055 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
5056 child_ctr = inherit_event(sub, parent, parent_ctx,
5057 child, leader, child_ctx);
5058 if (IS_ERR(child_ctr))
5059 return PTR_ERR(child_ctr);
5061 return 0;
5064 static void sync_child_event(struct perf_event *child_event,
5065 struct task_struct *child)
5067 struct perf_event *parent_event = child_event->parent;
5068 u64 child_val;
5070 if (child_event->attr.inherit_stat)
5071 perf_event_read_event(child_event, child);
5073 child_val = atomic64_read(&child_event->count);
5076 * Add back the child's count to the parent's count:
5078 atomic64_add(child_val, &parent_event->count);
5079 atomic64_add(child_event->total_time_enabled,
5080 &parent_event->child_total_time_enabled);
5081 atomic64_add(child_event->total_time_running,
5082 &parent_event->child_total_time_running);
5085 * Remove this event from the parent's list
5087 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5088 mutex_lock(&parent_event->child_mutex);
5089 list_del_init(&child_event->child_list);
5090 mutex_unlock(&parent_event->child_mutex);
5093 * Release the parent event, if this was the last
5094 * reference to it.
5096 fput(parent_event->filp);
5099 static void
5100 __perf_event_exit_task(struct perf_event *child_event,
5101 struct perf_event_context *child_ctx,
5102 struct task_struct *child)
5104 struct perf_event *parent_event;
5106 perf_event_remove_from_context(child_event);
5108 parent_event = child_event->parent;
5110 * It can happen that parent exits first, and has events
5111 * that are still around due to the child reference. These
5112 * events need to be zapped - but otherwise linger.
5114 if (parent_event) {
5115 sync_child_event(child_event, child);
5116 free_event(child_event);
5121 * When a child task exits, feed back event values to parent events.
5123 void perf_event_exit_task(struct task_struct *child)
5125 struct perf_event *child_event, *tmp;
5126 struct perf_event_context *child_ctx;
5127 unsigned long flags;
5129 if (likely(!child->perf_event_ctxp)) {
5130 perf_event_task(child, NULL, 0);
5131 return;
5134 local_irq_save(flags);
5136 * We can't reschedule here because interrupts are disabled,
5137 * and either child is current or it is a task that can't be
5138 * scheduled, so we are now safe from rescheduling changing
5139 * our context.
5141 child_ctx = child->perf_event_ctxp;
5142 __perf_event_task_sched_out(child_ctx);
5145 * Take the context lock here so that if find_get_context is
5146 * reading child->perf_event_ctxp, we wait until it has
5147 * incremented the context's refcount before we do put_ctx below.
5149 raw_spin_lock(&child_ctx->lock);
5150 child->perf_event_ctxp = NULL;
5152 * If this context is a clone; unclone it so it can't get
5153 * swapped to another process while we're removing all
5154 * the events from it.
5156 unclone_ctx(child_ctx);
5157 update_context_time(child_ctx);
5158 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
5161 * Report the task dead after unscheduling the events so that we
5162 * won't get any samples after PERF_RECORD_EXIT. We can however still
5163 * get a few PERF_RECORD_READ events.
5165 perf_event_task(child, child_ctx, 0);
5168 * We can recurse on the same lock type through:
5170 * __perf_event_exit_task()
5171 * sync_child_event()
5172 * fput(parent_event->filp)
5173 * perf_release()
5174 * mutex_lock(&ctx->mutex)
5176 * But since its the parent context it won't be the same instance.
5178 mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING);
5180 again:
5181 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
5182 group_entry)
5183 __perf_event_exit_task(child_event, child_ctx, child);
5185 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
5186 group_entry)
5187 __perf_event_exit_task(child_event, child_ctx, child);
5190 * If the last event was a group event, it will have appended all
5191 * its siblings to the list, but we obtained 'tmp' before that which
5192 * will still point to the list head terminating the iteration.
5194 if (!list_empty(&child_ctx->pinned_groups) ||
5195 !list_empty(&child_ctx->flexible_groups))
5196 goto again;
5198 mutex_unlock(&child_ctx->mutex);
5200 put_ctx(child_ctx);
5203 static void perf_free_event(struct perf_event *event,
5204 struct perf_event_context *ctx)
5206 struct perf_event *parent = event->parent;
5208 if (WARN_ON_ONCE(!parent))
5209 return;
5211 mutex_lock(&parent->child_mutex);
5212 list_del_init(&event->child_list);
5213 mutex_unlock(&parent->child_mutex);
5215 fput(parent->filp);
5217 list_del_event(event, ctx);
5218 free_event(event);
5222 * free an unexposed, unused context as created by inheritance by
5223 * init_task below, used by fork() in case of fail.
5225 void perf_event_free_task(struct task_struct *task)
5227 struct perf_event_context *ctx = task->perf_event_ctxp;
5228 struct perf_event *event, *tmp;
5230 if (!ctx)
5231 return;
5233 mutex_lock(&ctx->mutex);
5234 again:
5235 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
5236 perf_free_event(event, ctx);
5238 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
5239 group_entry)
5240 perf_free_event(event, ctx);
5242 if (!list_empty(&ctx->pinned_groups) ||
5243 !list_empty(&ctx->flexible_groups))
5244 goto again;
5246 mutex_unlock(&ctx->mutex);
5248 put_ctx(ctx);
5251 static int
5252 inherit_task_group(struct perf_event *event, struct task_struct *parent,
5253 struct perf_event_context *parent_ctx,
5254 struct task_struct *child,
5255 int *inherited_all)
5257 int ret;
5258 struct perf_event_context *child_ctx = child->perf_event_ctxp;
5260 if (!event->attr.inherit) {
5261 *inherited_all = 0;
5262 return 0;
5265 if (!child_ctx) {
5267 * This is executed from the parent task context, so
5268 * inherit events that have been marked for cloning.
5269 * First allocate and initialize a context for the
5270 * child.
5273 child_ctx = kzalloc(sizeof(struct perf_event_context),
5274 GFP_KERNEL);
5275 if (!child_ctx)
5276 return -ENOMEM;
5278 __perf_event_init_context(child_ctx, child);
5279 child->perf_event_ctxp = child_ctx;
5280 get_task_struct(child);
5283 ret = inherit_group(event, parent, parent_ctx,
5284 child, child_ctx);
5286 if (ret)
5287 *inherited_all = 0;
5289 return ret;
5294 * Initialize the perf_event context in task_struct
5296 int perf_event_init_task(struct task_struct *child)
5298 struct perf_event_context *child_ctx, *parent_ctx;
5299 struct perf_event_context *cloned_ctx;
5300 struct perf_event *event;
5301 struct task_struct *parent = current;
5302 int inherited_all = 1;
5303 int ret = 0;
5305 child->perf_event_ctxp = NULL;
5307 mutex_init(&child->perf_event_mutex);
5308 INIT_LIST_HEAD(&child->perf_event_list);
5310 if (likely(!parent->perf_event_ctxp))
5311 return 0;
5314 * If the parent's context is a clone, pin it so it won't get
5315 * swapped under us.
5317 parent_ctx = perf_pin_task_context(parent);
5320 * No need to check if parent_ctx != NULL here; since we saw
5321 * it non-NULL earlier, the only reason for it to become NULL
5322 * is if we exit, and since we're currently in the middle of
5323 * a fork we can't be exiting at the same time.
5327 * Lock the parent list. No need to lock the child - not PID
5328 * hashed yet and not running, so nobody can access it.
5330 mutex_lock(&parent_ctx->mutex);
5333 * We dont have to disable NMIs - we are only looking at
5334 * the list, not manipulating it:
5336 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
5337 ret = inherit_task_group(event, parent, parent_ctx, child,
5338 &inherited_all);
5339 if (ret)
5340 break;
5343 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
5344 ret = inherit_task_group(event, parent, parent_ctx, child,
5345 &inherited_all);
5346 if (ret)
5347 break;
5350 child_ctx = child->perf_event_ctxp;
5352 if (child_ctx && inherited_all) {
5354 * Mark the child context as a clone of the parent
5355 * context, or of whatever the parent is a clone of.
5356 * Note that if the parent is a clone, it could get
5357 * uncloned at any point, but that doesn't matter
5358 * because the list of events and the generation
5359 * count can't have changed since we took the mutex.
5361 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
5362 if (cloned_ctx) {
5363 child_ctx->parent_ctx = cloned_ctx;
5364 child_ctx->parent_gen = parent_ctx->parent_gen;
5365 } else {
5366 child_ctx->parent_ctx = parent_ctx;
5367 child_ctx->parent_gen = parent_ctx->generation;
5369 get_ctx(child_ctx->parent_ctx);
5372 mutex_unlock(&parent_ctx->mutex);
5374 perf_unpin_context(parent_ctx);
5376 return ret;
5379 static void __init perf_event_init_all_cpus(void)
5381 int cpu;
5382 struct perf_cpu_context *cpuctx;
5384 for_each_possible_cpu(cpu) {
5385 cpuctx = &per_cpu(perf_cpu_context, cpu);
5386 __perf_event_init_context(&cpuctx->ctx, NULL);
5390 static void __cpuinit perf_event_init_cpu(int cpu)
5392 struct perf_cpu_context *cpuctx;
5394 cpuctx = &per_cpu(perf_cpu_context, cpu);
5396 spin_lock(&perf_resource_lock);
5397 cpuctx->max_pertask = perf_max_events - perf_reserved_percpu;
5398 spin_unlock(&perf_resource_lock);
5401 #ifdef CONFIG_HOTPLUG_CPU
5402 static void __perf_event_exit_cpu(void *info)
5404 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
5405 struct perf_event_context *ctx = &cpuctx->ctx;
5406 struct perf_event *event, *tmp;
5408 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
5409 __perf_event_remove_from_context(event);
5410 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
5411 __perf_event_remove_from_context(event);
5413 static void perf_event_exit_cpu(int cpu)
5415 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
5416 struct perf_event_context *ctx = &cpuctx->ctx;
5418 mutex_lock(&ctx->mutex);
5419 smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1);
5420 mutex_unlock(&ctx->mutex);
5422 #else
5423 static inline void perf_event_exit_cpu(int cpu) { }
5424 #endif
5426 static int __cpuinit
5427 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
5429 unsigned int cpu = (long)hcpu;
5431 switch (action) {
5433 case CPU_UP_PREPARE:
5434 case CPU_UP_PREPARE_FROZEN:
5435 perf_event_init_cpu(cpu);
5436 break;
5438 case CPU_DOWN_PREPARE:
5439 case CPU_DOWN_PREPARE_FROZEN:
5440 perf_event_exit_cpu(cpu);
5441 break;
5443 default:
5444 break;
5447 return NOTIFY_OK;
5451 * This has to have a higher priority than migration_notifier in sched.c.
5453 static struct notifier_block __cpuinitdata perf_cpu_nb = {
5454 .notifier_call = perf_cpu_notify,
5455 .priority = 20,
5458 void __init perf_event_init(void)
5460 perf_event_init_all_cpus();
5461 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
5462 (void *)(long)smp_processor_id());
5463 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE,
5464 (void *)(long)smp_processor_id());
5465 register_cpu_notifier(&perf_cpu_nb);
5468 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class,
5469 struct sysdev_class_attribute *attr,
5470 char *buf)
5472 return sprintf(buf, "%d\n", perf_reserved_percpu);
5475 static ssize_t
5476 perf_set_reserve_percpu(struct sysdev_class *class,
5477 struct sysdev_class_attribute *attr,
5478 const char *buf,
5479 size_t count)
5481 struct perf_cpu_context *cpuctx;
5482 unsigned long val;
5483 int err, cpu, mpt;
5485 err = strict_strtoul(buf, 10, &val);
5486 if (err)
5487 return err;
5488 if (val > perf_max_events)
5489 return -EINVAL;
5491 spin_lock(&perf_resource_lock);
5492 perf_reserved_percpu = val;
5493 for_each_online_cpu(cpu) {
5494 cpuctx = &per_cpu(perf_cpu_context, cpu);
5495 raw_spin_lock_irq(&cpuctx->ctx.lock);
5496 mpt = min(perf_max_events - cpuctx->ctx.nr_events,
5497 perf_max_events - perf_reserved_percpu);
5498 cpuctx->max_pertask = mpt;
5499 raw_spin_unlock_irq(&cpuctx->ctx.lock);
5501 spin_unlock(&perf_resource_lock);
5503 return count;
5506 static ssize_t perf_show_overcommit(struct sysdev_class *class,
5507 struct sysdev_class_attribute *attr,
5508 char *buf)
5510 return sprintf(buf, "%d\n", perf_overcommit);
5513 static ssize_t
5514 perf_set_overcommit(struct sysdev_class *class,
5515 struct sysdev_class_attribute *attr,
5516 const char *buf, size_t count)
5518 unsigned long val;
5519 int err;
5521 err = strict_strtoul(buf, 10, &val);
5522 if (err)
5523 return err;
5524 if (val > 1)
5525 return -EINVAL;
5527 spin_lock(&perf_resource_lock);
5528 perf_overcommit = val;
5529 spin_unlock(&perf_resource_lock);
5531 return count;
5534 static SYSDEV_CLASS_ATTR(
5535 reserve_percpu,
5536 0644,
5537 perf_show_reserve_percpu,
5538 perf_set_reserve_percpu
5541 static SYSDEV_CLASS_ATTR(
5542 overcommit,
5543 0644,
5544 perf_show_overcommit,
5545 perf_set_overcommit
5548 static struct attribute *perfclass_attrs[] = {
5549 &attr_reserve_percpu.attr,
5550 &attr_overcommit.attr,
5551 NULL
5554 static struct attribute_group perfclass_attr_group = {
5555 .attrs = perfclass_attrs,
5556 .name = "perf_events",
5559 static int __init perf_event_sysfs_init(void)
5561 return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
5562 &perfclass_attr_group);
5564 device_initcall(perf_event_sysfs_init);