4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
10 * Removed a lot of unnecessary code and simplified things now that
11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
13 * Speed up hash, lru, and free list operations. Use gfp() for allocating
14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
21 #include <linux/kernel.h>
22 #include <linux/syscalls.h>
25 #include <linux/percpu.h>
26 #include <linux/slab.h>
27 #include <linux/capability.h>
28 #include <linux/blkdev.h>
29 #include <linux/file.h>
30 #include <linux/quotaops.h>
31 #include <linux/highmem.h>
32 #include <linux/export.h>
33 #include <linux/writeback.h>
34 #include <linux/hash.h>
35 #include <linux/suspend.h>
36 #include <linux/buffer_head.h>
37 #include <linux/task_io_accounting_ops.h>
38 #include <linux/bio.h>
39 #include <linux/notifier.h>
40 #include <linux/cpu.h>
41 #include <linux/bitops.h>
42 #include <linux/mpage.h>
43 #include <linux/bit_spinlock.h>
44 #include <trace/events/block.h>
46 static int fsync_buffers_list(spinlock_t
*lock
, struct list_head
*list
);
48 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
50 void init_buffer(struct buffer_head
*bh
, bh_end_io_t
*handler
, void *private)
52 bh
->b_end_io
= handler
;
53 bh
->b_private
= private;
55 EXPORT_SYMBOL(init_buffer
);
57 inline void touch_buffer(struct buffer_head
*bh
)
59 trace_block_touch_buffer(bh
);
60 mark_page_accessed(bh
->b_page
);
62 EXPORT_SYMBOL(touch_buffer
);
64 static int sleep_on_buffer(void *word
)
70 void __lock_buffer(struct buffer_head
*bh
)
72 wait_on_bit_lock(&bh
->b_state
, BH_Lock
, sleep_on_buffer
,
73 TASK_UNINTERRUPTIBLE
);
75 EXPORT_SYMBOL(__lock_buffer
);
77 void unlock_buffer(struct buffer_head
*bh
)
79 clear_bit_unlock(BH_Lock
, &bh
->b_state
);
80 smp_mb__after_clear_bit();
81 wake_up_bit(&bh
->b_state
, BH_Lock
);
83 EXPORT_SYMBOL(unlock_buffer
);
86 * Block until a buffer comes unlocked. This doesn't stop it
87 * from becoming locked again - you have to lock it yourself
88 * if you want to preserve its state.
90 void __wait_on_buffer(struct buffer_head
* bh
)
92 wait_on_bit(&bh
->b_state
, BH_Lock
, sleep_on_buffer
, TASK_UNINTERRUPTIBLE
);
94 EXPORT_SYMBOL(__wait_on_buffer
);
97 __clear_page_buffers(struct page
*page
)
99 ClearPagePrivate(page
);
100 set_page_private(page
, 0);
101 page_cache_release(page
);
105 static int quiet_error(struct buffer_head
*bh
)
107 if (!test_bit(BH_Quiet
, &bh
->b_state
) && printk_ratelimit())
113 static void buffer_io_error(struct buffer_head
*bh
)
115 char b
[BDEVNAME_SIZE
];
116 printk(KERN_ERR
"Buffer I/O error on device %s, logical block %Lu\n",
117 bdevname(bh
->b_bdev
, b
),
118 (unsigned long long)bh
->b_blocknr
);
122 * End-of-IO handler helper function which does not touch the bh after
124 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
125 * a race there is benign: unlock_buffer() only use the bh's address for
126 * hashing after unlocking the buffer, so it doesn't actually touch the bh
129 static void __end_buffer_read_notouch(struct buffer_head
*bh
, int uptodate
)
132 set_buffer_uptodate(bh
);
134 /* This happens, due to failed READA attempts. */
135 clear_buffer_uptodate(bh
);
141 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
142 * unlock the buffer. This is what ll_rw_block uses too.
144 void end_buffer_read_sync(struct buffer_head
*bh
, int uptodate
)
146 __end_buffer_read_notouch(bh
, uptodate
);
149 EXPORT_SYMBOL(end_buffer_read_sync
);
151 void end_buffer_write_sync(struct buffer_head
*bh
, int uptodate
)
153 char b
[BDEVNAME_SIZE
];
156 set_buffer_uptodate(bh
);
158 if (!quiet_error(bh
)) {
160 printk(KERN_WARNING
"lost page write due to "
162 bdevname(bh
->b_bdev
, b
));
164 set_buffer_write_io_error(bh
);
165 clear_buffer_uptodate(bh
);
170 EXPORT_SYMBOL(end_buffer_write_sync
);
173 * Various filesystems appear to want __find_get_block to be non-blocking.
174 * But it's the page lock which protects the buffers. To get around this,
175 * we get exclusion from try_to_free_buffers with the blockdev mapping's
178 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
179 * may be quite high. This code could TryLock the page, and if that
180 * succeeds, there is no need to take private_lock. (But if
181 * private_lock is contended then so is mapping->tree_lock).
183 static struct buffer_head
*
184 __find_get_block_slow(struct block_device
*bdev
, sector_t block
)
186 struct inode
*bd_inode
= bdev
->bd_inode
;
187 struct address_space
*bd_mapping
= bd_inode
->i_mapping
;
188 struct buffer_head
*ret
= NULL
;
190 struct buffer_head
*bh
;
191 struct buffer_head
*head
;
195 index
= block
>> (PAGE_CACHE_SHIFT
- bd_inode
->i_blkbits
);
196 page
= find_get_page(bd_mapping
, index
);
200 spin_lock(&bd_mapping
->private_lock
);
201 if (!page_has_buffers(page
))
203 head
= page_buffers(page
);
206 if (!buffer_mapped(bh
))
208 else if (bh
->b_blocknr
== block
) {
213 bh
= bh
->b_this_page
;
214 } while (bh
!= head
);
216 /* we might be here because some of the buffers on this page are
217 * not mapped. This is due to various races between
218 * file io on the block device and getblk. It gets dealt with
219 * elsewhere, don't buffer_error if we had some unmapped buffers
222 char b
[BDEVNAME_SIZE
];
224 printk("__find_get_block_slow() failed. "
225 "block=%llu, b_blocknr=%llu\n",
226 (unsigned long long)block
,
227 (unsigned long long)bh
->b_blocknr
);
228 printk("b_state=0x%08lx, b_size=%zu\n",
229 bh
->b_state
, bh
->b_size
);
230 printk("device %s blocksize: %d\n", bdevname(bdev
, b
),
231 1 << bd_inode
->i_blkbits
);
234 spin_unlock(&bd_mapping
->private_lock
);
235 page_cache_release(page
);
241 * Kick the writeback threads then try to free up some ZONE_NORMAL memory.
243 static void free_more_memory(void)
248 wakeup_flusher_threads(1024, WB_REASON_FREE_MORE_MEM
);
251 for_each_online_node(nid
) {
252 (void)first_zones_zonelist(node_zonelist(nid
, GFP_NOFS
),
253 gfp_zone(GFP_NOFS
), NULL
,
256 try_to_free_pages(node_zonelist(nid
, GFP_NOFS
), 0,
262 * I/O completion handler for block_read_full_page() - pages
263 * which come unlocked at the end of I/O.
265 static void end_buffer_async_read(struct buffer_head
*bh
, int uptodate
)
268 struct buffer_head
*first
;
269 struct buffer_head
*tmp
;
271 int page_uptodate
= 1;
273 BUG_ON(!buffer_async_read(bh
));
277 set_buffer_uptodate(bh
);
279 clear_buffer_uptodate(bh
);
280 if (!quiet_error(bh
))
286 * Be _very_ careful from here on. Bad things can happen if
287 * two buffer heads end IO at almost the same time and both
288 * decide that the page is now completely done.
290 first
= page_buffers(page
);
291 local_irq_save(flags
);
292 bit_spin_lock(BH_Uptodate_Lock
, &first
->b_state
);
293 clear_buffer_async_read(bh
);
297 if (!buffer_uptodate(tmp
))
299 if (buffer_async_read(tmp
)) {
300 BUG_ON(!buffer_locked(tmp
));
303 tmp
= tmp
->b_this_page
;
305 bit_spin_unlock(BH_Uptodate_Lock
, &first
->b_state
);
306 local_irq_restore(flags
);
309 * If none of the buffers had errors and they are all
310 * uptodate then we can set the page uptodate.
312 if (page_uptodate
&& !PageError(page
))
313 SetPageUptodate(page
);
318 bit_spin_unlock(BH_Uptodate_Lock
, &first
->b_state
);
319 local_irq_restore(flags
);
324 * Completion handler for block_write_full_page() - pages which are unlocked
325 * during I/O, and which have PageWriteback cleared upon I/O completion.
327 void end_buffer_async_write(struct buffer_head
*bh
, int uptodate
)
329 char b
[BDEVNAME_SIZE
];
331 struct buffer_head
*first
;
332 struct buffer_head
*tmp
;
335 BUG_ON(!buffer_async_write(bh
));
339 set_buffer_uptodate(bh
);
341 if (!quiet_error(bh
)) {
343 printk(KERN_WARNING
"lost page write due to "
345 bdevname(bh
->b_bdev
, b
));
347 set_bit(AS_EIO
, &page
->mapping
->flags
);
348 set_buffer_write_io_error(bh
);
349 clear_buffer_uptodate(bh
);
353 first
= page_buffers(page
);
354 local_irq_save(flags
);
355 bit_spin_lock(BH_Uptodate_Lock
, &first
->b_state
);
357 clear_buffer_async_write(bh
);
359 tmp
= bh
->b_this_page
;
361 if (buffer_async_write(tmp
)) {
362 BUG_ON(!buffer_locked(tmp
));
365 tmp
= tmp
->b_this_page
;
367 bit_spin_unlock(BH_Uptodate_Lock
, &first
->b_state
);
368 local_irq_restore(flags
);
369 end_page_writeback(page
);
373 bit_spin_unlock(BH_Uptodate_Lock
, &first
->b_state
);
374 local_irq_restore(flags
);
377 EXPORT_SYMBOL(end_buffer_async_write
);
380 * If a page's buffers are under async readin (end_buffer_async_read
381 * completion) then there is a possibility that another thread of
382 * control could lock one of the buffers after it has completed
383 * but while some of the other buffers have not completed. This
384 * locked buffer would confuse end_buffer_async_read() into not unlocking
385 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
386 * that this buffer is not under async I/O.
388 * The page comes unlocked when it has no locked buffer_async buffers
391 * PageLocked prevents anyone starting new async I/O reads any of
394 * PageWriteback is used to prevent simultaneous writeout of the same
397 * PageLocked prevents anyone from starting writeback of a page which is
398 * under read I/O (PageWriteback is only ever set against a locked page).
400 static void mark_buffer_async_read(struct buffer_head
*bh
)
402 bh
->b_end_io
= end_buffer_async_read
;
403 set_buffer_async_read(bh
);
406 static void mark_buffer_async_write_endio(struct buffer_head
*bh
,
407 bh_end_io_t
*handler
)
409 bh
->b_end_io
= handler
;
410 set_buffer_async_write(bh
);
413 void mark_buffer_async_write(struct buffer_head
*bh
)
415 mark_buffer_async_write_endio(bh
, end_buffer_async_write
);
417 EXPORT_SYMBOL(mark_buffer_async_write
);
421 * fs/buffer.c contains helper functions for buffer-backed address space's
422 * fsync functions. A common requirement for buffer-based filesystems is
423 * that certain data from the backing blockdev needs to be written out for
424 * a successful fsync(). For example, ext2 indirect blocks need to be
425 * written back and waited upon before fsync() returns.
427 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
428 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
429 * management of a list of dependent buffers at ->i_mapping->private_list.
431 * Locking is a little subtle: try_to_free_buffers() will remove buffers
432 * from their controlling inode's queue when they are being freed. But
433 * try_to_free_buffers() will be operating against the *blockdev* mapping
434 * at the time, not against the S_ISREG file which depends on those buffers.
435 * So the locking for private_list is via the private_lock in the address_space
436 * which backs the buffers. Which is different from the address_space
437 * against which the buffers are listed. So for a particular address_space,
438 * mapping->private_lock does *not* protect mapping->private_list! In fact,
439 * mapping->private_list will always be protected by the backing blockdev's
442 * Which introduces a requirement: all buffers on an address_space's
443 * ->private_list must be from the same address_space: the blockdev's.
445 * address_spaces which do not place buffers at ->private_list via these
446 * utility functions are free to use private_lock and private_list for
447 * whatever they want. The only requirement is that list_empty(private_list)
448 * be true at clear_inode() time.
450 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
451 * filesystems should do that. invalidate_inode_buffers() should just go
452 * BUG_ON(!list_empty).
454 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
455 * take an address_space, not an inode. And it should be called
456 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
459 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
460 * list if it is already on a list. Because if the buffer is on a list,
461 * it *must* already be on the right one. If not, the filesystem is being
462 * silly. This will save a ton of locking. But first we have to ensure
463 * that buffers are taken *off* the old inode's list when they are freed
464 * (presumably in truncate). That requires careful auditing of all
465 * filesystems (do it inside bforget()). It could also be done by bringing
470 * The buffer's backing address_space's private_lock must be held
472 static void __remove_assoc_queue(struct buffer_head
*bh
)
474 list_del_init(&bh
->b_assoc_buffers
);
475 WARN_ON(!bh
->b_assoc_map
);
476 if (buffer_write_io_error(bh
))
477 set_bit(AS_EIO
, &bh
->b_assoc_map
->flags
);
478 bh
->b_assoc_map
= NULL
;
481 int inode_has_buffers(struct inode
*inode
)
483 return !list_empty(&inode
->i_data
.private_list
);
487 * osync is designed to support O_SYNC io. It waits synchronously for
488 * all already-submitted IO to complete, but does not queue any new
489 * writes to the disk.
491 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
492 * you dirty the buffers, and then use osync_inode_buffers to wait for
493 * completion. Any other dirty buffers which are not yet queued for
494 * write will not be flushed to disk by the osync.
496 static int osync_buffers_list(spinlock_t
*lock
, struct list_head
*list
)
498 struct buffer_head
*bh
;
504 list_for_each_prev(p
, list
) {
506 if (buffer_locked(bh
)) {
510 if (!buffer_uptodate(bh
))
521 static void do_thaw_one(struct super_block
*sb
, void *unused
)
523 char b
[BDEVNAME_SIZE
];
524 while (sb
->s_bdev
&& !thaw_bdev(sb
->s_bdev
, sb
))
525 printk(KERN_WARNING
"Emergency Thaw on %s\n",
526 bdevname(sb
->s_bdev
, b
));
529 static void do_thaw_all(struct work_struct
*work
)
531 iterate_supers(do_thaw_one
, NULL
);
533 printk(KERN_WARNING
"Emergency Thaw complete\n");
537 * emergency_thaw_all -- forcibly thaw every frozen filesystem
539 * Used for emergency unfreeze of all filesystems via SysRq
541 void emergency_thaw_all(void)
543 struct work_struct
*work
;
545 work
= kmalloc(sizeof(*work
), GFP_ATOMIC
);
547 INIT_WORK(work
, do_thaw_all
);
553 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
554 * @mapping: the mapping which wants those buffers written
556 * Starts I/O against the buffers at mapping->private_list, and waits upon
559 * Basically, this is a convenience function for fsync().
560 * @mapping is a file or directory which needs those buffers to be written for
561 * a successful fsync().
563 int sync_mapping_buffers(struct address_space
*mapping
)
565 struct address_space
*buffer_mapping
= mapping
->private_data
;
567 if (buffer_mapping
== NULL
|| list_empty(&mapping
->private_list
))
570 return fsync_buffers_list(&buffer_mapping
->private_lock
,
571 &mapping
->private_list
);
573 EXPORT_SYMBOL(sync_mapping_buffers
);
576 * Called when we've recently written block `bblock', and it is known that
577 * `bblock' was for a buffer_boundary() buffer. This means that the block at
578 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
579 * dirty, schedule it for IO. So that indirects merge nicely with their data.
581 void write_boundary_block(struct block_device
*bdev
,
582 sector_t bblock
, unsigned blocksize
)
584 struct buffer_head
*bh
= __find_get_block(bdev
, bblock
+ 1, blocksize
);
586 if (buffer_dirty(bh
))
587 ll_rw_block(WRITE
, 1, &bh
);
592 void mark_buffer_dirty_inode(struct buffer_head
*bh
, struct inode
*inode
)
594 struct address_space
*mapping
= inode
->i_mapping
;
595 struct address_space
*buffer_mapping
= bh
->b_page
->mapping
;
597 mark_buffer_dirty(bh
);
598 if (!mapping
->private_data
) {
599 mapping
->private_data
= buffer_mapping
;
601 BUG_ON(mapping
->private_data
!= buffer_mapping
);
603 if (!bh
->b_assoc_map
) {
604 spin_lock(&buffer_mapping
->private_lock
);
605 list_move_tail(&bh
->b_assoc_buffers
,
606 &mapping
->private_list
);
607 bh
->b_assoc_map
= mapping
;
608 spin_unlock(&buffer_mapping
->private_lock
);
611 EXPORT_SYMBOL(mark_buffer_dirty_inode
);
614 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
617 * If warn is true, then emit a warning if the page is not uptodate and has
618 * not been truncated.
620 static void __set_page_dirty(struct page
*page
,
621 struct address_space
*mapping
, int warn
)
623 spin_lock_irq(&mapping
->tree_lock
);
624 if (page
->mapping
) { /* Race with truncate? */
625 WARN_ON_ONCE(warn
&& !PageUptodate(page
));
626 account_page_dirtied(page
, mapping
);
627 radix_tree_tag_set(&mapping
->page_tree
,
628 page_index(page
), PAGECACHE_TAG_DIRTY
);
630 spin_unlock_irq(&mapping
->tree_lock
);
631 __mark_inode_dirty(mapping
->host
, I_DIRTY_PAGES
);
635 * Add a page to the dirty page list.
637 * It is a sad fact of life that this function is called from several places
638 * deeply under spinlocking. It may not sleep.
640 * If the page has buffers, the uptodate buffers are set dirty, to preserve
641 * dirty-state coherency between the page and the buffers. It the page does
642 * not have buffers then when they are later attached they will all be set
645 * The buffers are dirtied before the page is dirtied. There's a small race
646 * window in which a writepage caller may see the page cleanness but not the
647 * buffer dirtiness. That's fine. If this code were to set the page dirty
648 * before the buffers, a concurrent writepage caller could clear the page dirty
649 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
650 * page on the dirty page list.
652 * We use private_lock to lock against try_to_free_buffers while using the
653 * page's buffer list. Also use this to protect against clean buffers being
654 * added to the page after it was set dirty.
656 * FIXME: may need to call ->reservepage here as well. That's rather up to the
657 * address_space though.
659 int __set_page_dirty_buffers(struct page
*page
)
662 struct address_space
*mapping
= page_mapping(page
);
664 if (unlikely(!mapping
))
665 return !TestSetPageDirty(page
);
667 spin_lock(&mapping
->private_lock
);
668 if (page_has_buffers(page
)) {
669 struct buffer_head
*head
= page_buffers(page
);
670 struct buffer_head
*bh
= head
;
673 set_buffer_dirty(bh
);
674 bh
= bh
->b_this_page
;
675 } while (bh
!= head
);
677 newly_dirty
= !TestSetPageDirty(page
);
678 spin_unlock(&mapping
->private_lock
);
681 __set_page_dirty(page
, mapping
, 1);
684 EXPORT_SYMBOL(__set_page_dirty_buffers
);
687 * Write out and wait upon a list of buffers.
689 * We have conflicting pressures: we want to make sure that all
690 * initially dirty buffers get waited on, but that any subsequently
691 * dirtied buffers don't. After all, we don't want fsync to last
692 * forever if somebody is actively writing to the file.
694 * Do this in two main stages: first we copy dirty buffers to a
695 * temporary inode list, queueing the writes as we go. Then we clean
696 * up, waiting for those writes to complete.
698 * During this second stage, any subsequent updates to the file may end
699 * up refiling the buffer on the original inode's dirty list again, so
700 * there is a chance we will end up with a buffer queued for write but
701 * not yet completed on that list. So, as a final cleanup we go through
702 * the osync code to catch these locked, dirty buffers without requeuing
703 * any newly dirty buffers for write.
705 static int fsync_buffers_list(spinlock_t
*lock
, struct list_head
*list
)
707 struct buffer_head
*bh
;
708 struct list_head tmp
;
709 struct address_space
*mapping
;
711 struct blk_plug plug
;
713 INIT_LIST_HEAD(&tmp
);
714 blk_start_plug(&plug
);
717 while (!list_empty(list
)) {
718 bh
= BH_ENTRY(list
->next
);
719 mapping
= bh
->b_assoc_map
;
720 __remove_assoc_queue(bh
);
721 /* Avoid race with mark_buffer_dirty_inode() which does
722 * a lockless check and we rely on seeing the dirty bit */
724 if (buffer_dirty(bh
) || buffer_locked(bh
)) {
725 list_add(&bh
->b_assoc_buffers
, &tmp
);
726 bh
->b_assoc_map
= mapping
;
727 if (buffer_dirty(bh
)) {
731 * Ensure any pending I/O completes so that
732 * write_dirty_buffer() actually writes the
733 * current contents - it is a noop if I/O is
734 * still in flight on potentially older
737 write_dirty_buffer(bh
, WRITE_SYNC
);
740 * Kick off IO for the previous mapping. Note
741 * that we will not run the very last mapping,
742 * wait_on_buffer() will do that for us
743 * through sync_buffer().
752 blk_finish_plug(&plug
);
755 while (!list_empty(&tmp
)) {
756 bh
= BH_ENTRY(tmp
.prev
);
758 mapping
= bh
->b_assoc_map
;
759 __remove_assoc_queue(bh
);
760 /* Avoid race with mark_buffer_dirty_inode() which does
761 * a lockless check and we rely on seeing the dirty bit */
763 if (buffer_dirty(bh
)) {
764 list_add(&bh
->b_assoc_buffers
,
765 &mapping
->private_list
);
766 bh
->b_assoc_map
= mapping
;
770 if (!buffer_uptodate(bh
))
777 err2
= osync_buffers_list(lock
, list
);
785 * Invalidate any and all dirty buffers on a given inode. We are
786 * probably unmounting the fs, but that doesn't mean we have already
787 * done a sync(). Just drop the buffers from the inode list.
789 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
790 * assumes that all the buffers are against the blockdev. Not true
793 void invalidate_inode_buffers(struct inode
*inode
)
795 if (inode_has_buffers(inode
)) {
796 struct address_space
*mapping
= &inode
->i_data
;
797 struct list_head
*list
= &mapping
->private_list
;
798 struct address_space
*buffer_mapping
= mapping
->private_data
;
800 spin_lock(&buffer_mapping
->private_lock
);
801 while (!list_empty(list
))
802 __remove_assoc_queue(BH_ENTRY(list
->next
));
803 spin_unlock(&buffer_mapping
->private_lock
);
806 EXPORT_SYMBOL(invalidate_inode_buffers
);
809 * Remove any clean buffers from the inode's buffer list. This is called
810 * when we're trying to free the inode itself. Those buffers can pin it.
812 * Returns true if all buffers were removed.
814 int remove_inode_buffers(struct inode
*inode
)
818 if (inode_has_buffers(inode
)) {
819 struct address_space
*mapping
= &inode
->i_data
;
820 struct list_head
*list
= &mapping
->private_list
;
821 struct address_space
*buffer_mapping
= mapping
->private_data
;
823 spin_lock(&buffer_mapping
->private_lock
);
824 while (!list_empty(list
)) {
825 struct buffer_head
*bh
= BH_ENTRY(list
->next
);
826 if (buffer_dirty(bh
)) {
830 __remove_assoc_queue(bh
);
832 spin_unlock(&buffer_mapping
->private_lock
);
838 * Create the appropriate buffers when given a page for data area and
839 * the size of each buffer.. Use the bh->b_this_page linked list to
840 * follow the buffers created. Return NULL if unable to create more
843 * The retry flag is used to differentiate async IO (paging, swapping)
844 * which may not fail from ordinary buffer allocations.
846 struct buffer_head
*alloc_page_buffers(struct page
*page
, unsigned long size
,
849 struct buffer_head
*bh
, *head
;
855 while ((offset
-= size
) >= 0) {
856 bh
= alloc_buffer_head(GFP_NOFS
);
860 bh
->b_this_page
= head
;
866 /* Link the buffer to its page */
867 set_bh_page(bh
, page
, offset
);
869 init_buffer(bh
, NULL
, NULL
);
873 * In case anything failed, we just free everything we got.
879 head
= head
->b_this_page
;
880 free_buffer_head(bh
);
885 * Return failure for non-async IO requests. Async IO requests
886 * are not allowed to fail, so we have to wait until buffer heads
887 * become available. But we don't want tasks sleeping with
888 * partially complete buffers, so all were released above.
893 /* We're _really_ low on memory. Now we just
894 * wait for old buffer heads to become free due to
895 * finishing IO. Since this is an async request and
896 * the reserve list is empty, we're sure there are
897 * async buffer heads in use.
902 EXPORT_SYMBOL_GPL(alloc_page_buffers
);
905 link_dev_buffers(struct page
*page
, struct buffer_head
*head
)
907 struct buffer_head
*bh
, *tail
;
912 bh
= bh
->b_this_page
;
914 tail
->b_this_page
= head
;
915 attach_page_buffers(page
, head
);
918 static sector_t
blkdev_max_block(struct block_device
*bdev
, unsigned int size
)
920 sector_t retval
= ~((sector_t
)0);
921 loff_t sz
= i_size_read(bdev
->bd_inode
);
924 unsigned int sizebits
= blksize_bits(size
);
925 retval
= (sz
>> sizebits
);
931 * Initialise the state of a blockdev page's buffers.
934 init_page_buffers(struct page
*page
, struct block_device
*bdev
,
935 sector_t block
, int size
)
937 struct buffer_head
*head
= page_buffers(page
);
938 struct buffer_head
*bh
= head
;
939 int uptodate
= PageUptodate(page
);
940 sector_t end_block
= blkdev_max_block(I_BDEV(bdev
->bd_inode
), size
);
943 if (!buffer_mapped(bh
)) {
944 init_buffer(bh
, NULL
, NULL
);
946 bh
->b_blocknr
= block
;
948 set_buffer_uptodate(bh
);
949 if (block
< end_block
)
950 set_buffer_mapped(bh
);
953 bh
= bh
->b_this_page
;
954 } while (bh
!= head
);
957 * Caller needs to validate requested block against end of device.
963 * Create the page-cache page that contains the requested block.
965 * This is used purely for blockdev mappings.
968 grow_dev_page(struct block_device
*bdev
, sector_t block
,
969 pgoff_t index
, int size
, int sizebits
)
971 struct inode
*inode
= bdev
->bd_inode
;
973 struct buffer_head
*bh
;
975 int ret
= 0; /* Will call free_more_memory() */
977 page
= find_or_create_page(inode
->i_mapping
, index
,
978 (mapping_gfp_mask(inode
->i_mapping
) & ~__GFP_FS
)|__GFP_MOVABLE
);
982 BUG_ON(!PageLocked(page
));
984 if (page_has_buffers(page
)) {
985 bh
= page_buffers(page
);
986 if (bh
->b_size
== size
) {
987 end_block
= init_page_buffers(page
, bdev
,
988 index
<< sizebits
, size
);
991 if (!try_to_free_buffers(page
))
996 * Allocate some buffers for this page
998 bh
= alloc_page_buffers(page
, size
, 0);
1003 * Link the page to the buffers and initialise them. Take the
1004 * lock to be atomic wrt __find_get_block(), which does not
1005 * run under the page lock.
1007 spin_lock(&inode
->i_mapping
->private_lock
);
1008 link_dev_buffers(page
, bh
);
1009 end_block
= init_page_buffers(page
, bdev
, index
<< sizebits
, size
);
1010 spin_unlock(&inode
->i_mapping
->private_lock
);
1012 ret
= (block
< end_block
) ? 1 : -ENXIO
;
1015 page_cache_release(page
);
1020 * Create buffers for the specified block device block's page. If
1021 * that page was dirty, the buffers are set dirty also.
1024 grow_buffers(struct block_device
*bdev
, sector_t block
, int size
)
1032 } while ((size
<< sizebits
) < PAGE_SIZE
);
1034 index
= block
>> sizebits
;
1037 * Check for a block which wants to lie outside our maximum possible
1038 * pagecache index. (this comparison is done using sector_t types).
1040 if (unlikely(index
!= block
>> sizebits
)) {
1041 char b
[BDEVNAME_SIZE
];
1043 printk(KERN_ERR
"%s: requested out-of-range block %llu for "
1045 __func__
, (unsigned long long)block
,
1050 /* Create a page with the proper size buffers.. */
1051 return grow_dev_page(bdev
, block
, index
, size
, sizebits
);
1054 static struct buffer_head
*
1055 __getblk_slow(struct block_device
*bdev
, sector_t block
, int size
)
1057 /* Size must be multiple of hard sectorsize */
1058 if (unlikely(size
& (bdev_logical_block_size(bdev
)-1) ||
1059 (size
< 512 || size
> PAGE_SIZE
))) {
1060 printk(KERN_ERR
"getblk(): invalid block size %d requested\n",
1062 printk(KERN_ERR
"logical block size: %d\n",
1063 bdev_logical_block_size(bdev
));
1070 struct buffer_head
*bh
;
1073 bh
= __find_get_block(bdev
, block
, size
);
1077 ret
= grow_buffers(bdev
, block
, size
);
1086 * The relationship between dirty buffers and dirty pages:
1088 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1089 * the page is tagged dirty in its radix tree.
1091 * At all times, the dirtiness of the buffers represents the dirtiness of
1092 * subsections of the page. If the page has buffers, the page dirty bit is
1093 * merely a hint about the true dirty state.
1095 * When a page is set dirty in its entirety, all its buffers are marked dirty
1096 * (if the page has buffers).
1098 * When a buffer is marked dirty, its page is dirtied, but the page's other
1101 * Also. When blockdev buffers are explicitly read with bread(), they
1102 * individually become uptodate. But their backing page remains not
1103 * uptodate - even if all of its buffers are uptodate. A subsequent
1104 * block_read_full_page() against that page will discover all the uptodate
1105 * buffers, will set the page uptodate and will perform no I/O.
1109 * mark_buffer_dirty - mark a buffer_head as needing writeout
1110 * @bh: the buffer_head to mark dirty
1112 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1113 * backing page dirty, then tag the page as dirty in its address_space's radix
1114 * tree and then attach the address_space's inode to its superblock's dirty
1117 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
1118 * mapping->tree_lock and mapping->host->i_lock.
1120 void mark_buffer_dirty(struct buffer_head
*bh
)
1122 WARN_ON_ONCE(!buffer_uptodate(bh
));
1124 trace_block_dirty_buffer(bh
);
1127 * Very *carefully* optimize the it-is-already-dirty case.
1129 * Don't let the final "is it dirty" escape to before we
1130 * perhaps modified the buffer.
1132 if (buffer_dirty(bh
)) {
1134 if (buffer_dirty(bh
))
1138 if (!test_set_buffer_dirty(bh
)) {
1139 struct page
*page
= bh
->b_page
;
1140 if (!TestSetPageDirty(page
)) {
1141 struct address_space
*mapping
= page_mapping(page
);
1143 __set_page_dirty(page
, mapping
, 0);
1147 EXPORT_SYMBOL(mark_buffer_dirty
);
1150 * Decrement a buffer_head's reference count. If all buffers against a page
1151 * have zero reference count, are clean and unlocked, and if the page is clean
1152 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1153 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1154 * a page but it ends up not being freed, and buffers may later be reattached).
1156 void __brelse(struct buffer_head
* buf
)
1158 if (atomic_read(&buf
->b_count
)) {
1162 WARN(1, KERN_ERR
"VFS: brelse: Trying to free free buffer\n");
1164 EXPORT_SYMBOL(__brelse
);
1167 * bforget() is like brelse(), except it discards any
1168 * potentially dirty data.
1170 void __bforget(struct buffer_head
*bh
)
1172 clear_buffer_dirty(bh
);
1173 if (bh
->b_assoc_map
) {
1174 struct address_space
*buffer_mapping
= bh
->b_page
->mapping
;
1176 spin_lock(&buffer_mapping
->private_lock
);
1177 list_del_init(&bh
->b_assoc_buffers
);
1178 bh
->b_assoc_map
= NULL
;
1179 spin_unlock(&buffer_mapping
->private_lock
);
1183 EXPORT_SYMBOL(__bforget
);
1185 static struct buffer_head
*__bread_slow(struct buffer_head
*bh
)
1188 if (buffer_uptodate(bh
)) {
1193 bh
->b_end_io
= end_buffer_read_sync
;
1194 submit_bh(READ
, bh
);
1196 if (buffer_uptodate(bh
))
1204 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1205 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1206 * refcount elevated by one when they're in an LRU. A buffer can only appear
1207 * once in a particular CPU's LRU. A single buffer can be present in multiple
1208 * CPU's LRUs at the same time.
1210 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1211 * sb_find_get_block().
1213 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1214 * a local interrupt disable for that.
1217 #define BH_LRU_SIZE 8
1220 struct buffer_head
*bhs
[BH_LRU_SIZE
];
1223 static DEFINE_PER_CPU(struct bh_lru
, bh_lrus
) = {{ NULL
}};
1226 #define bh_lru_lock() local_irq_disable()
1227 #define bh_lru_unlock() local_irq_enable()
1229 #define bh_lru_lock() preempt_disable()
1230 #define bh_lru_unlock() preempt_enable()
1233 static inline void check_irqs_on(void)
1235 #ifdef irqs_disabled
1236 BUG_ON(irqs_disabled());
1241 * The LRU management algorithm is dopey-but-simple. Sorry.
1243 static void bh_lru_install(struct buffer_head
*bh
)
1245 struct buffer_head
*evictee
= NULL
;
1249 if (__this_cpu_read(bh_lrus
.bhs
[0]) != bh
) {
1250 struct buffer_head
*bhs
[BH_LRU_SIZE
];
1256 for (in
= 0; in
< BH_LRU_SIZE
; in
++) {
1257 struct buffer_head
*bh2
=
1258 __this_cpu_read(bh_lrus
.bhs
[in
]);
1263 if (out
>= BH_LRU_SIZE
) {
1264 BUG_ON(evictee
!= NULL
);
1271 while (out
< BH_LRU_SIZE
)
1273 memcpy(__this_cpu_ptr(&bh_lrus
.bhs
), bhs
, sizeof(bhs
));
1282 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1284 static struct buffer_head
*
1285 lookup_bh_lru(struct block_device
*bdev
, sector_t block
, unsigned size
)
1287 struct buffer_head
*ret
= NULL
;
1292 for (i
= 0; i
< BH_LRU_SIZE
; i
++) {
1293 struct buffer_head
*bh
= __this_cpu_read(bh_lrus
.bhs
[i
]);
1295 if (bh
&& bh
->b_bdev
== bdev
&&
1296 bh
->b_blocknr
== block
&& bh
->b_size
== size
) {
1299 __this_cpu_write(bh_lrus
.bhs
[i
],
1300 __this_cpu_read(bh_lrus
.bhs
[i
- 1]));
1303 __this_cpu_write(bh_lrus
.bhs
[0], bh
);
1315 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1316 * it in the LRU and mark it as accessed. If it is not present then return
1319 struct buffer_head
*
1320 __find_get_block(struct block_device
*bdev
, sector_t block
, unsigned size
)
1322 struct buffer_head
*bh
= lookup_bh_lru(bdev
, block
, size
);
1325 bh
= __find_get_block_slow(bdev
, block
);
1333 EXPORT_SYMBOL(__find_get_block
);
1336 * __getblk will locate (and, if necessary, create) the buffer_head
1337 * which corresponds to the passed block_device, block and size. The
1338 * returned buffer has its reference count incremented.
1340 * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1341 * attempt is failing. FIXME, perhaps?
1343 struct buffer_head
*
1344 __getblk(struct block_device
*bdev
, sector_t block
, unsigned size
)
1346 struct buffer_head
*bh
= __find_get_block(bdev
, block
, size
);
1350 bh
= __getblk_slow(bdev
, block
, size
);
1353 EXPORT_SYMBOL(__getblk
);
1356 * Do async read-ahead on a buffer..
1358 void __breadahead(struct block_device
*bdev
, sector_t block
, unsigned size
)
1360 struct buffer_head
*bh
= __getblk(bdev
, block
, size
);
1362 ll_rw_block(READA
, 1, &bh
);
1366 EXPORT_SYMBOL(__breadahead
);
1369 * __bread() - reads a specified block and returns the bh
1370 * @bdev: the block_device to read from
1371 * @block: number of block
1372 * @size: size (in bytes) to read
1374 * Reads a specified block, and returns buffer head that contains it.
1375 * It returns NULL if the block was unreadable.
1377 struct buffer_head
*
1378 __bread(struct block_device
*bdev
, sector_t block
, unsigned size
)
1380 struct buffer_head
*bh
= __getblk(bdev
, block
, size
);
1382 if (likely(bh
) && !buffer_uptodate(bh
))
1383 bh
= __bread_slow(bh
);
1386 EXPORT_SYMBOL(__bread
);
1389 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1390 * This doesn't race because it runs in each cpu either in irq
1391 * or with preempt disabled.
1393 static void invalidate_bh_lru(void *arg
)
1395 struct bh_lru
*b
= &get_cpu_var(bh_lrus
);
1398 for (i
= 0; i
< BH_LRU_SIZE
; i
++) {
1402 put_cpu_var(bh_lrus
);
1405 static bool has_bh_in_lru(int cpu
, void *dummy
)
1407 struct bh_lru
*b
= per_cpu_ptr(&bh_lrus
, cpu
);
1410 for (i
= 0; i
< BH_LRU_SIZE
; i
++) {
1418 void invalidate_bh_lrus(void)
1420 on_each_cpu_cond(has_bh_in_lru
, invalidate_bh_lru
, NULL
, 1, GFP_KERNEL
);
1422 EXPORT_SYMBOL_GPL(invalidate_bh_lrus
);
1424 void set_bh_page(struct buffer_head
*bh
,
1425 struct page
*page
, unsigned long offset
)
1428 BUG_ON(offset
>= PAGE_SIZE
);
1429 if (PageHighMem(page
))
1431 * This catches illegal uses and preserves the offset:
1433 bh
->b_data
= (char *)(0 + offset
);
1435 bh
->b_data
= page_address(page
) + offset
;
1437 EXPORT_SYMBOL(set_bh_page
);
1440 * Called when truncating a buffer on a page completely.
1442 static void discard_buffer(struct buffer_head
* bh
)
1445 clear_buffer_dirty(bh
);
1447 clear_buffer_mapped(bh
);
1448 clear_buffer_req(bh
);
1449 clear_buffer_new(bh
);
1450 clear_buffer_delay(bh
);
1451 clear_buffer_unwritten(bh
);
1456 * block_invalidatepage - invalidate part or all of a buffer-backed page
1458 * @page: the page which is affected
1459 * @offset: the index of the truncation point
1461 * block_invalidatepage() is called when all or part of the page has become
1462 * invalidated by a truncate operation.
1464 * block_invalidatepage() does not have to release all buffers, but it must
1465 * ensure that no dirty buffer is left outside @offset and that no I/O
1466 * is underway against any of the blocks which are outside the truncation
1467 * point. Because the caller is about to free (and possibly reuse) those
1470 void block_invalidatepage(struct page
*page
, unsigned long offset
)
1472 struct buffer_head
*head
, *bh
, *next
;
1473 unsigned int curr_off
= 0;
1475 BUG_ON(!PageLocked(page
));
1476 if (!page_has_buffers(page
))
1479 head
= page_buffers(page
);
1482 unsigned int next_off
= curr_off
+ bh
->b_size
;
1483 next
= bh
->b_this_page
;
1486 * is this block fully invalidated?
1488 if (offset
<= curr_off
)
1490 curr_off
= next_off
;
1492 } while (bh
!= head
);
1495 * We release buffers only if the entire page is being invalidated.
1496 * The get_block cached value has been unconditionally invalidated,
1497 * so real IO is not possible anymore.
1500 try_to_release_page(page
, 0);
1504 EXPORT_SYMBOL(block_invalidatepage
);
1507 * We attach and possibly dirty the buffers atomically wrt
1508 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
1509 * is already excluded via the page lock.
1511 void create_empty_buffers(struct page
*page
,
1512 unsigned long blocksize
, unsigned long b_state
)
1514 struct buffer_head
*bh
, *head
, *tail
;
1516 head
= alloc_page_buffers(page
, blocksize
, 1);
1519 bh
->b_state
|= b_state
;
1521 bh
= bh
->b_this_page
;
1523 tail
->b_this_page
= head
;
1525 spin_lock(&page
->mapping
->private_lock
);
1526 if (PageUptodate(page
) || PageDirty(page
)) {
1529 if (PageDirty(page
))
1530 set_buffer_dirty(bh
);
1531 if (PageUptodate(page
))
1532 set_buffer_uptodate(bh
);
1533 bh
= bh
->b_this_page
;
1534 } while (bh
!= head
);
1536 attach_page_buffers(page
, head
);
1537 spin_unlock(&page
->mapping
->private_lock
);
1539 EXPORT_SYMBOL(create_empty_buffers
);
1542 * We are taking a block for data and we don't want any output from any
1543 * buffer-cache aliases starting from return from that function and
1544 * until the moment when something will explicitly mark the buffer
1545 * dirty (hopefully that will not happen until we will free that block ;-)
1546 * We don't even need to mark it not-uptodate - nobody can expect
1547 * anything from a newly allocated buffer anyway. We used to used
1548 * unmap_buffer() for such invalidation, but that was wrong. We definitely
1549 * don't want to mark the alias unmapped, for example - it would confuse
1550 * anyone who might pick it with bread() afterwards...
1552 * Also.. Note that bforget() doesn't lock the buffer. So there can
1553 * be writeout I/O going on against recently-freed buffers. We don't
1554 * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1555 * only if we really need to. That happens here.
1557 void unmap_underlying_metadata(struct block_device
*bdev
, sector_t block
)
1559 struct buffer_head
*old_bh
;
1563 old_bh
= __find_get_block_slow(bdev
, block
);
1565 clear_buffer_dirty(old_bh
);
1566 wait_on_buffer(old_bh
);
1567 clear_buffer_req(old_bh
);
1571 EXPORT_SYMBOL(unmap_underlying_metadata
);
1574 * Size is a power-of-two in the range 512..PAGE_SIZE,
1575 * and the case we care about most is PAGE_SIZE.
1577 * So this *could* possibly be written with those
1578 * constraints in mind (relevant mostly if some
1579 * architecture has a slow bit-scan instruction)
1581 static inline int block_size_bits(unsigned int blocksize
)
1583 return ilog2(blocksize
);
1586 static struct buffer_head
*create_page_buffers(struct page
*page
, struct inode
*inode
, unsigned int b_state
)
1588 BUG_ON(!PageLocked(page
));
1590 if (!page_has_buffers(page
))
1591 create_empty_buffers(page
, 1 << ACCESS_ONCE(inode
->i_blkbits
), b_state
);
1592 return page_buffers(page
);
1596 * NOTE! All mapped/uptodate combinations are valid:
1598 * Mapped Uptodate Meaning
1600 * No No "unknown" - must do get_block()
1601 * No Yes "hole" - zero-filled
1602 * Yes No "allocated" - allocated on disk, not read in
1603 * Yes Yes "valid" - allocated and up-to-date in memory.
1605 * "Dirty" is valid only with the last case (mapped+uptodate).
1609 * While block_write_full_page is writing back the dirty buffers under
1610 * the page lock, whoever dirtied the buffers may decide to clean them
1611 * again at any time. We handle that by only looking at the buffer
1612 * state inside lock_buffer().
1614 * If block_write_full_page() is called for regular writeback
1615 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1616 * locked buffer. This only can happen if someone has written the buffer
1617 * directly, with submit_bh(). At the address_space level PageWriteback
1618 * prevents this contention from occurring.
1620 * If block_write_full_page() is called with wbc->sync_mode ==
1621 * WB_SYNC_ALL, the writes are posted using WRITE_SYNC; this
1622 * causes the writes to be flagged as synchronous writes.
1624 static int __block_write_full_page(struct inode
*inode
, struct page
*page
,
1625 get_block_t
*get_block
, struct writeback_control
*wbc
,
1626 bh_end_io_t
*handler
)
1630 sector_t last_block
;
1631 struct buffer_head
*bh
, *head
;
1632 unsigned int blocksize
, bbits
;
1633 int nr_underway
= 0;
1634 int write_op
= (wbc
->sync_mode
== WB_SYNC_ALL
?
1635 WRITE_SYNC
: WRITE
);
1637 head
= create_page_buffers(page
, inode
,
1638 (1 << BH_Dirty
)|(1 << BH_Uptodate
));
1641 * Be very careful. We have no exclusion from __set_page_dirty_buffers
1642 * here, and the (potentially unmapped) buffers may become dirty at
1643 * any time. If a buffer becomes dirty here after we've inspected it
1644 * then we just miss that fact, and the page stays dirty.
1646 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1647 * handle that here by just cleaning them.
1651 blocksize
= bh
->b_size
;
1652 bbits
= block_size_bits(blocksize
);
1654 block
= (sector_t
)page
->index
<< (PAGE_CACHE_SHIFT
- bbits
);
1655 last_block
= (i_size_read(inode
) - 1) >> bbits
;
1658 * Get all the dirty buffers mapped to disk addresses and
1659 * handle any aliases from the underlying blockdev's mapping.
1662 if (block
> last_block
) {
1664 * mapped buffers outside i_size will occur, because
1665 * this page can be outside i_size when there is a
1666 * truncate in progress.
1669 * The buffer was zeroed by block_write_full_page()
1671 clear_buffer_dirty(bh
);
1672 set_buffer_uptodate(bh
);
1673 } else if ((!buffer_mapped(bh
) || buffer_delay(bh
)) &&
1675 WARN_ON(bh
->b_size
!= blocksize
);
1676 err
= get_block(inode
, block
, bh
, 1);
1679 clear_buffer_delay(bh
);
1680 if (buffer_new(bh
)) {
1681 /* blockdev mappings never come here */
1682 clear_buffer_new(bh
);
1683 unmap_underlying_metadata(bh
->b_bdev
,
1687 bh
= bh
->b_this_page
;
1689 } while (bh
!= head
);
1692 if (!buffer_mapped(bh
))
1695 * If it's a fully non-blocking write attempt and we cannot
1696 * lock the buffer then redirty the page. Note that this can
1697 * potentially cause a busy-wait loop from writeback threads
1698 * and kswapd activity, but those code paths have their own
1699 * higher-level throttling.
1701 if (wbc
->sync_mode
!= WB_SYNC_NONE
) {
1703 } else if (!trylock_buffer(bh
)) {
1704 redirty_page_for_writepage(wbc
, page
);
1707 if (test_clear_buffer_dirty(bh
)) {
1708 mark_buffer_async_write_endio(bh
, handler
);
1712 } while ((bh
= bh
->b_this_page
) != head
);
1715 * The page and its buffers are protected by PageWriteback(), so we can
1716 * drop the bh refcounts early.
1718 BUG_ON(PageWriteback(page
));
1719 set_page_writeback(page
);
1722 struct buffer_head
*next
= bh
->b_this_page
;
1723 if (buffer_async_write(bh
)) {
1724 submit_bh(write_op
, bh
);
1728 } while (bh
!= head
);
1733 if (nr_underway
== 0) {
1735 * The page was marked dirty, but the buffers were
1736 * clean. Someone wrote them back by hand with
1737 * ll_rw_block/submit_bh. A rare case.
1739 end_page_writeback(page
);
1742 * The page and buffer_heads can be released at any time from
1750 * ENOSPC, or some other error. We may already have added some
1751 * blocks to the file, so we need to write these out to avoid
1752 * exposing stale data.
1753 * The page is currently locked and not marked for writeback
1756 /* Recovery: lock and submit the mapped buffers */
1758 if (buffer_mapped(bh
) && buffer_dirty(bh
) &&
1759 !buffer_delay(bh
)) {
1761 mark_buffer_async_write_endio(bh
, handler
);
1764 * The buffer may have been set dirty during
1765 * attachment to a dirty page.
1767 clear_buffer_dirty(bh
);
1769 } while ((bh
= bh
->b_this_page
) != head
);
1771 BUG_ON(PageWriteback(page
));
1772 mapping_set_error(page
->mapping
, err
);
1773 set_page_writeback(page
);
1775 struct buffer_head
*next
= bh
->b_this_page
;
1776 if (buffer_async_write(bh
)) {
1777 clear_buffer_dirty(bh
);
1778 submit_bh(write_op
, bh
);
1782 } while (bh
!= head
);
1788 * If a page has any new buffers, zero them out here, and mark them uptodate
1789 * and dirty so they'll be written out (in order to prevent uninitialised
1790 * block data from leaking). And clear the new bit.
1792 void page_zero_new_buffers(struct page
*page
, unsigned from
, unsigned to
)
1794 unsigned int block_start
, block_end
;
1795 struct buffer_head
*head
, *bh
;
1797 BUG_ON(!PageLocked(page
));
1798 if (!page_has_buffers(page
))
1801 bh
= head
= page_buffers(page
);
1804 block_end
= block_start
+ bh
->b_size
;
1806 if (buffer_new(bh
)) {
1807 if (block_end
> from
&& block_start
< to
) {
1808 if (!PageUptodate(page
)) {
1809 unsigned start
, size
;
1811 start
= max(from
, block_start
);
1812 size
= min(to
, block_end
) - start
;
1814 zero_user(page
, start
, size
);
1815 set_buffer_uptodate(bh
);
1818 clear_buffer_new(bh
);
1819 mark_buffer_dirty(bh
);
1823 block_start
= block_end
;
1824 bh
= bh
->b_this_page
;
1825 } while (bh
!= head
);
1827 EXPORT_SYMBOL(page_zero_new_buffers
);
1829 int __block_write_begin(struct page
*page
, loff_t pos
, unsigned len
,
1830 get_block_t
*get_block
)
1832 unsigned from
= pos
& (PAGE_CACHE_SIZE
- 1);
1833 unsigned to
= from
+ len
;
1834 struct inode
*inode
= page
->mapping
->host
;
1835 unsigned block_start
, block_end
;
1838 unsigned blocksize
, bbits
;
1839 struct buffer_head
*bh
, *head
, *wait
[2], **wait_bh
=wait
;
1841 BUG_ON(!PageLocked(page
));
1842 BUG_ON(from
> PAGE_CACHE_SIZE
);
1843 BUG_ON(to
> PAGE_CACHE_SIZE
);
1846 head
= create_page_buffers(page
, inode
, 0);
1847 blocksize
= head
->b_size
;
1848 bbits
= block_size_bits(blocksize
);
1850 block
= (sector_t
)page
->index
<< (PAGE_CACHE_SHIFT
- bbits
);
1852 for(bh
= head
, block_start
= 0; bh
!= head
|| !block_start
;
1853 block
++, block_start
=block_end
, bh
= bh
->b_this_page
) {
1854 block_end
= block_start
+ blocksize
;
1855 if (block_end
<= from
|| block_start
>= to
) {
1856 if (PageUptodate(page
)) {
1857 if (!buffer_uptodate(bh
))
1858 set_buffer_uptodate(bh
);
1863 clear_buffer_new(bh
);
1864 if (!buffer_mapped(bh
)) {
1865 WARN_ON(bh
->b_size
!= blocksize
);
1866 err
= get_block(inode
, block
, bh
, 1);
1869 if (buffer_new(bh
)) {
1870 unmap_underlying_metadata(bh
->b_bdev
,
1872 if (PageUptodate(page
)) {
1873 clear_buffer_new(bh
);
1874 set_buffer_uptodate(bh
);
1875 mark_buffer_dirty(bh
);
1878 if (block_end
> to
|| block_start
< from
)
1879 zero_user_segments(page
,
1885 if (PageUptodate(page
)) {
1886 if (!buffer_uptodate(bh
))
1887 set_buffer_uptodate(bh
);
1890 if (!buffer_uptodate(bh
) && !buffer_delay(bh
) &&
1891 !buffer_unwritten(bh
) &&
1892 (block_start
< from
|| block_end
> to
)) {
1893 ll_rw_block(READ
, 1, &bh
);
1898 * If we issued read requests - let them complete.
1900 while(wait_bh
> wait
) {
1901 wait_on_buffer(*--wait_bh
);
1902 if (!buffer_uptodate(*wait_bh
))
1906 page_zero_new_buffers(page
, from
, to
);
1909 EXPORT_SYMBOL(__block_write_begin
);
1911 static int __block_commit_write(struct inode
*inode
, struct page
*page
,
1912 unsigned from
, unsigned to
)
1914 unsigned block_start
, block_end
;
1917 struct buffer_head
*bh
, *head
;
1919 bh
= head
= page_buffers(page
);
1920 blocksize
= bh
->b_size
;
1924 block_end
= block_start
+ blocksize
;
1925 if (block_end
<= from
|| block_start
>= to
) {
1926 if (!buffer_uptodate(bh
))
1929 set_buffer_uptodate(bh
);
1930 mark_buffer_dirty(bh
);
1932 clear_buffer_new(bh
);
1934 block_start
= block_end
;
1935 bh
= bh
->b_this_page
;
1936 } while (bh
!= head
);
1939 * If this is a partial write which happened to make all buffers
1940 * uptodate then we can optimize away a bogus readpage() for
1941 * the next read(). Here we 'discover' whether the page went
1942 * uptodate as a result of this (potentially partial) write.
1945 SetPageUptodate(page
);
1950 * block_write_begin takes care of the basic task of block allocation and
1951 * bringing partial write blocks uptodate first.
1953 * The filesystem needs to handle block truncation upon failure.
1955 int block_write_begin(struct address_space
*mapping
, loff_t pos
, unsigned len
,
1956 unsigned flags
, struct page
**pagep
, get_block_t
*get_block
)
1958 pgoff_t index
= pos
>> PAGE_CACHE_SHIFT
;
1962 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
1966 status
= __block_write_begin(page
, pos
, len
, get_block
);
1967 if (unlikely(status
)) {
1969 page_cache_release(page
);
1976 EXPORT_SYMBOL(block_write_begin
);
1978 int block_write_end(struct file
*file
, struct address_space
*mapping
,
1979 loff_t pos
, unsigned len
, unsigned copied
,
1980 struct page
*page
, void *fsdata
)
1982 struct inode
*inode
= mapping
->host
;
1985 start
= pos
& (PAGE_CACHE_SIZE
- 1);
1987 if (unlikely(copied
< len
)) {
1989 * The buffers that were written will now be uptodate, so we
1990 * don't have to worry about a readpage reading them and
1991 * overwriting a partial write. However if we have encountered
1992 * a short write and only partially written into a buffer, it
1993 * will not be marked uptodate, so a readpage might come in and
1994 * destroy our partial write.
1996 * Do the simplest thing, and just treat any short write to a
1997 * non uptodate page as a zero-length write, and force the
1998 * caller to redo the whole thing.
2000 if (!PageUptodate(page
))
2003 page_zero_new_buffers(page
, start
+copied
, start
+len
);
2005 flush_dcache_page(page
);
2007 /* This could be a short (even 0-length) commit */
2008 __block_commit_write(inode
, page
, start
, start
+copied
);
2012 EXPORT_SYMBOL(block_write_end
);
2014 int generic_write_end(struct file
*file
, struct address_space
*mapping
,
2015 loff_t pos
, unsigned len
, unsigned copied
,
2016 struct page
*page
, void *fsdata
)
2018 struct inode
*inode
= mapping
->host
;
2019 int i_size_changed
= 0;
2021 copied
= block_write_end(file
, mapping
, pos
, len
, copied
, page
, fsdata
);
2024 * No need to use i_size_read() here, the i_size
2025 * cannot change under us because we hold i_mutex.
2027 * But it's important to update i_size while still holding page lock:
2028 * page writeout could otherwise come in and zero beyond i_size.
2030 if (pos
+copied
> inode
->i_size
) {
2031 i_size_write(inode
, pos
+copied
);
2036 page_cache_release(page
);
2039 * Don't mark the inode dirty under page lock. First, it unnecessarily
2040 * makes the holding time of page lock longer. Second, it forces lock
2041 * ordering of page lock and transaction start for journaling
2045 mark_inode_dirty(inode
);
2049 EXPORT_SYMBOL(generic_write_end
);
2052 * block_is_partially_uptodate checks whether buffers within a page are
2055 * Returns true if all buffers which correspond to a file portion
2056 * we want to read are uptodate.
2058 int block_is_partially_uptodate(struct page
*page
, read_descriptor_t
*desc
,
2061 unsigned block_start
, block_end
, blocksize
;
2063 struct buffer_head
*bh
, *head
;
2066 if (!page_has_buffers(page
))
2069 head
= page_buffers(page
);
2070 blocksize
= head
->b_size
;
2071 to
= min_t(unsigned, PAGE_CACHE_SIZE
- from
, desc
->count
);
2073 if (from
< blocksize
&& to
> PAGE_CACHE_SIZE
- blocksize
)
2079 block_end
= block_start
+ blocksize
;
2080 if (block_end
> from
&& block_start
< to
) {
2081 if (!buffer_uptodate(bh
)) {
2085 if (block_end
>= to
)
2088 block_start
= block_end
;
2089 bh
= bh
->b_this_page
;
2090 } while (bh
!= head
);
2094 EXPORT_SYMBOL(block_is_partially_uptodate
);
2097 * Generic "read page" function for block devices that have the normal
2098 * get_block functionality. This is most of the block device filesystems.
2099 * Reads the page asynchronously --- the unlock_buffer() and
2100 * set/clear_buffer_uptodate() functions propagate buffer state into the
2101 * page struct once IO has completed.
2103 int block_read_full_page(struct page
*page
, get_block_t
*get_block
)
2105 struct inode
*inode
= page
->mapping
->host
;
2106 sector_t iblock
, lblock
;
2107 struct buffer_head
*bh
, *head
, *arr
[MAX_BUF_PER_PAGE
];
2108 unsigned int blocksize
, bbits
;
2110 int fully_mapped
= 1;
2112 head
= create_page_buffers(page
, inode
, 0);
2113 blocksize
= head
->b_size
;
2114 bbits
= block_size_bits(blocksize
);
2116 iblock
= (sector_t
)page
->index
<< (PAGE_CACHE_SHIFT
- bbits
);
2117 lblock
= (i_size_read(inode
)+blocksize
-1) >> bbits
;
2123 if (buffer_uptodate(bh
))
2126 if (!buffer_mapped(bh
)) {
2130 if (iblock
< lblock
) {
2131 WARN_ON(bh
->b_size
!= blocksize
);
2132 err
= get_block(inode
, iblock
, bh
, 0);
2136 if (!buffer_mapped(bh
)) {
2137 zero_user(page
, i
* blocksize
, blocksize
);
2139 set_buffer_uptodate(bh
);
2143 * get_block() might have updated the buffer
2146 if (buffer_uptodate(bh
))
2150 } while (i
++, iblock
++, (bh
= bh
->b_this_page
) != head
);
2153 SetPageMappedToDisk(page
);
2157 * All buffers are uptodate - we can set the page uptodate
2158 * as well. But not if get_block() returned an error.
2160 if (!PageError(page
))
2161 SetPageUptodate(page
);
2166 /* Stage two: lock the buffers */
2167 for (i
= 0; i
< nr
; i
++) {
2170 mark_buffer_async_read(bh
);
2174 * Stage 3: start the IO. Check for uptodateness
2175 * inside the buffer lock in case another process reading
2176 * the underlying blockdev brought it uptodate (the sct fix).
2178 for (i
= 0; i
< nr
; i
++) {
2180 if (buffer_uptodate(bh
))
2181 end_buffer_async_read(bh
, 1);
2183 submit_bh(READ
, bh
);
2187 EXPORT_SYMBOL(block_read_full_page
);
2189 /* utility function for filesystems that need to do work on expanding
2190 * truncates. Uses filesystem pagecache writes to allow the filesystem to
2191 * deal with the hole.
2193 int generic_cont_expand_simple(struct inode
*inode
, loff_t size
)
2195 struct address_space
*mapping
= inode
->i_mapping
;
2200 err
= inode_newsize_ok(inode
, size
);
2204 err
= pagecache_write_begin(NULL
, mapping
, size
, 0,
2205 AOP_FLAG_UNINTERRUPTIBLE
|AOP_FLAG_CONT_EXPAND
,
2210 err
= pagecache_write_end(NULL
, mapping
, size
, 0, 0, page
, fsdata
);
2216 EXPORT_SYMBOL(generic_cont_expand_simple
);
2218 static int cont_expand_zero(struct file
*file
, struct address_space
*mapping
,
2219 loff_t pos
, loff_t
*bytes
)
2221 struct inode
*inode
= mapping
->host
;
2222 unsigned blocksize
= 1 << inode
->i_blkbits
;
2225 pgoff_t index
, curidx
;
2227 unsigned zerofrom
, offset
, len
;
2230 index
= pos
>> PAGE_CACHE_SHIFT
;
2231 offset
= pos
& ~PAGE_CACHE_MASK
;
2233 while (index
> (curidx
= (curpos
= *bytes
)>>PAGE_CACHE_SHIFT
)) {
2234 zerofrom
= curpos
& ~PAGE_CACHE_MASK
;
2235 if (zerofrom
& (blocksize
-1)) {
2236 *bytes
|= (blocksize
-1);
2239 len
= PAGE_CACHE_SIZE
- zerofrom
;
2241 err
= pagecache_write_begin(file
, mapping
, curpos
, len
,
2242 AOP_FLAG_UNINTERRUPTIBLE
,
2246 zero_user(page
, zerofrom
, len
);
2247 err
= pagecache_write_end(file
, mapping
, curpos
, len
, len
,
2254 balance_dirty_pages_ratelimited(mapping
);
2257 /* page covers the boundary, find the boundary offset */
2258 if (index
== curidx
) {
2259 zerofrom
= curpos
& ~PAGE_CACHE_MASK
;
2260 /* if we will expand the thing last block will be filled */
2261 if (offset
<= zerofrom
) {
2264 if (zerofrom
& (blocksize
-1)) {
2265 *bytes
|= (blocksize
-1);
2268 len
= offset
- zerofrom
;
2270 err
= pagecache_write_begin(file
, mapping
, curpos
, len
,
2271 AOP_FLAG_UNINTERRUPTIBLE
,
2275 zero_user(page
, zerofrom
, len
);
2276 err
= pagecache_write_end(file
, mapping
, curpos
, len
, len
,
2288 * For moronic filesystems that do not allow holes in file.
2289 * We may have to extend the file.
2291 int cont_write_begin(struct file
*file
, struct address_space
*mapping
,
2292 loff_t pos
, unsigned len
, unsigned flags
,
2293 struct page
**pagep
, void **fsdata
,
2294 get_block_t
*get_block
, loff_t
*bytes
)
2296 struct inode
*inode
= mapping
->host
;
2297 unsigned blocksize
= 1 << inode
->i_blkbits
;
2301 err
= cont_expand_zero(file
, mapping
, pos
, bytes
);
2305 zerofrom
= *bytes
& ~PAGE_CACHE_MASK
;
2306 if (pos
+len
> *bytes
&& zerofrom
& (blocksize
-1)) {
2307 *bytes
|= (blocksize
-1);
2311 return block_write_begin(mapping
, pos
, len
, flags
, pagep
, get_block
);
2313 EXPORT_SYMBOL(cont_write_begin
);
2315 int block_commit_write(struct page
*page
, unsigned from
, unsigned to
)
2317 struct inode
*inode
= page
->mapping
->host
;
2318 __block_commit_write(inode
,page
,from
,to
);
2321 EXPORT_SYMBOL(block_commit_write
);
2324 * block_page_mkwrite() is not allowed to change the file size as it gets
2325 * called from a page fault handler when a page is first dirtied. Hence we must
2326 * be careful to check for EOF conditions here. We set the page up correctly
2327 * for a written page which means we get ENOSPC checking when writing into
2328 * holes and correct delalloc and unwritten extent mapping on filesystems that
2329 * support these features.
2331 * We are not allowed to take the i_mutex here so we have to play games to
2332 * protect against truncate races as the page could now be beyond EOF. Because
2333 * truncate writes the inode size before removing pages, once we have the
2334 * page lock we can determine safely if the page is beyond EOF. If it is not
2335 * beyond EOF, then the page is guaranteed safe against truncation until we
2338 * Direct callers of this function should protect against filesystem freezing
2339 * using sb_start_write() - sb_end_write() functions.
2341 int __block_page_mkwrite(struct vm_area_struct
*vma
, struct vm_fault
*vmf
,
2342 get_block_t get_block
)
2344 struct page
*page
= vmf
->page
;
2345 struct inode
*inode
= file_inode(vma
->vm_file
);
2351 size
= i_size_read(inode
);
2352 if ((page
->mapping
!= inode
->i_mapping
) ||
2353 (page_offset(page
) > size
)) {
2354 /* We overload EFAULT to mean page got truncated */
2359 /* page is wholly or partially inside EOF */
2360 if (((page
->index
+ 1) << PAGE_CACHE_SHIFT
) > size
)
2361 end
= size
& ~PAGE_CACHE_MASK
;
2363 end
= PAGE_CACHE_SIZE
;
2365 ret
= __block_write_begin(page
, 0, end
, get_block
);
2367 ret
= block_commit_write(page
, 0, end
);
2369 if (unlikely(ret
< 0))
2371 set_page_dirty(page
);
2372 wait_for_stable_page(page
);
2378 EXPORT_SYMBOL(__block_page_mkwrite
);
2380 int block_page_mkwrite(struct vm_area_struct
*vma
, struct vm_fault
*vmf
,
2381 get_block_t get_block
)
2384 struct super_block
*sb
= file_inode(vma
->vm_file
)->i_sb
;
2386 sb_start_pagefault(sb
);
2389 * Update file times before taking page lock. We may end up failing the
2390 * fault so this update may be superfluous but who really cares...
2392 file_update_time(vma
->vm_file
);
2394 ret
= __block_page_mkwrite(vma
, vmf
, get_block
);
2395 sb_end_pagefault(sb
);
2396 return block_page_mkwrite_return(ret
);
2398 EXPORT_SYMBOL(block_page_mkwrite
);
2401 * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2402 * immediately, while under the page lock. So it needs a special end_io
2403 * handler which does not touch the bh after unlocking it.
2405 static void end_buffer_read_nobh(struct buffer_head
*bh
, int uptodate
)
2407 __end_buffer_read_notouch(bh
, uptodate
);
2411 * Attach the singly-linked list of buffers created by nobh_write_begin, to
2412 * the page (converting it to circular linked list and taking care of page
2415 static void attach_nobh_buffers(struct page
*page
, struct buffer_head
*head
)
2417 struct buffer_head
*bh
;
2419 BUG_ON(!PageLocked(page
));
2421 spin_lock(&page
->mapping
->private_lock
);
2424 if (PageDirty(page
))
2425 set_buffer_dirty(bh
);
2426 if (!bh
->b_this_page
)
2427 bh
->b_this_page
= head
;
2428 bh
= bh
->b_this_page
;
2429 } while (bh
!= head
);
2430 attach_page_buffers(page
, head
);
2431 spin_unlock(&page
->mapping
->private_lock
);
2435 * On entry, the page is fully not uptodate.
2436 * On exit the page is fully uptodate in the areas outside (from,to)
2437 * The filesystem needs to handle block truncation upon failure.
2439 int nobh_write_begin(struct address_space
*mapping
,
2440 loff_t pos
, unsigned len
, unsigned flags
,
2441 struct page
**pagep
, void **fsdata
,
2442 get_block_t
*get_block
)
2444 struct inode
*inode
= mapping
->host
;
2445 const unsigned blkbits
= inode
->i_blkbits
;
2446 const unsigned blocksize
= 1 << blkbits
;
2447 struct buffer_head
*head
, *bh
;
2451 unsigned block_in_page
;
2452 unsigned block_start
, block_end
;
2453 sector_t block_in_file
;
2456 int is_mapped_to_disk
= 1;
2458 index
= pos
>> PAGE_CACHE_SHIFT
;
2459 from
= pos
& (PAGE_CACHE_SIZE
- 1);
2462 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
2468 if (page_has_buffers(page
)) {
2469 ret
= __block_write_begin(page
, pos
, len
, get_block
);
2475 if (PageMappedToDisk(page
))
2479 * Allocate buffers so that we can keep track of state, and potentially
2480 * attach them to the page if an error occurs. In the common case of
2481 * no error, they will just be freed again without ever being attached
2482 * to the page (which is all OK, because we're under the page lock).
2484 * Be careful: the buffer linked list is a NULL terminated one, rather
2485 * than the circular one we're used to.
2487 head
= alloc_page_buffers(page
, blocksize
, 0);
2493 block_in_file
= (sector_t
)page
->index
<< (PAGE_CACHE_SHIFT
- blkbits
);
2496 * We loop across all blocks in the page, whether or not they are
2497 * part of the affected region. This is so we can discover if the
2498 * page is fully mapped-to-disk.
2500 for (block_start
= 0, block_in_page
= 0, bh
= head
;
2501 block_start
< PAGE_CACHE_SIZE
;
2502 block_in_page
++, block_start
+= blocksize
, bh
= bh
->b_this_page
) {
2505 block_end
= block_start
+ blocksize
;
2508 if (block_start
>= to
)
2510 ret
= get_block(inode
, block_in_file
+ block_in_page
,
2514 if (!buffer_mapped(bh
))
2515 is_mapped_to_disk
= 0;
2517 unmap_underlying_metadata(bh
->b_bdev
, bh
->b_blocknr
);
2518 if (PageUptodate(page
)) {
2519 set_buffer_uptodate(bh
);
2522 if (buffer_new(bh
) || !buffer_mapped(bh
)) {
2523 zero_user_segments(page
, block_start
, from
,
2527 if (buffer_uptodate(bh
))
2528 continue; /* reiserfs does this */
2529 if (block_start
< from
|| block_end
> to
) {
2531 bh
->b_end_io
= end_buffer_read_nobh
;
2532 submit_bh(READ
, bh
);
2539 * The page is locked, so these buffers are protected from
2540 * any VM or truncate activity. Hence we don't need to care
2541 * for the buffer_head refcounts.
2543 for (bh
= head
; bh
; bh
= bh
->b_this_page
) {
2545 if (!buffer_uptodate(bh
))
2552 if (is_mapped_to_disk
)
2553 SetPageMappedToDisk(page
);
2555 *fsdata
= head
; /* to be released by nobh_write_end */
2562 * Error recovery is a bit difficult. We need to zero out blocks that
2563 * were newly allocated, and dirty them to ensure they get written out.
2564 * Buffers need to be attached to the page at this point, otherwise
2565 * the handling of potential IO errors during writeout would be hard
2566 * (could try doing synchronous writeout, but what if that fails too?)
2568 attach_nobh_buffers(page
, head
);
2569 page_zero_new_buffers(page
, from
, to
);
2573 page_cache_release(page
);
2578 EXPORT_SYMBOL(nobh_write_begin
);
2580 int nobh_write_end(struct file
*file
, struct address_space
*mapping
,
2581 loff_t pos
, unsigned len
, unsigned copied
,
2582 struct page
*page
, void *fsdata
)
2584 struct inode
*inode
= page
->mapping
->host
;
2585 struct buffer_head
*head
= fsdata
;
2586 struct buffer_head
*bh
;
2587 BUG_ON(fsdata
!= NULL
&& page_has_buffers(page
));
2589 if (unlikely(copied
< len
) && head
)
2590 attach_nobh_buffers(page
, head
);
2591 if (page_has_buffers(page
))
2592 return generic_write_end(file
, mapping
, pos
, len
,
2593 copied
, page
, fsdata
);
2595 SetPageUptodate(page
);
2596 set_page_dirty(page
);
2597 if (pos
+copied
> inode
->i_size
) {
2598 i_size_write(inode
, pos
+copied
);
2599 mark_inode_dirty(inode
);
2603 page_cache_release(page
);
2607 head
= head
->b_this_page
;
2608 free_buffer_head(bh
);
2613 EXPORT_SYMBOL(nobh_write_end
);
2616 * nobh_writepage() - based on block_full_write_page() except
2617 * that it tries to operate without attaching bufferheads to
2620 int nobh_writepage(struct page
*page
, get_block_t
*get_block
,
2621 struct writeback_control
*wbc
)
2623 struct inode
* const inode
= page
->mapping
->host
;
2624 loff_t i_size
= i_size_read(inode
);
2625 const pgoff_t end_index
= i_size
>> PAGE_CACHE_SHIFT
;
2629 /* Is the page fully inside i_size? */
2630 if (page
->index
< end_index
)
2633 /* Is the page fully outside i_size? (truncate in progress) */
2634 offset
= i_size
& (PAGE_CACHE_SIZE
-1);
2635 if (page
->index
>= end_index
+1 || !offset
) {
2637 * The page may have dirty, unmapped buffers. For example,
2638 * they may have been added in ext3_writepage(). Make them
2639 * freeable here, so the page does not leak.
2642 /* Not really sure about this - do we need this ? */
2643 if (page
->mapping
->a_ops
->invalidatepage
)
2644 page
->mapping
->a_ops
->invalidatepage(page
, offset
);
2647 return 0; /* don't care */
2651 * The page straddles i_size. It must be zeroed out on each and every
2652 * writepage invocation because it may be mmapped. "A file is mapped
2653 * in multiples of the page size. For a file that is not a multiple of
2654 * the page size, the remaining memory is zeroed when mapped, and
2655 * writes to that region are not written out to the file."
2657 zero_user_segment(page
, offset
, PAGE_CACHE_SIZE
);
2659 ret
= mpage_writepage(page
, get_block
, wbc
);
2661 ret
= __block_write_full_page(inode
, page
, get_block
, wbc
,
2662 end_buffer_async_write
);
2665 EXPORT_SYMBOL(nobh_writepage
);
2667 int nobh_truncate_page(struct address_space
*mapping
,
2668 loff_t from
, get_block_t
*get_block
)
2670 pgoff_t index
= from
>> PAGE_CACHE_SHIFT
;
2671 unsigned offset
= from
& (PAGE_CACHE_SIZE
-1);
2674 unsigned length
, pos
;
2675 struct inode
*inode
= mapping
->host
;
2677 struct buffer_head map_bh
;
2680 blocksize
= 1 << inode
->i_blkbits
;
2681 length
= offset
& (blocksize
- 1);
2683 /* Block boundary? Nothing to do */
2687 length
= blocksize
- length
;
2688 iblock
= (sector_t
)index
<< (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
2690 page
= grab_cache_page(mapping
, index
);
2695 if (page_has_buffers(page
)) {
2698 page_cache_release(page
);
2699 return block_truncate_page(mapping
, from
, get_block
);
2702 /* Find the buffer that contains "offset" */
2704 while (offset
>= pos
) {
2709 map_bh
.b_size
= blocksize
;
2711 err
= get_block(inode
, iblock
, &map_bh
, 0);
2714 /* unmapped? It's a hole - nothing to do */
2715 if (!buffer_mapped(&map_bh
))
2718 /* Ok, it's mapped. Make sure it's up-to-date */
2719 if (!PageUptodate(page
)) {
2720 err
= mapping
->a_ops
->readpage(NULL
, page
);
2722 page_cache_release(page
);
2726 if (!PageUptodate(page
)) {
2730 if (page_has_buffers(page
))
2733 zero_user(page
, offset
, length
);
2734 set_page_dirty(page
);
2739 page_cache_release(page
);
2743 EXPORT_SYMBOL(nobh_truncate_page
);
2745 int block_truncate_page(struct address_space
*mapping
,
2746 loff_t from
, get_block_t
*get_block
)
2748 pgoff_t index
= from
>> PAGE_CACHE_SHIFT
;
2749 unsigned offset
= from
& (PAGE_CACHE_SIZE
-1);
2752 unsigned length
, pos
;
2753 struct inode
*inode
= mapping
->host
;
2755 struct buffer_head
*bh
;
2758 blocksize
= 1 << inode
->i_blkbits
;
2759 length
= offset
& (blocksize
- 1);
2761 /* Block boundary? Nothing to do */
2765 length
= blocksize
- length
;
2766 iblock
= (sector_t
)index
<< (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
2768 page
= grab_cache_page(mapping
, index
);
2773 if (!page_has_buffers(page
))
2774 create_empty_buffers(page
, blocksize
, 0);
2776 /* Find the buffer that contains "offset" */
2777 bh
= page_buffers(page
);
2779 while (offset
>= pos
) {
2780 bh
= bh
->b_this_page
;
2786 if (!buffer_mapped(bh
)) {
2787 WARN_ON(bh
->b_size
!= blocksize
);
2788 err
= get_block(inode
, iblock
, bh
, 0);
2791 /* unmapped? It's a hole - nothing to do */
2792 if (!buffer_mapped(bh
))
2796 /* Ok, it's mapped. Make sure it's up-to-date */
2797 if (PageUptodate(page
))
2798 set_buffer_uptodate(bh
);
2800 if (!buffer_uptodate(bh
) && !buffer_delay(bh
) && !buffer_unwritten(bh
)) {
2802 ll_rw_block(READ
, 1, &bh
);
2804 /* Uhhuh. Read error. Complain and punt. */
2805 if (!buffer_uptodate(bh
))
2809 zero_user(page
, offset
, length
);
2810 mark_buffer_dirty(bh
);
2815 page_cache_release(page
);
2819 EXPORT_SYMBOL(block_truncate_page
);
2822 * The generic ->writepage function for buffer-backed address_spaces
2823 * this form passes in the end_io handler used to finish the IO.
2825 int block_write_full_page_endio(struct page
*page
, get_block_t
*get_block
,
2826 struct writeback_control
*wbc
, bh_end_io_t
*handler
)
2828 struct inode
* const inode
= page
->mapping
->host
;
2829 loff_t i_size
= i_size_read(inode
);
2830 const pgoff_t end_index
= i_size
>> PAGE_CACHE_SHIFT
;
2833 /* Is the page fully inside i_size? */
2834 if (page
->index
< end_index
)
2835 return __block_write_full_page(inode
, page
, get_block
, wbc
,
2838 /* Is the page fully outside i_size? (truncate in progress) */
2839 offset
= i_size
& (PAGE_CACHE_SIZE
-1);
2840 if (page
->index
>= end_index
+1 || !offset
) {
2842 * The page may have dirty, unmapped buffers. For example,
2843 * they may have been added in ext3_writepage(). Make them
2844 * freeable here, so the page does not leak.
2846 do_invalidatepage(page
, 0);
2848 return 0; /* don't care */
2852 * The page straddles i_size. It must be zeroed out on each and every
2853 * writepage invocation because it may be mmapped. "A file is mapped
2854 * in multiples of the page size. For a file that is not a multiple of
2855 * the page size, the remaining memory is zeroed when mapped, and
2856 * writes to that region are not written out to the file."
2858 zero_user_segment(page
, offset
, PAGE_CACHE_SIZE
);
2859 return __block_write_full_page(inode
, page
, get_block
, wbc
, handler
);
2861 EXPORT_SYMBOL(block_write_full_page_endio
);
2864 * The generic ->writepage function for buffer-backed address_spaces
2866 int block_write_full_page(struct page
*page
, get_block_t
*get_block
,
2867 struct writeback_control
*wbc
)
2869 return block_write_full_page_endio(page
, get_block
, wbc
,
2870 end_buffer_async_write
);
2872 EXPORT_SYMBOL(block_write_full_page
);
2874 sector_t
generic_block_bmap(struct address_space
*mapping
, sector_t block
,
2875 get_block_t
*get_block
)
2877 struct buffer_head tmp
;
2878 struct inode
*inode
= mapping
->host
;
2881 tmp
.b_size
= 1 << inode
->i_blkbits
;
2882 get_block(inode
, block
, &tmp
, 0);
2883 return tmp
.b_blocknr
;
2885 EXPORT_SYMBOL(generic_block_bmap
);
2887 static void end_bio_bh_io_sync(struct bio
*bio
, int err
)
2889 struct buffer_head
*bh
= bio
->bi_private
;
2891 if (err
== -EOPNOTSUPP
) {
2892 set_bit(BIO_EOPNOTSUPP
, &bio
->bi_flags
);
2895 if (unlikely (test_bit(BIO_QUIET
,&bio
->bi_flags
)))
2896 set_bit(BH_Quiet
, &bh
->b_state
);
2898 bh
->b_end_io(bh
, test_bit(BIO_UPTODATE
, &bio
->bi_flags
));
2903 * This allows us to do IO even on the odd last sectors
2904 * of a device, even if the bh block size is some multiple
2905 * of the physical sector size.
2907 * We'll just truncate the bio to the size of the device,
2908 * and clear the end of the buffer head manually.
2910 * Truly out-of-range accesses will turn into actual IO
2911 * errors, this only handles the "we need to be able to
2912 * do IO at the final sector" case.
2914 static void guard_bh_eod(int rw
, struct bio
*bio
, struct buffer_head
*bh
)
2919 maxsector
= i_size_read(bio
->bi_bdev
->bd_inode
) >> 9;
2924 * If the *whole* IO is past the end of the device,
2925 * let it through, and the IO layer will turn it into
2928 if (unlikely(bio
->bi_sector
>= maxsector
))
2931 maxsector
-= bio
->bi_sector
;
2932 bytes
= bio
->bi_size
;
2933 if (likely((bytes
>> 9) <= maxsector
))
2936 /* Uhhuh. We've got a bh that straddles the device size! */
2937 bytes
= maxsector
<< 9;
2939 /* Truncate the bio.. */
2940 bio
->bi_size
= bytes
;
2941 bio
->bi_io_vec
[0].bv_len
= bytes
;
2943 /* ..and clear the end of the buffer for reads */
2944 if ((rw
& RW_MASK
) == READ
) {
2945 void *kaddr
= kmap_atomic(bh
->b_page
);
2946 memset(kaddr
+ bh_offset(bh
) + bytes
, 0, bh
->b_size
- bytes
);
2947 kunmap_atomic(kaddr
);
2948 flush_dcache_page(bh
->b_page
);
2952 int submit_bh(int rw
, struct buffer_head
* bh
)
2957 BUG_ON(!buffer_locked(bh
));
2958 BUG_ON(!buffer_mapped(bh
));
2959 BUG_ON(!bh
->b_end_io
);
2960 BUG_ON(buffer_delay(bh
));
2961 BUG_ON(buffer_unwritten(bh
));
2964 * Only clear out a write error when rewriting
2966 if (test_set_buffer_req(bh
) && (rw
& WRITE
))
2967 clear_buffer_write_io_error(bh
);
2970 * from here on down, it's all bio -- do the initial mapping,
2971 * submit_bio -> generic_make_request may further map this bio around
2973 bio
= bio_alloc(GFP_NOIO
, 1);
2975 bio
->bi_sector
= bh
->b_blocknr
* (bh
->b_size
>> 9);
2976 bio
->bi_bdev
= bh
->b_bdev
;
2977 bio
->bi_io_vec
[0].bv_page
= bh
->b_page
;
2978 bio
->bi_io_vec
[0].bv_len
= bh
->b_size
;
2979 bio
->bi_io_vec
[0].bv_offset
= bh_offset(bh
);
2983 bio
->bi_size
= bh
->b_size
;
2985 bio
->bi_end_io
= end_bio_bh_io_sync
;
2986 bio
->bi_private
= bh
;
2988 /* Take care of bh's that straddle the end of the device */
2989 guard_bh_eod(rw
, bio
, bh
);
2992 submit_bio(rw
, bio
);
2994 if (bio_flagged(bio
, BIO_EOPNOTSUPP
))
3000 EXPORT_SYMBOL(submit_bh
);
3003 * ll_rw_block: low-level access to block devices (DEPRECATED)
3004 * @rw: whether to %READ or %WRITE or maybe %READA (readahead)
3005 * @nr: number of &struct buffer_heads in the array
3006 * @bhs: array of pointers to &struct buffer_head
3008 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3009 * requests an I/O operation on them, either a %READ or a %WRITE. The third
3010 * %READA option is described in the documentation for generic_make_request()
3011 * which ll_rw_block() calls.
3013 * This function drops any buffer that it cannot get a lock on (with the
3014 * BH_Lock state bit), any buffer that appears to be clean when doing a write
3015 * request, and any buffer that appears to be up-to-date when doing read
3016 * request. Further it marks as clean buffers that are processed for
3017 * writing (the buffer cache won't assume that they are actually clean
3018 * until the buffer gets unlocked).
3020 * ll_rw_block sets b_end_io to simple completion handler that marks
3021 * the buffer up-to-date (if approriate), unlocks the buffer and wakes
3024 * All of the buffers must be for the same device, and must also be a
3025 * multiple of the current approved size for the device.
3027 void ll_rw_block(int rw
, int nr
, struct buffer_head
*bhs
[])
3031 for (i
= 0; i
< nr
; i
++) {
3032 struct buffer_head
*bh
= bhs
[i
];
3034 if (!trylock_buffer(bh
))
3037 if (test_clear_buffer_dirty(bh
)) {
3038 bh
->b_end_io
= end_buffer_write_sync
;
3040 submit_bh(WRITE
, bh
);
3044 if (!buffer_uptodate(bh
)) {
3045 bh
->b_end_io
= end_buffer_read_sync
;
3054 EXPORT_SYMBOL(ll_rw_block
);
3056 void write_dirty_buffer(struct buffer_head
*bh
, int rw
)
3059 if (!test_clear_buffer_dirty(bh
)) {
3063 bh
->b_end_io
= end_buffer_write_sync
;
3067 EXPORT_SYMBOL(write_dirty_buffer
);
3070 * For a data-integrity writeout, we need to wait upon any in-progress I/O
3071 * and then start new I/O and then wait upon it. The caller must have a ref on
3074 int __sync_dirty_buffer(struct buffer_head
*bh
, int rw
)
3078 WARN_ON(atomic_read(&bh
->b_count
) < 1);
3080 if (test_clear_buffer_dirty(bh
)) {
3082 bh
->b_end_io
= end_buffer_write_sync
;
3083 ret
= submit_bh(rw
, bh
);
3085 if (!ret
&& !buffer_uptodate(bh
))
3092 EXPORT_SYMBOL(__sync_dirty_buffer
);
3094 int sync_dirty_buffer(struct buffer_head
*bh
)
3096 return __sync_dirty_buffer(bh
, WRITE_SYNC
);
3098 EXPORT_SYMBOL(sync_dirty_buffer
);
3101 * try_to_free_buffers() checks if all the buffers on this particular page
3102 * are unused, and releases them if so.
3104 * Exclusion against try_to_free_buffers may be obtained by either
3105 * locking the page or by holding its mapping's private_lock.
3107 * If the page is dirty but all the buffers are clean then we need to
3108 * be sure to mark the page clean as well. This is because the page
3109 * may be against a block device, and a later reattachment of buffers
3110 * to a dirty page will set *all* buffers dirty. Which would corrupt
3111 * filesystem data on the same device.
3113 * The same applies to regular filesystem pages: if all the buffers are
3114 * clean then we set the page clean and proceed. To do that, we require
3115 * total exclusion from __set_page_dirty_buffers(). That is obtained with
3118 * try_to_free_buffers() is non-blocking.
3120 static inline int buffer_busy(struct buffer_head
*bh
)
3122 return atomic_read(&bh
->b_count
) |
3123 (bh
->b_state
& ((1 << BH_Dirty
) | (1 << BH_Lock
)));
3127 drop_buffers(struct page
*page
, struct buffer_head
**buffers_to_free
)
3129 struct buffer_head
*head
= page_buffers(page
);
3130 struct buffer_head
*bh
;
3134 if (buffer_write_io_error(bh
) && page
->mapping
)
3135 set_bit(AS_EIO
, &page
->mapping
->flags
);
3136 if (buffer_busy(bh
))
3138 bh
= bh
->b_this_page
;
3139 } while (bh
!= head
);
3142 struct buffer_head
*next
= bh
->b_this_page
;
3144 if (bh
->b_assoc_map
)
3145 __remove_assoc_queue(bh
);
3147 } while (bh
!= head
);
3148 *buffers_to_free
= head
;
3149 __clear_page_buffers(page
);
3155 int try_to_free_buffers(struct page
*page
)
3157 struct address_space
* const mapping
= page
->mapping
;
3158 struct buffer_head
*buffers_to_free
= NULL
;
3161 BUG_ON(!PageLocked(page
));
3162 if (PageWriteback(page
))
3165 if (mapping
== NULL
) { /* can this still happen? */
3166 ret
= drop_buffers(page
, &buffers_to_free
);
3170 spin_lock(&mapping
->private_lock
);
3171 ret
= drop_buffers(page
, &buffers_to_free
);
3174 * If the filesystem writes its buffers by hand (eg ext3)
3175 * then we can have clean buffers against a dirty page. We
3176 * clean the page here; otherwise the VM will never notice
3177 * that the filesystem did any IO at all.
3179 * Also, during truncate, discard_buffer will have marked all
3180 * the page's buffers clean. We discover that here and clean
3183 * private_lock must be held over this entire operation in order
3184 * to synchronise against __set_page_dirty_buffers and prevent the
3185 * dirty bit from being lost.
3188 cancel_dirty_page(page
, PAGE_CACHE_SIZE
);
3189 spin_unlock(&mapping
->private_lock
);
3191 if (buffers_to_free
) {
3192 struct buffer_head
*bh
= buffers_to_free
;
3195 struct buffer_head
*next
= bh
->b_this_page
;
3196 free_buffer_head(bh
);
3198 } while (bh
!= buffers_to_free
);
3202 EXPORT_SYMBOL(try_to_free_buffers
);
3205 * There are no bdflush tunables left. But distributions are
3206 * still running obsolete flush daemons, so we terminate them here.
3208 * Use of bdflush() is deprecated and will be removed in a future kernel.
3209 * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3211 SYSCALL_DEFINE2(bdflush
, int, func
, long, data
)
3213 static int msg_count
;
3215 if (!capable(CAP_SYS_ADMIN
))
3218 if (msg_count
< 5) {
3221 "warning: process `%s' used the obsolete bdflush"
3222 " system call\n", current
->comm
);
3223 printk(KERN_INFO
"Fix your initscripts?\n");
3232 * Buffer-head allocation
3234 static struct kmem_cache
*bh_cachep __read_mostly
;
3237 * Once the number of bh's in the machine exceeds this level, we start
3238 * stripping them in writeback.
3240 static unsigned long max_buffer_heads
;
3242 int buffer_heads_over_limit
;
3244 struct bh_accounting
{
3245 int nr
; /* Number of live bh's */
3246 int ratelimit
; /* Limit cacheline bouncing */
3249 static DEFINE_PER_CPU(struct bh_accounting
, bh_accounting
) = {0, 0};
3251 static void recalc_bh_state(void)
3256 if (__this_cpu_inc_return(bh_accounting
.ratelimit
) - 1 < 4096)
3258 __this_cpu_write(bh_accounting
.ratelimit
, 0);
3259 for_each_online_cpu(i
)
3260 tot
+= per_cpu(bh_accounting
, i
).nr
;
3261 buffer_heads_over_limit
= (tot
> max_buffer_heads
);
3264 struct buffer_head
*alloc_buffer_head(gfp_t gfp_flags
)
3266 struct buffer_head
*ret
= kmem_cache_zalloc(bh_cachep
, gfp_flags
);
3268 INIT_LIST_HEAD(&ret
->b_assoc_buffers
);
3270 __this_cpu_inc(bh_accounting
.nr
);
3276 EXPORT_SYMBOL(alloc_buffer_head
);
3278 void free_buffer_head(struct buffer_head
*bh
)
3280 BUG_ON(!list_empty(&bh
->b_assoc_buffers
));
3281 kmem_cache_free(bh_cachep
, bh
);
3283 __this_cpu_dec(bh_accounting
.nr
);
3287 EXPORT_SYMBOL(free_buffer_head
);
3289 static void buffer_exit_cpu(int cpu
)
3292 struct bh_lru
*b
= &per_cpu(bh_lrus
, cpu
);
3294 for (i
= 0; i
< BH_LRU_SIZE
; i
++) {
3298 this_cpu_add(bh_accounting
.nr
, per_cpu(bh_accounting
, cpu
).nr
);
3299 per_cpu(bh_accounting
, cpu
).nr
= 0;
3302 static int buffer_cpu_notify(struct notifier_block
*self
,
3303 unsigned long action
, void *hcpu
)
3305 if (action
== CPU_DEAD
|| action
== CPU_DEAD_FROZEN
)
3306 buffer_exit_cpu((unsigned long)hcpu
);
3311 * bh_uptodate_or_lock - Test whether the buffer is uptodate
3312 * @bh: struct buffer_head
3314 * Return true if the buffer is up-to-date and false,
3315 * with the buffer locked, if not.
3317 int bh_uptodate_or_lock(struct buffer_head
*bh
)
3319 if (!buffer_uptodate(bh
)) {
3321 if (!buffer_uptodate(bh
))
3327 EXPORT_SYMBOL(bh_uptodate_or_lock
);
3330 * bh_submit_read - Submit a locked buffer for reading
3331 * @bh: struct buffer_head
3333 * Returns zero on success and -EIO on error.
3335 int bh_submit_read(struct buffer_head
*bh
)
3337 BUG_ON(!buffer_locked(bh
));
3339 if (buffer_uptodate(bh
)) {
3345 bh
->b_end_io
= end_buffer_read_sync
;
3346 submit_bh(READ
, bh
);
3348 if (buffer_uptodate(bh
))
3352 EXPORT_SYMBOL(bh_submit_read
);
3354 void __init
buffer_init(void)
3356 unsigned long nrpages
;
3358 bh_cachep
= kmem_cache_create("buffer_head",
3359 sizeof(struct buffer_head
), 0,
3360 (SLAB_RECLAIM_ACCOUNT
|SLAB_PANIC
|
3365 * Limit the bh occupancy to 10% of ZONE_NORMAL
3367 nrpages
= (nr_free_buffer_pages() * 10) / 100;
3368 max_buffer_heads
= nrpages
* (PAGE_SIZE
/ sizeof(struct buffer_head
));
3369 hotcpu_notifier(buffer_cpu_notify
, 0);